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ABSTRACT

Different novel methods are tested in the ASR domain to upgrade the 

speech into a useful UI under all conditions. For robust ASR there is 

still way ahead until the speech recognition accuracy reaches adequate 

levels,  for  speech  to  be  practically  used  in  real  world  conditions. 

Audio-Visual  ASR  is  based  on  the  concept  of  bimodal  speech 

production and perception from humans. We use optical and acoustic 

information  to  recognize  the  spoken  word.  The  theory  of  multiple 

information stream decision  fusion is  used for the combination of 

audio  and  video  streams.  So  the  acoustic  information  decision  is 

complemented  with  the  visual  information  and  a  final  recognition 

decision is made.

In  this  project  we  researched  different  AV-ASR  techniques  and 

especially a weighted fusion method that is based on computation of 

instantaneous  stream  weights.  The  reliabilities  of  the  streams  are 

computed  from  the  single  stream  classification/recognition  results. 

Then instantaneous weights are computed for the fusion of the streams 

in  the  time  frame  level.  The  results  of  the  different  AV-ASR 

techniques  are  compared.  For  this  purpose  we set  up  an  AV-ASR 

recognition  system  simulating  different  environmental  noise 

conditions.  Some  improvement  in  recognition  results  is  confirmed 

when using AV recognition compared to the Audio-only case and also 

when using time-variant stream weights in contrast to static weights in 

AV fusion.
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Introduction

One  of  the  main  features  of  future  human-computer  interaction 

interfaces (HCI) is speech [1]. This will make the interaction more 

natural  to  the  human  user.  In  order  to  achieve  this,  research  in 

Automatic Speech Recognition (ASR) is being made since the '50s 

[2]. In spite of the progress made in specific applications like dictation 

and medium vocabulary transaction processing tasks under controlled 

environments, when it comes to real world applications in unrestricted 

listening  environments  the  performance  deteriorates   below  the 

threshold of usefulness [3]. A major problem of ASR is robustness 

under channel and environmental noise. Many techniques have been 

used  to  improve  the  recognition  under  these  noisy  conditions, 

including  mainly  enhancement  of  the  audio  signal,  applying  noise 

resistant parameterization, and identifying speech in those sub-bands 

of the spectrum that the speech signal is dominant. In recent years, 

nontraditional approaches that use sources of information orthogonal 

to  the  audio  signal  are  tested.  One  approach  that  has  become  a 

mainstream research area is  supplementing the audio with the visual 

signal. The latter is not affected by the audio noise and can improve 

the final result of the recognition. [1],[3]

Audio-Visual ASR (AV-ASR) is based on the concept that human 

speech perception is benefited by visual stimuli. When people listen to 

a speaker they usually, consciously or not, see his facial expressions 

and  do  lipreading,  especially  under  noisy  conditions,  to  better 

understand what the speaker says. The main method used in AV-ASR, 
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for the analysis of visual information, is exploiting the mouth region 

of the speaker  by analyzing  2-D images of  that  region and do the 

visual feature extraction. The audio and the visual information streams 

must be fused at some point of the recognition process in order to get 

some combined results. They can be fused either at the feature level or 

at  the  decision  level.  If  they  are  fused  at  the  decision  level  an 

information stream weighting scheme can be applied that can model 

the varying information stream reliability at different points in time. 

To compute the stream weights for the weighting scheme different 

statistical methods can be used. The weights can be precomputed and 

be fixed during the whole recognition process or can be dynamically 

computed and updated at the utterance, word, phoneme or time frame 

level. Also a possible asynchrony between the streams can be modeled 

using appropriate modeling when the fusion is at the decision level. 

[1]

The AV-ASR research community has developed many different 

data sets of Audio-Visual speech in many languages. But the need for 

a  common database  of  Audio-Visual  speech  data  became apparent 

when  the  approaches  of  the  many  research  groups  needed  to  be 

compared. The results of the tests should be extracted from similar 

data sets in order to be comparable. This need led to the development 

of  the  Clemson  University  Audio-Visual  Experiments  (CUAVE) 

database which is is a speaker-independent corpus of both connected

and  continuous  digit  strings  of  high  quality  video  and  audio  of  a 

representative group of speakers. [4]

In  this  Diploma  Thesis  Project  we  worked  with  the  CUAVE 

database to get comparable results. The main recognition system was 

developed  with  the  help  of  HTK  [5],  a  tool  to  create  recognition 

systems  based  on  Hidden  Markov  Models  (HMM).  Some 

modifications  were made to the original  HTK code, to support  the 

instant  temporal  change  of  the  stream  weights  in  multi-stream 
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recognition and also to output the instantaneous probability results in 

every time frame. The signal processing tasks, such as the separation 

of  the  Audio  and  Video  signals  from  the  original  data,  the  pre-

processing, the addition of noise  to the audio signal and the analysis 

of the recognition results was done with the help of Matlab. Different 

AV-ASR methods were tested and compared to the standard Audio 

ASR  to  see  if  there  was  some  improvement.  The  main  method 

researched  was  the  AV-ASR  with  time-varying  stream  weights 

computed from one or the combination of stream reliability indicators.

The organization of this thesis follows the next plan. It contains 6 

chapters and 2 appendixes.

In Chapter 1 a general introduction in Robust Speech Recognition 

is  made,  identifying  the  main  problems  of  ASR  under  noisy 

conditions  and  proposing  two  solutions  based  on  multi-stream 

information analysis. One solutions is the AV-ASR concept which is 

researched in this Project.

In  Chapter 2 different information fusion methods are described. 

Based  on  the  re-evaluation  of  the  stream weights  the  methods  are 

separated  on  static  or  dynamic  methods.  Also  the  asynchronous 

methods are described.

In Chapter 3 different methods are introduced for the evaluation of 

the  stream  weights.  Two  methods  based  on  stream  reliability 

indicators and the mapping to weights are described. Also a method of 

direct compuation based on K-means clustering is introduced.

In Chapter 4 the detailed description of the recognition system that 

we have set up is given. All the components and the processes used 

are described.

In Chapter 5 the results of the tests are presented for the different 

methods used. They are compared to each other and some preliminary 

conclusions are drawn.
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In Chapter 6 the final conclusions of our research work are made. 

Also some planning for future work on this subject is presented.

In  Appendix A the graphs of the stream weight for 4 speakers and 

all utterances of the digits are shown for comparison.

Finally in  Appendix B  the changes we made to the original HTK 

code are presented.
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Robust Speech Recognition       CHAPTER 1

1.1 Speech Recognition under adverse conditions

Many improvements have been made in recent years, leading the 

way  to  better  accuracy  of  results  in  speech  recognition  tasks.  At 

present the results are almost perfectly accurate in specific tasks that 

use  limited  vocabulary  of  spoken  words  and  at  controlled 

environments  where  noise  does  not  degrade  the  acoustic  signal  of 

speech. The real challenge now for ASR researchers is to make speech 

a competitive user interface comparable to that of keyboard,  mouse 

and display under real world environments. These environments are 

often challenging for the speech recognition process. For example in 

an office there is noise caused by other people talking, by machines 

such as faxes and printers and phones ringing. To make things worse 

the speaker does not have unlimited time to speak slowly and clearly 

and cannot keep his temper if he has to repeat the same commands 

twice or more. The previous description of the office environment is a 

typical real world scenario where ASR still fails to achieve adequate 

accuracy.

Novel  methods  are  tested  to  increase  the  accuracy  of  the  final 

recognition result. One category exploits the combination of separate 

recognition results  on the same data but  at  different  either  spectral 

bands or modalities  (in case of AV data) to get a total  recognition 

result  that  surpasses the  original.  The first  method is  based on the 
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spectral separatability of the audio and noise signals. When noise is 

added  to  original  speech  signal,  the  audio  signal  is  degraded  as  a 

whole. But different types of noise exist according to their spectral 

characteristics. Not all parts of the original speech signal spectrum are 

degraded in case the noise is limited to a spectral region. Separating 

the original speech signal in multiple spectral regions, doing separate 

recognition in that parts and finally integrating these results to get the 

total result can yield some improvement on the whole [7]. The second 

method  is  exploiting  the  immunity  of  the  video  signal  to  acoustic 

noise.  When speech recognition is applicable to Audio-Visual  data, 

we  can  process  the  two  information  streams  (audio  stream,  video 

stream)  as  separate  and  do  the  recognition  by  combining  the 

information from both streams. This gives a standard advantage to the 

system in case of an audio noise scenario as compared to the use of 

only the audio signal information. The two methods are described in 

detail in the next two paragraphs.

1.2 Speech Recognition Using Multiple Information 

Streams
In general the speech recognition process uses the audio signal to 

extract the features and do the training and testing. The audio signal 

can be considered as an information stream that it is used to extract 

the appropriate information of the spoken word. In figure 1 we can see 

the typical recognition process flow. We assume that the models are 
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already trained. This system uses one information stream, the audio 

signal taken at the whole spectrum.

In  [7],  a  new  recognition  system  is  proposed  using  multiple 

information  streams from the  audio  signal  by  separating  the  audio 

signal spectrum in sub-bands and using each sub-band as a separate 

information stream. There are some reasons for doing this analysis. 

The  first  is  some  experimental  results  suggesting  that  maybe  the 

human decoding of the acoustic  information of speech is  based on 

decisions  made  within  narrow  frequency  sub-bands  of  the  audio 

signal. The decisions are taken independently from each other and are 

combined at some level in time to make the global decision in a way 

that the global error rate is equal to the product of the error rates in the 

sub-bands.  The  other  reasons  are  more  practical  and  can  be 

summarized in the following:

● The  noise  may  have  degraded  the  original  speech  audio 

signal  only  in  some  specific  sub-bands.  So  making  the 

decisions on sub-bands and then combining the independent 

decisions  can  improve  the  final  result,  as  long as  there  are 

some sub-bands that have enough information to support the 

right decision.

● Some sub-bands may be better for recognizing some speech 

classes

● There is  asynchrony in the transitions between stationary 

segments  of  speech  at  different  frequency  bands,  and  this 

method  can  help  relax  the  synchrony  constraint  in  typical 

HMM systems.

● Different recognition strategies can be applied in different 

sub-bands.

The process is described graphically in figure 2. First the number 

of sub-bands and their position in spectrum must be chosen. Then a 

ASR system is applied in each sub-band taking each separated signal 
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as  an  independent  information  stream.  A  synchronization  of  the 

streams in the time frame level is assumed. This makes possible the 

use  of  state-synchronous  multi-stream HMMs.  These  HMMs  have 

different  emission  probability  parameters  for  each  stream  and 

combined  transitions  probabilities  between  the  common  states.  In 

figure  3  the  differences  of  the  simple  1-stream HMM with  the  2-

stream HMM are explained. The 2-stream logic can be extended to n-

stream HMMs by simply adding emission probability vectors for each 

new stream in every state. Then the probabilities  are combined in a 

final  decision  step  to  take  the  final  score  for  each  class.  The 

recombination step and the different methods that can be applied are 

described in Chapter 2.
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1.3 Audio-Visual Speech Recognition
The Audio-Visual ASR approach can be considered as a multiple 

information stream recognition process consisting of two streams, the 

Audio and the Visual. The idea is based on the concept of bimodal 

nature of human speech production and perception [1] [3] [6]. The 

two  modalities  are  the  acoustic  and  the  visual  which  both  carry 

linguistic and para-linguistic information.

