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STRUCTURAL SHAPE OPTIMIZATION 
USING EVOLUTION STRATEGIES 

MANOLIS PAPADRAKAKIS*, YIANNIS TSOMPANAKIS 
and NIKOS D. LAGAROS 

Institule of Slructural Analysis and Seismic Research, Narional 
Technical University Athens, Zografou Campus, Alhens 15773. Greece 

(Received 5 November 1996: In  final form 6 May 1998) 

The objective of this paper is to investigate the efficiency of combinatorial optimization 
methods and in particular algorithms based on evolution strategies, when incorporated 
into shape optimization problems. Evolution strategy algorithms are used either on a 
stand-alone basis, or combined with a conventional mathematical programming 
technique. The numerical tests presented demonstrate the computational advantages 
of the proposed approach which become more pronounced in large-scale optimization 
problems and/or parallel computing environment. 

Keywords: Structural shape optimization; sequential quadratic programming; evolution 
strategies; parallel processing 

1. INTRODUCTION 

In structural shape optimization problems the aim is to improve a 
given topology by minimizing an objective function subjected to 
certain constraints [1,2]. All functions are related to the design 
variables which are some of the coordinates of the key points in the 
boundary of the structure. In a gradient-based mathematical 
programming approach the shape optimization algorithm proceeds 
with the following steps: (i) a finite element mesh is generated, (ii) 
displacements and stresses are evaluated, (iii) sensitivities are 

'Corresponding author. 
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computed by perturbing each design variable by a small amount, and 
(iv) the optimization problem is solved and the new shape of the 
structure is defined. These steps are repeated until convergence has 
occurred. The most time-consuming part of this process is devoted to 
the sensitivity analysis phase which is an important ingredient of all 
mathematical programming optimization methods [3]. On the other 
hand the application of combinatorial optimization methods based on 
probabilistic searching, such as evolution strategies (ESs), d o  not need 
gradient information and therefore avoid the need to perform the 
computationally expensive sensitivity analysis step. 

During the last three decades there has been a growing interest in 
problem solving systems based on algorithms which rely on analogies 
to natural processes. The best known algorithms in this class include 
evolutionary programming (EP) [4], genetic algorithms (GAS) [5 ,6] ,  
evolution strategies (ESs) [7,8], simulated annealing [9], classifier 
systems and neural networks [lo]. Evolution-based systems maintain a 
population of potential solutions and use selection processes based on 
fitness of individuals and recombination operators. ESs like GAS 
imitate biological evolution and combine the concept of artificial 
survival of the fittest with evolutionary operators to form a robust 
search mechanism. 

Mathematical programming methods, such as Sequential Quadratic 
Programming (SQP), make use of local curvature information derived 
from linearization of the original functions by using their derivatives 
with respect to the design variables at points obtained in the process of 
optimization to construct an approximate model of the initial 
problem. These methods present a satisfactory local rate of conver- 
gence, but they cannot assure that the global optimum can be found. 
On the other hand, combinatorial optimization techniques, such as 
ESs, are in general more robust and present a better global behaviour 
than the mathematical programming methods. They may suffer, 
however, from a slow rate of convergence towards the global opti- 
mum. 

In this work the efficiency of ESs in structural shape optimization 
problems is investigated. Furthermore, in order to benefit from the 
advantages of both methodologies a combination of SQP and ESs is 
also examined in an effort to increase the robustness as well as the 
computational efficiency of the optimization procedure. The numerical 
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STRUCTURAL SHAPE OPTIMIZATION 517 

tests presented demonstrate the computational advantages of the 
proposed approach which become more pronounced in large-scale and 
computationally intensive optimization problems as well as in a 
parallel computing environment. 

2. SHAPE OPTIMIZATION 

The shape optimization method used in the present study is based on a 
previous work by Hinton and Sienz [ I ]  for treating two-dimensional 
problems. It consists of the following essential ingredients: (i) shape 
generation and control, (ii) mesh generation, (iii) adaptive finite element 
analysis, (iv) sensitivity analysis, when gradient-based optimization 
methods are applied, and (v) shape optimization. 

Structural optimization problems are characterized by various 
objective and constraint functions which are generally non-linear 
functions of the design variables. These functions are usually implicit, 
discontinuous and non-convex. The mathematical formulation of 
structural optimization problems with respect to the design variables, 
the objective and constraint functions depends on the type of the 
application. However, all optimization problems can be expressed in 
standard mathematical terms as a non-linear programming problem 
(NLP) which in general form can be stated as follows: 

min F ( 4  

subject to h,(s) 5 0 j = I , .  . . ,In (1) 

s$<si<{ i =  I ,  ..., n 

where, s is the vector of design variables, F(s)  is the objective function 
to be minimized, h,(s) are the behavioural constraints, sf and sy are the 
lower and the upper bounds on a typical design variable si. Equality 
constraints are usually rarely imposed in this type of problems except 
in some cases for design variable linking. Whenever they are used they 
are treated for simplicity as a set of two inequality constraints. 

