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Abstract-Traditional file organizations for records may also be appropriate for the storage and retrieval 
of objects. Since objects frequently involve diverse data types (such as text, compressed images, graphics, 
etc.) as well as composite structures, they may have a largely variable length. In this paper, we assume 
that in the case of composite objects their components are clustered together and that object file 
organizations have overflows. The blocks of the main file are grouped so that they share a common 
number of overflow blocks. For this class of tile organizations we present and analyze the performance 
of three different overtlow searching algorithms. We show that the third algorithm gives very significant 
performance advantages under certain circumstances. 

Key words: File structures, variable length objects, chaining, overtlow area, successful and unsu~~ful 
search, algorithms, performance analysis 

1. INTRODUCTION 

Various file organizations utilize overflow areas such as the recent developments of hashing [l] 
(several variations of linear and dynamic hashing, bounded index exponential hashing, hashing 
with inte~olation-based index maintenance, etc.) as well as the traditional indexed sequential files 
[2,3]. At loading time data can almost uniformly be distributed in blocks but insertions and 
deletions hit blocks with different probabilities. Therefore, it is almost certain that after some time 
a number of main file blocks will demand excess overflow space while others will not. Overflowing 
means that sooner or later the performance deteriorates due to additional required accesses. 
Reorganization will take place either locally and dynamically or globally and periodically as in the 
cases of hashed and indexed sequential files respectively. 

Traditional file organizations for records may also be appropriate for the storage and retrieval 
of objects occurring in object oriented languages, nested relations and extensible database systems 
which use fixed size pages. Objects in our model have a key according to which they are filed. The 
other object fields and their encoding are not important (and may not be known) to the file 
organization. However, since objects frequently involve diverse data types (such as text, compressed 
images, graphics, etc.) as well as composite structures, the common practice is that they have a 
largely variable length. 

A basic assumption of this work is that the objects may have a highly variable length. Although 
variable length records are very frequent in conventional database environments due to variable 
lenght fields, missing attribute values, multiple values of an attribute and compression, little has 
been reported in the literature about their effect on the file performance. We note the works of 
Hakola and Heiskanen [4], Hubbard [S], Manolopoulos and Faloutsos [6], Teorey and Fry [7] and 
Wiederhold [8] on estimating the wasted space at the end of blocks due to variable length records. 
New database trends, towards multimedia and object oriented databases, emphasize the need for 
studies of the effect of length variability on the performance of file organizations. The reason is 
that the new data types (text, graphics, images) have a very large length variance. A recent relevant 
work is [9], which examines the space overhead due to the variability of object lengths involved 
in some physical storage models for use in object-oriented databases, such as IRIS [lo], ORION 

tTo avoid any delay in publication of this issue, this paper has been published without the authors’ corrections. 
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[1 11, TAXIS [12] etc. Here, we assume that in the case of composite objects their components are 
clustered together. 

In this paper we concentrate our attention on object file organizations which have overflows. 
Recently, some analysis and experimentation on various overflow strategies for handling variable 
length records were reported [2]. More specifically large overflow blocks were assumed and analysis 
on the search performance was carried out. In the present report we assume that the blocks of the 
main file are grouped so that they share a number of common overflow blocks. For this class of 
file organizations we present and analyze the performance of three different overflow searching 
algorithms. Two of them are new and improve the algorithm presented in [2]. In addition, we show 
that the third algorithm gives very significant performance advantages when: 

l the main blocks are grouped in small numbers, 
l there is large variability of object size and 
l the object sizes are relatively small when compared with the block size. 

These algorithms may be applied in almost any file organization that utilizes an overflow area. 
The rest of the paper is organized as follows. In Section 2 the basic mathematical model for the 

specific file organization is developed. The probability distribution of the number of objects per 
area (main block and attached overflow objects) for two structures (hashed and indexed sequential) 
is given as a function of file expansion with time. In the same section the probability distribution 
of objects in the main block and in the overflow area is given, The material of the section has been 
reported previously, mainly in [2], but it is included here very briefly because it is essential for the 
analysis to follow. For more details on the derivations of the analysis the interested reader is 
directed to the reference. In Section 3 the three algorithms are presented and mathematically 
analyzed. Formulae for the successful and unsuccessful search are derived as a function of the file 
expansion with time. In Section 4 figures illustrating performance comparisons of the algorithms 
are discussed. Finally, some conclusive remarks follow. 

2. MATHEMATICAL BASIS 

File objects are divided into classes C, , C,, . . . , C,. We consider a finite number of classes, L, 
for simplifying the analysis. Any arbitrary length object is mapped into the class which has a length 
nearest to its length. Class Ci contains objects with length Ii and known arrival probability pi, where 
i=l,2,... , L. Object lengths are assumed to be independent of the key values. Let x be the 
number of objects that exist in an area. 

