

Technical University of Crete

3D Photorealistic Reconstruction and Digital Restoration of Neoria,

Crete using Geodetic Measurement and Computer Graphics

Techniques

 Thesis By

 Effrosyni Sarri

Examining Committee

 Assoc. Prof. Aikaterini Mania, Supervisor
 Prof. Stavros Christodoulakis

 Dr Lemonia Ragia

Chania,
 2015

 ii

 ABSTRACT

This thesis puts forward a 3D reconstruction methodology applied to a historic building
taking advantage of the combined speed, range and accuracy of a total geodetic
station. The measurements representing geographical data, produced an accurate and
photorealistic geometric mesh of a historic monument named „Neoria‟. „Neoria‟ is a
Venetian building located by the old harbour at Chania, Crete, Greece. The integration
of tacheometry acquisition and computer graphics puts forward an effective framework
for the accurate 3D reconstruction of a historical building. The main technical challenge
of this work was the production of an accurate 3D mesh based on a sufficient but small
number of tacheometry measurements acquired fast and at low-cost. A combination of
surface reconstruction and processing methods ensured that a detailed geometric mesh
was constructed based on a few points. A fully interactive application based on game
engine technologies was developed in regards to the reconstructed monument. The
user can visualize and tour the monument and the area around it, as well as
manipulating the model. Advanced interactive functionalities are offered to the user in
relation to identifying restoration areas and visualizing the outcome of such works.
Moreover, the user could visualize the co-ordinates of the points measured, calculate
distances at will and navigate the complete 3D mesh of the monument. The goal of this
framework is to utilize a small number of acquired data points and present a fully
interactive visualization of a georeferenced 3D model.

 iii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Assoc. Prof. Katerina Mania, for giving me the
chance to work on this thesis and for her guidance throughout this process.

I would like to express my gratitude to Dr. Lemonia Ragia for her help throughout this
work. I would also like to thank her for providing her technical expertise and guidance
during the data acquisition process, without which this thesis would not be possible.

I would like to thank Anastasia Tzigounaki, serving as the director of the 15th Ephorat of
Prehistoric and Classical Antiquities in Chania, Greece, for her contribution to this work.

I would like to thank Prof. Stavros Christodoulakis for reviewing this thesis.

Finally I would like to thank my friends for their moral support and express my sincere
gratitude to my family for their encouragement and for helping me realize my dreams.

 iv

TABLE OF CONTENTS

Chapter
 Page

ABSTRACT ..ii
ACKNOWLEDGMENTS .. iii
TABLE OF CONTENTS ..iv
LIST OF FIGURES ... vii
Chapter 1 : Introduction .. 1

1.1 Concept ... 1

1.2 Thesis Outline .. 2
Chapter 2 Background and Literature Review .. 4

2.1 Virtual Environment ... 4

2.2 3D Digitization.. 5
2.3 Data Acquisition Methods .. 5

2.3.1 Photogrammetry .. 6

2.3.2 Laser Scanning ... 6
2.3.3 Geodetic Total Station ... 8

2.3.4 Choice of data acquisition method .. 8
2.4 3D Computer Graphics .. 9

2.4.1 3D Modeling .. 9

2.4.2 Layout ... 11

2.4.3 3D Rendering .. 11
2.5 Definitions .. 12

2.5.1 Polygon Mesh ... 12

2.5.2 Texture Mapping ... 12
2.5.3 Shader .. 14

2.6 Surface Reconstruction ... 14
2.7 Subdivision Surface ... 15
2.8 Game Engines ... 16

2.9 Popular Game Engines .. 17
2.9.1 Unreal Engine / Unreal Development Kit ... 17

2.9.2 Unity 3D .. 17
2.9.3 CryEngine ... 18
2.9.4 Comparison ... 18

Chapter 3 Technological Background ... 19

3.1 Unity 3D ... 19
3.1.1 What is Unity 3D? ... 19
3.1.2 Project Structure in Unity 3D ... 19

3.1.3 Components .. 19
3.1.4 Scripting .. 22
3.1.5 Interface .. 24

3.2 Autodesk 3ds Max ... 24
3.3 AutoCAD Civil 3D .. 25

 v

3.4 MeshLab .. 26
Chapter 4 Monument Survey And Data Acquisition .. 27

4.1 Introduction .. 27

4.2 Venetian Neoria ... 27
4.3 Monument Survey .. 30

4.3.1 Introduction ... 30
4.3.2 Geodetic Total Station ... 30
4.3.3 Field Work ... 31

4.4 Geodetic Data .. 35
Chapter 5 3D Reconstruction .. 37

5.1 Surface Creation .. 37
5.1.1 Data evaluation ... 37

5.1.2 Study of the known surface reconstruction algorithms 38

5.1.3 TIN Surfaces and Delaunay Triangulation .. 39
5.1.4 Reconstruction of TIN surfaces ... 41

5.1.5 Processing of the TIN surfaces ... 49

5.2 Surface Processing .. 52
5.3 Texturing .. 54

5.3.1 UV Mapping .. 54

5.3.2 Texture mapping ... 59
5.3.3 Normal mapping .. 61

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User
Interface .. 63

6.1 Concept ... 63

6.2 User Navigation and Perspective ... 64

6.3 Graphical User Interface .. 65
6.3.1 The Main Menu ... 65
6.3.2 The Submenu .. 70

6.4 Additional Features .. 75
Chapter 7 Implementation ... 77

7.1 3D model import .. 77
7.2 Creation of the 3D environment ... 78
7.3 User Navigation and Camera Control .. 80

7.4 Spatial Recognition .. 83
7.5 The Main Menu .. 84

7.5.1 Transportation functionality ... 86

7.5.2 Sun simulation functionality ... 87

7.5.3 Display measurements functionality .. 89

7.5.3.1 Data Storage .. 89

7.5.3.2 Initialization of the database ... 91

7.5.3.3 Display measurements ... 91

7.5.3.4 Clickable measurements .. 92

7.5.4 Display Raw Data functionality .. 93
7.6 Display coordinates dynamically .. 96
7.7 The Submenu .. 97

 vi

7.7.1 Alteration functionality ... 98

7.7.2 Information plane .. 103
7.7.3 Measure Dimensions Functionality ... 103

7.8 Lighting transition ... 105
7.9 Compass ... 108
7.10 Application utilities ... 108

Chapter 8 Result and System Evaluation ... 110

8.1 3D Reconstruction Evaluation.. 110

8.1.1 Accuracy Evaluation .. 111
8.2 Evaluation of the application .. 113

Chapter 9 Conclusions and Future Work .. 116

References .. 117

 vii

LIST OF FIGURES

Figure Page
Figure 2.1 An example a of a virtual environment. ("A Coved Streetscape" by Prefurbia
- Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons) 4
Figure 2.2 A Point cloud laser scan dataset (Julian Leyland -University of Southampton)
 .. 8
Figure 2.3 An example of polygonal modeling. ... 10

Figure 2.4 Example of a triangle mesh representing a dolphin. 12
Figure 2.5 Right cube textured with only diffuse map. Left cube textured with normal
map along with diffuse map. .. 14
Figure 3.1 An empty GameObject with a transform component. 20
Figure 3.2 An example of a mesh filter and a mesh renderer component. 21
Figure 3.3 Left: a material component. Right: the built-in shaders that Unity provides. . 22

Figure 3.4 Unity's interface with a scene loaded. .. 24
Figure 3.5 3ds Max interface. .. 25

Figure 3.6 AutoCAD Civil 3D interface. ... 26
Figure 3.7 Meshlab Interface ... 26
Figure 4.1 Venetian Neoria at the old harbor of Chania. ... 27

Figure 4.2 The remaining Neoria. The seven continuous domes and the Grand Arsenal
(image taken from Google maps). ... 28

Figure 4.3 Damaged areas. ... 29

Figure 4.4 Inappropriately restored areas. .. 29

Figure 4.5 Total Station. .. 30
Figure 4.6 Horizontal angle θ. ... 31

Figure 4.7 The vertical angle ZA and the slide distance SD. ... 31
Figure 4.8 The selected positions (stations) from which we took the measurements. ... 32
Figure 4.9 The measured points (in red) of a section at the south part of the monument.
 .. 33
Figure 4.10 An example of the measurements we acquired of some of the damages.
We focused on measuring their outline and their depth. ... 34
Figure 4.11 The sketch of the south side of the seventh dome. The measured points are
marked with their respective numbers. .. 35
Figure 4.12 A sample set of the final GGRS87coordinates (id;easting;northing;height).
 .. 36

Figure 5.1 The points acquired displayed in 3D space. ... 37
Figure 5.2 Implementation of the ball pivoting algorithm. Holes and discontinuities are
shattering the mesh. .. 39
Figure 5.3 A part of a TIN surface created with Delaunay triangulation. 40

Figure 5.4 Civil3D's viewport. It processes the data with a 'top' view. 41
Figure 5.5 Rotation of south group data. ... 42
Figure 5.6 Rotation stages of north data. .. 43
Figure 5.7 Rotation stages of west group data. ... 44
Figure 5.8 Rotation stages of east group data. ... 45

file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088057
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088057
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088058
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088058
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088059
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088060
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088061
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088061
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088062
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088063
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088064
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088065
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088066
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088067
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088068
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088069
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088071
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088072
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088073
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088074
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088075
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088076
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088078
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088078
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088080
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088080
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088081
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088082
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088082
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088083
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088084
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088085
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088086
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088087
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088088

 viii

Figure 5.9 Import of csv files for east and west data. .. 46

Figure 5.10 Insertion of the data files in survey database. .. 46
Figure 5.11 Above the measured 3D points of the south side. Below the measured 3D
points of the west side. .. 47
Figure 5.12 Above the measured 3D points of the north side. Below the measured 3D
points of the east side. .. 47
Figure 5.13 The triangulated surface of the south side. .. 48
Figure 5.14 The triangulated surfaces of (clockwise from top left) the west, north and
east sides. ... 48
Figure 5.15 On top: the south side as it was imported from Civil3D (i.e. the TIN
surface). On bottom: the north surface after some process. ... 49
Figure 5.16 The stages of the west side correction. .. 50
Figure 5.17 Depth details in doors and windows. .. 51

Figure 5.18 Stages of attachment. Each surface was attached accordingly to form the
final shape of the building. ... 51

Figure 5.19 The final form of the 3D model. .. 52

Figure 5.20 The 3D model after implementing midpoint subdivision. 53
Figure 5.21 Perfectly rounded windows after further refinement. 54
Figure 5.22 An example of UV mapping of a cube. The flattened cube can be painted to
texture the cube. ... 55
Figure 5.23 The Unwrap UVW modifier interface. Its menu is on the right with the UV
editor open in the middle. .. 56
Figure 5.24 Some examples of the face groups that were created for texturing. 57
Figure 5.25 Left: the seams of the mesh that separate the clusters. Right: the created
clusters are shown on the UV editor window. .. 58

Figure 5.26 UV texture coordinates rendered in bitmap images. 58

Figure 5.27 Photographs of the westernmost façade of the north side taken on the field.
 .. 59

Figure 5.28 The UV template we rendered on the left, and the texture we created on the
right. .. 60
Figure 5.29 The textured group. Displayed with (left) and without (right) the triangle
mesh. .. 60
Figure 5.30 The textured model displayed from several sides. 61

Figure 5.31 An example of a normal map. .. 61
Figure 5.32 A normal map (right) generated from the texture (left). 62
Figure 6.1 The perspective of the user. It is a first person view. 64

Figure 6.2 The main GUI. .. 65

Figure 6.4 Part of the building with the light source stopped above it (left) and in the
shadows (right). ... 66
Figure 6.3 The display when the user presses each transport button. Clockwise: north,
south, east, west. .. 66
Figure 6.5 The day/night transition. On the top left the day simulation is shown , on top
right a middle time of day is shown and on the bottom the night simulation is displayed.
 .. 67

file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088091
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088091
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088092
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088092
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088093
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088094
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088094
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088095
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088095
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088096
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088097
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088098
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088098
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088099
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088100
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088101
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088102
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088102
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088103
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088103
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088104
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088106
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088110
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088111
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088112
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088113
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088114
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088116
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088116

 ix

Figure 6.6 The display measurements functionality. On the right picture the
measurements that were conducted are displayed on the surface (The left picture is
without that functionality enabled). .. 68

Figure 6.7 When a green cube is clicked the corresponding geographical data from the
measurements appear next to it. ... 68
Figure 6.8 The display raw data toggle activated. A scroll plane appears on the screen
with the geographical information acquired. .. 69
Figure 6.9 When a point ID button is pressed, information about its position appears on
screen and the point is displayed on the surface. ... 70
Figure 6.11 The material of the dome changed in order to cover the white paint. The
user can toggle between surfaces. .. 71
Figure 6.10 Two hotspots as they appear on the surface monument. 71
Figure 6.12 On the left added cement can be seen on the monument's facade. The user
can toggle between materials in order to visualize the original surface. 72
Figure 6.13 The user can alter the geometry provided, by toggling between the existing
one and the 'restored' one. .. 72

Figure 6.14 The missing roof edge can be visualized with the toggle hotspot button. ... 73
Figure 6.15 The blocked door on the south side can be replaced with a regular one. .. 73
Figure 6.16 When the 'Show Info' button is clicked, a scroll plane with historical
information appears on the screen. ... 74
Figure 6.17 The steps for measuring the dimension between two points. 75

Figure 6.18 The dynamic display of the coordinates. Wherever the mouse points, the
corresponding coordinates of the spot appear on the bottom of the screen. 76
Figure 7.1 Import settings for assets. .. 77

Figure 7.2 Bumped diffuse shader. ... 78

Figure 7.3 The final model imported in Unity. The normal mapping depicts a high level
of surface detail. .. 78
Figure 7.4 The terrain we created in 3ds Max (left) and the monument with the terrain
(right). .. 79
Figure 7.5 Street lights as created in 3ds Max (left) and places in the scene (right). 79
Figure 7.6 The components of the parent of the first person controller. 81

Figure 7.7 The components of the main camera. .. 82
Figure 7.8 The east side trigger. In the inspector we have defined as trigger and we
have disabled the mesh renderer. ... 83
Figure 7.9 Top left: sun parent object with the children objects. the components of the
sun and directional light object are shown. .. 88

Figure 7.10 The GUI of the database as is displayed on screen. 94

Figure 7.11 The sphere object components. ... 95
Figure 7.12 The mouse points at a spot and its coordinates are displayed on the bottom.
 .. 96

Figure 7.13 The object used to alter the appearance of the dome. The white parts are
gone, and are textured with similar looking material.. 99
Figure 7.14 The object representing the missing roof. .. 100
Figure 7.15 The part of the building as is currently (left) and with the missing roof edge
(right). .. 100
Figure 7.16 The material list of the 3D model. ... 101

file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088120
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088120
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088121
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088121
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088123
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088128
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088128
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088131
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088132
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088133
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088133
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088134
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088134
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088135
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088136
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088137
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088138
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088138
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088139
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088139
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088140
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088141
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088142
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088142
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088143
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088143
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088144
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088146

 x

Figure 7.17 The created object with the door opening. The newly created faces are
rendered in red. ... 102
Figure 7.18 The streetlight with the two lights attached to it and a plane with an image of
a glow. ... 106
Figure 8.1 The comparison of the 3D model with the original raw data. 112
Figure 8.2 The instructions menu. When one of the buttons is clicked instructions about
a particular functionality are displayed. ... 114

file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088147
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088147
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088148
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088148
file:///C:/Users/esarri/Dropbox/thesis.docx%23_Toc423088149

Chapter 1 Introduction

 1

Chapter 1 : Introduction

 1.1 Concept

In the last years, virtual environments have established their presence in the scientific
field due to the surge of the technology advancements. They have been a huge aid in
the visualization of scientific data, contributing in ways of illustrating, understanding or
assessing them. The 3D digitization that virtual environments facilitate, captures
scientific or cultural data and preserves them for posterity. Digital 3D reconstructions of
physical objects provide not only a way of storing information but also a means for
scientific research and easier data accessibility to a wide audience.

Benefited by the expansion of such technologies, the heritage community has
witnessed an increase in three-dimensional photorealistic reconstructions of
archaeological structures. Assisted by advances in computer graphics and digital
representation, the architectural and archaeological society have been frequently
developing digital content. 3D reconstruction methods promote and ensure that
scientific and historical accuracy is preserved. The ability to reconstruct a historical
artefact or a building‟s current or past structure is an invaluable tool for assessing and
moving the data into the future.

The 3D digitization of current historical structures and the 3D reconstruction of their
appearance should be based on accurate on-site measurements. Tacheometry
acquisition methods [1] use modern total stations that result in high accuracy point
measurements as well as quick and efficient spatial data acquisition in order to create a
geometric mesh of existing geometry structures. The aim of virtual depiction and
computer graphic techniques is the creation of accurate, high quality visualizations that
faithfully represent the geometric structure in a physical environment, making it in
cases, indistinguishable from the real scene. Reliable geometric measurements are
necessary to create a geo-referenced 3D model which could be presented and
manipulated by users.

In this thesis, the integration of tacheometry acquisition and computer graphics puts
forward a framework for the scientifically accurate 3D reconstruction of „Neoria‟, a
historical building in Crete, Greece. Initially, a detailed 3D geometric model of the
monument is created based on acquired terrestrial points on-site. Surface
reconstruction and processing methods ensure that a detailed geometric mesh is
constructed based on far fewer points available compared to laser scanning. The
created 3D model is presented via an interactive application developed based on game
engine technologies. The user can interactively manipulate as well as navigate the
geometric model. Advanced interactive functionalities are developed in relation to
visualizing the monument under different conditions. Moreover, the geographical data
that were acquired are presented and associated with the model, putting it in context
with the real world and the user can gather scientific information about the monument.

Chapter 1 Introduction

 2

The goal of this thesis was to utilize a small number of acquired data points and present
a fully interactive visualization of a georeferenced 3D model.

 1.2 Thesis Outline

In the following chapters the framework that was followed is explained thoroughly.
Beginning with the data acquisition process, the 3D reconstruction and continuing with
the development of the application, the stages of the implementation of the project are
analytically presented, as well as the tools and features that were used. More
specifically:

In the second chapter the research that was conducted is presented. The use and
significance of 3D technologies is explained. The chapter researches and evaluates the
available methods of acquiring 3D data as well as providing an insightful review of
surface reconstruction algorithms. Moreover a small review of game engines is
provided.

In the third chapter the software tools that were used in the development of the project
are described. Unity 3D‟s main components are presented and explained, as well as
how the tools and features that it provides are combined to develop interactive
applications. The rest of the modeling software that was used in the duration of the
thesis development are also presented.

The fourth chapter describes the data acquisition process. After a brief historical
background of the examined monument, it presents how the field work was conducted,
what equipment was used and the methodology of the measurements. The
characteristics of the data that were acquired are presented, as well as their initial
processing.

The fifth chapter thoroughly presents the 3D model creation. It begins with the
examination of the data and the established methods of surface reconstruction, and
describes the applied method and the reasoning behind its use. It continues with the
surface processing and the methodologies that were employed in order to result in a
photorealistic 3D representation of the model.

In the sixth chapter the 3D interactive application that was developed is introduced. The
Graphical User Interface is presented, along with the functionalities that were
implemented.

The seventh chapter contains the analytical description of the implementation of the
application. It presents how the functionalities were created, the methods that were
applied and the process of the development in order to create the final application.

Chapter 1 Introduction

 3

In the eighth chapter the evaluation of the project is presented. The assessment of the
quality of the 3D model is conducted, through an accuracy evaluation. The evaluation of
the final application by users is described, along with the changes that were
implemented based on their suggestions and comments.

In the ninth chapter the conclusions of the whole development process are presented,
along with suggestions about future extensions.

Chapter 2 Background and Literature Review

 4

Chapter 2 Background and Literature Review

 2.1 Virtual Environment

Virtual environment is considered a simulated real or imaginary environment, created
with computer graphics and programming. It is a three-dimensional space, which users
can interact with and manipulate. These environments often referred to as 3D
interactive environments are categorized in two groups, the desktop virtual reality and
the immersive virtual reality. In the desktop virtual reality the user can observe or
interact with a 3D environment that is displayed on a screen, whereas in immersive
virtual reality the users can fell that are present in the 3d world, creating the illusion of
reality. This can be achieved through the use of head-mounted displays (stereoscopic
goggles) or cave automatic virtual environments (CAVE). [2]

As the technology improved, the use of such environments became more frequent.
Along with the advances in computer graphics, 3D interactive environments have found
their place in fields such as science, education, entertainment and medicine. The use of
immersive virtual reality applications has rapidly increased not only in entertainment but
also in training (pilots and astronauts are trained through simulations). Desktop virtual
reality doesn‟t require any expensive hardware or software and it is more accessible to
the public. Having started in the entertainment industry, such technologies have rapidly
spread and have been a huge aid in teaching, learning, the industrial field and the
visualization of scientific data (architectural, physical, medical, etc) [3]. The latter has
played an important role in illustrating, understanding and assessing the data.

 Figure 2.1 An example a of a virtual environment. ("A Coved Streetscape"
by Prefurbia - Own work. Licensed under CC BY-SA 3.0 via Wikimedia
Commons)

Chapter 2 Background and Literature Review

 5

Our interest is focused in the use of such 3D interactive environments to display
scientific data. In our case geographical data are used to form a three dimensional
model displaying an archaeological monument which is presented through a virtual
environment. The research that was conducted, in order to create the framework we
followed, is presented in this chapter.

