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Abstract 

 

In recent years the advantages of reconfigurable computing have make FPGAs important 

parts of many applications. One interesting characteristic of FPGAs is their ability to change 

parts of the design that runs on them dynamically. This procedure is called Partial 

Reconfiguration (PR). One disadvantage of PR is that sometimes it takes too much time to 

be completed and for real-time applications it has to be able to be executed fast. The 

purpose of this thesis is the implementation of designs that can perform PR with high 

throughput. 

When a reconfiguration is taken place a partial bitstream file must be transferred from a 

memory where it is stored to the reconfiguration memory of the FPGA. This transfer can be 

executed by software code that runs on a processor (e.g. PowerPC or MicroBlaze) or by 

hardware. For this thesis several designs were implemented, each one uses one of these 

methods to transfer the partial bitstream and a deferent memory where the partial bitstreams 

are stored. The memories that were used on these designs were a Compact Flash, a DDR2 

SDRAM and a SRAM. The final result was a design that can perform PR with high 

throughput. 
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Chapter 1 

Introduction 

 

This chapter is an introduction about FPGAs and dynamic partial reconfiguration. It also 

presents the contribution of this thesis and the structure of this report. 

 

1.1 Field Programmable Gate Arrays 

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be configured by 

the user. This characteristic gives them the ability to execute many different logic functions. 

The FPGA configuration is generally specified using a hardware description language, like 

VHDL or Verilog. Any logical function that could be performed by an application-specific 

integrated circuit (ASIC) can be also implemented on a FPGA. FPGAs however have the 

advantage of being able to be reconfigured, fully or partially, which gives them the flexibility 

of a software application with the performance of a hardware application. 

FPGAs contain programmable logic components called “logic blocks”. Logic blocks can be 

connected with each other via a hierarchy of reconfigurable interconnectors and can be 

configured to perform logic functions from simple logic gates like AND or XOR to complex 

combinational functions. Logic blogs in most FPGAs also include memory elements like 

flip-flops or more complete blocks of memory. Some FPGAs also contain embedded 

microprocessors (like the PowerPC in various Xilinx FPGAs) which allow even more 

flexibility. Figure 1.1 shows the generic structure of an FPGA. 

FPGAs are used in various applications like digital signal processing, software-defined radio, 

ASIC prototyping, medical imaging, computer vision, speech recognition, cryptography, 

bioinformatics, computer hardware emulation and radio astronomy. 
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Figure 1.1 Generic internal structure of a FPGA 

 

1.2 Xilinx Virtex-5 XC5VLX110T FPGA [18] 

The FPGA that was used for this thesis is the Virtex-5 XC5VLX110T. The basic element of 

this FPGA is the Configurable Logic Block (CLB). A CLB is made up of two slices. Each 

slice is equivalent and contains: 

 Four 6-input LUTs 

 Four flip-flops 

 Arithmetic logic gates 

 Large multiplexers 

 Fast carry look-ahead chain 

Other elements of this FPGA are DSP48E slices, memory blocks, Clock Management Tiles 

(CMTs) and I/O blocks. Each DSP48E slice contains a 25 x 18 multiplier, an adder and an 

accumulator. Each CMT contains two Digital Clock Manager (DCM) blocks and one PLL 

block. 

The FPGA contains a special memory block the configuration memory. When a new design 

is downloaded on the FPGA the bitstream file that has the information about the 

programming of the logic elements and their interconnections is stored in this memory. 
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Configuration memory is arranged in frames that are tiled about the device. These frames are 

the smallest addressable segments of the configuration memory space. The configuration 

memory of the Virtex-5 XC5VLC110T FPGA has 23,712 configuration frames, and the 

length of each frame is 41 32-bit words. 

 

1.3 Partial Reconfiguration 

One important characteristic of FPGAs is that a part of the design that runs on them can be 

changed while the rest remain the same. This procedure is called Partial Reconfiguration 

(PR). Partial reconfiguration can be performed on an FPGA either when it is not active, 

which is known as static PR, or when it is active, which is called dynamic PR. Some of the 

benefits of PR are the following: 

 Increased System Performance. Sometimes there are different versions of a part of 

a design, each one more preferable based on different situations. PR allows only the 

optimal version of this part to run on the FPGA each time while the rest of the 

design remains unaffected and so the design can have better performance. 

 Reduced Power Consumption. PR can be used to replace parts of a design with 

blank beatstreams when they are not needed which reduce the power consumption of 

the design. Lower power consumption can also be achieved by using optimal versions 

of the reconfigurable parts of the design. 

 Adaptability. PR allows the system to adapt to changes in the environment they 

work, their input data or their mission specifications. 

 Self-Test and Fault Tolerance. A design can have self-test components that check 

its integrity. When a fault is detected PR allows the reconfiguration of just the part 

responsible of this fault and thus the reconfiguration of the entire design is 

prevented. 

Xilinx FPGAs allows two deferent styles of partial reconfiguration, which are described in 

the following paragraphs. 

 

1.3.1 Module-Based Partial Reconfiguration 

Module-Based PR permits to reconfigure specified regions of the FPGA. These regions are 

called Partially Reconfigured Regions (PRR). For each PRR there are several designs that can 

run on it, but only one runs on it each time. These designs are called Reconfigurable 

Modules (RM). The rest of the design that is not changed is the static design. For each RM 
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there is a Partial Bitstream file which is used when a PRR is reconfigured to implement this 

RM. For each PRR there is also a Blank Bitstream file. When a Blank Bitstream runs on a 

PRR, this region is inactive. For the connection of the static design with the PRRs special 

buses had to be used which are called bus macros. Bus macros were provided by Xilinx and 

they provided a guaranteed connection point between the static design and the PRR. Bus 

macros are not used anymore because they have been replaced by PROXY LUTs. A 

PROXY LUT is a 1-point LUT that accomplishes the same thing as the bus macros. 

PROXY LUTs are also automatically inserted into the design by the design tool during the 

generation of the bitstream files. During the FPGA initial configuration a specific RM runs 

on each PRR. These RMs are determined by the designer during the generation of the 

bitstream file of the complete design. 

 

1.3.2 Difference-Based Partial Reconfiguration 

Difference-based PR can be used when a small change is made to the design. It is especially 

useful in case of changing LUT equations or dedicated memory blocks content. The partial 

bitstream contains only information about differences between the current design structure 

(that runs on the FPGA) and the new content of an FPGA. There are two ways of 

performing difference-based reconfiguration known as frond-end and back-end. Frond-end 

is based on the modification of the design in the hardware description language. It is clear 

that such a solution requires full repeating of the synthesis and implementation process. The 

back-end permits to make changes at the implementation stage of the prototyping flow. 

Therefore there is no need for re-synthesis of the design. The usage of both methods leads 

to creation of a partial bitstream that can be used for a partial reconfiguration of the FPGA. 

