
Support for Interoperability between OWL based and XML Schema
based Applications

Chrisa Tsinaraki, Stavros Christodoulakis
TUC/MUSIC (Technical University of Crete / Lab. of Distributed Multimedia Information Systems & Applications)

{chrisa, stavros}@ced.tuc.gr

Abstract

We present in this paper a framework that provides support for interoperability between XML
Schema based and OWL based applications. In particular, we describe how the information
exchange between such applications is achieved, through the transformations of XML
documents to OWL/RDF descriptions and of OWL/RDF descriptions to (parts of) valid XML
documents. This functionality is built on top of OWL ontologies that fully capture the semantics
of the XML Schemas. These ontologies are the outcome of the application of the XS2OWL
mapping model that we have developed on an XML Schema. This way, the work reported here
integrates and extends our previous work on the XS2OWL mapping model to take into account,
in addition to the transformation of XML Schemas to OWL-DL ontologies, the transformation
of XML documents to OWL/RDF descriptions and vice versa.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: [H.3.1 Content Analysis and Indexing] Dictionaries, Indexing
methods. [H.3.5 Online Information Services] Data sharing, Web-based services. [H.3.7 Digital Libraries]
Standards.

General Terms [consult http://www.acm.org/class/1998/ for details]
Algorithms, Standardization, Languages.

Keywords
Interoperability, Standards, XML/XML Schema, Ontologies, Semantic Web, OWL

1 Introduction

The eXtensible Markup Language (XML) [Bray et al. 2004] is the dominant standard for
information exchange in the Web today. The XML Schema Language [Fallside 2001] is the
preferred syntax for structuring XML documents, because of its structural capabilities and its
central role in the data exchange in the Internet. As a consequence, several standards in different
application domains (e.g. multimedia, e-learning, digital libraries, chemistry etc.) have been
expressed in XML Schema syntax. This way, the XML/XML Schema framework allows for
syntactic and structural interoperability support in the Internet today.

The development of the Semantic Web, on the other hand, has resulted in tools and
methodologies that support semantic interoperability. The semantic interoperability allows
applications of the same domain, possibly based on different standards, to exchange information
through the utilization of domain knowledge that is expressed in the form of domain ontologies. An
ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e. its
ontological commitment to a particular conceptualization of the world [Guarino 1998]. The
dominant standard for ontology description is the Web Ontology Language (OWL) [McGuinness
and van Harmelen 2004]. As a consequence, several OWL domain ontologies have been specified
and are being specified. In addition, many OWL-based tools and applications have been developed
and are being developed, which allow advanced semantic processing (including reasoning). This
way, enrichment of the existing information with automatically extracted knowledge is possible.

The advances in the Web technology described in the previous paragraphs have resulted in the
development of both OWL and XML based applications for several application domains. Consider,
as an example, the multimedia domain applications. Several applications of the multimedia
domain, such as automatic knowledge extraction from multimedia content, would benefit from
advanced semantic processing and usually prefer working in an OWL environment. On the other
hand, several other multimedia applications, like for example video segmentation, may utilize the
MPEG-7 [Chang, Sikora and Puri 2001] XML Schema based syntax, since MPEG-7 is the
dominant standard in multimedia content description. These two types of multimedia applications
may need to interoperate in some usage scenarios (consider, for example, a segmentation
application that imports the segment content descriptions).

The above example shows that, in the working environment formed in the Web today, the need
for interoperability between XML Schema based applications and OWL based applications is
apparent. This interoperability can be achieved if the XML Schema based and the OWL based
applications of the same domain can exchange information. The information exchange can be
accommodated if the XML documents that are valid according to a given XML Schema (e.g. valid
MPEG-7 documents in the previous example) can be transformed in OWL/RDF descriptions that
capture the knowledge encoded in the XML documents and vice versa, OWL/RDF descriptions can
be transformed in XML documents (or document fragments) that are valid according to the XML
Schemas used by other applications.

