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“It is impossible to enjoy idling unless there is plenty of work to do.”

Jerome K. Jerome, Three Men In a Boat



TECHNICAL UNIVERSITY OF CRETE

Extended Abstract
Computer Science Division

School of Electronic & Computer Engineering

Doctor of Philosophy

by George Alex Koulieris

The prediction of visual attention can significantly improve many aspects of com-

puter graphics and games. For example, image synthesis can be accelerated by

reducing complex computations on non-attended scene regions and Level-of-Detail

rendering improved. Current gaze prediction models often fail to accurately pre-

dict user fixations mostly due to the fact that they include limited or even no

information about the context of the scene; they commonly rely on low level

image features such as luminance, contrast and motion or pre-determined task

restrictions on attention to predict user gaze. These features do not drive user

attention reliably when interacting with an interactive synthetic scene, e.g. in a

video game. In such cases the user is in control of the view-port often consciously

ignoring low level salient features in order to navigate the scene or perform a task.

This dissertation contributes two novel predictive scene context-based models of

attention that yield more accurate attention predictions than those derived from

state-of-the-art low level image saliency methods.

Both models presented take into account critical high level scene context features

such as object topology and task-related object function that influence fixation

guidance when gazing at interactive content. Developing the models was a chal-

lenging problem, since qualitative features such as object topology, inter-object

relationships and tasks had to be quantified and formally considered in order to

generate probabilities of object attendance based on subjective features. By ac-

knowledging high level contextual features we were able to develop gaze predictors

that accurately predict gaze in cases where low level image-based predictors fail.

The first model is an automated high level saliency predictor that incorporates six

hypotheses/factors from perception and cognitive science which can be adapted

to different tasks. The first hypothesis states that a scene is comprised of objects

expected to be found in a specific context as well objects out of context which are
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salient (scene schemata). The second claims that viewer’s attention is captured

by isolated objects (singletons). We employ an object-intrinsic factor accounting

for canonical form of objects, an object-context factor for contextual isolation of

objects, a feature uniqueness term that accounts for the number of salient features

in an image and a temporal context that generates recurring fixations for objects

inconsistent with the context.

We extended Eckstein’s Differential Weighting Model by incorporating these six

hypotheses. We then conducted a formal eye-tracking experiment which confirmed

that object saliency guides attention to specific objects in a game scene and de-

termined appropriate parameters for this model. We present a GPU based system

architecture that estimates the probabilities of objects to be attended in real-time.

We embedded this tool in a game level editor to automatically adjust game level

difficulty based on object saliency, offering a novel way to facilitate game design.

We perform a study confirming that game level completion time depends on ob-

ject topology as predicted by our system. We then develop an attention-based

Level-of-Detail manager that downgrades the quality of areas that are expected

to go unnoticed by an observer to economize on computational resources. Our

system (C-LOD) maintains a constant frame rate on mobile devices by dynami-

cally re-adjusting material quality on secondary visual features (e.g. subsurface

scattering) of non-attended objects. In a proof of concept study we establish that

by incorporating C-LOD, complex effects such as parallax occlusion mapping usu-

ally omitted in mobile devices can now be employed, without overloading GPU

capability and, at the same time, conserving battery power.

We then develop our second model, addressing the challenge of developing a gaze

predictor in the demanding context of real-time, heavily task-oriented applications

such as games. Our key observation is that player actions are highly correlated

with the present state of a game, encoded by game variables. Based on this, we

train a classifier to learn these correlations using an eye-tracker which provides

the ground-truth object being looked at. The classifier is used at runtime to

predict object category – and thus gaze – during game play, based on the current

state of game variables. We evaluate the quality of our gaze predictor numerically

and experimentally, showing that it predicts gaze more accurately than previous

image-based approaches. Given that comfortable, high-quality 3D stereo viewing

is becoming a requirement for interactive applications today, we use this prediction

to propose a dynamic local disparity manipulation method, which provides rich

and comfortable depth in sharp contrast to previous global disparity methods that

suffer from extreme depth compression (cardboarding). A subjective rating study

demonstrates that our localized disparity manipulation is preferred over previous

methods.
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Chapter 1

Introduction

The prediction of visual attention can significantly improve many aspects of com-

puter graphics and games. For example, image synthesis can be accelerated by

reducing complex computations on non-attended scene regions [Cater et al., 2003]

and Level-of-Detail (LOD) rendering improved [Lee et al., 2009]. Current gaze

prediction models often fail to accurately predict user fixations. As discussed in

Chapter 2, this is mostly due to the fact that they only take limited or no infor-

mation about the context of the scene; they commonly rely on low level image

features such as luminance, contrast and motion or pre-determined task restric-

tions on attention to predict user gaze. These features do not drive user attention

reliably when interacting with an interactive synthetic scene, e.g in a video game.

In such cases the user is in control of the view-port often consciously ignoring low

level salient features in order to navigate the scene or perform a task.

