
Electronics and Computer Engineering Dept.

Telecommunications Division

Technical University of Crete

INSTANTANEOUS STREAM WEIGHT

COMPUTATION IN AUDIO-VISUAL

SPEECH RECOGNITION

S P I R O S D I M O P O U L O S

Supervisor: Alexandros Potamianos

 Committee member: Vasilios Digalakis

Committee member: Michail Zervakis

Chania, October 2007

Spiros Dimopoulos, “Instantaneous stream weight computation in

Audio-Visual Speech Recognition” Submitted in partial fulfillment of

the requirements for the degree of Engineer at the Technical

University of Crete , © Greece, October 2007

INSTANTANEOUS STREAM WEIGHT

COMPUTATION IN AUDIO-VISUAL SPEECH

RECOGNITION

Copyright © Diploma Thesis by Spiros Dimopoulos

October 2007

Technical University of Crete

Department of Electronics and Computer Engineering

Telecommunications Laboratory

University Campus - Kounoupidiana

731 00 Chania

Hellas (Greece)

SUPERVISORY COMMITTEE

Supervisor: Alexandros Potamianos

Committee member: Vasilios Digalakis

Committee member: Michail Zervakis

ACKNOWLEDGEMENTS

First I would like to thank my professor Alexandros Potamianos. His

help was really invaluable during the project. He also helped me

organize my work. Also Eduardo Sanchez Soto gave me a really

helpful introduction into the subject and subsequent help.

More personally I would like to thank my family for their moral

support during all the years I was undergrad. I would like to thank and

greet all my friends for the great times we had during these years.

Also I would like to thank sweet Efi.

1

ABSTRACT

Different novel methods are tested in the ASR domain to upgrade the

speech into a useful UI under all conditions. For robust ASR there is

still way ahead until the speech recognition accuracy reaches adequate

levels, for speech to be practically used in real world conditions.

Audio-Visual ASR is based on the concept of bimodal speech

production and perception from humans. We use optical and acoustic

information to recognize the spoken word. The theory of multiple

information stream decision fusion is used for the combination of

audio and video streams. So the acoustic information decision is

complemented with the visual information and a final recognition

decision is made.

In this project we researched different AV-ASR techniques and

especially a weighted fusion method that is based on computation of

instantaneous stream weights. The reliabilities of the streams are

computed from the single stream classification/recognition results.

Then instantaneous weights are computed for the fusion of the streams

in the time frame level. The results of the different AV-ASR

techniques are compared. For this purpose we set up an AV-ASR

recognition system simulating different environmental noise

conditions. Some improvement in recognition results is confirmed

when using AV recognition compared to the Audio-only case and also

when using time-variant stream weights in contrast to static weights in

AV fusion.

2

CONTENTS

Introduction 7

Chapter 1 – Robust Speech Recognition 11

1.1 Speech Recognition under adverse conditions 11

1.2 Speech Recognition Using multiple information streams 12

1.3 Audio-Visual Speech Recognition 15

1.3.1 Feature extraction 17

1.3.2 HMM Training 18

1.4 The default information fusion method of HTK 20

Chapter 2 – Multi-stream information fusion methods 22

2.1 Static methods 23

2.2 Dynamic methods 24

2.3 Asynchronous methods 25

2.4 HTK modifications 27

Chapter 3 – Information stream weights computation 30

3.1 Stream Reliability Indicators 30

3.1.1 Entropy method 31

3.1.2 Distance method 31

3.2 Reliability Indicators to Stream Weights Mapping 32

3.3 K-means Clustering Method 33

3.4 HTK modifications 35

Chapter 4 – Recognition System 36

4.1 The data (CUAVE) 36

4.2 Noise types 37

3

4.3 Features 39

4.4 Recognizer Setup 39

4.4.1 HMM Definition 39

4.4.2 HMM Training 40

4.4.3 Dictionary and Word Network 41

4.5 Weight Computation 42

Chapter 5 – Test Results 52

5.1 Audio stream reliability mapping recognizer 52

5.2 Audio and Video stream reliability mapping recognizer 60

Chapter 6 – Conclusions – Future Work 67

Appendix A – Instantaneous weight graphs for every digit 69

Appendix B - HTK source code modifications 97

B.1 Instantaneous stream weight support 97

B.2 Log-Likelihood in every time frame support 108

Bibliography 109

4

List of Figures

Figure 1: Typical ASR System

Figure 2: ASR System using multiple information streams taken from diferrent

spectral sub-bands of the original signal.

Figure 3: One stream vs Two stream HMM properties

Figure 4: The typical AV-ASR system with decision fusion

Figure 5: ROI and the extended search area

Figure 6: Visual feature extraction process from ROI

Figure 7: Multistream recognition fusion with static weights

Figure 8: Multistream recognition fusion with time varying weights

Figure 9: (a) 2-stream state-synchronous HMM

(b) 2-stream product HMM with 2 state asynchrony

(c) 2-stream product HMM with limited 1 state asynchrony

Figure 10: (a) Audio-only recognizer HMM file part

(b) Video-only recognizer HMM file part

(c) Audiovisual recognizer HMM file part

Figure 11: Word Network

Figure 12: Grid search results of the mapping parameter value for the general

Figure 13: Audio reliability histogram with audio stream weight mapping function

graph

Figure 14: Mapping parameter grid search results

Figure 15: Grid search for audio video mapping parameters

Figure 16: Results (Audio mapping)

Figure 17: Audio stream weight graphs for different AV Methods (Audio mapping)

Figure 18: Results (Audio + Visual mapping)

Figure 19: Audio stream weight graphs for different AV Methods (Audio + Visual

mapping)

5

List of Tables

Table 1: Correlation of stream reliability indicator with audio and visual-only

WER

Table 2: CUAVE data set

Table 3: Speration of the initial data set to training and testing for different

indepent experiments (round-robin)

Table 4: Different N-best methos results for the computation of the audio

reliability indicators

Table 5: Mapping parameters value for noise adapted mapping

Table 6: Mapping parameter value when both indicators are used

Table 7: Mean smoothing filter test results

Table 8 – 11: Accuracy results for Audio reliability mapping method

Table 12: Stream weight comparison for different AV methods (Audio mapping)

Table 13 – 16: Accuracy results for Audio + Video reliability mapping method

Table 17: Stream weight comparison for different AV methods (Audio + Visual

mapping)

6

Introduction

One of the main features of future human-computer interaction

interfaces (HCI) is speech [1]. This will make the interaction more

natural to the human user. In order to achieve this, research in

Automatic Speech Recognition (ASR) is being made since the '50s

[2]. In spite of the progress made in specific applications like dictation

and medium vocabulary transaction processing tasks under controlled

environments, when it comes to real world applications in unrestricted

listening environments the performance deteriorates below the

threshold of usefulness [3]. A major problem of ASR is robustness

under channel and environmental noise. Many techniques have been

used to improve the recognition under these noisy conditions,

including mainly enhancement of the audio signal, applying noise

resistant parameterization, and identifying speech in those sub-bands

of the spectrum that the speech signal is dominant. In recent years,

nontraditional approaches that use sources of information orthogonal

to the audio signal are tested. One approach that has become a

mainstream research area is supplementing the audio with the visual

signal. The latter is not affected by the audio noise and can improve

the final result of the recognition. [1],[3]

Audio-Visual ASR (AV-ASR) is based on the concept that human

speech perception is benefited by visual stimuli. When people listen to

a speaker they usually, consciously or not, see his facial expressions

and do lipreading, especially under noisy conditions, to better

understand what the speaker says. The main method used in AV-ASR,

7

for the analysis of visual information, is exploiting the mouth region

of the speaker by analyzing 2-D images of that region and do the

visual feature extraction. The audio and the visual information streams

must be fused at some point of the recognition process in order to get

some combined results. They can be fused either at the feature level or

at the decision level. If they are fused at the decision level an

information stream weighting scheme can be applied that can model

the varying information stream reliability at different points in time.

To compute the stream weights for the weighting scheme different

statistical methods can be used. The weights can be precomputed and

be fixed during the whole recognition process or can be dynamically

computed and updated at the utterance, word, phoneme or time frame

level. Also a possible asynchrony between the streams can be modeled

using appropriate modeling when the fusion is at the decision level.

[1]

The AV-ASR research community has developed many different

data sets of Audio-Visual speech in many languages. But the need for

a common database of Audio-Visual speech data became apparent

when the approaches of the many research groups needed to be

compared. The results of the tests should be extracted from similar

data sets in order to be comparable. This need led to the development

of the Clemson University Audio-Visual Experiments (CUAVE)

database which is is a speaker-independent corpus of both connected

and continuous digit strings of high quality video and audio of a

representative group of speakers. [4]

In this Diploma Thesis Project we worked with the CUAVE

database to get comparable results. The main recognition system was

developed with the help of HTK [5], a tool to create recognition

systems based on Hidden Markov Models (HMM). Some

modifications were made to the original HTK code, to support the

instant temporal change of the stream weights in multi-stream

8

recognition and also to output the instantaneous probability results in

every time frame. The signal processing tasks, such as the separation

of the Audio and Video signals from the original data, the pre-

processing, the addition of noise to the audio signal and the analysis

of the recognition results was done with the help of Matlab. Different

AV-ASR methods were tested and compared to the standard Audio

ASR to see if there was some improvement. The main method

researched was the AV-ASR with time-varying stream weights

computed from one or the combination of stream reliability indicators.

The organization of this thesis follows the next plan. It contains 6

chapters and 2 appendixes.

In Chapter 1 a general introduction in Robust Speech Recognition

is made, identifying the main problems of ASR under noisy

conditions and proposing two solutions based on multi-stream

information analysis. One solutions is the AV-ASR concept which is

researched in this Project.

In Chapter 2 different information fusion methods are described.

Based on the re-evaluation of the stream weights the methods are

separated on static or dynamic methods. Also the asynchronous

methods are described.

In Chapter 3 different methods are introduced for the evaluation of

the stream weights. Two methods based on stream reliability

indicators and the mapping to weights are described. Also a method of

direct compuation based on K-means clustering is introduced.

In Chapter 4 the detailed description of the recognition system that

we have set up is given. All the components and the processes used

are described.

In Chapter 5 the results of the tests are presented for the different

methods used. They are compared to each other and some preliminary

conclusions are drawn.

9

In Chapter 6 the final conclusions of our research work are made.

Also some planning for future work on this subject is presented.

In Appendix A the graphs of the stream weight for 4 speakers and

all utterances of the digits are shown for comparison.

Finally in Appendix B the changes we made to the original HTK

code are presented.

10

Robust Speech Recognition CHAPTER 1

1.1 Speech Recognition under adverse conditions

Many improvements have been made in recent years, leading the

way to better accuracy of results in speech recognition tasks. At

present the results are almost perfectly accurate in specific tasks that

use limited vocabulary of spoken words and at controlled

environments where noise does not degrade the acoustic signal of

speech. The real challenge now for ASR researchers is to make speech

a competitive user interface comparable to that of keyboard, mouse

and display under real world environments. These environments are

often challenging for the speech recognition process. For example in

an office there is noise caused by other people talking, by machines

such as faxes and printers and phones ringing. To make things worse

the speaker does not have unlimited time to speak slowly and clearly

and cannot keep his temper if he has to repeat the same commands

twice or more. The previous description of the office environment is a

typical real world scenario where ASR still fails to achieve adequate

accuracy.