The existing research in this area is very limited. The transformation of XML documents in
OWL/RDF descriptions has been carried out in [García and Celma 2005]. This approach is based
on the ontologies that are automatically produced from XML Schemas according to the
methodology described in [García and Celma 2005]. The major shortcoming of this approach is
that the information captured in the ontologies does not allow the transformation of the OWL/RDF
descriptions to (parts of) valid XML documents.

The framework presented in this paper offers the functionality required in order to allow for
interoperability between XML Schema based and OWL based applications, since it allows
transforming XML documents to OWL/RDF descriptions and OWL/RDF descriptions to (parts of)
valid XML documents. This work builds on our previous research in the XS2OWL mapping model
[Tsinaraki C. and Christodoulakis S. 2007a; Tsinaraki C. and Christodoulakis S. 2007b] and
extends it. The XS2OWL mapping model supports the automatic transformation of XML Schemas
in OWL. The ontologies resulting from the application of the XS2OWL mapping model to an XML
Schema are utilized in the transformations described in this paper. The work reported here
integrates and extends our previous research conducted in the XS2OWL mapping model [Tsinaraki
C. and Christodoulakis S. 2007a; Tsinaraki C. and Christodoulakis S. 2007b] to take into account,
in addition to the transformation of XML Schemas to OWL-DL ontologies, the transformation of
XML documents to OWL/RDF descriptions and vice versa, the transformation of OWL/RDF
descriptions to XML documents.

The rest of the paper is organized as follows: The necessary background information is
provided in section 2, including descriptions of XML Schema and OWL. An overview of the
XS2OWL mapping model is presented in section 3. The transformation of XML documents to
OWL/RDF descriptions and of OWL/RDF descriptions to (parts of) valid XML documents are
described in sections 4 and 5 respectively. The paper concludes in section 6, where our future
research directions are also outlined.

2 Background

In this section we provide the necessary background information. In particular, we present the
XML Schema language in subsection 2.1 and the Web Ontology Language (OWL) in subsection
2.2.

2.1. The XML Schema Language
The XML Schema Language [Fallside 2001] allows the definition of classes of XML documents
using XML syntax and provides datatypes and rich structuring capabilities. An XML document is
composed of elements, with the root element delimiting the beginning and the end of the document.

The XML Schema elements belong to XML Schema types, specified in their “type” attribute, and
are distinguished into complex and simple elements, depending on the kind (simple or complex) of
the types they belong to. Reuse of element definitions is supported by the substitutionGroup
attribute, which states that the current element is a specialization of another element. The elements
may either have a predefined order (forming XML Schema sequences) or be unordered (forming
XML Schema choices). The main difference between sequences and choices is that all the
sequence items must appear within the containing sequence in their specified order, while the
choice items may appear at any order. Both sequences and choices may be nested. The minimum
and maximum number of occurrences of the elements, choices and sequences are specified,
respectively, in the “minOccurs” and “maxOccurs” attributes (absent “minOccurs” and/or
“maxOccurs” correspond to values of 1). Reusable complex structures, combining sequences and
choices, may be defined as model groups.

The simple XML Schema types are usually defined as restrictions of the basic datatypes
provided by XML Schema (i.e. strings, integers, floats, tokens etc.). Simple types can neither
contain elements nor carry attributes. The complex XML Schema types represent classes of XML
constructs that have common features, represented by their elements and attributes. The attributes
describe features with values of simple type and may form attribute groups comprised of attributes
that should be used simultaneously. The elements represent features of the complex XML Schema
types with values of any type. Default and fixed values may be specified for both attributes and
simple type elements, in the default and fixed attributes respectively. Inheritance is supported for
both simple and complex types, and the base types are referenced in the “base” attribute of the type
definitions.

All the XML Schema constructs may have textual annotations, specified in their “annotation”
element. The top-level XML Schema constructs (attributes, elements, simple and complex types,
attribute and model groups) have unique names (specified in their “name” attribute). The nested
elements and attributes have unique names in the context of the complex types in which they are
defined, while the nested (complex and simple) types are unnamed. All the XML Schema
constructs may have unique identifiers (specified in their “id” attribute). The top-level constructs
may be referenced by other constructs using the “ref” attribute.