 2.2 3D Digitization

Various scientific fields are interested towards digitally representing physical objects.
The depiction of objects as digital models is becoming a significant part of fields such as
engineering, scientific research, entertainment, architecture and archaeology. 3D
technology is utilized so that we could capture the world around us in an accurate way.

Cultural heritage has embraced such technologies. Three-dimensional digitization is a
way of moving the data into the future, preserving invaluable artifacts and monuments
for posterity. Objects of historic value face the danger of deterioration from erosion,
weathering or damage. 3D digitization not only can replicate geometry and texture with
precision but also can be used for restoration, access or research.[4]

The process of digitization relies heavily on the size of the object, as well as its
complexity. In some cases it is implemented by modeling the object using computer
aided design programs based on empirical measurements. This method can be applied
in objects with simple shape and not many differentiations on their surface. The
drawbacks are the possible lack of accuracy and the human error that this method may
entail. Proper methods for 3d digitization acquire data with the use of electronic
equipment. In this way the digital model is created with a high level of accuracy,
containing all the surface details. [5]

It has become clear, that to obtain an accurate record of the current condition of an
object, a ranging device must be employed. That approach generates data with which
the geometric and thematic information can be reproduced. The variety of those ranging
devices that are available is presented in the next section. [6]

2.3 Data Acquisition Methods

Three dimensional digitization should be based on accurate on site measurements [8].
Technological advances have given the ability of fast and high quality data obtainment
through a variety of electronic devices. The electronic equipment has given a reliable
and automatic nature to the data acquisition process that has led to accurate and high
quality results.

Chapter 2 Background and Literature Review

 6

The main methods to acquire data for the documentation of objects in three dimensional
environments are photogrammetry, laser scanning and the topographic method which
employs a geodetic total station [7]. They are explained in the following sections.

 2.3.1 Photogrammetry

Photogrammetry is the science of making measurements from photographs. It is used in
fields, such as topographic mapping, architecture, engineering, and geology, as well as
by archaeologists and by meteorologists in cases where objective weather data cannot
be obtained [9]. Photogrammetry refers to acquiring reliable information about physical
objects and the environment through processes of recording, measuring and
interpreting photographic images.

It is widely adopted for 3d digitization, by mainly using a series of photo images to
computationally map a 3d model or space. This is accomplished without any physical
contact with the object which is the main difference to other methods of surveying. It is
categorized in two basic fields : aerial photogrammetry and close-range
photogrammetry. In aerial photogrammetry the images are taken from an aircraft
vertically pointed towards the ground. In close-range photogrammetry the camera is
typically on a tripod or hand-held.[10]

In order to be employed for architectural and archeological 3d reconstruction, it requires
specialized hardware and software, such as a non standard digital camera and a
geodetic total station. The acquisition of the digital images is a meticulous process, as it
requires controlled shooting in order to capture every visible surface of the object. The
content and the angle of each image should be determined beforehand in order to have
continuous images which overlap with each other, something that is required for the
software process afterwards. It is also necessary to measure coordinates in order to
orient the acquired images. The geodetic total station measurements provide the
necessary geographical information to result in a geo-referenced 3d model.

Photogrammetry‟s outcome is a high quality 3d model which includes geometric
information. However, it has drawbacks as it can lead to unspecified geometry. This can
be caused by inadequate images, referring to not only the number and the
consecutiveness of the photos but also to the content. Dark shadows and low
luminance areas can prevent efficient data acquisition, leading to inconclusive results.
In addition, the amount of 3d data can be quite big, requiring computational power and
special software to process it. [11],[12],[13]

 2.3.2 Laser Scanning

Laser scanning is considered the most advanced step in the technological progress in
the field of digital documentation in architecture and archaeology. It is referred to the

Chapter 2 Background and Literature Review

 7

controlled steering of laser beams followed by a distance measurement at every
pointing direction and is used to rapidly capture shapes of objects , buildings and
landscapes [14]. The devices used in this method, the laser scanners analyze objects
and collect data on their appearance and shape that are used to construct digital three
dimensional models.[15]

There is a variety of laser scanners available. Different technologies are used in their
functionality. They are mainly categorized as contact and non-contact. Contact
scanners probe the subject through physical touch to acquire information, while non-
contact scanners acquire information from distance. Non-contact scanners are further
categorized in active, where they emit some kind of radiation or light and detect its
reflection or radiation passing through object, and passive , which they don‟t emit
radiation themselves but detect reflected ambient radiation from objects. Each of these
scanners is suitable for different uses. In the field of digital documentation of objects
non-contact active scanners are used.

Laser scanners acquire a large number of points on an object‟s surface, which are used
to form a point cloud. The point cloud, which is the direct outcome of the laser scanner,
represents the dense set of points that the device has measured. Each point is
represented by a set of three dimensional coordinates (X,Y,Z) and a variable i which
refers to the intensity of the reflected signal. A single scan usually is not adequate to
fully capture the morphology of a structure or an object. Several scans are required from
different locations. These scans must be fused together correctly, into a common
coordinate system in order to form a complete 3d model. This process is called
registration.

The quantity of data acquired with laser scanners can be up to millions of points, which
can be a drawback for its post processing. When a high quality result is aimed at, those
numbers are common making the raw data treatment very time consuming and quite
complicated. The computational cost can be high and even with the latest hardware and
software products the quantity of the data should be reduced, so that the data
processing can run smoothly. Additionally, it should be noted that the laser scanning
equipment is highly expensive.[16] [17] [18]

Chapter 2 Background and Literature Review

 8

 2.3.3 Geodetic Total Station

The topographic method of data acquisition employs a geodetic total station, which is an
electronic, optical instrument used in modern surveying. It takes measurements by
emitting laser beams to a target and detecting light reflected off it and calculating the
deviation of the wavelength of the reflected light. It carries out goniometric
measurements at the same time with measurements of lengths. Specifically, it
measures slope distances, straight and perpendicular angles, and heights. The raw
data of the total station result in three dimensional coordinates x,y,z or easting, northing
and elevation which are computed from the measurements using trigonometry and
triangulation. (The functionality of the total station is further explained in chapter 4.)

The geodetic total stations are portable, inexpensive in comparison with the laser
scanners and widely available. They don‟t require special training and can acquire fast a
collection of spatial coordinates on site. They are considered instruments of high
accuracy and can produce precise results even in cases of documentation of huge
objects with big dimensions. Due to the fact that the total stations measure selected ,
individual points the post processing is low-cost , flexible and simpler in relation to the
previous methods. [19] [20]

 2.3.4 Choice of data acquisition method

Both the photogrammetry and the laser scanning methods result in high quality 3d
models. They can capture great detail and depict accurately the exact morphology of
the surface. However, they include huge amounts of data and in most cases require
special and expensive hardware and software. In the case of laser scanning the

Figure 2.2 A Point cloud laser scan dataset (Julian Leyland -
University of Southampton)

Chapter 2 Background and Literature Review

 9

material cost as well as the computational cost is extremely high and the model
reconstruction process is very time consuming.

On the other hand the total station is fast, flexible, low-cost and highly accurate. What
can be considered as a disadvantage, is that it measures one point at a time, making
difficult to acquire a large quantity of data at once. However, if the points acquired are
focused on interest areas and the amount is sufficient enough, the result can be highly
accurate with great quality.

What it should not be forgotten is that there is always a trade-off between economic

resources, computational power and technology available. Having considered the

resources and the outcome, our choice for the data acquisition process is a geodetic
total station. The framework that was implemented with the employment of the total
station is presented in later chapters.

 2.4 3D Computer Graphics

The field of computer graphics is concerned with generating and displaying three-
dimensional geometric data in a two-dimensional space (e.g., computer monitor,
screen). Whereas a single point in a two dimensional graphic has the properties of
position, color, and brightness, a 3D point adds a depth property that indicates where
the point lies on an imaginary Z-axis.

The creation of 3D graphics begins with the modeling process, followed by the layout
and interactivity of the modeled objects in a scene. The process ends with the 3D
rendering, which refers to the computer calculations required to display the graphic on a
screen. [21]

 2.4.1 3D Modeling

3D modeling refers to the process of creating the three dimensional surface of an
object. The product of this process, the 3D model, is formed by a collection of points in
3D space connected by geometric entities such as lines, triangles, and curved surfaces.
The 3D model can originate manually, created by a user of a 3D modeling tool,
algorithmically or it can be scanned into a computer from real world objects (via
methods that are mentioned in the previous sections).

The 3D models are separated in two categories. One are the solid models, which
define the volume of the object they represent. These are more realistic, but more
difficult to build. Solid models are mostly used for non visual simulations such as
medical and engineering simulations. The second are the shell or boundary models.
These models represent the surface, the boundary of the object, not its volume. These

Chapter 2 Background and Literature Review

 10

are easier to work with than solid models. Because the appearance of an object
depends largely on the exterior of the object, boundary models are the ones mainly
used in computer graphics. Almost all visual models used in the entertainment industry
are shell models.

A 3D model consists of points called vertices that define the shape and form polygons.
A polygon is an area formed from at least three vertices, a triangle , or four vertices ,
which is called a quad. The line that joins one vertex with another is called edge.

There are several modeling methods. The most commonly used ones are:

Polygonal modeling: is a modeling process that represents the surface of an object
using polygons. The vertices are connected by line segments to form a polygonal mesh.
The vast majority of 3D models today are built as textured polygonal models, because
they are flexible and rendered quickly. However, polygons are planar and can only
approximate curved surfaces using many polygons.
Curve modeling: Surfaces are defined by curves, which are determined by weighted
control points. The curve follows but does not necessarily interpolate the points.
Increasing the weight for a point will pull the curve closer to that point.
Digital sculpting: Still a fairly new method of modeling, 3D sculpting has become very
popular in the last years. It refers to the use of software that offers tools to push, pull,
smooth, or otherwise manipulate a digital object as if it were made of a real-life
substance such as clay. It can introduce details to surfaces that would otherwise have
been difficult or impossible to create using traditional 3D modeling techniques. The
downside is that in order to achieve detail with sculpting the models must have a high
number of polygons. [22]

Figure 2.3 An example of
polygonal modeling.

Chapter 2 Background and Literature Review

 11

 2.4.2 Layout

After the 3D models are created they must be placed in the scene. This defines spatial
relationships between objects, including location and size and involves multiple objects
interacting with one another. For example, a solid object may partially hide an object
behind it. This stage also includes animation, which refers to the temporal description of
an object, how it moves and deforms over time.

 2.4.3 3D Rendering

Converting information about 3D objects into a graphics image that can be displayed is
known as rendering. It usually requires considerable memory and processing power. It
is the process of adding realism to computer graphics by adding three-dimensional
qualities such as light, shadows and variations in color and shade. This process is
usually performed using 3D computer graphics software. There are many rendering
methods that have been developed, each one appropriate for specific applications.
There is the non photorealistic rendering, which gives the effect of painting, drawing or
cartoons, and the rendering methods aiming to achieve high photorealism.

Another categorization is suitability for real time rendering and non real time rendering.
Non real time rendering is implemented in non interactive media such as films and
video. In this case, the rendering process can take huge amounts of time. That is
because non real time rendering has the advantage of very high quality even with
limited processing power due to the absence of real time response, which makes the
time for the rendering process not considerable. A method suitable for non real time
rendering is ray tracing, which simulates the path of a single light ray as it would be
absorbed or reflected by various objects in the scene. Real time rendering is
implemented in interactive media such as games and simulations. The calculations and
the display are happening in real time. The primary goal is to achieve an as high as
possible degree of photorealism at an acceptable rendering speed. This is 24 frames
per second, as that is the minimum the human eye needs to see to successfully create
the illusion of movement.

A method that is quite popular is radiosity. Radiosity is a global illumination algorithm, in
the sense that the illumination arriving on a surface comes not just directly from the light
sources, but also from other surfaces reflecting light. It is used not only for non real time
rendering but also for real time with the use of pre computed calculations on the scene.
[23]

Chapter 2 Background and Literature Review

 12

 2.5 Definitions

2.5.1 Polygon Mesh

A polygon mesh consists of vertices, edges and faces that define the shape of a 3D
object. The vertices are points which represent positions along with other information
such as color and texture coordinates, an edge is a connection between two vertices
and a face is a closed set of edges. The faces can be represented by triangles (three
edges), quads (four edges) or convex polygons (five or more edges). A vertex can be
shared by many adjacent faces, and an edge can be shared by no more than two faces.
The faces share edges and form the three dimensional surface of an object like „tiles‟.

A polygon mesh is fairly easy to render, however most rendering hardware supports
only triangle or four sided faces (quads). It should be noted that most computer graphics
software require that objects be composed entirely of triangles or quads. [24]

 2.5.2 Texture Mapping

There are two ways of adding detail to a surface. One method is to add details via
modeling. That means that extra polygons need to be created in order to form the
details. This results in increasing the scene complexity and consequently the rendering
speed. In addition there are some fine details that are very hard to model. The other
method, which is a more popular approach is to map a texture to the surface. Texture
mapping is making possible to simulate photorealism in real time, by vastly reducing the
number of polygons and lighting calculations needed to create a realistic 3D scene.

A texture map is a bitmap image that is applied to the surface of a polygon. Every vertex
in a polygon is assigned a texture coordinate, which is known as a UV coordinate.
Image sampling locations are then interpolated across the face of the polygon to
produce a visual result that seems to have more details than could otherwise be
achieved with a limited number of polygons.

Figure 2.4 Example of a triangle mesh
representing a dolphin.

Chapter 2 Background and Literature Review

 13

Texture mapping was originally a method of simply mapping pixels from a texture to a
3D surface. Nowadays many complex mapping methods have been developed in order
to add photorealism and detail to a flat surface. Some of the most used mapping
methods are presented below. [25]

Diffuse mapping: A diffuse map is a texture you use to define a surface's main color. It
is the most frequently used texture mapping method. It wraps a bitmap image onto the
surface while displaying its original pixel color. Any bitmap image, such as images
captured by digital camera, can be used as diffuse map. It sets the tint and intensity of
diffuse light reflectance by the surface.

Bump mapping: is a texturing technique for simulating small displacements on the
surface of an object, while the surface geometry is not modified. Instead only the
surface normal is modified as if the surface had been displaced. This is achieved by
perturbing the surface normals (the imaginary vectors perpendicular to the surface that
are used in lighting or shading calculations) of the object and employing the perturbed
normal during lighting calculations. It uses the values of a grayscale image to simulate
abnormalities on the surface. Black areas recede and white areas protrude.

Normal mapping: is considered a variation of bump mapping. A common use of this
technique is to greatly enhance the appearance and details of a low polygon model by
generating a normal map from a high polygon model or a height map. (a height map is a
raster image used to store values such as surface elevation data, for display in 3D
computer graphics). Normal maps consist of red, green, and blue. These RGB values
translate to x, y, and z coordinates, allowing a 2D image to represent depth. The 2D
image is applied to the surface. This way, a surface simulates the lighting and color
associated with 3D coordinates. In the normal map, each pixel's color value represents
the angle of the surface normal.

Other types of mapping include specular mapping, which allows parts of an object to
have a specular effect, reflection mapping which is a technique for approximating the
appearance of a reflective surface by means of a pre computed texture image and
opacity mapping which determines which parts of the object should be transparent and
how much.

Multitexturing is the use of more than one texture at a time on a polygon. For instance,
in order to achieve realism a diffuse map is inadequate. Nowadays it is used in addition
with normal maps, height maps or bump maps. Employing an appropriate multitexturing
technique is crucial, because is an easy, low-cost method of achieving high surface
detail with minimal computational cost.

Chapter 2 Background and Literature Review

 14

 2.5.3 Shader

A shader is considered a program that is executed during the rendering procedure and
it refers to the process of altering the color of a surface in the 3D scene, based on its
angle to lights and its distance from lights to create a photorealistic effect. Shading is
also dependent on the lighting itself that is used in the scene. Shaders are most
commonly used to produce lighting and shadow. Beyond that more complex uses
include altering the hue, saturation, brightness or contrast of an image, producing blur,
normal mapping, distortion, and a wide range of others.[26]

 2.6 Surface Reconstruction

The 3D data acquisition methods generate data that are three dimensional points.
These 3D points describe the shape or topology of the surface of an object. The goal is
to produce a 3D model of the studied object from these points. Surface reconstruction
algorithms deal with this problem. The input of these algorithms is a set of 3D points
and the output is a 3D model. More specifically, the goal of the surface reconstruction
algorithms can be stated as follows:
“given a set of sample points P assumed to lie on or near an unknown surface S, create
a surface model S‟ approximating S”(Fabio,2003) [27].
This is a well studied problem in the computer graphics community and it continuous to
be the theme of research. Since in most cases there is information about a surface only
through a finite set of sample points, the surface recovery cannot be guaranteed
exactly. As the point density increases the surface is more likely to be topologically

Figure 2.5 Right cube textured with only diffuse map. Left cube
textured with normal map along with diffuse map.

Chapter 2 Background and Literature Review

 15

correct, usually a good output is dense in detailed areas and sparse in featureless
areas. The usual input of these algorithms is a point cloud (a dense set of 3D points).

There is a vast variety of algorithms which reconstruct the topology of a surface from 3D
sample points. The classification of those algorithms can be quite complicated. This
categorization can range from the type of input data, to the way the procedure is
executed and the resulted surface. According to the type of input data the surface
reconstruction algorithms can be categorized as the algorithms that deal with
unorganized point clouds and structure point clouds. When the data are unorganized
point clouds the algorithms dealing with them do not use any assumptions on the object
geometry and the only information they have is the spatial position of the input data.
The algorithms dealing with structured point clouds take into account additional
information of the data. Another distinction is algorithms that deal with open or closed
surfaces.

Taking into consideration the way the surface is reconstructed, there are two main
categories. The algorithms that compute geometry and those that use implicit functions.
Computational geometry methods: They use geometric structures such as
triangulation, alpha shapes or the Voronoi diagram to form shape based on the input
points. The reconstructed surface interpolates all or most of the input points. That
means that the algorithms fit the created mesh on the existing points. One of the most
popular algorithms in this category is the powercrust algorithm (Amenta et al., 2001)[28]
which uses Voronoi diagrams. Another is the ball pivoting algorithm patented by the IBM
(Bernardini et al., 1999) [29] which uses alpha shapes.
Implicit functions based methods: They fit functions on the point cloud and they
extract the mesh from these functions. Popular algorithms are the Hoppe‟s algorithm
(Hoppe et al., 1992) [30] which estimates the surface using tangent planes and a signed
distant function of the points to the tangent planes, and the Poisson algorithm (Kahzdan
et al., 2006) [31] which utilizes a function that has value one inside the surface and zero
outside. These algorithms approach the problem by approximating the surface and the
initial set of input points may not be included in the resulting mesh.

The choice of the appropriate algorithm is important. A lot of parameters should be
taken under consideration. The type of data and their properties are a major factor in
that choice. If the input data does not satisfy certain properties required by the algorithm
the reconstruction produces incorrect results. [32],[33],[34]

 2.7 Subdivision Surface

In some cases, the object and their surfaces can be coarse and quite sharp. A usual
technique is to implement a subdivision surface. A subdivision surface is a method of
representing a smooth surface via the specification of a coarser polygonal mesh. The
process starts with a given polygonal mesh. A refinement scheme is then applied to this
mesh. This process takes that mesh and subdivides it, creating new vertices and new

Chapter 2 Background and Literature Review

 16

faces. The positions of the new vertices in the mesh are computed based on the
positions of nearby old vertices. That technique is used by the designers to create
smooth and nicely rounded models, giving a more realistic effect. [38]

There are two kinds of subdivision schemes; approximating subdivision surfaces and
interpolating subdivision surfaces. Approximating means that the result surfaces
approximate the initial meshes and that after subdivision, the newly generated points
are not included in the initial surfaces. Examples of such subdivision algorithms are
Catmull–Clark (Catmull and Clark, 1978) [35], and Doo-Sabin subdivision surface (Doo
and Sabin, 1978) [36]. Interpolating subdivision means that after the subdivision, the
control points of the original mesh are interpolated to form the resulting surface. A
popular method of interpolating subdivision is the butterfly subdivision (Zorin et al.,
1996) [37] which uses triangle meshes.

 2.8 Game Engines

A game engine is a system that is made to aid the development and creation of video
games. They are used by developers to help create games for consoles, mobile devices
and personal computers. Not only do they provide the necessary software framework to
develop the game but also they are able to render 2D or 3D graphics in real time,
bringing the developers idea onto the screen. The engine is also responsible for such
things as Physics, Artificial Intelligence, collisions and particle effects. Game engines
provide platform abstraction, which can hide platform differences during the stage of
developing. This creates platform independence. It should be noted that a huge
advantage of the game engine is hardware abstraction.