During the production of speech,  several visual clues are visible 

that  complement  the acoustic  signal.  Speech segmental  information 

are included in the visual modality. Also information about the place 

of  articulation  are  present,  because  the  tongue,  teeth  and  lips  are 

visible. During the perception of speech, bimodal integration has been 

presented by superimposing the sound /ga/ on a video of a /ba/ then 

most people perceive the sound as a /da/. Also speechreading, reading 

the lips of a speaker to better understand the spoken word, is usually 

used by a person with impaired hearing or generally when listening 

conditions are harsh.

15
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The  previous  facts  makes  the  research  of  a  bimodal  speech 

recognition system quite interesting especially under acoustic noise, as 

the visual modality is unaffected.

Many variations of an AV-ASR system can be identified. The main 

components are shown in figure 4, which is a variation of the multi-

stream ASR system shown previously but with two streams – Audio 

and  Video.  This  setup  uses  separate  feature  extraction  of  the  two 

streams  and  recognition  using  2-stream  AV  HMM  models.  The 

training  of  the  AV  Models  is  depicted  in  paragraph  1.3.2.  Then 

combines the results of the two stream recognition in order to take a 

final decision; different methods can be used for the fusion described 

in Chapter 2. Another option is to fuse the modalities exactly after the 

feature extraction task by concatenating the feature vectors into one 

AV vector and run the recognition process as if  it  was one stream 

ASR. This approach is not tested in this project.
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1.3.1 Feature extraction

The feature extraction process is done for both streams. 

For the audio stream:

Initially we have the raw audio signal with the speech. We have to 

convert  it  to  feature  vector  sequences.  Mel  Frequency  Cepstral 

Coefficients  (MFCC)  are  usually  used  as  features  because  of  their 

desirable characteristics. They are computed from the log filterbank 

amplitudes  -  that  are  taken  from  filterbank  analysis  -  using  the 

following formula: 

c i= 2
N ∑

j=1

N

m j cos πi
N
 j−0.5 (1)

with N the number of filterbank channels. Also the first and second 

time derivatives of the original MFCCs can be used as features. In our 

setup we used 13 MFCC features (12 static + energy) plus their first 

and second derivatives, totaling 39 audio features in each time frame. 

The time frame was set to last 10msec so we have 100 feature vectors 

per second. The extraction was made using HTK tools [5].

For the visual stream:

The visual signal consists of speaker faces. The visual information 

of speech have to be identified and extracted. One technique is to use 

the  mouth  region  of  the  speaker  just  as  it  is  used  during 

speechreading. When this region is identified as ROI, a number of 2-D 

DCT features are computed and saved.

The main problem of this analysis, which we used in our setup, is 

to keep track of the mouth region in sequential images. Initially the 

ROI must be explicitly set in the first image of the video sequence. 

We used a 110x60 pixels sized region as the ROI. Then to locate the 

ROI in the next image, we set a +20 pixels region in all 4 directions as 

shown in Figure 5  and in this we searched for a 110x60 pixels region 
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that correlates best with the ROI of the previous image. Normalized 2-

D  cross-correlation  is  used  from  the  Matlab  Image  Processing 

Toolbox.

Next we extract the visual features from the ROI. We follow the 

steps:

1. Convert the image from RGB to B&W

2. Decimate the image to 16x16 matrix

3. Compute the 2-D DCT of the ROI

4. Keep the 6x6 DCT coefficients excluding the energy

After these steps we have 35 visual features for every video frame. 

Finally we up-sample the visual features which are extracted at  30 

frames per second to 100 frames per second to match with the audio 

feature vectors frequency. The above process is illustrated in Figure 6.

1.3.2 HMM Training

The training process of the HMM parameters is done before any 

attempt to run recognition tests. One HMM must be created for every 

speech  class  unit  that  will  be  recognized,  be  it  either  phoneme or 

word.  Some training data must  be assigned from the  data set  with 

known labels,  run the  training  algorithms with  this  data  iteratively 

until some desired convergence is achieved.

18
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The training of the simple  1-stream HMM is done using the Baum-

Welch re-estimation formula.  The parameters that need training are 

the transition probability matrix aij between the model states and the 

emission probability vector bj for every state.

In  the  case  of  the  2-stream  Audio-Visual  HMM  model  the 

parameters are again the  transition probability matrix aij between the 

model states but now there are two emission probability vectors, one 

for every stream,  baj and bvj. There are two approaches in the training 

of the 2-stream HMM. In separate training of the parameters for every 

stream, the parameters are estimated separately and then the transition 

matrix is either set to the audio one, or to the product of the transition 

probabilities  of  the  two  HMMs.  The  other  method  is  to  jointly 

estimate the parameters in order to enforce state synchrony in training 

[1]. We used the second method in our setup, which is the method 

used by HTK [5] when training multi-stream HMMs.

Two parameters  that  need  also  to  be  set  are  the  stream weight 

parameters. These define the weighting that would be applied to the 

stream intermediate results in order to get the final output score. These 

parameters  must  be  set  during  the  training  process.  The  state-

dependent AV emission depends on the fusion method used and is 
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better described in chapter 2. But for the training process we set these 

stream weighting parameters to global values dependent only on the 

stream type, Audio or Visual.

1.4 The default information fusion method of HTK

HTK [5] is a toolkit for Hidden Markov Models. It is basically used 

for speech recognition using HMM. As we stated in the introduction, 

it is used as the main tool for the setup of our recognition system.

HTK can handle simple 1-stream HMMs as well as multi-stream 

HMMs with synchrony in the state level as shown in figure 3. The 

transition probability matrix in these multi-stream HMMs is common 

for  all  streams,  but  the  state-dependent  emission  probabilities  are 

estimated separately.  This  makes the need for a  final fusion of the 

independent  emission probabilities in order to get a final result. For 

each  stream  the  output  emission  probability  is  given  by  the  next 

formula:

b jsost =∑
m=1

M s

c jsm N ost ; μ jsm ,Σ jsm (2)

where ost is the stream feature observation vector in time frame t, Mj is 

the number of gaussian mixture components in stream  s,  cjsm is the 

weight of the m'th component and N(·;μ,Σ) is a multivariate Gaussian 

with mean vector μ and covariance matrix Σ, that is

N o ; μ , Σ = 1
2πn∣Σ∣

e
−1

2 ο−μ ' Σ−1ο−μ
(3)

where  n  is  the dimensionality of  o.  The combination of the stream 

emission probabilities is done with the product rule. The formula for 

the final emission probability used by HTK is: 
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b jo t=∏
s=1

S

[b jsost ]
γ s (4)

where S is the number of streams used in multi-stream HMM and γs is 

the stream weight. In HTK the stream weight is set during the creation 

of the HMM and by default remains constant during the training and 

testing.  We  kept  this  default  behavior  during  the  training  of  the 

HMMs. In chapter 2 different information stream fusion methods are 

explained  and  the  modifications  we  made  in  HTK  to  support  the 

methods we used.
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CHAPTER 2

Multi-stream information fusion methods  

Information  fusion  of  different  sources  of  data  or  streams  of 

information  can  be  applied  at  various  levels  during  pattern 

recognition:  data  level,  feature  level  or  decision level.  Also hybrid 

methods are sometimes used. [6]

At the data and feature level, we can say the fusion is applied low-

level.  Data  level  fusion  is  not  applied  in  AV-ASR.  Feature  level 

fusion is usually implemented by concatenating the feature vectors of 

different streams. In the case of AV-ASR a new AV feature vector is 

created with dimension dav = da + dv.  This may create a very large 

feature vector,  so various methods to reduce the dimensionality are 

often used. This low-level fusion method is not tested in our project. 

Although some concatenation of features happens in some point of the 

process,  this  has  to  do rather  with the form of  input  vectors  HTK 

accepts when running on multi-stream HMMs.

The methods explained in the next paragraphs of this chapter have 

to do with decision level fusion. In this level of fusion the reliability of 

each  stream  weight,  thus  of  each  modality  in  AV-ASR,  can  be 

modeled.  This  option  is  important  because  of  the  varying  speech 

information content in audio and visual streams. The most commonly 

used  architecture  for  decision  fusion  is  the  classifier  combination 

using paraller  architecture,  adaptive combination weights, and class 

score level information.  The combination is done with the adaptive 

product  rule  of  the  likelihoods  or  by  linearly  combining  the  log-
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likelihoods of the two single-stream classifier decisions. [1]

To  implement  this  approach  we  used  multi-stream  HMMs  as 

already explained  in Chapter  1.  Using  the same speech classes  for 

both  the  separate  single  information  stream  classifiers  (phonemes-

visemes, we can combine their result at the time frame level. The final 

2-stream information emission score – is not a probability distribution 

after the fusion – is given by the general rule:

P oav ,t∣c =P oa , t∣c
λα ,c , t P ov ,t∣c 

λ v ,c, t (5)

for every HMM state c∈C . If log-likelihoods are used (5) becomes

log [P oav ,t∣c ]=λα, c ,t log [P oa ,t∣c]λv , c ,t log [P ov , t∣c] (6)

λα, c ,t and  λv , c ,t are  the  audio  and  video  stream  weights 

respectively  that  are  used  in  the  final  decision  fusion.  These  are 

nonnegative,  model  the  information  stream  reliability  and  are  a 

function  of  stream  s,  HMM state  c,  and  time frame  t.  In  the  next 

paragraphs  different  methods  of  fusion  are  explained  that  take 

different approaches in updating these weights, or relax the synchrony 

assumption of the multi-stream HMM already described.

2.1 Static methods
When static  methods  are  used  for  the  fusion  of  the  information 

stream at the decision level then the stream weights remain constant in 

time and in HMM states and depend only on stream s. This gives from 

(5) the static combination rule:

P oav ,t∣c =P oa, t∣c 
λα P ov , t∣c

λ v (7)

Now the stream weights are  λα and λv and depend only on the 

stream, either audio or video.

This method uses static weights during all the recognition process 

or at the utterance level. The estimation of the stream weights can be 
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done using  some training data and with grid  search  on the stream 

weights. Usually the weights are constrained to add up to one  ( λα +

λv = 1). So the grid search should be feasible. The fusion process is 

shown in figure 7.

The advantage of the static method is the easy and computational 

cheap implementation. The estimation of stream weights happen only 

once and are set to global static values. Also HTK [5] already supports 

this method, although no tools to estimate the stream weights have 

been implemented.

The drawback is that it cannot model the variability in time of the 

stream  information  reliability.  During  the  recognition,  the  stream 

reliabilities  change  either  inherently  or  because  of  external  factors 

such as noise added to the information sources. The dynamic methods 

explained next try to model this variability.

2.2 Dynamic methods
Dynamic methods of fusion can be set up to model the variability in 

time  of  the  information  stream  reliability  in  the  multi-stream 

recognition process. In every information stream there is some time 

frames that the information carried in that stream is more accurate and 

reliable  in  order  to  make a  decision on the  recognition class.  This 

reliability of the specific stream is not constant in time and can change 
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according to various factors. One factor is the inherent ability of the 

specific stream recognizer to better understand certain classes that are 

met  compared to the  other  stream recognizers.  The reason for  this 

could  be  for  example  that  some  classes  have  more  information  in 

certain frequency bands. Also another factor is the degradation of the 

original  signal  from  noise  in  certain  time  frames  and  in  certain 

frequency band regions. This affects the accuracy of some recognizer 

results and not the others. Or one modality and not the other in the 

case of AV-ASR. All  this variability can be modeled if  the stream 

fusion weights are set to be adaptive in time.