2.2. The Web Ontology Language (OWL)
The Web Ontology Language (OWL) [McGuinness and van Harmelen 2004] is the dominant
standard in ontology definition. OWL has been developed according to the description logics
paradigm and uses RDF (Resource Description Framework)/RDFS (Resource Description
Framework Schema) [Manola and Milles 2004; Brickley and Guha 2004] syntax. Three OWL
species of increasing descriptive power have been specified: (a) OWL-Lite, which is intended for
lightweight reasoning but has limited expressive power; (b) OWL-DL, which provides the
description logics expressivity and guarantees computational completeness and decidability of
reasoning; and (c) OWL-Full, which has more flexible syntax than OWL-DL, but does not
guarantee computational completeness and decidability of reasoning.

The basic functionality provided by OWL is: (a) Import of XML Schema Datatypes that extend
or restrict the basic datatypes (e.g. ranges etc.). The imported datatypes have to be declared (using
the rdfs:Datatype construct), as RDFS datatypes, in the ontologies they are used; (b) Definition of
OWL Classes (using the owl:Class construct), organized in subclass hierarchies (using the
rdfs:subClassOf construct), for the representation of sets of individuals sharing some properties.
Complex OWL classes can be defined via set operators (using the owl:intersectionOf, owl:unionOf
and owl:complementOf constructs) or via direct enumeration of their members (using the
owl:oneOf construct); (c) Definition of OWL Individuals, essentially instances of the OWL classes,
following the restrictions imposed on the class in which they belong; and (d) Definition of OWL
Properties, which may form property hierarchies (using the rdfs:subPropertyOf construct), for the
representation of the features of the OWL class individuals. Two kinds of properties are provided
by OWL: (i) Object Properties, defined using the owl:ObjectProperty construct, which relate
individuals of one OWL class (the property domain, defined using the rdfs:domain construct) with
individuals of another OWL class (the property range, defined using the rdfs:range construct); and
(ii) Datatype Properties, defined using the owl:DatatypeProperty construct, which relate

individuals belonging to one OWL class (the property domain) with values of a given datatype (the
property range). Restrictions may be defined on OWL class properties (using the owl:Restriction
construct), including type (using the owl:allValuesFrom construct), cardinality (using the
owl:minCardinality, owl:maxCardinality and owl:cardinality constructs), and value (using the
owl:hasValue construct) restrictions. OWL classes, (object and datatype) properties and individuals
are identified by unique identifiers, that are specified in the “rdf:ID” attribute. They may also have
labels, defined using the rdfs:label construct, and textual descriptions, defined using the
rdfs:comment construct.

3 XS2OWL Overview

We present in this section an overview of the XS2OWL mapping model, which allows the
automatic transformation of XML Schemas to OWL-DL constructs. We decided to use the OWL-
DL specie of OWL, since it provides the description logics expressivity and guarantees
computational completeness and decidability of reasoning.

The XS2OWL transformation model, which is outlined in Figure 3-1, takes an XML Schema
as input and transforms it into:
(a) A main OWL-DL ontology that directly captures the XML Schema semantics.
(b) A datatypes XML Schema, which contains the simple XML Schema datatypes defined in the

source XML Schema and are used in the main ontology.
(c) A mapping OWL-DL ontology that:

� Keeps the mapping of the rdf:IDs of the OWL constructs of the main ontology with the
names of the XML Schema constructs. This information is necessary, since in a valid OWL
ontology the different constructs should have unique rdf:IDs, while the XML Schema
Language allows different constructs to have the same name.

� Systematically captures the semantics of the XML Schema constructs that cannot be directly
captured in the main ontology, since they cannot be represented by corresponding OWL
constructs.

XS2OWL

Transformation Model Original XML
Schema

OWL-DL Mapping
Ontology

Simple XML Schema
Datatypes

OWL-DL Upper
Ontology

Figure 3-1: The XS2OWL Transformation Model

Thus, for every input XML Schema, the XS2OWL mapping model produces and ontological
infrastructure that can support interoperability between XML Schema based applications and OWL
based applications. This interoperability is achieved through the exchange of information between
the XML Schema based and the OWL based applications of the same domain. The details of the
utilization of the produced ontological infrastructure in order to allow information exchange
between these applications are described in sections 4 and 5.

