
TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONIC & COMPUTER

ENGINEERING

Diploma Thesis:

Implementation and Evaluation of Dynamic Partial

Reconfiguration Techniques on Cryptographic Algorithms

Kasampalis Vasileios

Advisor: Professor Pnevmatikatos Dionisios

Evaluation Committee:

Professor Pnevmatikatos Dionisios

Professor Dollas Apostolos

Assistant Professor Koutroulis Eftichios

Chania, December 2014

2

3

Acknowledgments

I would like to thank my advisor, Professor Dionisios Pnevmatikatos, for giving me the

opportunity to work on this field of research for the purpose of this thesis, and for his

support and valuable help. I would also like to thank Professor Apostolos Dollas and

Associate Professor Ioannis Papaefstathiou who agree to evaluate my diploma thesis.

I would like to thank Dr. Papadimitriou for his interest and support. His help was very

important to me especially when I started working on this thesis. I would like to thank

Anargiros Ilias and Haralampos Vatsolakis for their help to my thesis. I would like to thank

Markos Kimionis for providing me all the equipment I needed for my thesis.

Finally, I would like to thank all my friends for all these great moments we have been

through during my studies and my family for their help, support and understanding during

all these years as a student.

4

Abstract

In recent years the advantages of reconfigurable computing have make FPGAs important

parts of many applications. One interesting characteristic of FPGAs is their ability to change

parts of the design that runs on them dynamically. This procedure is called Partial

Reconfiguration (PR). One disadvantage of PR is that sometimes it takes too much time to

be completed and for real-time applications it has to be able to be executed fast. The

purpose of this thesis is the implementation of designs that can perform PR with high

throughput.

When a reconfiguration is taken place a partial bitstream file must be transferred from a

memory where it is stored to the reconfiguration memory of the FPGA. This transfer can be

executed by software code that runs on a processor (e.g. PowerPC or MicroBlaze) or by

hardware. For this thesis several designs were implemented, each one uses one of these

methods to transfer the partial bitstream and a deferent memory where the partial bitstreams

are stored. The memories that were used on these designs were a Compact Flash, a DDR2

SDRAM and a SRAM. The final result was a design that can perform PR with high

throughput.

5

Contents

Acknowledgments... 3

Abstract .. 4

1 Introduction .. 7

1.1 Field Programmable Gate Arrays .. 7

1.2 Xilinx Virtex-5 XC5VLX110T FPGA ... 8

1.3 Partial Reconfiguration ... 9

1.3.1 Module-Based Partial Reconfiguration ... 9

1.3.2 Difference-Based Partial Reconfiguration.. 10

1.4 Contribution ... 10

1.5 Thesis Structure .. 11

2 Background and Related Work ... 12

2.1 Methods to Perform Partial Reconfiguration .. 12

2.2 Internal Configuration Access Port .. 12

2.3 Partial Reconfiguration Design Tools .. 14

2.4 Related Work .. 15

3 System Designs and Architectures .. 18

3.1 A Generic Partially Reconfigurable System ... 18

3.2 OPB System version 1 .. 18

3.3 OPB System version 2 .. 22

3.4 OPB System version 3 .. 22

3.4.1 The ICAP Controller ... 22

3.4.2 The FIFO Peripheral ... 26

3.4.3 The DMA System .. 27

3.5 The PLB Systems ... 28

4 Evaluation of each design .. 31

4.1 Resource Requirements and Component Placements ... 31

4.1.1 OPB Designs .. 31

4.1.2 PLB Designs ... 33

4.2 Processor Software .. 34

6

4.3 System Verification .. 36

5 Experimental Results .. 40

6 Conclusions and Future Work... 47

References .. 48

Appendix .. 51

7

Chapter 1

Introduction

This chapter is an introduction about FPGAs and dynamic partial reconfiguration. It also

presents the contribution of this thesis and the structure of this report.

1.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be configured by

the user. This characteristic gives them the ability to execute many different logic functions.

The FPGA configuration is generally specified using a hardware description language, like

VHDL or Verilog. Any logical function that could be performed by an application-specific

integrated circuit (ASIC) can be also implemented on a FPGA. FPGAs however have the

advantage of being able to be reconfigured, fully or partially, which gives them the flexibility

of a software application with the performance of a hardware application.

FPGAs contain programmable logic components called “logic blocks”. Logic blocks can be

connected with each other via a hierarchy of reconfigurable interconnectors and can be

configured to perform logic functions from simple logic gates like AND or XOR to complex

combinational functions. Logic blogs in most FPGAs also include memory elements like

flip-flops or more complete blocks of memory. Some FPGAs also contain embedded

microprocessors (like the PowerPC in various Xilinx FPGAs) which allow even more

flexibility. Figure 1.1 shows the generic structure of an FPGA.

FPGAs are used in various applications like digital signal processing, software-defined radio,

ASIC prototyping, medical imaging, computer vision, speech recognition, cryptography,

bioinformatics, computer hardware emulation and radio astronomy.

8

Figure 1.1 Generic internal structure of a FPGA

1.2 Xilinx Virtex-5 XC5VLX110T FPGA [18]

The FPGA that was used for this thesis is the Virtex-5 XC5VLX110T. The basic element of

this FPGA is the Configurable Logic Block (CLB). A CLB is made up of two slices. Each

slice is equivalent and contains:

 Four 6-input LUTs

 Four flip-flops

 Arithmetic logic gates

 Large multiplexers

 Fast carry look-ahead chain

Other elements of this FPGA are DSP48E slices, memory blocks, Clock Management Tiles

(CMTs) and I/O blocks. Each DSP48E slice contains a 25 x 18 multiplier, an adder and an

accumulator. Each CMT contains two Digital Clock Manager (DCM) blocks and one PLL

block.

The FPGA contains a special memory block the configuration memory. When a new design

is downloaded on the FPGA the bitstream file that has the information about the

programming of the logic elements and their interconnections is stored in this memory.

9

Configuration memory is arranged in frames that are tiled about the device. These frames are

the smallest addressable segments of the configuration memory space. The configuration

memory of the Virtex-5 XC5VLC110T FPGA has 23,712 configuration frames, and the

length of each frame is 41 32-bit words.

1.3 Partial Reconfiguration

One important characteristic of FPGAs is that a part of the design that runs on them can be

changed while the rest remain the same. This procedure is called Partial Reconfiguration

(PR). Partial reconfiguration can be performed on an FPGA either when it is not active,

which is known as static PR, or when it is active, which is called dynamic PR. Some of the

benefits of PR are the following:

 Increased System Performance. Sometimes there are different versions of a part of

a design, each one more preferable based on different situations. PR allows only the

optimal version of this part to run on the FPGA each time while the rest of the

design remains unaffected and so the design can have better performance.

 Reduced Power Consumption. PR can be used to replace parts of a design with

blank beatstreams when they are not needed which reduce the power consumption of

the design. Lower power consumption can also be achieved by using optimal versions

of the reconfigurable parts of the design.

 Adaptability. PR allows the system to adapt to changes in the environment they

work, their input data or their mission specifications.

 Self-Test and Fault Tolerance. A design can have self-test components that check

its integrity. When a fault is detected PR allows the reconfiguration of just the part

responsible of this fault and thus the reconfiguration of the entire design is

prevented.

Xilinx FPGAs allows two deferent styles of partial reconfiguration, which are described in

the following paragraphs.