This dissertation contributes two novel predictive scene context-based models of

attention that yield more accurate attention predictions than those derived from

state-of-the-art low level image saliency methods. Both models presented take

into account critical high level scene context features such as object topology

and task-related object function that influence fixation guidance when gazing at
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interactive content. Developing the models was a challenging problem, since qual-

itative features such as object topology, inter-object relationships and tasks had to

be quantified and formally considered in order to generate probabilities of object

attendance based on subjective features. By acknowledging high level contextual

features we were able to develop gaze predictors that accurately predict gaze in

cases where low level image-based predictors fail. We improve existing gaze-aware

applications such as LOD management of complex effects and encompass gaze

predictors in the novel areas of game balancing and stereo disparity manipulation.

This chapter provides detailed motivation in addition to a description of our novel

contributions. We also describe the structure of this thesis.

1.1 Context

Predicting user gaze in computer generated imagery yields several exciting appli-

cations in game design, rendering and stereo manipulation.

Game Design. Many game genres levels rely on a search or target detection task

to solve riddles, find game objects and advance game-play. However, designing

game levels by placing objects in their respective locations is a tedious, manual

operation. To make things worse, taking into account object placement in relation

to game difficulty further complicates game level design. If gaze can be automat-

ically and accurately predicted, several game level design tasks can be simplified.

For example adjusting the difficulty of a game may be facilitated by automatically

relocating objects estimated to attract attention [Feil and Scattergood, 2005].

Rendering. LOD algorithms render with higher visual fidelity those regions of

a synthetic image that are expected to receive attention, allowing more efficient

distribution of the limited resources of a graphics subsystem. LOD managers have

been empowered with perceptual principles in the past to optimize the distribu-

tion of computational time and maximize the perceived quality of a rendered scene
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[Luebke, 2003]. For example object eccentricity in relation to the centre of the dis-

play has been employed to degrade rendering quality without the lowered visual

fidelity being perceived [Luebke, 2003]. By employing a LOD manager, computa-

tion time is minimized and the quality of an effect is downgraded away from the

area of predicted focus, based on evidence determining that a user is not attending

that scene area.

The interest in efficient LOD management has been recently renewed due to the

explosive growth of the mobile market, which is extremely diverse in terms of com-

puting power. Hardware restrictions of mobile devices prohibit the use of complex

effects, such as subsurface scattering, that demand multiple texture fetches or

intense Arithmetic Logic Unit (ALU) operations [Çapin et al., 2008]. An appli-

cation’s artistic feel is thus sacrificed in portable devices as content is displayed

at degraded LOD or quality. A focused distribution of available resources only to

attended areas is thus required in order to make it possible for complex render-

ing effects to be visualized on mobile platforms, achieving higher and more stable

frame rates.

Stereo manipulation. Stereo 3D is expected to become ubiquitous; currently a

multitude of companies receive huge revenue from 3D hardware, 3D software or

3D content production. Stereoscopic 3D movies are grossing 30% of the box office,

often multiple times more than their 2D counterparts [Mendiburu, 2012]. Besides

3D for entertainment, 3D displays have become an invaluable tool for image-

guided diagnosis, medical tissue visualization and surgical procedures. Remote

guidance of robots carrying stereoscopic cameras for hazardous tasks has reduced

task execution times and error rates.

Comfortable, high-quality stereo 3D is thus an important and timely requirement

for real-time applications, especially given the recent popularity of commodity

Head Mounted Displays (HMDs), such as the Oculus Rift that has the potential

to transform Virtual Reality (VR) to a commodity for everyday use [Sidorakis
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et al., 2015]. It is well known that 3D stereo viewing often results in discomfort

and eye fatigue, most commonly because of excessive disparities and the vergence-

accommodation conflict [Hoffman et al., 2008]. To counter these problems, recent

methods [Lang et al., 2010, Oskam et al., 2011] manipulate stereo content for

more comfortable viewing, a process called stereo grading. However, they only

apply a global compression of scene depths, often sacrificing depth, resulting in

“flat” imagery (cardboarding). In contrast, focusing depth changes in the region

of the user’s attention has been shown to be particularly effective [Bernhard et al.,

2014], corresponding to the fact that human stereo is based on where we look.

Locally adapting stereo in predicted regions of attention is thus important for

real-time applications, such as games.

In this work we enable attention-driven game design, gaze-aware LOD and stereo

disparity management by addressing a significant challenge: effective real-time

gaze prediction.

1.2 Problem Statement

Existing visual attention models, such as Feature Integration Theory (FIT), are

predominantly driven by low level image features, such as contrast, luminance

and motion that attract gaze [Treisman and Gelade, 1980]. FIT is a commonly

used model of attention in computer graphics (Figure 1.1) [Itti and Koch, 2001,

Longhurst et al., 2006].

However, it often fails to predict saccadic targets [Borji and Itti, 2013] because

high-level properties, such as scene semantics and the performed task, strongly af-

fect the planning and execution of user eye fixations [Borji and Itti, 2013, Einhäuser

et al., 2008, Henderson and Hollingworth, 1999].

Previous work has shown that in interactive applications the task strongly influ-

ences gaze and more generally attention (e.g., [El-Nasr and Yan, 2006, Sundstedt
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Figure 1.1: General architecture of a FIT-based attention model [Itti and
Koch, 2001].

et al., 2008]). However, in the related literature when modelling goal-oriented

attention the task has always been predetermined [Cater et al., 2003, Sundstedt

et al., 2004, 2005]. In other approaches, the scene graph representation of scenes

has been used to map gaze positions to objects and object semantics [Sundstedt

et al., 2013]. Importance maps generated from off-line eye tracking data were

used as a heuristic to predict user attention according to object properties present

at runtime [Bernhard et al., 2010]. However, both approaches require manually

pre-defined task-related objects and task objectives.