 

1.4 Contribution 

In every design that uses partial reconfiguration there is a unit that performs the 

reconfigurations whenever they are needed. This thesis focuses on this unit and on how it 

can perform PR faster regardless the application that it is used on. On this thesis several 

designs of this unit were implemented. The purpose of this thesis is to evaluate each design 

and with each design to achieve a higher reconfiguration throughput. The final design can be 

used on any application that uses PR. 
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1.5 Thesis Structure 

Chapter 2 provides a background on Partial Reconfiguration and references to related work. 

Chapter 3 describes the architecture of the designs that were implemented. Chapter 4 

describes the evaluation and the software of the designs, and the verification method. 

Chapter 5 presents the experimental results. Chapter 6 describes some conclusions regarding 

this work and provides ideas for future work. 
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Chapter 2 

Background and Related Work 

 

This chapter presents a background on Partial Reconfiguration and describes the 

reconfiguration tools that were used for this thesis. Finally it presents several projects related 

to Partial Reconfiguration. 

 

2.1 Methods to Perform Partial Reconfiguration 

There are several different ways to perform partial reconfiguration. In each way the design 

has a memory were the partial bitstraems are stored. This memory is called storage memory. 

Every design that uses PR has a component that decides when a reconfiguration must be 

performed and performs it. This component is the reconfiguration controller. One method 

to perform PR is the external reconfiguration. With this method the storage memory and the 

reconfiguration controller are not parts of the design that runs on the FPGA. The partial 

bitstreams are sorted in an external PC which also is the reconfiguration controller. The 

partial bitstreams can be transferred to the configuration memory through JTAG. External 

reconfiguration can also be achieved through SPI or SelectMAP interfaces. Another method 

is the internal reconfiguration. With this method the reconfiguration controller is part of the 

design that runs on the FPGA. It transfers the partial bitstreams from an external memory to 

the configuration memory through the Internal Configuration Access Port (ICAP). 

 

2.2 Internal Configuration Access Port [19] 

The Internal Configuration Access Port is a hardcore that is used for internal partial 

reconfiguration. It allows for writing to or reading from the configuration memory of the 

FPGA. Its input width for the Virtex-5 FPGAs is up to 32 bits and the maximum frequency 

of operation is 100MHz. Figure 2.1 shows interface if the ICAP and its ports are explained 

at Table 2.1. 
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Figure 2.1 Input and Output Signals of the ICAP 

 

Pin Name Type Description 

CLK Input ICAP interface clock 

CE Input Active-Low ICAP interface select. 
0 = ICAP data bus enabled 
1 = ICAP data bus disabled 

WRITE Input 0 = WRITE 
1 = READ 
WRITE input can only be changed while CE is 
set to 1, otherwise an abort occurs. 

I[31:0] Input ICAP write data bus. 

O[31:0] Output Unregistered ICAP read data bus. 

BUSY Output Active-High busy status. Only used in read 
operations. BUSY remains Low during writes. 

Table 2.1 ICAP Interface Pin Table 

 

Figure 2.2 shows an example of a non-continuous data transfer to the ICAP. The numbered 

points of this figure are explained below: 

 



14 
 

 

Figure 2.2 Time Diagram of a Non-Continuous ICAP Data Loading 

 

1. WHRITE is driven Low by the user in order to enable the ICAP write data bus. 

WHRITE can be tied Low if read back is not needed. 

2. The user asserts CE Low, enabling the ICAP data bus. 

3. BUSY goes Low shortly after CE is asserted. 

4. A word is loaded on the rising CLK edge. 

5. A word is loaded on the rising CLK edge. 

6. The user deasserts CE, and the word is ignored. 

7. The user deasserts CE, and the word is ignored. 

8. A word is loaded on the rising CLK edge. 

9. A word is loaded on the rising CLK edge. 

10. The user deasserts CE, and the word is ignored. 

11. A word is loaded on the rising CLK edge. 

12. A word is loaded on the rising CLK edge. 

13. A word is loaded on the rising CLK edge. 

 

2.3 Partial Reconfiguration Design Tools 

For the design and implementation of partially reconfigurable systems the following Xilinx 

Tools were used: 

EDK 9.1.02 and 12.3: This tool allows the design of a processor system, a system that 

contains a MicroBlaze processor and several processor peripherals that can communicate 

with it through a local bus (OPB or PLB depending on the tool’s version). 
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ISE 9.1.02 and 12.3: This tool was used for the design of components that are not parts of 

the processor system and for the synthesis of the static designs and the RMs. 

PlanAhead 10.1 and 12.3: This tool allows the placement of the PRRs on the FPGA and 

uses the netlist files that were generated from the synthesis to generate the initial and the 

partial bitstream files. 

The reason why two different versions of each tools were used for this thesis is because the 

newer versions, which allow for better designs, need a special license to support partial 

reconfiguration, and this license became available later after the work for this thesis had 

started. 

 

2.4 Related Work 

B. Griese [1] developed a Real-Time Reconfiguration Manager; a hardware component that 

is used as reconfiguration controller for external PR. C. Clause [2] developed an ICAP 

Controller on a Virtex-II Pro FPGA. It is connected to the PLB and equipped with DMA 

capabilities. With this controller he achieved throughput almost 20 times better than the 

throughput of the OPBHWICAP controller which is provided by Xilinx. This controller was 

later redesigned and used on both Virtex-II Pro and Virtex-4 FPGAs [3]. I. Gelado [4] used 

partial reconfiguration on hardware accelerators for software applications. When a specific 

accelerator is needed it is loaded into the reconfigurable logic. P. Sedcole [5] suggested a new 

style of module-based PR, the Merge Partial Reconfiguration. On a design that uses this 

style, when a partial bitstream is loaded it is not written directly to the configuration 

memory, but instead the current configuration is read back from the device and modified 

with information from the partial bitstream before being written back. K. Papademetriou [6] 

suggested the prefetching of PRRs when they are not used with parts of RMs that are about 

to be used in the near future. By this way he managed to reduce reconfiguration time up to 

87%. In [7] he developed a simple design that performs PR on a Virtex-II Pro FPGA with a 

Compact Flash as storage memory and the PowerPC as the reconfiguration controller. In [8] 

he split the total reconfiguration time in several parts and presented the time results of each 

one. In [9] he developed a mathematical model that calculates the total reconfiguration time 

of a design based on several parameters. M. French [10] developed an autonomous partially 

reconfigurable signal processing system. This system uses cognitive algorithms to modify 

and tune signal processing in real-time using active PR. P. Manet [11] developed a system 

that uses PR for signal and image processing. The reconfiguration controller of this system 

implements a DMA that transfers the bitstream from the storage memory to the ICAP. This 

controller is almost 84 times faster than the OPBHWICAP. S. Liu [12] suggested two 



16 
 

techniques to reduce the reconfiguration time. The first technique is the use of fully 

streaming DMA engines. A Master DMA engine was added in the ICAP controller and a 