1.3.1 Module-Based Partial Reconfiguration

Module-Based PR permits to reconfigure specified regions of the FPGA. These regions are

called Partially Reconfigured Regions (PRR). For each PRR there are several designs that can

run on it, but only one runs on it each time. These designs are called Reconfigurable

Modules (RM). The rest of the design that is not changed is the static design. For each RM

10

there is a Partial Bitstream file which is used when a PRR is reconfigured to implement this

RM. For each PRR there is also a Blank Bitstream file. When a Blank Bitstream runs on a

PRR, this region is inactive. For the connection of the static design with the PRRs special

buses had to be used which are called bus macros. Bus macros were provided by Xilinx and

they provided a guaranteed connection point between the static design and the PRR. Bus

macros are not used anymore because they have been replaced by PROXY LUTs. A

PROXY LUT is a 1-point LUT that accomplishes the same thing as the bus macros.

PROXY LUTs are also automatically inserted into the design by the design tool during the

generation of the bitstream files. During the FPGA initial configuration a specific RM runs

on each PRR. These RMs are determined by the designer during the generation of the

bitstream file of the complete design.

1.3.2 Difference-Based Partial Reconfiguration

Difference-based PR can be used when a small change is made to the design. It is especially

useful in case of changing LUT equations or dedicated memory blocks content. The partial

bitstream contains only information about differences between the current design structure

(that runs on the FPGA) and the new content of an FPGA. There are two ways of

performing difference-based reconfiguration known as frond-end and back-end. Frond-end

is based on the modification of the design in the hardware description language. It is clear

that such a solution requires full repeating of the synthesis and implementation process. The

back-end permits to make changes at the implementation stage of the prototyping flow.

Therefore there is no need for re-synthesis of the design. The usage of both methods leads

to creation of a partial bitstream that can be used for a partial reconfiguration of the FPGA.

1.4 Contribution

In every design that uses partial reconfiguration there is a unit that performs the

reconfigurations whenever they are needed. This thesis focuses on this unit and on how it

can perform PR faster regardless the application that it is used on. On this thesis several

designs of this unit were implemented. The purpose of this thesis is to evaluate each design

and with each design to achieve a higher reconfiguration throughput. The final design can be

used on any application that uses PR.

11

1.5 Thesis Structure

Chapter 2 provides a background on Partial Reconfiguration and references to related work.

Chapter 3 describes the architecture of the designs that were implemented. Chapter 4

describes the evaluation and the software of the designs, and the verification method.

Chapter 5 presents the experimental results. Chapter 6 describes some conclusions regarding

this work and provides ideas for future work.

12

Chapter 2

Background and Related Work

This chapter presents a background on Partial Reconfiguration and describes the

reconfiguration tools that were used for this thesis. Finally it presents several projects related

to Partial Reconfiguration.

2.1 Methods to Perform Partial Reconfiguration

There are several different ways to perform partial reconfiguration. In each way the design

has a memory were the partial bitstraems are stored. This memory is called storage memory.

Every design that uses PR has a component that decides when a reconfiguration must be

performed and performs it. This component is the reconfiguration controller. One method

to perform PR is the external reconfiguration. With this method the storage memory and the

reconfiguration controller are not parts of the design that runs on the FPGA. The partial

bitstreams are sorted in an external PC which also is the reconfiguration controller. The

partial bitstreams can be transferred to the configuration memory through JTAG. External

reconfiguration can also be achieved through SPI or SelectMAP interfaces. Another method

is the internal reconfiguration. With this method the reconfiguration controller is part of the

design that runs on the FPGA. It transfers the partial bitstreams from an external memory to

the configuration memory through the Internal Configuration Access Port (ICAP).

2.2 Internal Configuration Access Port [19]

The Internal Configuration Access Port is a hardcore that is used for internal partial

reconfiguration. It allows for writing to or reading from the configuration memory of the

FPGA. Its input width for the Virtex-5 FPGAs is up to 32 bits and the maximum frequency

of operation is 100MHz. Figure 2.1 shows interface if the ICAP and its ports are explained

at Table 2.1.

13

Figure 2.1 Input and Output Signals of the ICAP

Pin Name Type Description

CLK Input ICAP interface clock

CE Input Active-Low ICAP interface select.
0 = ICAP data bus enabled
1 = ICAP data bus disabled

WRITE Input 0 = WRITE
1 = READ
WRITE input can only be changed while CE is
set to 1, otherwise an abort occurs.

I[31:0] Input ICAP write data bus.

O[31:0] Output Unregistered ICAP read data bus.

BUSY Output Active-High busy status. Only used in read
operations. BUSY remains Low during writes.

Table 2.1 ICAP Interface Pin Table

Figure 2.2 shows an example of a non-continuous data transfer to the ICAP. The numbered

points of this figure are explained below:

14

Figure 2.2 Time Diagram of a Non-Continuous ICAP Data Loading

1. WHRITE is driven Low by the user in order to enable the ICAP write data bus.

WHRITE can be tied Low if read back is not needed.

2. The user asserts CE Low, enabling the ICAP data bus.

3. BUSY goes Low shortly after CE is asserted.

4. A word is loaded on the rising CLK edge.

5. A word is loaded on the rising CLK edge.

6. The user deasserts CE, and the word is ignored.

7. The user deasserts CE, and the word is ignored.

8. A word is loaded on the rising CLK edge.

9. A word is loaded on the rising CLK edge.

10. The user deasserts CE, and the word is ignored.

11. A word is loaded on the rising CLK edge.

12. A word is loaded on the rising CLK edge.

13. A word is loaded on the rising CLK edge.

2.3 Partial Reconfiguration Design Tools

For the design and implementation of partially reconfigurable systems the following Xilinx

Tools were used:

EDK 9.1.02 and 12.3: This tool allows the design of a processor system, a system that

contains a MicroBlaze processor and several processor peripherals that can communicate

with it through a local bus (OPB or PLB depending on the tool’s version).

15

ISE 9.1.02 and 12.3: This tool was used for the design of components that are not parts of

the processor system and for the synthesis of the static designs and the RMs.

PlanAhead 10.1 and 12.3: This tool allows the placement of the PRRs on the FPGA and

uses the netlist files that were generated from the synthesis to generate the initial and the

partial bitstream files.

The reason why two different versions of each tools were used for this thesis is because the

newer versions, which allow for better designs, need a special license to support partial

reconfiguration, and this license became available later after the work for this thesis had

started.

2.4 Related Work

B. Griese [1] developed a Real-Time Reconfiguration Manager; a hardware component that

is used as reconfiguration controller for external PR. C. Clause [2] developed an ICAP

Controller on a Virtex-II Pro FPGA. It is connected to the PLB and equipped with DMA

capabilities. With this controller he achieved throughput almost 20 times better than the

throughput of the OPBHWICAP controller which is provided by Xilinx. This controller was

later redesigned and used on both Virtex-II Pro and Virtex-4 FPGAs [3]. I. Gelado [4] used

partial reconfiguration on hardware accelerators for software applications. When a specific

accelerator is needed it is loaded into the reconfigurable logic. P. Sedcole [5] suggested a new

style of module-based PR, the Merge Partial Reconfiguration. On a design that uses this

style, when a partial bitstream is loaded it is not written directly to the configuration

memory, but instead the current configuration is read back from the device and modified

with information from the partial bitstream before being written back. K. Papademetriou [6]

suggested the prefetching of PRRs when they are not used with parts of RMs that are about

to be used in the near future. By this way he managed to reduce reconfiguration time up to

87%. In [7] he developed a simple design that performs PR on a Virtex-II Pro FPGA with a

Compact Flash as storage memory and the PowerPC as the reconfiguration controller. In [8]

he split the total reconfiguration time in several parts and presented the time results of each

one. In [9] he developed a mathematical model that calculates the total reconfiguration time

of a design based on several parameters. M. French [10] developed an autonomous partially

reconfigurable signal processing system. This system uses cognitive algorithms to modify

and tune signal processing in real-time using active PR. P. Manet [11] developed a system

that uses PR for signal and image processing. The reconfiguration controller of this system

implements a DMA that transfers the bitstream from the storage memory to the ICAP. This

controller is almost 84 times faster than the OPBHWICAP. S. Liu [12] suggested two