For the bimodal AV-ASR, if the dependence on the state of  HMM 

is removed the general formula (5) gives 

P oav ,t∣c =P oa, t∣c 
λα ,t P ov , t∣c

λv , t (8)

and the stream weights become  λα, t and  λv ,t .  Now the stream 

weights and consequently the final recognition score depend on the 

stream type (audio or video) and on the time frame t. The recognition 

process is shown in figure 8.

An important issue that emerges when using adaptive weights is 

how to estimate these weights. They must be based on some reliability 

indicator that shows the reliabilities of the different streams in time. 

This is the subject of chapter 3.

2.3 Asynchronous methods
When  using  multiple  stream  recognition  there  is  an  issue  of 

synchrony between the streams. In the previous methods we assumed 

time synchrony of the streams. This is not always the case especially 

in AV-ASR. Up to 100ms asynchrony between the streams has been 

reported  [1].  But  also  state  asynchrony  can  be  used  in  other 

recognition systems using different regions of the audio signal 
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spectrum  as  described  in  1.2,  because  there  is  asynchrony  in  the 

transitions  between  stationary  segments  of  speech  at  different 

frequency bands.

To  model  this  asynchrony  of  streams  we  can  use  composite 

HMMs. These are a class of multi-stream HMMs that are created as 

the product of single stream HMMs [8]. Using product HMMs we can 

postpone the fusion of the likelihoods of the single stream classifiers 

at a later time. This can be the phoneme or word boundary. Allowing 

state  asynchrony in the single stream HMM subcomponents  of the 

product HMM, makes possible the modeling of asynchrony appearing 

between the streams.

The product HMM consists of composite states that are created by 

combining  the  states  of  the  single  stream HMM. For  example  the 

states of a product HMM that consists of 2 single stream HMMs with 

3 states each has 9 states. Using mathematical formality to describe 

product HMM we can say in consists of composite states c∈C∣S ∣ , 

S={s1 , s2} in  the  case  of  2-stream  HMM,  the  cardinality  of  S 

equals  2  and  the  composite  states  are  defined  over  the  cartesian 

product S×S [1]. The combined emission output scores are

P oav , t∣c=∏
s∈S

P os , t∣c s
λc ,s , t

(9)

where c={cs , s∈S } . This makes clear that the product HMM uses 
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the  same  number  of  parameters  for  mixture  weight,  mean  and 

variance. But extra transitions are now needed between the composite 

states  P c1∣c0 ,c1 ,c0∈C∣S ∣ .  A  simplification  can  be  applied 

giving  the  same  number  of  transition  probabilities  as  the  state-

synchronous  multi-stream  HMM,  which  gives 

P c1∣c0=∏
s∈S

P cs1∣cs0 . The degree of asynchrony can be limited 

by excluding composite states from the product HMM. In figure 9a a 

2-stream state-synchronous HMM with 3 states in each single stream 

is  shown,  in  figure  9b  the  equivalent  product  HMM  with  full 

asynchrony (2 states) is shown and finally in figure 9c the asynchrony 

is limited to 1 state.

2.4 HTK modifications
In  1.4  the  default  multiple  stream information fusion method of 

HTK was explained. The formula to compute the final emission score 

of the multi-stream HMM was

b jo t=∏
s=1

S

[b js ost ]
γ s (10)

with  γ s the stream weight. For AV-ASR this corresponds to static 

information fusion method with the formula

P oav ,t∣c =P oa , t∣c 
λα P ov , t∣c

λ v (11)

and  weights  λα and  λv that  remain  fixed  during  all  the 

recognition process. Some changes in this default behavior of HTK 

were  necessary  to  support  the  dynamic  methods  explained  in  2.2. 

With our modifications the HTK formula for the information fusion 

was modified to

b jo t=∏
s=1

S

[b js ost ]
γ s , t (12)

with γ s , t the stream weight. The weights now can vary in time and 

this corresponds to the fusion formula
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P oav ,t∣c =P oa, t∣c 
λα ,t P ov , t∣c

λv , t (13)

of 2.2 with stream weights λα, t and λv ,t .

The HTK file format was used, the same that HTK uses for the 

input of the feature vectors. The stream weight vectors have the size 

of the number of streams and they count equal to the feature vector 
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number. The modifications were based on the weighting method used 

in  [13]  for  time  variable  gaussian  mixture  weighting.  The 

modifications of the HTK source code are presented in Appendix B.
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CHAPTER 3

Information stream weights computation

When the multiple stream information fusion methods with stream 

weighting were described, the problem of stream weights estimation 

emerged.  The  problem  is  to  find  some  methods  to  estimate  the 

reliability  of  each  stream in  the  final  recognition  decision.  This  is 

implemented by computing stream reliability indicators. There have 

been proposed different methods for this purpose. Two methods are 

described  that  are  based  on  the  single  stream classification  results 

[9][10].  After  the  reliability  indicators  have  been computed then  a 

mapping of this reliabilities to the information stream weights must be 

accomplished. Also a new method of computing stream weights using 

K-means clustering is explained [11] [12].

3.1 Stream Reliability Indicators
The  stream  reliability  indicators  are  values  that  represent  the 

reliabilities of the streams in multi-stream recognition. The estimation 

of  the  indicators  is  based  on  the  single-stream  classification  / 

recognition probabilities. If one class of speech unit (phoneme, word) 

has  very  high  probability  and  the  other  classes  have  very  low 

probabilities then this stream is quite reliable.  In contrast, when all 

classes have rather equal probabilities then this stream is not reliable 

for  the  final  recognition  decision.  Two different  approaches  to  the 

previous idea are described next.
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3.1.1 Entropy method

The  entropy  method  uses  the  entropy  of  the  a  posteriori 

probabilities  of  the  single-stream recognition  system to  compute  a 

reliability indicator [9]. These probabilities are

P ci , t∣os ,t (14)

for  class  c i , t given  the  feature  vector  os , t of  stream  s in  time 

frame  t. The average entropy over  N time frames and  K number of 

speech recognition classes is

H=− 1
N ∑t=1

N

∑
i=1

K

P c i , t∣os ,t log2 P c i , t∣os ,t (15)

This can be used as stream reliability indicator for the computation of 

the  stream  weights.  Experiments  in  [9]  have  shown  that  for  the 

computation of the entropy, only time frames for which the silence 

state is not among the  4 most probable must be taken into account.

3.1.2 Distance method

The distance method uses  the  difference of  the class-conditional 

observation likelihoods of the N-best most likely generative classes. 

The likelihoods are

P os ,t∣c (16)

and they are ranked for the N-best selection. The stream reliability 

indicator that uses the log-likelihoods for better calculation is

L s , t=
1

N −1∑n=2

N

log
P os , t∣c s , t ,1
P os ,t∣cs , t , n

(17)

for every stream s and time frame t.

In [10], it has been shown that this indicator monotonically changes 

with the degradation of the audio stream signal with noise. Also in the 

same  work,  a  correlation  of  the  indicator  with  the  single-stream 

classification Word Error Rate (WER) has been shown to be -0.74 for 

the  audio  stream and -0.22  for  the  video stream (audio  and video 
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stream  reliability  indicators  respectively)  on  AV-ASR.  These 

correlation results from [10] are presented in Table 1.

Reliability 
Indicator

Correlation with 
audio-only WER

Correlation with 
video-only WER

La -0.74 0.02

Lv 0.10 -0.22

Table 1: Correlation of stream reliability indicator with audio and visual-only  
WER [10]

3.2 Reliability Indicator to Stream Weight Mapping
After  estimating  the  stream  reliability  indicators  we  want  to 

compute the actual stream weights to do the multi-stream information 

fusion.  A mapping  from the  reliability  indicators  to  stream weight 

values must be set.

In the case of the AV-ASR, we set up the stream weights to have 

some  properties. We want the weights to sum up to 1:

λa , t λv ,t=1 (18)

From (18) we have

λv ,t=1− λa ,t (19)

so we can set a mapping from the stream reliability indicators only to 

audio stream weight and then derive the visual stream weight from 

equation (19).

Usually a sigmoid function is chosen for the mapping. It has nice 

properties: it is bounded between zero and one, it is monotonic and 

smooth [10]. In formula (20) the sigmoid mapping is shown:

λa , t=
1

1exp−∑
i=1

N

w i d i ,t
(20)

where wi are the mapping parameters corresponding to each reliability 

indicator, di,t is the reliability indicator i  at time frame t   and N is the 

number of reliability indicators used. The mapping parameters must 
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be  estimated  from training  data  to  maximize  the  final  recognition 

results. There have been proposed different methods. We used a grid 

search method to find the value of w that minimized the total WER in 

the multi-stream recognition process. The implementation is described 

in chapter 4.

3.3 K-means Clustering Method
A new approach to compute the stream weights has been proposed 

in [11] and [12]. This method does not use a reliability indicator and a 

mapping function, but computes the weights directly. The idea is that 

the  stream weights  that  minimize  the  total  classification/estimation 

error  are  inversely proportional  to  the  single-stream pdf  estimation 

error. Also under certain conditions the optimal stream weights are 

inversely proportional to the single-stream classification error.

It has been shown in [11] for the two-stream classification case, 

when the classification error of the single-stream classifiers is equal 

p o1∣c2≈ p o2∣c1 then  the  stream  weights  that  minimize  the 

estimation error are

λ1

λ2
=

σ s2

2

σ s1

2 (21)

where σ s1

2 and σ s2

2 is the pdf estimation error variance of the first 

and  second  stream.  Also  when  the  single-stream  estimation  error 

variances are equal  σ s1
=σ s 2 then for a region of interest where the 

single-stream  classification  errors  are  comparable  according  to 

equation

−1.5
po1∣c2
po2∣c1

1.5 (22)

the  stream  weights  should  be  inversely  proportional  to  the  above 

single-stream classification errors
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λ1

λ2
≈

po2∣c1
po1∣c2

(23)

If  we  want  to  extend  the  previous  results  to  the  multi-class 

recognition  case  then  we  can  consider  a  class  of  discriminant 

functions f i , jx  for each pair of classes wi and wj and also express 

the error as P error =1−P correct  .

In the case of AV-ASR the computation of the stream weights can 

be done using the formula

λa

λv
=

σ sv
2

σ sa
2

100−WACC mv , D
100−WACC ma , D  (24)

where WACC(mx ,D) is the percent word accuracy of the single-stream 

classification done using model mx for stream x. When this formula is 

applied  to  recognition  the  insertion  and  deletion  errors  must  be 

handled accordingly. Also this formula assumes that the single-stream 

classification process is supervised, thus the class labels are known. 

For the a real world unsupervised scenario a new approach must be 

proposed.

In [12] a K-means clustering approach for the computation of the 

stream weights is proposed. The classification is done using a class 

and an anti-class model (class-specific  background model) for each 

class.  This  reduces the multi-class problem to multiple  single-class 

ones.

Anti-models for one class  let's  say  ci are created during training 

from data belonging to all other classes except class  ci. The method 

does  unsupervised  k-means  classification  using  the  class  and  anti-

class. Then estimates the quantity  D=∣μ1− μ 2∣/σ by using inter- 

and intra-class distances to estimate the quantities in nominator and 

denominator. The inter-class distance is the average distance between 

the means of each class and the intra-class distance is an estimate of 

the average class variance. The stream weights for the case of two 

class classification are given by the next formula:
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s1

s2
=cf  d inter 1,2 ; 2/∑i

d intrai ; 2

d inter 1,2 ;1/∑i
d intrai ;1  (25)

where c is a constant accounting for the difference is estimation error 

of the two streams,  f( ) is a function relating  D to the Bayes error, 

d inter x , y ; z  is the inter-class distance between classes x and y for 

stream z and  d intra x ; y is the intra-class distance for class  x  and 

stream y.