Game engines have a component based architecture. Each component is a software
package that implements a functionality. The main components are:

The rendering engine, which is the component that deals with the rendering. It
provides the rendering of the 3D models as quickly as possible, often with interactive
element in real time. It also provides support of various visual effects such as shadows,
particle and light effects. The rendering component is built upon a graphics application
programming interface (API) such as Direct3D or OpenGL providing abstraction to
different video cards.
The physics engine, which is responsible of giving a realistic sense of the laws of
physics. It simulates certain physical systems such as soft body dynamics, fluid
dynamics and collusions. It handles how objects interact with their environment by
simulating and controlling concepts such as gravity, acceleration, mass etc.
The audio engine, which is the component which consists of any programs related to
sound. It is built upon libraries providing software abstraction to sound cards.

Game engines also provide abstraction to input devices such as keyboard or mouse by
having the appropriate components build upon low-level libraries.

Chapter 2 Background and Literature Review

 17

Game engine technology has evolved and provided a general abstraction that has
made game engines very user-friendly. They have „outgrown‟ their initial purpose, which
is game developing and are used for a vast variety of applications. They are employed
by fields such as medicine, training providing simulations, science and education
offering interactive applications. The fields that have been greatly benefited are
architecture and archaeology. Visualization of buildings, monuments and the
environment are implemented through game engines giving not only a visual but also an
interactive element to the applications. Nowadays virtual environment and game
engines have interconnected, giving users accessibility to many fields and
applications.[39]

 2.9 Popular Game Engines

With the proliferation of game engines in the last years, the choice for the right game
engine can be tricky. Many powerful game engines have been released to the public,
giving the software framework and technological tools to developers to create their own
projects. The most popular game engines are presented below.

 2.9.1 Unreal Engine / Unreal Development Kit

Unreal Development Kit (UDK), is the free edition of Unreal Engine. Although primarily
developed for first-person shooters, it has been successfully used in a variety of other
genres. With its code written in C++, the Unreal Engine features a high degree of
portability and is a tool used by many game developers today. UDK has support for iOS,
Mac OS, Windows applications. It provides advanced lighting and shadowing and
rendering systems including global illumination system. It offers the ability of scripting in
C/C++ or UnrealScript, UDK‟s own scripting language. [40]

 2.9.2 Unity 3D

Unity 3D is a flexible and powerful development platform for creating multiplatform
3D games and interactive applications. Developed by Unity Technologies, it offers a
software development kit (SDK) and an integrated development environment (IDE) for
cross-platform applications. Developers have control over delivery to mobile devices,
web browsers, desktops, and consoles. It offers support to more than 15 platforms,
including Windows, OS X, Linux, Android, iOS. It includes Nvidia's PhysX physics
engine, and Unity Web Player, which is a browser plugin that is supported in Windows
and Mac OS X. Unity allows the use for a wide variety of texture mapping , dynamic
shadows and includes Beast a global illumination system that offers realistic lighting in
all applications. The game engine's scripting is developed on MonoDevelop, which is an
IDE and combines the operation of a text editor with additional features for debugging
and other project management tasks. Unity offers the ability to program in javascript, C#

Chapter 2 Background and Literature Review

 18

and Boo. The user friendly environment and the vast platform compatibility has made
Unity one of the most popular options among developers. [41]

2.9.3 CryEngine

CryEngine is a development solution for the creation of games and interactive
applications. It offers support for Windows, Linux and game consoles. Tools are also
provided within the software to facilitate scripting, animation, and object creation. It‟s
scripting language is lua, but it also supports C++. CryEngine is known for its graphical
capabilities. [42]

 2.9.4 Comparison

Unreal Engine and Unity are arguably two of the most popular game engines available
to the public today. CryEngine may have a high quality graphics output but its limited
platform support and lack of a robust community for development help has excluded it
from our consideration. Both the Unreal Engine and Unity are implementing great
graphics and have large community support. Both of them have expanded in
applications beyond gaming and many designers are using them both as a way for
creating interactive experiences and architectural and environmental visualizations.
However, Unity‟s ease of use and insuperable platform compatibility more than any
other game engine, has made it the ideal game engine for our project.

Chapter 3 Technological Background

 19

Chapter 3 Technological Background

 3.1 Unity 3D

 3.1.1 What is Unity 3D?

Unity 3D is a powerful cross-platform 3D game engine and a user friendly development
environment. Unity 3D helps developers to create games and applications for mobile,
desktop, the web, and consoles. Its 3D environment is suitable for laying out levels,
creating menus, doing animation, writing scripts, and organizing projects. Unity‟s
primary goal may be the development of 3D video games, however, it is also suitable to
create other kinds of interactive content, such as animations or 3D visualizations.

Unity is a fully integrated development engine that provides functionality to create
interactive 3D content. With Unity the developer can assemble assets into scenes and
environments, add lighting, audio, special effects, physics and animation,
simultaneously play, test and edit the application, and when ready, publish to chosen
platforms, such as Mac, PC and Linux desktop computers, Windows, the Web, iOS,
Android, Windows Phone 8, Blackberry 10, Wii U, PS3 and Xbox 360. Unity‟s complete
toolset, intuitive workspace and rapid, productive workflows help users to drastically
reduce the time, effort and cost of making interactive content.

 3.1.2 Project Structure in Unity 3D

Unity is defined by its component based architecture. Its workflow builds around the
structure of components. Each component has its own specific job, and can generally
accomplish its task or purpose without the help of any outside sources.

Each game or application created in Unity is called a project. Each project is consisted
of one or more scenes. Scenes contain the objects of the game. They can be used to
create a main menu, individual levels, and anything else. Every scene is considered as
a unique level. In each scene, the user can place the 3D environment, position the 3D
models and essentially designing the game in pieces. Every object in a scene is a
GameObject. GameObjects are consisted of components. Components are the basic
elements with which the user builds the project. GameObjects don‟t do anything on their
own. They need special properties in order to add behavior and characteristics. These
properties are attained through the components. The user can add a wide variety of
components in a GameObject. Unity provides a large number of components, but the
user can also create components using scripts.

 3.1.3 Components

Some of the most commonly used components in Unity are presented next.

Chapter 3 Technological Background

 20

Transform Component
Every GameObject contains a Transform Component. When creating a GameObject a
transform component is added automatically. It is impossible to create a GameObject
without that component.

The Transform Component is one of the most important Components. It defines the
GameObject‟s position, rotation, and scale in the game world. If a GameObject did not
have a Transform Component, it would be nothing more than some information in the
computer‟s memory. It effectively would not exist in the game world.

Asset Component
Assets are any resource the game uses. They are the models, materials, textures,
sounds and all other "content" files that can exist in a game or application. Other than a
few simple objects, Unity can‟t create most of these assets. Instead, they must be
created externally using 3D modeling applications and painting tools and then imported
into Unity. Unity‟s asset importing supports a wide variety of files. It accepts file formats
from 3D modeling applications such as 3DS Max, Maya, Blender. Unity also supports all
common image file formats, including PNG, JPEG, TIFF and even layered PSD files
directly from Photoshop. When it comes to audio, Unity supports WAV and AIF, ideal for
sound effects, and MP3 and OGG for music.

Mesh Components
3D meshes are the main graphic object primitive of Unity. Various components exist in
Unity to render meshes. The most commonly used components are the mesh renderer
and the mesh filter. They are used in collaboration in order to display an object. The
mesh filter takes a mesh from your assets and passes it to the mesh renderer for
rendering on the screen. The mesh renderer takes the geometry from the mesh filter
and renders it at the position defined by the object's transform component. When
importing mesh assets, Unity automatically creates a mesh filter along with a mesh
renderer. Another component is the text mesh. It generates 3D geometry that displays
text strings.

Figure 3.1 An empty GameObject with a
transform component.

Chapter 3 Technological Background

 21

Physics Components
Physics components allow the user to give objects realistic motion and reaction to
collisions. Unity has NVIDIA PhysX physics engine built-in. A physics engine is
computer software that provides an approximate simulation of physical systems. This
allows for unique realistic behavior and has many useful features. A rigidbody
component makes the object that is attached to be affected by gravity or forces and
collide with other objects. A character controller component is usually used when the
developer wants to achieve a first person perspective. This component doesn't follow
the rules of physics but instead it performs collision detection to make sure your
characters can slide along walls, walk up and down stairs, etc. There is also a variety of
collider components (mesh, box, sphere collider) which surround the shape of an object
for the purposes of detecting physical collisions.

Rendering Components
These are the components that have to do with rendering in-game and user interface
elements, as well as lighting and special effects. The camera component is essential as
it is used to capture and display the world to the player. It can be customized and
manipulated to fulfill the requirements of the user‟s application. The GUI Texture and
GUI Text components are made especially for user interface elements, buttons, or
decorations as well as displaying text on screen. Another important rendering
component is the light component. It brings a sense of realism. Lights can be used to
illuminate the scenes and objects, to simulate the sun, flashlights, or explosions just to
name a few.

Audio Components
These components are used to implement sound.

Materials and Shaders
Materials and shaders are crucial components that are categorized in the asset
component group. There is a close relationship between materials and shaders.
Materials are used in conjunction with mesh renderers and other rendering components
used in Unity. They play an essential part in defining how the object is displayed. The
properties that a material‟s inspector displays are determined by the shader that the
material uses. A shader is a specialized kind of graphical program that determines how
texture and lighting information are combined to generate the pixels of the rendered
object onscreen. In other words, it tells the graphics hardware how to render surfaces.

Figure 3.2 An example of
a mesh filter and a mesh
renderer component.

Chapter 3 Technological Background

 22

The user can select which shader each material will use. Specifically, a material defines
which texture and color to use for rendering, whereas the shader defines the method to
render an object.

 3.1.4 Scripting

Scripting is an essential part of Unity as it defines the behavior of the game or application.

Even the simplest game will need scripts to respond to input. Beyond that, scripts can
be used to create graphical effects, control the physical behavior of objects or how
characters and the player interact with the 3D environment. Unity supports three
programming languages: C# (C sharp) which is similar to C++, UnityScript, a language
designed specifically for use with Unity and modeled after JavaScript and Boo a .NET
language with similar syntax to Python. The scripts are written and edited in
MonoDevelop, which is an integrated development environment (IDE) supplied with
Unity. An IDE combines the familiar operation of a text editor with additional features for
debugging and other project management tasks.

Scripting is integrated with the component based architecture Unity uses. As it was
mentioned above, the behavior of GameObjects is controlled by the components that
are attached to them. Although Unity's built-in components can provide a wide variety of
features, each developer needs to create his/her own functionalities by creating custom
components using scripts. These allow the user to trigger events, modify existing
component properties and respond to user input in any way.

Each script makes its connection with the internal workings of Unity by implementing a
built-in class called MonoBehaviour. This class refers to the component that can be
enabled or disabled. Javascript automatically derives from the class without the need to
be declared, whereas the other two languages have to explicitly declare the class.

When a script is created, there are two functions automatically declared in it, Start() and
Update(). Start is called when a script is enabled and it is called exactly once in the

Figure 3.3 Left: a material component. Right: the built-in shaders
that Unity provides.

Chapter 3 Technological Background

 23

lifetime of the script. The Start function is the place where any
initialization happens. Update is the function that implements
game behavior. It is called in every frame and is crucial for
checking the state of various parts of the application. From a
programming standpoint each game or application runs in loop,
which allows it to run smoothly regardless of a user's input or lack
thereof. For a change to occur an „event‟ must be activated. The
update function checks every frame for such events, which can
be changes to position, state and behavior and determines the
outcome. The start function is called by Unity before the Update function is called for the
first time.

There are other kinds of event functions that can trigger a change. There are the input event

functions, that track the mouse movement and input. These functions allow a script to react
to user actions with the mouse. Some examples of those functions are OnMouseDown,
which is called when the user has pressed the mouse button, OnMouseUp which is
called when the user has released the mouse button, OnMouseEnter which is called
when the mouse enters a GUI element, etc.

Another important function is the OnGUI function. Unity has a system for rendering
Graphical User Interface (GUI) controls over the main action in the scene and
responding to clicks on these controls. The code handling those events is treated
somewhat differently from the normal frame update and is placed in the OnGUI function,
which is called multiple times per frame update.

Apart from the functions provided by Unity, the developer can create his/her own
functions in order to control or determine the behavior of a GameObject, change the
properties of a component or altering the overall state of the application. In order for
these custom functions to be executed, they have to be called inside a Unity event
function, like Update.

The most commonly used functions were presented briefly above, as well as the
concept of how they are used. The basic notion of the Unity scripting is that the scripts
are components that can control the GameObject. Each component property
corresponds to a script variable and the scripts can access not only the components of
the GameObjects they are attached to , but also other GameObjects.

Unity‟s scripting API is extensive. The basic ideas were briefly analyzed above. Further
scripting details will be explained along with the implementation. For more information,
the reader can visit the Unity documentation:
http://docs.unity3d.com/Manual/ScriptingSection.html or
http://docs.unity3d.com/ScriptReference/index.html.

http://docs.unity3d.com/Manual/ScriptingSection.html
http://docs.unity3d.com/ScriptReference/index.html

Chapter 3 Technological Background

 24

 3.1.5 Interface

Figure 3.4 displays Unity‟s interface. Each part is described below.
1 - The Scene View is the interactive viewport. In Scene View the user positions
environments, the player, the camera, and all other GameObjects, as well as
maneuvering and manipulating them.
2 - The Game View is rendered from the camera(s) in the application. It is
representative of the final, published application and displays what the user sees.
3 - The Hierarchy contains every GameObject in the current Scene.
4 - The Console shows messages, warnings, and errors.
5 - The Project Browser contains the assets that belong to the project.
6 - The Inspector displays detailed information about your currently selected
GameObject, including all attached Components and their properties. [43],[44]

 3.2 Autodesk 3ds Max

Autodesk 3ds Max is a 3D computer graphics program for making 3D models,
animations and images. It is developed and produced by Autodesk Media and
Entertainment. It has modeling capabilities and a flexible plugin architecture. It is used
not only by video game developers, but also architectural visualization studios and the
movie industry. In addition to its modeling and animation tools, it also features shaders,
normal map creation and rendering, a customizable user interface, and its own scripting
language.

3ds Max‟s interface is shown in figure 3.5. The main viewport is displayed. On the top
there is the main toolbar and the ribbon which contains many tools for modeling. On the

Figure 3.4 Unity's interface with a scene loaded.

Chapter 3 Technological Background

 25

right there is the command panel which gives access to tools for creating and modifying
geometry, adding lights, controlling animation, and adding complexity to geometry.

The user can choose between two modeling techniques. Polygon modeling which is
more common with graphic design than any other modeling technique as the very
specific control over individual polygons allows for extreme optimization. Usually, the
modeler begins with one of the 3ds max primitives (box, sphere, cylinder, cone,
pyramid, plane) and using the provided tools adds detail and refines the model. The
other technique is NURBS or non-uniform rational B-spline, which is a mathematical
model for generating and representing curves and surfaces.

There is a variety of features for creating, editing, manipulating and refining a 3D model.
There are also features for texture assignment. The texture workflow includes the ability
to combine an unlimited number of textures and maps. 3ds max also provides tools for
UV mapping. [45]

 3.3 AutoCAD Civil 3D

AutoCAD Civil 3D is a civil engineering design software. It is used by civil engineers and
topographers. It is a software that helps you organize and manage survey and
geographical data as well as model earth surfaces, visualize geographical and spatial
data and aid civil design.

Figure 3.6 shows the Civil 3D interface. On top there is the ribbon which is the primary
user interface for accessing commands and features. On the left there is the toolspace
survey tab in which the user can manage, organize and edit survey data. [46]

Figure 3.5 3ds Max interface.

Chapter 3 Technological Background

 26

 3.4 MeshLab

MeshLab is an open source, portable, and extensible system for the processing and
editing of unstructured 3D triangular meshes. The system is aimed to help the
processing of the typical not-so-small unstructured models arising in 3D scanning,
providing a set of tools for editing, cleaning, healing, inspecting, rendering and
converting this kind of meshes. [47]

Figure 3.6 AutoCAD Civil 3D interface.

Figure 3.7 Meshlab Interface

Chapter 4 Monument Survey And Data Acquisition

 27

Chapter 4 Monument Survey And Data Acquisition

 4.1 Introduction

In this chapter we are presenting the object to be digitally reconstructed, „Neoria‟, a
massive historic building located at the old harbor of the old city of Chania, Greece. It is
important to study the object in question beforehand, its history, structural details and
architectural features in order to choose the appropriate method of acquiring the data.
The current state of the monument should also be considered.

Next we are describing the monument survey. Our work on the field, in order to gather
the spatial information we need, is presented. The equipment that we had in our
disposal is described. Taking into consideration the previous facts, we demonstrate the
detailed process of the digital measurement of the building using a total station.

Furthermore , the size, structure and damaged state of the building has influenced our
decision of which features and damaged areas to measure as well as how dense or
sparse our measurements throughout the monument should be. The final quantity of the
data is something we take into account, because our goal is to gather the appropriate
amount of information we need to digitally construct a geodetic mesh, without being a
computally heavy task.

At last, we are depicting the raw data that we acquired and the initial process of
converting them in our desired type, so that can be used in the extraction of the digital
surface.

 4.2 Venetian Neoria

Neoria is a beautiful venetian
building located at the old
harbor of the city of Chania.
During the Venetian occupation
(1204 - 1669), the need for the
closer presence of Venetians in
Crete made them construct a
large number of "Neoria"
(arsenali in Italian) in Chania,
where the ships would be
repaired during the winter.

 Figure 4.1 Venetian Neoria at the old harbor of Chania.

Chapter 4 Monument Survey And Data Acquisition

 28

In order to understand the original use of the arsenals, one must know that they were
open to the sea, which would flow into them up to a certain point. They were
interconnected by way of arched openings, while one could enter them via one of two
gates; the main entrance was located roughly centrally. A part of this gate survives
today, at the end of Daskalogianni Street. The construction of the first two "Neoria" in
Chania was completed in 1526. In 1593, sixteen "Neoria" had already been constructed.

In 1599, the south "Neoria" complex was completed with the construction of the 17th
"Neorio". In 1607, during the expansion of the northeast rampart, begins the
construction of 5 more "Neoria" at the heart of the port to the east. Two of them were
completed, however, only the walls to the arch of the third one were constructed. During
the Turkish period, the lack of maintenance works in the port and the degradation of the
role of “Neoria" also resulted in the alteration of the original function of “Neoria” which
were now used as military storage spaces. From the initial "Neoria" complex with 17
"Neoria", nine were demolished.

Nowadays, a group of 7 continuous domes is preserved-along with another one further
to the west, the "Grand Arsenal" (today, the Centre of Mediterranean Architecture). [48],
[49]

Figure 4.2 The remaining Neoria. The seven continuous domes and the Grand Arsenal (image
taken from Google maps).

Chapter 4 Monument Survey And Data Acquisition

 29

Our focus will be centered on the seven consecutive domes, as they are in the most
need of restoration. A close inspection reveals the deteriorating state of the structure.
The monument stands a few meters from the water facing, at times, adverse climate
conditions. Parts of the monument‟s stone walls have fallen, entire sections of walls are
loose and certain edges of the building are partially or entirely destroyed. Significant
structural elements are impaired and, as a result, Neoria is slowly losing its original
beauty. Cracks are now appearing and restoration efforts had been limited or wrongly
conducted. For instance, in order to repair cracks, craftsmen had often applied
unsuitable modern materials such as cement. The outcome of such badly managed
restorations was that at times, repairs had destroyed neighboring elements to the
restoration areas rather than preserving them.

Figure 4.3 Damaged areas.

Figure 4.4 Inappropriately restored areas.

Chapter 4 Monument Survey And Data Acquisition

 30

4.3 Monument Survey

 4.3.1 Introduction

In order to produce accurate on site measurements, we use a geodetic total station. As
it was presented in chapter 2, other methods of 3D data acquisition, such as
photogrammetry and laser scanning produce high-resolution results with great detail,
generating high-quality geometric meshes. However, these two methods require
expensive equipment, are time-consuming and produce large amounts of data which
have a high computational cost, and the post processing is quite complicated.

Having considered the volume and the structural state of the building, our data
acquisition will be implemented with the use of a total station.

 4.3.2 Geodetic Total Station

The raw data were acquired with the Nikon total station.

The total station measures angles and distances with precision from the instrument to
points to be measured. To be more specific, the horizontal angle, the vertical angle and
the slide distance are measured.

The horizontal angle is the angle on the horizontal plane that is determined by the total
station , the point to be measured and a reference point. This is shown in the figure 4.7
where T is the total station , B is the reference point and A is the point to be measured.

Figure 4.5 Total

Figure 4.6 Reflector Prism

Figure 4.5 Total
Station.

Chapter 4 Monument Survey And Data Acquisition

 31

The vertical angle is the angle between the point to be measured and the axis
determined by an imaginary point directly above the position of the total station (zenith)
and the ground. It is displayed in the figure 4.8

The slide distance is the distance from the total station to the point to be measured.

 4.3.3 Field Work

It is important to study the building to be surveyed, as well as explore the surrounding
area beforehand. We visited the area days before the measurements started, so that we
could organize the way the measurements would take place.

Figure 4.7 Horizontal angle θ

 Figure 4.6 Horizontal angle θ.

Figure 4.7 The vertical angle ZA and the
slide distance SD.

Chapter 4 Monument Survey And Data Acquisition

 32

An essential purpose of those early visits was to establish the positions from which we
will gather our data. These positions, called „stations‟ were selected to be around the
monument so that we could gain all the spatial information we needed. The stations are
the points where we set up the total station, in order to acquire our data.