Slave DMA engine was added in the SRAM controller which is the interface of the storage 

memory. Those DMA engines communicate through a FIFO and transfer the partial 

bitstreams directly from the SRAM to the ICAP. The second technique is the reduction of 

each bitstream size by using a simple encoding algorithm. M. Liu [13] developed several 

reconfiguration controllers on a Virtex-4 FPGA and compared them with the 

OPBHWICAP and the XPSHWICAP that are provided by Xilinx. The first controller is the 

DMA_HWICAP which is the XPSHWICAP with a DMA controller attached on it. The 

DMA controller contains both a master and a slave bus interface. The slave interfaced is 

used to receive commands like the source address, the destination address and the length of 

a transaction. The master interface is used to initiate the transfer of the bitstream from the 

storage memory to the ICAP. The second controller is the MST_HWICAP. This controller 

does not use the HWICAP. Instead of DMA it contains an integrated master bus interface 

with burst transmission support. This interface is directly connected to the controller of the 

storage memory. It also contains a slave bus interface to receive control commands which is 

connected to the host PLB. The final controller is the BRAM_HWICAP. This controller 

contains a BRAM which is used as the storage memory and is large enough to hold the 

entire partial bitstream. Figure 2.3 shows the block diagram of the MST_HWICAP and the 

BRAM_HWICAP. K. Vipin [26] developed an ICAP Controller that can achieve high 

reconfiguration throughput on a Virtex 6 FPGA. H. Kashyap [27] proposed an approach to 

secure dynamic partial reconfiguration when an unsecure external memory is used as the 

storage memory. This approach uses the AES algorithm to encrypt and decrypt the partial 

bitstreams. T.D.A. Nguyen [28] developed a Partially Reconfigurable Heterogeneous System-

on-Chip. This system uses dynamic partial reconfiguration to support multiple processors 

and hardware accelerators. A. Morales-Villanueva [29] described a method of saving or 

restoring the state of each RM when it is replaced or loaded on the PRR. E. Cetin [30] 

proposed a framework for implementing FPGA circuits that can recover from configuration 

memory errors within a desired maximum recovery period by using PR. C. Effraimidis [14] 

developed an autonomous genetic algorithm system that supports the change of the fitness 

function at run time by using dynamic PR. This system can theoretically support infinite 

fitness functions. G. Nikoloudakis [15] developed and evaluated a cryptography system that 

uses PR to change the cryptographic algorithm that runs on it each time. E. Spanakis [16] 

developed a Linux-based Task Manager for dynamic reconfiguration. This Task Manager 

runs on a PowerPC of a Virtex-II Pro FPGA and controls the reconfiguration of the PRRs. 

A. Ilias [17] designed a system that uses partial reconfiguration to repair parts of it when they 

do not work correctly because of the reversal of one or several bits in the configuration 

memory. Such reversals can be caused by several reasons like the exposure of the chip to 
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radiation. When the system detects such faults it does not reconfigure the entire design but 

only the problematic part of it. 

 

 

Figure 2.3 MST_HWICAP and BRAM_HWICAP Block Diagrams. 
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Chapter 3 

System Designs and Architectures 

 

This chapter describes a generic Partially Reconfigurable system and every system that was 

designed in order to achieve high reconfiguration throughput on a Virtex-5 FPGA. On the 

first designs the bus that is used for communication with the MicroBlaze is the OPB because 

this was the only bus supported by the older versions of the Xilinx tools for Virtex-5. On the 

later designs where the newer versions were used the OPB was replaced by the faster PLB 

bus. 

 

3.1 A Generic Partially Reconfigurable System 

Figure 3.1 shows a generic Partially Reconfigurable design. This design consists of the static 

and the reconfigurable part. The reconfigurable part is the part that can be changed and it 

contains the PRRs. The static part is the rest of the design that cannot be changed. The PR 

Support unit is a part of the static design that executes every reconfiguration. It contains the 

storage memory, the reconfiguration controller and the ICAP. The reconfiguration 

controller can be the MicroBlaze and so it will use software code to execute the 

reconfigurations or a complete hardware unit. The selection of the storage memory is also an 

important factor for the performance of the PR support unit. 

 

3.2 OPB System version 1 

On the first design the reconfiguration controller is the MicroBlaze. When a reconfiguration 

is taken place, MicroBlaze reads the partial bitstream from the storage memory and transfers 

it to the ICAP. The storage memory is a Compact Flash memory. Figure 3.2 shows the top 

diagram of the design. The DCM unit provides the clock signal for the Processor System 

and the PRR. The clock frequency for this design is 100 MHz. The ROPB bus is a bus 

similar to the OPB that is used for the communication between the PRR and the 

MicroBlaze. 

 



19 
 

 

Figure 3.1 Top Diagram of a Generic Partially Reconfigurable Design 

 

 

 

Figure 3.2 Top Diagram of the OPB System version 1 
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The Processor System is a component that contains the MicroBlaze and all the peripherals 

that are connected with it through the OPB bus. The block diagram of the Processor System 

is shown at figure 3.3.  

 

 

Figure 3.3 Block Diagram of the Processor System of the OPB System version1 

 

This system consists of the following components: 

1. The MicroBlaze processor. It uses 64 Kbytes of the Bram (LMB) as its main data and 

instruction memory. 

2. The UART peripheral which allows communication between the MicroBlaze and a 

host PC through an RS232 port. It is used to send data to the RM and read back the 

results to check if the PRR was reconfigured correctly, to request a new 

reconfiguration or to receive results regarding with reconfiguration times. 

3. The Timer is used for producing time results for each face of the reconfigurations. 
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4. The SystemACE peripheral is used for the support of an external compact flash 

memory. This memory contains the partial bitstreams and the initial bitstream which 

is used to reconfigure the FPGA when the system starts. 

5. The Socket is used so we can connect an external OPB peripheral with the OPB bus 

through the registers of the DCR bus. The external peripheral that is connected to 

the Socket is the algorithm that runs on the PRR. 

6. The Microprocessor Debug Module (MDM) can be used for debugging the 

MicroBlaze software code. 

7. The final component is the OPB HWICAP [20]. The OPB HWICAP is an OPB 

peripheral provided by Xilinx that enables an embedded microprocessor, such as the 

MicroBaze, to read and write the FPGA configuration memory through the ICAP. 

The version of this peripheral that is used in this work is the v1.00.b. Figure 3.4 

shows the top-level block diagram of the OPB HWICAP. The DPRAM is a 2KB 

BRAM where the data from the partial bitstream are stored before they are 

transferred to the ICAP. The ICAP Control State Machine controls the data transfers 

from the bus to the BRAM and from that memory to the ICAP. 