The set of design variables gives a unique definition of a particular 
design. The selection of design variables is very important in the 
optimization process. The designer has to decide a priori where to 
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518 M .  PAPADRAKAKIS er a1 

allow design changes and to evaluate how these changes should take 
place by defining the location of the design variables and the moving 
directions. The use of the coordinates a t  key points of the curves that 
define the shape of the structural model as design variables leads to 
fewer design variables and more freedom in controlling the shape of 
the structure. 

It is an issue of extreme importance to formulate the optimization 
problem correctly otherwise unrealistic solutions may be found. 
Normally, it is necessary to constrain some function of the stresses 
(e.g., the principal stress) so that it will not exceed a specified value 
throughout the entire structure. From a practical point of view a finite 
number of so-called 'stress constraint points' is selected, where the 
condition is enforceable. These points are either some predefined 
points within the domain, or some boundary nodes. Also, other type 
of constraints, like displacement o r  frequency constraints, can be 
imposed depending on the type of problem. Usually the constraint 
functions and their derivatives are normalized in order to improve the 
perfornlance of the optimizer. 

The shape optimization methodology proceeds with the following 
steps: (i) At the outset of the optimization, the geometry of the 
structure under investigation has to be defined. The boundaries of the 
structure are modelled using cubic B-splines which, in turn, are defined 
by a set of key points. Some of the coordinates of these key points will 
be the design variables which may or may not be independent of each 
other. (ii) An automatic mesh generator is used to create a valid and 
complete finite element model. A finite element analysis, is then carried 
out and the displacements and stresses are evaluated. In order to 
increase the accuracy of the analysis an h-type adaptivity analysis may 
be incorporated in this stage. (iii) If a gradient-based optimizer, like 
the sequential quadratic programming SQP algorithms, is used then 
the sensitivities of the constraints and the objective function to small 
changes of the design variables are computed either with the finite 
difference, o r  with the semi-analytical method. (iv) The design 
variables are optimized. If the convergence criteria for the optimiza- 
tion algorithm are satisfied, then the optimum solution has been found 
and the process is terminated, else a new geometry is defined and the 
whole process is repeated from step (ii). 
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STRUCTURAL SHAPE OPTlMIZATION 

3. GRADIENT-BASED SHAPE OPTIMIZATION 

3.1. Sensitivity Analysis 

Sensitivity analysis is the most important and time-consuming part of 
a gradient-based shape optimization procedure. Although sensitivity 
analysis is mostly mentioned in the context of structural optimization, 
it has evolved into a research topic of its own. The calculation of the 
sensitivity coefficients follows the application of a relatively small 
perturbation to each primary design variable. Several techniques have 
been developed which can be mainly distinguished by their numerical 
efficiency and their implementation aspects. The methods for 
sensitivity analysis can be divided into discrete and variational 
methods [I I]. In the variational approach the starting point is an 
idealized but continuous structure, such as a beam or a shell. In the 
discrete approach the derivatives or the sensitivities of the objective 
and constraint functions, are evaluated using the finite element 
equations of the discretized structure. The effort required for the 
computer implementation of the discrete methods is less than 
implementing the variational methods. 

A further classification of the discrete methods is the following [I]: 
(i) Globalfinite d~fference method A full finite element analysis has to 
be performed for each design variable and the accuracy of the method 
depends strongly on the value of the perturbation of the design 
variables. (ii) Semi-analytical method: The stiffness matrix of the initial 
finite element solution is retained during the computation of the 
sensitivities. This provides an improved efficiency over the finite 
difference method by a relatively small increase in the algorithmic 
complexity. The accuracy problem involved with the numerical 
differentiation can be overcome by using the "exact" semi-analytical 
method which needs more programming effort than the simple method 
but it is computationally more efficient. (iii) Analytical method: The 
finite element equations, the objective and constraint functions are 
differentiated analytically. 

The decision on which method to implement depends strongly on 
the type of problem, the structure of the computer program and the 
access to the source code. The implementation of analytical and semi- 
analytical methods is more complex and requires access to the source 
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code, whereas when a finite difference method is applied the 
formulation is much simpler and the sensitivity coefficients can be 
easily evaluated even with general purpose commercial codes. In the 
present investigation both the global finite difference method and the 
semi-analytical method have been used. 

3.1.1. The Global Finite D~yerence (GFD) Method 

In this method the design sensitivities for the displacements 8u/ask and 
the stresses ~ C T / ~ S ~ ,  which are needed for the gradients of the 
constraints, are computed using a forward difference scheme: 

The perturbed displacement vector u(sk + Ask) of the finite element 
equations is evaluated by 

and the perturbed stresses u(sk + Ask) are computed from 

where D and B are the elasticity and the deformation matrices, 
respectively. 

The GFD scheme is usually sensitive to  the accuracy of the 
computed perturbed displacement vectors which is dependent on the 
magnitude of the perturbation of the design variables. The magnitude 
of this perturbation is usually taken between lo-' and 

3.1.2. The Semi-analytical (SA)  Method 

The SA method is based on the chain rule differentiation of the finite 
element equations Ku = f :  
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STRUCTURAL SHAPE OPTIMIZATION 

which when rearranged results in 

where 

fz represents a pseudo-load vector. The derivatives of aK/ask and 
addsk are computed for each design variable by recalculating the new 
values of K(sk + Ask) and f(sk + Ask) for a small perturbation Ask of 
the design variable sk. The derivatives of a//ask are computed using a 
forward finite difference scheme. 