16

techniques to reduce the reconfiguration time. The first technique is the use of fully

streaming DMA engines. A Master DMA engine was added in the ICAP controller and a

Slave DMA engine was added in the SRAM controller which is the interface of the storage

memory. Those DMA engines communicate through a FIFO and transfer the partial

bitstreams directly from the SRAM to the ICAP. The second technique is the reduction of

each bitstream size by using a simple encoding algorithm. M. Liu [13] developed several

reconfiguration controllers on a Virtex-4 FPGA and compared them with the

OPBHWICAP and the XPSHWICAP that are provided by Xilinx. The first controller is the

DMA_HWICAP which is the XPSHWICAP with a DMA controller attached on it. The

DMA controller contains both a master and a slave bus interface. The slave interfaced is

used to receive commands like the source address, the destination address and the length of

a transaction. The master interface is used to initiate the transfer of the bitstream from the

storage memory to the ICAP. The second controller is the MST_HWICAP. This controller

does not use the HWICAP. Instead of DMA it contains an integrated master bus interface

with burst transmission support. This interface is directly connected to the controller of the

storage memory. It also contains a slave bus interface to receive control commands which is

connected to the host PLB. The final controller is the BRAM_HWICAP. This controller

contains a BRAM which is used as the storage memory and is large enough to hold the

entire partial bitstream. Figure 2.3 shows the block diagram of the MST_HWICAP and the

BRAM_HWICAP. K. Vipin [26] developed an ICAP Controller that can achieve high

reconfiguration throughput on a Virtex 6 FPGA. H. Kashyap [27] proposed an approach to

secure dynamic partial reconfiguration when an unsecure external memory is used as the

storage memory. This approach uses the AES algorithm to encrypt and decrypt the partial

bitstreams. T.D.A. Nguyen [28] developed a Partially Reconfigurable Heterogeneous System-

on-Chip. This system uses dynamic partial reconfiguration to support multiple processors

and hardware accelerators. A. Morales-Villanueva [29] described a method of saving or

restoring the state of each RM when it is replaced or loaded on the PRR. E. Cetin [30]

proposed a framework for implementing FPGA circuits that can recover from configuration

memory errors within a desired maximum recovery period by using PR. C. Effraimidis [14]

developed an autonomous genetic algorithm system that supports the change of the fitness

function at run time by using dynamic PR. This system can theoretically support infinite

fitness functions. G. Nikoloudakis [15] developed and evaluated a cryptography system that

uses PR to change the cryptographic algorithm that runs on it each time. E. Spanakis [16]

developed a Linux-based Task Manager for dynamic reconfiguration. This Task Manager

runs on a PowerPC of a Virtex-II Pro FPGA and controls the reconfiguration of the PRRs.

A. Ilias [17] designed a system that uses partial reconfiguration to repair parts of it when they

do not work correctly because of the reversal of one or several bits in the configuration

memory. Such reversals can be caused by several reasons like the exposure of the chip to

17

radiation. When the system detects such faults it does not reconfigure the entire design but

only the problematic part of it.

Figure 2.3 MST_HWICAP and BRAM_HWICAP Block Diagrams.

18

Chapter 3

System Designs and Architectures

This chapter describes a generic Partially Reconfigurable system and every system that was

designed in order to achieve high reconfiguration throughput on a Virtex-5 FPGA. On the

first designs the bus that is used for communication with the MicroBlaze is the OPB because

this was the only bus supported by the older versions of the Xilinx tools for Virtex-5. On the

later designs where the newer versions were used the OPB was replaced by the faster PLB

bus.

3.1 A Generic Partially Reconfigurable System

Figure 3.1 shows a generic Partially Reconfigurable design. This design consists of the static

and the reconfigurable part. The reconfigurable part is the part that can be changed and it

contains the PRRs. The static part is the rest of the design that cannot be changed. The PR

Support unit is a part of the static design that executes every reconfiguration. It contains the

storage memory, the reconfiguration controller and the ICAP. The reconfiguration

controller can be the MicroBlaze and so it will use software code to execute the

reconfigurations or a complete hardware unit. The selection of the storage memory is also an

important factor for the performance of the PR support unit.

3.2 OPB System version 1

On the first design the reconfiguration controller is the MicroBlaze. When a reconfiguration

is taken place, MicroBlaze reads the partial bitstream from the storage memory and transfers

it to the ICAP. The storage memory is a Compact Flash memory. Figure 3.2 shows the top

diagram of the design. The DCM unit provides the clock signal for the Processor System

and the PRR. The clock frequency for this design is 100 MHz. The ROPB bus is a bus

similar to the OPB that is used for the communication between the PRR and the

MicroBlaze.

19

Figure 3.1 Top Diagram of a Generic Partially Reconfigurable Design

Figure 3.2 Top Diagram of the OPB System version 1

20

The Processor System is a component that contains the MicroBlaze and all the peripherals

that are connected with it through the OPB bus. The block diagram of the Processor System

is shown at figure 3.3.

Figure 3.3 Block Diagram of the Processor System of the OPB System version1

This system consists of the following components:

1. The MicroBlaze processor. It uses 64 Kbytes of the Bram (LMB) as its main data and

instruction memory.

2. The UART peripheral which allows communication between the MicroBlaze and a

host PC through an RS232 port. It is used to send data to the RM and read back the

results to check if the PRR was reconfigured correctly, to request a new

reconfiguration or to receive results regarding with reconfiguration times.

3. The Timer is used for producing time results for each face of the reconfigurations.

21

4. The SystemACE peripheral is used for the support of an external compact flash

memory. This memory contains the partial bitstreams and the initial bitstream which

is used to reconfigure the FPGA when the system starts.

5. The Socket is used so we can connect an external OPB peripheral with the OPB bus

through the registers of the DCR bus. The external peripheral that is connected to

the Socket is the algorithm that runs on the PRR.

6. The Microprocessor Debug Module (MDM) can be used for debugging the

MicroBlaze software code.

7. The final component is the OPB HWICAP [20]. The OPB HWICAP is an OPB

peripheral provided by Xilinx that enables an embedded microprocessor, such as the

MicroBaze, to read and write the FPGA configuration memory through the ICAP.

The version of this peripheral that is used in this work is the v1.00.b. Figure 3.4

shows the top-level block diagram of the OPB HWICAP. The DPRAM is a 2KB

BRAM where the data from the partial bitstream are stored before they are

transferred to the ICAP. The ICAP Control State Machine controls the data transfers

from the bus to the BRAM and from that memory to the ICAP.

Figure 3.4 OPB HWICAP Block Diagram

22

3.3 OPB System version 2

The main problem of the first system was the Compact Flash Memory. This memory is too

slow and affects negatively the reconfiguration performance of the design. To improve the

performance Compact Flash was replaced by a DDR2 SDRAM which is much faster and

more efficient. Another advantage of the DDR2 is that it can be used as data cache memory

for the MicroBlaze, which allows for even better performance. The controller of the DDR2

is the Multi-CHannel OPB Double Data Rate 2 Synchronous DRAM Controller

(mch_opb_ddr2) v1.02.a which is provided by Xilinx [21]. The size of the DDR2 is 256MB.

The System Ace peripheral however was not removed because the Compact Flash is needed

for the transfer of the partial bitstreams to the DDR2. When the system starts the partial

bitstreams are copied from the Compact Flash to the DDR2 and then the Compact Flash is

not used again. The processor system also has a second DCM module that provides some

additional clock signals that are needed for the DDR2 controller. Except of the addition of

the DDR2 controller and the second DCM the rest of the design is the same as at the

previous version.

