
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
http://www.researchgate.net/publication/222461605

File	organizations	with	shared
overflow	blocks	for	variable	length
objects

ARTICLE		in		INFORMATION	SYSTEMS	·	NOVEMBER	1992

Impact	Factor:	1.46	·	DOI:	10.1016/0306-4379(92)90028-L	·	Source:	DBLP

CITATION

1

READS

18

2	AUTHORS:

Yannis	Manolopoulos

Aristotle	University	of	Thessaloniki

389	PUBLICATIONS			5,478	CITATIONS			

SEE	PROFILE

Stavros	Christodoulakis

Technical	University	of	Crete

174	PUBLICATIONS			3,113	CITATIONS			

SEE	PROFILE

Available	from:	Yannis	Manolopoulos

Retrieved	on:	02	October	2015

http://www.researchgate.net/publication/222461605_File_organizations_with_shared_overflow_blocks_for_variable_length_objects?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_2
http://www.researchgate.net/publication/222461605_File_organizations_with_shared_overflow_blocks_for_variable_length_objects?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_1
http://www.researchgate.net/profile/Yannis_Manolopoulos?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_4
http://www.researchgate.net/profile/Yannis_Manolopoulos?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_5
http://www.researchgate.net/institution/Aristotle_University_of_Thessaloniki?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_6
http://www.researchgate.net/profile/Yannis_Manolopoulos?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_7
http://www.researchgate.net/profile/Stavros_Christodoulakis?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_4
http://www.researchgate.net/profile/Stavros_Christodoulakis?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_5
http://www.researchgate.net/institution/Technical_University_of_Crete?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_6
http://www.researchgate.net/profile/Stavros_Christodoulakis?enrichId=rgreq-54b9ec28-2042-43eb-b29b-9bc75d87f89a&enrichSource=Y292ZXJQYWdlOzIyMjQ2MTYwNTtBUzo5OTg1MTcwMjM3NDQwMEAxNDAwODE3OTA5MTMz&el=1_x_7

Inform&ion Sysrems Vol. 17, No. 6, PP. 491-509, 1992 0306-4379/92 $5.clo + 0.00
Printed in Great Britain, Ail rights reserved Copyright 0 1992 Pergamon Press Ltd

FILE ORGANIZATIONS WITH SHARED OVERFLOW
BLOCKS FOR VARIABLE LENGTH OBJECTS?

YANNIS MANOLOPGULOS’ and STAVROS CHRISTGDOULAICIS~

‘Department of Electrical Engineering, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

ZDepartment of Electronic and Computer Engineering, Technical University of Crete, 73133 Chania,
Greece

(Receised 9 September 1991; in r~isEd~or~ 31 August 1992)

Abstract-Traditional file organizations for records may also be appropriate for the storage and retrieval
of objects. Since objects frequently involve diverse data types (such as text, compressed images, graphics,
etc.) as well as composite structures, they may have a largely variable length. In this paper, we assume
that in the case of composite objects their components are clustered together and that object file
organizations have overflows. The blocks of the main file are grouped so that they share a common
number of overflow blocks. For this class of tile organizations we present and analyze the performance
of three different overtlow searching algorithms. We show that the third algorithm gives very significant
performance advantages under certain circumstances.

Key words: File structures, variable length objects, chaining, overtlow area, successful and unsu~~ful
search, algorithms, performance analysis

1. INTRODUCTION

Various file organizations utilize overflow areas such as the recent developments of hashing [l]
(several variations of linear and dynamic hashing, bounded index exponential hashing, hashing
with inte~olation-based index maintenance, etc.) as well as the traditional indexed sequential files
[2,3]. At loading time data can almost uniformly be distributed in blocks but insertions and
deletions hit blocks with different probabilities. Therefore, it is almost certain that after some time
a number of main file blocks will demand excess overflow space while others will not. Overflowing
means that sooner or later the performance deteriorates due to additional required accesses.
Reorganization will take place either locally and dynamically or globally and periodically as in the
cases of hashed and indexed sequential files respectively.

Traditional file organizations for records may also be appropriate for the storage and retrieval
of objects occurring in object oriented languages, nested relations and extensible database systems
which use fixed size pages. Objects in our model have a key according to which they are filed. The
other object fields and their encoding are not important (and may not be known) to the file
organization. However, since objects frequently involve diverse data types (such as text, compressed
images, graphics, etc.) as well as composite structures, the common practice is that they have a
largely variable length.

A basic assumption of this work is that the objects may have a highly variable length. Although
variable length records are very frequent in conventional database environments due to variable
lenght fields, missing attribute values, multiple values of an attribute and compression, little has
been reported in the literature about their effect on the file performance. We note the works of
Hakola and Heiskanen [4], Hubbard [S], Manolopoulos and Faloutsos [6], Teorey and Fry [7] and
Wiederhold [8] on estimating the wasted space at the end of blocks due to variable length records.
New database trends, towards multimedia and object oriented databases, emphasize the need for
studies of the effect of length variability on the performance of file organizations. The reason is
that the new data types (text, graphics, images) have a very large length variance. A recent relevant
work is [9], which examines the space overhead due to the variability of object lengths involved
in some physical storage models for use in object-oriented databases, such as IRIS [lo], ORION

tTo avoid any delay in publication of this issue, this paper has been published without the authors’ corrections.

491

492 YANNIS MANOLOP~WX and STAVROS CHRISTOWULAKIS

[1 11, TAXIS [12] etc. Here, we assume that in the case of composite objects their components are
clustered together.

