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ORIGINAL PAPER

C. V. Chrysikopoulos Æ E. T. Vogler

Estimation of time dependent virus inactivation rates by geostatistical
and resampling techniques: application to virus transport in porous
media

Abstract A methodology is developed for estimating
temporally variable virus inactivation rate coefficients
from experimental virus inactivation data. The meth-
odology consists of a technique for slope estimation of
normalized virus inactivation data in conjunction with
a resampling parameter estimation procedure. The
slope estimation technique is based on a relatively
flexible geostatistical method known as universal kri-
ging. Drift coefficients are obtained by nonlinear fitting
of bootstrap samples and the corresponding confidence
intervals are obtained by bootstrap percentiles. The
proposed methodology yields more accurate time de-
pendent virus inactivation rate coefficients than those
estimated by fitting virus inactivation data to a first-
order inactivation model. The methodology is success-
fully applied to a set of poliovirus batch inactivation
data. Furthermore, the importance of accurate inacti-
vation rate coefficient determination on virus transport
in water saturated porous media is demonstrated with
model simulations.

List of symbols

A matrix ðnþ p � nþ pÞ of the kriging system,
defined in (18)

b vector of true model parameters
b̂ bootstrap vector of estimated model pa-

rameters
bb vector with the mean values of multiple

bootstrap parameter estimates, defined in
(22)

B number of resamples
C concentration of viruses suspended in the

liquid phase, M=L3

C� sorbed virus concentration (virus mass/solid
mass), M=M

Cg concentration of virus directly in contact
with solids, M=L3

C� initial virus concentration, M=L3

d vector ðnþ pÞ of the kriging system, defined
in (20)

D hydrodynamic dispersion coefficient, L2/t
e vector of random numbers with zero mean

and known covariance matrix
E½ � expectation operator
f known trial or base time-dependent func-

tions
g vector of model simulated data
L Lagrangian, defined in (14)
k mass transfer rate constant, t�1

Kd partition coefficient, L2=M
M normalized virus log-concentration
�M mean normalized virus log-concentration
MSE mean square error of kriging estimator, de-

fined in (21)
n number of available observations or exper-

imental data points
p number of drift coefficients
R covariance function
S objective function
t time, t
u vector of independent variables
U average interstitial velocity, L=t
x spatial coordinate in the direction of flow, L
x vector ðnþ pÞ of unknowns of the kriging

system, defined in (19)
yi observed data
y vector of observed data

Greek letters

a resistivity coefficient of suspended viruses in
the liquid phase, t�1

a� resistivity coefficient of sorbed viruses, t�1

b deterministic but unknown drift coefficients
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c semi-variogram, defined in (31)
� zero-mean stochastic process
f semi-variogram model parameter, t
h porosity (liquid volume/porous medium

volume), L3=L3.
j central confidence interval
k inactivation rate coefficient of suspended

viruses in the liquid phase, t�1

k̂ estimated inactivation rate coefficient of
suspended viruses in the liquid phase, t�1

k� inactivation rate coefficient of sorbed viruses,
t�1

k� initial inactivation rate coefficient of sus-
pended viruses in the liquid phase, t�1

k�� initial inactivation rate coefficient of sorbed
viruses, t�1

l� mean or expected value of �ðtÞ
m1; . . . ; mp 1/2 Lagrange multipliers
n1; . . . ; nn deterministic weight coefficients
q bulk density of the solid matrix (solids mass/

aquifer volume), M=L3

r2 variance or sill of the semi-variogram, equal
to Rð0Þ

r̂b standard error of bootstrap parameter val-
ues, defined in (23)

s incremental time between measurements

Other signs

2 an element of
j2 not an element of

1 Introduction

Viruses are intracellular parasites with size ranging from
0.02 to 0.3 lm (Brock and Madigan, 1991) that may
infiltrate into the subsurface from human and animal
sewage through municipal wastewater discharges, septic
tanks, sanitary landfills and agricultural practices (Kes-
wick and Gerba, 1980; Chrysikopoulos, 1999; Schijven
and Hassanizadeh, 2000). A virus contains a nucleic acid
that is surrounded by a protein coat consisting of a
number of protein molecules. Disruption of coat pro-
teins and degradation of the nucleic acid is a complex
process known as inactivation. In subsurface forma-
tions, viruses often migrate along groundwater flow-
paths and their transport and fate are significantly
affected by virus inactivation and sorption onto the solid
matrix (Vilker, 1981; Chu et al., 2001; Redman et al.,
2001).

There is a certain relationship between virus adsorp-
tion and inactivation. Available experimental observa-
tions indicate that the rate of virus inactivation is smaller
for sorbed than liquid-phase viruses owing to the ap-
parent protection, provided by the solid matrix, against
the disruption of the coat protein and degradation of the
nucleic acid (Hurst et al., 1980; Liew and Gerba, 1980;

Gerba, 1984; Yates and Yates, 1988). Consequently,
recent research efforts on virus adsorption and transport
in porous media recognize that inactivation rates of
liquid-phase and sorbed or attached viruses should not
be assumed equal (Sim and Chrysikopoulos, 1999,
2000).