The rest of this section includes the description of the structure and the semantics of the
mapping ontologies in subsection 3.1 and the presentation of the XS2OWL mappings in subsection
3.2.

3.1. Mapping Ontologies
We present in this subsection the structure and the semantics of the mapping ontologies produced
using the XS2OWL mapping model. The mapping ontologies follow a model that allows keeping
the mapping of the corresponding OWL and XML Schema constructs and captures the XML
Schema semantics that cannot be represented in OWL. This model is expressed as an OWL-DL
ontology, the OWL2XMLRules Ontology, which is extended with individuals defined in the
mapping ontologies. The classes of the OWL2XMLRules ontology are listed below.
� The DatatypePropertyInfoType class, which keeps the mapping of the OWL datatype

properties with the corresponding XML Schema constructs and specifies the possible default

value and the kind (i.e. attribute, element or simple type extension) of the XML Schema
construct represented by a datatype property.

� The ElementInfoType class, which captures information about the XML Schema elements that
cannot be directly represented by OWL constructs (like, for example, sequence element order)
and keeps the mapping of the XML Schema elements with the corresponding OWL constructs.

� The ComplexTypeInfoType class, which captures information about the complex XML Schema
types that cannot be directly represented by OWL constructs and keeps the mapping of the
complex XML Schema types with the corresponding OWL constructs.

� The ChoiceType and SequenceType classes, which capture information about the complex
XML Schema sequences and choices that cannot be directly represented by OWL constructs.

3.2. The XS2OWL Mappings
In this section we present the mappings comprising the XS2OWL mapping model that allows the
transformation of the XML Schema constructs to OWL-DL constructs.

The XS2OWL mappings are presented in Table 1. The first column of Table 1 contains the
XML Schema constructs, while the second column contains the OWL constructs that represent
them in the main ontology. The third column provides the mapping ontology constructs that
represent the semantics of the XML Schema constructs that cannot be expressed directly in OWL
and the fourth column presents the contents of the datatypes XML Schema.

Table 1. Overview of the XS2OWL Mappings

OWL-DL Representation XML Schema
Construct Main Ontology Mapping Ontology Datatypes

Complex Type Class ComplexTypeInfoType individual
Simple Datatype Datatype Declaration Simple Type
Element (Datatype or Object) Property ElementInfoType individual
Attribute Datatype Property DatatypePropertyInfoType

individual

Sequence Unnamed Class - Intersection SequenceInfoType individual
Choice Unnamed Class - Union ChoiceInfoType individual
Annotation Comment
According to Table 1, the direct mappings of the XML Schema constructs to OWL constructs in
the main ontologies are the following:
� The complex XML Schema types are mapped to OWL classes, since both the complex XML

Schema types and the OWL classes represent sets of entities with common features.
� The simple XML Schema datatypes are mapped to datatype declarations. This is due to the fact

that OWL does not directly support the definition of simple datatypes, but it only allows using
simple XML Schema datatypes that have been declared in the OWL ontologies.

� The XML Schema attributes are mapped to OWL datatype properties, since both the XML
Schema attributes and the OWL datatype properties represent simple type features.

� The (simple and complex type) XML Schema elements are mapped to OWL (datatype and
object) properties, since both the XML Schema elements and the OWL properties represent
features.

� The XML Schema sequences and choices are represented by OWL unnamed classes formed
using set operators and cardinality restrictions on the sequence/choice items, since the XML
Schema sequences and choices describe the feature cardinalities and how the entity features are
combined.