If we consider the multi-class case formula (25) becomes

s1

s2
=cf [∑

k

d inter mk , amk ;2/∑i=mk ,amk 
d intra i ;2

d intermk , amk ;1/∑i=mk amk 
d intra i ;1

] (26)

where m k and amk are the centroids of the model and anti-model 

for  class  k computed  with  k-means  clustering  initialized  with  the 

model and anti-model means, and ∑
k

is over all classes. Note that 

the single stream estimation error variance is approximately constant 

for each stream under the recognition process.

3.4 HTK modifications
In our project we tested the distance method described in 3.1.2 to 

compute the reliability indicators of each stream. This method uses the 

class-conditional  observation  likelihoods  of  the  N-best  most  likely 

generative  classes.  The  class-conditional  observation  likelihood  is 

P os ,t∣c .  So  for  every  time  frame  we  had  to  find  these 

likelihoods.  HTK  unfortunately  does  not  report  these  likelihoods 

although it uses them for the recognition results. So we had to make 

some tweaking  in  the  HTK in  order  to  report  these  likelihoods  in 

every time frame. The classes we used are the speech class  model 

states. The modifications are reported in Appendix B. In chapter 4 a 

more detailed description of the recognition system is available.
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Recognition System       CHAPTER 4

After describing the main theoretical concepts of our project in the 

previous chapters, we will now describe in chapter 4 the recognition 

system  setup  we  used  for  the  experiments  done  in  multi-stream 

recognition. The streams we used are two, the audio and the visual 

and  our  system  is  characterized  AV-ASR.  Next  we  describe  the 

various components of our system. 

4.1 The data (CUAVE)
The  data  we  used  came  from  the  CUAVE  database  [4].  This 

database came to fill in the gap in a common Audiovisual data set for 

the AV-ASR research community.  Until  then every researcher who 

wanted to make experiments in the AV-ASR area had to create his 

own data set, this made the results not directly comparable to other's. 

CUAVE is an Audiovisual speaker-independent database of connected 

(or isolated) continuous digit strings of high quality audio and video 

of a representative group of speakers. Different realistic conditions are 

included except the standard static speaker, such as moving speaker 

and multiple speakers.

The data included are separated in different parts and tasks. In part 

1 there is only one speaker and in part 2 there is a pair of speakers. 

Also in different tasks the speaker is still, moving or in profile view. 

The speakers can be connected or continuous. In Table 2, there is a 

description of the CUAVE data in detail. For our experiments we used 
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Part Task Movement Number of digits Mode
(1) Individual 1 Still 50 x 36 speakers Connected

2 Moving 30 x 36 speakers Connected
3 Profile 20 x 36 speakers Connected
4 Still 30 x 36 speakers Continuous
5 Moving 30 x 36 speakers Continuous

(2) Pairs 6 Still (30 x 2) x 20 pairs Continuous

Table 2: CUAVE data set

only task 1 of the database, which consists of 36 speakers, each one 

uttering 5 times the digits from zero to nine connected while standing 

still. Some natural movement of the speakers was unavoidable. The 

speakers  were  chosen  to  be  as  representative  as  possible,  with  17 

females and 19 males, with different skin tones.

The video was recorded at  720 x 480 resolution with 29.97 fps 

(NTSC) in full colour. The sound was recorded in 16-bit stereo at 44 

Khz.  Also  16-bit  mono  .wav  files  at  16  Khz  with  checked 

synchronization are included which we used in our system.

During our tests we used the round robin method due to limited 

training and testing data. Each time the training set was 30 speakers 

and the testing set was 6 speakers. The separation of the data set is 

shown in Table 3.

4.2 Noise types
In our recognition tests we injected some different types of audio 

noise in the audio data, in order to degrade the original audio speech 

signal.  The  noise  data  were  acquired  from  the  Signal  Processing 

Information  Base  (SPIB)  repository  (http://spib.rice.edu/spib.html). 

The noise types we used were:

(a) Speech babble

(b) Factory floor noise 1
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Test #
Speaker

1 2 3 4 5 6

1 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

2 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

3 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

4 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

5 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

6 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

7 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

8 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

9 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

10 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

11 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

12 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

13 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

14 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

15 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

16 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

17 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

18 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

19 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

20 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

21 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

22 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

23 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

24 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

25 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

26 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

27 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

28 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

29 TRAIN TRAIN TRAIN TEST TRAIN TRAIN

30 TRAIN TRAIN TRAIN TRAIN TRAIN TEST

31 TRAIN TRAIN TRAIN TRAIN TEST TRAIN

32 TRAIN TEST TRAIN TRAIN TRAIN TRAIN

33 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

34 TEST TRAIN TRAIN TRAIN TRAIN TRAIN

35 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

36 TRAIN TRAIN TEST TRAIN TRAIN TRAIN

Table 3: Separation of the initial data set to training and testing for different independent  
experiments (round-robin)

38



(c) Jet cockpit noise 1

(d) Car interior noise

These represent  different  scenarios  of  environmental  noise  that  the 

AV-ASR could be used in. The noise files were sampled at 20 Khz so 

we had to downsample first at 16 Khz to match with the audio data 

files.

4.3 Features
The  feature  extraction  process  from  the  data  files  was  already 

described in 1.3.1 for both audio and visual streams. We used a vector 

of 39 features for the audio stream and a vector of 35 features for the 

video  stream.  We  also  concatenated  the  two  vectors  into  one  AV 

vector  only because  HTK uses  one vector  for  both streams during 

multi-stream  recognition  for  the  input  of  the  features.  In  fact  the 

vector had nothing to do with the concatenated vector used in some 

feature fusion techniques where one common recognizer is used for 

both streams.

4.4 Recognizer Setup
In fact we setup three different recognizers to compare the results 

of the AV-ASR approach with audio-only ASR and to have an idea of 

the video contribution to the process. So we setup an audio-only, a 

video-only  and  finally  a  combined  AV  recognizer.  All  recognizer 

setups are explained in the next paragraphs.

4.4.1 HMM Definition

We performed isolated digit  recognition,  which means that  each 

digit was set as a speech class. We created 10 HMMs corresponding 

to whole digits from zero to nine. Each model had 9 emitting states, 

and 1 input and 1 output state as required from HTK that are non-
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emitting.  We also  created  1 HMM for  the  silence  with  3 emitting 

states.  For  the  audio-only  recognizer  the  state  mean  and  variance 

parameters  were  39,  one  pair  for  each  feature.  For  the  video 

recognizer we used also the first and second derivatives of the DCT 

features so we had 105 mean and variance parameters in each state. 

For the AV recognizer we used the built-in multi-stream method of 

HTK with 2-streams. So the model was 2-stream HMM with 39 mean 

and variance pairs  for the audio stream and 35 pairs  for the video 

stream.  The  transition  parameter  matrix  was  common  for  both 

streams. In figure 10, parts an HMM file in HTK format are shown 

before the training for the three types of recognizers.

4.4.2 HMM Training

After defining the HMM for each speech class, we continued with 

the  training  of  the  parameters  of  the  models.  The  data  we  used 

(CUAVE)  were  already  labeled  and  HTK  format  label  files  were 

included.  So  the  training  process  was  done  automatically  with  the 

following procedure:
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● First  we  used  HInit  from  HTK  [5] to  provide  initial 

estimates of the parameters of HMM using the training data. 

HInit repeatedly uses Viterbi alignment to segment the training 

observations and then recomputes the parameters by pooling 

the vectors in each segment.

● Then  we used  HREST to  perform basic  Baum-Welch  re-

estimation of the parameters of  HMM using again the training 

data set.

At this point we had the trained models for each of the 10 digits 

plus the silence. The process of training was the same for all three 

types  of  recognizers,  except  different  training  observation  vectors 

were used according to modality. The training of the AV models was 

done with jointly estimated transition probabilities for both streams 

and  with  stream  weights  set  to  λα=0.8and λv=0.2 during  the 

training.

4.4.3 Dictionary and Word Net

The dictionary we used was simply the 10 digits (zero to nine) plus 

the silence token.

The word network we created is shown in figure 11. It allows 
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optional silence to appear before and after each digit.

4.5 Weight Computation
For the Audiovisual recognizer, the fusion of the audio and visual 

stream  information  is  a  main  task.  As  described  in  the  previous 

chapters, we used decision level fusion with stream weighting. This 

involves the problem of computing the stream weights. We used both 

static and dynamic methods of weighting as described in Chapter 2.

For static methods we setup a standard weighting system with fixed 

weights during recognition at  λα=0.8and λv=0.2 . We also made 

another  setup  and  done  grid  search  to  find  the  best  static  stream 

weights for every situation in our experiments. This was done in order 

to  compare  the  best  results  achieved  with the  static  method to the 

dynamic  methods.  The  grid  search  was  done  between  the  values 

0.5 λα1 with step 0.04. Although this method to find the best 

static  weights  is  not  practical,  because  it  requires  constant 

computation of stream weights from training data (with known labels) 

every time the environmental situation changes, we used it to make a 

comparison of the methods.

For  dynamic  methods  we  first  had  to  compute  the  reliability 

indicators of the streams. We computed two reliability indicators, one 

for each stream, as described in 3.1.2 using Distance method. For the 

computation  of  the  audio  stream  reliability  indicator  we  used  the 

equation (17) and 4-best method so we had:

La , t=
1
3∑n=2

3

log
P oa , t∣ca ,t ,1
P oa , t∣ca ,t , n

(27)

and for the visual stream reliability indicator we used 2-best method 

so we had:

Lv ,t=log
P oa , t∣ca ,t ,1
P oa , t∣ca ,t ,2

(28)

After  computing  the  reliability  indicators,  we  made  2  different 
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mappings to the stream weights as described in 3.2. The first mapping 

uses the audio stream reliability indicator and maps it  to the audio 

stream weight. So we have:

λa , t=
1

1exp−wa La , t
(29)

and the visual stream weight is λv ,t=1− λa ,t .

The  second  mapping  we  tested,  uses  both  the  audio  and  visual 

stream reliability indicators and maps them to the audio weight using 

the equation:

λa , t=
1

1exp−wa La , t−w v Lv ,t 
(30)

and  the visual stream weight is again λv ,t=1− λa ,t .

For the first mapping we have to estimate the mapping parameter 

value wa that best computes the audio stream weight from the audio 
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Figure 12: Grid search results of the mapping parameter value for the general case



reliability indicator. We searched for the best mapping parameter in 

two scenarios, in the first  we made a general mapping that minimizes 

the WER under all  noise conditions, and in the second we made a 

mapping specifically for each environmental situation with the same 

goal of minimizing the WER but under that noise condition only.

The best parameter value was selected with grid search. To know 

the region in where to search for the best parameter, we first created a 

histogram of the audio reliability indicator.  The indicator is mostly 

between  the  values  0.5  and  3.  Near  value  0.5  the  stream is  quite 

unreliable, so a stream weight not near 1 is required. If we set wa = 4 

and for La , t=0.5 equation (29) gives λa , t=0.88 , a value that is 

quite  close  to  1.  For  mapping  parameter  values  greater  than  4  the 

mapping function would give stream weight values even closer to 1 

for La , t=0.5 , something not desired. So the max limit of the grid 

search was set to 4. The region we searched was set to 0wa4

with step 0.2. 