Taking into consideration, the volume and the state of the building, we initially decided
to measure the contours of the seven domes. That would give us the basic outline of the
building. So from every station we measured points on the roof outline and on the
ground that were within its field of view. We also took measurements on the edges and
corners of the doors and windows , so that we could determine their exact position and
approximate their shape. An example of the basic measurements is shown below.

 Figure 4.8 The selected positions (stations) from which we took the
measurements.

Chapter 4 Monument Survey And Data Acquisition

 33

Figure 4.9 The measured points (in red) of a section at the south part of the monument.

Due to the extent of the erosion, it is impractical to document all the damages and the
impaired areas. It can be seen clearly that there are whole walls and large surfaces that
are hugely eroded and the detailed digital recording of those would be time consuming
and complicated. We decided to document only the more serious damages , or the
parts that the surface changes abnormally. Our interest was in getting information
mainly on their outline (shape) and their depth.

Chapter 4 Monument Survey And Data Acquisition

 34

The initial part of our field work lasted several days and we measured about 550 points
from 10 different stations. One of the advantages of the total station is that you can
easily later acquire additional points or take further measurements. Our framework
provides the option to add data to the project. In our case further data were acquired at
a later time. We measured 340 additional points, mostly on the west side.

During the field work we created the field sketch. We drew the basic outline and
features of the monument in parts, marking on paper all the measured points. We gave
each point an index in ascending order the same that was given at the digital
measurement. The field sketch is invaluable, because it helps us distinguish the points
and find easily their position on the building. It was very useful during the 3d modeling
process, it provided consult for element position and error checking , as well as an easy
interpretation of the measurements for a third party.

Figure 4.10 An example of the measurements we acquired of some of the
damages. We focused on measuring their outline and their depth.

Chapter 4 Monument Survey And Data Acquisition

 35

Figure 4.11 The sketch of the south side of the seventh dome. The measured points are marked
with their respective numbers.

In conclusion, surveying with a total station provides a fast and relatively easy method
of acquiring data, as well as giving the opportunity to stop the process at any time, and
resuming it at a later time without complications.

 4.4 Geodetic Data

The final results are in the form of Greek Geodetic Reference System ‟87 (GGRS87)
coordinates. The GGRS87 is a geodetic system commonly used in Greece. It is
considered a projection system [50].

Each measured point is depicted with 3 coordinates. The x coordinate is the easting
which represents the eastward distance, the y coordinate represents the northing which
refers to the northward distance and the z coordinate refers to height above the sea
level [51]. All the coordinates are measured in meters.

Chapter 4 Monument Survey And Data Acquisition

 36

Figure 4.12 A sample set of the final
GGRS87coordinates
(id;easting;northing;height).

Chapter 5 3D Reconstruction

 37

Chapter 5 3D Reconstruction

In this chapter the 3D Reconstruction process is described. We present the challenging
part of transforming the 3D data into surface as well as processing the surface to form
the final 3D model. The 3D modeling process is a collection of steps that lead to the
creation of the 3D object suitable to be imported in the game engine. We present the
surface creation, the post processing, the texturing, the materials and the shaders used,
all of which converge to create a realistic result.

 5.1 Surface Creation

 5.1.1 Data evaluation

The first step to create surface is to evaluate the spatial data. Having gathered together
all the spatial data in their final form, they are displayed in three dimensional space in
order to acknowledge their properties.

We are going to refer to the four walls of the building as the north side, the south side,
the west side and the east side. These four walls are depicted with less than 1000
points. This number is a extremely small considering the millions of points that laser
scanning or photogrammetry would have acquired for a building this size. Another
observation that plays a huge role in surface reconstruction is the varying density of the
sample points. Dense sets of points in a small area correspond to detailed parts of the
building and blank spaces correspond to featureless parts. Our data acquisition method
and our measurement process have created a distinctive collection of points that must
be taken under consideration for the surface creation process.

Figure 5.1 The points acquired displayed in 3D space.

Chapter 5 3D Reconstruction

 38

 5.1.2 Study of the known surface reconstruction algorithms

The next step in the process is to find an appropriate and correct way to connect the 3D
points in order to create a 3D mesh. One of the most difficult problems in surface
reconstruction is understanding how to connect the points in order to form the surface
that has the same topological characteristics as the real one.

The usual input for the surface reconstruction algorithms are point clouds. Point clouds
are commonly created by laser scanners and photogrammetry and are considered a
dense collection of a huge amount of 3D points. Laser scanners can produce up to
millions of points with a high and usually homogenous density. The quantity of
information depicted with them is huge and can be directly inspected. The data
properties in this case are suitable for the implementation of surface algorithms. Our set
of data is far from the homogeneousness of the usual point cloud and it is easy to
assume that there will be problems regarding its suitability for the algorithms.

As it was described in chapter 2 the known surface reconstruction algorithms are
categorized in algorithms employing implicit functions and computational geometry
algorithms. The basic difference of these categories is that in the case of implicit
function algorithms the output surface approximates the original and it may not include
the input data, in contrast with the computational geometry algorithms which are forming
the surface interpolating the data points. In our project the interpolation of our
measurements is crucial, because they represent geographical coordinates and the
model needs to be georeferenced. Therefore the measured points are required to be on
the final mesh so that they can act as reference points in our further implementation.
For this reason it is concluded that the implicit function algorithms are unsuitable for our
case. Furthermore, and considering the two popular algorithms of this category, the
Hoppe‟s algorithm and the Poisson algorithm, it should be noted that both require very
dense point clouds and additional information apart from the spatial information given by
the data. Hoppe‟s in particular requires knowledge of the sampling process and the
Poisson algorithm requires consistently oriented surface normals at the input points.

Having ruled out the implicit functions algorithms, we focus our research on the
computational geometry algorithms. They seem suitable for our case because they
create geometric structures based on the input points. The usual outcome of those
algorithms is a triangle mesh. We focus our interest on the powercrust and the ball
pivoting algorithm.

The powercrust algorithm uses Voronoi diagrams and subsets of weighted poles that lie
inside and outside of the object. These sets of poles, like the Voronoi diagram, divide
the space into polyhedral cells. The boundary of the union of the interior cells forms the
polygonal output surface, or the Power Crust. There is a free implementation of the
algorithm provided by its authors (https://code.google.com/p/powercrust/). We tested
the algorithm with our data and it could not return results. Specifically, it could not
compute the required poles. This is due to the sparsity of our data. This algorithm to
have efficient results requires an adequate sampling density. According to its Principal

https://code.google.com/p/powercrust/

Chapter 5 3D Reconstruction

 39

researcher Nina Amenta “the Power Crust algorithm should be quite useful for
automatically building object models from laser range data." [52]

The ball pivoting algorithm creates a triangle mesh with the given input points. Its
principle is very simple: Three points form a triangle if a ball of a user-specified radius
touches them without containing any other point. (Bernardini et al., 1999) [29]. This
algorithm is time efficient because it doesn‟t need to compute triangulations or Voronoi
Diagram to form a mess. However, it is not suitable for point clouds with varying point
density, as it will output the surface with holes when the sample points are not dense
enough. The ball pivoting algorithm can be implemented via the Meshlab software. It
was applied in a subset of our data set, the and it produced the expected result
considering the input.

As it is clearly seen, the results are not sufficient. There are holes and the
discontinuities are splitting the mesh. Spaces that are larger than the radius are not
filled. The mesh is incoherent and some information has disappeared.

In conclusion, the previous algorithms are not suitable in our case. The quantity and
type of our data must be taken under consideration in order to have good results.

 5.1.3 TIN Surfaces and Delaunay Triangulation

As it was previously explained, given the input data, the implementation of algorithms
did not return satisfying results. The data can have quite different properties that must
be considered in the solution of the surface reconstruction problem. Thus, the
characteristics of our data set have to be inspected, in order to determine the best way
to form a surface.

In addition, we must not forget the process of our measurements. We measured points
that form the outline of the building and the areas of interests that represent features,
such as doors, windows and damages. Featureless parts of the building were not
measured. This leads us to the acknowledgment that parts of the building that contain
information that must be depicted, are represented by groups of points in close

Figure 5.2 Implementation of the ball pivoting algorithm. Holes
and discontinuities are shattering the mesh.

Chapter 5 3D Reconstruction

 40

proximity. These points must be connected with each other and not be interfered with
other edges, in order to shape the topology. The isolated points that were measured,
e.g. the tops of the roofs, should connect with the closest points which are the edges of
the roofs. These realizations are making us lean towards a nearest neighbor based
technique.

Furthermore, the data are geographic coordinates originating from a total station, which
has lead us to examine ways of representing geographic data. Our focus was aimed at
the Triangular irregular networks. Triangular irregular networks (TIN) have been used by
the geographic information system (GIS) community for many years and are a digital
means to represent surface morphology. A TIN is a representation of the physical land
surface, made up of irregularly distributed nodes with three-dimensional coordinates (x,
y, and z) and lines that are arranged in a network of non overlapping triangles. The
nodes (vertices) are connected by lines (edges) to form the triangulation. TINs are
usually associated with three-dimensional data (x, y, and z) and topography which fits
the characteristics of our data. The triangles in those networks are formed with the
Delaunay triangulation.[53]

In consideration of the previous points, we have decided to represent our data as TIN
surfaces. Therefore the Delaunay triangulation is going to be used as the surface
reconstruction method.

The Delaunay triangulation is a nearest neighbor based technique, something that
makes it suitable for our data. A Delaunay triangulation for a set P of points in a plane is
a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in
DT(P). This entails the "Delaunay condition", which means that no vertex lies within the
interior of any of the circumcircles of the triangles in the network. If the Delaunay
condition is satisfied, the minimum interior angle of all triangles is maximized. The result
is that long, thin triangles are avoided as much as possible. In other words, given a set
of data points, Delaunay triangulation produces a set of lines connecting each point to
its natural neighbors.[54]

In conclusion, TIN surfaces created by Delaunay triangulation are most useful for
mapping highly variable surfaces with irregularly distributed sample data, something

Figure 5.3 A part of a TIN surface
created with Delaunay triangulation.

Chapter 5 3D Reconstruction

 41

that identifies with our data‟s inconsistent density. The input data used to create a TIN
remain in the same position as the nodes or edges in the TIN. This allows a TIN to
preserve all the precision of the input data while simultaneously modeling the values
between known points. That property of this methodology fulfills not only the condition of
preserving the spatial positions of our geographical data, but also means that the three
dimensional values of any point in the surface are defined by interpolating the values of
the vertices of the triangles that the point lies in. In addition, TINs can have a higher
resolution in areas where a surface is highly variable or where more detail is desired
and a lower resolution in areas that are less variable. [55]

All the above make the adopting of the methodology of the TIN surfaces created by
Delaunay triangulation ideal.

 5.1.4 Reconstruction of TIN surfaces

Having decided the best approach to reconstruct the data, we started looking for the
appropriate software to import them in order to organize and manage the data volume.
AutoCAD has developed Civil3D, directed mainly at civil engineers and topographers. It
is great for managing GIS data as well as any king of geodetic data. It works with
multiple coordinate systems and has tools for creating and organizing survey
databases. It is ideal for viewing the spatial data in 3D space along with imported
information about each point, something that few other CAD programs do. Spatial
information can be processed and used in creating surfaces, design civil projects and
document topographical surveys.

Due to the scarcity of information it is important to utilize the documentation we created
during our field work, in order to identify every point measured and where it corresponds
in the real surface. Modeling software, like 3ds Max or Maya does not have that kind of
feature, nor they can import and display simple 3D points. AutoCAD Civil3D provides
that functionality, by displaying survey data and coordinates along with identification
information. It can import spatial information from simple text files.

Unfortunately, that kind of software which
recognizes spatial data and constructs TIN
surfaces, acknowledges data as Digital
Terrain Models (DTM), which are topographic
model of the bare earth. That means that it
only constructs surfaces „looking from above‟.
It recognizes easting as the x axis, northing
as the y axis and elevation as the z axis.

After all, TIN surfaces represent earth
surfaces.

In order to visualize and process our data, we need to treat them as earth surfaces and
alter them accordingly. We separated our data in four groups, according to which side of

Figure 5.4 Civil3D's viewport. It processes the
data with a 'top' view.

Chapter 5 3D Reconstruction

 42

the building they belong. So, all the data acquired from the north side of the building
belong to one group, the data acquired from the south side to another group, another
group consists of the data of the west side and the last one of the east side data. Now
we have four groups of data each one representing a side of the building. In order to
visualize them we need to make the software perceive them as earth terrain, i.e.
geographical information representing earth ground. Therefore, we have to rotate each
group in the three dimensional space accordingly.

As it was mentioned above the software perceives as the x axis the easting coordinate,
i.e. the west-east information, as the y axis the northing coordinate, i.e. the north-south
information and as the z axis the elevation (height) information, processing the spatial
information with a „top‟ view, as it is shown in figure 5.4. We need to process each
group, in order to convert them to this form.

South group data
The data belonging to that group are facing south. In order to have a top view, they
have to be rotated 90 degrees around the x – axis (Figure 5.5).

Each point is represented with x, y, z values. We use rotation
matrices to calculate our data. The rotation matrices for
rotation around the x axis, y axis and z axis are shown in the
right.

For the south side we have:

[

] [

] [

]

⇒

⇒

Figure 5.5 Rotation of south group data.

Chapter 5 3D Reconstruction

 43

That means that we are going to import the x values as easting, the y values as
negative elevation and the z values as northing.

North group data
Those data have to be rotated first 270 degrees around the x axis and then 180 degrees
around the z axis.

Rotation 270o around x axis:

[

] [

] [

]

⇒

⇒

Rotation of those results 180o around z axis:

[

] [

] [

]

⇒

⇒

⇒

That means that we are going to import the x values as negative easting, the y values
as elevation and the z values as northing.

West group data
We rotated those data first 270o around z axis and then 90o around x axis.

Figure 5.6 Rotation stages of north data.

Chapter 5 3D Reconstruction

 44

Rotation 270o around z axis:

[

] [

] [

]

⇒

⇒

Consecutive rotation 90o around x axis:

[

] [

] [

]

⇒

⇒

⇒

That means that we are going to import the x values as negative level, the y values as
negative easting and the z values as northing.

East group data
We rotated those data first 90o around z axis and then 90o around x axis.

Figure 5.7 Rotation stages of west group data.

Chapter 5 3D Reconstruction

 45

Rotation 90o around z axis:

[

] [

] [

]

⇒

⇒

Consecutive rotation 90o around x axis:

[

] [

] [

]

⇒

⇒

⇒

That means that we are going to import the x values as level, the y values as easting
and the z values as northing.

After doing the necessary changes, we stored our data in .csv (comma separated
values) files. Then we imported the data into the Civil3D software. Civil3D can process
geodetic data in any coordinate system. The data were imported as GGRS87
coordinates. The software also gives us the opportunity to create and store survey
databases which can hold the raw data.

Figure 5.8 Rotation stages of east group data.

Chapter 5 3D Reconstruction

 46

Figure 5.9 Import of csv files for east and west data.

Figure 5.10 Insertion of the data files in survey database.

Now we can visualize our data as 3D points in space.

Chapter 5 3D Reconstruction

 47

Before we triangulate the point groups, we have to connect the outer points so that we
can create boundaries. These boundaries, also called breaklines, give an outer limit to

 Figure 5.12 Above the measured 3D points of the
north side. Below the measured 3D points of the
east side.

Figure 5.11 Above the measured 3D points of the
south side. Below the measured 3D points of the
west side.

Chapter 5 3D Reconstruction

 48

the triangulation and define the TIN
surface. Civil 3D a has feature for
creating a TIN surface with
Delaunay triangulation. The user
can select which point group to
triangulate and define boundaries.
We triangulated each point group,
after defining the outer boundaries
by connecting the outer points. The
resulting surfaces are shown below
(the green lines define the outer boundaries).

Figure 5.13 The triangulated surface of the south side.

Figure 5.14 The triangulated surfaces of (clockwise from top left) the west, north
and east sides.

Chapter 5 3D Reconstruction

 49

Having triangulated the 4 surfaces, it can be observed that only the basic information is
visible. There is the basic outline, window and door details and sparse surface
information. At this point the field sketch we created during the measurements,
becomes important because it is the means that will help us distinguish the points and
give further shape to the surfaces. The next step is to import those surfaces to a
modeling software program in order to process them further and extract more
information and detail.

 5.1.5 Processing of the TIN surfaces

Autodesk provides a streamlined method for transferring data from Civil3D to 3ds Max.
It is the Civil View feature set and runs inside 3ds Max. It imports files or geometry data
from Civil3D and can help enhancing a Civil3D project with 3D content.

Using the Civil View feature we imported the 3D geometry we created in 3ds Max. At
this point and with the help of our field sketch, we processed the TIN surfaces by hand
in order to correct mistakes, distinguish features and add detail where it was needed in
order to make the surface morphology recognizable. The south surface did not need
any particular changes the features were recognizable from the triangulation. In figure
5.15 the south surface is shown exactly as it was imported from the Civil3D software.
The north surface needed some corrections. There were visible mistakes in
measurements, some wrongly measured points and we needed to clearly distinguish
the depth of the arcs.

Figure 5.15 On top: the south side as it was imported from Civil3D (i.e. the
TIN surface). On bottom: the north surface after some process.

Chapter 5 3D Reconstruction

 50

The most time consuming surface at this step was the west side. Due to the complexity
of the surface and the many protruding features a lot of points were measured, resulting
in a complex TIN surface. We corrected the morphology by keeping the points steady
and deleting the unnecessary triangles and connections. Some of the stages of the west
side correction are shown below.

We use these surfaces as base surfaces. Further processing is required in order to
approximate the real surface. The first step is to add depth in the windows and doors.
The depth was measured on the field, wherever it was possible. Due to the height of the
building it was impossible in some cases to take accurate measurements, so we
assumed an approximating value, taking in consideration and for comparison the
neighboring parts. The depth was added with the extrude feature, in specified units.
Having as a reference point a measured distance and knowing its respective value in
units in the modeled surface, we calculated the units of each depth based on that
analogy. The surfaces were „tweaked‟ were they were needed, in order to correct small
discontinuities or mistakes that are visible in comparison with the real surface.

Figure 5.16 The stages of the west side correction.

Chapter 5 3D Reconstruction

 51

Each surface was rotated, aligned and attached accordingly in order to form the shape
of the building.

One by one the surfaces were positioned in their correct spatial places and the shape of
the final model begins to form. Up at this point we have not mentioned the
reconstruction of the roof. In our initial research, before we began our project, we were
unable to find documented architectural information about the roof. Furthermore, during
our measurements it was impossible to access the roof. Due to the limited space
around the monument, the laser beam of the total station could not reach the roof.
Therefore we created the roof based on satellite photographs (via Google Maps), and

 Figure 5.17 Depth details in doors and windows.

Figure 5.18 Stages of attachment. Each surface was
attached accordingly to form the final shape of the
building.

Chapter 5 3D Reconstruction

 52

following the pattern of the peripheral parts. The roof consists of seven consecutive long
domes. It was created in 3ds Max and was attached to the model.

At this point, a basic shape of the of the 3D model of the monument including details of
its structure was completed. We have a basic graphic representation of the building but
it still needs further refinement.

 5.2 Surface Processing

We have acquired a triangle mesh. It can be observed that while it accurately
represents the monument, it is still coarse and sharp. It has the appearance of
artificiality and lacks realism. As a consequence further refinement is required. In order
to integrate further detail, and have a more „rounded‟ result, the surface was subdivided.
As it was mentioned in the chapter 2, surface subdivision is a method of representing a
smooth surface via the specification of a coarser polygonal mesh. The subdivision
creates new vertices and new faces and their position is calculated based on the
positions of nearby old vertices. The aim of this technique is the creation of a smooth
and nicely rounded model, giving it a more realistic effect.

The two categories of subdivision schemes that were mentioned, were examined. The
first one, the approximating subdivision schemes, in which the newly generated points
are not included in the initial surfaces were dismissed. As it was stated during the
surface reconstruction stage, it is significant to maintain the original position of the
vertices so that we will have an accurate geographical reference. Consequently, an
interpolating subdivision scheme should be deployed, in which the points of the original
mesh are interpolated to form the resulting surface.

Figure 5.19 The final form of the 3D model.

Chapter 5 3D Reconstruction

 53

Taking into consideration the shape and quality of the surface, it can be seen that some
segments of the monument included insufficient spatial information, there were sparse
blank spaces, while others were represented by dense groups of points. The model is
also quite sharp and coarse. While approximating schemes are known to perform well
on highly irregular surfaces such as ours, interpolating schemes are considered to be
sensitive to irregularities and sharp features, deforming the surface and negatively
affecting the geometric fidelity of the model [37]. Without wanting to quit the
interpolating route, we decided to apply a simple midpoint subdivision to the model.
Every edge was split on its midpoint and connected to its four neighboring edge-
midpoints [56]. This step was implemented in Meshlab. A finer mesh with no distortion
was acquired at the end of this process.