� The annotations of the XML Schema constructs are mapped to OWL comments, since both the
XML Schema annotations and the OWL comments are textual descriptions of the different
language constructs.
As an example, consider the XML Schema person.xsd, which describes the structure of person

descriptions and is presented in Figure 3-2.
<xs:schema ...>

<xs:element name="Persons" type="PersonsType"/>
<xs:complexType name="PersonsType">

<xs:sequence>
<xs:element name="Person" type="PersonType" minOccurs="0"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name="PersonType">

<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Age" type="validAgeType"/>

</xs:sequence>
<xs:attribute name="prefix" type="xs:string"/>

</xs:complexType>
<xs:simpleType name="validAgeType">

<xs:restriction base="xs:float">
<xs:minInclusive value="0.0"/>
<xs:maxInclusive value="150.0"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>
Figure 3-2: XML Schema for the Description of Persons

The root element of the XML Schema of Figure 3-2 is the “Persons” element, of type
“PersonsType”. “PersonsType” essentially is a sequence of “Person” elements, of type
“PersonType”. The “PersonType” instances have the “prefix” attribute, of string type,
and the elements “Name” and “Age”, of string and “validAgeType” type respectively.
“validAgeType” is a simple XML Schema datatype that represents real numbers in the range
[0-150], which could be valid person ages.
<rdf:RDF ...>

<owl:Ontology rdf:about=""/>
<rdfs:Datatype rdf:about="&datatypes;validAgeType">

<rdfs:isDefinedBy rdf:resource="&datatypes;"/>
<rdfs:label>validAgeType</rdfs:label>

</rdfs:Datatype>
<owl:Class rdf:ID="PersonsType">

<rdfs:label>PersonsType</rdfs:label>
</owl:Class>
<owl:ObjectProperty rdf:ID="Person__PersonType">

<rdfs:domain rdf:resource="#PersonsType"/>
<rdfs:range rdf:resource="#PersonType"/>
<rdfs:label>Person</rdfs:label>

</owl:ObjectProperty>
<owl:Class rdf:ID="PersonType">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#prefix__xs_string"/>
<owl:maxCardinality rdf:datatype="&xsd;integer">1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#Name__xs_string"/>
<owl:cardinality rdf:datatype="&xsd;integer">1</owl:cardinality>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#Age__validAgeType"/>
<owl:cardinality rdf:datatype="&xsd;integer">1</owl:cardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>
<rdfs:label>PersonType</rdfs:label>

</owl:Class>
<owl:DatatypeProperty rdf:ID="prefix__xs_string">

<rdfs:domain rdf:resource="#PersonType"/>

<rdfs:range rdf:resource="&xs;string"/>
<rdfs:label>prefix</rdfs:label>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="Name__xs_string">

<rdfs:domain rdf:resource="#PersonType"/>
<rdfs:range rdf:resource="&xs;string"/>
<rdfs:label>Name</rdfs:label>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="Age__validAgeType">

<rdfs:domain rdf:resource="#PersonType"/>
<rdfs:range rdf:resource="&datatypes;validAgeType"/>
<rdfs:label>Age</rdfs:label>

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="Persons__PersonsType">

<rdfs:range rdf:resource="#PersonsType"/>
<rdfs:label>Persons</rdfs:label>

</owl:ObjectProperty>
</rdf:RDF>

Figure 3-3: Main Ontology resulting from the application of the XS2OWL Mapping Model on the XML
Schema of Figure 3-2

The application of the XS2OWL mapping model on the XML Schema of Figure 3-2 results in the
main ontology of Figure 3-3. The main ontology of Figure 3-3 directly captures the semantics of
the XML Schema of Figure 3-2 in OWL-DL and consists of:
� The “validAgeType” datatype declaration, which allows using the “validAgeType”

datatype defined in the XML Schema referenced in the “&datatypes;” XML entity.
� The “PersonsType” and “PersonType” classes, which represent the “PersonsType”

and “PersonType” complex types respectively.
� The “Name__xs_string”, “Age__validAgeType” and “prefix__xs_string”

datatype properties, which represent the “Name” and “Age” simple type elements and the
“prefix” attribute respectively.

� The “Persons__PersonsType” and “Person__PersonType” object properties,
which represent the “Persons” and “Person” complex type elements respectively.

4 Transformation of XML Documents to OWL/RDF Descriptions

We present in this section the transformation of XML documents to OWL/RDF descriptions. The
transformation process is outlined in Figure 4-1.