With respect to the differentiation of K the semi-analytical approach 
can be divided in two methods: The conventional SA and the "exact" 
SA. In the conventional sensitivity analysis (CSA), the values of the 
derivatives in (6) are calculated by applying the forward difference 
approximation scheme 

In the "exact" semi-analytical (ESA) approach the derivatives aK/dsk 
are computed on the element level as follows [12] 

where n is the number of elemental nodal coordinates affected by the 
perturbation of the design variable sk and aj are the nodal coordinates 
of the element. The ESA method is more accurate and leads the 
mathematical optimizer to a faster convergence [13]. This approach is 
used in the present study. 

Stress gradients can be calculated by differentiating u = DBu as 
follows 
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522 M. PAPADRAKAKIS cr al. 

Since the elasticity matrix D is not a function of the design variables 
then Eq. (I 1) reduces to 

In Eq. (12), i)u/ask may be computed as indicated in Eq. (2), while the 
term is computed using a forward finite difference scheme. 
Using the values of au/lask the sensitivities of different types of stresses 
(e.g., the principal stresses or the equivalent stresses) can be readily 
calculated by analytically differentiating their expressions with respect 
to the shape variables. 

3.2. Mathematical Optimization Algorithm 

Sequential Quadratic Programming (SQP) methods are the standard 
general purpose mathematical programming algorithms for solving 
Non-Linear Programming (NLP) optimization problems [14]. They 
are also considered to be the most suitable methods for solving 
structural optimization problems [IS- 171. Such methods make use of 
local curvature information derived from linearization of the original 
functions, by using their derivatives with respect to the design 
variables at points obtained in the process of optimization. Thus a 
Quadratic Programming (QP) model (or subproblem) is constructed 
from the initial NLP problem. A local minimizer is found by solving a 
sequence of these QP subproblems using a quadratic approximation of 
the objective function. Each subproblem has the following form: 

1 
minimize - p T ~ ~  + gTp 

2 
subject to Ap + h(s)  < 0 

i l p < L  

where p  is the search direction subjected to upper and lower bounds, g 
is the gradient of the objective function, A  is the Jacobian of the 
constraints, usually the acrive ones only (i.e., those that are either 
violated, or not far from being violated), 4 = s, - s, i, = s, - s and H 
is an approximation of the Hessian matrix of the Lagrangian function 

L (s, A) = F (s) + Ah(s) (14) 
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STRUCTURAL SHAPE OPTIMIZATION 523 

in which X are the Lagrange multipliers under the non-negativity 
restriction (A 2 0) for the inequality constraints. In order to construct 
the Jacobian and the Hessian matrices of the QP subproblem the 
derivatives of the objective and constraint functions are required. 
These derivatives are computed during the sensitivity analysis phase. 

There are two ways to solve this QP subproblem, either with a 
primal [18], or a dual [I91 formulation. In the present study a primal 
algorithm is employed based on an SQP algorithm from the NAG 
library [20]. The primal algorithm is divided into three phases: (i) the 
solution of the QP subproblem to obtain the search direction, (ii) the 
line search along the search direction p, (iii) the update of the Hessian 
matrix H. 

The solution of the QP subproblem is performed in two steps, first 
by minimizing the sum of the infeasibilities and then by minimizing the 
quadratic objective function within the feasible region. The latter step 
is achieved using a reduced Hessian matrix of the active constraints 
only in order to obtain a good search direction and minimize the 
computational cost. The method is more efficient when many cons- 
traints or bounds are active at the optimum. 

Once the direction vector p is found a line search is performed, 
involving only the nonlinear constraints, in order to produce a "suffi- 
cient decrease" to the merit function 9. This merit function is an 
augmented Lagrangian function of the form [I91 

where yi are the non-negative slack variables of the inequality 
constraints derived from the solution of the QP subproblem. These 
slack variables allow the active inequality constraints to be treated as 
equalities and avoid possible discontinuities. Finally, pi are the penalty 
parameters which are initially set to zero and in subsequent interations 
are increased whenever this is necessary in order to control the vio- 
lation of the constraints and to ensure that the merit function follows a 
descent path. 

Finally a BFGS quasi-Newton update [I41 of the approximate 
Hessian of the Lagrangian function L is implemented, where attention 
is given to keeping the Hessian matrix positive definite. In order to 
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524 M. PAPADRAKAKIS er a1 

incorporate the new curvature information obtained through the last 
optimization step, the updated Hessian H is defined as  a rank-two 
modification of H: 

where w and y denote the change in the design variable vectors s and 
the gradient vector of the Lagrangian function in Eq. (14), respec- 
tively. If the quadratic function is convex then the Hessian is positive 
definite, o r  positive semi-definite and the solution obtained will be a 
global optimum, else if the quadratic function is non-convex then the 
Hessian is indefinite and if a solution exists it is only a local optimum. 