Furthermore, the contextual validity or appropriateness of an object’s location

affects visual search; when looking for a chimney, we usually direct our gaze first

to the rooftops. Research in real environments [Einhäuser et al., 2008, Hender-

son and Hollingworth, 1999, Rensink, 2000] and interactive Virtual Environments
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(VEs) [Mania et al., 2005, Mourkoussis et al., 2010, Zotos et al., 2009] has con-

firmed that attention is influenced by the semantic context of objects in the form

of scene schemas. In other words, attention models based on low-level features fail

to predict saccadic targets [Borji and Itti, 2013], partly because they do not con-

sider critical high-level factors such as object topology when predicting attention

[Einhäuser et al., 2008]. However, quantifying subjective, qualitative inter-object

relationships is a real challenge.

Particularly in computer games where a task is constantly being executed, track-

ing luminance changes and moving objects is not sufficient to predict gaze. In

addition, since players have full control of the view-port, it is hard to accurately

guess where a player is looking at any given instant without knowing their current

goal. Existing solutions for gaze predictors targeted to games require manual cat-

egorization of tasks and objects [Sundstedt et al., 2008], which is time consuming

and impractical in our context.

1.3 Contributions

Our goal was to develop an automated context-aware saliency predictor which

can be adapted to different tasks. We developed two novel gaze predictors. Each

algorithm specializes to a different family of applications depending on the ac-

cessible scene context information and the availability or not of an eye tracker

during the attention model formation. We demonstrate the success of the models

in three gaze-aware applications (LOD management, Game balancing and Stereo

manipulation).

We evaluate the quality of our gaze predictors by performing several confirmatory

eye-tracking studies. These studies showed that our predictors are more accurate

when compared to previous alternatives in the context of task-driven activities

such as game-play. We used a modern game engine for our experiments and



Chapter 1 25

their successful validation. This choice underlines the relevance of our results for

realistic use cases.

We present:

A physically plausible model of high level attention (Chapters 4, 5).

To develop the first model we encode six hypotheses/factors from perception and

cognitive science into mathematical equations that precisely describe a. seman-

tic inter-object relationships (e.g. contextual validity), b. intra-object positional

properties (e.g, object rotation) and c. object topology in terms of inter-object

distances and placement (e.g. object isolation) allowing for the development of

a computational model that can automatically estimate fixation guidance based

on these hypotheses. Our gaze predictor incorporates these hypotheses/factors

into the physiologically plausible Differential-Weighting Model (DWM) [Eckstein,

1998, Eckstein et al., 2006, 2002] that employs Bayesian priors to estimate the

probability of a feature to be attended.

The hypotheses/factors are:

(i) The scene schema hypothesis stating that a scene is comprised of objects we

expect to find in a specific context and salient objects that are not expected in a

scene (see Figure 1.2) [Bartlett, 1932, Henderson et al., 1999, Hwang et al., 2011].

(ii) The singleton hypothesis stating that the viewer’s attention is ordinarily cap-

tured by stimuli that are locally unique in a basic visual dimension such as ori-

entation or depth i.e. isolated [Theeuwes and Godijn, 2002]. In our work, the

singleton state is a context dependent measure not purely image-driven: Figure

1.3 shows that the spatially isolated vase attracts attention, though not salient in

terms of color.

(iii) An object-intrinsic hypothesis accounting for the fact that an object pops out

if it is rotated in a way that violates its expected posture. The expected posture

is known as canonical form or canonical orientation [Becker et al., 2007].

(iv) We account for an object-context hypothesis for contextual isolation of objects,
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Figure 1.2: The spectacles attract attention as they are inconsistent with the
car door context.

when objects belong to a group of similar objects but are dissimilar from those in

the set.

(v) We employ a feature uniqueness term that accounts for the number of salient

features in an image.

(vi) Finally we include a temporal context factor that generates recurring fixations

for objects inconsistent with the context or in a non-canonical form as indicated

in cognitive psychology literature.

Using this new model, we estimate the posterior probability that a viewer will

fixate on an object based on the aforementioned high-level contextual features,

independent of the viewer’s task [Eckstein et al., 2006]. To find model parame-

ters we perform several perceptual experiments, which also verify that high-level

saliency guides attention. The experimental design controls for attentional effects

from low level features such as luminance or contrast, allowing us to examine the

unique contribution of context.

A game balancing paradigm based on attention (Chapter 4). We develop

a tool based on the high level saliency model to automatically predict gaze in real-

time. We then validate the tool’s efficacy in adjusting game difficulty by altering
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Figure 1.3: The spatially isolated vase attracts attention as it is a singleton
object.

object placement based on saliency in a game-level editor. This facilitates game

level balancing, offering a novel way to ease game design.