The majority of available mathematical models for
the prediction of fate and transport of viruses in
subsurface formations describe virus inactivation by a
first-order rate expression with constant rate coefficient
(e.g., Tim and Mostaghimi, 1991; Yates and Ouyang,
1992; Chrysikopoulos and Sim, 1996; Sim and
Chrysikopoulos, 1995, 1998; Jin et al., 2000 to men-
tion a few). However, several experimental studies
suggest that virus inactivation rate coefficients exhibit
temporal variability due to the existence of various
virus subpopulations undergoing sequential inactiva-
tion with different inactivation rate coefficients
(Parkinson and Huskey, 1971; Pollard and Solosko,
1971; Yamagishi and Ozeki, 1972; Grant et al., 1993).
The mathematical complexity associated with the
sequential inactivation that is described by several
discrete first-order rate coefficients, each governing a
different inactivation phase (Crane and Moore, 1986)
is simplified by approximating the multiphasic se-
quential inactivation by a pseudo first-order expression
with a time dependent inactivation rate coefficient
determined from available experimental data (Sim and
Chrysikopoulos, 1996).

In this work, an effective technique for the estima-
tion of temporally variable virus inactivation rate co-
efficients from experimental data is developed. The
technique consists of a geostatistical procedure called
universal kriging in conjunction with the bootstrap
resampling method and a nonlinear regression proce-
dure.

2 Time-dependent inactivation

Experimental virus inactivation studies suggest that in-
activation rate coefficients are time dependent (Hurst
et al., 1980; Pollard and Solosko, 1971; Yamagishi and
Ozeki, 1972; Crane and Moore, 1986). Furthermore,
Sim and Chrysikopoulos (1996) have shown that ex-
perimental data from several batch virus inactivation
studies can be reasonably described by a pseudo first-
order approximation

dCðtÞ
dt
¼ �kðtÞCðtÞ ; ð1Þ

where C is the concentration of suspended viruses in the
liquid phase; t is time; and k is the time-dependent in-
activation rate coefficient of suspended viruses given by

kðtÞ ¼ k�e
�at ; ð2Þ

where k� is the initial inactivation rate coefficient and a is
the resistivity coefficient. Substituting (2) into (1) and
solving the resulting expression subject to the initial
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condition Cð0Þ ¼ C�, where C� is the initial virus con-
centration, yields

ln

�
CðtÞ
C�

�
¼ k�

a

�
expð�atÞ � 1

�
: ð3Þ

To simplify the notation, the normalized virus log-
concentration is expresses as

MðtÞ ¼ ln
CðtÞ
C�

� �
: ð4Þ

It should be noted that for an arbitrary time t�, the slope
dMðt�Þ=dt represents the inactivation rate coefficient
evaluated at time t�

kðt�Þ ¼ �
dMðt�Þ

dt
¼ � lim

s!0

Mðt� þ sÞ �Mðt�Þ
s

� �
; ð5Þ

where s is the incremental time between observations of
M . Consequently, in view of (2) and (5), the accuracy of
inactivation rate coefficient estimation is affected by the
efficiency of the method employed for slope determina-
tion or evaluation of the parameters k� and a. As illus-
trated in Fig. 1, the determination of k at an arbitrary
time t� is essentially equivalent to the slope estimation of
the change of M at t�.

3 Theory

3.1 Slope estimation using universal kriging

The slope estimation technique used in this work is
based on a relatively flexible geostatistical method
known as universal kriging often used in mining, hy-
drological, and geological applications (Journel and
Huijbregts, 1978; Isaaks and Srivastava, 1989; Kitani-
dis, 1997). The kriging estimator is a weighted linear
combination of the available experimental data with
weights determined such that on the average the
estimator error is zero (unbiasedness property) and

the square estimation error is as small as possible
(minimum variance property). The weights are ob-
tained from the solution to a system of linear equations
(kriging system).

For a set of n available observations of the normal-
ized virus log-concentration, Mðt1Þ; . . . ;MðtnÞ, the fol-
lowing linear estimator can be employed for the
inactivation rate coefficient at any arbitrary time t�

k̂ðt�Þ ¼
Xn

i¼1
niMðtiÞ ; ð6Þ

where the hat signifies an estimated inactivation rate
coefficient; and n1; . . . ; nn are deterministic but unknown
weight coefficients. The normalized virus log-concen-
tration is assumed to have the form

MðtÞ ¼
Xp

k¼1
bkfkðtÞ þ �ðtÞ ; ð7Þ

where b1; . . . ; bp are deterministic but unknown
coefficients often referred to as drift coefficients;
f1ðtÞ; . . . ; fpðtÞ are known time-dependent functions,
which are called trial or base functions; and �ðtÞ is a
zero-mean stochastic process (residual). Consequently,
the mean of the normalized, time-dependent virus log-
concentration is given by

�MðtÞ ¼
Xp

k¼1
bkfkðtÞ ; ð8Þ

where �MðtÞ ¼ E MðtÞ½ � is the mean normalized virus log-
concentration (where E½ � is the expectation operator).
Note that the functions for the time-dependent, nor-
malized virus log-concentration (7) and its mean (8) are
both linear in the drift coefficients.