Lemma 1. The probability that n, of these x objects have been selected from class C, , n2 from class 

C,,..., nL from class C, obeys a multinomial distribution: 

q(nl,...,nL)= 
x! 

,py..p2 
n,!. . .nL. 

The probability distribution of the number of objects in an area (main block and overflow objects) 
depends on the file structure and is different for the hashed or the indexed sequential files. For the 
sequel, suppose that a file which consists of NB main file blocks was initially loaded with M objects. 
After some time N additional objects are stored in the file, thus making a total of X = M + N 
objects. Table 1 gives the definitions of all the symbols used throughout this paper. 

An approximate probability mass distribution assigned to a block and the probability distri- 
bution of the number of records per block of an indexed sequential file at some point in time after 
initial loading was first derived by Larson [3]. An alternate exact analysis was reported by Batory 
[13]. However, in [2] a new asymptotic probability distribution was derived and it was shown to 
be a negative binomial distribution. 

Lemma 2 /I.]. The probability that at some point in time x objects out of the X ones are stored 
in a specific main block (out of the NB main blocks of an indexed sequential file) and its associated 
overflow ones is: 

x-l n 
P,(x,a)= - ( > n (1 f n) 
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Symbol Definition 

Table I. Symbol definitions 

m 

n 

M 

N 
a 

BS, KS, PS 
L 

P, 
1, 
L, (0) 
max 

NB 
MB 
u 
P(x, 0) 
X(a) 
4(“, I.. . . n,) 
Q(b. x) 
P:‘(a) 
PP'(a) 
No, (a ) 
MB,. (0 ) 
b 
B(k) 
L,(k) 
L,(k) 
S(a) 

Number of objects initially loaded in a block 
Number of objects inserted in a block 
Total number of objects initially loaded in the tile 
Total number of objects inserted into the file 
File expansion vector 
Block, Key and Pointer sizes (in bytes) 
Number of classes 
Probability distribution of the number of objects belonging to class i( 1 < i 6 L) 
Length of object belonging to class i (1 Q i d L) 
Average overtlow object length (function of a) 
Maximum number of objects in a block 
Number of main blocks after loading 
Number of main blocks sharing the same ovcrSow blocks 
Average used space in an overflow block (in bytes) 
Probability that a block contains x objects (function of a) 
Average number of objects in a block (function of a) 
Probability that q objects have length i (1 < i 6 L.) 
Probability that exactly b out of x objects are stored in the main block 
Probability distribution that an object class i (1 d i < L.) is intercepted by a block boundary (function of a) 
Probability distribution of overflow object class i (I < i < L) 
Average number of overflow obje& per ME main blocks (function of a) 
Average number of shared overflow blocks per MB main blocks (function of a) 
Average number of objects per overflow block 
Average number of overtlow blocks containing k objects of an ama 
Average number of accesses for a successful search in a chain of k objects 
Average number of accesses for an unsuccessful search in a chain of k objects 
Average successful search cost (function of a) 

u(a) Average unsuccessful search cost (function of a) 

where m out of A4 is the number of objects initially stored in this block, n out of N is the number 
of additional objects stored in the block after certain time and a, the file expansion factor, is equal 
to N/M. 

If a uniform hashing function is assumed to be employed in a hash based file organization, then 
the probability distribution of the number of objects per block is the binomial one. In this case 
the following lemma holds. 

Lemma 3. The probability that at some point in time x objects out of the X ones are stored in a 
specific main block (out of the NB main blocks of hashed file) and its associated overflow blocks 
is: 

p(x,a)=((L? ‘:‘“)(J-yl -l->‘“+““-’ 

Let b be the number of objects which are stored in the main block. This number is a random 
variable and depends on the distribution of object lengths. Let Q(b, x) be the probability that 
exactly b out of the x objects that exist in an area are stored within the main block. The variable 
Q(b, x) is given by the expression of the following lemma. 

Lemma 4 [2]. The probability that exactly b out of the x objects that exist in an area are stored 
within the main block is: 

Q(hx)= 1 Q(4,***,%) c Pi 
r;= , II</, 4 BS - PS I,+Xf,,nji,>BS-PS 

where Xf,, ni = b < x, BS is the number in bytes available per main or overflow blocks, PS is the 
size of a pointer in bytes and KS is the size of the key in bytes (fixed). 