Novel methods are tested to increase the accuracy of the final

recognition result. One category exploits the combination of separate

recognition results on the same data but at different either spectral

bands or modalities (in case of AV data) to get a total recognition

result that surpasses the original. The first method is based on the

11

spectral separatability of the audio and noise signals. When noise is

added to original speech signal, the audio signal is degraded as a

whole. But different types of noise exist according to their spectral

characteristics. Not all parts of the original speech signal spectrum are

degraded in case the noise is limited to a spectral region. Separating

the original speech signal in multiple spectral regions, doing separate

recognition in that parts and finally integrating these results to get the

total result can yield some improvement on the whole [7]. The second

method is exploiting the immunity of the video signal to acoustic

noise. When speech recognition is applicable to Audio-Visual data,

we can process the two information streams (audio stream, video

stream) as separate and do the recognition by combining the

information from both streams. This gives a standard advantage to the

system in case of an audio noise scenario as compared to the use of

only the audio signal information. The two methods are described in

detail in the next two paragraphs.

1.2 Speech Recognition Using Multiple Information

Streams
In general the speech recognition process uses the audio signal to

extract the features and do the training and testing. The audio signal

can be considered as an information stream that it is used to extract

the appropriate information of the spoken word. In figure 1 we can see

the typical recognition process flow. We assume that the models are

12

Figure 1: Typical ASR System

already trained. This system uses one information stream, the audio

signal taken at the whole spectrum.

In [7], a new recognition system is proposed using multiple

information streams from the audio signal by separating the audio

signal spectrum in sub-bands and using each sub-band as a separate

information stream. There are some reasons for doing this analysis.

The first is some experimental results suggesting that maybe the

human decoding of the acoustic information of speech is based on

decisions made within narrow frequency sub-bands of the audio

signal. The decisions are taken independently from each other and are

combined at some level in time to make the global decision in a way

that the global error rate is equal to the product of the error rates in the

sub-bands. The other reasons are more practical and can be

summarized in the following:

● The noise may have degraded the original speech audio

signal only in some specific sub-bands. So making the

decisions on sub-bands and then combining the independent

decisions can improve the final result, as long as there are

some sub-bands that have enough information to support the

right decision.

● Some sub-bands may be better for recognizing some speech

classes

● There is asynchrony in the transitions between stationary

segments of speech at different frequency bands, and this

method can help relax the synchrony constraint in typical

HMM systems.

● Different recognition strategies can be applied in different

sub-bands.

The process is described graphically in figure 2. First the number

of sub-bands and their position in spectrum must be chosen. Then a

ASR system is applied in each sub-band taking each separated signal

13

as an independent information stream. A synchronization of the

streams in the time frame level is assumed. This makes possible the

use of state-synchronous multi-stream HMMs. These HMMs have

different emission probability parameters for each stream and

combined transitions probabilities between the common states. In

figure 3 the differences of the simple 1-stream HMM with the 2-

stream HMM are explained. The 2-stream logic can be extended to n-

stream HMMs by simply adding emission probability vectors for each

new stream in every state. Then the probabilities are combined in a

final decision step to take the final score for each class. The

recombination step and the different methods that can be applied are

described in Chapter 2.

14

Figure 2: ASR System using multiple information streams taken from diferrent
spectral sub-bands of the original signal

1.3 Audio-Visual Speech Recognition
The Audio-Visual ASR approach can be considered as a multiple

information stream recognition process consisting of two streams, the

Audio and the Visual. The idea is based on the concept of bimodal

nature of human speech production and perception [1] [3] [6]. The

two modalities are the acoustic and the visual which both carry

linguistic and para-linguistic information.

During the production of speech, several visual clues are visible

that complement the acoustic signal. Speech segmental information

are included in the visual modality. Also information about the place

of articulation are present, because the tongue, teeth and lips are

visible. During the perception of speech, bimodal integration has been

presented by superimposing the sound /ga/ on a video of a /ba/ then

most people perceive the sound as a /da/. Also speechreading, reading

the lips of a speaker to better understand the spoken word, is usually

used by a person with impaired hearing or generally when listening

conditions are harsh.

15

Figure 3: One stream vs Two stream HMM properties

The previous facts makes the research of a bimodal speech

recognition system quite interesting especially under acoustic noise, as

the visual modality is unaffected.

Many variations of an AV-ASR system can be identified. The main

components are shown in figure 4, which is a variation of the multi-

stream ASR system shown previously but with two streams – Audio

and Video. This setup uses separate feature extraction of the two

streams and recognition using 2-stream AV HMM models. The

training of the AV Models is depicted in paragraph 1.3.2. Then

combines the results of the two stream recognition in order to take a

final decision; different methods can be used for the fusion described

in Chapter 2. Another option is to fuse the modalities exactly after the

feature extraction task by concatenating the feature vectors into one

AV vector and run the recognition process as if it was one stream

ASR. This approach is not tested in this project.

16

Figure 4: The typical AV-ASR system with decision fusion

1.3.1 Feature extraction

The feature extraction process is done for both streams.

For the audio stream:

Initially we have the raw audio signal with the speech. We have to

convert it to feature vector sequences. Mel Frequency Cepstral

Coefficients (MFCC) are usually used as features because of their

desirable characteristics. They are computed from the log filterbank

amplitudes - that are taken from filterbank analysis - using the

following formula:

c i= 2
N ∑

j=1

N

m j cos πi
N
 j−0.5 (1)

with N the number of filterbank channels. Also the first and second

time derivatives of the original MFCCs can be used as features. In our

setup we used 13 MFCC features (12 static + energy) plus their first

and second derivatives, totaling 39 audio features in each time frame.

The time frame was set to last 10msec so we have 100 feature vectors

per second. The extraction was made using HTK tools [5].

For the visual stream:

The visual signal consists of speaker faces. The visual information

of speech have to be identified and extracted. One technique is to use

the mouth region of the speaker just as it is used during

speechreading. When this region is identified as ROI, a number of 2-D

DCT features are computed and saved.

The main problem of this analysis, which we used in our setup, is

to keep track of the mouth region in sequential images. Initially the

ROI must be explicitly set in the first image of the video sequence.

We used a 110x60 pixels sized region as the ROI. Then to locate the

ROI in the next image, we set a +20 pixels region in all 4 directions as

shown in Figure 5 and in this we searched for a 110x60 pixels region

17

that correlates best with the ROI of the previous image. Normalized 2-

D cross-correlation is used from the Matlab Image Processing

Toolbox.

Next we extract the visual features from the ROI. We follow the

steps:

1. Convert the image from RGB to B&W

2. Decimate the image to 16x16 matrix

3. Compute the 2-D DCT of the ROI

4. Keep the 6x6 DCT coefficients excluding the energy

After these steps we have 35 visual features for every video frame.

Finally we up-sample the visual features which are extracted at 30

frames per second to 100 frames per second to match with the audio

feature vectors frequency. The above process is illustrated in Figure 6.

1.3.2 HMM Training

The training process of the HMM parameters is done before any

attempt to run recognition tests. One HMM must be created for every

speech class unit that will be recognized, be it either phoneme or

word. Some training data must be assigned from the data set with

known labels, run the training algorithms with this data iteratively

until some desired convergence is achieved.

18

Figure 5: ROI and the extended search area

The training of the simple 1-stream HMM is done using the Baum-

Welch re-estimation formula. The parameters that need training are

the transition probability matrix aij between the model states and the

emission probability vector bj for every state.

In the case of the 2-stream Audio-Visual HMM model the

parameters are again the transition probability matrix aij between the

model states but now there are two emission probability vectors, one

for every stream, baj and bvj. There are two approaches in the training

of the 2-stream HMM. In separate training of the parameters for every

stream, the parameters are estimated separately and then the transition

matrix is either set to the audio one, or to the product of the transition

probabilities of the two HMMs. The other method is to jointly

estimate the parameters in order to enforce state synchrony in training

[1]. We used the second method in our setup, which is the method

used by HTK [5] when training multi-stream HMMs.

Two parameters that need also to be set are the stream weight

parameters. These define the weighting that would be applied to the

stream intermediate results in order to get the final output score. These

parameters must be set during the training process. The state-

dependent AV emission depends on the fusion method used and is

19

Figure 6: Visual feature extraction process from ROI

better described in chapter 2. But for the training process we set these

stream weighting parameters to global values dependent only on the

stream type, Audio or Visual.

1.4 The default information fusion method of HTK

HTK [5] is a toolkit for Hidden Markov Models. It is basically used

for speech recognition using HMM. As we stated in the introduction,

it is used as the main tool for the setup of our recognition system.

HTK can handle simple 1-stream HMMs as well as multi-stream

HMMs with synchrony in the state level as shown in figure 3. The

transition probability matrix in these multi-stream HMMs is common

for all streams, but the state-dependent emission probabilities are

estimated separately. This makes the need for a final fusion of the

independent emission probabilities in order to get a final result. For

each stream the output emission probability is given by the next

formula:

b jsost =∑
m=1

M s

c jsm N ost ; μ jsm ,Σ jsm (2)

where ost is the stream feature observation vector in time frame t, Mj is

the number of gaussian mixture components in stream s, cjsm is the

weight of the m'th component and N(·;μ,Σ) is a multivariate Gaussian

with mean vector μ and covariance matrix Σ, that is

N o ; μ , Σ = 1
2πn∣Σ∣

e
−1

2 ο−μ ' Σ−1ο−μ
(3)

where n is the dimensionality of o. The combination of the stream

emission probabilities is done with the product rule. The formula for

the final emission probability used by HTK is:

20

b jo t=∏
s=1

S

[b jsost ]
γ s (4)

where S is the number of streams used in multi-stream HMM and γs is

the stream weight. In HTK the stream weight is set during the creation

of the HMM and by default remains constant during the training and

testing. We kept this default behavior during the training of the

HMMs. In chapter 2 different information stream fusion methods are

explained and the modifications we made in HTK to support the

methods we used.

21

CHAPTER 2

Multi-stream information fusion methods

Information fusion of different sources of data or streams of

information can be applied at various levels during pattern

recognition: data level, feature level or decision level. Also hybrid

methods are sometimes used. [6]

At the data and feature level, we can say the fusion is applied low-

level. Data level fusion is not applied in AV-ASR. Feature level

fusion is usually implemented by concatenating the feature vectors of

different streams. In the case of AV-ASR a new AV feature vector is

created with dimension dav = da + dv. This may create a very large

feature vector, so various methods to reduce the dimensionality are

often used. This low-level fusion method is not tested in our project.

Although some concatenation of features happens in some point of the

process, this has to do rather with the form of input vectors HTK

accepts when running on multi-stream HMMs.

The methods explained in the next paragraphs of this chapter have

to do with decision level fusion. In this level of fusion the reliability of

each stream weight, thus of each modality in AV-ASR, can be

modeled. This option is important because of the varying speech

information content in audio and visual streams. The most commonly

used architecture for decision fusion is the classifier combination

using paraller architecture, adaptive combination weights, and class

score level information. The combination is done with the adaptive

product rule of the likelihoods or by linearly combining the log-

22

likelihoods of the two single-stream classifier decisions. [1]

To implement this approach we used multi-stream HMMs as

already explained in Chapter 1. Using the same speech classes for

both the separate single information stream classifiers (phonemes-

visemes, we can combine their result at the time frame level. The final

2-stream information emission score – is not a probability distribution

after the fusion – is given by the general rule:

P oav ,t∣c =P oa , t∣c
λα ,c , t P ov ,t∣c 

λ v ,c, t (5)

for every HMM state c∈C . If log-likelihoods are used (5) becomes

log [P oav ,t∣c ]=λα, c ,t log [P oa ,t∣c]λv , c ,t log [P ov , t∣c] (6)

λα, c ,t and λv , c ,t are the audio and video stream weights

respectively that are used in the final decision fusion. These are

nonnegative, model the information stream reliability and are a

function of stream s, HMM state c, and time frame t. In the next

paragraphs different methods of fusion are explained that take

different approaches in updating these weights, or relax the synchrony

assumption of the multi-stream HMM already described.