A Level-of-Detail method based on attention (Chapter 5). We incorpo-

rate the high level saliency predictor into a perceptually optimized renderer for

mobile platforms. This saves computational time by automatically and seamlessly

removing perceptually non-important details. Integration of a contextual atten-

tion model in a LOD manager enables the usage of – otherwise omitted – complex

effects such as subsurface scattering, complex refraction and displacement map-

ping in low-power devices by applying them sparingly only in regions that are

expected to be attended.

Our proof-of-concept implementation selects an appropriate LOD in real-time for

subsurface scattering, complex refraction and bump mapping algorithms. We

demonstrate the accuracy of our implementation by comparing its performance to

actual eye-tracking data. We also acquire mobile Graphics Processing Unit (GPU)

performance statistics in terms of frame time stability to ensure model effectiveness

and quantify battery performance gain when limiting GPU utilization.

A machine learning based model of high level attention (Chapter 6). We

propose a second model of high level gaze guidance that does not require extensive
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object-context information. This model predicts attention by learning user gaze

behavior automatically via employing machine learning. The model is particularly

effective in computer games, where our key observation is that a player’s current

goal is highly correlated with the present state of the game, as encoded by game

variables. For instance, in a shooting game, the player’s current goal will be related

to the health and ammo of his/her character and of the enemies’ movements. Based

on this insight, we train a classifier to learn the correlation between game variables

and object class the user looks at, using eye-tracking ground-truth data recorded

during a training session. The resulting classifier can predict object category –

and thus user gaze – for any subsequent game-play. Our approach is automatic

since it uses machine learning to build the classifier, avoiding the need for manual

object tagging and/or explicit definition of objects important to a task.

This model inherently accounts for high level features and task without any pre-

vious knowledge of high level hypotheses; however, it requires an eye tracker to

learn gaze patterns which is not necessary by the first model.

Dynamic stereo disparity management based on attention (Chapter 6).

We develop a stereo grading algorithm based on the second gaze predictor for

dynamic disparity management in video games. Previous disparity mapping op-

erators based on image-based saliency estimates are off-line [Lang et al., 2010] or

when they are interactive, apply a global disparity transformation over the entire

scene [Oskam et al., 2011]. Such manipulations often sacrifice depth, resulting in

“flat” imagery (cardboarding). Using our machine learning gaze predictor we in-

troduce dynamic and localized disparity manipulation, which provides high-quality

depth information in a scene without sacrificing comfort. We validated that our

stereo grading method is preferred over previous methods in subjective ratings.
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1.4 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 discusses previous work in computer graphics, attention and per-

ception that is relevant to the techniques described in this thesis.

• Chapter 3 gives a technical overview of the deployment test-bed and data

acquisition framework for our saliency models.

• Chapter 4 describes our first approach to develop a physiologically plausible

model of attention and its application in game balancing.

• Chapter 5 describes extending the saliency model of Chapter 4 with novel

context-based factors and the application of fixation prediction in LOD.

• Chapter 6 discusses the second visual attention prediction model which is

based on eye tracking data and machine learning over game state variables

and its application to stereo disparity management.

• Chapter 7 concludes the thesis discussing current limitations and potential

future applications.



Chapter 2

Previous Work

We present previous work on visual attention prediction in general and prediction

of attention as employed in computer graphics and computer games. We present

related work on game balancing and LOD. We investigate the internals of the

Differential Weighting Model, the physiologically plausible model of attention em-

ployed in our predictor. Finally we investigate eye tracking, machine learning for

games and stereo disparity manipulation algorithms. 1

2.1 Visual Attention

Visual perception can be thought of as the active extraction and manipulation of

environmental information. The visual perception pipeline starts with low-level

processes which extract simple image regularities such as edges or color [Marr,

1982]. Subsequently, mid-level processes combine these properties to form higher-

level features such as the shape of an object [Shipley and Kellman, 2001]. Finally,

high-level processes map these mid-level features to meaning and semantics (Figure

1The literature review included in this Chapter has been presented by the author of this thesis
as part of an ACM SIGGRAPH Course on attention-aware rendering, mobile graphics and games
(co-presented by Laurent Itti, Katerina Mania and Ann McNamara) [McNamara et al., 2014].
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Low-level processes Mid-level processes High-level processes

Figure 2.1: Left to right: Low-level, Mid-level and High-level vision processes.

2.1)[Palmer, 1999]. A recent review of these theories can be found in [Borji and

Itti, 2013].

To efficiently concentrate the limited brain resources of the mid- and high-level

processes on those few low-level features that are likely to be important, the human

brain is equipped with a selection mechanism known as focal attention. Some low-

level features such as edges can automatically attract focal attention in an almost

reflex-like fashion [Koch and Ullman, 1987]. Likewise, mid- and high-level features

as well as goal-oriented properties can direct focal attention [Henderson et al., 1999,

Yarbus et al., 1967]. For example, the contextual validity or appropriateness of an

object’s location will affect visual search; when looking for a chimney, usually we

direct our gaze first to the rooftops. However, the fundamental question of how the

visual system combines the influence of low-, mid-, and high-level components is a

challenging research issue and remains largely unanswered due to the complexity

of the human brain [Theeuwes, 2010].