 

 

 

Figure 3.4 OPB HWICAP Block Diagram 
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3.3 OPB System version 2 

The main problem of the first system was the Compact Flash Memory. This memory is too 

slow and affects negatively the reconfiguration performance of the design. To improve the 

performance Compact Flash was replaced by a DDR2 SDRAM which is much faster and 

more efficient. Another advantage of the DDR2 is that it can be used as data cache memory 

for the MicroBlaze, which allows for even better performance. The controller of the DDR2 

is the Multi-CHannel OPB Double Data Rate 2 Synchronous DRAM Controller 

(mch_opb_ddr2) v1.02.a which is provided by Xilinx [21]. The size of the DDR2 is 256MB. 

The System Ace peripheral however was not removed because the Compact Flash is needed 

for the transfer of the partial bitstreams to the DDR2. When the system starts the partial 

bitstreams are copied from the Compact Flash to the DDR2 and then the Compact Flash is 

not used again. The processor system also has a second DCM module that provides some 

additional clock signals that are needed for the DDR2 controller. Except of the addition of 

the DDR2 controller and the second DCM the rest of the design is the same as at the 

previous version. 

 

3.4 OPB System version 3 

Another way to improve the performance even more is to remove the software from the 

process of the reconfiguration. To achieve this, a DMA peripheral was used to transfer the 

bitstreams from the DDR2 directly to the ICAP. In this architecture the HWICAP is not 

used because the MicroBlaze does not participate in the data transfer from the storage 

memory to the ICAP. When a reconfiguration is taken place the DMA peripheral transfers 

the bitstream from the DDR2 to a 2K FIFO and then it is transferred from there to the 

ICAP.  

 

3.4.1 The ICAP Controller 

For this design a new component was implemented, the ICAP controller, that contains the 

ICAP and a F.S.M. which controls the transfer of the bitstream from the FIFO to the ICAP. 

The block diagram of this component is shown at figure 3.5. 
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Figure 3.5 Block Diagram of the ICAP Controller 

 

The first part of the ICAP Controller is the Bit swapping unit. When a 32 bit word is 

transferred from the bitstream to the ICAP the bits of every byte must be swapped. For 

example if the input word is 0xAA995566 then its bytes must be changed as shown in table 

3.1 and so this word will be changed to 0x5599AA66. The Bit swapping unit rearranges the 

bits of every word of the bitstream. 

 

Bitstream Format 0xAA (10101010) 0x99 (10011001) 0x55 (01010101) 0x66 (01100110) 

Bit swapped 0x55 (01010101) 0x99 (10011001) 0xAA (10101010) 0x66 (01100110) 

Table 3.1 Bit Swapping 

 

The second part of the ICAP Controller is the Control FSM. This unit controls the transfer 

of the bitstream from the FIFO to the ICAP. The only thing that this F.S.M. needs to know 

is if there are data in the FIFO and so its input signals are the clock, the reset and the empty 
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signal which comes from the FIFO. Its output signals are the rd_en signal which goes to the 

FIFO and the CE which goes to the ICAP. The Control FSM has five states. Figure 3.6 

shows the state diagram of the Control FSM and table 3.2 shows the values of each output 

signal of the F.S.M. for each state. 

 

 

 

Figure 3.6 State Diagram of ICAP Controller’s FSM 
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State rd_en CE 

init 0 1 

transfer_1 1 0 

transfer_2 1 1 

pause_1 0 0 

pause_2 0 1 

Table 3.2 Control FSM output values 

 

Because the ICAP and the FIFO reads and sends data respectively on the rising edge of the 

clock, to avoid synchronization problems the Control FSM change states on the falling edge 

of the clock and so the rd_en and CE signals are not changed on a rising edge. When the 

F.S.M. is reset it goes to the “init” state where rd_en is set to 0 and CE to 1 and so no 

transfer is taken place. As long as the FIFO is empty it stays on that state. When the empty 

signal becomes 0 the F.S.M. goes to state “transfer_1”. There rd_en is set to 1 and CE to 0 

and so on the next rising edge of the clock the first word of the bitstream will be read from 

the FIFO. These bits however will be written to the ICAP on the following rising edge of 

the clock and so the CE signal must remain 0 for at least one more cycle. As long as there 

are data in the FIFO the F.S.M. remains on this state and on each rising edge a new word is 

read from the FIFO and the previous is written to the ICAP. When the empty signal 

becomes 1 the F.S.M. goes to state “pause_1”. There the rd_en signal is set to 0 because 

there are not any new data in the FIFO. The CE signal remains 0 because the last word from 

the FIFO has not been written yet to the ICAP and so the ICAP data bus must remain 

enabled for on more cycle. If the empty signal remains 1 on the next cycle the F.S.M. goes to 

state “pause_2” where the CE signal is 1 because the last word that has been read from the 

FIFO has been transferred to the ICAP and there are no new data. As long as the empty 

signal remains 1 the F.S.M remains on state “pause_2”. According to the example of 

paragraph 1.5 when the CE signal is asserted Low the ICAP loads the word of the write data 

bus on the next rising edge of the clock except of the first word which is loaded on the 

second rising edge. Because of this when the F.S.M. is on one of the “pause” states and the 

empty signal is 0 it cannot go to “transfer_1” state because on the next rising edge the CE 

signal would be 0 and wrong data would be loaded to the ICAP. The CE signal must remain 

1 for at least one cycle and so the F.S.M. goes to “transfer_2” state where the CE signal is 

set to 1. This is also the reason why “init” and “pause_2” are different states. If the empty 

signal remains 0 the F.S.M. goes to the “transfer_1” state where the CE signal is set to 0 and 

the data start to be loaded to the ICAP. If the empty signal is 1 the F.S.M. goes to “pause_1” 
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state just like when it is on “transfer_1” state. Because of the way Control FSM works it 

must have been reset before every reconfiguration. 

The final part of the ICAP Controller is the ICAP which is connected to the Control FSM as 

shown at figure 3.4. In our design the O and BUSY outputs of the ICAP are not used and so 

the WHRITE input is always set to 0.  

 

3.4.2 The FIFO Peripheral 

The FIFO peripheral is an OPB peripheral which contains a 2K FIFO which is connected to 

the OPB bus through an OPB IP Interface. The block diagram of the FIFO Peripheral is 

shown at figure 3.7. The fsm_reset, empty, and dout outputs are connected at the respective 

inputs of the ICAP Controller. The fsm_reset signal is set through the OPB bus by the 

MicroBlaze. 

 

 

Figure 3.7 Block Diagram of the FIFO Peripheral 
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3.4.3 The DMA System 

Figures 3.8 and 3.9 show the block diagrams of the design and the Processor System 

respectively. There we can see that the HWICAP has been removed because the MicroBlaze 

does not need to communicate with the ICAP on this design. The DMA peripheral is the 

opb_central_dma v1.00.c and it is provided by Xilinx [22]. 