In this paper we concentrate our attention on object file organizations which have overflows.
Recently, some analysis and experimentation on various overflow strategies for handling variable
length records were reported [2]. More specifically large overflow blocks were assumed and analysis
on the search performance was carried out. In the present report we assume that the blocks of the
main file are grouped so that they share a number of common overflow blocks. For this class of
file organizations we present and analyze the performance of three different overflow searching
algorithms. Two of them are new and improve the algorithm presented in [2]. In addition, we show
that the third algorithm gives very significant performance advantages when:

l the main blocks are grouped in small numbers,
l there is large variability of object size and
l the object sizes are relatively small when compared with the block size.

These algorithms may be applied in almost any file organization that utilizes an overflow area.
The rest of the paper is organized as follows. In Section 2 the basic mathematical model for the

specific file organization is developed. The probability distribution of the number of objects per
area (main block and attached overflow objects) for two structures (hashed and indexed sequential)
is given as a function of file expansion with time. In the same section the probability distribution
of objects in the main block and in the overflow area is given, The material of the section has been
reported previously, mainly in [2], but it is included here very briefly because it is essential for the
analysis to follow. For more details on the derivations of the analysis the interested reader is
directed to the reference. In Section 3 the three algorithms are presented and mathematically
analyzed. Formulae for the successful and unsuccessful search are derived as a function of the file
expansion with time. In Section 4 figures illustrating performance comparisons of the algorithms
are discussed. Finally, some conclusive remarks follow.

2. MATHEMATICAL BASIS

File objects are divided into classes C, , C,, . . . , C,. We consider a finite number of classes, L,
for simplifying the analysis. Any arbitrary length object is mapped into the class which has a length
nearest to its length. Class Ci contains objects with length Ii and known arrival probability pi, where
i=l,2,... , L. Object lengths are assumed to be independent of the key values. Let x be the
number of objects that exist in an area.

Lemma 1. The probability that n, of these x objects have been selected from class C, , n2 from class

C,,..., nL from class C, obeys a multinomial distribution:

q(nl,...,nL)=
x!

,py..p2
n,!. . .nL.

The probability distribution of the number of objects in an area (main block and overflow objects)
depends on the file structure and is different for the hashed or the indexed sequential files. For the
sequel, suppose that a file which consists of NB main file blocks was initially loaded with M objects.
After some time N additional objects are stored in the file, thus making a total of X = M + N
objects. Table 1 gives the definitions of all the symbols used throughout this paper.

An approximate probability mass distribution assigned to a block and the probability distri-
bution of the number of records per block of an indexed sequential file at some point in time after
initial loading was first derived by Larson [3]. An alternate exact analysis was reported by Batory
[13]. However, in [2] a new asymptotic probability distribution was derived and it was shown to
be a negative binomial distribution.

Lemma 2 /I.]. The probability that at some point in time x objects out of the X ones are stored
in a specific main block (out of the NB main blocks of an indexed sequential file) and its associated
overflow ones is:

x-l n
P,(x,a)= - (> n (1 f n)

File organizations with shared overflow blocks 493

Symbol Definition

Table I. Symbol definitions

m

n

M

N
a

BS, KS, PS
L

P,
1,
L, (0)
max

NB
MB
u
P(x, 0)
X(a)
4(“, I.. . . n,)
Q(b. x)
P:‘(a)
PP'(a)
No, (a)
MB,. (0)
b
B(k)
L,(k)
L,(k)
S(a)

Number of objects initially loaded in a block
Number of objects inserted in a block
Total number of objects initially loaded in the tile
Total number of objects inserted into the file
File expansion vector
Block, Key and Pointer sizes (in bytes)
Number of classes
Probability distribution of the number of objects belonging to class i(1 < i 6 L)
Length of object belonging to class i (1 Q i d L)
Average overtlow object length (function of a)
Maximum number of objects in a block
Number of main blocks after loading
Number of main blocks sharing the same ovcrSow blocks
Average used space in an overflow block (in bytes)
Probability that a block contains x objects (function of a)
Average number of objects in a block (function of a)
Probability that q objects have length i (1 < i 6 L.)
Probability that exactly b out of x objects are stored in the main block
Probability distribution that an object class i (1 d i < L.) is intercepted by a block boundary (function of a)
Probability distribution of overflow object class i (I < i < L)
Average number of overflow obje& per ME main blocks (function of a)
Average number of shared overflow blocks per MB main blocks (function of a)
Average number of objects per overflow block
Average number of overtlow blocks containing k objects of an ama
Average number of accesses for a successful search in a chain of k objects
Average number of accesses for an unsuccessful search in a chain of k objects
Average successful search cost (function of a)

u(a) Average unsuccessful search cost (function of a)

where m out of A4 is the number of objects initially stored in this block, n out of N is the number
of additional objects stored in the block after certain time and a, the file expansion factor, is equal
to N/M.

If a uniform hashing function is assumed to be employed in a hash based file organization, then
the probability distribution of the number of objects per block is the binomial one. In this case
the following lemma holds.

Lemma 3. The probability that at some point in time x objects out of the X ones are stored in a
specific main block (out of the NB main blocks of hashed file) and its associated overflow blocks
is:

p(x,a)=((L? ‘:‘“)(J-yl -l->‘“+““-’

Let b be the number of objects which are stored in the main block. This number is a random
variable and depends on the distribution of object lengths. Let Q(b, x) be the probability that
exactly b out of the x objects that exist in an area are stored within the main block. The variable
Q(b, x) is given by the expression of the following lemma.