The most common form of focal attention model is the two-stage model, such

as FIT [Treisman and Gelade, 1980]. In two-stage models, a privileged set of

low-level features are initially extracted everywhere in an image in parallel. The

focal attention mechanism then selects a few locations in the image based on

these features for further processing. In the second stage, the low level features at

the selected locations are integrated and subjected to further processing in a slow,

serial (i.e., one region at a time) fashion. A widely used saliency model inspired by

FIT [Itti and Koch, 2001] employs low-level features such as contrast, luminance,
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and motion to determine which areas are likely to attract attention. Although

FIT plausibly emulates many aspects of focal attention, it has been shown that:

(i) complex stimuli such as surfaces are processed simultaneously and not in a

serial fashion [Nakayama et al., 1986], (ii) visual attention is directed to objects

in a scene rather than their low level visual attributes [O’Craven et al., 1999] and,

(iii) observers may achieve multiple simultaneous foci of attention in the visual

field, not supported by FIT [Awh and Pashler, 2000]. In other words, attention

models based on low-level features often fail to predict saccadic targets [Borji and

Itti, 2013], in part because they do not take into account high level factors such

as scene context, task, or object topology [Einhäuser et al., 2008, Henderson and

Hollingworth, 1999, Rensink, 2000].

2.1.1 Task-related Attention

What is a task? A task is formed as a sequence of clearly defined actions of an

actor over objects; i.e. objects are conceptually dependent to actors via actions

[Schank and Abelson, 2013]. The expected sequence of the actions when describing

a task is represented by the script concept [Schank and Abelson, 2013, Tatler et al.,

2011]. From the definition of the task, it becomes obvious that any series of actions

is described both in the spatial and the temporal domain.

As indicated by previous work, it is apparent that attention deployment heavily

depends on task. It is the task that defines which factors affect attention the most,

also supported by psychophysical experiments indicating that the human vision is

highly purposive and task specific [Triesch et al., 2003]. The task being conducted

is important for fixation guidance since when allocating gaze, information gathered

from the fixation point hold significant behavioral relevance; information satisfies

the attempt to maximize reward by executing the task and reduces uncertainty

about the environment [Tatler et al., 2011]. Since eye movements are used to

gather information in order to accomplish tasks, a visual search produces consistent
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patterns of eye movements across observers when executing the same task [Peters

and Itti, 2008] indicating a clear spatial coupling between the current fixation and

a behavioral goal.

Fixation guidance is also extended to the temporal domain. Saccades are often

proactive; they are directed to a location in a scene in advance of an expected

event [Ehinger et al., 2009]. However, a complete understanding of eye movements

during tasks and thus the way that low level and high level features coexist and

guide gaze requires a clear understanding of how tasks are represented in the

human mind [Tatler et al., 2011].

Regarding context-based attention in situations when a specific task has to be

conducted, the estimation of the relative contribution of low and high level fac-

tors on fixation guidance instantly becomes a real challenge. For example, when

free-viewing a scene, a low level motion signal attracts attention, since motion is

one of the strongest cues affecting gaze deployment in dynamic scenes [Peters and

Itti, 2008]. In such a case a low level attention predictor would successfully predict

attention deployment. However, low level saliency itself, cannot predict fixations

when there is an overt or covert task to be conducted in a real or virtual envi-

ronment. In a VE experiment where participants needed to avoid obstacles while

colliding with others, image-feature saliency could not yield accurate predictions

since observers had to actively ignore low level salient features [Rothkopf et al.,

2007]. In cases where a task is conducted and strong low level cues are absent,

attention is mainly guided on the basis of high-level interest; fixations necessary

to e.g. make a cup of tea, are consciously generated [Tatler et al., 2011].

A previous successful attempt to combine both low and task-based models of

attention to increase prediction accuracy exists, but only for static photographs

and a single pre-determined task [Ehinger et al., 2009]. Participants searched

for faces in a set of 900 photographs, where a joint image saliency/task-based

model attempted to predict the areas that participants were going to look to by
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averaging the relative contribution of both image saliency and task using pre-

determined, task-specific weights (“find the faces”). However, when dealing with

dynamic scenes and multiple tasks, it still remains a great challenge to encode

task information in order to select appropriate weights for each attentional factor

depending on the task being conducted each time.

Employing Bayesian Priors to Predict Gaze More recently, a number of

single stage models have been proposed, which are very effective at describing

visual attention, however they have not been used to predict high-level saliency

or gaze patterns in interactive VEs. For example, Eckstein has proposed DWM;

a single-stage model of attention [Eckstein, 1998, Eckstein et al., 2006, 2002],

which incorporates both low-level features as well as prior knowledge about scene

context. The DWM models attentional processing using physiological noise in

brain neurons and Gaussian combination rules. Contextual information in the

DWM is embodied in the Bayesian priors provided to the model beforehand. For

example, when searching for a chimney in a picture that contains a house, the

visual elements depicting the roof of the house are given a higher prior probability

than other scene elements.

2.1.2 High Level Saliency Factors

Gaze allocation is influenced by several context-related high level factors in clut-

tered environments. Not taking these factors into account deprives the model

of important contextual information that would otherwise predict attention with

higher accuracy. We set three criteria to be satisfied in order to classify a high

level factor as fit to predict attention. A factor (i) should affect attention as doc-

umented in cognitive psychology literature, (ii) should be measurable (iii) should

be observed in a video game or computer generated imagery.