To further approximate the real-world surface, the subdivided mesh was more refined in
parts were it was needed. The problematic areas such as the circular windows and
doors were initially brought into focus. To accomplice a realistic circular window, the
edges and faces of the windows were further subdivided by applying a Meshsmooth
modifier in 3ds Max, which subdivides the geometry while interpolating the angles of
new faces at corners and edges. The effect it accomplices is to round over corners and
edges as if they had been filed or planed smooth. This process resulted in the desired
geometric shape around the problematic areas. The triangle mesh that represents our
3D model is completed.

Figure 5.20 The 3D model after implementing midpoint
subdivision.

Chapter 5 3D Reconstruction

 54

It is essential to have a nicely smooth surface. A finer and smoother model enables the
application of detailed texturing without making it look artificial. A refined surface with a
nice texture mapping, can give a more realistic effect.

 5.3 Texturing

The notion of texturing was explained in the second chapter. Texture mapping is a
method of adding photorealism and detail to a flat surface without the use of extra
triangles. A texture map is a bitmap image that is applied to the surface of a polygon
creating a visual result that seems to have more details than could otherwise be
achieved with a limited number of polygons.

The texturing process at its basic form requires three steps: unwrapping the mesh (UV
mapping), creating the texture, and applying (rendering) the texture.

 5.3.1 UV Mapping

In order to apply textures in our model it is essential to implement UV mapping first. UV
maps are the first step in correct and realistic texturing. UV mapping is the 3D modeling
process of making a 2D image representation of a 3D model's surface. This process
projects a texture map onto a 3D object. The letters "U" and "V" denote the axes of the
2D texture.. UV texturing permits polygons that make up a 3D object to be painted with
color from an image. The image that UV mapping produces is called a UV texture map,
and is very useful for the further texturing of the object. The UV mapping process
involves assigning pixels in the image to particular surface places on the polygon,
usually done by programmatically copying a triangle shaped piece of the image map
and pasting it onto a triangle on the object. UV is the alternative to XY, it only maps into

Figure 5.21 Perfectly rounded windows after further
refinement.

Chapter 5 3D Reconstruction

 55

a texture space rather than into the geometric space of the object. But the rendering
computation uses the UV texture coordinates to determine how to paint the three-
dimensional surface. [57] UVs are essential in that they provide the connection between
the surface mesh and how the image texture gets mapped onto the surface mesh. That
is, UVs act as marker points that control which points (pixels) on the texture map
correspond to which points (vertices) on the mesh.

When a model is created as a polygon mesh, UV coordinates can be generated for
each vertex in the mesh. One way is to unfold the triangle mesh at the some designated
seams (edges), automatically laying out the triangles on a flat page. Once the model is
unwrapped, the artist can paint a texture on each triangle individually, using the
unwrapped mesh as a template. When the scene is rendered, each triangle will map to
the appropriate texture from the paint unwrapped mesh.

UV mapping (just like the whole texturing process) was implemented in 3ds Max. It
provides the appropriate tools and has features that the user can utilize. The main
feature for UV mapping is the Unwrap UVW modifier.

Unwrap UVW modifier
The Unwrap UVW modifier lets you assign mapping (texture) coordinates to objects and
sub-object selections, and to edit those coordinates by hand as well as with a variety of
tools. You can also use it to unwrap and edit existing UVW coordinates on an object.
You can adjust mapping to fit on Mesh, Polygon, and NURBS models using any
combination of manual and several different procedural methods.

Figure 5.22 An example of UV mapping of a cube. The
flattened cube can be painted to texture the cube.

Chapter 5 3D Reconstruction

 56

In using Unwrap UVW, you usually break up the object's texture coordinates into
smaller groups known as clusters. That way you can position the clusters precisely over
different areas of the underlying texture map for optimal mapping accuracy. Each of

these clusters has an outline called a map seam which appears superimposed over the
object in the viewports. This helps you visualize the locations of mapping clusters on the
object surface.

To begin the unwrapping process we need to consider the complexity of the surface and
the size of the model. The texturing is going to be made with photographs taken on the
field. That means that there is great detail to be depicted and we need to be careful to
correctly place the textures to have an accurate result, responding to reality. It is
impossible to unwrap the whole model due to not only the complexity of the surface but
also the size of the model. It is difficult to place all the unwrapped triangles in an image
but more importantly, impractical for us to „paint‟ the UV texture map.

Therefore, it is required to separate the triangle mesh in clusters for a smooth and
easier workflow. 3ds max gives to the user that ability with the use of special materials.
3ds Max uses materials to add texture to objects. By applying them, you can add
images, patterns, and even surface texture to them. They can
be manipulated via the Material Editor, 3ds Max‟s design
studio for materials and maps.

The material ideal for this is the Multi/Sub-Object material,
which lets you assign different materials at the sub-object level
of your geometry. You can create a multi-material, assign it to
an object, and then you can select faces, group them and
choose which of the sub-materials in the multi-material are
assigned to the selected faces. [58]

Figure 5.23 The Unwrap UVW modifier interface. Its menu is on the
right with the UV editor open in the middle.

Chapter 5 3D Reconstruction

 57

The geometric mesh was split into clusters by selecting parts and faces that have a
spatial connection and can be manipulated easily in order to apply texture on them. The
groups are consisted mainly of each façade of the seven domes. The north surface is
split in seven groups each one for each façade, the same as the south surface. The
east and west surfaces were split in convenient groups, as well as the roof. Some of the
groups are shown in the figure 5.24.

Every group is assigned a material ID which determines which sub-material to use when
you apply a Multi/Sub-Object material. Now the process of UV mapping begins. We
process the groups one by one. For each group we apply an Unwrap UVW modifier.
Our objective is to unwrap, flatten the mesh in order to appear in a 2D image.
Considering the complexity (the mesh is not as simple as a cube), we have to divide it.
Each mesh is separated based on similar parts. We created seams for subdividing the
mesh. The seams are existing edges and are what separates the clusters of the mesh.
Each face cluster that is defined by the seams is textured separately. Sometimes this
creates visible discontinuities on the texture and are damaging realism. For this reason
we have to create seams in places that are not visible or in places that there is a natural
difference in appearance.

We chose our seams in places that can be hidden, like the inside of doors or windows.
After we determine the seams we peel each cluster in order to flatten it. The process
and the results are shown on the UV editor. With the help of a checkered pattern we
can check if the texture is applied without disturbances. If we found disturbances we
can correct them by moving around the appropriate vertices in the UV editor.

Figure 5.24 Some examples of the face groups that were created
for texturing.

Chapter 5 3D Reconstruction

 58

Figure 5.25 Left: the seams of the mesh that separate the clusters. Right: the created clusters are
shown on the UV editor window.

Once we've laid out the mesh's texture coordinates in the Unwrap UVW modifier editor,
we can export them to a paint program for creating the texture map. In the UV editor
there is an option „Render UVW Template‟ , where we can render the template as a
bitmap. We can inspect the output, and if changes are necessary, like if there are
overlapping faces we can correct them and render again. If the results are satisfying we
save the template as a bitmap image. We can use that image in a painting program to
create the texture. Some examples of the UV templates are shown in figure 5.26.

This process is continued for all the groups we created.

Figure 5.26 UV texture coordinates rendered in bitmap images.

Chapter 5 3D Reconstruction

 59

 5.3.2 Texture mapping

Now that we have laid out the UV coordinates it is time to apply texture to the triangles.
Because we are trying to digitally document a real monument, it is infeasible to create
the textures ourselves. It is impossible to reproduce the level of detail that exists,
especially in a building such as this with eroded stone walls and damages. In order to
have a result that corresponds to reality, we need to acquire texture information from
photographs.

During our measurement process we took photographs of the building from a standard
camera. The photographing process was also repeated on later days. Whenever we
were missing texture information or the photographs were not usable, we went to the
field to acquire new ones. We photographed every side of the building, covering all the
exposed surfaces. Those images were treated as textures.

We use these images as a diffuse map. As it was stated
before, a diffuse map is a texture that defines the surface‟s
main color. Diffuse mapping takes the images and wraps
them on the object‟s surface according to the UV mapping,
displaying the original pixel color. It sets the tint and intensity
of diffuse light reflectance by the surface.

The image textures can be applied to the UV templates that were created on any
painting or image processing software, like Photoshop. The workflow that we followed is
this: we take small patches from an image and we apply it to its corresponding place on
the UV template. We are careful to place it accurately and then we process it to cover
its attachments to the neighboring patches. An example of the texture workflow is
presented next.

Figure 5.27 Photographs of the westernmost façade of the north side taken on the field.

We took multiple photographs of each wall, to acquire to most information possible.
After processing the photographs in order to have the same colors, brightness and hue

Chapter 5 3D Reconstruction

 60

we took the best looking patches from each one and we filed the UV template. The
image was saved as a bitmap image.

Figure 5.28 The UV template we rendered on the left, and the texture we created on the right.

The texture is ready to be placed on the model. We go back to 3ds Max and we place
the bitmap image on the diffuse slot on the appropriate submaterial of the Multi/Sub-
Object material we created earlier. It can be viewed on the 3ds Max viewport.

Figure 5.29 The textured group. Displayed with (left) and without (right) the triangle mesh.

The same workflow was deployed in order to texture the whole model. It should be
noted that it was a very time consuming process, because we wanted to replicate in the
best way possible the real surface.

Chapter 5 3D Reconstruction

 61

 5.3.3 Normal mapping

As is obvious the application of images as textures, i.e. the diffuse mapping is not
adequate for a realistic result and it does not communicate photorealism. Taking into
account the surface condition of the monument, we see that there are damages,
alterations on the surfaces and each wall has different appearance and uneven surface.
Those details were impossible to be digitally documented. Additionally, creating these
details with polygons raise the polygon count, making it harder to run in systems with
limited processing power. We want to create complex effects in the available polygons.

The perception of realism as well as 3D depth is attained by normal mapping. Normal
mapping simulates small displacements of the surface
while the surface geometry is not modified. Instead, only
the surface normal is modified as if the surface had been
displaced. This is achieved by perturbing the surface
normal of each object and using the perturbed normal
during lighting calculations. Normal mapping is commonly
used to capture the detail of a high resolution mesh with
the geometry of a low resolution model.

Normal maps consist of red, green, and blue. These RGB
values translate to x, y, and z coordinates, allowing a 2D
image to represent depth. The 2D image is applied to the

surface. This way, a 3D surface simulates the lighting
associated with 3D coordinates. In the normal map, each
pixel's color value represents the angle of the surface
normal.

Figure 5.30 The textured model displayed from several sides.

Figure 5.31 An example of a
normal map.

Chapter 5 3D Reconstruction

 62

We use normal maps to create details and give the illusion of an eroded and uneven
surface. We created the normal maps from the textured UV templates, so that they have
the same texture coordinates with the diffuse maps. The normal maps were generated
in Photoshop with the help of nDo, which is a normal map creation script and it works as
a plugin in Photoshop. (information about nDo http://www.philipk.net/ndo.html).

We are going to employ to use of multitexturing in our model, that means that we are
going to use more than one maps on the polygons. We are going to texture the surface
of our model with diffuse maps in addition with normal maps. In that way we have a low
cost method of achieving high surface detail. The normal maps are going to be applied
inside Unity after we will have imported the model.

The 3D model is completed. We began with the 3D coordinates and we constructed a
realistic 3D model, representing accurately the Venetian monument Neoria. We textured
it and it is ready to be imported in Unity.

Figure 5.32 A normal map (right) generated from the texture (left).

http://www.philipk.net/ndo.html

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 63

Chapter 6 Presentation of the 3D interactive visualization and
the Graphical User Interface

 6.1 Concept

The aim of this project is the 3D digitization of a historical building. The 3D
reconstruction of the monument was presented via a visualization tool which offers
expert users the capability of navigating and manipulating the model. A fully interactive
application was created based on game engine technologies. Unity3D offers
sophisticated tools for the development of 3D interactive applications and a
programming interface utilized for the development of complex geometry behaviors,
user interaction, etc.

The interactive visualization tool that was implemented offers the user the ability to
photorealistically visualize the actual monument from all sides. The user can navigate
the geometric model and tour the perimeter. The manipulation of the monument is
featured via advanced interactive functionalities which are offered to the user. The
surface can be visualized as is currently, with erosion and damages, cracks and
inappropriately use of modern materials as well as how it will look if those damages or
surface textures were restored. There are damages that are corrected and rendered as
such after user interaction. The user can also calculate distances on the monument
surface and have details about them displayed on the screen.

The data acquisition process is fully utilized in the application. The user can visualize
the actual measurements that were acquired in the monument surface and attain
information for each one of them. A database was also created and displayed with all
the measured coordinates. The user can choose a 3D coordinate and see in which point
in the surface corresponds.

The monument can be displayed under different lighting conditions. Each part of the
surface can be visualized in lighting or shadow. The user can manipulate the lighting
and position it in a desired place, simulating the sun conditions. Additionally there is a
transition from day lighting conditions to night lighting conditions. Night and day lighting
are simulated and the user can smoothly change the atmosphere to replicate any time
of the day and see the monument under those simulated lighting conditions.

The fully interactive application will be introduced in the following sections of this
chapter. The functionalities will be presented and we will explain how to use them. We
will analytically show how the user can utilize the abilities that the application offers and
present the graphical user interface.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 64

 6.2 User Navigation and Perspective

The application is carried out with a first-person perspective, that is a graphical
perspective rendered from the viewpoint of the player character
(as it is called in games). There are two perspectives that games or applications are
rendered through. The first person perspective where the user experiences the action
through the eyes of the character and the third-person perspective, in which the player
can see (usually from behind) the character they are controlling. In our case we
consider it suitable to have a first person perspective because we want the user to
experience the environment from his/hers own point of view.

As is shown in figure 6.1 the user experiences the environment in first person and no
character is visible. The user sees directly through the camera placed on the scene.
The user can rotate around the camera and see in a 360o angle from the point he/she
stands, on the horizontal level. The camera can also be tilted up or down. In order to do
these actions the user should hold down the right mouse button. The view from the
camera changes only while the right mouse button is pressed and follows the motion of
the mouse. When the mouse goes left, the camera also rotates in the left angle. Same
goes for all the other directions. When the user releases the right mouse button, the
camera movement stops.

The navigation is implemented with the arrow keys. The user can move forward,
backwards and right or left. Wherever the camera is turned the movement direction
follows (e.g. if the user goes forward and then the camera turns right, the forward
movement will be in the direction of the camera). The user is prohibited from falling in

Figure 6.1 The perspective of the user. It is a first person view.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 65

the sea that is placed on the front of the environment, due to the placement of invisible
colliders and going through the walls of the building. The user also cannot move past a
perimetrical limit around the monument (defined by the trees which are placed around
it).

6.3 Graphical User Interface

The Graphical User Interface when the main scene is loaded is presented in the figure
below.

The menu is positioned on the top left. It is consisted of buttons, on/off toggle switches
and a slider. The function of each button will be explained next.

 6.3.1 The Main Menu

Explore Side menu
On the top left side there are four buttons named „North‟, „South‟, „East‟, „West‟. These
buttons are implementing a transportation action. When one of them is pressed the user
is transported in the corresponding side. This is created so that the user can have
easier access on the sides and not navigating all the way around. The spots where the
user is transported are shown in figure 6.3. When the user presses the north button
he/she transports on the spot shown on the top left image, when he/she presses the
south button he/she transports on the top right image and so on.

Figure 6.2 The main GUI.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 66

Sun Simulation
Below the explore side menu there is a button called sun simulation. This activates the
lighting simulation. When it is pressed a light source starts moving around and above
the building simulating the sun. The movement of the light source is animated, that is, it
moves continuously in the round. It casts light (or shadows) on the building and
depending on its position it lights each side when it passes above it. The user can also
stop the simulation on a desired position. The light source stops at a chosen place so
that the user will be able to see a surface lighted. When the button is pressed again the
simulation continuous from where it stopped.

Figure 6.4 Part of the building with the light source stopped above it (left) and in the shadows
(right).

Lighting Transition
On the left of the screen there is a slider which simulates a day/night transition. The
user can move the slider up or down and change the atmosphere to replicate day or
night. This way a transition from day lighting conditions to night lighting conditions is
implemented. Night and day lighting are simulated and the user can smoothly change
the atmosphere to replicate any time of the day.

Figure 6.3 The display when the user presses each transport
button. Clockwise: north, south, east, west.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 67

Figure 6.5 The day/night transition. On the top left the day simulation is shown , on top right a
middle time of day is shown and on the bottom the night simulation is displayed.

On figure 6.5 it is shown that when the slider is on the far bottom the day simulation is
displayed. As the slider goes upwards the atmosphere slowly changes and the night
simulation smoothly transits. At around the middle point of the slider, a middle time of
day is simulated as is shown in the top right picture above. When the slider goes on the
top the night time is simulated.

Display Measurements
One of the aims that we wanted to achieve is to connect and relate the 3D model with
the initial geographical data. We did not want the measurement process to be
considered as something used only in the beginning of the modeling process but also
as something that can be included in the interactive application. It would be interesting
to show how the measurement process was conducted and where the measured 3D
points correspond to the surface. The visualization of the measurements on the
monument surface is also a means to georeferencing the model. It is also a way to
provide scientific information about the original data acquisition process and relate the
model to it, instead of having an isolated 3D graphical model.

To this aim a functionality that displays the measured geodetical points on their
corresponding spots on the monument surface, as well as geographical information
about them was implemented. It is activated with the on/off
toggle button that is on the top of the screen, appropriately
named „Display Measurements‟. When the button is activated small green cubes appear
on the spots where each measurement was contacted with the geodetic total station.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 68

Figure 6.6 The display measurements functionality. On the right picture the measurements that
were conducted are displayed on the surface (The left picture is without that functionality
enabled).

Moreover, the user is given the ability to click on a green cube and information about
the specified point appear. More specifically, the easting, northing and the elevation of
the point measured appear on 3D text. When a cube that displays information is clicked
again the data disappear.

Figure 6.7 When a green cube is clicked the corresponding geographical data from the
measurements appear next to it.

The visualization of the coordinates of the original geodetical measurements can help
the user to understand the method of the data acquisition, see which areas were
measured in detail and identify areas where the points are dense or scarce.

Display Raw Data
The opposite action of what was described above was also implemented. In the
previous functionality the user could click on a displayed point on the monument‟s
surface and information about it was provided. It would be also useful to have the
geographical information provided and choosing a coordinate to be directed to the
surface point to which corresponds. The latter is implemented with the display raw data
functionality.

The „Display Raw Data‟ toggle switch activates the
implementation. When the button gets activated a scroll plane

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 69

appears with all the data from the measurement process. The point ID, which is a
number used to discern the points, easing, northing and level are displayed. The point
ID of each point is a button and next to it are its spatial data.

The raw data that are displayed are stored in a local database, which was created in
order to eliminate the file dependencies. The database was created with SQLite locally
and it can be accessed via SQL commands. In the next chapter it is explained more
analytically. It should be mentioned that the information in the previous functionality,
„Display Measurements‟ are also derived from the database.

The user can scroll through the information and can click each point ID button. When
one of those buttons is clicked a text label appears informing the user in which side that
point is. Then the user can use the transportation buttons and reach the side to find the
point. The point is displayed as a blinking sphere. When that same button is pressed
again the point disappears from the surface.

Figure 6.8 The display raw data toggle activated. A scroll plane appears on the
screen with the geographical information acquired.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 70

 6.3.2 The Submenu

Next to the Sun simulation button there is a small rectangular button. That button
corresponds to the Submenu. When it is pressed a submenu appears. That submenu
consists of three buttons, each one implementing a functionality. Those are the „Show
Hotspots‟ functionality, the „Show Info‟ and the
„Measure Dimensions‟ functionality.

Show Hotspots

The goal of this work was to develop an interactive visualization tool which can offer
users the capability of interacting with a 3D reconstruction of an existing monument.
One way that interaction can be achieved, is if the user had the ability to alter the
geometry provided. As it can be observed the building has a lot of damaged areas and
spaces that have been wrongly altered with modern or inappropriate materials. A
functionality has been implemented that provides the ability to change the geometry in
order to resemble the original non damaged surface.

Figure 6.9 When a point ID button is pressed, information about its
position appears on screen and the point is displayed on the surface.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 71

There are a lot of areas in need of restoration. Parts of the roof have fallen, doors have
been blocked up and the texture of the surface has been changed. The user can
visualize those areas as if they were repaired.

When the user clicks on the „Show Hotspots‟ button, several blinking spheres appear on
the walls throughout the building. These spheres, i.e. hotspots, are placed in areas that
are impaired and each one corresponds to a different alteration.

There is a hotspot that is on the north side in front of the easternmost dome. As it can
be observed that dome has modern materials applied to it. It has been altered with
modern white paint. When the user clicks on the hotspot, this modern material is
removed and replaced with textures derived from non-altered areas. By clicking the
hotspot again the user can return to the old surface.

Figure 6.11 The material of the dome changed in order to cover the white paint. The user can
toggle between surfaces.

On the north side there is also a facade which is heavily covered with cement and the
original surface has almost disappeared. A hotspot has been placed on that spot
changing the surface‟s texture when clicked. Although architectural information about

Figure 6.10 Two hotspots as they appear on the surface monument.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 72

the monument‟s original appearance could not be found, the appearance of uncovered
parts was taken into consideration to create the new texture.

Figure 6.12 On the left added cement can be seen on the monument's facade. The user can toggle
between materials in order to visualize the original surface.

The user toggles between materials and visualizes the original surface in contrast with
the existing one.