At load time empty space is distributed in main blocks to accomodate future insertions but 
sooner or later the main block becomes full and overflowing is unavoidable. Objects are not allowed 
to span over two different blocks; therefore some space is left unused. From each main block only 
one chain may emanate. Objects in a main block and its overflow chain are sorted according to 
key values. This technique is a rule for indexed sequential files but it may be applied in hashed 
files too, as in [14, 151, with better search performance measures at the cost of more expensive 
insertions. The highest keys are placed in the overflow chain. When an object is inserted in the main 
block, the last object of the block may not fit any more in it and therefore it will have to be 
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transferred to the overflow chain. In a similar manner, if an object of the main block is deleted, 
then if the first object of the overflow chain fits in the main block then it has to be stored in it. 

The overflow block size has been considered to be equal to the main block size. This 
implementation agrees with the current systems which use preformatted disks (disks with fixed 
block size). Overflow objects are connected in a chain with pointers and several objects from 
different areas or the same area may exist in the same overflow block. In other words overflow 
blocks are shared by a varying number of main blocks. This number is a parameter of the file system 
and in the following will be depicted by MB. In [3] it was accepted that overflow block capacity 
is one record only. A similar scheme to the one proposed here with shared overflow blocks is 
employed by Yuen and Du [16] in a study of variations on linear hashing, designed for partial 
match retrieval. In Fig. 1 a sample of this overflow file scheme is illustrated. 

It is asumed, also, that there is a DB-cache capability and therefore an overflow block remains 
in main memory, so that it does not have to be retrieved more than once if more than one object 
of the overflow chain exist in the block. This capability results in reduced search costs. According 
to our scheme, since the overflow blocks are large, variable length objects may be packed better 
within a block resulting in better space utilization and reduced search cost. 

Lemma 5 121. The probability that an object intercepted by a block boundary is of type Ci is: 

Pi(a> P?(a) = I. 

where: 

Xi=, nj < x, whereas the maximum number of objects which may reside in the main block is denoted 
by max. 

Proof The probability distribution of the lengths of objects in the overflow blocks is not in general 
the same as the probability distribution of the lengths of objects in the main block. The reason 
is that longer objects have higher probability to be intercepted by the main block boundary than 
shorter objects have. Thus longer objects are more likely to be found in the overflow chain. Let 
P,(a) be the total probability of any arrangement of objects in the main block so that an object 
of type Ci is intercepted by a block boundary. Then the relation of the theorem concerning P,(a) 
is easily explained. It is noted that max denotes the maximum number of objects which may 
reside in the main block and, evidently, it is equal to KS/l,,. Observe that P,(a) is a function of 
the file expansion factor since for small values of the file expansion factor only long objects may 
intercept the block boundary. This formula is derived in a manner similar to that of Lemma 4 
taking into account that the object with the next in order key value may not fit within the block 
and therefore it may have to move in the overflow area. After normalization the relation of the 
lemma is derived. El 

* M c II M e 

Overflow 
blocks 

Fig. 1. Shared overflow blocks per MB = 4 main blocks. 
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Lemma 6. The probability distribution of the number of overflow objects is given by: 

f P(4 a) b;X Q(b, x) 
PP”(a) = (Pj”‘(a) -Pi) m X=2 pi 

1 &,a) c (x -b)Q(b,x) 
x=2 bcx 

where 1 <i<L. 

Proof. To find the length distribution in the overflow file we have to consider both the intercepted 
objects as well as the remaining objects in the overflow chain (which follow the probability 
distribution Pi, where i = 1, . . . , L). The proportion of the intercepted objects to the total number 
of objects in overflow blocks is: 

MB f P(x,a) 1 Q@, x) 
x=2 b < x 

MB f P(x,a> 1 (x -b)Q(b,x)’ 
x=2 b<x 

Therefore the relation of the lemma holds. q 

Lemma 7. The expected number of objects which overflow from MB main blocks can be estimated. 

N,,,(u) = MB f P(x, a) -‘f’ kQ(x - k, x) 
x=2 k=l 

Lemma 8. The expected number of shared overflow file blocks per MB main blocks is given by: 

where C(u) is the average overtlow length and U is the average number of bytes used within an 
overflow block. 

Proof. The number of shared overflow blocks per MB main blocks depends on the algorithm which 
handles insertions and deletions in the file. Assuming that a very sophisticated algorithm exists 
which optimizes the space use in the overflow file by utilizing some packing algorithm (e.g. first 
fit, best fit) and that deletions are not very frequent, then as a rough approximation it may be 
accepted that the expected unused space is half of the mean object length [6] (with the exception 
of the last block). Under this assumption the expected number of shared overflow file blocks per 
MB main blocks is given by: MB,,(u) = N,,,(u)l,(u)/U, where: C(u) = X:=, Py(u)l,, is the average 
overflow object length and U is the average number of bytes used within an overflow block. Under 
the above assumptions U can be approximated by: U = BS - 1,,/2, where l,, is the average object 
length. Evidently the following relation holds: I,,, = Cf=, p,l,. cl 

It is however very difficult to calculate the probability distribution of the number of objects 
within a block. The reason is that the object occurence probabilities are not independent any more 
due to the packing algorithm. When the packing algorithm is not as good or when high deletion 
rates make the approximations unrealistic then the average space left unused per block and the 
probability distribution of the number of objects within the overflow file blocks can be estimated 
by using a simulation of the packing algorithm. Another possibility is that no packing algorithm 
is used, but objects are always placed at the end of the overflow file, and there are no deletions 
of objects from the file. A simplication of the problem that has been used in the past is to assume 
that a constant number of objects exists in each overflow block. It has been shown that this 
simplification may result in pessimistic performance estimates [ 171. Therefore, the following lemmas 
hold. 