In  the  first  scenario  where  we  wanted  to  establish  a  general 

mapping for all environmental noise conditions, we wanted a mapping 

parameter that minimizes the WER for all noise conditions. Now we 

can explain why we have chosen the 4-best method to compute the 

audio reliability indicator. As shown in table 4 we tested different N-

best methods with N from 2 to 5 for 4 different environmental noises, 

Babble speech at 3dB SNR, Factory floor noise at 3dB SNR, Car 

Babble @ 3db Factory @ 3db Car @ 0db Jet 0db
Method Value Acc % Value Acc % Value Acc % Value Acc %
2-best 2.3 49 1.2 45.33 0.6 90.33 0.5 22.33
3-best 2.7 49.33 0.9 46 0.3 89.67 0.3 22
4-best 0.7 49.33 0.7 45.67 0.4 89.67 0.3 22.67
5-best 2.7 49.33 0.7 45.33 0.5 89.67 0.3 22

Table 4: Different N-best method results for the computation of the audio reliability  
indicator
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interior noise at 0dB SNR and Jet cockpit noise at 0dB SNR and the 

results we got for the best  parameter reveal that the 4-best is ideal for 

the  creation  of  a  general  mapping  because  it  allows  a  relative 

convergence  of  the  mapping  parameter  between  different 

environmental noises.

The  results  of  the  grid  search  for  the  4  environmental  noise 

conditions described above are shown in figure 12. The best estimated 

parameter value was found to be wa = 0.6. Also in figure 13 are shown 

the  reliability  indicator  histogram extracted  from audio  signal  with 

factory floor noise at  10dB SNR plotted together with the mapping 

function with parameter wa = 0.6.

In the second scenario, we wanted to establish an adapted mapping 

for every environmental noise condition. So we wanted to find the best 

mapping parameter for each noise type. We have done separate grid 

search for all 4 noise types and for SNR values 10, 3 and 0 dB. The 
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Figure 13: Audio reliability histogram with audio stream weight mapping function 
graph
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Figure 14(a): Babble speech mapping parameter grid search results

Figure 14(b): Factory floor noise mapping parameter grid search results



47

Figure 14(c): Car interior noise mapping parameter grid search results

Figure 14(d): Jet cockpit noise mapping parameter grid search results



best values for the mapping parameter are shown in table 5. The grid 

search results are shown in figure 14.

Noise type Babble speech Factory floor noise Car interior noise Jet cockpit noise
wa parameter value 0.7 0.6 0.5 0.3

Table 5: Mapping  parameter value for noise adapted mapping

For  the  second mapping  we used  both  audio  and  visual  stream 

reliability indicators to compute the audio stream weight and then the 

video  stream  weight.  So  we  wanted  to  estimate  two  mapping 

parameters  wa   and  wv.  First we created the histogram of the visual 

reliability indicator as we did for audio above. Because of the positive 

correlation of the visual reliability indicator with the audio only WER 

and the linear combination of the indicators inside the exp function of 

the sigmoid, we now allow the mapping parameters to get negative 

values.  We  set  the  grid  search  region  to  be  −1wa3 and 

−0.5w v1.5 . We used variable step which was 0.1 near 0 and 

about 0.3 near the edges. The best mapping parameter pairs for each 

environmental  noise  type  are shown in table  6.  Multiple  best  pairs 

were extracted in some cases, representing the flexibility in choosing 

the  best  pair,  a  flexibility  thanks  to  the  linear  combination  of  the 

indicators. Detailed results are shown in figure 15.

Babble @ 3 dB Factory @ 3 dB Car @ 0 dB Jet @ 0 dB
wa 1.2 1.2 1.6 0.5 0.8 1 1.2 1
wv 0.5 0.3 0.1 0 -0.1 -0.1 -0.3 -0.3

Table 6: Mapping  parameter values when both indicators are used.

The final mapping parameter values pair that gave the most promising 

results for all environmental condition situations was wa = 1.2 and wv = 

-0.1. The negative value in wv is explained by the fact that the  greater 

reliability of the video stream would reduce the audio stream weight, 

thus increasing the visual stream weight from λv ,t=1− λa ,t .
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Figure 15(a): Grid search for audio and video mapping  parameters (Babble speech)

Figure 15(b): Grid search for audio and video mapping  parameters (Factory floor noise)
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Figure 15(c): Grid search for audio and video mapping  parameters (Car interior noise)

Figure 15(d): Grid search for audio and video mapping  parameters (Jet cockpit noise)



Finally after  the mapping function was set  and the audio stream 

weight was computed we tested a mean smoothing function on the 

stream weight. The results for Speech babble injected Audio signal at 

10dB SNR and different sizes of the filter are shown in table 7. The 3 

frames mean smoothing filter was chosen.

No smoothing 3 frames mean filter 5 frames mean filter
Accuracy % 48.67 49.33 48.33

Table 7: Mean smoothing  filter test results

From  the  audio  stream  weight  we  computed  the  visual  stream 

weight as shown previously.
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Tests Results       CHAPTER 5

The results  in this chapter  are  presented in a format  that  allows 

easy comparison between the different AV methods described above 

and the  Audio-only recognizer.  Also the  results  of  the Visual-only 

recognizer are included. So in every situation the results of the single-

stream recognizers are included.

5.1 Audio stream reliability mapping recognizer
Here we present the results for the audio stream reliability mapping 

recognizer.  The  setup  that  uses  a  general  mapping  for  all 

environmental conditions is presented as “General Mapping” and the 

setup that uses adapted mappings for each environmental noise type is 

presented as “Adapted Mapping”.  Also two static method results are 

included, the first uses fixed stream weights at λα=0.8and λv=0.2  

and the second pre-computes the best  static pair that  maximize the 

accuracy on the training set. The original audio signal is injected with 

the 4 types of noise described in 4.2 at different SNR level: 15dB, 

10dB,  3dB,  0dB,  -3dB.  The Visual-only  recognizer  results  are  not 

affected by audio noise and are fixed. The Audio-only and AV results 

are affected. Finally the percent reduction on WER between the static 

method with fixed weights λα=0.8and λv=0.2 and the two dynamic 

methods is presented for comparison given by the formula

relative WERR reduction =
WACC new−WACC

100−WACC
. (31)
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Speech Babble Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,02 80,9 49,08 35,83 27,17
Video-only 28,35
AV Global
(0.8-0.2)

90,3 81,58 48,83 35,66 27,06

AV-Global
Best Values

93,91 82,08 49,94 36,4 28,01

AV-Instant
General Mapping

93,18 82,25 49,44 36,33 27,45

AV-Instant 
Adapted Mapping

93,4 82,25 49,21 36,63 27,45

AV-Instant-GM
 rel. WERR red. 29,69% 3,64% 1,19% 1,04% 0,53%
AV-Instant-AM
 rel. WERR red. 31,96% 3,64% 0,74% 1,51% 0,53%

Table 8: Speech Babble accuracy results for Audio reliability mapping  method

Jet Cockpit Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 89,96 71,24 31,87 22,68 17,72
Video-only 28,35
AV Global
(0.8-0.2)

91,14 73,48 33,48 23,58 18,5

AV-Global
Best Values

91,52 74,65 35,1 25,09 19,72

AV-Instant
General Mapping

91,25 75,32 35,1 24,42 18,72

AV-Instant 
Adapted Mapping

90,74 72,69 33,98 25,15 19,11

AV-Instant-GM
 rel. WERR red. 1,24% 6,94% 2,44% 1,10% 0,27%
AV-Instant-AM
 rel. WERR red. -4,51% -2,98% 0,75% 2,05% 0,75%

Table 9: Jet Cockpit noise accuracy results for Audio reliability mapping  method
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Car Interior Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 98,6 98,1 93,64 88,99 83,27
Video-only 28,35
AV Global
(0.8-0.2)

98,27 97,56 93,31 89,35 83,2

AV-Global
Best Values

98,72 97,71 93,92 90,07 84,32

AV-Instant
General Mapping

98,66 97,78 93,81 89,91 84,21

AV-Instant 
Adapted Mapping

98,38 97,6 93,87 90,02 84,32

AV-Instant-GM
 rel. WERR red. 22,54% 9,02% 7,47% 5,26% 6,01%
AV-Instant-AM
 rel. WERR red. 6,36% 1,64% 8,37% 6,29% 6,67%

Table 10: Car Interior noise accuracy results for Audio reliability mapping method

Factory Floor Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,03 81,41 45,47 30,75 18,5
Video-only 28,35
AV Global
(0.8-0.2)

93,8 82,3 45,57 31,47 20,89

AV-Global
Best Values

94,25 83,03 46,92 32,76 22,29

AV-Instant
General Mapping

94,08 82,57 46,96 32,64 21,34

AV-Instant 
Adapted Mapping

94,08 82,57 46,96 32,64 21,34

AV-Instant-GM
 rel. WERR red. 4,52% 1,53% 2,55% 1,71% 0,57%
AV-Instant-AM
 rel. WERR red. 4,52% 1,53% 2,55% 1,71% 0,57%

Table 11: Factory floor noise accuracy results for Audio reliability mapping method
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The results are shown in tables 8 – 11 for different noise types.

By carefully examining the results, we can support the conclusion 

that the Audiovisual methods are almost always superior to the Audio-

only  method  despite  the  fact  that  the  Video-only  single-stream 

classifier  accuracy  is  relatively  low.  The  difference  of  the  AV 

recognizers from the Audio-only increases as the SNR decreases and 

the audio stream becomes less reliable. Also the instantaneous stream 

weight computation AV methods have in general better results from 

the fixed AV method as shown from the two last lines of the tables, 

except in the case of the Adapted Mapping in the Jet Cockpit case that 

is probably caused by a loose adaptation scheme. The superiority of 

the  time-variable  weighting  methods  shows  that  the  recognition  is 

better adapted to the variability of the audio stream reliability during 

the process.  Also shows the flexibility of the methods as the SNR 

changes.  When comparing the instantaneous  methods with the best 

pre-computed static weights method, they have quite similar results. 