To satisfy the unbiasedness requirement, the weight
coefficients n1; . . . ; nn should be selected so that the
average estimation error is zero,

E k̂ðt�Þ � kðt�Þ
h i

¼ 0 ; ð9Þ

for any of the unknown drift coefficients b1; . . . ; bp. In
view of (5), (6) and (8), the preceding expression can be
written as

Xp

k¼1

Xn

i¼1
nifkðtiÞ þ lim

s!0

fkðt� þ sÞ � fkðt�Þ
s

� �( )
bk ¼ 0 :

ð10Þ
For this condition to be valid for any drift coefficient
b1; . . . ; bp it is evident that

Xn

i¼1
nifkðtiÞ ¼ � lim

s!0

fkðt� þ sÞ � fkðt�Þ
s

� �
: ð11Þ

To satisfy the minimum variance requirement, the
variance or mean square error MSE ¼ E½ðk̂ðt�Þ� kðt�ÞÞ2�,
should be as small as possible. In view of (5), (6) and (8),
the variance of the linear estimator k̂ðt�Þ can be ex-
pressed as

Fig. 1 Typical distribution of normalized virus log-concentration
(solid circles) versus time. The slope of the change in normalized log-
concentration at an arbitrary time t� is equal to �kðt�Þ
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MSE¼ E
�bkðt�Þ � kðt�Þ

�2h i

¼
Xn

i¼1

Xn

j¼1
ninjRðti; tjÞ

þ 2
Xn

i¼1
ni lim

s!0

Rðti; t� þ sÞ �Rðti; t�Þ
s

� �

þ lim
s!0

Rðt� þ s; t� þ sÞ þRðt�; t�Þ � 2Rðt� þ s; t�Þ
s2

� �
;

ð12Þ
where

Rðti; tjÞ ¼ E½ðMðtiÞ � �MðtiÞÞðMðtjÞ � �MðtjÞÞ� ¼ E½�ðtiÞ�ðtjÞ�
ð13Þ

is the covariance function representing the mutual
variability between MðtiÞ and MðtjÞ, or equivalently the
mutual variability between �ðtiÞ and �ðtjÞ. Minimization
of the objective function (12) subject to the constraint
(11) can be obtained by the Lagrange multipliers method
(Kitanidis, 1997, p. 232). This method requires forma-
tion of the Lagrangian

Lðn1; . . . ;nn;m1; . . . ;mpÞ

¼
Xn

i¼1

Xn

j¼1
ninjRðti; tjÞþ2

Xn

i¼1
ni lim

s!0

Rðti; t� þ sÞ�Rðti; t�Þ
s

� �

þ lim
s!0

Rðt� þ s; t� þ sÞþRðt�; t�Þ�2Rðt� þ s; t�Þ
s2

� �

þ 2
Xp

k¼1
mk

Xn

i¼1
nifkðtiÞþ lim

s!0

fkðt� þ sÞ� fkðt�Þ
s

� �( )
;

ð14Þ
where 2m1; . . . ; 2mp are the Lagrange multipliers (the 2
is used only for mathematical convenience). A system
of nþ p linear equations is formed by taking the
derivatives of Lðn1; . . . ; nn; m1; . . . ; mpÞ with respect to
n1; . . . ; nn; m1; . . . ; mp and setting them equal to zero, as
follows:

Xn

j¼1
njRðti; tjÞ þ

Xp

k¼1
mkfkðtiÞ þ lim

s!0

Rðti; t� þ sÞ � Rðti; t�Þ
s

� �

¼ 0; i ¼ 1; 2; . . . ; n ; ð15Þ

Xn

i¼1
nifkðtiÞ þ lim

s!0

fkðt� þ sÞ � fkðt�Þ
s

� �
¼ 0;

k ¼ 1; 2; . . . ; p : ð16Þ
Equations (15) and (16) define a system of nþ p linear
equations with nþ p unknowns that can be solved for
the unknown coefficients n1; . . . ; nn; m1; . . . ; mp. This sys-
tem of equations is the kriging system that can be ex-
pressed in matrix notation as

Ax ¼ d ; ð17Þ
where

A ¼

Rðt1; t1Þ � � � Rðt1; tnÞ f1ðt1Þ � � � fpðt1Þ
..
. . .

. ..
. ..

. . .
. ..

.

Rðtn; t1Þ � � � Rðtn; tnÞ f1ðtnÞ � � � fpðtnÞ
f1ðt1Þ � � � f1ðtnÞ 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

fpðt1Þ � � � fpðtnÞ 0 � � � 0

2
666666664

3
777777775
;

ð18Þ

x ¼

n1
..
.

nn

m1
..
.

mp

2
666666664

3
777777775
; ð19Þ

d ¼ �

Rðt1;t�þsÞ�Rðt1;t�Þ
s

����
s!0

..

.

Rðtn;t�þsÞ�Rðtn;t�Þ
s

����
s!0

f1ðt�þsÞ�f1ðt�Þ
s

����
s!0

..

.

fpðt�þsÞ�fpðt�Þ
s

����
s!0

2
66666666666666664

3
77777777777777775

: ð20Þ

Note that all elements in vector d represent appropriate
derivatives of the covariance function and the trial or
base functions. Assuming that Rðti; tjÞ is known or it can
be determined from available experimental data, the
coefficients n1; . . . ; nn; m1; . . . ; mp are easily obtained
by solving the kriging system (17). Subsequently, the

estimate k̂ðt�Þ is evaluated from (6). Note that neither
Mðt�Þ nor Mðt� þ sÞ need to be measured for the esti-
mation of k̂ðt�Þ. Furthermore, in view of (15) and (16)
the MSE expression (12) can be simplified as