On the easternmost dome on the south side, it can be seen that the roof has collapsed.
The capability to visualize to original roof is offered to the user. As it has been said
before, due to the lack of architectural information, the restored roof is created based on
the appearance of the non-damaged parts, as well as the measurements of structural
elements of neighbouring areas. A hotspot appears on that spot and by clicking it the
user can toggle between the monument surface as it exists today and the restored
surface rendered in red color.

Figure 6.13 The user can alter the geometry provided, by toggling between the existing one and
the 'restored' one.

A similar procedure is implemented in a dome on the south side, which has a missing
roof edge. A hotspot was placed there and the restored roof can be visible by clicking it.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 73

Figure 6.14 The missing roof edge can be visualized with the toggle hotspot button.

The easternmost façade on the south side apart from the missing roof has also a
blocked door, the door via the toggle hotspot button can be replaced with an unblocked
one.

Figure 6.15 The blocked door on the south side can be replaced with a regular one.

Via that particular functionality the user can alter the geometry and materials provided.
A restored appearance in the damaged areas is recommended and the visual impact of
such restoration is rendered after user interaction.

Show Info

Underneath the „Show Hotspots‟ button, there is a button called „Show Info‟. When it is
clicked a plane containing historical facts about „Neoria‟ appears on the screen,
providing the user with historical information about the monument.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 74

Measure Dimensions
Scientific information can be offered to the user in relation to measurements between
areas, existing and restored. This action is implemented with the „Measure Dimensions‟
button. The user can select specific points on the surface and the distance between
them is calculated. When the user clicks on the button, a text label appears on the
screen with the message “Click on a starting button”. Then a yellow dot appears
whenever the mouse cursor is on the monument surface, making it easier for the user to
pick a spot. When a particular spot is clicked, a small green pyramid marks the spot and
a message “Click on a second point” appears. When the second point is clicked,
another pyramid marks the spot and a line between the two pyramids appears, so that
their distance can be visualized. Their distance in 3d space is calculated, as long as
their depth difference on the vertical surface and both are displayed on the screen.

Figure 6.16 When the 'Show Info' button is clicked, a scroll plane with historical
information appears on the screen.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 75

Figure 6.17 The steps for measuring the dimension between two points.

This operation can help the user gain information regarding the position and relation of
chosen points. The distances are measured in meters. In that way each user can
measure the dimensions of a particular feature or can gain information on the size and
exact place of a restored part.

 6.4 Additional Features

As it was mentioned before, it is crucial to relate the geographical measurements with
the 3D graphical model. The model gains purpose by associating it with the real
physical space. Unity‟s world coordinate system, which references the space that the
models are placed on a scene, albeit in real world scale, may be useful for working and
associating objects within the scene but is making the created 3D environment isolated
from the real world.

A way of connecting and associating the environment with the real space is by aligning
geographic data to the local coordinate system that Unity uses. This process called
georeferencing assigns the position of the model in the physical space, giving to the
application the ability to be used, analyzed or compared with other geographical data.

This was accompliced in our application with a feature that displays dynamically the
geographical information on the bottom of the screen. Whenever the mouse cursor is on
the vicinity of the monument‟s surface, the geographical information of the spot that the
cursor points at, are displayed on the bottom. The display is continuous throughout the
application‟s operation.

Chapter 6 Presentation of the 3D interactive visualization and the Graphical User Interface

 76

Figure 6.18 The dynamic display of the coordinates. Wherever the mouse points, the
corresponding coordinates of the spot appear on the bottom of the screen.

A compass is also displayed on the bottom of the screen. It is a way of preventing the
user from being disoriented.

Spatial recognition is also implemented. On the bottom left of the screen a message is
displayed informing the user on which side he/she is. This is created due to the size of
the model and for easier navigation around the monument especially for users that have
no knowledge or experience regarding the real monument.

On the next chapter, the implementation of the functionalities is described analytically,
as well as the features and tools used for them.

Chapter 7 Implementation

 77

Chapter 7 Implementation

In this chapter we are going to present how the final 3D interactive visualization was
created. Each functionality will be presented and its implementation will be explained
thoroughly. The programming process will also be explained.

Every object that there is in the application has multiple components, most of which are
custom made via scripts. That means that the behavior of the objects is controlled by
multiple scripts. Scripts access other scripts and gameObjects that may even not be
connected with them. We ended up having a large amount of interactivity between the
scripts and the components.

The implementation was developed in Unity. The programming parts were developed
using javascript. The graphic features as well as the scripting IDE that provides, can
give the ability of developing advanced games and applications.

 7.1 3D model import

After we created a Unity project, we must import our created 3D model into it. Fbx is a
file format owned by Autodesk and it is used to provide interoperability between digital
content creation applications. It is widely used by modeling software like 3ds Max or
Maya to exchange data with other software applications, like game engines.

We export our model from 3ds Max in fbx format. In our
newly created game, we create a new scene in which we
are going to build our environment. We import the model
as an asset. The import settings dialog is shown on the
figure 7.1. During the import process the user can
generate colliders or generate lightmaps. By hitting apply
the model is transported into the project panel from
where we can place it in the scene.

The imported object remembers the materials, their
names and their place and reserves slots for them. As
developers we have to import as material assets the
bitmap images that we have created as textures and
their respective normal maps. By choosing which shader
we want to use with which material the appropriate slots

are opening, and we choose the bitmap images we want
to insert on them.

After we place it on the scene, we can view it on the viewport and change its position,
rotation or scale via the transform component. The model is ready now to be

Figure 7.1 Import settings for
assets.

Chapter 7 Implementation

 78

manipulated. The same procedure was applied in all the 3D models we used in our
project.

 7.2 Creation of the 3D environment

At this section we are going to describe all the models we used, how we placed them
and how we manipulated them in order to create our basic scene.

The most important model is the 3D model that we created based on our geographical
data. It is the basic element around which we are going to build our application. After we
imported it in our project and we placed it in our scene, we have to choose and apply
the materials. The first step is to choose which shader to use. Shaders, like we
explained in the third chapter are assets that contain code and instructions that tell the
graphics hardware how to render. In our case we use the bumped diffuse shader.

The bumped diffuse shader computes a simple Lambertian
lighting model, which means that the apparent brightness of a
the surface is the same regardless of the observer's angle of
view. In other words the surface is not specular, it doesn‟t
shine,it is matte. This shader has two slots. One for a diffuse
map for color and one for normal map. The textures we
created serve as the diffuse maps and the normal map slot is

assigned the appropriate normal map. In that way we can
simulate small surface details without added polygons. After
designating all the materials, we can observe the result. It is a high quality model with a
lot of detail depicted.

Figure 7.2 Bumped diffuse
shader.

Figure 7.3 The final model imported in Unity. The normal mapping
depicts a high level of surface detail.

Chapter 7 Implementation

 79

Next we have to create a terrain, representing the ground. Unity provides features that
can create terrains. Unity‟s Terrain system allows the user to add vast landscapes and
sculpt them. Unfortunately it doesn‟t provide a tool for rotation of the terrain. Our model
just like the actual monument has a slope and we need the ground to fit that. So we
decided to create our own terrain in 3ds Max. We modeled it beginning with the
primitive shapes that 3ds Max provides and based on the actual ground on the harbor in
which the monument is. We textured it with a diffuse map, we imported it in the project
and we assigned the fitting rotation. Now we have the monument on its ground.

To create atmosphere and beautify the environment we created street lights in order to
position them around the model. Afteral the actual area has streetlights. We modeled
them in 3ds Max and, textured them and we imported them in Unity we placed them
around the model as prefabs.

The Unity prefab asset type allows the user to store a GameObject complete with
components and properties. The prefab acts as a template from which the user can
create new object instances in the scene instead of duplicating the object, something
that means that each one will have to be edited independently. Whereas, any edits
made to a prefab asset are immediately reflected in all instances produced from it.

Figure 7.4 The terrain we created in 3ds Max (left) and the monument with the terrain (right).

Figure 7.5 Street lights as created in 3ds Max (left) and places in the scene (right).

Chapter 7 Implementation

 80

The streetlight functionality as well as how they were lighted will be explained in later
sections.

Unity provides assets for water simulation. It is imported as a package and used as a
regular gameObject by positioning and manipulating is on the scene. Its surface is
animated and can provide a realistic simulation for lakes, rivers, ocean. We used it as
the sea that there is on the harbor in front of the monument.

At this point we are just going to set the basic visual elements in our scene. The Render
Settings menu in Unity contains features that can help control the visual style in our
environment. First we use a skybox in order to have a nice realistic look around our
environment. Skyboxes are a wrapper around the entire scene that shows what the
world looks like beyond the geometry. They are rendered around the scene in order to
give the impression of complex scenery at the horizon. In other words they simulate the
sky. To implement a Skybox we import a skybox material and apply it on the designated
slot. The skybox material is visible in figure 7.5.

Another feature that can be controlled at the render settings is the ambient light.
Ambient light refers to the uniform illumination that lights the entire scene. The user can
adjust the color of the ambient light to give the desirable effect. At this point we are
going to give a light color in order to make our scene visible. It will be further adjusted
when the scene is properly lit.

 7.3 User Navigation and Camera Control

For interactive 3D environments Unity provides two main navigation methods. The first
and third person perspective. Unity comes with packages that provide assets to
common tasks. Such package is the Character Controller. It includes the first person
controller and the third person controller. In our application we want to implement a first
person perspective that‟s why we are going to use the first person controller.

The first person controller has some important information such as size. As it can be
seen in the inspector the controller‟s height is 2 meters. This is something important in
the scaling process, because we are going to use the controller as our scaling guideline.
By keeping the controller intact and scaling everything around it, we stay true to the
world scale and all the physics simulations will work normally.

By placing the first person controller in our scene, we see that there is a huge difference
with the rest models. That means that we have to scale up the rest of the models to fit
the real world sizes. Taking in account the height of the controller (2 meters) and
knowing the real height of monument we came to the conclusion to scale up the
monument 47.5415 units. The same goes for the terrain. We appropriately scale the
street lights. Now we have a scene respective to reality.

Chapter 7 Implementation

 81

Another part that is very important in the interactivity in Unity are the colliders. They are
components that are attached to GameObjects and they detect collisions. They detect
when the objects interact with one another, they prevent objects from walking through
doors, or as is this case they prevent objects from falling through the floor. For this
reason we have to add a mesh collider component in the terrain we have created. Mesh
collider means that the collider takes the shape of the object. There are other colliders
such as cube, sphere or capsule.

Now we have placed the first person controller in our scene. It has two child objects
Graphics and the Main camera and provides functionality for moving the controller and
rotating the camera. We have named the first person controller „walker‟.

The transform component controls the place, the rotation and the scaling of the object.
The Character Controller is mainly used for player control. It is simply a capsule shaped
Collider which can be told to move in some direction from a script. The Controller will
then carry out the movement but be constrained by collisions. The FPSInput Controller
script and the Character Motor scripts come with the controller. The FPS Input
Controller controls left right forward backwards movement. The character motor script
contains a class that use the character controller. The mouseLook script that comes
with the asset controls the whole rotation of the controller and the camera.

The Graphics child object represents the physical presence of the controller and has a
mesh renderer and a mesh filter component.

The main camera child object is our eyes for the scene. It determines our view of the
environment. The components of the main camera are briefly explained below.

Figure 7.6 The components of
the parent of the first person
controller.

Chapter 7 Implementation

 82

 The camera component controls the setting of the camera.

 The GUI Layer Component enables the rendering of 2D GUIs, i.e. menus.

 The Flare Layer Component can be attached to make Lens Flares appear in the
image.

 The audio listener receives input from any given audio source in the scene and
plays sounds through the computer speakers.

 The FXAA script (Fast Approximate Anti Aliasing) is provided for free and is
attached to the camera in order to perform anti aliasing in the game play.

 The Fast Bloom is a script that provides the optical effect where light from a
bright source appears to leak into surrounding objects.

 The Screen Space Ambient Occlusion (SSAO) effect approximates Ambient
Occlusion, i.e. how exposed each point in a scene is to ambient lighting.

 The Bloom and Lens Flares image effect adds image based bloom and
automatically generates lens flares.

 The Glow Effect can dramatically enhance the rendered image by making over
bright parts “glow”.

 The mouseLook component controls the rotation.

Figure 7.7 The
components of the main
camera.

Chapter 7 Implementation

 83

Having tested the application so far we have a basic movement with the arrow keys that
satisfies us but the rotation of the camera is very unsteady and not practical. The
functionality that this component provides has the camera following the mouse around.
It doesn‟t stop and it may prohibit the development of other functionalities because of
the mouse use. So we decided to alter it. The rotation of the camera now works only if
the user holds down the right mouse button down.
The mouseLook script was further altered to implement an additional functionality, for
that reason it will be analyzed as a whole in the following sections.

 7.4 Spatial Recognition

Due to the size of the model and for future reference, we need to implement a way of
recognizing on which side of the monument the controller is. This will help the user to
navigate easily around the monument and prevent disorientation. Additionally, we need
to store information regarding each side of the building, something that is helpful for
other implementations.

To do this we created cube gameObjects one for each side. We scaled them in order to
cover the whole side they were placed and we defined their collider as trigger. A trigger
doesn't register a collision. Instead, it sends the function OnTriggerEnter(), a message
when an object enters or exits the trigger volume. We disabled the mesh renderer so
that it won‟t be visible. Their only use will be the object detection.

In each one we attached a script called Coord_trigger.js. That script has the function
OnTriggerEnter() and recognizes when an object enters the collider. We also created a
GuiText object because we want to display a message and attached the script

Figure 7.8 The east side trigger. In the inspector we have defined as trigger and we
have disabled the mesh renderer.

Chapter 7 Implementation

 84

Coordinates_script.js to it. In that we have created functions that implement actions
depending on the side.

The script Coord_trigger.js is shown above. When the walker enters a trigger the script
checks which trigger is based on its name and calls the right function from the
Coordinates_script.js.

There we have created four functions one for each
side. Each function when is called, displays on the
screen a text, informing the user in which side he/she
is, then keeps on a variable the a rotation angle for
each side, something that is useful for other
functionalities.

This is a way to provide to the user information for
where he/she is, especially when he/she doesn‟t
know the monument beforehand.

 7.5 The Main Menu

The Graphical User Interface is the means for the user to interact with the application
through graphical icons. Our application has a GUI that consists of buttons, sliders,
toggle switches and is displayed on the screen throughout the application run. The GUI
activates all the functionalities of the application.

Chapter 7 Implementation

 85

Most of the buttons are displayed on the left top, and have descriptive names on them
that explain their functionalities. There is the “Explore side” label and underneath it four
buttons (“North”, “South”, “East”, “West”), that when pressed we are transporting on the
respective side. Underneath those there is a button which controls the sun simulation
and another one that when pressed displays a submenu. Next to those are two button
on/off toggles that activate or deactivate the functionalities of the measurements display
and the raw data display. The appearance of the GUI as well as the functionalities of the
buttons are controlled with the menu_script.js.

Initially an empty gameObject was created, we named it Menu and the script
menu_script.js was attached to it. The rendering and handling of the GUI items is
happening in the OnGUI() function. Inside it there are other functions that render screen
elements. The GUI.Button() function makes a press button, the GUI.Label() prints text
on the screen and the GUI.Toggle() creates an on/off toggle button. These trigger
actions that are either other functions or give pass variables to the Update() function for
implementing behavior. On the Start() function we initialize the variables and the state of
the objects or the components. More specifically, inside the OnGUI() function:

We set the appearance of the GUI by determining the GUI.skin, which sets its
properties on the inspector panel via the menuSkin in which the image and the colors of
the buttons and the labels are defined. After setting the color and position on the screen
via the variable menuAreaNormalized, we display text via the label function.

The GUI.Button takes as arguments the position and a phrase to be displayed on the
button and returns true if the user clicks the button. When each button is clicked there is
a sound played via the audio.PlayOneShot() function that activates the Audio Source
component. For each button there is a functionality that is implemented.

Chapter 7 Implementation

 86

7.5.1 Transportation functionality

The “North”, “South”, “East”, “West” buttons when pressed they transport the controller
to the respective side in order to have faster access and avoid walking around the
monument. As is shown in the segment of code above, when the user clicks one of
those buttons a sound is played and the variable “isClicked” is given a value. That
variable is accessed by the script “MouseLook2.js” to signal that the button is pressed.
Then we give the controller the desired position and rotation via the Lerp() and Slerp()
functions which interpolate between the first two arguments by the fraction in the third
argument. In our case by giving it 1 we transporting the position and the rotation in the
second argument‟s value. The same actions are applied to all four buttons.

The change in the position is remembered when we are transporting to the sides of the
building. We also want each time we transport to a side to always face the building,
otherwise it can become very disorienting. Giving the correct orientation to the controller
in the button functions above, is not enough because the script that controls the camera
rotation which was imported in the first person controller does not remember the rotation
given by the buttons. Therefore we have to change it. We are naming in
MouseLook2.js. In the Start() function we initialize the variables that we use
appropriately. In the Update() we read the input from the mouse and depending on the
axis we rotate the camera appropriately. Specifically :

The Input.GetMouseButtonDown() function detects the mouse click. 0(zero) is for left
click and 1 is for right click. When the mouse is pressed for a long time (click==true &&
(Time.time - temps) > 0.3), i.e. pressed down continuously, we check around which axis
to do the rotation and if one of the transport button is pressed (we check the clickCheck
variable which has been passed a value from the menu_script.js), we save the rotation
angle on a variable. Then we read the value of the input axis continuously and we rotate
around the chosen axis, while updating with the originalrotation variable the current
rotation angle of the camera.

If we release the button (Input.GetMouseButtonUp(1)) quickly, that is we click only once
then the rotation of the camera remains the same and doesn‟t change. The function
Adjust360andClamp() prevents the rotation angle from going beyond 360 degrees and
also clamps the angle to the min and max values set in the Inspector.

Chapter 7 Implementation

 87

Now when the buttons are pressed we are transporting correctly in the designated place
with the correct rotation angle and maintaining our navigation and camera rotation
smooth.

7.5.2 Sun simulation functionality

In order to achieve photorealism and give an essence of realism to the building, we
need to light it. The proper illumination is what enhances the textures and makes the
normal mapping visible. The lighting makes the surfaces look realistic and emphasizes
the details on them. Additionally, the lighting creates shadows which are important in
the real life look we are trying to achieve. It is nice to have the opportunity to observe
the building under different lighting conditions, to see the walls under shadows or light
and this is what is implemented in this functionality.

When the button is pressed the simulation begins and the light source goes in a
trajectory around the building. When is pressed again the simulation stops. The button

Chapter 7 Implementation

 88

changes image depending on the state. If the simulation is not activated the button
displays the play sign, when it is active the pause sign is displayed.

To achieve this we created an empty gameObject the „sun‟ and we place it in the centre
of the scene, then we created a sphere object and we made it a child of the sun.
Children objects are linked to their parent object and follow their parents transformation.
We positioned the sphere object above the sun object and slightly sideways. Lastly we
created a Directional light and made it child of the sphere object.

We gave the directional light appropriate settings and we attached to the parent object
an animation component. Animations are used to automate movement in a game. We
created an animation clip named ‟sun‟ and added it in the animation component. The
animation clip was created in the animation tab and we defined the y rotation of the sun
to change from 0 to 360 in 20 seconds. We set it to run on loop on the inspector tab.

Now that we have the components ready, we need to connect this with the appropriate
button. Inside the menu script on the OnGUI function we add the following code:

Figure 7.9 Top left: sun parent object with the children
objects. the components of the sun and directional light
object are shown.

Chapter 7 Implementation

 89

The button displays a GUIcontent on it, that means that it can contain elements such as
images or text. If the button is pressed, a sound is played and the
image content changes depending on the state. The animation is
enabled or disabled appropriately.

We have implemented a virtual sun that goes in circle above and around the building at
our command. When the simulation stops, then the next time it begins it continues from
where it has stopped.

7.5.3 Display measurements functionality

One of the things we considered ideal for our application is to be able to display the
measurements we took on the field upon the monument. In this way the user will be
able to see the data on the surface, and which measurement represents which point on
the surface. It is a nice visual way of connecting the geographical data with the 3D
model.

The measurements are displayed with little green cubes. Each cube represents the
point where the total station shoot its beam and took measurements. Each one depicts
3D geographic coordinates. Additionally, the user is given the ability to click on any
cube and the respective geographical coordinates be displayed.

 7.5.3.1 Data Storage

In order to access and manipulate the data we have to find a way of storing or importing
them in Unity. The data are now on a csv file. We have to find a way of storing them
locally and be independent of files.

SQLite provides that way. SQLite is a software library that implements a self-contained,
serverless, SQL database engine. [59] SQLite provides local data storage for individual
applications and devices. It is a convenient way of implementing a simple database in
Unity. Rather than a client-server based implementation of SQL, SQLite uses a single
local file to store the database, and provides access to that file via standard SQL
commands.

We decided to store our data in a SQLite database. We pass the data from the file to
the database (once) and thus our application interacts only with the database and is
made independent of the file that is stored on a computer. This way the application is
portable and can run on other computers while maintaining the data.