2.1 Static methods
When static methods are used for the fusion of the information

stream at the decision level then the stream weights remain constant in

time and in HMM states and depend only on stream s. This gives from

(5) the static combination rule:

P oav ,t∣c =P oa, t∣c 
λα P ov , t∣c

λ v (7)

Now the stream weights are λα and λv and depend only on the

stream, either audio or video.

This method uses static weights during all the recognition process

or at the utterance level. The estimation of the stream weights can be

23

done using some training data and with grid search on the stream

weights. Usually the weights are constrained to add up to one (λα +

λv = 1). So the grid search should be feasible. The fusion process is

shown in figure 7.

The advantage of the static method is the easy and computational

cheap implementation. The estimation of stream weights happen only

once and are set to global static values. Also HTK [5] already supports

this method, although no tools to estimate the stream weights have

been implemented.

The drawback is that it cannot model the variability in time of the

stream information reliability. During the recognition, the stream

reliabilities change either inherently or because of external factors

such as noise added to the information sources. The dynamic methods

explained next try to model this variability.

2.2 Dynamic methods
Dynamic methods of fusion can be set up to model the variability in

time of the information stream reliability in the multi-stream

recognition process. In every information stream there is some time

frames that the information carried in that stream is more accurate and

reliable in order to make a decision on the recognition class. This

reliability of the specific stream is not constant in time and can change

24

Figure 7: Multistream recognition fusion with static weights

according to various factors. One factor is the inherent ability of the

specific stream recognizer to better understand certain classes that are

met compared to the other stream recognizers. The reason for this

could be for example that some classes have more information in

certain frequency bands. Also another factor is the degradation of the

original signal from noise in certain time frames and in certain

frequency band regions. This affects the accuracy of some recognizer

results and not the others. Or one modality and not the other in the

case of AV-ASR. All this variability can be modeled if the stream

fusion weights are set to be adaptive in time.

For the bimodal AV-ASR, if the dependence on the state of HMM

is removed the general formula (5) gives

P oav ,t∣c =P oa, t∣c 
λα ,t P ov , t∣c

λv , t (8)

and the stream weights become λα, t and λv ,t . Now the stream

weights and consequently the final recognition score depend on the

stream type (audio or video) and on the time frame t. The recognition

process is shown in figure 8.

An important issue that emerges when using adaptive weights is

how to estimate these weights. They must be based on some reliability

indicator that shows the reliabilities of the different streams in time.

This is the subject of chapter 3.

2.3 Asynchronous methods
When using multiple stream recognition there is an issue of

synchrony between the streams. In the previous methods we assumed

time synchrony of the streams. This is not always the case especially

in AV-ASR. Up to 100ms asynchrony between the streams has been

reported [1]. But also state asynchrony can be used in other

recognition systems using different regions of the audio signal

25

spectrum as described in 1.2, because there is asynchrony in the

transitions between stationary segments of speech at different

frequency bands.

To model this asynchrony of streams we can use composite

HMMs. These are a class of multi-stream HMMs that are created as

the product of single stream HMMs [8]. Using product HMMs we can

postpone the fusion of the likelihoods of the single stream classifiers

at a later time. This can be the phoneme or word boundary. Allowing

state asynchrony in the single stream HMM subcomponents of the

product HMM, makes possible the modeling of asynchrony appearing

between the streams.

The product HMM consists of composite states that are created by

combining the states of the single stream HMM. For example the

states of a product HMM that consists of 2 single stream HMMs with

3 states each has 9 states. Using mathematical formality to describe

product HMM we can say in consists of composite states c∈C∣S ∣ ,

S={s1 , s2} in the case of 2-stream HMM, the cardinality of S

equals 2 and the composite states are defined over the cartesian

product S×S [1]. The combined emission output scores are

P oav , t∣c=∏
s∈S

P os , t∣c s
λc ,s , t

(9)

where c={cs , s∈S } . This makes clear that the product HMM uses

26

Figure 8: Multi-stream recognition fusion with time varying
weights

the same number of parameters for mixture weight, mean and

variance. But extra transitions are now needed between the composite

states P c1∣c0 ,c1 ,c0∈C∣S ∣ . A simplification can be applied

giving the same number of transition probabilities as the state-

synchronous multi-stream HMM, which gives

P c1∣c0=∏
s∈S

P cs1∣cs0 . The degree of asynchrony can be limited

by excluding composite states from the product HMM. In figure 9a a

2-stream state-synchronous HMM with 3 states in each single stream

is shown, in figure 9b the equivalent product HMM with full

asynchrony (2 states) is shown and finally in figure 9c the asynchrony

is limited to 1 state.

2.4 HTK modifications
In 1.4 the default multiple stream information fusion method of

HTK was explained. The formula to compute the final emission score

of the multi-stream HMM was

b jo t=∏
s=1

S

[b js ost ]
γ s (10)

with γ s the stream weight. For AV-ASR this corresponds to static

information fusion method with the formula

P oav ,t∣c =P oa , t∣c 
λα P ov , t∣c

λ v (11)

and weights λα and λv that remain fixed during all the

recognition process. Some changes in this default behavior of HTK

were necessary to support the dynamic methods explained in 2.2.

With our modifications the HTK formula for the information fusion

was modified to

b jo t=∏
s=1

S

[b js ost ]
γ s , t (12)

with γ s , t the stream weight. The weights now can vary in time and

this corresponds to the fusion formula

27

P oav ,t∣c =P oa, t∣c 
λα ,t P ov , t∣c

λv , t (13)

of 2.2 with stream weights λα, t and λv ,t .

The HTK file format was used, the same that HTK uses for the

input of the feature vectors. The stream weight vectors have the size

of the number of streams and they count equal to the feature vector

28

number. The modifications were based on the weighting method used

in [13] for time variable gaussian mixture weighting. The

modifications of the HTK source code are presented in Appendix B.

29

CHAPTER 3

Information stream weights computation

When the multiple stream information fusion methods with stream

weighting were described, the problem of stream weights estimation

emerged. The problem is to find some methods to estimate the

reliability of each stream in the final recognition decision. This is

implemented by computing stream reliability indicators. There have

been proposed different methods for this purpose. Two methods are

described that are based on the single stream classification results

[9][10]. After the reliability indicators have been computed then a

mapping of this reliabilities to the information stream weights must be

accomplished. Also a new method of computing stream weights using

K-means clustering is explained [11] [12].

3.1 Stream Reliability Indicators
The stream reliability indicators are values that represent the

reliabilities of the streams in multi-stream recognition. The estimation

of the indicators is based on the single-stream classification /

recognition probabilities. If one class of speech unit (phoneme, word)

has very high probability and the other classes have very low

probabilities then this stream is quite reliable. In contrast, when all

classes have rather equal probabilities then this stream is not reliable

for the final recognition decision. Two different approaches to the

previous idea are described next.

30

3.1.1 Entropy method

The entropy method uses the entropy of the a posteriori

probabilities of the single-stream recognition system to compute a

reliability indicator [9]. These probabilities are

P ci , t∣os ,t (14)

for class c i , t given the feature vector os , t of stream s in time

frame t. The average entropy over N time frames and K number of

speech recognition classes is

H=− 1
N ∑t=1

N

∑
i=1

K

P c i , t∣os ,t log2 P c i , t∣os ,t (15)

This can be used as stream reliability indicator for the computation of

the stream weights. Experiments in [9] have shown that for the

computation of the entropy, only time frames for which the silence

state is not among the 4 most probable must be taken into account.

3.1.2 Distance method

The distance method uses the difference of the class-conditional

observation likelihoods of the N-best most likely generative classes.

The likelihoods are

P os ,t∣c (16)

and they are ranked for the N-best selection. The stream reliability

indicator that uses the log-likelihoods for better calculation is

L s , t=
1

N −1∑n=2

N

log
P os , t∣c s , t ,1
P os ,t∣cs , t , n

(17)

for every stream s and time frame t.

In [10], it has been shown that this indicator monotonically changes

with the degradation of the audio stream signal with noise. Also in the

same work, a correlation of the indicator with the single-stream

classification Word Error Rate (WER) has been shown to be -0.74 for

the audio stream and -0.22 for the video stream (audio and video

31

stream reliability indicators respectively) on AV-ASR. These

correlation results from [10] are presented in Table 1.

Reliability
Indicator

Correlation with
audio-only WER

Correlation with
video-only WER

La -0.74 0.02

Lv 0.10 -0.22

Table 1: Correlation of stream reliability indicator with audio and visual-only
WER [10]

3.2 Reliability Indicator to Stream Weight Mapping
After estimating the stream reliability indicators we want to

compute the actual stream weights to do the multi-stream information

fusion. A mapping from the reliability indicators to stream weight

values must be set.

In the case of the AV-ASR, we set up the stream weights to have

some properties. We want the weights to sum up to 1:

λa , t λv ,t=1 (18)

From (18) we have

λv ,t=1− λa ,t (19)

so we can set a mapping from the stream reliability indicators only to

audio stream weight and then derive the visual stream weight from

equation (19).

Usually a sigmoid function is chosen for the mapping. It has nice

properties: it is bounded between zero and one, it is monotonic and

smooth [10]. In formula (20) the sigmoid mapping is shown:

λa , t=
1

1exp−∑
i=1

N

w i d i ,t
(20)

where wi are the mapping parameters corresponding to each reliability

indicator, di,t is the reliability indicator i at time frame t and N is the

number of reliability indicators used. The mapping parameters must

32

be estimated from training data to maximize the final recognition

results. There have been proposed different methods. We used a grid

search method to find the value of w that minimized the total WER in

the multi-stream recognition process. The implementation is described

in chapter 4.

3.3 K-means Clustering Method
A new approach to compute the stream weights has been proposed

in [11] and [12]. This method does not use a reliability indicator and a

mapping function, but computes the weights directly. The idea is that

the stream weights that minimize the total classification/estimation

error are inversely proportional to the single-stream pdf estimation

error. Also under certain conditions the optimal stream weights are

inversely proportional to the single-stream classification error.

It has been shown in [11] for the two-stream classification case,

when the classification error of the single-stream classifiers is equal

p o1∣c2≈ p o2∣c1 then the stream weights that minimize the

estimation error are

λ1

λ2
=

σ s2

2

σ s1

2 (21)

where σ s1

2 and σ s2

2 is the pdf estimation error variance of the first

and second stream. Also when the single-stream estimation error

variances are equal σ s1
=σ s 2 then for a region of interest where the

single-stream classification errors are comparable according to

equation

−1.5
po1∣c2
po2∣c1

1.5 (22)

the stream weights should be inversely proportional to the above

single-stream classification errors

33

λ1

λ2
≈

po2∣c1
po1∣c2

(23)

If we want to extend the previous results to the multi-class

recognition case then we can consider a class of discriminant

functions f i , jx  for each pair of classes wi and wj and also express

the error as P error =1−P correct  .