MSE¼ lim
s!0

�Xn

i¼1
ni

Rðti; t� þ sÞ�Rðti; t�Þ
s

� �

þ
Xp

k¼1
mk

fkðt� þ sÞ� fkðt�Þ
s

� �	

þ lim
s!0

Rðt� þ s; t� þ sÞþRðt�; t�Þ� 2Rðt� þ s; t�Þ
s2

� �
:

ð21Þ

3.2 Parameter estimation by resampling techniques

The determination of the mean of the time-dependent,
normalized virus log-concentration, �MðtÞ, involves the
estimation of the drift coefficients, b1; . . . ; bp. These
coefficients can be determined by fitting expression (3)
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to available virus inactivation experimental data. It
should be noted that point estimation of an unknown
parameter does not provide any information about the
variance of its error. Interval estimation can be used to
define the confidence interval, which provides a mea-
sure of the certainty of this interval containing the true
value of the parameter. The basic idea of interval es-
timation, developed by Neyman (1937), is intuitively
simple but its application can lead to considerable
difficulties. For models that are linear with respect to
the parameters, there are several methods available for
exact confidence interval estimation (intervals that
maintain nominal coverage probability). However, for
nonlinear models the most widely used techniques for
interval estimation are linearization methods. Such
methods assume that the nonlinear model may be ap-
proximated by a linear function throughout the section
covered by the confidence interval. Consequently, lin-
earization methods often provide poor approximate
confidence intervals, i.e., they underestimate nominal
coverage probability (Donaldson and Schnabel, 1987).
On the other hand, nonlinear intervals constructed by
resampling methods are shown to be relatively accurate
(Duncan, 1973; Wu, 1986).

There are several resampling techniques available
for dependable construction of confidence intervals.
The jackknife, cross-validation, balanced repeated-rep-
lication, and bootstrap methods, are conceptually
similar, and computationally intensive statistical meth-
ods that require very little modeling effort (Diaconis
and Efron, 1983). Each of these methods generates
numerous artificial data sets from the original experi-
mental data and evaluates the variability of a statistical
property of interest from its observed variability over
all of the generated artificial data sets. A major ad-
vantage of the resampling techniques is that the error
in the experimental data does not necessarily have to be
homoscedastic or normally distributed. Among the
available resampling techniques, bootstrap is consid-
ered more efficient for confidence interval estimation
(Efron and Tibshirani, 1993). Consequently, in this
work, only the bootstrap resampling technique is
employed.

3.2.1 Bootstrapping

Since the bootstrap estimator was introduced by Efron
(1979), the literature on the bootstrap method has
grown rapidly (e.g., Efron, 1981; Bickel and Freedman,
1981; Singh, 1981; Efron and Gong, 1983; Wu, 1986;
Hall, 1988; Efron and Tibshirani, 1993; Politis and
Romano, 1994; Chernick, 1999; Politis et al., 1999 to
mention a few). The concept of the bootstrap is con-
ceptually simple and its theoretical foundations are de-
scribed elsewhere (Efron, 1982). The method is outlined
here in just a few steps. Consider a data set composed of
n observations. Select a random sample with replace-
ment of size n from the original data set. This random

resample or bootstrap sample may contain observations
more than once. Using the random resample, obtain a
bootstrap vector of estimated model parameters b̂, by
some parametric or nonparametric procedure. Repeat
the resampling process a large number of times, B, and
keep a record of the bootstrap parameter estimates
b̂i, where subscript i denotes bootstrap iteration
(1 � i � B). The mean of multiple bootstrap estimated
model parameters is the ‘‘best’’ bootstrap vector of
parameter estimates

bb ¼
XB

i¼1

b̂i

B
; ð22Þ

and the standard error is the square root of the sample
variance of bootstrapped parameter values (Efron, 1981)

r̂b ¼
XB

i¼1

ðb̂i � bbÞT ðb̂i � bbÞ
B� 1

" #1=2
: ð23Þ

Efron (1982) has shown via Monte Carlo experiments
that the bootstrap standard error is slightly downward
biased; thus it is not conservative. For an illustration of
the bootstrap procedure see Fig. 2.

3.2.2 Nonlinear fitting of bootstrap samples

The fitting of a mathematical model with nonlinear
parameters to experimental data requires iterative
methods. There are several approaches available for
nonlinear parameter estimation. Here, the nonlinear
least squares regression method is adopted. In general,
the objective of the nonlinear least squares method is to
obtain estimates of the model parameters that minimize
the residual sum of squares between simulated and
observed data. The objective function may be written
as (Beck and Arnold, 1997; Chrysikopoulos et al.,
1990)

Sðb̂Þ ¼ y � gðu; b̂Þ
h iT

y � gðu; b̂Þ
h i

ð24Þ

where y ¼ gðu; bÞ þ e is a vector of n observed data, g is
a vector of n model simulated data, u is a vector of
independent variables, and e is a vector of n random
numbers with zero mean and known covariance matrix.

Minimization of the objective function is not a trivial
task, because of the nonlinearities in gðu; bÞ. Several
techniques have been developed for unconstrained
nonlinear estimation. Simple iterative minimization al-
gorithms, such as trial and error or exhaustive search,
are seldom used due to their inefficiency. However, there
is a wide selection of nonlinear estimation methods that
can be used for the least-squares or maximum likelihood
parametric estimation problem. The most advantageous
methods can be classified in two major categories, the
modified Newton and Gauss–Newton linearization ap-
proaches. The first approach to the nonlinear estimation
problem uses a Taylor series expansion to linearize the
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objective function, whereas the second approach for the
nonlinear estimation problem is to expand the nonlinear
model in a Taylor series around the initial parameter
estimates. An advantageous modification of Gauss-
Newton based on the work of Levenberg (1944) and
Marquardt (1963) eliminates potential numerical diffi-
culties when a non-full column rank Jacobian matrix is
encountered. Here, the Levenberg–Marquardt method is
employed for the fitting of expression (3) to each boot-
strap sample of the virus inactivation normalized, log-
concentration data.