Lemma 9. The expected number of objects per overflow block is: 

N,,(a) u 
b = MB,(u) =m 
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Lemma IO. The expected number of overtlow blocks which contain k objects of an area is [18]: 

Cost equations for the three search algorithms will be derived based on the previous formula. 

3. OVERFLOW SEARCH ALGORITHMS AND THEIR ANALYSIS 

Before proceeding to the analysis of the algorithms, we describe them, illustrate their differences 
and show the performance improvement by an example. 

Aigorithm I 

In the first algorithm we simply follow the pointers of the overflow chain until two cases may 
happen. Either the object with the specific key value is found (successful search) or it is evident 
that the object does not exist in the file (unsuccessful search), because objects with key values greater 
than the desired one are retrieved. Accessed overflow blocks are assumed to remain main memory 
resident due to a DB-cache capability so that a block that contains more than one objects of a 
specific overflow chain will be retrieved only once from secondary storage. 

Algorithm 2 

The above search algorithm is somewhat naive but when modified slightly it can result in better 
performance. In this modified algorithm, at each block access all the objects of the block are 
examined. If the desired object exists in this block the search terminates. Otherwise, the chain 
pointer from the object, for which the access was paid, to a successive block is followed. This simple 
modification of the algorithm improves the performance of the successful search but it does not 
affect the cost of the unsuccessful search. 

Algorithm 3 

An even more efficient algorithm in terms of expected block accesses can be thought for 
answering successful as well as unsuccessful queries. As in the second algorithm, the keys of all 
objects of a retrieved block are examined but in addition it is examined whether there is any object 
with a key value between the desired one and the value of the object for which the block access 
was made. For example, if a key value of an object j between the values of the ith and the rth 
object is found, when the block which contains the ith object is retrieved, the search may continue 
by following the chain emanating from this object. 

Example. Assume that a chain of 6 sorted objects is stored in 4 overflow blocks as illustrated in 
Fig. 2. Suppose, also, that the object with key value 60 is searched. The first algorithm will fetch 
the blocks A, B, C and D which makes in total 4 block accesses. The second one will fetch 3 blocks, 
namely the A, B and C ones. This is due to the fact that, when block C is retrieved, all the objects 
of the block are examined and therefore the desired object with key 60 is found. The third algorithm 
will fetch only 2 blocks, A and C. This happens because, when block A is fetched, the pointer from 
the highest of the two keys (30) is followed and therefore the block C is retrieved. The search of 
block C finds not only the follow-up key (40) but also the desired key (60). Thus, in this example 
there is a performance improvement by using the more sophisticated algorithms. 

Block A Block B Block C Block D 

Fig. 2. Overflow chain of 6 objects residing in 4 blocks. 
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A second observation concerning the performance of the second and the third algorithm is that 
the search cost of the successive objects of a chain is not necessarily an increasing function of the 
chain length as opposed to the performance of the first algorithm. Later it will be shown that in 
the expected case the search cost is an increasing function. The sequence of search costs in block 
accesses for the successive objects of the chain of the layout of the Fig. 2 is: 

1,2,2,3,4,4 according to the first algorithm, 
1,2, I, 3,4,3 according to the second and 
1,2, 1,2,3,2 according to the third one. 

A third observation has to do with the relation between successful and unsuccessful search. The 
6 objects of the chain form 7 subinte~als. Therefore, suppose we are going to search for 7 
non-existing objects, each one lying in a different subinterval. For convenience we name these 
objects 5, 15, 25, 35, 45, 55 and 65 respectively. The sequence of search costs in block accesses for 
the list of these non existing objects is: 

1,2,2,3,4,4,4 according to the first algorithm, 
1,2,2,3,4,4,4 according to the second and 
1,2,2,2,3,3,2 according to the third one. 

We note that, as expected, the unsuccessful search cost, by using the first or the second algorithm, 
are identical. In other words, the search cost by using the second algorithm is a non decreasing 
function as we search for the successive objects of a chain. We note, also, for the third algorithm 
that the search cost of a non existing object is not less than the cost of the successful search of 
the preceeding existing object in the chain. 