Lemma 4 [2]. The probability that exactly b out of the x objects that exist in an area are stored
within the main block is:

Q(hx)= 1 Q(4,***,%) c Pi
r;= , II</, 4 BS - PS I,+Xf,,nji,>BS-PS

where Xf,, ni = b < x, BS is the number in bytes available per main or overflow blocks, PS is the
size of a pointer in bytes and KS is the size of the key in bytes (fixed).

At load time empty space is distributed in main blocks to accomodate future insertions but
sooner or later the main block becomes full and overflowing is unavoidable. Objects are not allowed
to span over two different blocks; therefore some space is left unused. From each main block only
one chain may emanate. Objects in a main block and its overflow chain are sorted according to
key values. This technique is a rule for indexed sequential files but it may be applied in hashed
files too, as in [14, 151, with better search performance measures at the cost of more expensive
insertions. The highest keys are placed in the overflow chain. When an object is inserted in the main
block, the last object of the block may not fit any more in it and therefore it will have to be

494 YANNIS MANOU)POUU)S and STAVRCB CHRISTODCNJLAKIS

transferred to the overflow chain. In a similar manner, if an object of the main block is deleted,
then if the first object of the overflow chain fits in the main block then it has to be stored in it.

The overflow block size has been considered to be equal to the main block size. This
implementation agrees with the current systems which use preformatted disks (disks with fixed
block size). Overflow objects are connected in a chain with pointers and several objects from
different areas or the same area may exist in the same overflow block. In other words overflow
blocks are shared by a varying number of main blocks. This number is a parameter of the file system
and in the following will be depicted by MB. In [3] it was accepted that overflow block capacity
is one record only. A similar scheme to the one proposed here with shared overflow blocks is
employed by Yuen and Du [16] in a study of variations on linear hashing, designed for partial
match retrieval. In Fig. 1 a sample of this overflow file scheme is illustrated.

It is asumed, also, that there is a DB-cache capability and therefore an overflow block remains
in main memory, so that it does not have to be retrieved more than once if more than one object
of the overflow chain exist in the block. This capability results in reduced search costs. According
to our scheme, since the overflow blocks are large, variable length objects may be packed better
within a block resulting in better space utilization and reduced search cost.

Lemma 5 121. The probability that an object intercepted by a block boundary is of type Ci is:

Pi(a> P?(a) = I.

where:

Xi=, nj < x, whereas the maximum number of objects which may reside in the main block is denoted
by max.

Proof The probability distribution of the lengths of objects in the overflow blocks is not in general
the same as the probability distribution of the lengths of objects in the main block. The reason
is that longer objects have higher probability to be intercepted by the main block boundary than
shorter objects have. Thus longer objects are more likely to be found in the overflow chain. Let
P,(a) be the total probability of any arrangement of objects in the main block so that an object
of type Ci is intercepted by a block boundary. Then the relation of the theorem concerning P,(a)
is easily explained. It is noted that max denotes the maximum number of objects which may
reside in the main block and, evidently, it is equal to KS/l,,. Observe that P,(a) is a function of
the file expansion factor since for small values of the file expansion factor only long objects may
intercept the block boundary. This formula is derived in a manner similar to that of Lemma 4
taking into account that the object with the next in order key value may not fit within the block
and therefore it may have to move in the overflow area. After normalization the relation of the
lemma is derived. El

* M c II M e

Overflow
blocks

Fig. 1. Shared overflow blocks per MB = 4 main blocks.

File organizations with shared overflow blocks 495

Lemma 6. The probability distribution of the number of overflow objects is given by:

f P(4 a) b;X Q(b, x)
PP”(a) = (Pj”‘(a) -Pi) m X=2 pi

1 &,a) c (x -b)Q(b,x)
x=2 bcx

where 1 <i<L.

Proof. To find the length distribution in the overflow file we have to consider both the intercepted
objects as well as the remaining objects in the overflow chain (which follow the probability
distribution Pi, where i = 1, . . . , L). The proportion of the intercepted objects to the total number
of objects in overflow blocks is:

MB f P(x,a) 1 Q@, x)
x=2 b < x

MB f P(x,a> 1 (x -b)Q(b,x)’
x=2 b<x

Therefore the relation of the lemma holds. q

Lemma 7. The expected number of objects which overflow from MB main blocks can be estimated.

N,,,(u) = MB f P(x, a) -‘f’ kQ(x - k, x)
x=2 k=l

Lemma 8. The expected number of shared overflow file blocks per MB main blocks is given by:

where C(u) is the average overtlow length and U is the average number of bytes used within an
overflow block.

Proof. The number of shared overflow blocks per MB main blocks depends on the algorithm which
handles insertions and deletions in the file. Assuming that a very sophisticated algorithm exists
which optimizes the space use in the overflow file by utilizing some packing algorithm (e.g. first
fit, best fit) and that deletions are not very frequent, then as a rough approximation it may be
accepted that the expected unused space is half of the mean object length [6] (with the exception
of the last block). Under this assumption the expected number of shared overflow file blocks per
MB main blocks is given by: MB,,(u) = N,,,(u)l,(u)/U, where: C(u) = X:=, Py(u)l,, is the average
overflow object length and U is the average number of bytes used within an overflow block. Under
the above assumptions U can be approximated by: U = BS - 1,,/2, where l,, is the average object
length. Evidently the following relation holds: I,,, = Cf=, p,l,. cl

It is however very difficult to calculate the probability distribution of the number of objects
within a block. The reason is that the object occurence probabilities are not independent any more
due to the packing algorithm. When the packing algorithm is not as good or when high deletion
rates make the approximations unrealistic then the average space left unused per block and the
probability distribution of the number of objects within the overflow file blocks can be estimated
by using a simulation of the packing algorithm. Another possibility is that no packing algorithm
is used, but objects are always placed at the end of the overflow file, and there are no deletions
of objects from the file. A simplication of the problem that has been used in the past is to assume
that a constant number of objects exists in each overflow block. It has been shown that this
simplification may result in pessimistic performance estimates [171. Therefore, the following lemmas
hold.