As shown in Figure 4-1, the transformation algorithm takes as input an XML document and
produces an OWL/RDF description using the information captured in the main ontology, the
mapping ontology and the simple XML Schema datatypes that represent in OWL the semantics of
the XML Schema to which the input XML document obeys. The produced OWL/RDF description
is comprised of individuals that belong to the classes of the main ontology that captures the
semantics of the XML Schema. As a consequence, the transformation process can be applied only
to XML documents that obey to XML Schemas on which the XS2OWL mapping model has been
applied.

XML to OWL/RDF
Transformation

XML
Document

OWL-DL Mapping
Ontology

Simple XML
Schema Datatypes

OWL-DL Upper
Ontology

OWL/RDF
Description

Uses

Figure 4-1: Transformation of XML Documents to OWL/RDF Descriptions

The algorithm transformXMLdocument that transforms XML documents to OWL/RDF
descriptions is presented in Figure 4-2.
algorithm transformXMLdocument(XMLdocument)

define an individual that represents the document using owl:Thing
root_element = root element of XMLdocument
call transformXMLelement(root_element)

end algorithm

algorithm transformXMLelement(XMLelement)
if XMLelement is of simple type

call transformSimpleXMLelement(XMLelement)
else

call transformComplexXMLelement(XMLelement)
end if

end algorithm

algorithm transformSimpleXMLelement(XMLelement)
dp_id = rdf:ID of the datatype property corresponding to XMLelement (found

through the mapping ontology)
dp = new instance of the datatype property with rdf:ID = dp_id
dp value = XMLelement content

end algorithm

algorithm transformComplexXMLelement(XMLelement)
op_id = rdf:ID of the object property corresponding to XMLelement (found

through the mapping ontology)
op = new instance of the object property with rdf:ID = op_id
call defineIndividual(XMLelement)

end algorithm

algorithm defineIndividual(XMLelement)
t = XMLelement type
cid = rdf:ID of the class corresponding to t (found through the mapping

ontology)
if t extends a simple type

st = the simple type extended by t
base_dp_id = concatenate(content, st@name)
base_dp = new instance of the datatype property with rdf:ID = base_dp_id
base_dp value = content of XMLelement

end if
indiv = new individual of the class with rdf:ID = cid
for each attribute of t with default value that is not defined in XMLelement

a = current attribute
define an instance of a having the default value

end for
for each simple type element of t with default value that is not defined in

XMLelement
e = current element
define an instance of e having the default value

end for
for each attribute of XMLelement

a = current attribute
call transformXMLattribute(a)

end for
for each element of XMLelement

e = current element
call transformXMLelement(e)

end for
end algorithm

algorithm transformXMLattribute(XMLattribute)
dp_id = rdf:ID of the datatype property corresponding to XMLattribute (found

through the mapping ontology)
dp = new instance of the datatype property with rdf:ID = dp_id
dp value = XMLattribute value

end algorithm
Figure 4-2: Algorithm that transforms XML documents to OWL/RDF descriptions

As an example, consider the XML document of Figure 4-3, which is a valid XML document
structured according to the XML Schema of Figure 3-2 and describes a set of persons containing
one person. The algorithm presented in Figure 4-2 transforms this XML document to the
OWL/RDF description of Figure 4-4, which is based on the main ontology that captures the
semantics of the XML Schema of Figure 3-2.
<Persons ...>

<Person prefix=“Ms”>
<Name>Chrisa Tsinaraki</Name>
<Age>35</Age>

</Person>
</Persons>

Figure 4-3: XML Document, valid according to the XML Schema of Figure 3-2, that describes a set of
persons containing one person

<owl:Thing>
<person:Persons__PersonsType>

<person:PersonsType>
<person:Person__PersonType>

<person:PersonType>
<person:prefix__xs_string>Ms</person:prefix__xs_string>
<person:Age__validAgeType>35</person:Age__validAgeType>
<person:Name__xs_string>Chrisa Tsinaraki</person:Name__xs_string>