4. EVOLUTION STRATEGIES (ESs) 

There are three classes of algorithms that imitate nature by using 
biological methodologies in order to find the optimum solution of a 
problem: evolutionary programming (EP), genetic algorithms (GAS) 
and evolution strategies (ESs). Their main difference is that GAS deal 
with bit-strings of fixed sizes, ESs with real vectors and evolutionary 
programming (EP) with finite state automata. GAS basic assumption is 
that the optimal solution can be found by assembling building blocks, 
i.e, partial pieces of solutions, while ESs and EP simply ensure the 
emergence of the best solutions. The most visible consequence of this 
debate deals with the recombination operator, viewed as  essential for 
GAS, as potentially useful for ESs and as possibly harmful for EP. The 
modern tendencies are more pragmatic since G A  users have turned to 
real number representations when dealing with real numbers, follow- 
ing experimental results o r  heuristic demonstrations, whereas ESs 
researchers have included recombination as  a standard operator, and 
designed specific operators for non real-valued problems [21]. 

Evolution strategies were proposed for parameter optimization 
problems in the 1970s [7,8]. Similar to genetic algorithms, ESs imitate 
biological evolution in nature and have three characteristics that make 
them differ from other conventional optimization algorithms [22]: (i) 
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in place of the usual deterministic operators, they use randomized 
operators: mutation, selection and recombination; (ii) instead of a 
single design point, they work simultaneously with population of 
design points in the space of variables; (iii) they can handle 
continuous, discrete and mixed optimization problems [23,24]. The 
second characteristic allows for natural implementation of GAS and 
ESs on parallel computing environments. The ESs, however, achieve a 
higher rate of convergence than GAS due to their self-adaptation 
search mechanism and are considered more efficient for solving real 
world problem [22]. 

4.1. ES Algorithms 

ESs were initially applied for continuous optimization problems, but 
recently they have also been implemented in discrete and mixed 
optimization problems [23,24]. ESs can be divided into two-membered 
evolution strategies (2-ESs) and multi-membered evolution strategies 
(M-ESS). 

4.1.1. The Two-member ESs 

The initial formulation of evolution strategies was based on a 
population consisting of one individual only. The two-membered 
scheme is the minimal concept for an imitation of organic evolution. 
The two principles of mutation and selection, which Darwin in 1859 
recognized to be most important, are taken as rules for variation of the 
parameters and for recursion of the iteration sequence respectively. 

The two-membered ESs for the solution of the optimization pro- 
blem works in two steps: 

Step I (mutation) The parent SF) of the generation g produces an 
offspring s:), whose genotype is slightly different from that of the 
parent: 

(9) (E) where z(g) = [z, , z2 , . . . , $)lT is a random vector. 
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Srep 2 (selecrion) The selection chooses the best individual between 
the parent and the offspring to survive: 

(s) s i f ( )  0 i =  1 , 2 , . . , 1  and f(s.")) < f ( s ,  ) 
SF' otherwise 

The question is how to choose the random vector zk)  in Siep I 
which is introduced by the mutation operator. Mutation is understood 
to be random, purposeless events, which occur very rarely. If one 
interprets them, as is done here, as a sum of many individual events a 
rational choice is to use a probability distribution according to which 
small changes occur frequently and large ones only rarely. Two 
requirements arise together by analogy with natural evolution: (i) the 
expected mean value 6 for a component $) should be zero; (ii) the 
variance a:, the average squared deviation from mean value, should 
be small. 

The probability density function for normally distributed random 
events is given by 

When Ji = 0 the so-called standard normal distribution is obtained. By 
analogy with other deterministic search strategies, ui can be called step 
length, in the sense that it represents average values of the length of the 
random steps. 

If the step length is too small the search takes an unnecessarily large 
number of iterations. On the other hand, if the step length is too large 
the optimum can only be crudely approached and the search can even 
get stuck far away from the global optimum. Thus, as in all 
optimization strategies, the step length control is the most important 
part of the algorithm after the recursion formula, and it is closely 
linked to the convergence behaviour. 

The standard deviation ui which is considered as the step length can 
be adjusted during the search as follows (Rechenberg's 115 success rule 
[7]): "The ratio of successful mutations to all murations should be 115. If 
i f  is grealer, increase; ij'it is less, decrease the standard deviations 07. 
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According to Schwefel [S], the check should take place every n 
mutations over the preceding Ion mutations, while the increase and 
decrease factors of the step length should be (1/0.85) and 0.85, 
respectively. During the search, not only the design variables s f ,  but 
also the parameters, such as the deviations ui, will be modified by the 
random operator mutation which replaces the 115 success rule. 

The multi-membered evolution strategies differ from the previous two- 
membered strategies in the size of the population. In this case a 
population of p parents will produce X offsprings. Thus the two steps 
are defined as follows: 

Step I (recombination and mutation) The population of p parents at 
g-th generation produces X offsprings. The genotype of any descendant 
differs only slightly from that of its parents. 