Sometimes the best static method has better results, a fact that shows 

that  the  instantaneous  methods  can  give  even  better  results  with 

maybe some tweaking in the stream weights computation part. Also 

when  comparing  the  two  time-variable  weights  methods,  we  can 

support  that  the general  all-noise-condition mapping recognizer has 

very good results and the adapted to noise mapping recognizer is only 

better in very low SNR but with almost identical results. This makes 

the adaptation to noise type redundant, based on our results, which is a 

good thing assuming that in real world the noise types may change 

from time to time. In figure 16 the % WERR reduction is plotted for 

different noise types and SNR for the two time-variable weights AV 

methods. In figure 16(d) where the factory noise results are presented, 

there  is  only  one  visible  line  because  the  general  and  the  adapted 

mapping setups are identical.  No special adaptation of the mapping 
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parameterization is needed in the case of factory floor noise
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Figure 16(a): Speech Babble noise results (Audio mapping)

Figure 16(b): Jet Cockpit  noise results (Audio mapping)
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Figure 16(c): Car Interior  noise results (Audio mapping)

Figure 16(d): Factory Floor noise results (Audio mapping)



In table 12 the change in the audio stream weights computed by the 

three AV methods (best pre-computed fixed, instantaneous general - 

mean values, instantaneous noise type adapted - mean values) as the 

SNR changes is shown. We can see that the mean values of the time-

variable  weighting  methods  follow a  downward  trend  as  the  SNR 

decreases,  which  shows  adaptability  of  the  method  to  decreasing 

audio  stream  reliability.  Except  in  the  Car  interior  noise  that  the 

stream  means  are  stuck  in  the  same  values.  This  is  a  desirable 

behaviour in fact, as the car noise is present in low spectral 

Noise 
type 15 dB 10 dB 3 dB 0 dB -3 dB

AV-Global
Best Values

AV-Instant
General Mapping

AV-Instant 
Adapted Mapping

B
ab

bl
e 

Sp
ee

ch

0,88 0,86 0,86 0,91 0,83

0,84 0,82 0,79 0,78 0,78

0,84 0,82 0,8 0,78 0,78

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant 
Adapted Mapping

Je
t C

oc
kp

it 
no

is
e 0,82 0,79 0,69 0,58 0,62

0,82 0,79 0,76 0,76 0,77

0,7 0,67 0,65 0,65 0,65

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant 
Adapted Mapping C

ar
 In

te
rio

r n
oi

se 0,92 0,91 0,84 0,78 0,74

0,87 0,87 0,86 0,86 0,86

0,83 0,83 0,82 0,82 0,82

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant 
Adapted Mapping Fa

ct
or

y 
Fl

oo
r n

oi
se 0,86 0,92 0,83 0,74 0,59

0,83 0,8 0,77 0,76 0,76

0,83 0,8 0,77 0,76 0,76

Table 12: Stream weight comparison for different AV methods (Audio mapping)

58



region and does not affect the recognition process considerably as it is 

shown in the Accuracy table results. Another fact is that the weights 

of the instantaneous methods have a small region of variance and do 

not follow the best fixed weights in large inclines or declines. This 

happens because of the sigmoid characteristics which is chosen as a 

mapping function. The region of variance of the time-variant stream 

weight values can be increased by tweaking the mapping function, but 

if this would give better recognition results remains to be tested. In 

figure 17 the above stream weights are graphically shown.
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Figure 17: Audio stream weight graphs for different AV Methods (Audio mapping)



5.2 Audio and Video stream reliability mapping recognizer
The same results are now presented but for the setup that uses both 

stream reliability indicators to perform the computation of the stream 

weights. Careful inspection of the results shows that this method gives 

similar  or  inferior  results  to  the  previous  method.  This  can  be 

explained from the fact that the best mapping of two values is harder 

to accomplish than of one and possibly some more work can be done 

in the mapping parameter estimation of the method. Also because of 

the  low accuracy,  the  single-stream visual  classifier  gives  decision 

information  that  might  be  more  confusing  than  helpful  for  the 

computation of the stream weights. Improvement in this field could 

overall  improve  this  method.  The  recognition  results  in  terms  of 

accuracy are shown in 

Speech Babble Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,02 80,9 49,08 35,83 27,17
Video-only 28,35
AV Global
(0.8-0.2)

90,3 81,58 48,83 35,66 27,06

AV-Global
Best Values

93,91 82,08 49,94 36,4 28,01

AV-Instant
General Mapping

93,02 81,57 48,88 35,84 26,21

AV-Instant 
Adapted Mapping

93,24 82,36 48,99 36,74 27,46

AV-Instant-GM
 rel. WERR red. 28,04% -0,05% 0,10% 0,28% -1,17%
AV-Instant-AM
 rel. WERR red. 30,31% 4,23% 0,31% 1,68% 0,55%

Table 13: Speech Babble accuracy results for Audio+Video reliability mapping method
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Jet Cockpit Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 89,96 71,24 31,87 22,68 17,72
Video-only 28,35
AV Global
(0.8-0.2)

91,14 73,48 33,48 23,58 18,5

AV-Global
Best Values

91,52 74,65 35,1 25,09 19,72

AV-Instant
General Mapping

90,91 73,24 34,42 24,47 18,61

AV-Instant 
Adapted Mapping

89,18 70,19 32,92 24,41 19,39

AV-Instant-GM
 rel. WERR red. -2,60% -0,90% 1,41% 1,16% 0,13%
AV-Instant-AM
 rel. WERR red. -22,12% -12,41% -0,84% 1,09% 1,09%

Table 14: Jet Cockpit noise accuracy results for Audio+Video reliability mapping method

Car Interior Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 98,6 98,1 93,64 88,99 83,27
Video-only 28,35
AV Global
(0.8-0.2)

98,27 97,56 93,31 89,35 83,2

AV-Global
Best Values

98,72 97,71 93,92 90,07 84,32

AV-Instant
General Mapping

98,27 97,49 94,03 89,79 84,26

AV-Instant 
Adapted Mapping

98,21 97,54 93,98 90,07 84,37

AV-Instant-GM
 rel. WERR red. 0,00% -2,87% 10,76% 4,13% 6,31%
AV-Instant-AM
 rel. WERR red. -3,47% -0,82% 10,01% 6,76% 6,96%

Table 15: Car Interior noise accuracy results for Audio+Video reliability mapping method
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Factory Floor Noise

SNR
Recognizer type

15 dB 10 dB 3 dB 0 dB -3 dB

Audio-only 93,03 81,41 45,47 30,75 18,5
Video-only 28,35
AV Global
(0.8-0.2)

93,8 82,3 45,57 31,47 20,89

AV-Global
Best Values

94,25 83,03 46,92 32,76 22,29

AV-Instant
General Mapping

93,8 82,19 46,23 32,64 21,4

AV-Instant 
Adapted Mapping

94,36 82,47 46,01 30,85 20,73

AV-Instant-GM
 rel. WERR red. 0,00% -0,62% 1,21% 1,71% 0,64%
AV-Instant-AM
 rel. WERR red. 9,03% 0,96% 0,81% -0,90% -0,20%

Table 16: Factory floor noise accuracy results for Audio+Video reliability mapping method

tables  13  to  16  and  compared  to  the  fixed  weight  to 

λα=0.8and λv=0.2  static  method.  Also  in  figure  18 the  percent 

relative  WER  reduction  is  plotted  for  the  different  environmental 

noise types and SNR.

In table 17 the change in audio stream weights computed by the three 

AV  methods  as  the  SNR  changes  is  shown  for  this  method.  The 

stream weights are changing very slowly and this makes the method 

really  inflexible  to  changing  environmental  conditions.  Perhaps  a 

better mapping parameterization may give the desired flexibility.  In 

figure 19 the weight values are plotted together for comparison.
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Figure 18(a): Babble Speech  noise results (Audio+Video mapping)

Figure 18(b): Jet Cockpit  noise results (Audio + Video mapping)
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Figure 18(c): Car Interior noise results (Audio + Video mapping)

Figure 18(d): Factory Floor  noise results (Audio + Video mapping)



Noise 
type 15 dB 10 dB 3 dB 0 dB -3 dB

AV-Global
Best Values

AV-Instant
General Mapping

AV-Instant 
Adapted Mapping

B
ab

bl
e 

Sp
ee

ch

0,88 0,86 0,86 0,91 0,83

0,78 0,76 0,73 0,72 0,72

0,91 0,9 0,89 0,88 0,88

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant 
Adapted Mapping

Je
t C

oc
kp

it 
no

is
e 0,82 0,79 0,69 0,58 0,62

0,75 0,73 0,71 0,71 0,71

0,67 0,64 0,61 0,61 0,62

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant 
Adapted Mapping C

ar
 In

te
rio

r n
oi

se 0,92 0,91 0,84 0,78 0,74

0,81 0,81 0,8 0,8 0,8

0,78 0,78 0,78 0,78 0,78

AV-Global
Best Values
AV-Instant
General Mapping
AV-Instant 
Adapted Mapping Fa

ct
or

y 
Fl

oo
r n

oi
se 0,86 0,92 0,83 0,74 0,59

0,76 0,74 0,71 0,71 0,7

0,87 0,86 0,85 0,84 0,84

Table 17: Stream weight comparison for different AV methods
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Figure 19: Audio stream weight graphs for different AV Methods (Audio + Video mapping)



Conclusions – Future Work       CHAPTER 6

In this  project  we researched the Audio-Visual  approach to speech 

recognition.  The  approach  is  based  on  the  concept  that  audio  and 

visual  information of speech can be combined to develop a  robust 

ASR  system.  The  information  can  be  extracted  from  Video  data 

signals  recorded  during  speech.  The  respective  audio  and  visual 

signals  can  be  regarded  as  information  streams,  so  multiple 

information  stream  decision  fusion  methods  can  be  used  for  the 

recognition.  Different  fusion  methods  were  described.  A  stream 

weighting scheme was introduced during fusion to give appropriate 

biasing to each stream while making the final decision. The problem 

of stream weight computation was described and different methods 

based on a posteriori likelihoods of separate classifiers were given.

Then  we  created  a  recognition  system  setup  to  test  the 

theoretical  concepts we introduced above. First  a method using the 

reliability indicator  of audio stream to compute the stream weights 

was created. This method was tested using either a general all-noise-

condition mapping or an adapted to noise condition mapping. Then a 

method using the reliability indicators of audio and video streams was 

created. Again a general all-noise-condition and an adapted to noise 

condition  mapping  were  tested.  The  results  were  compared  to  the 

following recognizers: (a) Audio-only,  (b) Video-only, (c) AV with 

fixed stream weights during recognition process and (d) AV with best 

pre-computed time-constant stream weights for each noise condition. 

The results showed that obvious improvement was achieved compared 

to (a) Audio-only recognizer and (c) AV with fixed stream weights 

during  recognition  process.  Also  the  methods  achieved  similar 
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behaviour  –  sometimes  superior  -  to  the  (d)  AV  with  best  pre-

computed time-constant stream weights for each noise condition, both 

to the final Accuracy and actual stream weight values (mean values in 

the case of time variant).

The strong point of the method is the ability to estimate time-

variant stream weights adapting to variable environmental conditions. 

The  tests  we  conducted  simulated  different  environmental  noise 

conditions, but these were static during each recognition task (type of 

noise  and  SNR).  Tests  conducted  under  varying  noise  conditions 

should show in more detail the inherent abilities of the methods tested.

Also improving the visual stream recognition would give an 

overall boost to the accuracy of the AV-ASR system. Applying more 

sophisticated  methods  in  pre-processing  and  ROI  acquiring  could 

help.  Feature  extraction  and  selection  of  the  visual  signal  can  be 

improved.

Additionally, some tweaking in the mapping of the reliabilities 

to the weights of streams could give some improvement. Also using 

alternative methods of computing the stream weights could be tested.

Finally a system could be set up, that would research the AV 

methods in a sub-word (phoneme-level) recognition process.
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APPENDIX A

Instantaneous Weight Graphs for every 

Digit

In this appendix we included the graphs of the stream weights that 

were computed using the method of audio reliability indicator general 

all-noise mapping to the stream weights. Especially the results of the 

recognition of speakers 1, 2, 4, 20, 33, 34 under 10 dB factory floor 

noise uttering 5 times the digits were plotted. For each speaker and 

each digit, a combined graph was created with the sample axis (x axis) 

normalized to value 50 with the 5 utterances.