Next we derive estimates of the expected cost for the successful and unsuccessful search when 
the three search algorithms are used for finding a qualifying object. 

3. I. First algorithm 

The analysis of this case is straightforward. 

Theorem 1. The expected number of additional block accesses for the successful search of any object 
out of the k ones of an overflow chain is given by [2]: 

Theorem 2. The expected number of additional block accesses for an unsuccessful search when the 
length of the overflow chain is k objects is given by [2]: 

L,(k) = &@, WI + B(k)) 
3.2. Second a~g~r~thrn 

Theorem 3. The expected number of additional block accesses for the successful search of any object 
out of the k ones of an overflow chain is: 

Proof. Assuming that k objects constitute the overflow chain then this formula is derived using an 
expected value analysis as follows. The probability of finding the object that we are looking for 
(e.g. the rth one) in any of the B(i) blocks that we have in main memory when we examine the 
block with the ith object (i < r) in the chain is: (B(i)b - i)/(iV,(a) - i). This is true because when 
the rth object is examined, B(i)b objects are cached and i of them are not relevant. The probability 
of finding this object exactly at the search for the ith object and not before is: 
(B(i)b - i)/(iV,,(a) - I) - (B(i - 1)b - i + l)/(iV,Ja) - i + 1). The probability that the rth object 
is not found in any of the blocks which contain the r - 1 first b objects in the chain is: 
(B(r - I)b - r + l)/(NO,(a) - r + 1). The above formula follows easily. 0 
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3.3. Third algorithm 

The analysis of this algorithm is more complex and can be formulated using non-homogeneous 
Markov chains. Define the ith state to indicate that i block fetches have already taken place. The 
state i is characterized by a one-dimensional vector IIi, where i = 1,2, . . . , k. The vector length 
is k, the length of the overflow chain. Thejth element of the vector represents the probability that 
the object with the highest key in this block is the jth object (out of the k) of the overflow chain. 

A transition happens when a new block is fetched. By definition, the ith transition happens when 
the (i + 1)th block is going to be fetched, where i = 1, . . . , k - 1. A transition is characterized by 
a two-dimensional translation matrix Pi of size k x k. The element Pi@, q), where 1 <p < k - 1 
and 2 < q < k, represents the probability that, if at the ith state the object with the highest key 
value is the pth object of the overflow chain, then the object with the highest key value after the 
ith transition will be the qth object. The aspect that makes it non-homogeneous is that the 
transition matrix changes after each transition. 

Theorem 4. The probability that exactly i objects of the chain exist in the block, in which the first 
object of the chain resides, is equal to: 

r(i, No&), k) = 
(X$4; 1) 

where NO,(a) denotes the total number of overflow objects in area and k denotes the length of the 
chain. 

ProojI The numerator gives the number of ways that the i - 1 objects of the chain may be selected 
from the b - 1 objects of a specific block (it is certain that the first object of the chain resides also 
in this block) multiplied by the number of the ways that the rest k - i objects of the chain may 
be selected from the rest N,,(a) - b objects. The denominator is self-explained. 0 

Theorem 5. Given that i objects out of k ones of the chain reside in the block, where the first object 
of the chain is, then the probability, that the order of the one that has the maximum order in the 
chain is j, is equal to: 

Proof: The explanation of s(j, i, k) is the following. In a specific block reside i objects; two of them 
are the first and the jth objects of the chain. Therefore the numerator gives the number of ways 
that i - 2 objects may be selected from the j - 2 ones. To calculate the denominator consider that 
the first object of the chain is fixed, therefore the rest i - 1 objects of the chain may be selected 
from the rest k - 1 objects of the chain. 0 

Theorem 6. The initial vector II, is given by: 

K(j) = i r(i, N,,.(a), k)r(j, i, k) where 2<j<k 
i=2 

II,(l) = l- i II,(r) 
r=2 

Proof. The above relation is explained easily by considering the theorems deriving the expressions 
r(i, N,,(a), k) and s(j, i, k). Note, also, that the upper bound in the summations of the previous 
formula may be replaced by the expression min(b, j). This is true because values between this 
expression and the chain length k do not contribute to the final result, since the combination 
produced by r(e) and s(.) are equal to zero. q 
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Theorem 7. The transition matrix P,,,, where m = 1, . . . , k - 1, is: 

pm (P, 9) = 0 
k-p 

for q<p orp cm 

PAP, q) = c r(i, N,,(a) - mb, k -pMq -P, i, k -P) for q>p +2 
i=2 

Pfn(P,P+l)=l- i P,(p,q) 
q=p+z 

Proof. The explanation follows in two steps. The probability that before some block access the 
object with the highest key value is the pth, while after the block access the object with the highest 
key value in the overflow chain is the qth one, where q <p, is evidently zero. In case m >p, then 
again this probability is equal to zero. This is due to the fact that the order of the transition (block 
access) has to be less or equal to the order of the object which has the highest key value so far. 