In order to implement the database in our project we have to add the javascript class in
our project. [60] The class is in the dbAccess.js script. The commands run by the
dbAccess class are IDbCommand commands, and those commands return an
IDataReader object. The IDbCommand objects represents an SQL statement that is

Chapter 7 Implementation

 90

executed while connected to a data source and the IDataReader object provides a
means of reading one or more forward-only streams of result sets. The class functions
are presented next. All of them are in the dbAccess.js script.

We create a IDbConnection object which represents a connection to a data source. The
function OpenDB() opens and connects to a database specified by a name.

The function DeleteTableContents() creates and executes a query to delete all rows
from a table specified by tableName. The CreateTable() function creates and executes
a query that creates a table with a specified name and column names and types which
are defined by given arrays.

The function InsertInto() creates and executes a query that inserts an array of values on
a specified table.

Now we have a class in our project with the appropriate functions to implement the
database.

Chapter 7 Implementation

 91

 7.5.3.2 Initialization of the database

To work with the database we have to initialize it first. We access the file with our raw
data, we read it and insert the data in the database. This happens only once, in the
development stage when we know the datapath of the file and is on the same computer.
When the standalone application is build the database is already filled and we can run
the application on any computer.

The script Read_data.js, which is a component to the „neoria‟ gameObject, contains the
function to initialize the database.

In the Start() function we create a new dbAccess class object and we call the OpenDB()
to create the database. Then we create arrays with the names of the columns and their
types and pass them in the createTable() function in order to create the table. In our
case the columns are the point id , the easting coordinate, the northing coordinate and
the level (height). The function InitializeDB() reads the file and inserts the data in the
database. More specifically, after we clear the database with the DeleteTableContents()
function, we access the file on the specified datapath, we separate each line and then
for each line in the file we separate the values and pass them in the database in the
appropriate columns with the InsertInto() function. The InitializeDB() is called in the
Start() function on the menu_script. After the database is initialized it is placed in
comments.

 7.5.3.3 Display measurements

In the Read_data.js we created a function called InstantiateMeasurements(). In that we
read the data from the database and for each row a cube is created and positioned in
the specified place by the geographic coordinates that are represented by the data. As
can be seen in the section below we create an query, we executed it and we are
returned the resulting records. Each record represents a position in space whose

Chapter 7 Implementation

 92

absolute values are very big. In order to fit our scene‟s coordinate system we have to
translate it. We add or subtract the right absolute values in order for the 3D point to be
suitable for the scene‟s coordinate system.

Then we create clones of the Cubew object with the instantiate function on the places
defined by the read data. We name the created clone objects by their id and keep them
on a list for future reference.

Back to the menu_script.js.

We create an on off toggle button. When the button is activated, it accesses the
Read_data.js script and calls the InstantiateMeasurements() function which creates the
cubes in the correct places. If the button is switched off then we take the list with the
created objects and delete its content, in order to stop displaying the objects. The rest of
the code will be explained in the next section.

 7.5.3.4 Clickable measurements

Having displayed the measured points, we want to give the ability to click on a point and
display the spatial information, i.e. the easting, northing and level coordinates. To do
this we created a script called clickMeasurement.js and we attached it to the Cubew
object. In the Update() function of that script we detect when the object is clicked, we
find that object‟s information from the database and we display it. When that same
object is clicked again the information disappears.

First we need to detect when the mouse clicks on the
cube. With the function OnMouseOver() we activate the
commands when the mouse is on the spatial area of the
cube, then when we click it a boolean variable is
updated and sends that information in the Update()

Chapter 7 Implementation

 93

function.

In the Update() when the first click on a object occurs, we connect to the database and
run a query searching for its information based on the point id. As it was mentioned
beforehand the objects were named by their id, so the query will return that id‟s
coordinate information. Having created an object to display 3D text, we clone it in the
position provided by the coordinates, we define the text to be displayed and we give it
the appropriate rotation which we have taken from the Coordinates_script.js as it was
described in the section 7.4. We need a different rotation angle for each side in order to
make the 3D text visible and not be hidden in the model. We give each text object a
name based on its point id and we tag it appropriately for future reference. Tags are
intended to identify GameObjects for scripting purposes. When the cube is clicked a
second time, the boolean variable on the function OnMouseOver() changes and
different actions are triggered. In this case we look for the object based on the name we
gave it beforehand and we destroy it. In this way we have created an activity for
opening and closing the displayed information.

When the displayed measurement functionality is closed, apart from the cubes we want
every displayed information to be closed too. We do this by finding all the 3D text
objects, which we have tagged appropriately and destroy them. This piece of code is in
the last four lines of the menu_script.js part, shown in the previous section (7.5.3.3).

The objects are cloned with their scripts, each object has its own script and its functions
run for that particular object only. Because of this, the events regarding each object do
not get confused and we have a smooth implementation.

7.5.4 Display Raw Data functionality

Having implemented the functionality where we click at a point and the coordinates are
displayed, we want to create the reverse activity where we have the coordinates
available to us and when we click on a coordinate, the point corresponding to it is
displayed on the model. What we want to do, is display the contents of the database on
the screen, create one clickable button for each coordinate and when we click it to

Chapter 7 Implementation

 94

inform us in which side the corresponding point is and display it on the surface. For that
functionality we created a script called viewRawData().js and we attached it to our main
model. That script contains only an OnGUI() function because we want to have the
information displayed on screen. Inside that function we put our code.

As is shown above we created a GUI area on
screen. We connected with the database and
executed a query retrieving all the rows. We
have created a scroll window and inside it, for
each retrieved row we create a button with the
point id on it. Next to the button we display the
corresponding information. When a button is
clicked we check to see if the sphere object
representing the point exists, and if not we clone
a sphere in the position appointed by the button
information. The sphere is appointed a name for
reference and stored on a list. When we click a
button again and the object already exists we
destroy it, creating an open/close activity.

In order to be more helpful to the user, when a
button is clicked we display text informing the
user in which side the clicked point is. This way
the user can quickly transport to that side. This is
implementing by storing in a variable the id of the
retrieved row, and depending on its value, we recognize in which side it belongs and
display the appropriate information.

Figure 7.10 The GUI of the database as is
displayed on screen.

Chapter 7 Implementation

 95

In the menu_script.js we have created an on/off toggle button implementing that
functionality.

When the toggle button is on the viewRawData.js script is activated and the database is
displayed. When it is off the script deactivates and every object that may have been
created is destroyed (by accessing the object list).

In order to enhance the sphere‟s visibility and making it easier
to be detected, we implemented a pulsing functionality. The
sphere has a blinking lighting effect around it and draws the
attention of the user. In order to achieve this we attach a halo
component on it. It creates a halo effect around the object. we
also created a script called pulse.js to implement the blinking
activity.

In that script we created a function called PulseLight() which
enables or disables the halo based on a Boolean variable. In
the Update() change that variable and call the latter function.
Because the Update runs in every frame, the variable changes
in every frame and the light blinks with the frame rate.

Figure 7.11 The sphere
object components.

Chapter 7 Implementation

 96

 7.6 Display coordinates dynamically

A feature that the application provides to the user is the continuous display of the
geographical coordinates on the bottom of the screen. When the mouse point is on the
vicinity of the monument, then the coordinates of the point that the mouse shows
appear on the bottom of the screen. Those coordinates change dynamically whenever
the mouse moves.

The creation of that feature is achieved with the method of raycasting. In Unity any point
in the camera‟s view corresponds to a line in world space. Unity provides a
mathematical representation of that line in the form of a Ray object. The ray
corresponds to a point in the view and is implemented with the ScreenPointToRay()
function which returns a ray going from camera through a screen point. The ray consists
of a point of origin and a vector which shows the direction of the line from that origin.

The most common use of a ray is to perform a raycast into the scene. A raycast sends
an imaginary “laser beam” along the ray from its origin until it hits a collider in the scene.
Information is then returned about the object and the point that was hit in a RaycastHit
object. This is a very useful way to locate an object or a point based on its onscreen
image.

This method helped us implement that feature. We cast a ray from the camera into the
scene, we detected when it hit a collider and we were returned the point of impact in
world space.

This was implemented in the functionality.js script. That script was attached to the
walker.

Figure 7.12 The mouse points at a spot and its
coordinates are displayed on the bottom.

Chapter 7 Implementation

 97

Inside the Update() function, we created a ray with the ScreenPointToRay() function
going from the camera through the mouse position x, y pixel coordinates on the screen.
The resulting ray is in world space. We drew that ray on the scene view for development
purposes. Using the Raycast() function we detect if the ray intersects any collider. The
information is sent to us with the hit variable which is used to get information back from
a raycast. When the ray hits a collider that is distinguished by name we take the point
impact information with the hit.point variable. That information is properly transformed to
depict the corresponding geographical coordinates and is displayed on the screen via a
GUIText object.

This provides a way to have a continuous dynamic depiction of the coordinates of the
mouse point at any given time.

 7.7 The Submenu

The final functionality that the main menu provides, is the appearance of another menu,
the submenu. When the button of the submenu is pressed, new buttons appear which
implement new functionalities. The submenu is implemented in the same way as the
main menu. We created an empty object called the submenu and attached a script to it.
In that script we implement an new GUI with buttons. The script which controls the
submenu is the submenu_script.js.

Inside the menu_script.js we
detect when the submenu
button is pressed and in the
Update() function we enable or disable the submenu object, depending on that
detection.

Chapter 7 Implementation

 98

The submenu consists of three buttons and provides three functionalities. A functionality
that displays hotspots (which are clickable objects) around the building in special
places. When clicked the appearance of that part of the monument changes. A
functionality that displays information about the monument and a functionality that
measures distances on the building.

 7.7.1 Alteration functionality

As it was mentioned when this functionality is enabled hotspots appear. These hotspots
are clickable objects that when clicked, the surface of the monument on the area they
are, changes. In that way the user can alter the geometry provided and visualize it in
different ways.

In the submenu_script.js inside the OnGUI() function we created a button named
Show Hotspots. When clicked the
appropriate actions are triggered on the
Update() function.

In the Update() function when
the button is clicked once the
hotspots are activated when is
clicked again the hot spots are
deactivated along with the
alterations that have happened
in the building.

The hotspots are sphere
objects that we have created
and we have positioned them in
places where we want to implement a change. There are five hotspots.

Hotspot1
The first hotspot is represented by the object called Sphere and it is placed on the north
side of the building in front of the eastern dome. That dome is painted in parts white with
modern materials. We want to replace those materials with other ones identical to the
neighbouring parts.

Chapter 7 Implementation

 99

In order to do that we created an object representing the façade of that dome. That
object consists of the faces of the façade of the seventh dome, but is textured
differently. The white parts are covered with texture similar to the rest of the surface.

We imported that object in our project and placed it exactly where the corresponding
part of the monument is. We disabled the mesh renderer so that it would not be visible.

In the sphere object we attached a script called
hotspots.js. In the OnMouseOver() function of that script
we detect when the mouse is on the vicinity of the sphere
and when the sphere is clicked a variable informs the
Update() function whether the imported object‟s mesh
renderer should be enabled. When a click happens in the
already open hotspot, the object disappears by disabling its
mesh renderer.

The hotspots is blinking in order to be more distinguished.
The blinking function was implemented in the same way as
it was mentioned in the previous chapter by the PulseLight() function. It blinks in the
same speed as the frame rate.

Hotspot2
The second hotspot was placed on the south side of the building in the eastern dome.
That part of the building is heavily damaged. The roof
has collapsed and the whole top of that dome is
missing. We want to give the ability to the user to
visualize the missing roof and toggle between the
current and „restored‟ surface. It should be mentioned
that due to the lack of architectural information, the

Figure 7.13 The object used to alter the appearance of the
dome. The white parts are gone, and are textured with similar
looking material.

Chapter 7 Implementation

 100

restored surface was created based on the appearance of the non-damaged parts, as
well as the measurements of structural elements of neighboring areas.

We created an object of the missing roof based on the aforementioned information. It is
designed to complement the current surface the best way possible. We imported it into
the scene and placed it in a way that fits the current
surface. We disabled the mesh renderer in order to
make it invisible. When is visible is rendered in red
color.

Following then same workflow as the first hotspot, we
created a sphere object and placed on the spot mentioned
above. We attached a script called hotspots2.js to it. The
same implementation as the first hotspot was followed. By
detecting the click on the sphere object the mesh renderer
is enabled or disabled making the roof appear or hide.

Hotspot3
The third hotspot deals with the missing roof edge of the fifth
dome (counting from the west) on the south side. Exactly as it
was implementing for the second hotspot, the clicks on the
corresponding sphere trigger the appearance or
disappearance of the missing roof edge. The missing roof
edge was created in the same way as the roof previously and
imported and placed in the correct place in the scene.

Figure 7.15 The part of the building as is currently (left) and with the missing roof edge (right).

Hotspot4
The fourth hotspot has to do with the alteration of textures. There are places in the
current monument that are covered with modern materials such as cement. One such
surface is the façade of the third (counting form the east) dome on the north side. Its

Figure 7.14 The object
representing the missing roof.

Chapter 7 Implementation

 101

appearance is heavily altered. The whole façade is covered with cement and modern
bricks. It would be nice if the user can visualize it with textures similar to the neighboring
surfaces.

The texture change is different from the procedure followed above. We want to keep the
mesh the same and change the textured applied on it in
realtime. Firstly, we painted a new texture with the same UV
mapping for the damaged façade. It was created with painted
details derived from the non-damaged areas. A normal map
was also created to accompany that new texture. Inside Unity
we created a new material with a bumped diffuse shader. The
new texture and its normal map where placed on the
corresponding slots of that material.

Our main 3D model has a list of materials with which is
textured. That list is in its mesh renderer component. What we
want to achieve is to change that list during runtime with
another that has on the appropriate slot the new material we
created.

Having created a sphere object to use as a hotspot on the
correct spot we attached the script hotspots4.js to it. In that script we defined two
material lists. One that holds the current materials and one
that has the new material in it. The new list was filled with the
appropriate materials in the inspector. When the script is first
called, i.e. in the Start() function, we store the current
materials on a list.

When the hotspot is clicked for the first time the material list of
the mesh renderer changes with the new one. When is
clicked for the second time the material list is replaced with
the initial one. That way the texture appearance changes and
the user can toggle between textures.

Hotspot5
The fifth hotspot alters the appearance of the seventh dome in the south side. It is the
dome that has the collapsed roof. We see that the door in that façade is blocked and
covered with brinks. We want to create a door opening as we imagined was in the past.
We created an object identical to that particular part of the building but with a door
opening. We imported it and placed it in the spot of the current part.

Figure 7.16 The material
list of the 3D model.

Chapter 7 Implementation

 102

Following the previous steps we created a sphere object and placed it in front of that
part. We attached a script called hotspots5.js to it. In this case a simple toggle of the
mesh renderer of the imported object is not suitable, because there is the old surface
underneath and intervenes with the one. The blocked door is still visible when the new
surface is rendered. What we did to prevent that is a combination of the previous
hotspot activities. When we click the hotspot we want the old surface disappear and the
new object appear.

In order to do that we need to change the material of that part of the monument and
make it completely transparent. The faces that are covered with that material become
invisible and the new object can be rendered in that invisible part. The faces of the new
object match the faces that
are covered with the
material that is going to be
transparent.

Having kept the old material
list in a variable, we develop
the usual clicking
functionality. When the
hotspot is clicked, the first
thing we do is to check if the
fourth hotspot might be on.
This is checked because the
previous functionality
changes the material list. If
the fourth hotspot is on then the list is different. Depending on whether the previous
hotspot is on or off we manipulate the corresponding list. We enable the mesh renderer
of the new object and then we change the shader of the material on that part to a
transparent/diffuse shader. The transparency of the shader depends on the value of the
alpha channel of the texture. To be completely invisible we set that value to zero. Now
the old part of the model is completely transparent and the new part is displayed over it.

Figure 7.17 The created object with the door opening. The
newly created faces are rendered in red.

Chapter 7 Implementation

 103

When we click again the new object disappears, the shader of that part returns to
bumped diffuse and the material list is replaced with the initial one.

When the „show hotspots‟ button is clicked for a second time in the submenu the
hotspots disappear, as well as the objects or the alterations that may be activated.

 7.7.2 Information plane

The second submenu button is named „Show Info‟. When it is clicked a GUI window
pops up with information regarding the history of the „Neoria‟ monument. As it is shown
on the part of code of submenu_script.js in the previous section, when a click occurs on
that button the info gameObject is activated. The info gameObject is an empty object
with the info.js script attached to it.

In the script we create a GUI scroll
window in which we display text
regarding the history of the monument.
The text is loaded in the longString
variable. When the button is clicked
again the GUI window disappears.

 7.7.3 Measure Dimensions Functionality

The third button is named „Measure Dimensions‟. This is a method of providing a way to
measure dimensions on the monument surface. The user can click on two points on the
surface monument and their distance and depth difference is calculated and displayed
on the screen. To do this functionality the raycasting method that was explained in the
section 7.6 was employed.

The code for this feature is in the functionality.js script. First we wrote a function that
calculates the distance between two points called CalculateDistance(). It takes as
arguments two 3D points and
calculates their distance in the
three dimensional space. The 3D
distance between the points
(x1,y1,z1) and (x2,y2,z2) is

 √

Chapter 7 Implementation

 104

Inside the Update() function on
the functionality.js script we check
to see if the submenu object is
active in order to be able to
access its variables. If it is active
we check if the button „Measure
Distance‟ is clicked. If it clicked we
enable a gameObject we have
created called point_highlight.
That object is an empty object
with a halo component attached to
it that acts as a yellow dot pointing
to the surface. It is a way of
highlighting the mouse point‟s
position and distinguish easily the
point we want to click. We use
the raycast we implemented in the
dynamic display of the
coordinates (it is in the same
script). We take the information of
that ray, which identifies with the
mouse movement and we pass it
in the point_highlight in order to
follow the mouse. Now we a
yellow dot following the mouse
when it hits a surface. Depending
on whether we are about to apply
a first or second click we send information to the submenu_script (as is shown on the
right) and a message appears. When we are
about to click the first point the message “Click
on a starting point” appears. Before we have
the second click the message “Click on a
second point” appears. It is a way of guiding
the user during the action. When we first click
we keep the information of the impact point in
variables. Then we create a small pyramid object and position it in the spot we clicked,
to mark the point. (If there are other pyramids from previous measurements they are
destroyed) When we click again we also keep the information of that impact point in
variables and we place a pyramid on the spot. We enable a line renderer which we have
attached as a component to the walker. The line renderer draws a line between two (or
more) points. In our case a line is drawn between the previous clicked points. Then we
call the CalculateDistance() function and the 3D distance is calculated.

When that function is called, the GUI label is activated and informs the user of the
resulting distance. Additionally, the depth difference is displayed. We need to

Chapter 7 Implementation

 105

distinguish what is considered surface depth on each side. The north and south side
consider as surface depth the z axis, while the east and west side the x axis.

Because the monument is scaled inside Unity according to the world scale the results
represent real life units and are in meters.

 7.8 Lighting transition

We have developed a functionality in which the user can control a day night lighting
transition. The user has the opportunity to observe the monument under different
lighting conditions. A state representing the day and a state representing the night have
been created and a smooth transition between them. The user can control the transition
via a slider that is displayed on the screen. In order to
implement that functionality we have created the
day_night_transition.js script and attached it to an empty
gameObject.

A vertical slider is a GUI element that the user can drag to
change a value between a min and a max. The
GUI.VerticalSlider() function returns the number that the slider
shows at any given time. We take that number and depending
on it we change the properties and settings of the components
we want. Because we will work with a lot of different range
values we want to normalize them in order to be on the same
range. We used the following function.

This function is given a value between a min and a max and returns the corresponding
value in the dmin, dmax range. We made our implementation in the
day_night_transition.js script and inside the OnGUI() function.

Chapter 7 Implementation

 106

We created the slider and it gives us a value between 0 and 1. Day corresponds to 0
and night to 1. First we change the color of the water. During the day it has a bright blue
color, but during the night changes to a dark color. We accessed the water‟s base and
reflection colors. For the red, green and blue values of those colors, we take the value
of the slider and normalize it between a min and a max value that we have defined.
Those min and max values represent the color of the day and night and must be
normalized to be between 1 and 0. While the value of the slider changes, so does the
color.

Another element that we should focus is the
streetlights we created. It would be beautiful
if as we change the state of the atmosphere
the streetlights were smoothly lighted with a
glow around them.

To create the lighting of streetlights we put a
spot light on the top looking down, so it will
cast light down and fake the real streetlights.
A point light was also put inside the curve of
the streetlight in order to give it a glow and
halo like a light bulb.

To achieve an even more realistic look we want to create a glow that begins from the
light and as it is descending to disappear. To fake that we created a plane and put as a
texture the image of a glow on it and a transparent shader.
In order to be able to look at the light from all sides and see
the glow , we made the plane turn towards the camera all
the time. To achieve that we attached a script to the plane
object with the code shown on the right. With that the plane always turns towards the
target, which is the camera.

Figure 7.18 The streetlight with the two
lights attached to it and a plane with an
image of a glow.