Lemma 9. The expected number of objects per overflow block is:

N,,(a) u
b = MB,(u) =m

496 YANNIS MANOLOFQUL~~ and STAVROS CHRISTOWULAKIS

Lemma IO. The expected number of overtlow blocks which contain k objects of an area is [18]:

Cost equations for the three search algorithms will be derived based on the previous formula.

3. OVERFLOW SEARCH ALGORITHMS AND THEIR ANALYSIS

Before proceeding to the analysis of the algorithms, we describe them, illustrate their differences
and show the performance improvement by an example.

Aigorithm I

In the first algorithm we simply follow the pointers of the overflow chain until two cases may
happen. Either the object with the specific key value is found (successful search) or it is evident
that the object does not exist in the file (unsuccessful search), because objects with key values greater
than the desired one are retrieved. Accessed overflow blocks are assumed to remain main memory
resident due to a DB-cache capability so that a block that contains more than one objects of a
specific overflow chain will be retrieved only once from secondary storage.

Algorithm 2

The above search algorithm is somewhat naive but when modified slightly it can result in better
performance. In this modified algorithm, at each block access all the objects of the block are
examined. If the desired object exists in this block the search terminates. Otherwise, the chain
pointer from the object, for which the access was paid, to a successive block is followed. This simple
modification of the algorithm improves the performance of the successful search but it does not
affect the cost of the unsuccessful search.

Algorithm 3

An even more efficient algorithm in terms of expected block accesses can be thought for
answering successful as well as unsuccessful queries. As in the second algorithm, the keys of all
objects of a retrieved block are examined but in addition it is examined whether there is any object
with a key value between the desired one and the value of the object for which the block access
was made. For example, if a key value of an object j between the values of the ith and the rth
object is found, when the block which contains the ith object is retrieved, the search may continue
by following the chain emanating from this object.

Example. Assume that a chain of 6 sorted objects is stored in 4 overflow blocks as illustrated in
Fig. 2. Suppose, also, that the object with key value 60 is searched. The first algorithm will fetch
the blocks A, B, C and D which makes in total 4 block accesses. The second one will fetch 3 blocks,
namely the A, B and C ones. This is due to the fact that, when block C is retrieved, all the objects
of the block are examined and therefore the desired object with key 60 is found. The third algorithm
will fetch only 2 blocks, A and C. This happens because, when block A is fetched, the pointer from
the highest of the two keys (30) is followed and therefore the block C is retrieved. The search of
block C finds not only the follow-up key (40) but also the desired key (60). Thus, in this example
there is a performance improvement by using the more sophisticated algorithms.

Block A Block B Block C Block D

Fig. 2. Overflow chain of 6 objects residing in 4 blocks.

File organizations with shared overtlow blacks 497

A second observation concerning the performance of the second and the third algorithm is that
the search cost of the successive objects of a chain is not necessarily an increasing function of the
chain length as opposed to the performance of the first algorithm. Later it will be shown that in
the expected case the search cost is an increasing function. The sequence of search costs in block
accesses for the successive objects of the chain of the layout of the Fig. 2 is:

1,2,2,3,4,4 according to the first algorithm,
1,2, I, 3,4,3 according to the second and
1,2, 1,2,3,2 according to the third one.

A third observation has to do with the relation between successful and unsuccessful search. The
6 objects of the chain form 7 subinte~als. Therefore, suppose we are going to search for 7
non-existing objects, each one lying in a different subinterval. For convenience we name these
objects 5, 15, 25, 35, 45, 55 and 65 respectively. The sequence of search costs in block accesses for
the list of these non existing objects is:

1,2,2,3,4,4,4 according to the first algorithm,
1,2,2,3,4,4,4 according to the second and
1,2,2,2,3,3,2 according to the third one.

We note that, as expected, the unsuccessful search cost, by using the first or the second algorithm,
are identical. In other words, the search cost by using the second algorithm is a non decreasing
function as we search for the successive objects of a chain. We note, also, for the third algorithm
that the search cost of a non existing object is not less than the cost of the successful search of
the preceeding existing object in the chain.

Next we derive estimates of the expected cost for the successful and unsuccessful search when
the three search algorithms are used for finding a qualifying object.

3. I. First algorithm

The analysis of this case is straightforward.