The explanation of the second and the third part of the previous relation is based on a reasoning 
similar to that of Theorem 6. Assume that m blocks have been retrieved already, while the object 
with the highest order so far is the pth one. The number of objects contained in the rest blocks 
is: No,(a) - bm. Some of the first p objects may be among these N,,(a) - bm objects but they are 
considered as irrelevant in the process and, therefore, we concentrate on the rest k -p objects of 
the chain. When the (m + 1)th block is retrieved it contains i objects out of k -p ones, where i 
varies from 1 up to k -p. The object with the highest order out of these i objects is the jth of the 
chain with length k but now it is considered to be the (q -p)th one of the rest of the chain. 
Therefore, by substituting N,,(a) with No,(a) - bm, k with k -p and j with q -p and summing 
over i we finally come up with the formula of the theorem. El 

Note, again, that following the reasoning of Theorem 6 the upper bound in the summations of 
the formulae of the Theorem 7 may be replaced by the expression min(b, q -p) because values 
between this expression and the chain length q -p do not contribute to the final result. If this 
formula m is replaced by 1, then we get the first transition matrix (which is easily checked), while 
if we replace m with 0 then the initial probability vector of Theorem 6 is derived. 

The time dependent state probabilities after the ith transition are given by Kleinrock [19]: 

rI;+,=n,P,=n,P,P,...P~ 

In the Appendix a practical example validating the above analysis for the successful search of the 
third algorithm is given. 

Theorem 8. The expected number of additional block accesses for the successful search of any object 
out of the k ones of an overflow chain is: 

Proof. The expected value of the additional accesses for the successful search of the last (k th) object 
of a chain is: Cf=, Xl,(k). This formula is explained easily by considering the product of the ith 
state probability, II,(k), by the relevant cost (i block accesses). It is reminded again that the ith 
state probability denotes the probability that the last object of the chain (the k th one) will be found 
after the ith transition, where i = 1, 2, . . . , k - 1, (e.g. at the retrieval of the (i + 1)th block). It 
is understood that the expected additional cost for the successful search of any object of the chain 
(e.g. the ith one, where 1 < i c k) is calculated by considering that this object is the last one. For 
example, suppose that k = 3, which means that three chained overflow objects may be stored in 
1, 2 or 3 blocks. The access cost of the first object is: 1 x n, (1), which evidently equals 1 block 
access. The second object may be found after 1 or 2 block accesses, therefore the access cost of 
the second object is: 1 x TI, (2) + 2 x n,(2). The third object may be found after 1, 2 or 3 block 
accesses, thus the access cost of the third object is: 1 x II, (3) + 2 x II, (3) + 3 x II, (3). The 
summation gives the total successful cost, while dividing by 3 we get the mean successful cost. By 
generalizing this reasoning we get the formula of the theorem. cl 
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Theorem 9. The expected number of additional block accesses for an unsuccessful search when the 
length of the overflow chain is k objects is: 

L,(k) = 

Proof. The unsuccessful search analysis is based on that of the previous theorem. Suppose that the 
chain consists of k objects, therefore k + 1 subintervals are created. It is certain that absence of 
an object is recognized by identifying the two consecutive objects of the chain which have smaller 
and greater key value respectively than the key value of the desired one. The following example 
explains how the unsuccessful search cost is derived. 

Suppose that k = 3, which means that 3 chained overflow objects may be stored in 1, 2 or 3 
blocks. However in this case 4 subintervals are created and therefore we have to consider the excess 
cost of 4 nonexisting objects. To guarantee that an object does not exist, we have to perform a 
transition from an object with a key value smaller than the key value of the desired object to an 
object with a key value greater than the key value of the desired one. Table 2 shows the relevant 
costs for 4 nonexisting objects. 

The first column of Table 2 gives the cost for accessing the object with the greatest key value 
which is smaller than the key value of the desired object. The second column gives the cost paid 
to access the next object of the chain given that the previous one has already been accessed. It is 
evident that in general the latter cost is smaller than the unity because it has to be paid only in 
cases where the next object does not reside in one of the previously accessed blocks. More 
specifically: 

l the cost for the first subinterval equals unity, and 
. the cost for the last subinterval equals zero because no other block may be accessed. 

Another two interesting observations are the following ones: 

‘ the values of the first and second column form a incrementing and decrementing sequence 
respectively and 

l except the first and last subintervals, in each line an equal number of products is summed. 