3.4 OPB System version 3

Another way to improve the performance even more is to remove the software from the

process of the reconfiguration. To achieve this, a DMA peripheral was used to transfer the

bitstreams from the DDR2 directly to the ICAP. In this architecture the HWICAP is not

used because the MicroBlaze does not participate in the data transfer from the storage

memory to the ICAP. When a reconfiguration is taken place the DMA peripheral transfers

the bitstream from the DDR2 to a 2K FIFO and then it is transferred from there to the

ICAP.

3.4.1 The ICAP Controller

For this design a new component was implemented, the ICAP controller, that contains the

ICAP and a F.S.M. which controls the transfer of the bitstream from the FIFO to the ICAP.

The block diagram of this component is shown at figure 3.5.

23

Figure 3.5 Block Diagram of the ICAP Controller

The first part of the ICAP Controller is the Bit swapping unit. When a 32 bit word is

transferred from the bitstream to the ICAP the bits of every byte must be swapped. For

example if the input word is 0xAA995566 then its bytes must be changed as shown in table

3.1 and so this word will be changed to 0x5599AA66. The Bit swapping unit rearranges the

bits of every word of the bitstream.

Bitstream Format 0xAA (10101010) 0x99 (10011001) 0x55 (01010101) 0x66 (01100110)

Bit swapped 0x55 (01010101) 0x99 (10011001) 0xAA (10101010) 0x66 (01100110)

Table 3.1 Bit Swapping

The second part of the ICAP Controller is the Control FSM. This unit controls the transfer

of the bitstream from the FIFO to the ICAP. The only thing that this F.S.M. needs to know

is if there are data in the FIFO and so its input signals are the clock, the reset and the empty

24

signal which comes from the FIFO. Its output signals are the rd_en signal which goes to the

FIFO and the CE which goes to the ICAP. The Control FSM has five states. Figure 3.6

shows the state diagram of the Control FSM and table 3.2 shows the values of each output

signal of the F.S.M. for each state.

Figure 3.6 State Diagram of ICAP Controller’s FSM

25

State rd_en CE

init 0 1

transfer_1 1 0

transfer_2 1 1

pause_1 0 0

pause_2 0 1

Table 3.2 Control FSM output values

Because the ICAP and the FIFO reads and sends data respectively on the rising edge of the

clock, to avoid synchronization problems the Control FSM change states on the falling edge

of the clock and so the rd_en and CE signals are not changed on a rising edge. When the

F.S.M. is reset it goes to the “init” state where rd_en is set to 0 and CE to 1 and so no

transfer is taken place. As long as the FIFO is empty it stays on that state. When the empty

signal becomes 0 the F.S.M. goes to state “transfer_1”. There rd_en is set to 1 and CE to 0

and so on the next rising edge of the clock the first word of the bitstream will be read from

the FIFO. These bits however will be written to the ICAP on the following rising edge of

the clock and so the CE signal must remain 0 for at least one more cycle. As long as there

are data in the FIFO the F.S.M. remains on this state and on each rising edge a new word is

read from the FIFO and the previous is written to the ICAP. When the empty signal

becomes 1 the F.S.M. goes to state “pause_1”. There the rd_en signal is set to 0 because

there are not any new data in the FIFO. The CE signal remains 0 because the last word from

the FIFO has not been written yet to the ICAP and so the ICAP data bus must remain

enabled for on more cycle. If the empty signal remains 1 on the next cycle the F.S.M. goes to

state “pause_2” where the CE signal is 1 because the last word that has been read from the

FIFO has been transferred to the ICAP and there are no new data. As long as the empty

signal remains 1 the F.S.M remains on state “pause_2”. According to the example of

paragraph 1.5 when the CE signal is asserted Low the ICAP loads the word of the write data

bus on the next rising edge of the clock except of the first word which is loaded on the

second rising edge. Because of this when the F.S.M. is on one of the “pause” states and the

empty signal is 0 it cannot go to “transfer_1” state because on the next rising edge the CE

signal would be 0 and wrong data would be loaded to the ICAP. The CE signal must remain

1 for at least one cycle and so the F.S.M. goes to “transfer_2” state where the CE signal is

set to 1. This is also the reason why “init” and “pause_2” are different states. If the empty

signal remains 0 the F.S.M. goes to the “transfer_1” state where the CE signal is set to 0 and

the data start to be loaded to the ICAP. If the empty signal is 1 the F.S.M. goes to “pause_1”

26

state just like when it is on “transfer_1” state. Because of the way Control FSM works it

must have been reset before every reconfiguration.

The final part of the ICAP Controller is the ICAP which is connected to the Control FSM as

shown at figure 3.4. In our design the O and BUSY outputs of the ICAP are not used and so

the WHRITE input is always set to 0.

3.4.2 The FIFO Peripheral

The FIFO peripheral is an OPB peripheral which contains a 2K FIFO which is connected to

the OPB bus through an OPB IP Interface. The block diagram of the FIFO Peripheral is

shown at figure 3.7. The fsm_reset, empty, and dout outputs are connected at the respective

inputs of the ICAP Controller. The fsm_reset signal is set through the OPB bus by the

MicroBlaze.

Figure 3.7 Block Diagram of the FIFO Peripheral

27

3.4.3 The DMA System

Figures 3.8 and 3.9 show the block diagrams of the design and the Processor System

respectively. There we can see that the HWICAP has been removed because the MicroBlaze

does not need to communicate with the ICAP on this design. The DMA peripheral is the

opb_central_dma v1.00.c and it is provided by Xilinx [22].

Figure 3.8 Top Diagram of the OPB System version 3

Figure 3.9 Block Diagram of the Processor System of the OPB System version3

28

3.5 The PLB Systems

The newer versions of the Xilinx tools support a better and faster bus than the OPB, the

PLB bus. Every design that had been implemented on the oldest version of Xilinx tools was

redesigned and implemented on the newer version. These new designs use the PLB as the

bus for the communication between the MicroBlaze and the peripherals but there are some

other differences from the oldest designs. Firstly, as it was mentioned in chapter 1, the Bus

Macros have been replaced by PROXY LUTs that are inserted by the tools. Secondly the

DCR bus is not supported by the later tools and so the Socket peripheral is not used. In

these designs each RM is connected directly to the PLB like any other PLB peripheral. By

this way the bus interfaces of the RMs are parts of the static design. Finally the peripheral

that is used for the communication between the MicroBlaze and the ICAP is now the XPS

HWICAP [23]. Figure 3.10 shows the block diagram of this new core. As shown in this

figure, the XPS HWICAP does not contain a BRAM but instead it has the write and read

FIFOs. Incoming data is stored within the write FIFO, from where it can be fed to the

ICAP. The XPS HWICAP also provides for read back of configuration resource states. In

this case, the frames are read back into the read FIFO one at a time and the processor will

then be able to read the frame data directly from the read FIFO.

Figure 3.10 XPS HWICAP Block Diagram

29

Figure 3.11 shows the top diagram of the first PLB design that uses the compact flash as

storage memory. The Clock Generator is a new component that uses the DCMs to produce

clock signals. The clock frequency for this design is 125MHz except for the HWICAP that

runs on 100MHz which is the maximum frequency that Xilinx suggests for the ICAP.