In the case of AV-ASR the computation of the stream weights can

be done using the formula

λa

λv
=

σ sv
2

σ sa
2

100−WACC mv , D
100−WACC ma , D  (24)

where WACC(mx ,D) is the percent word accuracy of the single-stream

classification done using model mx for stream x. When this formula is

applied to recognition the insertion and deletion errors must be

handled accordingly. Also this formula assumes that the single-stream

classification process is supervised, thus the class labels are known.

For the a real world unsupervised scenario a new approach must be

proposed.

In [12] a K-means clustering approach for the computation of the

stream weights is proposed. The classification is done using a class

and an anti-class model (class-specific background model) for each

class. This reduces the multi-class problem to multiple single-class

ones.

Anti-models for one class let's say ci are created during training

from data belonging to all other classes except class ci. The method

does unsupervised k-means classification using the class and anti-

class. Then estimates the quantity D=∣μ1− μ 2∣/σ by using inter-

and intra-class distances to estimate the quantities in nominator and

denominator. The inter-class distance is the average distance between

the means of each class and the intra-class distance is an estimate of

the average class variance. The stream weights for the case of two

class classification are given by the next formula:

34

s1

s2
=cf  d inter 1,2 ; 2/∑i

d intrai ; 2

d inter 1,2 ;1/∑i
d intrai ;1  (25)

where c is a constant accounting for the difference is estimation error

of the two streams, f() is a function relating D to the Bayes error,

d inter x , y ; z  is the inter-class distance between classes x and y for

stream z and d intra x ; y is the intra-class distance for class x and

stream y.

If we consider the multi-class case formula (25) becomes

s1

s2
=cf [∑

k

d inter mk , amk ;2/∑i=mk ,amk 
d intra i ;2

d intermk , amk ;1/∑i=mk amk 
d intra i ;1

] (26)

where m k and amk are the centroids of the model and anti-model

for class k computed with k-means clustering initialized with the

model and anti-model means, and ∑
k

is over all classes. Note that

the single stream estimation error variance is approximately constant

for each stream under the recognition process.

3.4 HTK modifications
In our project we tested the distance method described in 3.1.2 to

compute the reliability indicators of each stream. This method uses the

class-conditional observation likelihoods of the N-best most likely

generative classes. The class-conditional observation likelihood is

P os ,t∣c . So for every time frame we had to find these

likelihoods. HTK unfortunately does not report these likelihoods

although it uses them for the recognition results. So we had to make

some tweaking in the HTK in order to report these likelihoods in

every time frame. The classes we used are the speech class model

states. The modifications are reported in Appendix B. In chapter 4 a

more detailed description of the recognition system is available.

35

Recognition System CHAPTER 4

After describing the main theoretical concepts of our project in the

previous chapters, we will now describe in chapter 4 the recognition

system setup we used for the experiments done in multi-stream

recognition. The streams we used are two, the audio and the visual

and our system is characterized AV-ASR. Next we describe the

various components of our system.

4.1 The data (CUAVE)
The data we used came from the CUAVE database [4]. This

database came to fill in the gap in a common Audiovisual data set for

the AV-ASR research community. Until then every researcher who

wanted to make experiments in the AV-ASR area had to create his

own data set, this made the results not directly comparable to other's.

CUAVE is an Audiovisual speaker-independent database of connected

(or isolated) continuous digit strings of high quality audio and video

of a representative group of speakers. Different realistic conditions are

included except the standard static speaker, such as moving speaker

and multiple speakers.

The data included are separated in different parts and tasks. In part

1 there is only one speaker and in part 2 there is a pair of speakers.

Also in different tasks the speaker is still, moving or in profile view.

The speakers can be connected or continuous. In Table 2, there is a

description of the CUAVE data in detail. For our experiments we used

36

Part Task Movement Number of digits Mode
(1) Individual 1 Still 50 x 36 speakers Connected

2 Moving 30 x 36 speakers Connected
3 Profile 20 x 36 speakers Connected
4 Still 30 x 36 speakers Continuous
5 Moving 30 x 36 speakers Continuous

(2) Pairs 6 Still (30 x 2) x 20 pairs Continuous

Table 2: CUAVE data set

only task 1 of the database, which consists of 36 speakers, each one

uttering 5 times the digits from zero to nine connected while standing

still. Some natural movement of the speakers was unavoidable. The

speakers were chosen to be as representative as possible, with 17

females and 19 males, with different skin tones.

The video was recorded at 720 x 480 resolution with 29.97 fps

(NTSC) in full colour. The sound was recorded in 16-bit stereo at 44

Khz. Also 16-bit mono .wav files at 16 Khz with checked

synchronization are included which we used in our system.

During our tests we used the round robin method due to limited

training and testing data. Each time the training set was 30 speakers

and the testing set was 6 speakers. The separation of the data set is

shown in Table 3.

4.2 Noise types
In our recognition tests we injected some different types of audio

noise in the audio data, in order to degrade the original audio speech

signal. The noise data were acquired from the Signal Processing

Information Base (SPIB) repository (http://spib.rice.edu/spib.html).

The noise types we used were:

(a) Speech babble

(b) Factory floor noise 1

37

http://spib.rice.edu/spib.html
http://spib.rice.edu/spib.html
http://spib.rice.edu/spib.html

Test #
Speaker

1 2 3 4 5 6

1 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

2 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

3 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

4 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

5 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

6 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

7 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

8 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

9 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

10 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

11 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

12 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

13 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

14 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

15 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

16 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

17 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

18 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

19 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

20 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

21 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

22 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

23 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

24 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

25 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

26 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

27 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

28 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

29 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

30 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

31 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

32 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

33 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

34 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

35 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

36 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

Table 3: Separation of the initial data set to training and testing for different independent
experiments (round-robin)

38

(c) Jet cockpit noise 1

(d) Car interior noise

These represent different scenarios of environmental noise that the

AV-ASR could be used in. The noise files were sampled at 20 Khz so

we had to downsample first at 16 Khz to match with the audio data

files.

4.3 Features
The feature extraction process from the data files was already

described in 1.3.1 for both audio and visual streams. We used a vector

of 39 features for the audio stream and a vector of 35 features for the

video stream. We also concatenated the two vectors into one AV

vector only because HTK uses one vector for both streams during

multi-stream recognition for the input of the features. In fact the

vector had nothing to do with the concatenated vector used in some

feature fusion techniques where one common recognizer is used for

both streams.

4.4 Recognizer Setup
In fact we setup three different recognizers to compare the results

of the AV-ASR approach with audio-only ASR and to have an idea of

the video contribution to the process. So we setup an audio-only, a

video-only and finally a combined AV recognizer. All recognizer

setups are explained in the next paragraphs.

4.4.1 HMM Definition

We performed isolated digit recognition, which means that each

digit was set as a speech class. We created 10 HMMs corresponding

to whole digits from zero to nine. Each model had 9 emitting states,

and 1 input and 1 output state as required from HTK that are non-

39

emitting. We also created 1 HMM for the silence with 3 emitting

states. For the audio-only recognizer the state mean and variance

parameters were 39, one pair for each feature. For the video

recognizer we used also the first and second derivatives of the DCT

features so we had 105 mean and variance parameters in each state.

For the AV recognizer we used the built-in multi-stream method of

HTK with 2-streams. So the model was 2-stream HMM with 39 mean

and variance pairs for the audio stream and 35 pairs for the video

stream. The transition parameter matrix was common for both

streams. In figure 10, parts an HMM file in HTK format are shown

before the training for the three types of recognizers.

4.4.2 HMM Training

After defining the HMM for each speech class, we continued with

the training of the parameters of the models. The data we used

(CUAVE) were already labeled and HTK format label files were

included. So the training process was done automatically with the

following procedure:

40

● First we used HInit from HTK [5] to provide initial

estimates of the parameters of HMM using the training data.

HInit repeatedly uses Viterbi alignment to segment the training

observations and then recomputes the parameters by pooling

the vectors in each segment.

● Then we used HREST to perform basic Baum-Welch re-

estimation of the parameters of HMM using again the training

data set.

At this point we had the trained models for each of the 10 digits

plus the silence. The process of training was the same for all three

types of recognizers, except different training observation vectors

were used according to modality. The training of the AV models was

done with jointly estimated transition probabilities for both streams

and with stream weights set to λα=0.8and λv=0.2 during the

training.

4.4.3 Dictionary and Word Net

The dictionary we used was simply the 10 digits (zero to nine) plus

the silence token.

The word network we created is shown in figure 11. It allows

41

Figure 11: Word Network

optional silence to appear before and after each digit.

4.5 Weight Computation
For the Audiovisual recognizer, the fusion of the audio and visual

stream information is a main task. As described in the previous

chapters, we used decision level fusion with stream weighting. This

involves the problem of computing the stream weights. We used both

static and dynamic methods of weighting as described in Chapter 2.

For static methods we setup a standard weighting system with fixed

weights during recognition at λα=0.8and λv=0.2 . We also made

another setup and done grid search to find the best static stream

weights for every situation in our experiments. This was done in order

to compare the best results achieved with the static method to the

dynamic methods. The grid search was done between the values

0.5 λα1 with step 0.04. Although this method to find the best

static weights is not practical, because it requires constant

computation of stream weights from training data (with known labels)

every time the environmental situation changes, we used it to make a

comparison of the methods.

For dynamic methods we first had to compute the reliability

indicators of the streams. We computed two reliability indicators, one

for each stream, as described in 3.1.2 using Distance method. For the

computation of the audio stream reliability indicator we used the

equation (17) and 4-best method so we had:

La , t=
1
3∑n=2

3

log
P oa , t∣ca ,t ,1
P oa , t∣ca ,t , n

(27)

and for the visual stream reliability indicator we used 2-best method

so we had:

Lv ,t=log
P oa , t∣ca ,t ,1
P oa , t∣ca ,t ,2

(28)

After computing the reliability indicators, we made 2 different

42

mappings to the stream weights as described in 3.2. The first mapping

uses the audio stream reliability indicator and maps it to the audio

stream weight. So we have:

λa , t=
1

1exp−wa La , t
(29)

and the visual stream weight is λv ,t=1− λa ,t .

The second mapping we tested, uses both the audio and visual

stream reliability indicators and maps them to the audio weight using

the equation:

λa , t=
1

1exp−wa La , t−w v Lv ,t 
(30)

and the visual stream weight is again λv ,t=1− λa ,t .

For the first mapping we have to estimate the mapping parameter

value wa that best computes the audio stream weight from the audio

43

Figure 12: Grid search results of the mapping parameter value for the general case

reliability indicator. We searched for the best mapping parameter in

two scenarios, in the first we made a general mapping that minimizes

the WER under all noise conditions, and in the second we made a

mapping specifically for each environmental situation with the same

goal of minimizing the WER but under that noise condition only.

The best parameter value was selected with grid search. To know

the region in where to search for the best parameter, we first created a

histogram of the audio reliability indicator. The indicator is mostly

between the values 0.5 and 3. Near value 0.5 the stream is quite

unreliable, so a stream weight not near 1 is required. If we set wa = 4

and for La , t=0.5 equation (29) gives λa , t=0.88 , a value that is

quite close to 1. For mapping parameter values greater than 4 the

mapping function would give stream weight values even closer to 1

for La , t=0.5 , something not desired. So the max limit of the grid

search was set to 4. The region we searched was set to 0wa4

with step 0.2.