By summing we get the total cost and dividing by four we get the mean unsuccessful cost. By 
generalizing we get the formula of the theorem and assuming that every file object has the same 
probability to be accessed, then the following theorem holds. cl 

Theorem 10. The expected number of additional block accesses for a successful search or an 
unsuccessful search respectively is: 

U(a) = ~,~~~p(x,a)~~,kL,(k)Q(x -kx) 

where X(a) is the expected number of objects per area and equals: Z.F=, xP(x, a). 

ProoJ The explanation is as follows. Q(x -k, x) is the probability that there are exactly x -k 
objects in a main block, and therefore at the same time it expresses the probability that there are 
exactly k overflows. When there are k overflows in an area the expected additional accesses in order 
to find an object is: kL,(k)Q(x - k, x). Finally the probability of accessing a block which contains 
x objects is: xP(x, a)/X(a). Substitution results in the first relation of the theorem. Similar is the 
explanation of the second part of the theorem. cl 

Table 2 

1st subinterval 
2nd subinterval 
3rd subinterval 
4th subinterval 

Cost for accessing Cost for accessing 
the previous object the next object 

1 x n, (1) 
1 x n, (1) + 1 x K(2) 

I x l-l, (2) + 2 x IT* (2) + I x n,(3)+ I x rI,(3) 
I x n, (3) + 2 x rI* (3) + 3 x n, (3) 
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Corollary. More efficient computationally formulae may be applied in place of the formulae of 
Theorem 10, such as: 

S(a) = ~~~,kL,(k)~=~+,P(x,n)Q(x-k,x) 

U(a) = $-$, (k + lW&) _$+, J’(x, a)Q(x - k x) 

These relations are more efficient because the time consuming L,(k) and L,(k) are computed only 
at the outer loop. The derivation of these relations is straightforward. 

4. PERFORMANCE COMPARISONS 

In this section numerical results are presented using the analytical estimates derived in the 
previous sections. These results are used to compare the performance of the three overflow search 
algorithms as well as to study the effect of variable length objects on performance. An index 
sequential file is considered in our experiments, therefore the relation of Lemma 2 is used as the 
probability distribution for estimating the number of objects per area. Similar results may be 
obtained for hash based files. In all experiments. 

l the main and overflow block size is 4 kbytes 
l the object classes are two and 
l the object size of the first class is always 400 bytes and 
l every block initially is loaded with 7 objects. 

The object size of the second class takes a value from the set of 400, 300 or 200 bytes, therefore 
the load factor varies from 70 to 50%. 

All the figures show the additional successful and unsuccessful expected cost as a function of 
the file expansion factor. In Figs 3-7, 8-12 and 13-17, the parameter MB of the number of main 
blocks which share some overflow blocks equals 1000, 100 and 10 blocks, respectively. In every 
figure five lines depict the result of plugging the formulae of the Theorems 1,2,3,8,9 as appropriate 
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Fig. 3. 

1.0 1.5 2.0 

Expansion factor 

Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, 
R,=2OOb, P,=O.l, P,=O.9, MB= 1000. 

R, = 400 b, 
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Expansion factor 

Fig. 4. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, = 400 b, 
R, = 200b, P, =O.S, P2 = 0.5, ME = 1000. 

into the relevant formulae of the corollary of the previous section. The values of all other 
parameters is given below each figure. 

In the beginning, let us note some expected conclusions. First, in any case unsuccessful searching 
is more expensive than successful searching. Second, the third algorithm is always better than the 
second one, which in turn is better than the first one. In all figures, the unsuccessful search cost 
of the third algorithm is smaller than the successful search cost of the first and the second 
algorithms. 
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Expansion factor 

Fig. 5. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b, 
R,=3OOb, P,=O.l, P,=O.9, ME= 1000. 
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Expansion factor 

Fig. 6. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, = 400 b, 
R, = 300 b, P, = 0.5, P2 = 0.5, MB = 1000. 

Two important conclusions of this study are the foliowing. First, it is remarked that as the 
number of main blocks MB pointing to the same overflow area increases, the first two algo~thms 
tend to behave similarly, while the third one still shows a remarkable improvement. When the 
parameter MB is small there is an evident improvement when comparing the second to the first 
algorithm, while there is an outstanding improvement when comparing the third to the first 
algorithm. Second, it is remarked that the gain due to the third algorithm increases by increasing 
the probability of the short object size or by decreasing the short object size. This is the same with 

Fig. 7. Search cost as 

4.5 

0.5 1.0 1.5 2.0 

Expansion factor 

a function of the file expansion factor. Parameters: B.S = 4 kb, 
R,=4OOb, MB=lOOO. 

R,=4OOb, 
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Fig. 8. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, =400 b, 
R, = 200 b, P, =O.l, P2 = 0.9, MB = 1000. 

stating that the gain due to the third algorithm increases by decreasing the average object size 
compared to the block size. 