However, quantifying qualitative features such as object topology, inter-object

relationships and tasks is a real challenge. We competently address this challenge
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by formally expressing these features in a Bayesian framework in order to generate

probabilities of object attendance based on subjective features. In this work, six

phenomena within the perception literature pointing to specific roles that high-

level information can play in focal attention have been considered:

Scene Schemata. The first – the scene schema effect – is based on the obser-

vation that a high proportion of objects in a scene can usually be expected to be

found there. They are “consistent” with the scene. Sometimes, however, objects

are in a scene or a location that is very atypical. Such “inconsistent” objects are

potentially salient (see, e.g., Figure 2.2a) [Bartlett, 1932]. Research has shown

that previously-acquired knowledge of stereotypical object placement in a scene

combined with the on-going visual experience of a scene can attract focal atten-

tion [Bar et al., 1996, Brewer and Treyens, 1981, Henderson et al., 1999]. The

ratio and location of consistent and inconsistent objects in a specific context can

also influence whether the scene is perceived to be congruent overall [Einhäuser

et al., 2008, Hwang et al., 2011, Rayner, 2009].

Physical Singletons. The second effect – the singleton effect – refers to the

finding that stimuli that are locally unique in terms of color or topology capture

attention (Figure 2.2b) [Theeuwes and Godijn, 2002]. Object perception is based

on context-dependent processing of low-level variables i.e. pixels, therefore the

singleton state is a high level semantic property of spatially isolated objects.

Contextual Singletons. The third effect is a subdivision of the physically com-

pound state, described above, by introducing two sub-states based on findings

from psychological research (e.g., [Koffka, 1935]). Specifically, we hypothesize

that a physically compound object can either be contextually compound or con-

textually isolated. Objects belonging in a set are contextually compound. An

object positioned in-between a set of similar objects, but dissimilar from those in

the set, is hypothesized to pop out even when not salient in terms of e.g. color
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Figure 2.2: From left to right: A remote control is inconsistent with the
sink context. The flowerpot is physically isolated. The tablet is contextually

isolated. The chair is in a non-canonical form.

[Koffka, 1935]. For example, a tablet computer placed in-between magazines is

salient (Figure 2.2c).

Canonical Form. The fourth effect is an object-intrinsic assumption. The three-

quarters object view, that makes a large number of surfaces visible is considered to

be an object’s canonical form [Blanz et al., 1999, Secord et al., 2011]. The amount

of angular deviation from this standard posture affects the object’s saliency [Becker

et al., 2007] (Figure 2.2d). Objects whose orientation is non-canonical are common

in games e.g. dead characters or overturned vehicles.

Temporal Effects. Object coherence in time is also important. An attended

location is usually prevented from being attended again [Posner and Cohen, 1984],

an observation that has been used for LOD management [Longhurst et al., 2006].

However, there is strong evidence that recurring fixations are generated for objects

that are inconsistent with the context or for objects that are in a non-canonical

form [Becker et al., 2007, Henderson et al., 1999].

Feature Uniqueness. Finally, a single salient feature in an image pops-out more

intensely than when several salient features exist [Frintrop et al., 2010, Itti et al.,

1998], a biologically motivated feature uniqueness property.

2.1.3 Inattentional/Change Blindness and Eye-Tracking

Inattentional blindness (IB) is a psychological phenomenon which describes the

act of failing to notice otherwise clearly visible and particularly salient objects in
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one’s environment while engaged in and attending to a particular task [Pappas

et al., 2005].

Change Blindness (CB) on the other hand gives name to the remarkable insensi-

tivity to visual changes across saccades [Henderson and Hollingworth, 2003a]. In

change blindness, observers fail to perceive large changes to a scene, as long as the

change takes place during a brief interruption [Rensink, 2002], or is very gradual

[Simons et al., 2000].

To study IB and CB various psychophysical experiments have been designed and

performed. In an initial study [Neisser and Becklen, 1975], a display which pre-

sented two overlapping, simultaneous events was shown to participants. One of

the events was a hand-slapping game in which the first player extended his hands

with his palms up and the second player placed his hands on his opponent’s hands

with his palms down. The player with his palms up tries to slap the back of the

other player’s hands, and the other player tries to avoid the slap. On a second

event three people were moving in irregular patterns and passing a basketball.

Participants were asked to watch carefully one of the two events. If they moni-

tored the hand-slapping game, they pressed a button with each attempted slap. If

they monitored the ball game, they pressed the button for each pass. The results

of this study are largely consistent with the findings of earlier research, as in most

trials subjects had a great difficulty to simultaneously monitor both events.