In the first scenario where we wanted to establish a general

mapping for all environmental noise conditions, we wanted a mapping

parameter that minimizes the WER for all noise conditions. Now we

can explain why we have chosen the 4-best method to compute the

audio reliability indicator. As shown in table 4 we tested different N-

best methods with N from 2 to 5 for 4 different environmental noises,

Babble speech at 3dB SNR, Factory floor noise at 3dB SNR, Car

Babble @ 3db Factory @ 3db Car @ 0db Jet 0db
Method Value Acc % Value Acc % Value Acc % Value Acc %
2-best 2.3 49 1.2 45.33 0.6 90.33 0.5 22.33
3-best 2.7 49.33 0.9 46 0.3 89.67 0.3 22
4-best 0.7 49.33 0.7 45.67 0.4 89.67 0.3 22.67
5-best 2.7 49.33 0.7 45.33 0.5 89.67 0.3 22

Table 4: Different N-best method results for the computation of the audio reliability
indicator

44

interior noise at 0dB SNR and Jet cockpit noise at 0dB SNR and the

results we got for the best parameter reveal that the 4-best is ideal for

the creation of a general mapping because it allows a relative

convergence of the mapping parameter between different

environmental noises.

The results of the grid search for the 4 environmental noise

conditions described above are shown in figure 12. The best estimated

parameter value was found to be wa = 0.6. Also in figure 13 are shown

the reliability indicator histogram extracted from audio signal with

factory floor noise at 10dB SNR plotted together with the mapping

function with parameter wa = 0.6.

In the second scenario, we wanted to establish an adapted mapping

for every environmental noise condition. So we wanted to find the best

mapping parameter for each noise type. We have done separate grid

search for all 4 noise types and for SNR values 10, 3 and 0 dB. The

45

Figure 13: Audio reliability histogram with audio stream weight mapping function
graph

46

Figure 14(a): Babble speech mapping parameter grid search results

Figure 14(b): Factory floor noise mapping parameter grid search results

47

Figure 14(c): Car interior noise mapping parameter grid search results

Figure 14(d): Jet cockpit noise mapping parameter grid search results

best values for the mapping parameter are shown in table 5. The grid

search results are shown in figure 14.

Noise type Babble speech Factory floor noise Car interior noise Jet cockpit noise
wa parameter value 0.7 0.6 0.5 0.3

Table 5: Mapping parameter value for noise adapted mapping

For the second mapping we used both audio and visual stream

reliability indicators to compute the audio stream weight and then the

video stream weight. So we wanted to estimate two mapping

parameters wa and wv. First we created the histogram of the visual

reliability indicator as we did for audio above. Because of the positive

correlation of the visual reliability indicator with the audio only WER

and the linear combination of the indicators inside the exp function of

the sigmoid, we now allow the mapping parameters to get negative

values. We set the grid search region to be −1wa3 and

−0.5w v1.5 . We used variable step which was 0.1 near 0 and

about 0.3 near the edges. The best mapping parameter pairs for each

environmental noise type are shown in table 6. Multiple best pairs

were extracted in some cases, representing the flexibility in choosing

the best pair, a flexibility thanks to the linear combination of the

indicators. Detailed results are shown in figure 15.

Babble @ 3 dB Factory @ 3 dB Car @ 0 dB Jet @ 0 dB
wa 1.2 1.2 1.6 0.5 0.8 1 1.2 1
wv 0.5 0.3 0.1 0 -0.1 -0.1 -0.3 -0.3

Table 6: Mapping parameter values when both indicators are used.

The final mapping parameter values pair that gave the most promising

results for all environmental condition situations was wa = 1.2 and wv =

-0.1. The negative value in wv is explained by the fact that the greater

reliability of the video stream would reduce the audio stream weight,

thus increasing the visual stream weight from λv ,t=1− λa ,t .

48

49

Figure 15(a): Grid search for audio and video mapping parameters (Babble speech)

Figure 15(b): Grid search for audio and video mapping parameters (Factory floor noise)

50

Figure 15(c): Grid search for audio and video mapping parameters (Car interior noise)

Figure 15(d): Grid search for audio and video mapping parameters (Jet cockpit noise)

Finally after the mapping function was set and the audio stream

weight was computed we tested a mean smoothing function on the

stream weight. The results for Speech babble injected Audio signal at

10dB SNR and different sizes of the filter are shown in table 7. The 3

frames mean smoothing filter was chosen.

No smoothing 3 frames mean filter 5 frames mean filter
Accuracy % 48.67 49.33 48.33

Table 7: Mean smoothing filter test results

From the audio stream weight we computed the visual stream

weight as shown previously.

51

Tests Results CHAPTER 5

The results in this chapter are presented in a format that allows

easy comparison between the different AV methods described above

and the Audio-only recognizer. Also the results of the Visual-only

recognizer are included. So in every situation the results of the single-

stream recognizers are included.

5.1 Audio stream reliability mapping recognizer
Here we present the results for the audio stream reliability mapping

recognizer. The setup that uses a general mapping for all

environmental conditions is presented as “General Mapping” and the

setup that uses adapted mappings for each environmental noise type is

presented as “Adapted Mapping”. Also two static method results are

included, the first uses fixed stream weights at λα=0.8and λv=0.2

and the second pre-computes the best static pair that maximize the

accuracy on the training set. The original audio signal is injected with

the 4 types of noise described in 4.2 at different SNR level: 15dB,

10dB, 3dB, 0dB, -3dB. The Visual-only recognizer results are not

affected by audio noise and are fixed. The Audio-only and AV results

are affected. Finally the percent reduction on WER between the static

method with fixed weights λα=0.8and λv=0.2 and the two dynamic

methods is presented for comparison given by the formula

relative WERR reduction =
WACC new−WACC

100−WACC
. (31)

52

Speech Babble Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,02 80,9 49,08 35,83 27,17
Video-only 28,35
AV Global
(0.8-0.2)

90,3 81,58 48,83 35,66 27,06

AV-Global
Best Values

93,91 82,08 49,94 36,4 28,01

AV-Instant
General Mapping

93,18 82,25 49,44 36,33 27,45

AV-Instant
Adapted Mapping

93,4 82,25 49,21 36,63 27,45

AV-Instant-GM
 rel. WERR red. 29,69% 3,64% 1,19% 1,04% 0,53%
AV-Instant-AM
 rel. WERR red. 31,96% 3,64% 0,74% 1,51% 0,53%

Table 8: Speech Babble accuracy results for Audio reliability mapping method

Jet Cockpit Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 89,96 71,24 31,87 22,68 17,72
Video-only 28,35
AV Global
(0.8-0.2)

91,14 73,48 33,48 23,58 18,5

AV-Global
Best Values

91,52 74,65 35,1 25,09 19,72

AV-Instant
General Mapping

91,25 75,32 35,1 24,42 18,72

AV-Instant
Adapted Mapping

90,74 72,69 33,98 25,15 19,11

AV-Instant-GM
 rel. WERR red. 1,24% 6,94% 2,44% 1,10% 0,27%
AV-Instant-AM
 rel. WERR red. -4,51% -2,98% 0,75% 2,05% 0,75%

Table 9: Jet Cockpit noise accuracy results for Audio reliability mapping method

53

Car Interior Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 98,6 98,1 93,64 88,99 83,27
Video-only 28,35
AV Global
(0.8-0.2)

98,27 97,56 93,31 89,35 83,2

AV-Global
Best Values

98,72 97,71 93,92 90,07 84,32

AV-Instant
General Mapping

98,66 97,78 93,81 89,91 84,21

AV-Instant
Adapted Mapping

98,38 97,6 93,87 90,02 84,32

AV-Instant-GM
 rel. WERR red. 22,54% 9,02% 7,47% 5,26% 6,01%
AV-Instant-AM
 rel. WERR red. 6,36% 1,64% 8,37% 6,29% 6,67%

Table 10: Car Interior noise accuracy results for Audio reliability mapping method

Factory Floor Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,03 81,41 45,47 30,75 18,5
Video-only 28,35
AV Global
(0.8-0.2)

93,8 82,3 45,57 31,47 20,89

AV-Global
Best Values

94,25 83,03 46,92 32,76 22,29

AV-Instant
General Mapping

94,08 82,57 46,96 32,64 21,34

AV-Instant
Adapted Mapping

94,08 82,57 46,96 32,64 21,34

AV-Instant-GM
 rel. WERR red. 4,52% 1,53% 2,55% 1,71% 0,57%
AV-Instant-AM
 rel. WERR red. 4,52% 1,53% 2,55% 1,71% 0,57%

Table 11: Factory floor noise accuracy results for Audio reliability mapping method

54

The results are shown in tables 8 – 11 for different noise types.

By carefully examining the results, we can support the conclusion

that the Audiovisual methods are almost always superior to the Audio-

only method despite the fact that the Video-only single-stream

classifier accuracy is relatively low. The difference of the AV

recognizers from the Audio-only increases as the SNR decreases and

the audio stream becomes less reliable. Also the instantaneous stream

weight computation AV methods have in general better results from

the fixed AV method as shown from the two last lines of the tables,

except in the case of the Adapted Mapping in the Jet Cockpit case that

is probably caused by a loose adaptation scheme. The superiority of

the time-variable weighting methods shows that the recognition is

better adapted to the variability of the audio stream reliability during

the process. Also shows the flexibility of the methods as the SNR

changes. When comparing the instantaneous methods with the best

pre-computed static weights method, they have quite similar results.

Sometimes the best static method has better results, a fact that shows

that the instantaneous methods can give even better results with

maybe some tweaking in the stream weights computation part. Also

when comparing the two time-variable weights methods, we can

support that the general all-noise-condition mapping recognizer has

very good results and the adapted to noise mapping recognizer is only

better in very low SNR but with almost identical results. This makes

the adaptation to noise type redundant, based on our results, which is a

good thing assuming that in real world the noise types may change

from time to time. In figure 16 the % WERR reduction is plotted for

different noise types and SNR for the two time-variable weights AV

methods. In figure 16(d) where the factory noise results are presented,

there is only one visible line because the general and the adapted

mapping setups are identical. No special adaptation of the mapping

55

parameterization is needed in the case of factory floor noise

56

Figure 16(a): Speech Babble noise results (Audio mapping)

Figure 16(b): Jet Cockpit noise results (Audio mapping)

57

Figure 16(c): Car Interior noise results (Audio mapping)

Figure 16(d): Factory Floor noise results (Audio mapping)

In table 12 the change in the audio stream weights computed by the

three AV methods (best pre-computed fixed, instantaneous general -

mean values, instantaneous noise type adapted - mean values) as the

SNR changes is shown. We can see that the mean values of the time-

variable weighting methods follow a downward trend as the SNR

decreases, which shows adaptability of the method to decreasing

audio stream reliability. Except in the Car interior noise that the

stream means are stuck in the same values. This is a desirable

behaviour in fact, as the car noise is present in low spectral

Noise
type 15 dB 10 dB 3 dB 0 dB -3 dB

AV-Global
Best Values

AV-Instant
General Mapping

AV-Instant
Adapted Mapping

B
ab

bl
e

Sp
ee

ch

0,88 0,86 0,86 0,91 0,83

0,84 0,82 0,79 0,78 0,78

0,84 0,82 0,8 0,78 0,78

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant
Adapted Mapping

Je
t C

oc
kp

it
no

is
e 0,82 0,79 0,69 0,58 0,62

0,82 0,79 0,76 0,76 0,77

0,7 0,67 0,65 0,65 0,65

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant
Adapted Mapping C

ar
 In

te
rio

r n
oi

se 0,92 0,91 0,84 0,78 0,74

0,87 0,87 0,86 0,86 0,86

0,83 0,83 0,82 0,82 0,82

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant
Adapted Mapping Fa

ct
or

y
Fl

oo
r n

oi
se 0,86 0,92 0,83 0,74 0,59

0,83 0,8 0,77 0,76 0,76

0,83 0,8 0,77 0,76 0,76

Table 12: Stream weight comparison for different AV methods (Audio mapping)

58

region and does not affect the recognition process considerably as it is

shown in the Accuracy table results. Another fact is that the weights

of the instantaneous methods have a small region of variance and do

not follow the best fixed weights in large inclines or declines. This

happens because of the sigmoid characteristics which is chosen as a

mapping function. The region of variance of the time-variant stream

weight values can be increased by tweaking the mapping function, but

if this would give better recognition results remains to be tested. In

figure 17 the above stream weights are graphically shown.