Step2 (selection) There are two different types of the multi- 
membered ESs: 

(p + A)-ESs: The best p individuals are selected from a temporary 
population of (p  + A) individuals to form the parents of the next 
generation. 
&,A)-ESs: The p individuals produces X offsprings (p  < A) and the 
selection process defines a new population of f i  individuals from the 
set of X offsprings only. 

In the second type the existence of each individual is limited to one 
generation. This allows the (p, A)-ESs selection to perform better on 
problems with an optimum moving over time, or on problems where 
the objective function is noisy. 

In Step I for every offspring vector a temporary parent vector 
T .  

s' = [ S 1 , S l , .  . . ,Sn] IS first built by means of recombination. For 
continuous problem the following recombination cases can be used: 



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

 L
in

k 
C

on
so

rti
um

] A
t: 

22
:0

4 
19

 J
un

e 
20

07
 

where Si is the ith component of the temporary parent vector S, and 
s , , ~  are the ith components of the vectors s, and sb which are two 
parent vectors randomly chosen from the population. In case C of Eq. 
(20)  Si = sbj,i means that the ith component of j: is chosen randomly 
from the ith components of all p parent vectors. From the temporary 
parent S an offspring can be created in the same way as in two- 
membered ESs using Eq. (18). 

Multi-membered ES termination criteria are the following: (i) 
when the absolute o r  relative difference between the best and the 
worst objective function values is less than a given value E , ,  or  when 
(ii) the mean value of the objective values from all parent vectors in 
the last 2 * n generations has not been improved by less than a given 
value E*. 

4.2. ESs in Shape Optimization Problems 

So rar little effort has been spent in applying probabilistic search 
methods in shape optimization problems. Usually this type of 
problems is solved with a mathematical programming algorithm such 
as the sequential quadratic programming method SQP [15,19], the 
generalized reduced gradient method (GRG) [25] ,  the method of 
moving asymptotes (MMA) [26] ,  which all need gradient information. 
Since the objective function and the constraints are highly non-linear 
runctions of the design variables the computational effort required for 
the solution of the optimization problem, most of which is spent in 
gradient calculations, is usually large. 

Thus the use of combinatorial type algorithms appears to be 
promising even if greater numbers of analyses are needed to reach the 
optimum. This is due to the fact that since the number of design 
variables in shape optimization problems is relatively small the 
number of analyses is limited to a few tens o r  hundreds. Moreover, 
these analyses are less computationally expensive than in the case of 
mathematical programming algorithms as they d o  not need gradient 
information. Furthermore, probabilistic methodologies, due to their 
random search, are considered as global optimization methods 
because they are capable of finding the global optimum, whereas 
mathematical programming algorithms may be trapped in local 
optima. Finally, the natural parallelism inherent in combinatorial 
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algorithms makes them very attractive for application in parallel 
computer architectures. 

The implementation of ESs in shape optimization is straightforward 
and follows the same steps as described in Section 2 without 
performing the sensitivity analysis step. The ES optimization 
procedure starts with a set of parent vectors. If any of these designs 
gives an infeasible design then this parent is modified until it becomes 
feasible. Then the offsprings are generated and are also checked if they 
are in the feasible region. In every generation the values of the 
objective function are compared among the parent and the offspring 
vectors and the worst vectors are rejected, while the remaining ones are 
considered to be the parent vectors of the new generation. This 
procedure is repeated until the chosen termination criterion is satisfied. 
The ES steps can be stated as follows: 

I .  Selection step: selection of s, (i = 1,2,. . . , p) parent vectors of the 
design variables 

2. Analysis step: solve K(si)ui = f ( i  = 1,2,.  . . , p) 
3.  Constraints check: all parent vectors become feasible 
4. Offspring generation: generate sj, ( j  = 1,2,. . . ,A) offspring vectors 

of the design variables 
5. Analysis step: solve K(s,)u, = f ( j  = 1,2,. . . ,A) 
6. Constraints check: if satisfied continue, else change sj and go to 

Step 4 
7. Selection step: selection of the next generation parents according to 

( p  + A) or (p,  A) selection schemes 
8. Convergence check: if satisfied stop, else go to Step 3. 

5. THE HYBRZD APPROACH 

The main advantage of the SQP optimizer is that it captures very fast 
the right path of the nearest optimum, irrespective of whether i t  is a 
local or a global optimum. After locating the area of this optimum it 
might oscillate until all constraints are satisfied. Even small constraint 
violations often slow down the convergence rate of the method. On the 
other hand ESs are not so sensitive as SQP to small constraint 
violations but proceed at a slower rate, due to their random search, 
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and usually need a greater number of analyses. However, these 
analyses are very fast since they d o  not require expensive gradient 
calculations. Furthermore, the absence of strict mathematical rules, 
which govern the convergence rate of the Evolution strategy method, 
make ESs less vulnerable to local optima and therefore much more 
reliable to obtain the global optimum in non-convex optimization 
methods. 