Figure 3.11 Top Diagram of the PLB System version 1

The second design uses the DDR2 as the storage memory. The new controller for this

memory that Xilinx provides is the Multi-Port Memory Controller (MPMC) [24]. The third

design uses the DMA peripheral to transfer the bitstreams from the DDR2 to the ICAP. In

this design a new FIFO peripheral was design that can be connected to the PLB bus but its

functionality is the same as the OPB peripheral. The ICAP controller did not need to be

changed and so the same component was used on this design. In this design the ICAP

Controller and the FIFO should run on the same frequency otherwise there would be

synchronization problems and the design would not work correctly. The FIFO however for

similar reason should run on the same frequency with the bus and so for the whole design

the clock frequency was 100MHz. Finally two more designs were implemented that are the

same as the last two designs with the difference that they use an SRAM as the storage

memory. The SRAM if faster than the DDR2 but its size is only 1MB and so it can be used

30

only for designs with less or smaller partial bitstreams. The controller of the SRAM that was

used for these designs is the XPS Multi-CHannel External Memory Controller

(xps_mch_emc) v3.01.a which is provided by Xilinx [26].

All the designs that were in this chapter are summarized in table 3.3:

System Version Storage Memory Reconfiguration Controller

OPB Version 1 Compact Flash OPB HWICAP

OPB Version 2 DDR2 OPB HWICAP

OPB Version 3 DDR2 DMA with ICAP Controller

PLB Version 1 Compact Flash XPS HWICAP

PLB Version 2 DDR2 XPS HWICAP

PLB Version 3 DDR2 DMA with ICAP Controller

PLB Version 4 SRAM XPS HWICAP

PLB Version 5 SRAM DMA with ICAP Controller

Table 3.3 Designs Summary

31

Chapter 4

Evaluation of each design

This chapter describes the evaluation of each design and presents the resources that each

design requires.

4.1 Resource Requirements and Component Placements

4.1.1 OPB Designs

The first part of the evaluation was to synthesize each part of the designs. The static part and

the RMs had to be synthesized separately. After the synthesis the netlist files that were

generated were used by the PlanAhead tool to generate the bitstream files. Each RM in these

designs consists of two parts, the cryptographic algorithm and the OPB interface. The

interface was produced by the EDK tool and so it was synthesized separately from the

algorithm. Table 4.1 shows the resources that each algorithm and each interface requires and

the total resources that each RM requires. Table 4.2 shows the resources that the static part

of each OPB design requires.

Component
Number of Slice
Registers Used

Slice Registers
Utilization

Number of Slice
LUTs Used

Slice LUTs
Utilization

AES 709 1.03% 1646 2.38%

AES IPIF 371 0.54% 224 0.32%

AES Total 1080 1.56% 1870 2.71%

Blowfish 91 0.13% 214 0.31%

Blowfish IPIF 323 0.47% 302 0.44%

Blowfish Total 414 0.6% 516 0.75%

Table 4.1 Resource Requirements of each RM for the OPB designs

32

OPB Design
Number of Slice
Registers Used

Slice Registers
Utilization

Number of Slice
LUTs Used

Slice LUTs
Utilization

Version 1 2426 3.51% 2784 4.03%

Version 2 4671 6.76% 5119 7.41%

Version 3 4752 6.88% 5085 7.36%

Table 4.2 Resource Requirements of the static parts of each OPB design

After the synthesis of each design the PlanAhead tool was used to determine the area of the

FPGA that will be used for the PRR. As we can see from Table 4.1 both RMs does not

require a big part of the FPGA and so the area of the PRR does not need to be very large.

Some designs, however did not work with specific selections of the PRR area and so this

area is not the same in every design. The PlanAhead tool was also used to place the bus

macros and the DCM which should be placed manually. Figure 4.1 shows the area selection

for the PRR of the first design and figure 4.2 shows the placement of the DCM.

Figure 4.1 PRR Placement of the OPB System version 1

33

Figure 4.2 DCM Placement of the OPB System version 1

4.1.2 PLB Designs

In the PLB designs the bus interfaces of each RM is part of the static design and so the RMs

contain only the algorithms. The algorithms were synthesized again, this time with the newer

tools. Tables 4.3 and 4.4 show the resource requirements of the algorithms and the static

designs respectively.

Component
Number of Slice
Registers Used

Slice Registers
Utilization

Number of Slice
LUTs Used

Slice LUTs
Utilization

AES 713 1.03% 1628 2.36%

Blowfish 107 0.15% 212 0.31%

Table 4.3 Resource Requirements of each RM for the PLB designs

PLB Design
Number of Slice
Registers Used

Slice Registers
Utilization

Number of Slice
LUTs Used

Slice LUTs
Utilization

Version 1 3739 5.41% 3771 5.46%

Version 2 7351 10.64% 6350 9.19%

Version 3 7550 10.92% 6776 9.8%

Version 4 4730 6.84% 4776 6.91%

Version 5 4389 6.35% 4410 6.38%

Table 4.4 Resource Requirements of the static parts of each PLB design

34

After the synthesis of each design the PlanAhead tool was used for the generation of the

bitstream files. On the newer version the DCMs that are used by the Clock Generator are

placed automatically by the tool but the area of the PRR must be determined by the user.

The MPMC peripheral has a parameter that determines the locations where three of its

components must be placed. This parameter is called C_IDELAYCTRL_LOC and is set be

the EDK tool when the MPMC is used. The PlanAhead tool however cannot read this

parameter and so these components were placed manually based on the value of this

parameter.

4.2 Processor Software

For every design a software code was developed to control the reconfiguration. For the

System ACE, each HWICAP and each DMA peripherals Xilinx provides libraries that were

used in these codes in order to use these peripherals. Table 4.5 describes the functions that

were used for each of these libraries. As shown in this table the OPB HWICAP provides a

function that transfers only 4 bytes to its BRAM and a different function that transfers data

from this memory to the ICAP. The PLB HWICAP however provides one function that

allows the user to determine the amount of data that are about to be transferred and it also

executes the transfer of these data to the ICAP from the write FIFO.

Peripheral Libraries Functions Description

System ACE
xsysace.h

xsysace_l.h
sysace_stdio.h

sysace_fopen() Opens a bitstream file.

sysace_fread()
Transfers data from
the CF to MicroBlaze’s
memory.

sysace_fclose() Closes a bitstream file.

OPB HWICAP
xhwicap.h

xhwicap_i.h
xhwicap_l.h

XHwIcap_Initialize()
Initializes a HWICAP
instance.

XHwIcap_StorageBufferWrite()

Transfers a 4byte word
from the memory of
the MicroBlaze to the
BRAM of the
HWICAP.

XHwIcap_DeviceWrite()

Transfers a specified
amount of data from
the BRAM of the
HWICAP to the ICAP
device.

35

XPS HWICAP
xhwicap.h

xhwicap_i.h
xhwicap_l.h

XHwIcap_LookupConfig()
Looks up the device
configuration based on
the unique device ID.

XHwIcap_CfgInitialize()
Initializes a HWICAP
instance.

XHwIcap_DeviceWrite()

Writes data to the
Write FIFO and starts
the transfer of the data
to the ICAP device.

DMA
xdmacentral.h

xdmacentral_l.h

XDmaCentralInitialize()
Initializes a specific
DMA instance.

XDmaCentralReset()
Forces a software reset
to occur in the device.

XDmaCentralSetControl()
Sets the contents of
DMA Control register.

XDmaCentralTransfer()

Start the DMA
transferring data from
a memory source to a
memory destination

XDmaCentralGetStatus()
Get the contents of
DMA Control register.

Table 4.5 Xilinx Software Drivers

The first few bytes of a partial bitstream file are the bitstream’s header. The header contains

useful information like the size of the bitstream and it must not be transferred to the ICAP.