Theorem 1. The expected number of additional block accesses for the successful search of any object
out of the k ones of an overflow chain is given by [2]:

Theorem 2. The expected number of additional block accesses for an unsuccessful search when the
length of the overflow chain is k objects is given by [2]:

L,(k) = &@, WI + B(k))
3.2. Second a~g~r~thrn

Theorem 3. The expected number of additional block accesses for the successful search of any object
out of the k ones of an overflow chain is:

Proof. Assuming that k objects constitute the overflow chain then this formula is derived using an
expected value analysis as follows. The probability of finding the object that we are looking for
(e.g. the rth one) in any of the B(i) blocks that we have in main memory when we examine the
block with the ith object (i < r) in the chain is: (B(i)b - i)/(iV,(a) - i). This is true because when
the rth object is examined, B(i)b objects are cached and i of them are not relevant. The probability
of finding this object exactly at the search for the ith object and not before is:
(B(i)b - i)/(iV,,(a) - I) - (B(i - 1)b - i + l)/(iV,Ja) - i + 1). The probability that the rth object
is not found in any of the blocks which contain the r - 1 first b objects in the chain is:
(B(r - I)b - r + l)/(NO,(a) - r + 1). The above formula follows easily. 0

498 YANNIS MANOL~P~UL~~ and STAVROS CHRIST~WULAKIS

3.3. Third algorithm

The analysis of this algorithm is more complex and can be formulated using non-homogeneous
Markov chains. Define the ith state to indicate that i block fetches have already taken place. The
state i is characterized by a one-dimensional vector IIi, where i = 1,2, . . . , k. The vector length
is k, the length of the overflow chain. Thejth element of the vector represents the probability that
the object with the highest key in this block is the jth object (out of the k) of the overflow chain.

A transition happens when a new block is fetched. By definition, the ith transition happens when
the (i + 1)th block is going to be fetched, where i = 1, . . . , k - 1. A transition is characterized by
a two-dimensional translation matrix Pi of size k x k. The element Pi@, q), where 1 <p < k - 1
and 2 < q < k, represents the probability that, if at the ith state the object with the highest key
value is the pth object of the overflow chain, then the object with the highest key value after the
ith transition will be the qth object. The aspect that makes it non-homogeneous is that the
transition matrix changes after each transition.

Theorem 4. The probability that exactly i objects of the chain exist in the block, in which the first
object of the chain resides, is equal to:

r(i, No&), k) =
(X$4; 1)

where NO,(a) denotes the total number of overflow objects in area and k denotes the length of the
chain.

ProojI The numerator gives the number of ways that the i - 1 objects of the chain may be selected
from the b - 1 objects of a specific block (it is certain that the first object of the chain resides also
in this block) multiplied by the number of the ways that the rest k - i objects of the chain may
be selected from the rest N,,(a) - b objects. The denominator is self-explained. 0

Theorem 5. Given that i objects out of k ones of the chain reside in the block, where the first object
of the chain is, then the probability, that the order of the one that has the maximum order in the
chain is j, is equal to:

Proof: The explanation of s(j, i, k) is the following. In a specific block reside i objects; two of them
are the first and the jth objects of the chain. Therefore the numerator gives the number of ways
that i - 2 objects may be selected from the j - 2 ones. To calculate the denominator consider that
the first object of the chain is fixed, therefore the rest i - 1 objects of the chain may be selected
from the rest k - 1 objects of the chain. 0

Theorem 6. The initial vector II, is given by:

K(j) = i r(i, N,,.(a), k)r(j, i, k) where 2<j<k
i=2

II,(l) = l- i II,(r)
r=2

Proof. The above relation is explained easily by considering the theorems deriving the expressions
r(i, N,,(a), k) and s(j, i, k). Note, also, that the upper bound in the summations of the previous
formula may be replaced by the expression min(b, j). This is true because values between this
expression and the chain length k do not contribute to the final result, since the combination
produced by r(e) and s(.) are equal to zero. q

File organizations with shared overflow blocks 499

Theorem 7. The transition matrix P,,,, where m = 1, . . . , k - 1, is:

pm (P, 9) = 0
k-p

for q<p orp cm

PAP, q) = c r(i, N,,(a) - mb, k -pMq -P, i, k -P) for q>p +2
i=2

Pfn(P,P+l)=l- i P,(p,q)
q=p+z

Proof. The explanation follows in two steps. The probability that before some block access the
object with the highest key value is the pth, while after the block access the object with the highest
key value in the overflow chain is the qth one, where q <p, is evidently zero. In case m >p, then
again this probability is equal to zero. This is due to the fact that the order of the transition (block
access) has to be less or equal to the order of the object which has the highest key value so far.

The explanation of the second and the third part of the previous relation is based on a reasoning
similar to that of Theorem 6. Assume that m blocks have been retrieved already, while the object
with the highest order so far is the pth one. The number of objects contained in the rest blocks
is: No,(a) - bm. Some of the first p objects may be among these N,,(a) - bm objects but they are
considered as irrelevant in the process and, therefore, we concentrate on the rest k -p objects of
the chain. When the (m + 1)th block is retrieved it contains i objects out of k -p ones, where i
varies from 1 up to k -p. The object with the highest order out of these i objects is the jth of the
chain with length k but now it is considered to be the (q -p)th one of the rest of the chain.
Therefore, by substituting N,,(a) with No,(a) - bm, k with k -p and j with q -p and summing
over i we finally come up with the formula of the theorem. El

Note, again, that following the reasoning of Theorem 6 the upper bound in the summations of
the formulae of the Theorem 7 may be replaced by the expression min(b, q -p) because values
between this expression and the chain length q -p do not contribute to the final result. If this
formula m is replaced by 1, then we get the first transition matrix (which is easily checked), while
if we replace m with 0 then the initial probability vector of Theorem 6 is derived.

The time dependent state probabilities after the ith transition are given by Kleinrock [19]:

rI;+,=n,P,=n,P,P,...P~

In the Appendix a practical example validating the above analysis for the successful search of the
third algorithm is given.