In order to benefit from the advantages of both methodologies a 
hybrid approach is proposed, which combines the two methods in an 
effort to increase the robustness and the computational efficiency of 
the optimization procedure. Two combinations of SQP and ES 
methodologies are implemented: (i) In the first approach the SQP 
method is used first, giving a design very close to the optimum, 
followed by ES in order to accelerate convergence and avoid the 
oscillations of SQP due to small constraint violations around 
optimum. The transition from one algorithm to the other is performed 
when 

where E is taken 0.01. This approach appears to be more suitable when 
the design space is convex, i.e., there is a unique optimum irrespective 
of the starting design. (ii) In the second approach the sequence of the 
methods is reversed. An ES procedure is used first in order to locate 
the region where the global optimum lies, then the SQP is activated in 
order to exploit its higher order of accuracy in the neighborhood of the 
optimum. In this case the switch is performed when there is a small 
difference (E = 0.1) between the best designs of two consecutive 
generations. This approach appears to be more rational in the general 
case when more complex and non-convex design prdblems are to be 
solved with many local optima. 

6. PARALLEL IMPLEMENTATION 

The use of Evolution Strategies in structural optimization requires a 
large number of finite element analyses of the structure for the 
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evaluation of the objective and constraint functions. An important 
characteristic of ESs that differs from other conventional optimization 
algorithms is that in place of a single design point the ESs work 
simultaneously with a population of design points in the space of 
variables. This allows for a natural implementation of the evolution 
procedure in a parallel computer environment. Since a number of 
finite element analyses of the structure can be performed indepen- 
dently and concurrently, a complete finite element analysis can be 
assigned to a processor without the need for inter-processor 
communication during the solution phase. Therefore the paralleliza- 
tion of the ES is based on  the fundamental premise that each 
individual in the population of the offsprings represents an  indepen- 
dent group of all design variables and therefore its function evaluation 
can be done independently and concurrently. 

In a distributed memory computing environment this implementa- 
tion can be realized provided that there is enough memory a t  each 
processor to accommodate the storage required by the computer code. 
There is also need for a host processor to accumulate all information 
from the other p - 1 processors in order to select the p parents of the 
next generation. In a shared-memory environment, however, there is 
no storage limitations for each processor but on the total memory of 
the computer and there is no need for a host processor. In the present 
study the computations were performed on a shared memory com- 
puter where parents and offsprings are of equal number (p = A) and 
the number of processors is taken a s p  = p. 

The same scheme of natural parallelism can be readily applied for 
sensitivity analysis in the context of the gradient-based optimization 
approach, since the computations required for the calculation of the 
gradients for each design variable are entirely independent and thus 
they can be performed concurrently. In this case the number of 
processors is taken equal to the number of design variables (p = n). 
The parallelization of mathematical programming optimization me- 
thods, apart from the line search procedure, is more involved and 
when the number of design variables is not large its impact on the 
overall optimization time is limited. For this reason and since the 
number of design variables in shape optimization problems is 
usually small the parallelization of the SQP method is not 
considered. 
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7. EXAMPLES 

The performance of the optimization methods discussed is investigated 
and compared in three characteristic test examples. The SQP method 
used for the mathematical programming based optimization is taken 
from the NAG library [20]. For all test cases considered, plane stress 
conditions and isotropic material properties are assumed (elastic 
modulus E = 210,000N/mm2 and Poisson's ratio v = 0.3). All 
examples were run on a Silicon Graphics Power Challenge computer 
with 16 R4000 processors. 

In the tables containing the results of the test examples considered the 
following abbreviations are used: M P  corresponds to the Mathematical 
Programming-SQP method. ESA and G F D  refer to exact semi- 
analytical and global finite difference methods of sensitivity analysis, 
respectively. ES-(p + A) refers to the number of parents and offspring 
vectors p, X respectively for the evolution strategies approach. MP-ES, 
ES-MP are the two hybrid approaches defining the sequence of the two 
optimizers, while the number of optimization steps for each optimizer is 
depicted in parenthesis. Finally, for the parallel implementation of the 
optimizers the number of processors used for the case of M P  optimizer 
is equal to the number of design variablesp = n, whereas for the case of 
ESs is equal to the number of parent vectors p = p. 

7.1. Connecting Rod Example 1131 

The problem definition is given in Figure l a  whereas the optimized 
shape is depicted in Figure I b. The linearly varying line load between 
key points 4 and 6 has a maximum value of p = 500N/mm. The 
objective is to minimize the volume of the structure subject to a limit 
on the equivalent stress a,,, = 1,200N/mm2. The design model, 
which makes use of symmetry, consists of 12 key points, 4 primary 
design variables (7,10,11,12) and 6 secondary design variables 
(7,8,9,10,11,12). The stress constraints are imposed as a global 
constraint for all Gauss points and as key point constraints for key 
points 2, 3, 4, 5, 6 and 12. The movement directions of the design 
variables are indicated by the dashed arrows. Key points 8 and 9 are 
linked to point 7 so that the shape of the arc is preserved throughout 
the optimization. 
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STRUCTURAL SHAPE OPTIMIZATION 

primary design variables 

. - ., move direction 

FIGURE 1 Connecting rod example - 4 design variables: (a) initial shape; (b) final 
shape. 