At the designs that do not use the Compact Flash as the storage memory when the

bitstreams are copied to the storage memory (DDR2 or SRAM) the headers are skipped and

the size of each bitstream is saved into variables. In every design, except those with the

DMA, when a reconfiguration is taken place MicroBlaze runs a loop where a specific

amount of data are transferred to the ICAP in every iteration. When this loop is completed if

there are any remaining data they are transferred to the ICAP as well. Before this loop starts

the number of its iteration is calculated based on the size of the bitstream file, as well as the

remaining bytes of the bitstream. In the designs that use the DMA, before a DMA transfer

starts a register of the DMA peripheral must be set. This register is called Control Register

and determines the size of each data transfer and if the DMA must increment the source or

the destination addresses with each transfer. The DMA peripheral also has a read only

register, the Status Register that contains information like if the DMA is busy or if there is a

bus error. When this register shows that the DMA is not busy and there are no errors and

the FIFO is empty, the reconfiguration has been completed. Figures 4.3 and 4.4 show the

36

flow diagrams of the reconfiguration for each OPB designs. Figure 4.5 shows the flow

diagrams of the reconfiguration for the PLB designs. The diagram for the design that uses

the DMA is the same as the OPB design.

4.3 System Verification

To verify that each design works properly a system was implemented for each one of them.

These systems use a switch to determine which algorithm will run in the PRR. They were

also connected to a terminal through a RS232 to send data to the algorithm and return the

results so we can know that the PRR has been reconfigured correctly. When a system is

downloaded on the FPGA the AES algorithm runs in the PRR. First MicroBlaze waits the

terminal for the first input for the algorithm. When these data are sent to MicroBlaze it

transfers them to the algorithm and when the algorithm returns the results, MicroBlaze

sends them to the terminal and checks the switch. If the switch has changed it performs the

reconfiguration and then asks for the input of the other algorithm. Each time MicroBlaze

returns results to the terminal checks the switch and if it is needed performs a

reconfiguration.

37

Figure 4.3 Flow diagram of reconfiguration for the OPB System version 1

38

Figure 4.4 Flow diagrams of reconfiguration for the OPB System version 2 and 3

39

Figure 4.5 Flow diagrams of the reconfiguration for the PLB Systems

40

Chapter 5

Experimental Results

This chapter presents some time results that were measured to check the performance of the

designs. To take time results a timer peripheral was used that is provided by Xilinx. This

peripheral can count clock cycles which then, based on clock frequency can be converted to

time. It is also connected to the main bus (OPB or PLB) and can send the measurements to

the processor. To count time using this peripheral the following functions were used:

 XTmrCtr_Initialize(): This function initializes a timer instance.

 XTmrCtr_SetResetValue(): This function sets the value that the timer will get

when it is reset.

 XTmrCtr_Reset(): This function resets the timer.

 XTmrCtr_Start(): This function starts the timer.

 XTmrCtr_Stop(): This function stops the timer.

 XTmrCtr_GetValue(): This function return the number of the cycles that have been

counted so far.

As it was explained in chapter 4 at some of the designs the partial bitstream file is transferred

directly from the storage memory to the ICAP during a reconfiguration and at others it is

transferred through other memories. For the later designs except of the total reconfiguration

time, the total time for each transfer was measured. More specifically for the designs that use

the OPB bus we have the following time measurements:

 tCFtoMB: The total time for the transfer of the bitstream from CompactFlash to

MicroBlaze’s main memory.

 tMBtoBRAM: The total time for the transfer of the bitstream from MicroBlaze’s main

memory to the BRAM of the HWICAP.

 tDDR2toBRAM: The total time for the transfer of the bitstream from DDR2 to the

BRAM of the HWICAP.

 tBRAMtoICAP: The total time for the transfer of the bitstream from the BRAM of the

HWICAP to the ICAP.

For the designs that use the PLB bus we have the following time measurements:

41

 tCFtoMB: The total time for the transfer of the bitstream from CompactFlash to

MicroBlaze’s main memory.

 tMBtoICAP: The total time for the transfer of the bitstream from MicroBlaze’s main

memory to the ICAP.

For the time measurements three partial bitstream files were used: the AES algorithm, the

Blowfish algorithm and a blank bitstream file. At the OPB designs each partial bitstream file

has different size from the others of the same design. At each PLB design however all partial

bitstream files have the same size. At the designs that use the SRAM as the storage memory

the blank bitstream file was not used because the size of the SRAM was not enough for all

three bitstream files.

One way to improve the performance when using the DDR2 or the SRAM as the storage

memory is to set each one of these memories as the data cache for MicroBlaze. When the

cache is enabled the processor can communicate with the corresponding memory faster. To

see how much the design is improved when the cache is enabled, two different

measurements were taken for each design, one with the cache disabled and one with cache

enabled. The size of the cache was set to 16Kbytes. The following tables show the time

results for each design.

Partial
Bitstream

Bitsream
Size (Kb)

CF to MB MB to BRAM BRAM to ICAP Total

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

AES 355.8 710.5 0.5 25.5 13.6 3.8 92.6 751.2 0.5

Blowfish 275.1 506.1 0.5 19.7 13.6 2.9 92.6 537.8 0.5

Blank 215 393.7 0.5 15.4 13.6 2.3 92.5 418.5 0.5

Table 5.1 Time Results of OPB Design Version 1

Partial
Bitstream

Bitsream
Size (Kb)

DDR2 to BRAM BRAM to ICAP Total

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

AES 225.4 17.7 12.5 2.4 92.6 22.3 9.9

Blowfish 183 14.3 12.5 1.9 92.6 18.1 9.9

Blank 150.5 11.8 12.5 1.6 92.6 14.9 9.9

Table 5.2 Time Results of OPB Design Version 2 (cache enabled)

42

Partial
Bitstream

Bitsream
Size (Kb)

DDR2 to BRAM BRAM to ICAP Total

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

AES 214.9 27.1 7.7 2.3 92.6 31.2 6.7

Blowfish 176.3 22.3 7.7 1.9 92.6 25.6 6.7

Blank 133 16.8 7.7 1.4 92.6 19.3 6.7

Table 5.3 Time Results of OPB Design Version 2 (cache disabled)

Partial Bitstream Bitsream Size (Kb) Total time (ms)
Total throughput

(Mb/s)

AES 222.7 3.1 68.2

Blowfish 181.3 2.6 68.1

Blank 141.5 2.0 68.1

Table 5.4 Time Results of OPB Design Version 3

Partial
Bitstream

Bitsream
Size (Kb)

CF to MB MB to ICAP Total

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

time
(ms)

throughput
(Mb/s)

AES 561 985.7 0.6 25.5 21.5 1011.2 0.5

Blowfish 561 899.9 0.6 25.5 21.5 933.2 0.6

Blank 561 864.8 0.6 25.5 21.5 890.2 0.6

Table 5.5 Time Results PLB Design Version 1

Partial Bitstream Bitsream Size (Kb) Total time (ms)
Total throughput

(Mb/s)

AES 561 29.8 18.4

Blowfish 561 29.8 18.4

Blank 561 29.8 18.4

Table 5.6 Time Results PLB Design Version 2 (cache enabled)

Partial Bitstream Bitsream Size (Kb) Total time (ms)
Total throughput

(Mb/s)

AES 670 61.5 10.6

Blowfish 670 61.5 10.6

Blank 670 61.5 10.6

Table 5.7 Time Results PLB Design Version 2 (cache disabled)

43

Partial Bitstream Bitsream Size (Kb) Total time Total throughput

AES 526 4.2 120.6

Blowfish 526 4.6 112.0

Blank 526 4.4 116.4

Table 5.8 Time Results PLB Design Version 3

Partial Bitstream Bitsream Size (Kb) Total time Total throughput

AES 449 22.9 19.1

Blowfish 449 22.9 19.1

Table 5.9 Time Results PLB Design Version 4 (cache enabled)

Partial Bitstream Bitsream Size (Kb) Total time Total throughput

AES 449 35.4 12.4

Blowfish 449 35.4 12.4

Table 5.10 Time Results PLB Design Version 4 (cache disabled)

Partial Bitstream Bitsream Size (Kb) Total time Total throughput

AES 421 3.0 138.6

Blowfish 421 3.0 138.6

Table 5.11 Time Results PLB Design Version 5

From these results we can see that both designs that use the Compact Flash as the storage

memory are much slower than the other designs. Figures 5.1 and 5.2 show the time

allocation for each transfer of the partial bitstream at these two design. From these charts we

can see that the 94.1% and 97% of the reconfiguration time respectively is the duration of

the transfer from the Compact Flash to the memory of the MicroBlaze. This is the reason

why the throughput of this transfer is almost equal to the total throughput. Figure 5.3 shows

the total throughput of the designs that use the DDR2 or the SRAM as storage memory with

cache enabled and disabled. From this chart we can see that the use of the cache improves

significantly the performance of the design, especially for the PLB designs. Finally figure 5.4

shows the highest throughput that was achieved for each design. From this chart we can

conclude that the designs that use the DMA are much faster than the others and so this

method of reconfiguration is the most efficient.