Theorem 8. The expected number of additional block accesses for the successful search of any object
out of the k ones of an overflow chain is:

Proof. The expected value of the additional accesses for the successful search of the last (k th) object
of a chain is: Cf=, Xl,(k). This formula is explained easily by considering the product of the ith
state probability, II,(k), by the relevant cost (i block accesses). It is reminded again that the ith
state probability denotes the probability that the last object of the chain (the k th one) will be found
after the ith transition, where i = 1, 2, . . . , k - 1, (e.g. at the retrieval of the (i + 1)th block). It
is understood that the expected additional cost for the successful search of any object of the chain
(e.g. the ith one, where 1 < i c k) is calculated by considering that this object is the last one. For
example, suppose that k = 3, which means that three chained overflow objects may be stored in
1, 2 or 3 blocks. The access cost of the first object is: 1 x n, (1), which evidently equals 1 block
access. The second object may be found after 1 or 2 block accesses, therefore the access cost of
the second object is: 1 x TI, (2) + 2 x n,(2). The third object may be found after 1, 2 or 3 block
accesses, thus the access cost of the third object is: 1 x II, (3) + 2 x II, (3) + 3 x II, (3). The
summation gives the total successful cost, while dividing by 3 we get the mean successful cost. By
generalizing this reasoning we get the formula of the theorem. cl

500 YANNIS MANOWFQU~S and STAVROS CHRISTODOUL.AKIS

Theorem 9. The expected number of additional block accesses for an unsuccessful search when the
length of the overflow chain is k objects is:

L,(k) =

Proof. The unsuccessful search analysis is based on that of the previous theorem. Suppose that the
chain consists of k objects, therefore k + 1 subintervals are created. It is certain that absence of
an object is recognized by identifying the two consecutive objects of the chain which have smaller
and greater key value respectively than the key value of the desired one. The following example
explains how the unsuccessful search cost is derived.

Suppose that k = 3, which means that 3 chained overflow objects may be stored in 1, 2 or 3
blocks. However in this case 4 subintervals are created and therefore we have to consider the excess
cost of 4 nonexisting objects. To guarantee that an object does not exist, we have to perform a
transition from an object with a key value smaller than the key value of the desired object to an
object with a key value greater than the key value of the desired one. Table 2 shows the relevant
costs for 4 nonexisting objects.

The first column of Table 2 gives the cost for accessing the object with the greatest key value
which is smaller than the key value of the desired object. The second column gives the cost paid
to access the next object of the chain given that the previous one has already been accessed. It is
evident that in general the latter cost is smaller than the unity because it has to be paid only in
cases where the next object does not reside in one of the previously accessed blocks. More
specifically:

l the cost for the first subinterval equals unity, and
. the cost for the last subinterval equals zero because no other block may be accessed.

Another two interesting observations are the following ones:

‘ the values of the first and second column form a incrementing and decrementing sequence
respectively and

l except the first and last subintervals, in each line an equal number of products is summed.

By summing we get the total cost and dividing by four we get the mean unsuccessful cost. By
generalizing we get the formula of the theorem and assuming that every file object has the same
probability to be accessed, then the following theorem holds. cl

Theorem 10. The expected number of additional block accesses for a successful search or an
unsuccessful search respectively is:

U(a) = ~,~~~p(x,a)~~,kL,(k)Q(x -kx)

where X(a) is the expected number of objects per area and equals: Z.F=, xP(x, a).

ProoJ The explanation is as follows. Q(x -k, x) is the probability that there are exactly x -k
objects in a main block, and therefore at the same time it expresses the probability that there are
exactly k overflows. When there are k overflows in an area the expected additional accesses in order
to find an object is: kL,(k)Q(x - k, x). Finally the probability of accessing a block which contains
x objects is: xP(x, a)/X(a). Substitution results in the first relation of the theorem. Similar is the
explanation of the second part of the theorem. cl

Table 2

1st subinterval
2nd subinterval
3rd subinterval
4th subinterval

Cost for accessing Cost for accessing
the previous object the next object

1 x n, (1)
1 x n, (1) + 1 x K(2)

I x l-l, (2) + 2 x IT* (2) + I x n,(3)+ I x rI,(3)
I x n, (3) + 2 x rI* (3) + 3 x n, (3)

File organizations with shared overflow blocks 501

Corollary. More efficient computationally formulae may be applied in place of the formulae of
Theorem 10, such as:

S(a) = ~~~,kL,(k)~=~+,P(x,n)Q(x-k,x)

U(a) = $-$, (k + lW&) _$+, J’(x, a)Q(x - k x)

These relations are more efficient because the time consuming L,(k) and L,(k) are computed only
at the outer loop. The derivation of these relations is straightforward.

4. PERFORMANCE COMPARISONS

In this section numerical results are presented using the analytical estimates derived in the
previous sections. These results are used to compare the performance of the three overflow search
algorithms as well as to study the effect of variable length objects on performance. An index
sequential file is considered in our experiments, therefore the relation of Lemma 2 is used as the
probability distribution for estimating the number of objects per area. Similar results may be
obtained for hash based files. In all experiments.

l the main and overflow block size is 4 kbytes
l the object classes are two and
l the object size of the first class is always 400 bytes and
l every block initially is loaded with 7 objects.

The object size of the second class takes a value from the set of 400, 300 or 200 bytes, therefore
the load factor varies from 70 to 50%.