Table I depicts the performance of the methods in sequential and 
parallel computing modes for this test example. Two initial designs are 
considered, one close and the other a way from the optimum. I t  can be 
seen that the computing time spent by the optimizers is affected by the 
initial design, especially in the case of the M P  approach. It  can also be 
observed that ESs are competitive to the MP optimizer in sequential 
computing mode and perform much better in parallel computing 
mode. Furthermore, the use of hybrid approaches, especially the MP- 
ES, leads to a significant reduction of computing time in both 
sequential and parallel computing modes. Since finding the optimum 
from a bad initial design is more difficult and time-consuming hybrid 
approaches are used only for this case. The mathematical optimizer 
using the ESA sensitivity analysis method is faster than GFD method 
in sequential mode. In parallel mode, however, GFD improves its 
efficiency considerably and becomes competitive to ESA. The natural 
parallelization scheme implemented has a beneficial effect to all 
versions of the optimizers. In particular this effect is more pronounced 
in the case of ESs where a higher efficiency is achieved. 
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534 M. PAPADRAKAKIS er a/. 

TABLE I Connecting rod example-4 design variables: Performance of the optimiza- 
tion methods 

Oprimizarior~ Number o/ Oprimum Sequenrial rime Parallel rime in 
merhod o n .  stem volumr (mm3) ( s )  D orocessors(s) 

MP-ESA 
MP-GFD 
ES (2 + 2) 
ES (4 + 41 

MP-ESA 
MP-GFD 
ES (2 + 2) 
ES ( 4 +  4) 
ES (6 + 6) 
ES (8 + 8) 
MP-ES 
ES-MP 

Good initial design (Yo = 559.6mm3)-2792 d.0.f. 

26 332 573.4 
26 332 975.7 
53 376 842.8 
48 338 754.6 
82 334 1450.2 
92 33 1 1682.5 

Bad initial design (Vo = 726.1 mm3)-3206 d.0.f. 

47 333 1061.3 
48 333 1806.1 
78 348 1420.6 
53 337 1153.3 

101 336 201 5.2 
109 332 2079.1 

26 (7 + 19) 332 465.7 
31 (25 + 6) 329 644.7 

7.2. Square Plate Example 1131 

The problem definition of this example is given in Figure 2a, where due 
to symmetry only a quarter of the plate is modelled, whereas the 
optimized shape is depicted in Figure 2b. The two exterior sides of the 
plate are loaded with a distributed loading p = 0.65 ~ / m m ~ ,  as shown 
in Figure 2a. The objective is to minimize the volume of the structure 
subject to a limit on the equivalent stress a,,, = 7 . O ~ / m m * .  The 
design model, consists of 8 key points, 5 primary design variables 
(2,3,4,5,6) which can move along radial lines. The movement 
directions of the design variables are indicated by the dashed arrows. 
The stress constraints are imposed as a global constraint for all the 
Gauss points and as key point constraints for key points 2, 3, 4, 5, 6 
and 8. For this test example the ESA and G F D  sensitivity analysis 
methods are used to compute the sensitivities with As = lo-'. 

Table I1 depicts the performance of the methods for this example in 
sequential and parallel computing modes. Two initial designs are 
considered, one close and the other away from the optimum. The 
computing time spent by the optimizers is affected, as in the case of the 
connecting rod example, by the initial design, particularly in the case 
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0 primary design variables 
. ., move direction 

FIGURE 2 Connecting rod example - 9 design variables: (a) initial shape; (b) final 
shape. 

TABLE II Square plate example - 5 design variables: Performance of the optimization 
methods 

Optimizarion Number of Optimum Sequential lime Parallel rime in 
method opt. steps volume (mm3) ( 4  p processors (s) 

Good initial design (Vo = 307.3mm3)-I528 d.0.f. 
MP-ESA 33 280 965.8 702.9 ( p  = 5) 
MP-GFD 33 280 1785.6 873.5 (p  = 5) 
ES (3 + 3) 134 279 2336.8 1217.2 ( a  = 3) 

Bad initial design (Yo = 373.4mm3)-1546 d.0.f. 
MP-ESA 72 280 1894.7 1198.6 ( p  = 5) 
MP-GFD 75 279 4189.1 1673.4 (p  = 5) 
ES (3 + 3) 134 279 2406.8 1219.7 ( p  = 3) 
ES (5 + 5) 127 279 2141.3 586.8 ( p  = 5) 
ES (10 + 10) 191 279 2998.5 497.2 ( p  = 10) 
MP-ES 24 (4 + 20) 28 1 386.1 196.1 ( p = 5 )  
ES-MP 28 (10 + 8) 280 480.1 275.9 ( p  = 5) 

of the MP approach. It can also be observed that ESs present a 
competitive performance to the MP optimizer in sequential computing 
mode and perform much better in parallel computing mode. As was 
observed in the previous example the use of hybrid approaches, 
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536 M .  PAPADRAKAKIS el a1 

especially the MP-ES, leads to a significant reduction of computing 
time in both sequential and parallel modes. The mathematical 
programming optimizer using the ESA sensitivity analysis method is 
faster than the G F D  method in sequential mode. In parallel mode, 
however, G F D  becomes competitive to ESA. 