44

Figure 5.1 Time allocation for each transfer at OPB v1 design

Figure 5.2 Time allocation for each transfer at PLB v1 design

94.1%

3.7%

0.5%

1.7%

tCFtoMB

tMBtoBRAM

tBRAMtoICAP

tREST

97%

3%

0%

tCFtoMB

tMBtoICAP

tREST

45

Figure 5.3 Throughput comparison chart for the designs that can use the storage memory as data cache

Figure 5.3 Total throughput of each design

0

5

10

15

20

25

OPB v2 PLB v2 PLB v4

D-cache enabled

D-cache disabled

0

20

40

60

80

100

120

140

160

OPB v1 OPB v2 OPB v3 PLB v1 PLB v2 PLB v3 PLB v4 PLB v5

46

Table 5.12 shows the maximum reconfiguration throughput that was achieved from each of

the projects that were mentioned in paragraph 2.4 and from this work. The second column

of this table has the memories that were used as the storage memory and the third column

shows if the design uses a custom ICAP controller or the HWICAP. From this table we can

see that the designs with the highest throughput use a custom ICAP controller. We can also

see that some of these designs can achieve even higher throughput than the one that was

achieved in this work which means that there are more improvements that can be applied to

the final implementation.

Reference Storage Memory ICAP Controller
Max Reconfiguration
Throughput (MB/s)

[1] Host PC Custom 3.88

[2] DDR SDRAM Custom 93.53

[3] DDR2 SDRAM Custom 295.4

[4] BRAM HWICAP 4.13

[7] BRAM HWICAP 1.46

[8] CF HWICAP 0.15

[10] DDR2 SDRAM HWICAP 4.48

[11] DDR2 SDRAM Custom 353.2

[12] SRAM Custom 290.23

[13] BRAM Custom 332.1

[14] CF HWICAP 0.12

[15] CF HWICAP 0.19

[16] DDR SDRAM HWICAP 5.16

[17] CF HWICAP 0.19

[26] DDR3 SDRAM Custom 838.55

[27] DDR3 SDRAM HWICAP 268.75

This work SRAM Custom 138.6

Table 5.12 Design Characteristics and Maximum Reconfiguration Throughput of Referenced Projects.

47

Chapter 6

Conclusions and Future Work

For the purpose of this thesis, we designed and implement several systems that perform PR

on a Virtex-5 FPGA. For each system we used two cryptographic algorithms as the RMs.

The main goal is to achieve better performance with each new system.

The first system was a simple design that uses a Compact Flash as the storage memory and

the bitstream files were transferred through the Micro Blaze to the ICAP. The first step to

improve the performance was to replace the slow Compact Flash with the much faster

DDR2 or the SRAM. These memories can also be used as the cache of the MicroBlaze

which improves the performance even more. Then a DMA peripheral was inserted to

transfer the partial bitstreams directly from the storage memory to the ICAP and not

through the MicroBlaze. The HWICAP was also replaced with a simple controller that

consists of a FIFO where the bitsreams are transferred by the DMA and a FSM which

controls the transfer of the bitstreams from that FIFO to the ICAP. The highest

reconfiguration throughput that was achieved from the final design is 138.6 MB/s.

 As part of future work, several modifications can be implemented to improve the

reconfiguration unit:

 A master bus interface can be inserted in the FIFO peripheral, so it can transfer the

partial bitstream from the storage memory to the FIFO without the use of a DMA

peripheral. This modification may not improve the reconfiguration throughput but it

will reduce the size of the reconfiguration controller

 Instead of using a FIFO the BRAM blocks of the FPGA can be used as the storage

memory. In this case the transfer of the partial bitstream from the storage memory to

the ICAP will be faster and it will not require the use of the PLB bus..

 Finally, overclocking techniques can be used for the ICAP to make it work on a faster

frequency than 100MHz which will increase the reconfiguration throughput.

48

References

[1] B. Griese, E. Vonnahme, M. Porrmann, U. Rücket. Hardware Support for Dynamic

Reconfiguration in Reconfigurable SoC Architectures. Proceedings of the International

Workshop on Field Programmable Logic and Applications (FPL), 2004.

[2] C. Clause, F. H. Müller, J. Zeppenfeld, W. Stechele. A New Framework to Accelerate

Virtex-II Pro Dynamic Partial Self-Reconfiguration. Proceedings of the IEEE

International Parallel and Distributed Processing Symposium (IPDPS), 2007

[3] C. Clause, B. Zhang, W. Stechele, L. Braun, M. Hübner, J. Becker. A Multi-Platform

Controller Allowing for Maximum Dynamic Partial Reconfiguration Throughput.

Proceedings of the International Workshop on Field Programmable Logic and Applications (FPL),

2008.

[4] I. Gelado, E. Morancho, N. Navarro. Experimental Support for Reconfigurable

Application-Specific Accelerators. Proceeding of the Workshop on the Interaction between

Operating Systems and Computer Architecture (WIOSCA), 2006.

[5] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, T. Becker. Modular Partial

Reconfiguration in Virtex FPGAs. Proceedings of the International Conference of Field

Programmable Logic and Applications, 2005.

[6] K. Papademetriou, A. Dollas. Performance Evaluation of a Preloading Model in

Dynamically Reconfigurable Processors. Proceedings of the International Conference of Field

Programmable Logic and Applications, 2006.

[7] K. Papademetriou, A. Anyfantis, A. Dollas. Methodology and Experimental Setup for

the Determination of System-level Dynamic Configuration Overhead. Proceedings of the

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), 2007.

[8] K. Papademetriou, A. Anyfantis, A. Dollas. An Effective Framework to Evaluate

Dynamic Partial Reconfiguration in FPGA Systems. IEEE Transactions on

Instrumentation and Measurement, 2010.

[9] K. Papademetriou, A. Dollas, S. Hauck. Performance of Partial Reconfiguration in

FPGA Systems: A Survey and a Cost Model. Journal ACM Transactions on Reconfigurable

Technology and Systems, 2011.

[10] M. French, E. Anderson, D. -I. Kang. Autonomous System on a Chip Adaptation

through Partial Runtime Reconfiguration. Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2008.

[11] P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt, M. DiCiano, J. D. Legat, D.

Aulagnier, C. garmat, R. Liberati, V. LaBarba, P. Cuvelier, B. Rousseau, P. Gelineau.

49

An Evaluation of Dynamic Partial Recnfiguration for Signal and Image Processing in

Professional Electronics Applications. EURASIT Journal on Embedded Systems, 2008.

[12] S. Liu, R. N. Pittman, A. Forin. Minimizing Partial Reconfiguration Overhead with

Fully Streaming DMA Engines and Intelligent ICAP Controller. Proceedings of the 18th

Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2009.