3.2.3 Confidence intervals by bootstrap percentiles

Although several bootstrap methods for obtaining con-
fidence intervals are available (Efron and Tibshirani,
1993), in this study, the percentile method that makes
use of the bootstrap distribution is employed. That is,
the estimation of a confidence interval

b̂‘ðjÞ; b̂uðjÞ
h i

; ð25Þ

where subscripts ‘ and u denote the lower and upper
limits of the vector of true model parameters b, re-
spectively, is approximated by the j central confidence
interval. The probability j (0 < j < 1) indicates a
100j% confidence that b 2 ½b̂‘; b̂u� or a 100ð1� j)%
confidence that b 62 ½b̂‘; b̂u�. The larger the j, the
greater the chance that the unknown parameter is in-
cluded in the confidence interval. For example, the 95%
confidence limits for b based on 2000 bootstrap repli-
cations are given by b̂‘ ¼ 50th and b̂u ¼ 1950th largest
estimates of b. Obviously, elements of the vector of
model parameters are treated individually. For simple
parameter estimation, approximately 100 bootstrap
replications are sufficient. However, for confidence in-
terval estimation the number of bootstrap iterations
should be on the order of 1000 (Efron and Tibshirani,
1993).

4 Application to poliovirus inactivation

The experimental data shown in Fig. 1 for poliovirus
type 1 (strain LSc) batch inactivation at 50 �C in the
presence of 0.2 g of sediment, collected by Liew and
Gerba (1980), were employed in this work to test the
proposed bootstrap resampling technique in conjunction
with a regression procedure based on the Levenberg–
Marquardt method.

4.1 Bootstrap estimation of initial inactivation rate
and resistivity coefficients

In view of Eqs. (3) and (8) it is evident that the drift
coefficients can be expressed as:

b1 ¼ �
k�
a

; ð26Þ

b2 ¼
k�
a

: ð27Þ

Certainly, evaluation of the two drift coefficients re-
quires prior estimation of the initial inactivation rate, k�,
and the resistivity coefficient, a, from the normalized
virus log-concentration experimental data set.

A FORTRAN-90 program was developed in order to
select a random sample (bootstrap sample) from the
virus inactivation log-concentration data set, fit
the bootstrap sample with expression (3), and estimate
the corresponding k� and a. A bootstrap sample was
randomly selected with replacement from the original
experimental data set. The bootstrap sample contains as
many elements as the number of available experimental
log-concentration data in the original data set. It should
be noted that multiple repetitions of the same log-con-
centration may occur in a bootstrap sample. The sub-
routine mrqmin (Press et al., 1992) was used to obtain
the desired bootstrap parameter estimates k̂� and â by

Fig. 2 Illustrative example of the
bootstrap method for a set of five
data points and B bootstrap
replications (adopted from
Chrysikopoulos et al., 2001)
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fitting expression (3) to the normalized virus log-con-
centrations of the bootstrap sample.

The complete resampling procedure was repeated
2000 times. Consequently, two bootstrap vectors of 2000
estimated model parameters b̂k� ¼ ðk̂�1 ; k̂�2 ; . . . ; k̂�2000Þ

T

and b̂a ¼ ðâ1; â2; . . . ; â2000ÞT are created. In view of (22),
averaging the bootstrapped parameter values yields the
‘‘best’’ bootstrap estimates k̂�b and âb. In this work,
determination of confidence limits was based on boot-
strap percentiles. The 95% confidence limits of k̂�b (95%
confidence that k̂�b 2 ½k̂�‘ ; k̂�u �) are given by k̂�‘ ¼ 50th
and k̂�u ¼ 1950th largest bootstrap estimates of k�, re-
spectively; and the 95% confidence limits of âb (95%
confidence that âb 2 ½â‘; âu�) are given by â‘ ¼ 50th and
âu ¼ 1950th largest bootstrap estimates of a, respec-
tively.

For the experimental poliovirus inactivation data set
considered here, the parameters k̂�b , and âb together with
the corresponding confidence limits were determined
and are listed in Table 1. Histograms of 2000 bootstrap
replications of k� and a were presented in Fig. 3. A
dotted line drawn at the parameter estimate and dashed
lines drawn at the two confidence limits were included
with each histogram in Fig. 3. Both histograms are
roughly Gaussian in shape suggesting that confidence
interval evaluation based on bootstrap percentiles is a
reasonable approach.

Figure 4a presents the normalized log-concentration
poliovirus experimental data (solid circles) and simu-
lated log-concentration history (solid curve) determined
with the inactivation model (3) and the bootstrap esti-
mates of k� and a listed in Table 1. The residuals or
detrended data (original data less the fitted drift) are
presented in Figure 4b and suggest a relatively good
agreement between the simulated and experimental data.
Note that �ðtÞ oscillates about a zero value and exhibits a
statistical dependence. Intuitively, it is expected that an

improved estimation of the time dependent virus inac-
tivation rate, kðtÞ, can be obtained if the temporal cor-
relation of �ðtÞ is incorporated in the estimation process.