</person:PersonType>
</person:Person__PersonType>

</person:PersonsType>
</person:Persons__PersonsType>

</owl:Thing>
Figure 4-4: OWL/RDF description of a set of persons containing one person, which is equivalent with the

XML document of Figure 4-3 and compliant to the main ontology of Figure 3-3

The transformation of XML documents to OWL/RDF descriptions is very important since it allows
importing in OWL/RDF the knowledge encoded in existing XML descriptions and utilize it during
the reasoning process. This is extremely important if the XML Schema obeyed by the XML
documents represents a standard, because in this case a large number of descriptions are expected
to exist.

5 Transformation of OWL/RDF Descriptions to XML Documents

In this section we describe the transformation of OWL/RDF descriptions to XML documents (or
XML document fragments). The transformation process is depicted in Figure 5-1.

As shown in Figure 4-1, the transformation algorithm takes as input an OWL/RDF description
and outputs an XML document (or XML document fragment). The transformation algorithm uses
the information captured in the main ontology, the mapping ontology and the simple XML Schema
datatypes that capture the semantics of the XML Schema to which the output XML document
obeys. The input OWL/RDF description is comprised of individuals that belong to the classes of
the main ontology that captures the semantics of this XML Schema.

OWL/RDF to XML
Transformation

XML Document / XML
Document Fragment

OWL/RDF
Description

Uses

OWL-DL Mapping
Ontology

Simple XML
Schema Datatypes

OWL-DL Upper
Ontology

Figure 5-1: Transformation of OWL/RDF Descriptions to XML Documents (or XML Document Fragments)

The algorithm transformOWLRDFdescription that transforms OWL/RDF descriptions to XML
documents (or XML document fragments) is presented in Figure 5-2.
algorithm transformOWLRDFdescription(OWLRDFdescription)

if the description contains an object property corresponding to the root
element

call transformOWLRDFdescription2Doc(OWLRDFdescription)
else

call transformOWLRDFdescription2Fragment(OWLRDFdescription)
end if

end algorithm

algorithm transformOWLRDFdescription2Doc(OWLRDFdescription)
define a root element with all the necessary namespaces
root_property = the object property instance of OWLRDFdescription that

corresponds to the root element
call transformObjectProperty(root_property)

end algorithm

algorithm transformOWLRDFdescription2Fragment(OWLRDFdescription)
top_properties = the object property instances of OWLRDFdescription that

correspond to the element(s) closer to the root element
for each object property in top_properties

op = the current object property
call transformObjectProperty(op)

end for
end algorithm

algorithm transformObjectProperty(ObjectProperty)
e_name = name of the element that corresponds to ObjectProperty (found through

the mapping ontology)
e = a new instance of the element with name = e_name
e_value = the individual that represents the value of ObjectProperty
call transformIndividual(e_value)

end algorithm

algorithm transformDatatypeProperty(DatatypeProperty)
kind = construct represented by DatatypeProperty
if kind = “Attribute”

a_name = name of the attribute that corresponds to DatatypeProperty (found
through the mapping ontology)

a = a new instance of the attribute with name = a_name
a_value = the value of DatatypeProperty

else if kind = “Element”
e_name = name of the element that corresponds to DatatypeProperty (found

through the mapping ontology)
e = a new instance of the element with name = e_name
e_value = the value of DatatypeProperty

else
output the value of DatatypeProperty

end if
end algorithm

algorithm transformIndividual(Individual)
dps = the datatype properties of Individual
ops = the object properties of Individual ordered according to the information

in the mapping ontology
for each datatype property in dps

dp = the current datatype property
call transformDatatypeProperty(dp)

end for
for each object property in ops

op = the current object property
call transformObjectProperty(op)

end for
end algorithm

Figure 5-2: Algorithm that transforms OWL/RDF Descriptions to XML Documents (or XML Document
Fragments)

As an example, the application of the algorithm presented in Figure 5-2 on the OWL/RDF
description of Figure 5-3 results in the XML document fragment of Figure 5-4, which is valid
according to the XML Schema of Figure 3-2.
<owl:Thing>