59

Figure 17: Audio stream weight graphs for different AV Methods (Audio mapping)

5.2 Audio and Video stream reliability mapping recognizer
The same results are now presented but for the setup that uses both

stream reliability indicators to perform the computation of the stream

weights. Careful inspection of the results shows that this method gives

similar or inferior results to the previous method. This can be

explained from the fact that the best mapping of two values is harder

to accomplish than of one and possibly some more work can be done

in the mapping parameter estimation of the method. Also because of

the low accuracy, the single-stream visual classifier gives decision

information that might be more confusing than helpful for the

computation of the stream weights. Improvement in this field could

overall improve this method. The recognition results in terms of

accuracy are shown in

Speech Babble Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,02 80,9 49,08 35,83 27,17
Video-only 28,35
AV Global
(0.8-0.2)

90,3 81,58 48,83 35,66 27,06

AV-Global
Best Values

93,91 82,08 49,94 36,4 28,01

AV-Instant
General Mapping

93,02 81,57 48,88 35,84 26,21

AV-Instant
Adapted Mapping

93,24 82,36 48,99 36,74 27,46

AV-Instant-GM
 rel. WERR red. 28,04% -0,05% 0,10% 0,28% -1,17%
AV-Instant-AM
 rel. WERR red. 30,31% 4,23% 0,31% 1,68% 0,55%

Table 13: Speech Babble accuracy results for Audio+Video reliability mapping method

60

Jet Cockpit Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 89,96 71,24 31,87 22,68 17,72
Video-only 28,35
AV Global
(0.8-0.2)

91,14 73,48 33,48 23,58 18,5

AV-Global
Best Values

91,52 74,65 35,1 25,09 19,72

AV-Instant
General Mapping

90,91 73,24 34,42 24,47 18,61

AV-Instant
Adapted Mapping

89,18 70,19 32,92 24,41 19,39

AV-Instant-GM
 rel. WERR red. -2,60% -0,90% 1,41% 1,16% 0,13%
AV-Instant-AM
 rel. WERR red. -22,12% -12,41% -0,84% 1,09% 1,09%

Table 14: Jet Cockpit noise accuracy results for Audio+Video reliability mapping method

Car Interior Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 98,6 98,1 93,64 88,99 83,27
Video-only 28,35
AV Global
(0.8-0.2)

98,27 97,56 93,31 89,35 83,2

AV-Global
Best Values

98,72 97,71 93,92 90,07 84,32

AV-Instant
General Mapping

98,27 97,49 94,03 89,79 84,26

AV-Instant
Adapted Mapping

98,21 97,54 93,98 90,07 84,37

AV-Instant-GM
 rel. WERR red. 0,00% -2,87% 10,76% 4,13% 6,31%
AV-Instant-AM
 rel. WERR red. -3,47% -0,82% 10,01% 6,76% 6,96%

Table 15: Car Interior noise accuracy results for Audio+Video reliability mapping method

61

Factory Floor Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,03 81,41 45,47 30,75 18,5
Video-only 28,35
AV Global
(0.8-0.2)

93,8 82,3 45,57 31,47 20,89

AV-Global
Best Values

94,25 83,03 46,92 32,76 22,29

AV-Instant
General Mapping

93,8 82,19 46,23 32,64 21,4

AV-Instant
Adapted Mapping

94,36 82,47 46,01 30,85 20,73

AV-Instant-GM
 rel. WERR red. 0,00% -0,62% 1,21% 1,71% 0,64%
AV-Instant-AM
 rel. WERR red. 9,03% 0,96% 0,81% -0,90% -0,20%

Table 16: Factory floor noise accuracy results for Audio+Video reliability mapping method

tables 13 to 16 and compared to the fixed weight to

λα=0.8and λv=0.2 static method. Also in figure 18 the percent

relative WER reduction is plotted for the different environmental

noise types and SNR.

In table 17 the change in audio stream weights computed by the three

AV methods as the SNR changes is shown for this method. The

stream weights are changing very slowly and this makes the method

really inflexible to changing environmental conditions. Perhaps a

better mapping parameterization may give the desired flexibility. In

figure 19 the weight values are plotted together for comparison.

62

63

Figure 18(a): Babble Speech noise results (Audio+Video mapping)

Figure 18(b): Jet Cockpit noise results (Audio + Video mapping)

64

Figure 18(c): Car Interior noise results (Audio + Video mapping)

Figure 18(d): Factory Floor noise results (Audio + Video mapping)

Noise
type 15 dB 10 dB 3 dB 0 dB -3 dB

AV-Global
Best Values

AV-Instant
General Mapping

AV-Instant
Adapted Mapping

B
ab

bl
e

Sp
ee

ch

0,88 0,86 0,86 0,91 0,83

0,78 0,76 0,73 0,72 0,72

0,91 0,9 0,89 0,88 0,88

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant
Adapted Mapping

Je
t C

oc
kp

it
no

is
e 0,82 0,79 0,69 0,58 0,62

0,75 0,73 0,71 0,71 0,71

0,67 0,64 0,61 0,61 0,62

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant
Adapted Mapping C

ar
 In

te
rio

r n
oi

se 0,92 0,91 0,84 0,78 0,74

0,81 0,81 0,8 0,8 0,8

0,78 0,78 0,78 0,78 0,78

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant
Adapted Mapping Fa

ct
or

y
Fl

oo
r n

oi
se 0,86 0,92 0,83 0,74 0,59

0,76 0,74 0,71 0,71 0,7

0,87 0,86 0,85 0,84 0,84

Table 17: Stream weight comparison for different AV methods

65

66

Figure 19: Audio stream weight graphs for different AV Methods (Audio + Video mapping)

Conclusions – Future Work CHAPTER 6

In this project we researched the Audio-Visual approach to speech

recognition. The approach is based on the concept that audio and

visual information of speech can be combined to develop a robust

ASR system. The information can be extracted from Video data

signals recorded during speech. The respective audio and visual

signals can be regarded as information streams, so multiple

information stream decision fusion methods can be used for the

recognition. Different fusion methods were described. A stream

weighting scheme was introduced during fusion to give appropriate

biasing to each stream while making the final decision. The problem

of stream weight computation was described and different methods

based on a posteriori likelihoods of separate classifiers were given.

Then we created a recognition system setup to test the

theoretical concepts we introduced above. First a method using the

reliability indicator of audio stream to compute the stream weights

was created. This method was tested using either a general all-noise-

condition mapping or an adapted to noise condition mapping. Then a

method using the reliability indicators of audio and video streams was

created. Again a general all-noise-condition and an adapted to noise

condition mapping were tested. The results were compared to the

following recognizers: (a) Audio-only, (b) Video-only, (c) AV with

fixed stream weights during recognition process and (d) AV with best

pre-computed time-constant stream weights for each noise condition.

The results showed that obvious improvement was achieved compared

to (a) Audio-only recognizer and (c) AV with fixed stream weights

during recognition process. Also the methods achieved similar

67

behaviour – sometimes superior - to the (d) AV with best pre-

computed time-constant stream weights for each noise condition, both

to the final Accuracy and actual stream weight values (mean values in

the case of time variant).

The strong point of the method is the ability to estimate time-

variant stream weights adapting to variable environmental conditions.

The tests we conducted simulated different environmental noise

conditions, but these were static during each recognition task (type of

noise and SNR). Tests conducted under varying noise conditions

should show in more detail the inherent abilities of the methods tested.

Also improving the visual stream recognition would give an

overall boost to the accuracy of the AV-ASR system. Applying more

sophisticated methods in pre-processing and ROI acquiring could

help. Feature extraction and selection of the visual signal can be

improved.

Additionally, some tweaking in the mapping of the reliabilities

to the weights of streams could give some improvement. Also using

alternative methods of computing the stream weights could be tested.

Finally a system could be set up, that would research the AV

methods in a sub-word (phoneme-level) recognition process.

68

APPENDIX A

Instantaneous Weight Graphs for every

Digit

In this appendix we included the graphs of the stream weights that

were computed using the method of audio reliability indicator general

all-noise mapping to the stream weights. Especially the results of the

recognition of speakers 1, 2, 4, 20, 33, 34 under 10 dB factory floor

noise uttering 5 times the digits were plotted. For each speaker and

each digit, a combined graph was created with the sample axis (x axis)

normalized to value 50 with the 5 utterances.

The results show that for the same digits, similar weight graphs can

be identified. This makes us believe that there is some dependence of

the reliabilities of streams on the specific digit that should be

recognized. Some temporal regions in the digit utterance could

include more information in audio stream and others less, thus making

the video stream more reliable for that region. This can be confirmed

when comparing the weights created by the same digit utterances but

from different speakers.

69

Speaker 1 (male)

70

71

72

73

Speaker 2 (male)

74

75

76

77

78

Speaker 4 (female)

79

80

81

82

Speaker 20 (female)

83

84

85

86

87

Speaker 33 (male)

88

89

90

91

Speaker 34 (female)

92

93

94

95

96

APPENDIX B

HTK source code modifications

B.1 Instantaneous stream weight support
To support the time variant stream weights as described in 2.2 and

2.4, two files were modified: Hvite.c and Hrec.c.