 

Figure 3.8 Top Diagram of the OPB System version 3 

Figure 3.9 Block Diagram of the Processor System of the OPB System version3 
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3.5 The PLB Systems 

The newer versions of the Xilinx tools support a better and faster bus than the OPB, the 

PLB bus. Every design that had been implemented on the oldest version of Xilinx tools was 

redesigned and implemented on the newer version. These new designs use the PLB as the 

bus for the communication between the MicroBlaze and the peripherals but there are some 

other differences from the oldest designs. Firstly, as it was mentioned in chapter 1, the Bus 

Macros have been replaced by PROXY LUTs that are inserted by the tools. Secondly the 

DCR bus is not supported by the later tools and so the Socket peripheral is not used. In 

these designs each RM is connected directly to the PLB like any other PLB peripheral. By 

this way the bus interfaces of the RMs are parts of the static design. Finally the peripheral 

that is used for the communication between the MicroBlaze and the ICAP is now the XPS 

HWICAP [23]. Figure 3.10 shows the block diagram of this new core. As shown in this 

figure, the XPS HWICAP does not contain a BRAM but instead it has the write and read 

FIFOs. Incoming data is stored within the write FIFO, from where it can be fed to the 

ICAP. The XPS HWICAP also provides for read back of configuration resource states. In 

this case, the frames are read back into the read FIFO one at a time and the processor will 

then be able to read the frame data directly from the read FIFO. 

 

Figure 3.10 XPS HWICAP Block Diagram 
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Figure 3.11 shows the top diagram of the first PLB design that uses the compact flash as 

storage memory. The Clock Generator is a new component that uses the DCMs to produce 

clock signals. The clock frequency for this design is 125MHz except for the HWICAP that 

runs on 100MHz which is the maximum frequency that Xilinx suggests for the ICAP. 

 

 

Figure 3.11 Top Diagram of the PLB System version 1 

 

The second design uses the DDR2 as the storage memory. The new controller for this 

memory that Xilinx provides is the Multi-Port Memory Controller (MPMC) [24]. The third 

design uses the DMA peripheral to transfer the bitstreams from the DDR2 to the ICAP. In 

this design a new FIFO peripheral was design that can be connected to the PLB bus but its 

functionality is the same as the OPB peripheral. The ICAP controller did not need to be 

changed and so the same component was used on this design. In this design the ICAP 

Controller and the FIFO should run on the same frequency otherwise there would be 

synchronization problems and the design would not work correctly. The FIFO however for 

similar reason should run on the same frequency with the bus and so for the whole design 

the clock frequency was 100MHz. Finally two more designs were implemented that are the 

same as the last two designs with the difference that they use an SRAM as the storage 

memory. The SRAM if faster than the DDR2 but its size is only 1MB and so it can be used 
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only for designs with less or smaller partial bitstreams. The controller of the SRAM that was 

used for these designs is the XPS Multi-CHannel External Memory Controller 

(xps_mch_emc) v3.01.a which is provided by Xilinx [26]. 

All the designs that were in this chapter are summarized in table 3.3: 

 

System Version Storage Memory Reconfiguration Controller 

OPB Version 1 Compact Flash OPB HWICAP 

OPB Version 2 DDR2 OPB HWICAP 

OPB Version 3 DDR2 DMA with ICAP Controller 

PLB Version 1 Compact Flash XPS HWICAP 

PLB Version 2 DDR2 XPS HWICAP 

PLB Version 3 DDR2 DMA with ICAP Controller 

PLB Version 4 SRAM XPS HWICAP 

PLB Version 5 SRAM DMA with ICAP Controller 

Table 3.3 Designs Summary 
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Chapter 4 

Evaluation of each design 

 

This chapter describes the evaluation of each design and presents the resources that each 

design requires. 

 

4.1 Resource Requirements and Component Placements 

4.1.1 OPB Designs 

The first part of the evaluation was to synthesize each part of the designs. The static part and 

the RMs had to be synthesized separately. After the synthesis the netlist files that were 

generated were used by the PlanAhead tool to generate the bitstream files. Each RM in these 

designs consists of two parts, the cryptographic algorithm and the OPB interface. The 

interface was produced by the EDK tool and so it was synthesized separately from the 

algorithm. Table 4.1 shows the resources that each algorithm and each interface requires and 

the total resources that each RM requires. Table 4.2 shows the resources that the static part 

of each OPB design requires. 

 

Component 
Number of Slice 
Registers Used 

Slice Registers 
Utilization 

Number of Slice 
LUTs Used 

Slice LUTs 
Utilization 

AES 709 1.03% 1646 2.38% 

AES IPIF 371 0.54% 224 0.32% 

AES Total 1080 1.56% 1870 2.71% 

Blowfish 91 0.13% 214 0.31% 

Blowfish IPIF 323 0.47% 302 0.44% 

Blowfish Total 414 0.6% 516 0.75% 

Table 4.1 Resource Requirements of each RM for the OPB designs 
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OPB Design 
Number of Slice 
Registers Used 

Slice Registers 
Utilization 

Number of Slice 
LUTs Used 

Slice LUTs 
Utilization 

Version 1 2426 3.51% 2784 4.03% 

Version 2 4671 6.76% 5119 7.41% 

Version 3 4752 6.88% 5085 7.36% 

Table 4.2 Resource Requirements of the static parts of each OPB design 

 

After the synthesis of each design the PlanAhead tool was used to determine the area of the 

FPGA that will be used for the PRR. As we can see from Table 4.1 both RMs does not 

require a big part of the FPGA and so the area of the PRR does not need to be very large. 

Some designs, however did not work with specific selections of the PRR area and so this 

area is not the same in every design. The PlanAhead tool was also used to place the bus 

macros and the DCM which should be placed manually. Figure 4.1 shows the area selection 

for the PRR of the first design and figure 4.2 shows the placement of the DCM. 

 

 

Figure 4.1 PRR Placement of the OPB System version 1 
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Figure 4.2 DCM Placement of the OPB System version 1 

 

4.1.2 PLB Designs 

In the PLB designs the bus interfaces of each RM is part of the static design and so the RMs 

contain only the algorithms. The algorithms were synthesized again, this time with the newer 

tools. Tables 4.3 and 4.4 show the resource requirements of the algorithms and the static 

designs respectively. 

 

Component 
Number of Slice 
Registers Used 

Slice Registers 
Utilization 

Number of Slice 
LUTs Used 

Slice LUTs 
Utilization 

AES 713 1.03% 1628 2.36% 

Blowfish 107 0.15% 212 0.31% 

Table 4.3 Resource Requirements of each RM for the PLB designs 

 

PLB Design 
Number of Slice 
Registers Used 

Slice Registers 
Utilization 

Number of Slice 
LUTs Used 

Slice LUTs 
Utilization 

Version 1 3739 5.41% 3771 5.46% 

Version 2 7351 10.64% 6350 9.19% 

Version 3 7550 10.92% 6776 9.8% 

Version 4 4730 6.84% 4776 6.91% 

Version 5 4389 6.35% 4410 6.38% 

Table 4.4 Resource Requirements of the static parts of each PLB design 
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After the synthesis of each design the PlanAhead tool was used for the generation of the 

bitstream files. On the newer version the DCMs that are used by the Clock Generator are 

placed automatically by the tool but the area of the PRR must be determined by the user. 