7.3. Engine Block Example 1271 

The problem definition of this example is given in Figure 3a, whereas 
the optimized shape is depicted in Figure 3b. The interior sides of the 
block are loaded with a distributed loading p = 1.60N/mm2. The 
objective is to minimize the volume of the structure subject to a limit 
on the equivalent stress CT,,,,, = 5.0N/mm2. The design model is in this 
test more complicated since it consists of 71 key points, 14 primary 
design variables and 27 secondary design variables. The stress 
constraints are imposed as a global constraint for all the Gauss points 
and as key point constraints for a few selected key points. For this test 

c move direction of the design variable 

FIGURE 3 Engine block example - 14 design variables: (a) initial shape; (b) final 
shape. 



D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

 L
in

k 
C

on
so

rti
um

] A
t: 

22
:0

4 
19

 J
un

e 
20

07
 

STRUCTURAL SHAPE OPTIMIZATION 537 

example the ESA and GFD sensitivity analysis methods are used to 
compute the sensitivities with As = lo-'. 

Table 111 depicts the performance of the methods for this example in 
sequential and parallel computing modes. Two initial designs are 
considered, one close and the other away from the optimum, while the 
computing time spent by the optimizers is again affected by the initial 
design, particularly in the case of the MP approach. For this test case 
it can be observed that the MP optimizer appears to be more efficient 
than ESs in sequential as well as in parallel computing modes. The 
performance of hybrid approaches, however, and especially the ES- 
MP still leads to significant reduction of computing time in both 
computational modes. 

8. CONCLUSIONS 

The implementation of ESs in shape optimization problems was found 
to be very effective. The comparison of ESs, and particularly their 
hybrid approaches with SQP, over the MP-SQP method, which is 
considered one of the best mathematical programming methods, is 
very promising, in both sequential and parallel computing environ- 
ments. The computational effort required by the optimizers is affected 

TABLE Ill Engine block example - 14 design variables: Performance of the optimi- 
zation methods 

- 

Oprimization Number of Optimum Sequenrial rime Parallel rime in 
merhod opt. steps volume (mm3) (s) D rrrocessors(s) 

MP-ESA 
MP-GFD 
ES (10 + 10) 
ES (15 + 15) 
ES (20 + 20) 

MP-ESA 
MP-GFD 
ES (10 + 10) 
ES (15 + 15) 
ES (20 + 20) 
MP-ES 
ES-MP 

Good initial design (Yo = 358.8mm3)-2919 d.0.f. 
123 294.6 6214.5 
124 295.1 13307.6 
196 297.2 7801.3 
21 1 294.9 8678.4 
247 296.3 10055.3 

Bad initial design (Vo = 483.2mm3)-3426 d.0.f. 

24 1 294.7 12150.6 
24 1 294.8 261 19.3 
295 296.9 11696.1 
309 295.3 12877.0 
326 295.2 13009.5 

176 (71 + 105) 294.9 7431.9 
154 (125 + 29) 295.0 6257.2 
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by the starting values of the design parameters. This is more 
pronounced in the case of the MP-SQP method, where the number 
of optimization steps in most of the test cases examined is increased by 
a factor of 2 or  more, whereas a less significant difference is observed 
for the ESs optimizer. 

The computational efficiency of the multi-membered ESs discussed 
in this work, namely the (p  + A)-ESs, is affected by the number of 
parents and offsprings involved. Large number of parents and 
offsprings produce a computational overhead without a significant 
improvement on the values of the objective function. The selection of 
small number of parents and offsprings on the other hand does not 
produce satisfactory results. In most test cases examined it was 
observed that values of p and X equal to the number of the design 
variables produced best results. 

The comparison of the two hybrid approaches shows that when the 
design space is convex best results are produced when MP-SQP is used 
first followed by ESs. This approach appears to be more suitable in 
this case since the MP-SQP optimizer captures very quickly the proper 
path to the nearest optimum and ES accelerates the convergence in the 
close vicinity of the optimum. The reverse approach ES-MP is more 
effective in the general case when more complex and non-convex 
design problems are to be solved with many local optima as in the case 
of the last test example. 

The natural parallelization implemented in this study is less effective 
in the M P  approach than in ESs, while the speedup factors achieved 
are better in the cases with fewer design variables. For large number of 
design variables the efficiency of the natural parallelization scheme is 
considerably reduced and a more vigorous parallel handling of the 
methods is required. The mathematical optimizer using the ESA 
sensitivity analysis method is faster than GFD method in sequential 
mode. In parallel mode, however, GFD method improves it's 
efficiency considerably and becomes competitive to ESA sensitivity 
analysis method. 
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College, Swansea and G. Thierauf and J.  Cai of the University of 
Essen for their cooperation. The authors are grateful to Dr. J.  Sienz 
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