4.2 Covariance function determination

A random field is partially described by second-order
characteristics, e.g., its mean function or expected value,
and covariance function (Christakos, 1992). Conse-
quently, the stationary stochastic random field for the
parameter �ðtÞ is characterized by the mean function:

l�ðtÞ ¼ E½�ðtÞ� ¼ 0 ; ð28Þ
indicating a zero-mean stochastic process, and by the
covariance function:

Rðti; tjÞ ¼ RðsÞ ¼ E½�ðtÞ�ðt þ sÞ� ; ð29Þ
representing the mutual variability between �ðtiÞ and
�ðtjÞ or equivalently the mutual variability between �ðtÞ
and �ðt þ sÞ, where s ¼ jti � tjj. The covariance function
of a stationary random field is related to the semi-vari-
ogram by (Journel and Huijbregts, 1978)

RðsÞ ¼ Rð0Þ � cðsÞ ; ð30Þ
where Rð0Þ ¼ E �2ðtÞ

� �
is the variance of �ðtÞ, representing

the mean square deviation of �ðtÞ from its mean value,
l�ðtÞ ¼ 0; and cðsÞ is the semi-variogram defined as:

cðsÞ ¼ 1

2
E �ðtÞ � �ðt þ sÞð Þ2
h i

: ð31Þ

To determine the covariance function Rðti; tjÞ the detr-
ended data, shown in Fig. 4b, were used for the con-
struction of the appropriate raw semi-variogram or
scatter plot. The raw semi-variogram is essentially a plot
of the square difference ½�ðtiÞ � �ðti þ sÞ�2=2 as a function
of the incremental time between measurements, s. For n
experimental data points, there are nðn� 1Þ=2 such pairs
that comprise the raw variogram. For the the poliovirus
inactivation data set examined here, there are thirteen
measurements that yield a cloud of 78 pairs, indicated by
the solid circles in Fig. 5a. Dividing the axis of s into
seven consecutive intervals and by averaging the pairs of
measurement in each interval, the experimental semi-
variogram of the detrended data is constructed and is
illustrated by the solid squares in Fig, 5b.

Fig. 3 Histograms of 2000 boot-
strap estimates of (a) the initial
inactivation rate coefficient, k�,
and (b) the resisitivity coefficient,
a, evaluated from the normalized
log-concentration experimental
data set presented in Fig. 1. The
bars represent frequency.Thebest
bootstrap estimator value k̂�b and
âb are indicated by dotted lines
and their lower and upper 95%
confidence limits k̂�‘ , â‘ and k̂�u ,
âu, respectively, are represented
by dashed lines

Table 1 Bootstrap estimates of k� and a

Parameter
(days�1)

Estimate 95% Confidence Limits

Lower Upper

âb 0.035 0.020 0.049
k̂�b 0.128 0.097 0.167
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It was assumed that the experimental semi-variogram
can be fitted with the following exponential, theoretical
semi-variogram model:

cðsÞ ¼ r2 1� exp � s
f


 �� �
; f > 0 ; ð32Þ

where r2 ¼ Rð0Þ is the variance or the sill of the semi-
variogram, and f is a model parameter that determines
how fast the semi-variogram increases to its sill value.
For a value of s ¼ 3f the semi-variogram is approxi-
mately equal to 95% of r2; this time lag is known as the
range of the exponential semi-variogram model. The
unknown model parameters of the semi-variogram are
determined by a relatively subjective graphical fitting
procedure that leads to estimates r2 ¼ 0:117 and
f ¼ 7:93 days. In Fig. 5b, the fitted model is indicated by
the solid curve and is in agreement with the experimental
semi-variogram. What is most important is the semi-
variogram behavior at very small time scales, near the
origin of the semi-variogram, where we can observe
whether the random variable is differentiable, continu-
ous non-differentiable, or discontinuous. The discrep-
ancy between the experimental semi-variogram and
theoretical model (32) at large time lags is of no major
concern because the theoretical semi-variogram model
can easily be modified to include a linear drift in order to
more accurately reproduce the experimental semi-vari-
ogram at large incremental times; however, semi-vario-
grams that differ by a quadratic function are essentially
equivalent for purposes of kriging (Kitanidis, 1993). It
should be noted that it is not important how close the
theoretical semi-variogram model fits the sequence
of points comprising the experimental semi-variogram,
but the appropriateness of the semi-variogram function
selected, based on the type of continuity and stationa-
rity assumed for the random variable (Wackernagel,
1995).

Combining Eqs. (30) and (32) yields the desired
covariance function:

Rðti; tjÞ ¼ RðsÞ ¼ r2 exp � s
f

� �

¼ 0:117 exp � jti � tjj
7:93

� �
; ð33Þ

where the latter formulation is the consequence of
substitution of the fitted model parameters. The pre-
ceding expression is required by the proposed virus
inactivation rate estimation procedure discussed in
Sect. 3.1.