All the figures show the additional successful and unsuccessful expected cost as a function of
the file expansion factor. In Figs 3-7, 8-12 and 13-17, the parameter MB of the number of main
blocks which share some overflow blocks equals 1000, 100 and 10 blocks, respectively. In every
figure five lines depict the result of plugging the formulae of the Theorems 1,2,3,8,9 as appropriate

1.00

Fig. 3.

1.0 1.5 2.0

Expansion factor

Search cost as a function of the file expansion factor. Parameters: BS = 4 kb,
R,=2OOb, P,=O.l, P,=O.9, MB= 1000.

R, = 400 b,

502 YANNIS MANOLOFQULOS and STAVROS CHRBTODOULAKIS

0 0.5 1.0 1.5 2.0

Expansion factor

Fig. 4. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, = 400 b,
R, = 200b, P, =O.S, P2 = 0.5, ME = 1000.

into the relevant formulae of the corollary of the previous section. The values of all other
parameters is given below each figure.

In the beginning, let us note some expected conclusions. First, in any case unsuccessful searching
is more expensive than successful searching. Second, the third algorithm is always better than the
second one, which in turn is better than the first one. In all figures, the unsuccessful search cost
of the third algorithm is smaller than the successful search cost of the first and the second
algorithms.

2.25

0 0.5 1.0 1.5 2.0

Expansion factor

Fig. 5. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b,
R,=3OOb, P,=O.l, P,=O.9, ME= 1000.

File organizations with shared overtlow blocks 503

Expansion factor

Fig. 6. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, = 400 b,
R, = 300 b, P, = 0.5, P2 = 0.5, MB = 1000.

Two important conclusions of this study are the foliowing. First, it is remarked that as the
number of main blocks MB pointing to the same overflow area increases, the first two algo~thms
tend to behave similarly, while the third one still shows a remarkable improvement. When the
parameter MB is small there is an evident improvement when comparing the second to the first
algorithm, while there is an outstanding improvement when comparing the third to the first
algorithm. Second, it is remarked that the gain due to the third algorithm increases by increasing
the probability of the short object size or by decreasing the short object size. This is the same with

Fig. 7. Search cost as

4.5

0.5 1.0 1.5 2.0

Expansion factor

a function of the file expansion factor. Parameters: B.S = 4 kb,
R,=4OOb, MB=lOOO.

R,=4OOb,

504 YANNIS MAN~IA~F~~L~~ and STAVROS CHRISTODOULAKIS

1.00

0.75

2
8
P
A

::
z 0.50

2
z
:

d

0.25

0.5 1.0 1.5 2.0

Expansion factor

Fig. 8. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, =400 b,
R, = 200 b, P, =O.l, P2 = 0.9, MB = 1000.

stating that the gain due to the third algorithm increases by decreasing the average object size
compared to the block size.

The above observations are explained as follows. There are three factors aff~ting the expected
cost. The first is the average object length. The smaller the average object length is the more objects
are needed to fill the main block and therefore the less expected number of blocks in the overflow
chain. The second factor is the empty space left at the end of the main block. The larger the size
of the objects (with respect to the block size), the more will be the wasted space at the end of the

0.65

0 0.5 1.0 1.5 2.0

Expansion factor

Fig. 9. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b,
R, = 200 b, P, = 0.5, P2 = 0.5, MB = 100.

File organizations with shared overflow blocks

3.00
r

1.0 1.5 2.0

Expansion factor

Fig. 10. Search cost as a function of the file expansion factor. Parameters: ES = 4 kb, R, = 400 b,
R,= 3OOb, P, =O.l, Pz =0.9, MB = 1W.

main block [a]. A third factor is the fact that the larger number of objects per overtlow block results
in higher probability of finding more overflow objects of the same area in one overflow block.

5. SUMMARY-CONCLUSION

In this paper we have studied a file organization with shared overIlow blocks. The performance
of two new algorithms for searching in the overflow file blocks for variable length objects is
analyzed. We have derived estimates of their performance costs taking into account the statistical

0 0.5 1.0 1.5 2.0

Expansion factor

Fig. 11. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, = 400 b,
R, = 300 b, P, = 0.5, Pz = 0.5, MB = 100.

506 YANNIS MANOLOFOUL~~ and STAVROS CHR~STOWULAKIS

0 0.5 1.0 1.5 2.0

Expansion factor

Fig. 12. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b,
R,=4OOb, MB= 100.

probability distribution of the object lengths of the underlying population of objects as well as other
file parameters. It is proved that both the new algorithms outperform the previous one. Specifically,
the most sophisticated one presents remarkable performance improvement in the following two
cases:

l the objects have great variance in their lengths,
l the object sizes are relatively small when compared with the block size, and
l the number of main blocks that share a group of some overflow blocks is not great.

Expansion factor

Fig. 13. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b,
R, = 200 b, P, = 0.1, Pz = 0.9, MB = 10.

File organizations with shared overflow blocks 507

0.6

Expansion factor

Fig. 14. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b,
R2 = 2OOb, P, =O.S, P2 L= 0.5, MB = 10.

Based on the above observations it is concluded that the file structure with overfiows managed
as described in the second chapter, benefits both from the search algorithms described and analyzed
in the third chapter, as well as from the additional clustering of overflow objects. According to
this technique a small number of overflow areas is maintained instead of a single one. In addition
this smaIl number of overflow areas (each for a group of main blocks) achieves very good space
utilization.

Fig. 1.5.