Many subsequent studies (for a survey see [Rensink, 2002]) used this ball game

task where observers attended to one team of players, pressing a key whenever one

of them makes a pass, while ignoring the actions of the other team. After thirty

seconds, a woman carrying an open umbrella ([Neisser, 1979]) or a black gorilla ([Si-

mons and Chabris, 1999]) walk across the screen and are visible for approximately

four seconds before walking off the far end of the screen. As expected, participants

performed poorly in locating the unexpected stimuli. Surprisingly, only a handful

of studies have incorporated eye tracking technology to their methodology.
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Eye tracking data may indicate whether or not saccade targets relate to IB/CB. As

far as IB is concerned useful conclusions were obtained by Cater et al. [2002]. Par-

ticipants were asked to count the number of pencils in a cup placed in a computer

generated scene while participants’ eye movements were recorded. By varying the

rendering quality of the background during the experiment they found that ob-

servers were usually incapable to distinguish the changes. A later extension to

this experiment employed two still images with different rendering quality where

participants were asked to count the teapots in a virtual scene (Figure 2.3)[Cater

et al., 2003]. Eye tracking data confirmed that participants did indeed fixate on

objects in the scene that were similar to the teapots and were of degraded quality,

but failed to recognize that they were of lower rendering quality. This supports the

idea that IB did indeed occur and this effect was not a degraded use of peripheral

vision. Henderson and Hollingworth [2003b] studied IB when viewing complex

real-world scenes. The pursuit of this study was to examine whether or not an

individual can detect changes in a scene (such as rotated or removed objects) if

he fixates on an area where the change takes place. Results indicated that par-

ticipants were poor at noticing scene changes and that IB can occur even when

individuals are fixating on the part of a scene that changes.

Moore [2001] and Mack [2003] did not find an answer to the most crucial ques-

tion, whether or not individuals miss the stimulus completely or they do actually

perceive it but memory fails to encode this information and thus it is forgotten.

Similarly Pappas et al. [2005] fabricated a modern passing gorilla study [Simons

and Chabris, 1999] that employed an eye tracker. They supported the initial claim

that even when a stimulus crossed the fovea, not all individuals saw it. It was also

discovered that some participants managed to notice the stimulus without fixating

on it, which comes in contrast to the hypothesis stating that fixation is required

to notice a stimulus.

Recently eye tracking and a lighter dropping magic trick has been employed to

study IB [Kuhn and Findlay, 2010]. In this trick a magician picks up a lighter
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Figure 2.3: In this task, participants counted teapots. Rendering quality of
the remaining virtual objects was degraded without participants perceiving the

changes [Cater et al., 2003].

with his left hand and lights it. He then pretends to take the flame with his right

hand and gradually moves it away from the other hand that is holding the lighter.

During this move the magician is looking at his right hand. Once it has reached

the other side, he snaps his fingers, waves his hand, and reveals that it is empty.

At the same time the lighter is dropped into the lap which takes place in full view.

Their results indicated that the point where observers were focusing at the time

of the lighter drop was not affecting their ability to detect it. Covert attention

probably was employed for the detection to occur.

Richards et al. [2012] conducted an experiment where a series of targets (white Ls

and Ts) and distractors (black Ls and Ts) move around a computer screen bounc-

ing off the sides of the display, and subjects monitor the number of bounces made

by the targets but ignore the distractors. After a few seconds, an unexpected red

cross traverses the screen. Their findings suggest that people that experienced IB

(participants that did not notice the red cross) made more fixations and had longer

gaze times on distractor stimuli, and were less likely to fixate on the unexpected

stimulus. They thus had lower working memory capacity than those who did not

experience IB i.e. they saw the unexpected stimuli. These findings are compatible
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to earlier research on working memory and IB. In addition, participants experienc-

ing IB allocated their attention less efficiently than those who did not experience

IB, as reflected in their eye movements tracked on irrelevant distractors.

The insensitivity to changes in a scene described by CB was initially studied by

Rensink et al. [1997]. They wondered if CB is a general property of visual per-

ception and for this reason they developed a flicker paradigm that simulated the

visual events caused by moving the eyes; however not depending on eye movements

to initiate scene changes. They accomplished this by inserting brief blank fields

between alternating images of an original and a modified scene. Later eye move-

ments were monitored while participants performed a change detection task with

images of natural scenes [Hollingworth et al., 2001]. It was found that saccade

targets hold a major role in the detection of changes to natural scenes.

We exploit the IB/CB effect when adjusting the rendering fidelity of complex

shaders based on attention. We only alter shaders during player motion eliminating

pop-out artifacts [Luebke, 2003] by exploiting the observer insensitivity to perceive

changes occurring during brief interruptions.

2.1.4 Gaze Direction

An attempt to direct a viewer’s gaze about a digital image has been presented

(Figure 2.4) [Bailey et al., 2009]. Authors presented subtle luminance modulations

to the peripheral regions of the viewer’s field of view, in order to draw his attention

over a modulated region. This modulation is automatically terminated before the

viewer’s foveal vision scrutinizes the stimuli that attracted his gaze. This new

subtle gaze directing technique has a potential application in overriding IB and

CB. According to the article this technique can be extended to motion pictures; in

cases that this is useful or even important, certain areas or objects of natural and

synthetic scenes that are expected to go unnoticed can be manipulated to attract

viewer’s attention.
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Figure 2.4: Fixation distributions for an image under static and modulated
conditions. Input image (top). Gaze distribution for static image (bottom left).
Gaze distribution for gaze-directed image (bottom right). White crosses indicate

locations preselected by researchers for gaze direction [Bailey et al., 2009].