The above observations are explained as follows. There are three factors aff~ting the expected 
cost. The first is the average object length. The smaller the average object length is the more objects 
are needed to fill the main block and therefore the less expected number of blocks in the overflow 
chain. The second factor is the empty space left at the end of the main block. The larger the size 
of the objects (with respect to the block size), the more will be the wasted space at the end of the 
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Expansion factor 

Fig. 9. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b, 
R, = 200 b, P, = 0.5, P2 = 0.5, MB = 100. 
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Fig. 10. Search cost as a function of the file expansion factor. Parameters: ES = 4 kb, R, = 400 b, 
R,= 3OOb, P, =O.l, Pz =0.9, MB = 1W. 

main block [a]. A third factor is the fact that the larger number of objects per overtlow block results 
in higher probability of finding more overflow objects of the same area in one overflow block. 

5. SUMMARY-CONCLUSION 

In this paper we have studied a file organization with shared overIlow blocks. The performance 
of two new algorithms for searching in the overflow file blocks for variable length objects is 
analyzed. We have derived estimates of their performance costs taking into account the statistical 

0 0.5 1.0 1.5 2.0 

Expansion factor 

Fig. 11. Search cost as a function of the file expansion factor. Parameters: BS =4 kb, R, = 400 b, 
R, = 300 b, P, = 0.5, Pz = 0.5, MB = 100. 
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Fig. 12. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b, 
R,=4OOb, MB= 100. 

probability distribution of the object lengths of the underlying population of objects as well as other 
file parameters. It is proved that both the new algorithms outperform the previous one. Specifically, 
the most sophisticated one presents remarkable performance improvement in the following two 
cases: 

l the objects have great variance in their lengths, 
l the object sizes are relatively small when compared with the block size, and 
l the number of main blocks that share a group of some overflow blocks is not great. 

Expansion factor 

Fig. 13. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b, 
R, = 200 b, P, = 0.1, Pz = 0.9, MB = 10. 
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0.6 

Expansion factor 

Fig. 14. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, R, = 400 b, 
R2 = 2OOb, P, =O.S, P2 L= 0.5, MB = 10. 

Based on the above observations it is concluded that the file structure with overfiows managed 
as described in the second chapter, benefits both from the search algorithms described and analyzed 
in the third chapter, as well as from the additional clustering of overflow objects. According to 
this technique a small number of overflow areas is maintained instead of a single one. In addition 
this smaIl number of overflow areas (each for a group of main blocks) achieves very good space 
utilization. 

Fig. 1.5. 
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Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, 
R,=3OOb, P,=O.l, P,=0.9, MB=tO. 

R,= 4OOb. 
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Fig. 16. Search cost as a function of the file expansion factor. Parameters: ES =4 lcb, R, =400 b, 
R,=3OOb, P, =0.5, Pz=0.5, MB= 10. 

Future research in this area involves the derivation of some approximations of the cost equations 
presented in order to obtain a less analytical model. In addition this overflow scheme and the 
corresponding algorithms would be tested in a hashed based He. Another step would be towards 
the development of st~ctures and aIgo~thms designed specially for variable length objects PO]. 
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Fig. 17. Search cost as a function of the file expansion factor. Parameters: BS = 4 kb, 
R2=200b, MB= 10. 
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APPENDIX 

Here, a simple example is given showing how the analysis is applied. Suppose that a group of shared overflow blocks 
corresponds per MB = IO main blocks of size 1000 bytes. Two object types are considered: the first length 400 bytes and 
probability 0.5 and the second of length 300 bytes and probability 0.5. Suppose also that the last object of a chain of 4 
objects is to be searched. By applying the analysis of Sections 2 and 3 it is derived that: 

II, = [0,8859 0,038O 0,038O 0,0380] 

I-I, = [0 0.8129 0.0745 0,0745] 

: 

0 0 0 0 

0 0 0,955l 0,0449 

P2= 

0 0 0 0 

0 0 0 0 

n, = [O 0 0,7764 O,OllO] 

r0 0 0 01 

1 0 0 0 0 

ps = 
0001 

0 0 0 0 I 
l-l4 = (0 0 0 0.77641 

Three interesting observations about these results follow. 

l The elements of thejth line of the transition matrix sum to unity if the j > i - 1, where i is the state of block fetches, 
otherwise they are zeros. 

l The sum of the last elements of all the probability vectors is equal to one. This is explained by the fact that the 
last object will certainly be found in one out of the four blocks. 

l The sum of the elements of II, is equal to one. This is expected because it is certain that one out of the four objects 
will be the found in the first block. This is, also, the explanation why the elements of the other probability vectors 
II,, i = 2.3,. , k do not sum to unity. 