1.80

1.35

E

ii

55
0

z; 0.90

E
d:
5

cs

0.45

0 0.5 1.0 1.5 2.0

Expansion factor

Search cost as a function of the file expansion factor. Parameters: BS = 4 kb,
R,=3OOb, P,=O.l, P,=0.9, MB=tO.

R,= 4OOb.

508 YANNIS MANOLCJP~UL~S and STAVR<~S CHRISTODOULAKIS

0 0.5 1.0 1.5 2.0

Expansion factor

Fig. 16. Search cost as a function of the file expansion factor. Parameters: ES =4 lcb, R, =400 b,
R,=3OOb, P, =0.5, Pz=0.5, MB= 10.

Future research in this area involves the derivation of some approximations of the cost equations
presented in order to obtain a less analytical model. In addition this overflow scheme and the
corresponding algorithms would be tested in a hashed based He. Another step would be towards
the development of st~ctures and aIgo~thms designed specially for variable length objects PO].

Acknowledgements-Thanks are due to Mr D. Meimaris and Mr G. Priovolos for their help in experimentation. A reviewer’s
and Mr K. Dobrolis’s comments on the presentation of the paper are appreciated.

3.00 r-

Fig. 17. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb,
R2=200b, MB= 10.

R,=4OOb,

File organizations with shared overflow blocks 509

REFERENCES

R. J. Enbody and H. C. Du. Dynamic hashing. ACM Compuf. Suru. 20, 85-113 (1988).
S. Christodoulakis, Y. Manolopoulos and P. A. Larson. Analysis of overflow handling for variable length records.
Informarion Systems 14, 151-162 (1989).
P. A. Larson. Analysis of index sequential files with overtlow chaining. ACM Transacr. Database Syst. 6,671~680 (1981).
J. Hakola and A. Heiskanen. On the distribution of wasted space at the end of file blocks. BIT 20, 145-156 (1980).
G. U. Hubbard. Computer-assisted Da&base Design. Van Nostrand Reinhold (1981).
Y. Manolopoulos and C. Faloutsos. Analysis for the end of block wasted space. BIT 12, 620-630 (1990).
T. J. Teorey and J. P. Fry. Design of Database Sfructures. Prentice-Hall, NJ (1982).
G. Wiederhold. File Organization for Database Design. McGraw-Hill, NY (1987).
M. J. Willshire. How spacey can they get? Space overhead for storage and indexing with object-oriented databases.
In Proc. 7th IEEE Data Engineering Con& pp. 14-22 (1991).
D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis, N. Derrett, C. G. Hoch, W. Kent, P.
Lyngbaek, B. Mahbod, M. A. Neimat, T. A. Ryan and M. C. Shari.. IRIS: An object-oriented database management
system. ACM Transact. Ofice Inf: Syst. 5, 48-69 (1987).
J. Banerjee, H. T. Chou, J. F. Garxa, W. Kim, D. Woelk, N. Ballou and H. J. Kim. Data models issues for
object-oriented applications. ACM Transact. Ofice Inf Syst. 5, 3-26 (1987).
J. Mylopoulos, P. A. Bernstein and H. K.T. A language facility for desiging database intensive applications. ACM
Transact. Database Syst. 5, 185-207 (1980).
D. Batory. Optimal file designs and reorganization points. ACM Transact. Database Syst. 7, 60-81 (1982).
0. Amble and D. E. Knuth. Ordered hash tables. Compur. J. 17, 135-147 (1974).
G. H. Gonnet and P. A. Larson. External hashing with limited internal storage. J. ACM 35, 161-184 (1988).
T. S. Yuen and D. H. C. Du. Dynamic file structure for partial match retrieval based on overflow bucket sharing.
IEEE Transact. Software Engng 12, 801-810 (1986).
S. Christodoulakis. Implications of certain assumptions in database performance evaluation. ACM Transact. Datubase
Sysr. 9, 163-186 (1984).
S. Christodoulakis. Estimating block transfers and join sizes. In Proc. ACM SIGMOD-83 Cot& pp. N-54 (1983).
L. Kleinrock. Queueing Systems, Vol. 1: Theory. Wiley, NY (1975).
Y. Manolopoulos and N. Fistas. Algorithms for hash based files with variable length records. Information Sciences.
In press (1992).

APPENDIX

Here, a simple example is given showing how the analysis is applied. Suppose that a group of shared overflow blocks
corresponds per MB = IO main blocks of size 1000 bytes. Two object types are considered: the first length 400 bytes and
probability 0.5 and the second of length 300 bytes and probability 0.5. Suppose also that the last object of a chain of 4
objects is to be searched. By applying the analysis of Sections 2 and 3 it is derived that:

II, = [0,8859 0,038O 0,038O 0,0380]

I-I, = [0 0.8129 0.0745 0,0745]

:

0 0 0 0

0 0 0,955l 0,0449

P2=

0 0 0 0

0 0 0 0

n, = [O 0 0,7764 O,OllO]

r0 0 0 01

1 0 0 0 0

ps =
0001

0 0 0 0 I
l-l4 = (0 0 0 0.77641

Three interesting observations about these results follow.

l The elements of thejth line of the transition matrix sum to unity if the j > i - 1, where i is the state of block fetches,
otherwise they are zeros.

l The sum of the last elements of all the probability vectors is equal to one. This is explained by the fact that the
last object will certainly be found in one out of the four blocks.

l The sum of the elements of II, is equal to one. This is expected because it is certain that one out of the four objects
will be the found in the first block. This is, also, the explanation why the elements of the other probability vectors
II,, i = 2.3,. , k do not sum to unity.