Hvite.c source code modifications:

First we declared some global variables that would be useful for the

implementation

static char *wgt_datFN; /* Weights file */
static Observation wgt_obs; /* weight observation */
static MemHeap bufHeap_WGT;

Then inside the Initialise() function we make the appropriate

initialisation for the stream weights file

 wgt_obs=MakeObservation(&gstack,hset.swidth,hset.pkind,
 hset.hsKind==DISCRETEHS,eSep);

 CreateHeap(&bufHeap_WGT,"Input Buffer heap
WGT",MSTAK,1,0.0,50000,50000);

Then the function ProcessFile() is substituted by the modified

function ProcessFileWGT() which is as follows

/* ProcessFile: process given file. If fn=NULL then direct audio */
Boolean ProcessFileWGT(char *fn, Network *net, int utterNum, LogDouble
currGenBeam, Boolean restartable)
{
 FILE *file;
 ParmBuf pbuf;
 ParmBuf wgt_pbuf; /* Spiros */
 BufferInfo pbinfo;

97

 NetNode *d;
 Lattice *lat;
 LArc *arc,*cur;
 LNode *node;
 Transcription *trans;
 MLink m;
 LogFloat lmlk,aclk;
 int s,j,tact,nFrames;
 LatFormat form;
 char *p,lfn[255],buf1[80],buf2[80],thisFN[MAXSTRLEN];
 Boolean enableOutput = TRUE, isPipe;

 if (fn!=NULL)
 strcpy(thisFN,fn);
 else if (fn==NULL && saveAudioOut)
 CounterFN(roPrefix,roSuffix,++roCounter,4,thisFN);
 else
 enableOutput = FALSE;

 if((pbuf =
OpenBuffer(&bufHeap,fn,50,dfmt,TRI_UNDEF,TRI_UNDEF))==NULL)
 HError(3250,"ProcessFileWGT: Config parameters invalid");

 /* Check pbuf same as hset */
 GetBufferInfo(pbuf,&pbinfo);
 if (pbinfo.tgtPK!=hset.pkind)
 HError(3231,"ProcessFileWGT: Incompatible sample kind %s vs %s",
 ParmKind2Str(pbinfo.tgtPK,buf1),
 ParmKind2Str(hset.pkind,buf2));
 if (pbinfo.a != NULL && replay) AttachReplayBuf(pbinfo.a, (int)
(3*(1.0E+07/pbinfo.srcSampRate)));

/* Spiros */
 wgt_datFN = GetStrArg();
 if (trace&T_TOP) {
 printf("File: %s\n",wgt_datFN);

 }

 if((wgt_pbuf =
OpenBuffer(&bufHeap_WGT,wgt_datFN,50,dfmt,TRI_UNDEF,TRI_UNDEF))=
=NULL)
 HError(3250,"ProcessFileWGT: Config parameters invalid");

/* Spiros */

 StartRecognition(vri,net,lmScale,wordPen,prScale);
 SetPruningLevels(vri,maxActive,currGenBeam,wordBeam,nBeam,tmBea
m);

 tact=0;nFrames=0;
 StartBuffer(pbuf);
 StartBuffer(wgt_pbuf); /* Spiros*/
 while(BufferStatus(pbuf)!=PB_CLEARED) {
 ReadAsBuffer(pbuf,&obs);

98

 ReadAsBuffer(wgt_pbuf,&wgt_obs); /* Spiros*/
 if (trace&T_OBS) {

 PrintObservation(nFrames,&obs,13);
 PrintObservation(nFrames,&wgt_obs,13); /* Spiros*/

}

 if (hset.hsKind==DISCRETEHS){
 for (s=1; s<=hset.swidth[0]; s++){
 if((obs.vq[s] < 1) || (obs.vq[s] > maxMixInS[s]))
 HError(3250,"ProcessFile: Discrete data value [%d] out of range
in stream [%d] in file %s",obs.vq[s],s,fn);
 }
 }

/* ProcessObservation(vri,&obs,-1,xfInfo.inXForm);*/
 ProcessObservationWGT(vri,&obs,&wgt_obs,-1,xfInfo.inXForm); /*
Spiros*/

 if (trace & T_FRS) {
 for (d=vri->genMaxNode,j=0;j<30;d=d->links[0].node,j++)
 if (d->type==n_word) break;
 if (d->type==n_word){
 if (d->info.pron==NULL) p=":bound:";
 else p=d->info.pron->word->wordName->name;
 }
 else p=":external:";
 m=FindMacroStruct(&hset,'h',vri->genMaxNode->info.hmm);
 printf("Optimum @%-4d HMM: %s (%s) %d %5.3f\n",
 vri->frame,m->id->name,p,
 vri->nact,vri->genMaxTok.like/vri->frame);
 fflush(stdout);
 }
 nFrames++;
 tact+=vri->nact;
 }
 lat=CompleteRecognition(vri,pbinfo.tgtSampRate/10000000.0,&ansHea
p);

 if (lat==NULL) {
 if ((trace & T_TOP) && fn != NULL){
 if (restartable)
 printf("No tokens survived to final node of network at beam
%.1f\n", currGenBeam);
 else
 printf("No tokens survived to final node of network\n");
 fflush(stdout);
 } else if (fn==NULL){
 printf("Sorry [%d frames]?\n",nFrames);fflush(stdout);
 }
 if (pbinfo.a != NULL && replay) ReplayAudio(pbinfo);
 CloseBuffer(pbuf);
 CloseBuffer(wgt_pbuf); /* Spiros*/
 return FALSE;
 }

99

 if (vri->noTokenSurvived && restartable)
 return FALSE;

 if (vri->noTokenSurvived && trace & T_TOP) {
 printf("No tokens survived to final node of network\n");
 printf(" Output most likely partial hypothesis within network\n");
 fflush(stdout);
 }

 lat->utterance=thisFN;
 lat->net=wdNetFn;
 lat->vocab=dictFn;

 if (trace & T_TOP || fn==NULL) {
 node=NULL;
 for (j=0;j<lat->nn;j++) {
 node=lat->lnodes+j;
 if (node->pred==NULL) break;
 node=NULL;
 }
 aclk=lmlk=0.0;
 while(node!=NULL) {
 for (arc=NULL,cur=node->foll;cur!=NULL;cur=cur->farc) arc=cur;
 if (arc==NULL) break;
 if (arc->end->word!=NULL)
 printf("%s ",arc->end->word->wordName->name);
 aclk+=arc->aclike+arc->prlike*lat->prscale;
 lmlk+=arc->lmlike*lat->lmscale+lat->wdpenalty;
 node=arc->end;
 }
 printf(" == [%d frames] %.4f [Ac=%.1f LM=%.1f]
(Act=%.1f)\n",nFrames,
 (aclk+lmlk)/nFrames, aclk,lmlk,(float)tact/nFrames);
 fflush(stdout);
 }
 if (pbinfo.a != NULL && replay) ReplayAudio(pbinfo);

 /* accumulate stats for online unsupervised adaptation
 only if a token survived */
 if ((lat != NULL) && (!vri->noTokenSurvived) && ((update > 0) ||
(xfInfo.useOutXForm)))
 DoOnlineAdaptation(lat, pbuf, nFrames);

 if (enableOutput){
 if (nToks>1 && latExt!=NULL) {
 MakeFN(thisFN,labDir,latExt,lfn);
 if ((file=FOpen(lfn,NetOFilter,&isPipe))==NULL)
 HError(3211,"ProcessFile: Could not open file %s for lattice
output",lfn);
 if (latForm==NULL)
 form=HLAT_DEFAULT;
 else {
 for (p=latForm,form=0;*p!=0;p++) {

100

 switch (*p) {
 case 'A': form|=HLAT_ALABS; break;
 case 'B': form|=HLAT_LBIN; break;
 case 't': form|=HLAT_TIMES; break;
 case 'v': form|=HLAT_PRON; break;
 case 'a': form|=HLAT_ACLIKE; break;
 case 'l': form|=HLAT_LMLIKE; break;
 case 'd': form|=HLAT_ALIGN; break;
 case 'm': form|=HLAT_ALDUR; break;
 case 'n': form|=HLAT_ALLIKE; break;
 case 'r': form|=HLAT_PRLIKE; break;
 }
 }
 }
 if(WriteLattice(lat,file,form)<SUCCESS)
 HError(3214,"ProcessFile: WriteLattice failed");

 FClose(file,isPipe);
 }

 trans=TranscriptionFromLattice(&ansHeap,lat,nTrans);

 if (labForm!=NULL)
 FormatTranscription(trans,pbinfo.tgtSampRate,states,models,
 strchr(labForm,'X')!=NULL,
 strchr(labForm,'N')!=NULL,strchr(labForm,'S')!=NULL,
 strchr(labForm,'C')!=NULL,strchr(labForm,'T')!=NULL,
 strchr(labForm,'W')!=NULL,strchr(labForm,'M')!=NULL);

 MakeFN(thisFN,labDir,labExt,lfn);
 /* if(LSave(lfn,trans,ofmt)<SUCCESS)
 HError(3214,"ProcessFile: Cannot save file %s", lfn); */
 LSave(lfn,trans,ofmt);
 Dispose(&ansHeap,trans);
 }
 Dispose(&ansHeap,lat);
 CloseBuffer(pbuf);
 CloseBuffer(wgt_pbuf); /* Spiros*/
 if (trace & T_MMU){
 printf("Memory State after utter %d\n",utterNum);
 PrintAllHeapStats();
 }

 return !vri->noTokenSurvived;
}

Now in function DoRecognition() we also modify the call to

ProcessFile() to ProcessFileWGT()

ProcessFileWGT(datFN,net,n++,genBeam,FALSE);

101

HRec.c source code modifications:

Some modification to Hrec.c were also necessary.

CPOutP() function was substituted with CPOutPWGT() as follows

/* Version of POutP that caches outp values with frame id */
static LogFloat cPOutPWGT(PSetInfo *psi,Observation *obs,Observation
*wgt_obs,StateInfo *si,int id)
{
 PreComp *pre;
 LogFloat outp;
 StreamElem *se;
 Vector w;
 Vector wgt_v; /* Spiros */
 int s,S;

 /* printf("Hello from cPoutP\n");*/

 if (si->sIdx>0 && si->sIdx<=pri->psi->nsp)
 pre=pri->psi->sPre+si->sIdx;
 else pre=NULL;

#ifdef SANITY
 if (pre==NULL)
 HError(8520,"cPOutP: State has no PreComp attached");
#endif

 wgt_v=wgt_obs->fv[1]; /*Spiros*/

 if (pre->id!=id) { /* bodged at the moment - fix !! */
 if ((FALSE && psi->mixShared==FALSE) || (psi->hset->hsKind ==
DISCRETEHS)) {
 outp=POutP(psi->hset,obs,si);
 }
 else {
 S=obs->swidth[0];
 if (S==1 && si->weights==NULL){
 outp=cSOutP(psi->hset,1,obs,si->pdf+1,id);
 }
 else {
 /* Spiros - Edw tha prepei na oristei sto w ta weights pou yparxoun
sto observation */
 outp=0.0;
 se=si->pdf+1;
 w=si->weights;
 for (s=1;s<=S;s++,se++){
 outp+=wgt_v[s]*cSOutP(psi->hset,s,obs,se,id);
 }
 /***
***********/
 }
 }
 pre->outp=outp;
 pre->id=id;

102

 }
 return(pre->outp);
}

Also StepHMM1() function was substituted with modified version

StepHMM1WGT().

static void StepHMM1WGT(NetNode *node,Observation * wgt_obs) /* Model
internal propagation NBEST */
{
 NetInst *inst;
 HMMDef *hmm;
 Token tok,max;
 TokenSet *res,cmp,*cur;
 Align *align;
 int i,j,k,N,endi;
 LogFloat outp;
 Matrix trP;
 short **seIndex;

 inst=node->inst;
 max=null_token;

 hmm=node->info.hmm;
 N=hmm->numStates;
 trP=hmm->transP;
 seIndex=pri->psi->seIndexes[hmm->tIdx];

 for (j=2,res=pri->psi->sBuf+2;j<N;j++,res++) { /* Emitting states first
*/
 i=seIndex[j][0];
 endi=seIndex[j][1];
 cur=inst->state+i-1;

 res->tok=cur->tok; res->n=cur->n;
 for (k=0;k<cur->n;k++) res->set[k]=cur->set[k];

 res->tok.like+=trP[i][j];

 for (i++,cur++;i<=endi;i++,cur++) {
 cmp.tok=cur->tok;
 cmp.tok.like+=trP[i][j];
 if (res->n==0) {
 if (cmp.tok.like > res->tok.like)
 res->tok=cmp.tok;
 }
 else
 TokSetMerge(res,&cmp.tok,cur);
 }
 if (res->tok.like>pri->genThresh) { /* State pruning */