The results show that for the same digits, similar weight graphs can 

be identified. This makes us believe that there is some dependence of 

the  reliabilities  of  streams  on  the  specific  digit  that  should  be 

recognized.  Some  temporal  regions  in  the  digit  utterance  could 

include more information in audio stream and others less, thus making 

the video stream more reliable for that region. This can be confirmed 

when comparing the weights created by the same digit utterances but 

from different speakers.
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Speaker 1 (male)
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Speaker 2 (male)
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Speaker 4 (female)
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Speaker 20 (female)
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Speaker 33 (male)
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Speaker 34 (female)
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APPENDIX B

HTK source code modifications

B.1 Instantaneous stream weight support
To support the time variant stream weights as described in 2.2 and 

2.4,  two files were modified: Hvite.c and Hrec.c.

Hvite.c source code modifications:

First we declared some global variables that would be useful for the 

implementation

static char *wgt_datFN;               /* Weights file */
static Observation wgt_obs;           /* weight observation */
static MemHeap bufHeap_WGT;

Then  inside  the  Initialise()  function  we  make  the  appropriate 

initialisation for the stream weights file

  wgt_obs=MakeObservation(&gstack,hset.swidth,hset.pkind,
                       hset.hsKind==DISCRETEHS,eSep);

 CreateHeap(&bufHeap_WGT,"Input Buffer heap 
WGT",MSTAK,1,0.0,50000,50000);

Then  the  function  ProcessFile()  is  substituted  by  the  modified 

function ProcessFileWGT() which is as follows

/* ProcessFile: process given file. If fn=NULL then direct audio */
Boolean ProcessFileWGT(char *fn, Network *net, int utterNum, LogDouble 
currGenBeam, Boolean restartable)
{
   FILE *file;
   ParmBuf pbuf;
   ParmBuf wgt_pbuf; /* Spiros */
   BufferInfo pbinfo;
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   NetNode *d;
   Lattice *lat;
   LArc *arc,*cur;
   LNode *node;
   Transcription *trans;
   MLink m;
   LogFloat lmlk,aclk;
   int s,j,tact,nFrames;
   LatFormat form;
   char *p,lfn[255],buf1[80],buf2[80],thisFN[MAXSTRLEN];
   Boolean enableOutput = TRUE, isPipe;

   if (fn!=NULL)
      strcpy(thisFN,fn);
   else if (fn==NULL && saveAudioOut)
      CounterFN(roPrefix,roSuffix,++roCounter,4,thisFN);
   else 
      enableOutput = FALSE;
      
   if((pbuf = 
OpenBuffer(&bufHeap,fn,50,dfmt,TRI_UNDEF,TRI_UNDEF))==NULL)
      HError(3250,"ProcessFileWGT: Config parameters invalid");   

   /* Check pbuf same as hset */
   GetBufferInfo(pbuf,&pbinfo);
   if (pbinfo.tgtPK!=hset.pkind)
      HError(3231,"ProcessFileWGT: Incompatible sample kind %s vs %s",
             ParmKind2Str(pbinfo.tgtPK,buf1),
             ParmKind2Str(hset.pkind,buf2));
   if (pbinfo.a != NULL && replay)  AttachReplayBuf(pbinfo.a, (int) 
(3*(1.0E+07/pbinfo.srcSampRate)));
   
/* Spiros */
       wgt_datFN = GetStrArg();
       if (trace&T_TOP) {
            printf("File: %s\n",wgt_datFN);

   }

   if((wgt_pbuf = 
OpenBuffer(&bufHeap_WGT,wgt_datFN,50,dfmt,TRI_UNDEF,TRI_UNDEF))=
=NULL)
      HError(3250,"ProcessFileWGT: Config parameters invalid");

/* Spiros */

   StartRecognition(vri,net,lmScale,wordPen,prScale);
   SetPruningLevels(vri,maxActive,currGenBeam,wordBeam,nBeam,tmBea
m);
 
   tact=0;nFrames=0;
   StartBuffer(pbuf);
   StartBuffer(wgt_pbuf); /* Spiros*/
   while(BufferStatus(pbuf)!=PB_CLEARED) {
      ReadAsBuffer(pbuf,&obs);
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      ReadAsBuffer(wgt_pbuf,&wgt_obs);  /* Spiros*/
      if (trace&T_OBS) {

      PrintObservation(nFrames,&obs,13);
    PrintObservation(nFrames,&wgt_obs,13); /* Spiros*/

}

      if (hset.hsKind==DISCRETEHS){
         for (s=1; s<=hset.swidth[0]; s++){
            if( (obs.vq[s] < 1) || (obs.vq[s] > maxMixInS[s]))
               HError(3250,"ProcessFile: Discrete data value [ %d ] out of range 
in stream [ %d ] in file %s",obs.vq[s],s,fn);
         }
      }

/*      ProcessObservation(vri,&obs,-1,xfInfo.inXForm);*/
      ProcessObservationWGT(vri,&obs,&wgt_obs,-1,xfInfo.inXForm); /* 
Spiros*/
      
      if (trace & T_FRS) {
         for (d=vri->genMaxNode,j=0;j<30;d=d->links[0].node,j++)
            if (d->type==n_word) break;
         if (d->type==n_word){
            if (d->info.pron==NULL) p=":bound:";
            else p=d->info.pron->word->wordName->name;
         }
         else p=":external:";
         m=FindMacroStruct(&hset,'h',vri->genMaxNode->info.hmm);
         printf("Optimum @%-4d HMM: %s (%s)  %d %5.3f\n",
                vri->frame,m->id->name,p,
                vri->nact,vri->genMaxTok.like/vri->frame);
         fflush(stdout);
      }
      nFrames++;
      tact+=vri->nact;
   }
   lat=CompleteRecognition(vri,pbinfo.tgtSampRate/10000000.0,&ansHea
p);
   
   if (lat==NULL) {
      if ((trace & T_TOP) && fn != NULL){
         if (restartable)
            printf("No tokens survived to final node of network at beam 
%.1f\n", currGenBeam);
         else
            printf("No tokens survived to final node of network\n");
         fflush(stdout);
      } else if (fn==NULL){
         printf("Sorry [%d frames]?\n",nFrames);fflush(stdout);
      }      
      if (pbinfo.a != NULL && replay)  ReplayAudio(pbinfo);
      CloseBuffer(pbuf);
      CloseBuffer(wgt_pbuf); /* Spiros*/
      return FALSE;
   }
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   if (vri->noTokenSurvived && restartable)
      return FALSE;

   if (vri->noTokenSurvived && trace & T_TOP) {
      printf("No tokens survived to final node of network\n");
      printf("  Output most likely partial hypothesis within network\n");
      fflush(stdout);
   }

   lat->utterance=thisFN;
   lat->net=wdNetFn;
   lat->vocab=dictFn;
   
   if (trace & T_TOP || fn==NULL) {
      node=NULL;
      for (j=0;j<lat->nn;j++) {
         node=lat->lnodes+j;
         if (node->pred==NULL) break;
         node=NULL;
      }
      aclk=lmlk=0.0;
      while(node!=NULL) {
         for (arc=NULL,cur=node->foll;cur!=NULL;cur=cur->farc) arc=cur;
         if (arc==NULL) break;
         if (arc->end->word!=NULL)
            printf("%s ",arc->end->word->wordName->name);
         aclk+=arc->aclike+arc->prlike*lat->prscale;
         lmlk+=arc->lmlike*lat->lmscale+lat->wdpenalty;
         node=arc->end;
      }
      printf(" ==  [%d frames] %.4f [Ac=%.1f LM=%.1f] 
(Act=%.1f)\n",nFrames,
             (aclk+lmlk)/nFrames, aclk,lmlk,(float)tact/nFrames);
      fflush(stdout);
   }
   if (pbinfo.a != NULL && replay)  ReplayAudio(pbinfo);
   
   /* accumulate stats for online unsupervised adaptation 
      only if a token survived */
   if ((lat != NULL) &&  (!vri->noTokenSurvived) && ((update > 0) ||  
(xfInfo.useOutXForm)))
      DoOnlineAdaptation(lat, pbuf, nFrames);

   if (enableOutput){
      if (nToks>1 && latExt!=NULL) {
         MakeFN(thisFN,labDir,latExt,lfn);
         if ((file=FOpen(lfn,NetOFilter,&isPipe))==NULL) 
            HError(3211,"ProcessFile: Could not open file %s for lattice 
output",lfn);
         if (latForm==NULL)
            form=HLAT_DEFAULT;
         else {
            for (p=latForm,form=0;*p!=0;p++) {
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               switch (*p) {
               case 'A': form|=HLAT_ALABS; break;
               case 'B': form|=HLAT_LBIN; break;
               case 't': form|=HLAT_TIMES; break;
               case 'v': form|=HLAT_PRON; break;
               case 'a': form|=HLAT_ACLIKE; break;
               case 'l': form|=HLAT_LMLIKE; break;
               case 'd': form|=HLAT_ALIGN; break;
               case 'm': form|=HLAT_ALDUR; break;
               case 'n': form|=HLAT_ALLIKE; break;
               case 'r': form|=HLAT_PRLIKE; break;
               }
            }
         }
         if(WriteLattice(lat,file,form)<SUCCESS)
            HError(3214,"ProcessFile: WriteLattice failed");

         FClose(file,isPipe);
      }

      trans=TranscriptionFromLattice(&ansHeap,lat,nTrans);
      
      if (labForm!=NULL)
         FormatTranscription(trans,pbinfo.tgtSampRate,states,models,
                             strchr(labForm,'X')!=NULL,
                             strchr(labForm,'N')!=NULL,strchr(labForm,'S')!=NULL,
                             strchr(labForm,'C')!=NULL,strchr(labForm,'T')!=NULL,
                             strchr(labForm,'W')!=NULL,strchr(labForm,'M')!=NULL);

      MakeFN(thisFN,labDir,labExt,lfn);
      /* if(LSave(lfn,trans,ofmt)<SUCCESS)
         HError(3214,"ProcessFile: Cannot save file %s", lfn); */
      LSave(lfn,trans,ofmt);
      Dispose(&ansHeap,trans);
   }
   Dispose(&ansHeap,lat);
   CloseBuffer(pbuf);
   CloseBuffer(wgt_pbuf); /* Spiros*/
   if (trace & T_MMU){
      printf("Memory State after utter %d\n",utterNum);
      PrintAllHeapStats();
   }

   return !vri->noTokenSurvived;
}

Now  in  function  DoRecognition()  we  also  modify  the  call  to 

ProcessFile() to ProcessFileWGT()

ProcessFileWGT(datFN,net,n++,genBeam,FALSE); 
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HRec.c source code modifications:

Some modification to Hrec.c were also necessary.