[13] M. Liu, W. Kuehn, Z. Lu, A. Jantsch. Run-TimePartial Reconfiguration Speed

Investigation and Architectural Design Space Exploration. Proceedings of the International

Workshop on Field Programmable Logic and Applications (FPL), 2009.

[14] C. Effraimidis. A Self Reconfigurable Architecture to Support Multiple Fitness

Functions in Generic Algorithms. Diploma Thesis Technical Report, ECE Dpt., Technical

University of Crete, 2009.

[15] G. Nikoloudakis. Design and Implementation, Using Dynamic Partial

Reconfiguration, of a System Implementing Multiple Cryptographic Algorithms.

Diploma Thesis Technical Report, ECE Dpt., Technical University of Crete, 2009.

[16] E. Spanakis. Design and Implementation of a Linux-Based Dynamic Reconfiguration

Task Manager in FPGAs. Diploma Thesis Technical Report, ECE Dpt., Technical University

of Crete, 2009.

[17] A. Ilias. Design and Implementation of a Partially Reconfigurable System for Fault

Tolerant Applications. Diploma Thesis Technical Report, ECE Dpt., Technical University of

Crete, 2009.

[18] Virtex-5 Family Overview.

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

[19] Virtex-5 FPGA Configuration User Guide.

http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

[20] OPB HWICAP (v1.00.b) Datasheet.

http://forums.xilinx.com/xlnx/attachments/xlnx/elinux/494/1/opb_hwicap.pdf

[21] Multi-CHannel OPB Double Data Rate 2 (DDR2) Synchronous DRAM (SDRAM)

Controller (v1.02.a) Datasheet.

[22] OPB Central DMA Controller (v1.00.c) Datasheet.

[23] LogiCORE IP XPS HWICAP (v5.00a) Datasheet.

http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap.pdf

[24] Multi-Port Memory Controller (MPMC) (v6.02.a) Datasheet.

[25] XPS Multi-CHannel External Memory Controller (XPS MCH EMC) (v3.01.a)

Datasheet.

http://www.xilinx.com/support/documentation/ip_documentation/xps_mch_emc.pdf

[26] K. Vipin, Suhaib A. Fahmy. A High Speed Open Source Controller for FPGA Partial

Reconfiguration. International Conference on Field-Programmable Technology (FTP), 2012.

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://forums.xilinx.com/xlnx/attachments/xlnx/elinux/494/1/opb_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_hwicap.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_mch_emc.pdf

50

[27] H. Kashyap, R. Chaves. Secure Partial Dynamic Reconfiguration with Unsecure

External Memory. 24th International Conference on Field Programmable Logic and

Applications (FPL), 2014.

[28] T. D. A. Nguyen, A. Kumar. PR-HMPSoC: a Versatile Partially Reconfigurable

Heterogeneous Multiprocessor System-on-Chip for Dynamic FPGA-based

Embedded Systems. 24th International Conference on Field Programmable Logic and

Applications (FPL), 2014.

[29] A. Morales-Villanueva, A. Gordon-Ross. On-chip Contex Save and Restore of

Hardware Tasks on Partially Reconfigurable FPGAs. IEEE 21st Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), 2013

[30] E. Cetin, O. Diessel, L. Gong, V. Lai. Towards Bounded Error Recovery Time in

FPGA-Based TMR Circuits Using Dynamic Partial Reconfiguration. 23rd International

Conference on Field Programmable Logic and Applications (FPL), 2013

51

Appendix

This appendix describes same features of the Virtex-5 FPGAs, like the one that was used for

this thesis.

Configurable Logic Blocks

Configurable Logic Blogs (CLBs) are the main logic resources for implementing sequential

as well as combinatorial circuits. Each CLB element is connected to a switch matrix for

access to the general routing matrix as shown in figure 1. A CLB element contains a pair of

slices. These two slices do not have direct connection to each other, and each slices

organized as a column. Each slice in a column has an independent carry chain. For each

CLB, slices in the bottom of the CLB are labeled as SLICE(0), and slices in the top of the

CLB are labeled as SLICE(1).

Figure 1 Arrangement of Slices within the CLB

52

Every slice contains four logic-function generators, four storage elements, wide-function

multiplexers, and carry logic. These elements are used by all slices to provide logic,

arithmetic, and ROM functions. In addition to this, some slices support two additional

functions: storing data using distributed RAM and shifting data with 32-bit registers. Slices

that support these additional functions are called SLICEM; others are called SLICEL. The

function generators are configurable as 6-input LUTs or dual-output 5-input LUTs. The four

storage elements can be configured as either edge-triggered D-type flip-flops or level

sensitive latches.

Block RAM

Block RAM modules provide flexible 36 Kbit true dual-port RAM that are cascadable to

form larger memory blocks. In addition, Virtex-5 FPGA block RAMs contain optional

programmable FIFO logic for increased device utilization. Each block RAM can also be

configured as two independent 18 Kbit true dual-port RAM blocks, providing memory

granularity for designs needing smaller RAM blocks.

Input/Output Blocks

I/O blocks provide the interface between package pins and internal configurable logic. Most

popular and leading-edge I/O standards are supported by programmable I/O blocks

(IOBs). The IOBs can be connected to very flexible ChipSync logic for enhanced source-

synchronous interfacing. Source-synchronous optimizations include per-bit deskew (on both

input and output signals), data serializers/deserializers, clock dividers, and dedicated I/O

and local clocking resources.

DSP48E Slices

Cascadable embedded DSP48E slices with 25 x 18 two’s complement multipliers and 48-bit

adder/subtracter/accumulator provide massively parallel DSP algorithm support. In

addition, each DSP48E slice can be used to perform bitwise logical functions.

53

Clock Management Tile Blocks

Clock Management Tile (CMT) blocks provide the most flexible, highest-performance

clocking for FPGAs. Each CMT contains two Digital Clock Manager (DCM) blocks (self-

calibrating, fully digital), and one PLL block (self-calibrating, analog) for clock distribution

delay compensation, clock multiplication/division, coarse-/fine-grained clock phase shifting,

and input clock jitter filtering.

General Routing Matrix

The General Routing Matrix (GRM) provides an array of routing switches between each

internal component. Each programmable element is tied to a switch matrix, allowing

multiple connections to the general routing matrix. The overall programmable

interconnection is hierarchical and designed to support high-speed designs. In Virtex-5

devices, the routing connections are optimized to support CLB interconnection in the fewest

number of “hops”. Reducing hops greatly increases post place-and-route (PAR) design

performance.

Some other features are the following:

LXT, SXT, TXT, and FXT devices contain:

 Integrated Endpoint blocks for PCI Express designs providing x1, x4, or x8 PCI

Express Endpoint functionality. When used in conjunction with RocketIO

transceivers, a complete PCI Express Endpoint can be implemented with minimal

FPGA logic utilization.

 10/100/1000 Mb/s Ethernet media-access control blocks offer Ethernet capability.

LXT and SXT devices contain:

 RocketIO GTP transceivers capable of running up to 3.75Gb/s. Each GTP

transceiver supports full-duplex, clock-and-data recovery.

TXT and FXT devices contain:

 GTX transceivers capable of running up to 6.5Gb/s. Each GTX transceiver supports

full-duplex, clock-and-data recovery.

FXT devices contain:

54

 Embedded IBM PowerPC 440 RISC CPUs. Each PowerPC 440 CPU is capable of

running up to 550 MHz. Each PowerPC 440 CPU also has an APU (Auxiliary

Processor Unit) interface that supports hardware acceleration, and an integrated

cross-bar for high data throughput.

The following table shows the resources of each Virtex-5 FPGA.

Table 1 Virtex-5 FPGA Family Members