103

 /* Spiros - Perasma tou weight observation stin synartisi */
/* outp=cPOutP(pri->psi,pri->obs,hmm->svec[j].info,pri->id);*/
 outp=cPOutPWGT(pri->psi,pri->obs,wgt_obs,hmm->svec[j].info,pri-
>id);
 /**/

 res->tok.like+=outp;

 if (res->tok.like>max.like)
 max=res->tok;
 if (pri->states) {
 if (res->tok.align==NULL?TRUE:
 res->tok.align->state!=j || res->tok.align->node!=node) {
 align=NewNRefAlign(node,j,
 res->tok.like-outp-res->tok.lm*pri->scale,
 pri->frame-1,res->tok.align);
 res->tok.align=align;
 }
 }
 }
 else {
 res->tok=null_token;
 res->n=((pri->nToks>1)?1:0);
 }
 }

 /* Null entry state ready for external propagation */
 /* And copy tokens from buffer to instance */
 for (i=1,res=pri->psi->sBuf+1,cur=inst->state;
 i<N;i++,res++,cur++) {
 cur->n=res->n; cur->tok=res->tok;
 for (k=0;k<res->n;k++) cur->set[k]=res->set[k];
 }

 /* Set up pruning limits */
 if (max.like>pri->genMaxTok.like) {
 pri->genMaxTok=max;
 pri->genMaxNode=node;
 }
 inst->max=max.like;

 i=seIndex[N][0]; /* Exit state (ignoring tee trP) */
 endi=seIndex[N][1];

 res=inst->exit;
 cur=inst->state+i-1;

 res->n=cur->n;
 res->tok=cur->tok;
 for (k=0;k<cur->n;k++) res->set[k]=cur->set[k];

 res->tok.like+=trP[i][N];

 for (i++,cur++;i<=endi;i++,cur++) {

104

 cmp.tok=cur->tok;
 cmp.tok.like+=trP[i][N];

 if (res->n==0) {
 if (cmp.tok.like > res->tok.like)
 res->tok=cmp.tok;
 }
 else
 TokSetMerge(res,&cmp.tok,cur);
 }
 if (res->tok.like>LSMALL){
 tok.like=res->tok.like+inst->wdlk;
 if (tok.like > pri->wordMaxTok.like) {
 pri->wordMaxTok=tok;
 pri->wordMaxNode=node;
 }
 if (!node_tr0(node) && pri->models) {
 align=NewNRefAlign(node,-1,
 res->tok.like-res->tok.lm*pri->scale,
 pri->frame,res->tok.align);
 res->tok.align=align;
 }
 } else {
 inst->exit->tok=null_token;
 inst->exit->n=((pri->nToks>1)?1:0);
 }
}

ProcessObservation() function which is called by HVite is

substituted with modified version ProcessObservationWGT()

void ProcessObservationWGT(VRecInfo *vri,Observation *obs,Observation *
wgt_obs,int id, AdaptXForm *xform)
{
 NetInst *inst,*next;
 int j;
 float thresh;

/* kostis_weight = obs; /*Spiros*/

 pri=vri->pri;
 inXForm = xform; /* sepcifies the transform to use for this observation */
 if (pri==NULL)
 HError(8570,"ProcessObservationWGT: Visible recognition info not
initialised");
 if (pri->net==NULL)
 HError(8570,"ProcessObservationWGT: Recognition not started");

 pri->psi->sBuf[1].n=((pri->nToks>1)?1:0); /* Needed every observation
*/
 pri->frame++;

105

 pri->obs=obs;
 if (id<0) pri->id=(pri->prid<<20)+pri->frame;
 else pri->id=id;

 if (obs->swidth[0]!=pri->psi->hset->swidth[0])
 HError(8571,"ProcessObservationWGT: incompatible number of streams
(%d vs %d)",
 obs->swidth[0],pri->psi->hset->swidth[0]);
 if (pri->psi->mixShared)
 for (j=1;j<=obs->swidth[0];j++)
 if (VectorSize(obs->fv[j])!=pri->psi->hset->swidth[j])
 HError(8571,"ProcessObservatioWGT: incompatible stream widths
for %d (%d vs %d)",
 j,VectorSize(obs->fv[j]),pri->psi->hset->swidth[j]);

 /* Max model pruning is done initially in a separate pass */

 if (vri->maxBeam>0 && pri->nact>vri->maxBeam) {
 if (pri->nact>pri->qsn) {
 if (pri->qsn>0)
 Dispose(&vri->heap,pri->qsa);
 pri->qsn=(pri->nact*3)/2;
 pri->qsa=(LogFloat*) New(&vri->heap,pri->qsn*sizeof(LogFloat));
 }
 for (inst=pri->head.link,j=0;inst!=NULL;inst=inst->link,j++)
 pri->qsa[j]=inst->max;
 if (j>=vri->maxBeam) {
 qcksrtM(pri->qsa,0,j-1,vri->maxBeam);
 thresh=pri->qsa[vri->maxBeam];
 if (thresh>LSMALL)
 for (inst=pri->head.link;inst->link!=NULL;inst=next) {
 next=inst->link;
 if (inst->max<thresh)
 DetachInst(inst->node);
 }
 }
 }
 if (pri->psi->hset->hsKind==TIEDHS)
 PrecomputeTMix(pri->psi->hset,obs,vri->tmBeam,0);
 /* PrecomputeTMixWGT(pri->psi->hset,obs,wgt_obs,vri->tmBeam,0); /*
Spiros*/
 /* Pass 1 must calculate top of all beams - inc word end !! */
 pri->genMaxTok=pri->wordMaxTok=null_token;
 pri->genMaxNode=pri->wordMaxNode=NULL;
 for (inst=pri->head.link,j=0;inst!=NULL;inst=inst->link,j++)
 if (inst->node)
/* StepInst1(inst->node);*/
 StepInst1WGT(inst->node,wgt_obs); /*Spiros*/

 /* Not changing beam width for max model pruning */

 pri->wordThresh=pri->wordMaxTok.like-vri->wordBeam;
 if (pri->wordThresh<LSMALL) pri->wordThresh=LSMALL;

106

 pri->genThresh=pri->genMaxTok.like-vri->genBeam;
 if (pri->genThresh<LSMALL) pri->genThresh=LSMALL;
 if (pri->nToks>1) {
 pri->nThresh=pri->genMaxTok.like-vri->nBeam;
 if (pri->nThresh<LSMALL/2) pri->nThresh=LSMALL/2;
 }

 /* Pass 2 Performs external token propagation and pruning */
 for (inst=pri->head.link,j=0;inst!=NULL && inst-
>node!=NULL;inst=next,j++)
 if (inst->max<pri->genThresh) {
 next=inst->link;
 DetachInst(inst->node);
 }
 else {
 pri->nxtInst=inst;
 StepInst2(inst->node);
 next=pri->nxtInst->link;
 }

 if ((pri->npth-pri->cpth) > vri->pCollThresh ||
 (pri->nalign-pri->calign) > vri->aCollThresh)
 CollectPaths();

 pri->tact+=pri->nact;

 vri->frame=pri->frame;
 vri->nact=pri->nact;
 vri->genMaxNode=pri->genMaxNode;
 vri->wordMaxNode=pri->wordMaxNode;
 vri->genMaxTok=pri->genMaxTok;
 vri->wordMaxTok=pri->wordMaxTok;
}

Finally function StepInst1() was substituted with modified version

StepInst1WGT()

static void StepInst1WGT(NetNode *node, Observation * wgt_obs) /* First
pass of token propagation (Internal) */
{
 if (node_hmm(node))
 StepHMM1WGT(node,wgt_obs); /* Advance tokens within HMM
instance t => t-1 */
 /* Entry tokens valid for t-1, do states 2..N */
 else
 StepWord1(node);
 node->inst->pxd=FALSE;
}

107

B.2 Log-Likelihood in every time frame support
As described in 3.4, we had to make some tweaking in the HTK in

order to report the log-likelihoods P os ,t∣c in every time frame.

We inserted some code in HRec.c and the output had the following

fields:

Time frame HMM Name State Likelihood

The coloured fields denote the class. Then we ranked the output data

for each time frame according to likelihood values and took the N-best

for the computation of the reliability indicators.

HRec.c source code modifications

Only HRec.c file was needed to be modified. Some additional source

code was included to support the required functionality. Inside

function StepHMM1() and from line 655 to 659 we have the

following code

if (res->tok.like>pri->genThresh) { /* State pruning */
 outp=cPOutP(pri->psi,pri->obs,hmm->svec[j].info,pri->id);
 hmm_name=HMMPhysName(pri->psi->hset,hmm);
 res->tok.like+=outp;
 printf("%f %d %d %s\n",outp,j-1,pri->frame,hmm_name);
/*Spiros: 1:Probab 2:State 3:Frame 4:Model */

This allows HTK tools to output the required fields, as shown above,

to the standard output and then used appropriately by our

implementation.

108

Bibliography

[1] G. Potamianos, C. Neti, G. Gravier, A. Garg and A.W. Senior

“Recent Advances in the Automatic Recognition of Audiovisual

Speech”, in Proceedings of the IEEE Vol. 91 No. 9 September

2003

[2] Z. Malafouris, “Automatic speech transcriptions of Greek

broadcast news “, Diploma Thesis, Technical University of Crete,

June 2007

[3] A. Rogozan, “Discriminative Learning of Visual Data for

Audiovisual Speech Recognition”, International Journal on

Artificial Intelligenece Tools Vol. 8 No. 1 pages 43-52, March

1999

[4] E. Patterson, S. Gurbuz, Z. Tufekci, J. Gowdy, “Moving-Talker,

Speaker-Independent Feature Study, and Baseline Results Using

the CUAVE Multimodal Speech Corpus”, EURASIP Journal on

Applied Signal Processing 2002:11, 1189-1201.

[5] HTK - Hidden Markov Model Toolkit - Speech Recognition

toolkit. (http://htk.eng.cam.ac.uk/)

[6] C. Cibelushi, F. Deravi, J. Mason, “A Review of Speech-Based

Bimodal Recognition”, IEEE Transactions on Multmedia, Vol. 4,

No. 1, March 2002

[7] H. Bourlard, S. Dupont, “A NEW ASR APPROCH BASED ON

INDEPENDENT PROCESSING AND RECOMBINATION OF

PARTIAL FREQUENCY BANDS”, Philadelphia, USA, October

1996, ICSLP, Vol. 1

109

[8] G. Gravier, G. Potamianos, C. Neti, “Asynchrony modeling for

audio-visual speech recognition”, Proc. Humal Language

Technology Conference, San Diego, California, March 24-27,

2002

[9] M. Heckmann, F. Berthommier, K. Kroschel, “Noise Adaptive

Stream Weighting in Audio-Visual Speech Recognition”,

EUROASIP, Journal of Applied Signal Processing, Vol. 1, pp.

1260-1273, November 2002

[10] A. Garg, G. Potamianos, C. Neti, and T.S. Huang, “Frame-

dependent multi-stream reliability indicators for audio-visual

speech recognition”, Proc. Int. Conf. Acoust. Speech Signal

Process., vol. I, pp. 24-27, Hong Kong, Apr. 2003.

[11] A. Potamianos, E. Sanchez-Soto, K. Daoudi, “Stream Weight

Computation for Multi-Stream Classifiers”, Proc. Of Intl. Conf,

Acoustic, Speech and Signal Proc., Toulouse, France, May 2006

[12] E. Sanchez-Soto, A. Potamianos, K. Daoudi, “Unsupervised

Stream Weight Estimation using Anti-Models”, Intl. Conf,

Acoustic, Speech and Signal Proc., Honolulu, Hawaii, USA, April

15-20, 2007

[13] K. Dermatas “Soft feature decoding for speech recognition over

wireless channels”, Diploma Thesis, Chania, Technical University

of Crete, 2005

110