CPOutP() function was substituted with CPOutPWGT() as follows

/* Version of POutP that caches outp values with frame id */
static LogFloat cPOutPWGT(PSetInfo *psi,Observation *obs,Observation 
*wgt_obs,StateInfo *si,int id)
{
   PreComp *pre;
   LogFloat outp;
   StreamElem *se;
   Vector w;
   Vector wgt_v; /* Spiros */
   int s,S;
   
  /* printf("Hello from cPoutP\n");*/

   if (si->sIdx>0 && si->sIdx<=pri->psi->nsp)
      pre=pri->psi->sPre+si->sIdx;
   else pre=NULL;

#ifdef SANITY
   if (pre==NULL)
      HError(8520,"cPOutP: State has no PreComp attached");
#endif

   wgt_v=wgt_obs->fv[1]; /*Spiros*/
   
   if (pre->id!=id) { /* bodged at the moment - fix !! */
      if ((FALSE && psi->mixShared==FALSE) || (psi->hset->hsKind == 
DISCRETEHS)) {
         outp=POutP(psi->hset,obs,si);
      }
      else {
         S=obs->swidth[0];
         if (S==1 && si->weights==NULL){
            outp=cSOutP(psi->hset,1,obs,si->pdf+1,id);
         }
         else {
         /* Spiros - Edw tha prepei na oristei sto w ta weights pou yparxoun 
sto observation */
            outp=0.0;
            se=si->pdf+1;
            w=si->weights;
            for (s=1;s<=S;s++,se++){
               outp+=wgt_v[s]*cSOutP(psi->hset,s,obs,se,id);
            }
            /*******************************************************************
***********/
         }
      }
      pre->outp=outp;
      pre->id=id;
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   }
   return(pre->outp);
}

Also StepHMM1() function was substituted with modified version 

StepHMM1WGT().

static void StepHMM1WGT(NetNode *node,Observation * wgt_obs) /* Model 
internal propagation NBEST */
{
   NetInst *inst;
   HMMDef *hmm;
   Token tok,max;
   TokenSet *res,cmp,*cur;
   Align *align;
   int i,j,k,N,endi;
   LogFloat outp;
   Matrix trP;
   short **seIndex;
   
   inst=node->inst;
   max=null_token;
   
   hmm=node->info.hmm; 
   N=hmm->numStates;
   trP=hmm->transP;
   seIndex=pri->psi->seIndexes[hmm->tIdx];
   
   for (j=2,res=pri->psi->sBuf+2;j<N;j++,res++) {  /* Emitting states first 
*/
      i=seIndex[j][0]; 
      endi=seIndex[j][1];
      cur=inst->state+i-1;

      res->tok=cur->tok; res->n=cur->n;
      for (k=0;k<cur->n;k++) res->set[k]=cur->set[k];

      res->tok.like+=trP[i][j];

      for (i++,cur++;i<=endi;i++,cur++) {
         cmp.tok=cur->tok;
         cmp.tok.like+=trP[i][j];
         if (res->n==0) {
            if (cmp.tok.like > res->tok.like)
               res->tok=cmp.tok;
         }
         else
            TokSetMerge(res,&cmp.tok,cur);
      }
      if (res->tok.like>pri->genThresh) { /* State pruning */
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      /* Spiros - Perasma tou weight observation stin synartisi */
/*         outp=cPOutP(pri->psi,pri->obs,hmm->svec[j].info,pri->id);*/
         outp=cPOutPWGT(pri->psi,pri->obs,wgt_obs,hmm->svec[j].info,pri-
>id);
         /********************************************************/
         
         res->tok.like+=outp;
   
         if (res->tok.like>max.like)
            max=res->tok;
         if (pri->states) {
            if (res->tok.align==NULL?TRUE:
                res->tok.align->state!=j || res->tok.align->node!=node) {
               align=NewNRefAlign(node,j,
                                  res->tok.like-outp-res->tok.lm*pri->scale,
                                  pri->frame-1,res->tok.align);
               res->tok.align=align;
            }
         }
      } 
      else {
         res->tok=null_token;
         res->n=((pri->nToks>1)?1:0);
      }
   }
   
   /* Null entry state ready for external propagation */
   /*  And copy tokens from buffer to instance */
   for (i=1,res=pri->psi->sBuf+1,cur=inst->state;
        i<N;i++,res++,cur++) {
      cur->n=res->n; cur->tok=res->tok; 
      for (k=0;k<res->n;k++) cur->set[k]=res->set[k];
   }

   /* Set up pruning limits */
   if (max.like>pri->genMaxTok.like) {
      pri->genMaxTok=max;
      pri->genMaxNode=node;
   }
   inst->max=max.like;

   i=seIndex[N][0]; /* Exit state (ignoring tee trP) */
   endi=seIndex[N][1];
   
   res=inst->exit;
   cur=inst->state+i-1;

   res->n=cur->n; 
   res->tok=cur->tok; 
   for (k=0;k<cur->n;k++) res->set[k]=cur->set[k];

   res->tok.like+=trP[i][N];

   for (i++,cur++;i<=endi;i++,cur++) {
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      cmp.tok=cur->tok; 
      cmp.tok.like+=trP[i][N];

      if (res->n==0) {
         if (cmp.tok.like > res->tok.like) 
            res->tok=cmp.tok;
      }
      else 
         TokSetMerge(res,&cmp.tok,cur);
   }
   if (res->tok.like>LSMALL){
      tok.like=res->tok.like+inst->wdlk;
      if (tok.like > pri->wordMaxTok.like) {
         pri->wordMaxTok=tok;
         pri->wordMaxNode=node;
      }
      if (!node_tr0(node) && pri->models) {
         align=NewNRefAlign(node,-1,
                            res->tok.like-res->tok.lm*pri->scale,
                            pri->frame,res->tok.align);
         res->tok.align=align;
      }
   } else {
      inst->exit->tok=null_token;
      inst->exit->n=((pri->nToks>1)?1:0);
   }
}

ProcessObservation()  function  which  is  called  by  HVite  is 

substituted with modified version ProcessObservationWGT()

void ProcessObservationWGT(VRecInfo *vri,Observation *obs,Observation * 
wgt_obs,int id, AdaptXForm *xform)
{
   NetInst *inst,*next;
   int j;
   float thresh;
   
/*   kostis_weight = obs; /*Spiros*/

   pri=vri->pri;
   inXForm = xform; /* sepcifies the transform to use for this observation */
   if (pri==NULL)
      HError(8570,"ProcessObservationWGT: Visible recognition info not 
initialised");
   if (pri->net==NULL)
      HError(8570,"ProcessObservationWGT: Recognition not started");

   pri->psi->sBuf[1].n=((pri->nToks>1)?1:0); /* Needed every observation 
*/
   pri->frame++;
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   pri->obs=obs;
   if (id<0) pri->id=(pri->prid<<20)+pri->frame;
   else pri->id=id;

   if (obs->swidth[0]!=pri->psi->hset->swidth[0])
      HError(8571,"ProcessObservationWGT: incompatible number of streams 
(%d vs %d)",
             obs->swidth[0],pri->psi->hset->swidth[0]);
   if (pri->psi->mixShared)
      for (j=1;j<=obs->swidth[0];j++)
         if (VectorSize(obs->fv[j])!=pri->psi->hset->swidth[j])
            HError(8571,"ProcessObservatioWGT: incompatible stream widths 
for %d (%d vs %d)",
                   j,VectorSize(obs->fv[j]),pri->psi->hset->swidth[j]);

   /* Max model pruning is done initially in a separate pass */

   if (vri->maxBeam>0 && pri->nact>vri->maxBeam) {
      if (pri->nact>pri->qsn) {
         if (pri->qsn>0)
            Dispose(&vri->heap,pri->qsa);
         pri->qsn=(pri->nact*3)/2;
         pri->qsa=(LogFloat*) New(&vri->heap,pri->qsn*sizeof(LogFloat));
      }
      for (inst=pri->head.link,j=0;inst!=NULL;inst=inst->link,j++)
         pri->qsa[j]=inst->max;
      if (j>=vri->maxBeam) {
         qcksrtM(pri->qsa,0,j-1,vri->maxBeam);
         thresh=pri->qsa[vri->maxBeam];
         if (thresh>LSMALL) 
            for (inst=pri->head.link;inst->link!=NULL;inst=next) {
               next=inst->link;
               if (inst->max<thresh) 
                  DetachInst(inst->node);
            }
      }
   }   
   if (pri->psi->hset->hsKind==TIEDHS)
      PrecomputeTMix(pri->psi->hset,obs,vri->tmBeam,0);
     /* PrecomputeTMixWGT(pri->psi->hset,obs,wgt_obs,vri->tmBeam,0); /* 
Spiros*/
   /* Pass 1 must calculate top of all beams - inc word end !! */
   pri->genMaxTok=pri->wordMaxTok=null_token;
   pri->genMaxNode=pri->wordMaxNode=NULL;
   for (inst=pri->head.link,j=0;inst!=NULL;inst=inst->link,j++)
      if (inst->node)
/*         StepInst1(inst->node);*/
         StepInst1WGT(inst->node,wgt_obs); /*Spiros*/
   
   /* Not changing beam width for max model pruning */
   
   pri->wordThresh=pri->wordMaxTok.like-vri->wordBeam;
   if (pri->wordThresh<LSMALL) pri->wordThresh=LSMALL;
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   pri->genThresh=pri->genMaxTok.like-vri->genBeam;
   if (pri->genThresh<LSMALL) pri->genThresh=LSMALL;
   if (pri->nToks>1) {
      pri->nThresh=pri->genMaxTok.like-vri->nBeam;
      if (pri->nThresh<LSMALL/2) pri->nThresh=LSMALL/2;
   }
   
   /* Pass 2 Performs external token propagation and pruning */
   for (inst=pri->head.link,j=0;inst!=NULL && inst-
>node!=NULL;inst=next,j++)
      if (inst->max<pri->genThresh) {
         next=inst->link;
         DetachInst(inst->node);
      }
      else {
         pri->nxtInst=inst;
         StepInst2(inst->node);
         next=pri->nxtInst->link;
      }
   
   if ((pri->npth-pri->cpth) > vri->pCollThresh || 
       (pri->nalign-pri->calign) > vri->aCollThresh)
      CollectPaths();

   pri->tact+=pri->nact;

   vri->frame=pri->frame;
   vri->nact=pri->nact;
   vri->genMaxNode=pri->genMaxNode;
   vri->wordMaxNode=pri->wordMaxNode;
   vri->genMaxTok=pri->genMaxTok;
   vri->wordMaxTok=pri->wordMaxTok;
}

Finally function StepInst1() was substituted with modified version 

StepInst1WGT()

static void StepInst1WGT(NetNode *node, Observation * wgt_obs) /*  First 
pass of token propagation (Internal) */
{
   if (node_hmm(node))
      StepHMM1WGT(node,wgt_obs);   /* Advance tokens within HMM 
instance t => t-1 */
                        /* Entry tokens valid for t-1, do states 2..N */
   else
      StepWord1(node);
   node->inst->pxd=FALSE;
}
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B.2 Log-Likelihood in every time frame support
As described in 3.4, we had to make some tweaking in the HTK in 

order to report the log-likelihoods P os ,t∣c in every time frame.

We inserted some code in HRec.c and the output had the following 

fields:

Time frame HMM Name State Likelihood

The coloured fields denote the class. Then we ranked the output data 

for each time frame according to likelihood values and took the N-best 

for the computation of the reliability indicators.

HRec.c source code modifications

Only HRec.c file was needed to be modified. Some additional source 

code  was  included  to  support  the  required  functionality.  Inside 

function  StepHMM1()  and  from  line  655  to  659  we  have  the 

following code

if (res->tok.like>pri->genThresh) { /* State pruning */
         outp=cPOutP(pri->psi,pri->obs,hmm->svec[j].info,pri->id);
         hmm_name=HMMPhysName(pri->psi->hset,hmm);
         res->tok.like+=outp;
         printf("%f %d %d %s\n",outp,j-1,pri->frame,hmm_name); 
/*Spiros: 1:Probab 2:State 3:Frame 4:Model */

This allows HTK tools to output the required fields, as shown above, 

to  the  standard  output  and  then  used  appropriately  by  our 

implementation.
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