The MPMC peripheral has a parameter that determines the locations where three of its 

components must be placed. This parameter is called C_IDELAYCTRL_LOC and is set be 

the EDK tool when the MPMC is used. The PlanAhead tool however cannot read this 

parameter and so these components were placed manually based on the value of this 

parameter. 

 

4.2 Processor Software 

For every design a software code was developed to control the reconfiguration. For the 

System ACE, each HWICAP and each DMA peripherals Xilinx provides libraries that were 

used in these codes in order to use these peripherals. Table 4.5 describes the functions that 

were used for each of these libraries. As shown in this table the OPB HWICAP provides a 

function that transfers only 4 bytes to its BRAM and a different function that transfers data 

from this memory to the ICAP. The PLB HWICAP however provides one function that 

allows the user to determine the amount of data that are about to be transferred and it also 

executes the transfer of these data to the ICAP from the write FIFO. 

 

Peripheral Libraries Functions Description 

System ACE 
xsysace.h 

xsysace_l.h 
sysace_stdio.h 

sysace_fopen() Opens a bitstream file. 

sysace_fread() 
Transfers data from 
the CF to MicroBlaze’s 
memory. 

sysace_fclose() Closes a bitstream file. 

OPB HWICAP 
xhwicap.h 

xhwicap_i.h 
xhwicap_l.h 

XHwIcap_Initialize() 
Initializes a HWICAP 
instance. 

XHwIcap_StorageBufferWrite() 

Transfers a 4byte word 
from the memory of 
the MicroBlaze to the 
BRAM of the 
HWICAP. 

XHwIcap_DeviceWrite() 

Transfers a specified 
amount of data from 
the BRAM of the 
HWICAP to the ICAP 
device. 
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XPS HWICAP 
xhwicap.h 

xhwicap_i.h 
xhwicap_l.h 

XHwIcap_LookupConfig() 
Looks up the device 
configuration based on 
the unique device ID. 

XHwIcap_CfgInitialize() 
Initializes a HWICAP 
instance. 

XHwIcap_DeviceWrite() 

Writes data to the 
Write FIFO and starts 
the transfer of the data 
to the ICAP device. 

DMA 
xdmacentral.h 

xdmacentral_l.h 

XDmaCentralInitialize() 
Initializes a specific 
DMA instance. 

XDmaCentralReset() 
Forces a software reset 
to occur in the device. 

XDmaCentralSetControl() 
Sets the contents of 
DMA Control register. 

XDmaCentralTransfer() 

Start the DMA 
transferring data from 
a memory source to a 
memory destination 

XDmaCentralGetStatus() 
Get the contents of 
DMA Control register. 

Table 4.5 Xilinx Software Drivers 

 

The first few bytes of a partial bitstream file are the bitstream’s header. The header contains 

useful information like the size of the bitstream and it must not be transferred to the ICAP. 

At the designs that do not use the Compact Flash as the storage memory when the 

bitstreams are copied to the storage memory (DDR2 or SRAM) the headers are skipped and 

the size of each bitstream is saved into variables. In every design, except those with the 

DMA, when a reconfiguration is taken place MicroBlaze runs a loop where a specific 

amount of data are transferred to the ICAP in every iteration. When this loop is completed if 

there are any remaining data they are transferred to the ICAP as well. Before this loop starts 

the number of its iteration is calculated based on the size of the bitstream file, as well as the 

remaining bytes of the bitstream. In the designs that use the DMA, before a DMA transfer 

starts a register of the DMA peripheral must be set. This register is called Control Register 

and determines the size of each data transfer and if the DMA must increment the source or 

the destination addresses with each transfer. The DMA peripheral also has a read only 

register, the Status Register that contains information like if the DMA is busy or if there is a 

bus error. When this register shows that the DMA is not busy and there are no errors and 

the FIFO is empty, the reconfiguration has been completed. Figures 4.3 and 4.4 show the 
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flow diagrams of the reconfiguration for each OPB designs. Figure 4.5 shows the flow 

diagrams of the reconfiguration for the PLB designs. The diagram for the design that uses 

the DMA is the same as the OPB design. 

 

4.3 System Verification 

To verify that each design works properly a system was implemented for each one of them. 

These systems use a switch to determine which algorithm will run in the PRR. They were 

also connected to a terminal through a RS232 to send data to the algorithm and return the 

results so we can know that the PRR has been reconfigured correctly. When a system is 

downloaded on the FPGA the AES algorithm runs in the PRR. First MicroBlaze waits the 

terminal for the first input for the algorithm. When these data are sent to MicroBlaze it 

transfers them to the algorithm and when the algorithm returns the results, MicroBlaze 

sends them to the terminal and checks the switch. If the switch has changed it performs the 

reconfiguration and then asks for the input of the other algorithm. Each time MicroBlaze 

returns results to the terminal checks the switch and if it is needed performs a 

reconfiguration. 
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Figure 4.3 Flow diagram of reconfiguration for the OPB System version 1 
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Figure 4.4 Flow diagrams of reconfiguration for the OPB System version 2 and 3 
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Figure 4.5 Flow diagrams of the reconfiguration for the PLB Systems 
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Chapter 5 

Experimental Results 

 

This chapter presents some time results that were measured to check the performance of the 

designs. To take time results a timer peripheral was used that is provided by Xilinx. This 

peripheral can count clock cycles which then, based on clock frequency can be converted to 

time. It is also connected to the main bus (OPB or PLB) and can send the measurements to 

the processor. To count time using this peripheral the following functions were used: 

 XTmrCtr_Initialize(): This function initializes a timer instance. 

 XTmrCtr_SetResetValue(): This function sets the value that the timer will get 

when it is reset. 

 XTmrCtr_Reset(): This function resets the timer. 

 XTmrCtr_Start(): This function starts the timer. 

 XTmrCtr_Stop(): This function stops the timer. 

 XTmrCtr_GetValue(): This function return the number of the cycles that have been 

counted so far. 

As it was explained in chapter 4 at some of the designs the partial bitstream file is transferred 

directly from the storage memory to the ICAP during a reconfiguration and at others it is 

transferred through other memories. For the later designs except of the total reconfiguration 

time, the total time for each transfer was measured. More specifically for the designs that use 

the OPB bus we have the following time measurements: 

 tCFtoMB: The total time for the transfer of the bitstream from CompactFlash to 

MicroBlaze’s main memory. 

 tMBtoBRAM: The total time for the transfer of the bitstream from MicroBlaze’s main 

memory to the BRAM of the HWICAP. 

 tDDR2toBRAM: The total time for the transfer of the bitstream from DDR2 to the 

BRAM of the HWICAP. 

 tBRAMtoICAP: The total time for the transfer of the bitstream from the BRAM of the 

HWICAP to the ICAP. 