<person:Person__PersonType>
<person:PersonType>

<person:prefix__xs_string>Prof</person:prefix__xs_string>
<person:Age__validAgeType>59</person:Age__validAgeType>
<person:Name__xs_string>Stavros Christodoulakis</person:Name__xs_string>

</person:PersonType>
</person:Person__PersonType>

</owl:Thing>
Figure 5-3: OWL/RDF description of a person

<Persons ...>
<Person prefix=“Prof”>

<Name>Stavros Christodoulakis</Name>
<Age>59</Age>

</Person>
</Persons>

Figure 5-4: XML Document Fragment that describes a person and is the result of the application of the
algorithm of Figure 5-2 on the OWL/RDF description of Figure 5-3

The transformation of OWL/RDF descriptions to XML documents (or XML document fragments)
is important, since it allows to pure XML Schema based applications to import descriptions
enriched using through advanced semantic processing.

6 Conclusions – Future Work

We have presented in this paper a framework that provides support for interoperability between
XML Schema based and OWL based applications. The framework presented in this paper allows
these types of applications to exchange information, since it allows transforming XML documents
to OWL/RDF descriptions and OWL/RDF descriptions to (parts of) valid XML documents. This
work builds on our previous research in the XS2OWL mapping model [Tsinaraki C. and
Christodoulakis S. 2007a; Tsinaraki C. and Christodoulakis S. 2007b] and extends it to take into
account, in addition to the transformation of XML Schemas to OWL-DL ontologies, the
transformation of XML documents to OWL/RDF descriptions and vice versa, the transformation of
OWL/RDF descriptions to XML documents.

Our future research in this area includes the development of methodologies for the systematic
integration of the main ontologies produced using the XS2OWL mapping model with widely
accepted top-level ontologies like DOLCE [DOLCE] and SUMO [IEEE SUO WG].

References

Bray T., Paoli J., Sperberg-McQueen C. M., Maler E., Yergeau F. and Cowan J. (eds.) 2004. Extensible
Markup Language (XML) 1.1. W3C Recommendation, http://www.w3.org/TR/xml11/.

Brickley D. and Guha R. V. (eds.) 2004. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation, http://www.w3.org/TR/rdf-schema.

Chang S.F., Sikora T. and Puri A. 2001. Overview of the MPEG-7 standard. In IEEE Transactions on
Circuits and Systems for Video Technology 11:688–695.

The DOLCE Ontology, http://www.loa-cnr.it/DOLCE.html

Fallside D. and Walmsley P. (eds.) 2001. XML Schema Part 0: Primer. W3C Recommendation,
http://www.w3.org/TR/xmlschema-0/.

García R. and Celma O. 2005. Semantic Integration and Retrieval of Multimedia Metadata. In the
proceedings of Knowledge Mark-up and Semantic Annotation Workshop, Semannot'05.

Guarino N. 1998. Formal Ontology and Information Systems. In Proc. of the 1st International Conference
“Formal Ontology in Information Systems” (FOIS ’98), pp. 3-15, June 6-8 1998

IEEE SUO WG, Standard Upper Ontology Working Group (IEEE P1600.1), http://suo.ieee.org/

McGuinness D. L. and van Harmelen F. (eds.) 2004. OWL Web Ontology Language: Overview. W3C
Recommendation, http://www.w3.org/TR/owl-features.

Manola F. and Milles E. (eds.) 2004. RDF Primer. W3C Recommendation, http://www.w3.org/TR/rdf-
primer.

Tsinaraki C. and Christodoulakis S. 2007a. XS2OWL: A Formal Model and a System for enabling XML
Schema Applications to interoperate with OWL-DL Domain Knowledge and Semantic Web Tools. In Proc. of
the DELOS Conference, February 2007, Tirrenia, Italy.

Tsinaraki C. and Christodoulakis S. 2007b. Interoperability of XML Schema Applications with OWL Domain
Knowledge and Semantic Web Tools. In Proc. of the ODBASE 2007, November 26-29 2007, Vilamoura,
Portugal.