4.3 Estimation of inactivation rate coefficients

In view of Eqs. (3), (8), (26) and (27) it is evident that the
appropriate trial or base functions are:

f1ðtÞ ¼ 1 ; ð34Þ

f2ðtÞ ¼ exp �at½ � : ð35Þ

Fig. 4 a Normalized log-concentration experimental data (solid
circles) of poliovirus batch inactivation in the presence of a sediment,
collected by Liew and Gerba (1980), and simulated concentration
history (solid curve) together with the appropriate lower and upper
95% confidence intervals (dashed curves) determined by the inactiva-
tion model (3) with the estimated parameter values listed in Table 1.
b Residuals or detrended experimental data (open circles)

Fig. 5 a Scatter plot of the detrended experimental data. b Experi-
mental semi-variogram of detrended data (solid squares) and fitted
exponential model (solid curve)
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Furthermore, substitution of Eqs. (33) through (35) into
(17) yields the following kriging system of linear equa-
tions:

r2 � � � r2 exp � jt1�tnj
f

h i
1 exp½�at1�

r2 exp � jt2�t1j
f

h i
� � � r2 exp � jt2�tnj

f

h i
1 exp½�at2�

..

. . .
. ..

. ..
. ..

.

r2 exp � jtn�t1j
f

h i
� � � r2 1 exp½�atn�

1 � � � 1 0 0

exp½�at1� � � � exp½�atn� 0 0

2
6666666666664

3
7777777777775

�

n1
n2
..
.

nn

m1
m2

2
66666664

3
77777775
¼

r2

f exp � jt1�t�j
f

h i
r2

f exp � jt2�t�j
f

h i
..
.

r2

f exp � jtn�t�j
f

h i
0

a exp½�at��

2
66666666664

3
77777777775
: ð36Þ

The preceding set of linear equations is solved for the
unknown coefficients n1; . . . ; n13; m1, and m2, for 30
different t� values ranging from 0 to 60 days, using the
poliovirus inactivation experimental data presented
in Fig. 4a, and parameter values a ¼ 0:035 days�1,
r2 ¼ 0:117, and f ¼ 7:93 days. For each t� considered
the corresponding inactivation rate coefficient was
determined by (6) and plotted in Fig. 6 (solid dia-
monds) together with the inactivation rate coefficients
as predicted from (2) with the resistivity and initial
inactivation rate coefficients (bootstrap estimates) list-
ed in Table 1 (solid curve) as well as the associated
lower and upper 95% confidence intervals (dashed
curves).

Figure 6 indicates that the fluctuations of the esti-
mated inactivation rate coefficient as a function of time

obtained by the procedure developed in this work do
follow the general trend predicted by the exponential
decay model (2); however, they are in much better
agreement with the fluctuations of the original poliovi-
rus inactivation experimental data (compare the tem-
poral structure of the solid circles in Fig. 4a with the
solid diamonds in Fig. 6). The non-monotonic decrease
of inactivation rates is attributed to the frequently ob-
served multiphasic inactivation caused by the existence
of several virus subpopulations within a virus popula-
tion, undergoing sequential inactivation with different
inactivation rate coefficients (Yamagishi and Ozeki,
1972; Grant et al., 1993).

5 Application to virus transport in porous media

5.1 Mathematical model

Transient virus transport through one-dimensional,
homogeneous, saturated porous media, accounting for
virus adsorption and inactivation, is governed by
the following partial differential equation (Sim and
Chrysikopoulos, 1995)

oCðt;xÞ
ot

þq
h
oC�ðt;xÞ

ot
¼D

o2Cðt;xÞ
ox2

�U
oCðt;xÞ

ox

�kðtÞCðt;xÞ�k�ðtÞq
h

C�ðt;xÞ ; ð37Þ

where C� is the sorbed phase virus concentration (virus
mass/solids mass); D is the hydrodynamic dispersion
coefficient; U is the average interstitial velocity; k� is the
time dependent inactivation rate coefficient of the sorbed
phase viruses; q is the bulk density of the solid matrix;
h is the porosity of the medium (liquid volume/aquifer
volume); and x is the spatial coordinate in the direction
of flow. The left-hand side of the preceding equation
consists of the accumulation terms, whereas the last two
terms represent the inactivation of suspended and sor-
bed viruses, respectively.

Assuming that the adsorption process consists of
virus diffusion to the outer layer of a solid particle by
nonequilibrium mass transfer and virus immobilization
onto the solid particle while in equilibrium with the
liquid phase virus concentration in the outer layer, also
accounting for inactivation of sorbed viruses, the accu-
mulation of sorbed viruses can be represented by the
following mass balance

q
h

oC�ðt; xÞ
ot

¼ k Cðt; xÞ � Cgðt; xÞ
� �

� k�ðtÞ q
h

C�ðt; xÞ ;

ð38Þ

where k is the mass transfer rate constant; and Cg is the
liquid phase virus concentration in direct contact with
solids. Furthermore, it is assumed that the following
linear equilibrium relationship is valid

C�ðt; xÞ ¼ KdCgðt; xÞ ; ð39Þ

Fig. 6 Simulated behavior of time-dependent inactivation rate coef-
ficient together with the appropriate lower and upper 95% confidence
intervals (dashed curves), determined by expression (2) with the
estimated parameter values listed in Table 1, and by the proposed
slope estimation procedure (solid diamonds) (here a ¼ 0:035 days�1

and k� ¼ 0:128 days�1)
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where Kd is the partition or distribution coefficient (liq-
uid volume/solids mass).