For the designs that use the PLB bus we have the following time measurements: 
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 tCFtoMB: The total time for the transfer of the bitstream from CompactFlash to 

MicroBlaze’s main memory. 

 tMBtoICAP: The total time for the transfer of the bitstream from MicroBlaze’s main 

memory to the ICAP. 

For the time measurements three partial bitstream files were used: the AES algorithm, the 

Blowfish algorithm and a blank bitstream file. At the OPB designs each partial bitstream file 

has different size from the others of the same design. At each PLB design however all partial 

bitstream files have the same size. At the designs that use the SRAM as the storage memory 

the blank bitstream file was not used because the size of the SRAM was not enough for all 

three bitstream files. 

One way to improve the performance when using the DDR2 or the SRAM as the storage 

memory is to set each one of these memories as the data cache for MicroBlaze. When the 

cache is enabled the processor can communicate with the corresponding memory faster. To 

see how much the design is improved when the cache is enabled, two different 

measurements were taken for each design, one with the cache disabled and one with cache 

enabled. The size of the cache was set to 16Kbytes. The following tables show the time 

results for each design. 

 

Partial 
Bitstream 

Bitsream 
Size (Kb) 

CF to MB MB to BRAM BRAM to ICAP Total 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

AES 355.8 710.5 0.5 25.5 13.6 3.8 92.6 751.2 0.5 

Blowfish 275.1 506.1 0.5 19.7 13.6 2.9 92.6 537.8 0.5 

Blank 215 393.7 0.5 15.4 13.6 2.3 92.5 418.5 0.5 

Table 5.1 Time Results of OPB Design Version 1 

 

Partial 
Bitstream 

Bitsream 
Size (Kb) 

DDR2 to BRAM BRAM to ICAP Total 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

AES 225.4 17.7 12.5 2.4 92.6 22.3 9.9 

Blowfish 183 14.3 12.5 1.9 92.6 18.1 9.9 

Blank 150.5 11.8 12.5 1.6 92.6 14.9 9.9 

Table 5.2 Time Results of OPB Design Version 2 (cache enabled) 
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Partial 
Bitstream 

Bitsream 
Size (Kb) 

DDR2 to BRAM BRAM to ICAP Total 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

AES 214.9 27.1 7.7 2.3 92.6 31.2 6.7 

Blowfish 176.3 22.3 7.7 1.9 92.6 25.6 6.7 

Blank 133 16.8 7.7 1.4 92.6 19.3 6.7 

Table 5.3 Time Results of OPB Design Version 2 (cache disabled) 

 

Partial Bitstream Bitsream Size (Kb) Total time (ms) 
Total throughput 

(Mb/s) 

AES 222.7 3.1 68.2 

Blowfish 181.3 2.6 68.1 

Blank 141.5 2.0 68.1 

Table 5.4 Time Results of OPB Design Version 3 

 

Partial 
Bitstream 

Bitsream 
Size (Kb) 

CF to MB MB to ICAP Total 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

time 
(ms) 

throughput 
(Mb/s) 

AES 561 985.7 0.6 25.5 21.5 1011.2 0.5 

Blowfish 561 899.9 0.6 25.5 21.5 933.2 0.6 

Blank 561 864.8 0.6 25.5 21.5 890.2 0.6 

Table 5.5 Time Results PLB Design Version 1 

 

Partial Bitstream Bitsream Size (Kb) Total time (ms) 
Total throughput 

(Mb/s) 

AES 561 29.8 18.4 

Blowfish 561 29.8 18.4 

Blank 561 29.8 18.4 

Table 5.6 Time Results PLB Design Version 2 (cache enabled) 

 

Partial Bitstream Bitsream Size (Kb) Total time (ms) 
Total throughput 

(Mb/s) 

AES 670 61.5 10.6 

Blowfish 670 61.5 10.6 

Blank 670 61.5 10.6 

Table 5.7 Time Results PLB Design Version 2 (cache disabled) 
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Partial Bitstream Bitsream Size (Kb) Total time Total throughput 

AES 526 4.2 120.6 

Blowfish 526 4.6 112.0 

Blank 526 4.4 116.4 

Table 5.8 Time Results PLB Design Version 3 

 

Partial Bitstream Bitsream Size (Kb) Total time Total throughput 

AES 449 22.9 19.1 

Blowfish 449 22.9 19.1 

Table 5.9 Time Results PLB Design Version 4 (cache enabled) 

 

Partial Bitstream Bitsream Size (Kb) Total time Total throughput 

AES 449 35.4 12.4 

Blowfish 449 35.4 12.4 

Table 5.10 Time Results PLB Design Version 4 (cache disabled) 

 

Partial Bitstream Bitsream Size (Kb) Total time Total throughput 

AES 421 3.0 138.6 

Blowfish 421 3.0 138.6 

Table 5.11 Time Results PLB Design Version 5 

 

From these results we can see that both designs that use the Compact Flash as the storage 

memory are much slower than the other designs. Figures 5.1 and 5.2 show the time 

allocation for each transfer of the partial bitstream at these two design. From these charts we 

can see that the 94.1% and 97% of the reconfiguration time respectively is the duration of 

the transfer from the Compact Flash to the memory of the MicroBlaze. This is the reason 

why the throughput of this transfer is almost equal to the total throughput. Figure 5.3 shows 

the total throughput of the designs that use the DDR2 or the SRAM as storage memory with 

cache enabled and disabled. From this chart we can see that the use of the cache improves 

significantly the performance of the design, especially for the PLB designs. Finally figure 5.4 

shows the highest throughput that was achieved for each design. From this chart we can 

conclude that the designs that use the DMA are much faster than the others and so this 

method of reconfiguration is the most efficient. 
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Figure 5.1 Time allocation for each transfer at OPB v1 design 

 

 

Figure 5.2 Time allocation for each transfer at PLB v1 design 
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Figure 5.3 Throughput comparison chart for the designs that can use the storage memory as data cache 

 

 

Figure 5.3 Total throughput of each design 
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Table 5.12 shows the maximum reconfiguration throughput that was achieved from each of 

the projects that were mentioned in paragraph 2.4 and from this work. The second column 

of this table has the memories that were used as the storage memory and the third column 

shows if the design uses a custom ICAP controller or the HWICAP. From this table we can 

see that the designs with the highest throughput use a custom ICAP controller. We can also 

see that some of these designs can achieve even higher throughput than the one that was 

achieved in this work which means that there are more improvements that can be applied to 

the final implementation.  