Chapter 7 Implementation

 107

Having created the effect of a realistic streetlight, we want to change its illumination
and appearance as the slider value changes. Continuing on the
day_night_transition.js script, we find the street lights we created and we change the
intensity of the spot and point light based on the slider value. To have a realistic
transition from day to night the halo should not exist in the day and as the slider
changes to slowly brighten. For that reason we created three textures with the image of
a glow on each one of them. The first with a faint glow, the second with a more intense
glow and the third with a very bright glow. We check the slider values and as they
change, we change the texture of the plane object depending on if the values are
towards the day or night. This gives us a smooth appearance or disappearance of the
glow.

We also set the intensity of the directional light that represents the sun and change the
color of the ambient light based on the slider value to make them suitable with the
atmosphere.

We also set the properties of two camera effects. The glow effect and the bloom and
lens flares. These effects help us enhance the atmosphere, especially at night.

Chapter 7 Implementation

 108

Finally, we need to change the skybox from a day sky to a night sky, With the help of a
skybox shader that blends between two sets of skybox textures.

 7.9 Compass

The functionality of a compass is implemented. A vector rotates to always point towards
the north. It is displayed at the bottom right of the screen and can help the user be
oriented. We created the script compass.js
for that purpose and we attached it on the
walker.

We store the y rotation of the
camera at any given point
and we pass it in the RotateAroundPivot()
function. This function rotates the GUI that follows, i.e. the image vector by the angles
we have given around a pivot point (the centre point of the image).

7.10 Application utilities

In order to close the application at any given time a quit button is implemented. A
GUITexture object was created and placed on the top right corner of the screen. When
it is clicked the application closes.

Chapter 7 Implementation

 109

When the application launches a welcome screen appears with a start button. That
button is created with a GUITexture with a script attached to it.

When the button is clicked the scene „neoria‟ is loaded. That scene contains all the
functionalities of our application.

Chapter 8 Result and System Evaluation

 110

Chapter 8 Result and System Evaluation

The evaluation of the whole system is separated in two parts. The evaluation of the 3D
reconstruction of the model and the evaluation of the interactive application.

 8.1 3D Reconstruction Evaluation

The creation of the 3D model was a long and complex procedure. It began with the field
work, the measurements, the data acquisition and continued with the data process, the
surface reconstruction and post processing. From the beginning, the initial data were
converted and processed. They were exchanged between several 3D software
programs with different coordinate systems. Once the surface was formed, it was
heavily processed and in some cases altered in order to simulate the real surface in the
best way possible. It is natural to have errors throughout the framework that was
followed.

Errors can appear in all the stages of the data acquisition process and surface creation,
affecting the credibility of the outcome. The types of errors that can occur are:

 Total station errors - The instrument error has been mentioned on the fourth
chapter in the total station‟s technical characteristics. Although total stations are
highly accurate instruments, their accuracy can be compromised by temperature
changes, vibrations, long transport periods and beam blockage.

 Errors in the surface creation - The data managing, the exchange between
devices, the data process that occurred in order to create the TIN surfaces, as
well as the import/export from the modeling software are procedures prone to
errors.

 Surface processing errors - Similar with what was mentioned above. Errors can
appear in the exchange between modeling software and subsequent coordinate
system conversion as well as the surface processing itself. It should not be
forgotten that the resulting surface although containing the original
measurements is quite different from the initial TIN surface.

 Human error – Last but not least the human error is a significant factor in the
credibility of the results. Human errors can occur in the data acquisition process.
The operator of the total station can cause vibrations or laser beam deviations
resulting in incorrect measurements. The human factor is heavily featured during
the surface creation and processing. The developer operated the software and a
big part of the surface creation procedure was implemented by hand.

The evaluation of the results consists of the simple visual evaluation and the accuracy
evaluation. The model should have the same appearance with the real monument and
display the details of the real surface, something that can be depicted with the
comparison of the 3D model with the actual building or photographs. In the accuracy
evaluation the resulting model should be compared with another model, surface or data

Chapter 8 Result and System Evaluation

 111

representing the ground truth, and calculate the deviation from them. Next, the accuracy
evaluation that was performed is presented.

 8.1.1 Accuracy Evaluation

Having no ground truth to compare our results, the final model is going to be compared
to the initial measurements. This is to determine if the procedure of the 3D
reconstruction has deviated or altered the points that were initially measured. This is
also a way to provide an error calculation for the functionalities that have to do with the
geographical coordinates.

The comparison was executed with the CloudCompare software. CloudCompare is an
open source 3D point cloud and mess processing software. We imported the model in it
as well as a file with the original raw data. The raw data were considered as a sparse
point cloud and acted as a reference entity, meaning the calculations will be computed
relatively to its points. The 3D model is the compared mesh the one on which distances
will be computed. CloudCompare will compute the distances of each of its points
relatively to the reference entity.

After they were aligned to each other, the comparison was executed. A 'nearest
neighbor distance' method was applied. For each point of the compared cloud, i.e the
3D model, the nearest point in the reference cloud (the raw data measurements) was
found and their euclidean distance was computed. The results are shown in figure 8.1.
The Cloud to Mesh (C2M) absolute distances are calculated. A scalar field color scale is
also displayed.

In order to have accurate results, only the parts of the model that could have a
reference to the data were used. The roof was created without being based on
geographical data and its presence on the comparison would alter the results.

The results are considered satisfying. Most of the points of the model have about less
that 10 cm deviation from the measured points. As it can be observed from the colored
model, most of the surface of the main structure, i.e. blue color, identifies with the
geographical measurements. The parts where the surface is green corresponds with the
areas that we did not take adequate measurements. Those are some bottom parts on
the south side and the bottom of the outermost domes on the north side. These parts
were inaccessible due to the limited space around the monument.

The east side was inadequately measured. This is the area where the most deviation
exists. That side was inaccessible during the measurement process. Trees and plants
were covering it, and the presence of a property and a parking lot next to it hindered the
data acquisition. Few points representing the basic outline were measured.

Chapter 8 Result and System Evaluation

 112

Taking into consideration the size of the monument and the scarcity of the measured
points, we can conclude that we have a high level of accuracy.

Figure 8.1 The comparison of the 3D model with the original raw data.

Chapter 8 Result and System Evaluation

 113

 8.2 Evaluation of the application

From the first stages of the development, the application was constantly tested and
changed. Due to the level of detail that entails the appearance of the 3D model was
assessed and corrected continuously. Unity provides the features and environment of
application testing. During the development process the application was assessed
during game play and along with the model was in a constant circle of changes and
refinement. Although the first versions of the application included defects and flaws, it
was constantly improved assessing the feedback.

The application was given to several users in order to be tested and evaluated. Their
feedback was insightful and constructive. Their remarks ranged from comments about
the 3D environment to the graphical user interface and the detection of bugs.

Regarding the 3D environment, there were comments about minor imperfections of
some objects. Some streetlights were wrongly positioned or mistakenly moved during
the development process, something that was corrected.

Concerning the user navigation, there were observations about minor flaws or defects.
Although the character controller was prohibited to walk through the building, the
camera could look inside the model when the walker hit a wall, something that wasn‟t
desirable. This was corrected by adjusting the camera settings, particularly the clipping
plane in order to render the environment from nearest distances. Another comment
regarding the navigation was the inability to rotate the camera 360 degrees around
itself, something that bothered some users. This was also corrected. An additional bug
that was detected was that at a particular point in front of the harbor the controller could
fall in the sea. This was caused due to the misplacement of the collider that stopped the
controller‟s movement, something that was also corrected.

The most important comment was about the lack of instructions. The users that tested it
took some time to familiarize with it and understand the functionalities. To that aid we
created an instructions menu. A button was created on the top right called “Instructions”.
When it is clicked, other buttons appear each one regarding a functionality to be
explained. When one of them is clicked, instructions about that particular functionality
are displayed.

Chapter 8 Result and System Evaluation

 114

Figure 8.2 The instructions menu. When one of the buttons is clicked instructions about a
particular functionality are displayed.

The instructions menu was implemented on a similar way as the other menus. On the
menu_script.js we
added the code to
display the button. An
empty GameObject
was created called
„Instructions‟ and a script called Instructions.js was attached to it. That script is
enabled when the instructions button is pressed.

The Instructions.js script contains a OnGUI()
function displaying the individual buttons. When
any of those buttons is clicked another script is
enabled. That script is the InstructionLabels.js
script and is also attached to the Instructions
GameObject. A variable holding information
about which button was pressed is passed to the
InstructionLabels.js script.

In that script depending on the value of the
variable a message appears providing
information about the particular functionality.

Chapter 8 Result and System Evaluation

 115

The users provided useful suggestions and comments that contributed to the
optimization of the application.

Chapter 9 Conclusions and Future Work

 116

Chapter 9 Conclusions and Future Work

The digital representation of physical objects is not only a means for storing data but
also a way of capturing the world around us and making information accessible to a
wider audience. The depiction of objects as digital models is becoming a significant part
of many scientific fields and an aid in research. Computer graphics and 3D technology
is utilized so it could be done in an accurate way. Cultural heritage is hugely aided by
the new technologies. Three-dimensional digitization is a way of moving the data into
the future, preserving invaluable artifacts and monuments for posterity. Objects of
historic value face the danger of deterioration. A digital 3D representation can help
preserving the original condition or the current state of a historical object, as well as
track changes and regain information about them.

In this thesis the computer graphic technology was utilized to create a 3D
representation of „Neoria‟ a historic building in Crete, Greece. Tacheometry acquisition
provided spatial and geographical data to base the digital reconstruction. The
integration of tacheometry measurements and computer graphics puts forward
framework for the scientifically accurate 3D reconstruction of the historical building. The
framework presented was based on game engine technologies which provide powerful
tools for photorealistic visualization and functionalities development. The main technical
challenge of this work was the production of a scientifically accurate 3D mesh based on
a rather small number of tacheometry measurements acquired fast and at low-cost. The
combination of surface reconstruction and processing methods ensured that a detailed
geometric mesh was constructed fast based on far fewer points available compared to
laser scanning. A 3D interactive application was created involving the 3D model of the
monument. The user can visualize and tour the monument and the area around it, as
well as manipulating the model. Advanced interactive functionalities are offered to the
user in relation to identifying restoration areas and visualizing the outcome of such
works. Moreover, the user could visualize the co-ordinates of the points measured,
calculate distances at will and navigate the complete 3D mesh of the monument.

Future extensions or improvements would be to produce an advanced visualization
system operated on web or a mobile platform, a presentation of the original building fully
restored and deprived of modern alterations by methods of determining what the
appearance of the surface might have been, or an extended application on a mobile
platform that would allow access to expert users in order to collect or add data
regarding the monument, its visualization or restoration.

References

 117

References

[1] Boochs, F., Hoffmann, A., Huxhagen, U., and D. Welter, D., 2006. Digital
reconstruction of archaeological objects using hybrid sensing techniques-the example
Porta Nigra at Trier. BAR INTERNATIONAL SERIES 1568 : 395.

[2] 3D Interactive Environments -
http://edutechwiki.unige.ch/en/3D_interactive_environments

[3] Scientific Visualization - http://en.wikipedia.org/wiki/Scientific_visualization

[4] Li, R., Luo, T., & Zha, H. (2010). 3D digitization and its Applications in Cultural
Heritage. In Digital Heritage (pp. 381-388). Springer Berlin Heidelberg.

[5] Rozenwald, G. F., Seulin, R., & Fougerolle, Y. D. (2010, February). Fully automatic
3D digitization of unknown objects. In IS&T/SPIE Electronic Imaging (pp. 753807-
753807). International Society for Optics and Photonics.

[6] Pavlidis, G., Tsirliganis, N., Tsiafakis, D., Arnaoutoglou, F., Chamzas, C.,
TSIOUKAS, V., ... & Mexia, A. (2006, June). 3D digitization of monuments: the case of
Mani. In Proc. 3-rd International Conference on Museology,(Jun. 2006).

[7] Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., & Chamzas, C. (2007).
Methods for 3D digitization of cultural heritage. Journal of cultural heritage, 8(1), 93-98.

[8] Sifniotis, M., Jackson, B., Mania, K., Vlassis, N., Watten, P. L., & White, M. (2010,
July). 3D visualization of archaeological uncertainty. In Proceedings of the 7th
Symposium on Applied Perception in Graphics and Visualization (pp. 162-162). ACM.

[9] Photogrammetry - http://en.wikipedia.org/wiki/Photogrammetry

[10] Photogrammetry - http://www.photogrammetry.com/

[11] Lingua, A. M., Piumatti, P., & Rinaudo, F. (2003). Digital photogrammetry: a
standard approach to cultural heritage survey. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part 5), 210-
215.

[12] Ioannides, M., Arnold, D., Niccolucci, F., & Mania, K. Combination and Comparison
of Digital Photogrammetry and Terrestrial Laser Scanning for the Generation of Virtual
Models in Cultural Heritage Applications.

[13] Schenk, T. (2005). Introduction to Photogrammetry, From
http://www.mat.uc.pt/~gil/downloads/IntroPhoto.pdf

http://edutechwiki.unige.ch/en/3D_interactive_environments
http://en.wikipedia.org/wiki/Scientific_visualization
http://en.wikipedia.org/wiki/Photogrammetry
http://www.photogrammetry.com/
http://www.mat.uc.pt/~gil/downloads/IntroPhoto.pdf

References

 118

[14] Laser Scanning - http://en.wikipedia.org/wiki/Laser_scanning

[15] 3D Scanner - http://en.wikipedia.org/wiki/3D_scanner

[16] Staiger, R. (2003, December). Terrestrial laser scanning technology, systems and
applications. In 2nd FIG Regional Conference Marrakech, Morocco (Vol. 1).

[17] Boehler, W., Bordas Vicent, M., Heinz, G., Marbs, A., & Müller, H. (2004, May).
High quality scanning and modeling of monuments and artifacts. In Proceedings of the
FIG Working Week (pp. 22-27).

[18] Allen, P. K., Troccoli, A., Smith, B., Murray, S., Stamos, I., & Leordeanu, M. (2003).
New methods for digital modeling of historic sites. IEEE Computer Graphics and
Applications, 23(6), 32-41.

[19] Geodetic Measuring Devices - http://www.brighthubengineering.com/geotechnical-
engineering/44583-geodetic-measuring-devices/

[20] Total station - http://www.nikon.com/about/technology/life/others/surveying/

[21] 3D Computer Graphics - http://en.wikipedia.org/wiki/3D_computer_graphics

[22] 3D Modeling - http://en.wikipedia.org/wiki/3D_modeling

[23] 3D Rendering - http://en.wikipedia.org/wiki/3D_rendering

[24] Polygon Mesh - http://en.wikipedia.org/wiki/Polygon_mesh

[25] Texture Mapping - http://en.wikipedia.org/wiki/Texture_mapping

[26] Shader - http://en.wikipedia.org/wiki/Shader

[27] Fabio, R. (2003). From point cloud to surface: the modeling and visualization
problem. International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, 34(5), W10.

[28] Amenta, N., Choi, S., & Kolluri, R. K. (2001, May). The power crust. In Proceedings
of the sixth ACM symposium on Solid modeling and applications (pp. 249-266). ACM.

[29] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The
ball-pivoting algorithm for surface reconstruction. Visualization and Computer Graphics,
IEEE Transactions on, 5(4), 349-359.

[30] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface
reconstruction from unorganized points (Vol. 26, No. 2, pp. 71-78). ACM.

http://en.wikipedia.org/wiki/Laser_scanning
http://en.wikipedia.org/wiki/3D_scanner
http://www.brighthubengineering.com/geotechnical-engineering/44583-geodetic-measuring-devices/
http://www.brighthubengineering.com/geotechnical-engineering/44583-geodetic-measuring-devices/
http://www.nikon.com/about/technology/life/others/surveying/
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/3D_modeling
http://en.wikipedia.org/wiki/3D_rendering
http://en.wikipedia.org/wiki/Polygon_mesh
http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Shader

References

 119

[31] Kazhdan, M., Bolitho, M., & Hoppe, H. (2006, June). Poisson surface
reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry
processing (Vol. 7).

[32] Alqudah, A. (2014). Survey of Surface Reconstruction Algorithms. Journal of Signal
and Information Processing, 2014.

[33] Tang, R., Halim, S., & Zulkepli, M. (2013). Surface reconstruction algorithms:
review and comparisons. ISDE2013.

[34] Bolitho, M., Kazhdan, M., Burns, R., & Hoppe, H. (2009). Parallel poisson surface
reconstruction. In Advances in Visual Computing (pp. 678-689). Springer Berlin
Heidelberg.

[35] Catmull, E., & Clark, J. (1978). Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer-aided design, 10(6), 350-355.

[36] Doo, D., & Sabin, M. (1978). Behaviour of recursive division surfaces near
extraordinary points. Computer-Aided Design, 10(6), 356-360.

[37] Zorin, D., Schröder, P., & Sweldens, W. (1996, August). Interpolating subdivision
for meshes with arbitrary topology. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques (pp. 189-192). ACM.

[38] Subdivision surface - http://en.wikipedia.org/wiki/Subdivision_surface

[39] Game Engines - http://en.wikipedia.org/wiki/Game_engine

[40] Unreal Engine - http://en.wikipedia.org/wiki/Unreal_Engine

[41] Unity 3D - http://en.wikipedia.org/wiki/Unity_%28game_engine%29

[42] CryEngine - http://en.wikipedia.org/wiki/CryEngine

[43] Unity Manual - http://docs.unity3d.com/Manual/index.html

[44] Scripting API - http://docs.unity3d.com/ScriptReference/index.html

[45] Autodesk 3ds Max - http://en.wikipedia.org/wiki/Autodesk_3ds_Max

[46] AutoCAD Civil 3D - http://www.autodesk.com/products/autocad-civil-3d/overview

[47] MeshLab - http://meshlab.sourceforge.net/

http://en.wikipedia.org/wiki/Subdivision_surface
http://en.wikipedia.org/wiki/Game_engine
http://en.wikipedia.org/wiki/Unreal_Engine
http://en.wikipedia.org/wiki/Unity_%28game_engine%29
http://en.wikipedia.org/wiki/CryEngine
http://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/ScriptReference/index.html
http://en.wikipedia.org/wiki/Autodesk_3ds_Max
http://www.autodesk.com/products/autocad-civil-3d/overview
http://meshlab.sourceforge.net/

References

 120

[48] The Venetian Port of Chania - http://www.destinationcrete.gr/en/monuments-
other/chania-monuments-other/chania-city-monuments-other/limani-faros-enetika-
neoreia

[49] Venetian Neoria - http://www.chaniatourism.com/see-do/archaeological-sites-
historical-monuments/66-venetian-neoria.html

[50] Hellenic Geodetic Reference System 1987 -
http://en.wikipedia.org/wiki/Hellenic_Geodetic_Reference_System_1987

[51] Easting and northing - http://en.wikipedia.org/wiki/Easting_and_northing

[52] From point clouds to powercrusts -
http://www.cgw.com/Publications/CGW/2001/Volume-24-Issue-6-June-2001-/From-
Point-Clouds-to-Power-Crusts.aspx

[53] Triangulated Irregular Network (TIN) -
http://en.wikipedia.org/wiki/Triangulated_irregular_network

[54] Delaunay Triangulation - http://en.wikipedia.org/wiki/Delaunay_triangulation

[55] TIN surfaces -
http://resources.arcgis.com/en/help/main/10.1/index.html#//006000000001000000

[56] Peters, J., & Reif, U. (1997). The simplest subdivision scheme for smoothing
polyhedra. ACM Transactions on Graphics (TOG), 16(4), 420-431.

[57] UV Mapping - http://en.wikipedia.org/wiki/UV_mapping

[58] 3ds Max Documentation - http://knowledge.autodesk.com/support/3ds-

max#?p=3ds%20Max&sort=score

[59] SQLite - https://www.sqlite.org/

[60] SQLite class - http://wiki.unity3d.com/index.php/SQLite

http://www.destinationcrete.gr/en/monuments-other/chania-monuments-other/chania-city-monuments-other/limani-faros-enetika-neoreia
http://www.destinationcrete.gr/en/monuments-other/chania-monuments-other/chania-city-monuments-other/limani-faros-enetika-neoreia
http://www.destinationcrete.gr/en/monuments-other/chania-monuments-other/chania-city-monuments-other/limani-faros-enetika-neoreia
http://www.chaniatourism.com/see-do/archaeological-sites-historical-monuments/66-venetian-neoria.html
http://www.chaniatourism.com/see-do/archaeological-sites-historical-monuments/66-venetian-neoria.html
http://en.wikipedia.org/wiki/Hellenic_Geodetic_Reference_System_1987
http://en.wikipedia.org/wiki/Easting_and_northing
http://www.cgw.com/Publications/CGW/2001/Volume-24-Issue-6-June-2001-/From-Point-Clouds-to-Power-Crusts.aspx
http://www.cgw.com/Publications/CGW/2001/Volume-24-Issue-6-June-2001-/From-Point-Clouds-to-Power-Crusts.aspx
http://en.wikipedia.org/wiki/Triangulated_irregular_network
http://en.wikipedia.org/wiki/Delaunay_triangulation
http://resources.arcgis.com/en/help/main/10.1/index.html%23/006000000001000000
http://en.wikipedia.org/wiki/UV_mapping
http://knowledge.autodesk.com/support/3ds-max%23?p=3ds%20Max&sort=score
http://knowledge.autodesk.com/support/3ds-max%23?p=3ds%20Max&sort=score
https://www.sqlite.org/
http://wiki.unity3d.com/index.php/SQLite