The inactivation rate coefficients are considered to be
time dependent, and consequently the inactivation of
viruses in the liquid phase is described by (1) and for the
the inactivation of viruses in the solid phase is described
by the following first-order rate expression:

dC�ðtÞ
dt

¼ �k�ðtÞC�ðtÞ ; ð40Þ

where the time dependent inactivation rate coefficients
of suspended viruses in the liquid phase is described by
(2) and the time dependent inactivation rate coefficients
of sorbed viruses onto the solid phase is described by the
following expression:

k�ðtÞ ¼ k��e
�a�t ; ð41Þ

where k�� is the initial inactivation rate coefficient of
sorbed viruses; and a� is the resistivity coefficient of
sorbed viruses. The magnitude of a is proportional to
the resistivity of the dominant subpopulation, because
the overall inactivation is controlled by the dominant
subpopulation. The inactivation rate coefficients of vi-
ruses in the liquid phase are assumed to be twice as large
as the coefficients of sorbed viruses (Reddy et al., 1981;
Yates and Ouyang, 1992)

k�� ¼
k�
2

: ð42Þ

Furthermore, the resistivity coefficient of sorbed viruses
is considered to be equal to the resistivity coefficient of
viruses in the liquid phase (Sim and Chrysikopoulos,
1996)

a� ¼ a : ð43Þ

The appropriate initial and boundary conditions for a
semi-infinite, one-dimensional porous formation in the
presence of a continuous source of viruses are:

Cð0; xÞ ¼ C�ð0; xÞ ¼ 0 ; ð44Þ

Cðt; 0Þ ¼ C�e�kt ; ð45Þ

oCðt;1Þ
ox

¼ 0 ; ð46Þ

where C� is the source concentration. The condition (44)
establishes that there is no initial liquid phase and ad-
sorbed virus concentrations within the porous medium.
The boundary condition (45) describes an exponentially
decaying virus concentration at the inlet. The down-
stream boundary condition (46) preserves concentration
continuity for a semi-infinite system. The governing vi-
rus transport equation (37) in conjunction with the re-
lationships (2), (38), (39), and (41) is solved numerically
subject to initial/boundary conditions (44)–(46). The

numerical solution is obtained by the method of finite
differences using the IMSL subroutine DLSARG (IMSL,
1991).

5.2 Model simulations

To demonstrate the effect of virus inactivation behavior
on virus transport in water saturated porous media, the
one-dimensional model presented in the previous section
is employed to simulate the transport of poliovirus for
the parameter values listed in Table 2. The virus inac-
tivation rate coefficients are determined directly from the
experimental data presented in Fig. 1. Both the expo-
nentially decaying analytical expression (2) as well as the
proposed slope estimation procedure are employed for
the estimation of the inactivation rate coefficients.
Snapshots of normalized poliovirus concentration sus-
pended in the liquid phase for simulation times of 10, 20,
and 40 days are presented in Fig. 7. The solid curves
correspond the case where the inactivation rate coeffi-
cients are determined with analytical expression (2),
whereas the dashed curves are constructed with inacti-
vation rate coefficients determined by the slope estima-
tion procedure developed in this work. It should be

Fig. 7 Normalized poliovirus concentration snapshots simulated at
various times with the transport parameter values listed in Table 2
accounting for the experimentally observed inactivation behavior (see
data in Fig. 1). The solid curves correspond to a time dependent
inactivation rate coefficient determined by expression (2), whereas the
dashed curves correspond to an inactivation rate coefficient obtained
by the proposed slope estimation procedure

Table 2 Model parameters for virus transport simulations

Parameter Value Reference

D 32.04 cm2/h Bales et al. (1991)
k 1.2 h�1 Vilker and Burge

(1980)
Kd 2:08� 10�2 mL/mg Vilker (1981)
U 5.04 cm/h Bales et al. (1991)
a 0.035 days�1

f 7.93 days
q 1.5 g/cm3

r2 0.117
h 0.25
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noted that the normalized poliovirus concentration at
the inlet (x ¼ 0 m) is reduced with increasing time as
imposed by the boundary condition (45). The transport
simulations indicate that distributions of poliovirus
concentrations with inactivation rate coefficients evalu-
ated by the analytical expression (2) are overestimated
compared to the concentrations predicted with inacti-
vation rate coefficients determined by the proposed
geostatistical procedure. The observed difference be-
tween the poliovirus snapshots simulated with the two
different virus inactivation coefficient estimation proce-
dures becomes progressively less pronounced with in-
creasing time. However, this set of simulations clearly
indicates that the evaluation procedure of the time de-
pendent virus inactivation rate coefficients can signifi-
cantly affect the predicted virus migration in porous
media.

6 Summary

This paper introduces a new procedure for the deter-
mination of time dependent virus inactivation rate co-
efficients from existing virus inactivation experimental
data. The procedure employs universal kriging for the
slope estimation of the virus inactivation data and
the bootstrap resampling technique for the estimation of
the initial inactivation rate and resistivity coefficients.
The inactivation rate coefficient estimation procedure is
relatively laborious and computationally demanding
because an experimental semi-variogram is necessary for
the determination of the covariance function of the ex-
perimental virus inactivation data. Nevertheless, inacti-
vation rate coefficients determined by the proposed
procedure are in much better agreement with observed
virus inactivation experimental data than the inactiva-
tion rate coefficients determined by the exponential de-
cay model. Furthermore, simulations of virus transport
in one-dimensional water saturated porous media sug-
gest that the procedure employed for inactivation rate
coefficient estimation can significantly influence the
predicted migration behavior of viruses.
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