 

Reference Storage Memory ICAP Controller 
Max Reconfiguration 
Throughput (MB/s) 

[1] Host PC Custom 3.88 

[2] DDR SDRAM Custom 93.53 

[3] DDR2 SDRAM Custom 295.4 

[4] BRAM HWICAP 4.13 

[7] BRAM HWICAP 1.46 

[8] CF HWICAP 0.15 

[10] DDR2 SDRAM HWICAP 4.48 

[11] DDR2 SDRAM Custom 353.2 

[12] SRAM Custom 290.23 

[13] BRAM Custom 332.1 

[14] CF HWICAP 0.12 

[15] CF HWICAP 0.19 

[16] DDR SDRAM HWICAP 5.16 

[17] CF HWICAP 0.19 

[26] DDR3 SDRAM Custom 838.55 

[27] DDR3 SDRAM HWICAP 268.75 

This work SRAM Custom 138.6 

Table 5.12 Design Characteristics and Maximum Reconfiguration Throughput of Referenced Projects. 
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Chapter 6 

Conclusions and Future Work 

 

For the purpose of this thesis, we designed and implement several systems that perform PR 

on a Virtex-5 FPGA. For each system we used two cryptographic algorithms as the RMs. 

The main goal is to achieve better performance with each new system. 

The first system was a simple design that uses a Compact Flash as the storage memory and 

the bitstream files were transferred through the Micro Blaze to the ICAP. The first step to 

improve the performance was to replace the slow Compact Flash with the much faster 

DDR2 or the SRAM. These memories can also be used as the cache of the MicroBlaze 

which improves the performance even more. Then a DMA peripheral was inserted to 

transfer the partial bitstreams directly from the storage memory to the ICAP and not 

through the MicroBlaze. The HWICAP was also replaced with a simple controller that 

consists of a FIFO where the bitsreams are transferred by the DMA and a FSM which 

controls the transfer of the bitstreams from that FIFO to the ICAP. The highest 

reconfiguration throughput that was achieved from the final design is 138.6 MB/s. 

 As part of future work, several modifications can be implemented to improve the 

reconfiguration unit: 

 A master bus interface can be inserted in the FIFO peripheral, so it can transfer the 

partial bitstream from the storage memory to the FIFO without the use of a DMA 

peripheral. This modification may not improve the reconfiguration throughput but it 

will reduce the size of the reconfiguration controller 

 Instead of using a FIFO the BRAM blocks of the FPGA can be used as the storage 

memory. In this case the transfer of the partial bitstream from the storage memory to 

the ICAP will be faster and it will not require the use of the PLB bus.. 

 Finally, overclocking techniques can be used for the ICAP to make it work on a faster 

frequency than 100MHz which will increase the reconfiguration throughput. 
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Appendix 

 

This appendix describes same features of the Virtex-5 FPGAs, like the one that was used for 

this thesis. 

 

Configurable Logic Blocks 

Configurable Logic Blogs (CLBs) are the main logic resources for implementing sequential 

as well as combinatorial circuits. Each CLB element is connected to a switch matrix for 

access to the general routing matrix as shown in figure 1. A CLB element contains a pair of 

slices. These two slices do not have direct connection to each other, and each slices 

organized as a column. Each slice in a column has an independent carry chain. For each 

CLB, slices in the bottom of the CLB are labeled as SLICE(0), and slices in the top of the 

CLB are labeled as SLICE(1). 

 

 

Figure 1 Arrangement of Slices within the CLB 
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Every slice contains four logic-function generators, four storage elements, wide-function 

multiplexers, and carry logic. These elements are used by all slices to provide logic, 

arithmetic, and ROM functions. In addition to this, some slices support two additional 

functions: storing data using distributed RAM and shifting data with 32-bit registers. Slices 

that support these additional functions are called SLICEM; others are called SLICEL. The 

function generators are configurable as 6-input LUTs or dual-output 5-input LUTs. The four 

storage elements can be configured as either edge-triggered D-type flip-flops or level 

sensitive latches. 

 

Block RAM 

Block RAM modules provide flexible 36 Kbit true dual-port RAM that are cascadable to 

form larger memory blocks. In addition, Virtex-5 FPGA block RAMs contain optional 

programmable FIFO logic for increased device utilization. Each block RAM can also be 

configured as two independent 18 Kbit true dual-port RAM blocks, providing memory 

granularity for designs needing smaller RAM blocks. 

 

Input/Output Blocks 

I/O blocks provide the interface between package pins and internal configurable logic. Most 

popular and leading-edge I/O standards are supported by programmable I/O blocks 

(IOBs). The IOBs can be connected to very flexible ChipSync logic for enhanced source-

synchronous interfacing. Source-synchronous optimizations include per-bit deskew (on both 

input and output signals), data serializers/deserializers, clock dividers, and dedicated I/O 

and local clocking resources. 

 

DSP48E Slices 

Cascadable embedded DSP48E slices with 25 x 18 two’s complement multipliers and 48-bit 

adder/subtracter/accumulator provide massively parallel DSP algorithm support. In 

addition, each DSP48E slice can be used to perform bitwise logical functions. 
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Clock Management Tile Blocks 

Clock Management Tile (CMT) blocks provide the most flexible, highest-performance 

clocking for FPGAs. Each CMT contains two Digital Clock Manager (DCM) blocks (self-

calibrating, fully digital), and one PLL block (self-calibrating, analog) for clock distribution 

delay compensation, clock multiplication/division, coarse-/fine-grained clock phase shifting, 

and input clock jitter filtering. 

 

General Routing Matrix 

The General Routing Matrix (GRM) provides an array of routing switches between each 

internal component. Each programmable element is tied to a switch matrix, allowing 

multiple connections to the general routing matrix. The overall programmable 

interconnection is hierarchical and designed to support high-speed designs. In Virtex-5 

devices, the routing connections are optimized to support CLB interconnection in the fewest 

number of “hops”. Reducing hops greatly increases post place-and-route (PAR) design 

performance. 

Some other features are the following: 

LXT, SXT, TXT, and FXT devices contain: 

 Integrated Endpoint blocks for PCI Express designs providing x1, x4, or x8 PCI 

Express Endpoint functionality. When used in conjunction with RocketIO 

transceivers, a complete PCI Express Endpoint can be implemented with minimal 

FPGA logic utilization. 

 10/100/1000 Mb/s Ethernet media-access control blocks offer Ethernet capability. 

LXT and SXT devices contain: 

 RocketIO GTP transceivers capable of running up to 3.75Gb/s. Each GTP 

transceiver supports full-duplex, clock-and-data recovery. 

TXT and FXT devices contain: 

 GTX transceivers capable of running up to 6.5Gb/s. Each GTX transceiver supports 

full-duplex, clock-and-data recovery. 

FXT devices contain: 
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 Embedded IBM PowerPC 440 RISC CPUs. Each PowerPC 440 CPU is capable of 

running up to 550 MHz. Each PowerPC 440 CPU also has an APU (Auxiliary 

Processor Unit) interface that supports hardware acceleration, and an integrated 

cross-bar for high data throughput. 

The following table shows the resources of each Virtex-5 FPGA. 

 

Table 1 Virtex-5 FPGA Family Members 

 