2.2 Attention in Computer Graphics

There is a large body of work on attention/gaze-based computer graphics and

stereo viewing. Overviews can be found in corresponding surveys [Borji and Itti,

2013, Jacob and Karn, 2003, Mendiburu, 2012]; we review literature most relevant

to our work.

2.2.1 Low/High Level Saliency & Tasks

In an effort to predict attention in pre-determined task areas, it has been shown

that task importance maps may be used to accelerate rendering by reducing quality

in regions that are unrelated to a given task [Cater et al., 2003]. Selective rendering

guided by a FIT-based saliency model renders perceptually important parts of a

scene in high quality while the remaining areas of the image are rendered at lower

quality, thus saving in computational cost [Longhurst et al., 2006]. Other research

has combined task maps with a low-level saliency map and validated the results
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[Oyekoya et al., 2009] [Grillon and Thalmann, 2009]

Figure 2.5: Animating the gaze behavior of virtual characters and crowds.

using eye-tracking [Sundstedt et al., 2004, 2005]. However, FIT only uses low-level

image characteristics often failing to predict fixations accurately.

Predicting gaze behavior in games may be used to optimize the distribution of

computing resources [Sundstedt et al., 2008]. Saliency models have been employed

to animate the gaze behavior of virtual characters [Oyekoya et al., 2009] and crowds

[Grillon and Thalmann, 2009] (Figure 2.5).

Task relevant gaze behavior associated to first-person navigation in a virtual envi-

ronment has been estimated by combining bottom-up and top-down components

to compute user gaze point position on screen [Hillaire et al., 2010]. Saliency

models and task related data have been linearly combined to track visually at-

tended objects in a VE in task-specific areas [Lee et al., 2009], however, for a

single pre-determined task.

Although task-based saliency estimations competently predict salient regions in

pre-determined task-specific areas [Cater et al., 2003], the challenge is to estimate

salient regions in all areas of a scene for different tasks via an integrated model.

Research in interactive VEs has confirmed that attention is influenced by the

semantic context of objects in the form of scene schemas [Mania et al., 2005,

Mourkoussis et al., 2010, Zotos et al., 2009].

Mania and Robinson [2003] included a preliminary investigation of the effect of

object consistency and illumination on object memory recognition in a VE (also
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Mania et al. [2005]). Thirty-six participants across three conditions of varied ren-

dering quality of the same space were exposed to a computer generated environ-

ment displayed on an HMD followed by completing a memory recognition task.

The high quality and mid-quality conditions included a pre-computed radiosity

simulation of an academic’s office. The low-quality condition consisted of a flat-

shaded version of the same office. They found that schema consistent objects of

the scene were more likely to be recognized than inconsistent ones. Overall, higher

confidence ratings were assigned to consistent rather than inconsistent items. To-

tal object recognition was better for the scene including shadows compared to the

flat-shaded scene. Even lower quality of rendering was adequate for better memory

recognition of consistent objects.

More studies employed a more extreme set of rendering types: wireframe with

added color and full radiosity [Mourkoussis et al., 2010, Troscianko et al., 2007] and

polygon count [Zotos et al., 2009]. Their results showed a significant interaction

between rendering type, object type, and consistent/inconsistent objects ratio.

This suggests that inconsistent objects are only preferentially remembered if the

scene looks “normal” or if there are many such objects in an “abnormal” scene

such as in the wireframe condition. It was also shown that memory performance is

better for the inconsistent objects in the radiosity rendering condition compared

to the wireframe condition. They concluded that memory for objects can be used

to assess the degree to which the context of a VE appears close to expectations,

however, they did not propose a computational model for such an assessment.

In one step towards implicitly modelling high-level effects, machine learning tech-

niques have been applied to eye tracking data in order to train a model to detect

salient regions only in a pre-defined set of static photographs [Judd et al., 2009].

As an alternative to standard machine learning methods, a prototype self-refining

fluid dynamics game that learns from crowd-sourced player data has been pro-

posed [Stanton et al., 2014], concentrating computation in states the user will

most likely encounter to improve simulation quality. A pipeline to derive gaze
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prediction heuristics from eye-tracking data for 3D Action Games has been pro-

posed [Bernhard et al., 2010]. However, to date, a model that explicitly links in a

physiologically plausible manner experimental outcomes on attention with object

saliency is missing.

2.2.2 Attention based LOD

Gaze [Loschky and McConkie, 2000] and task [Cater et al., 2003] based LOD

managers render the 2 degree fovea region in high quality (i.e. the high-resolution

part of the visual field) and the periphery of vision with less detail. An eye tracker

was employed by Luebke and Hallen [2001] to monitor fixations for gaze-directed

rendering, allowing 3D model geometry to be simplified more aggressively in the

periphery than at the center of user gaze. However, LOD management based on

gaze encounters difficulties to maintain display updates without artifacts after fast

eye saccades. Driving LOD based on pre-defined task areas is limited since it is

impossible to quantify the nearly infinite number of potential tasks.

Since low level image features such as luminance, contrast and motion are known to

attract attention [Itti et al., 1998], objects saliency models based on low-level fea-

tures combined with task relevant information have been employed in order to drive

LOD [Hillaire et al., 2010, Lee et al., 2009]. However, since high-level, cognitive

phenomena also affect attention, low-level saliency models sometimes fail to predict

fixations, especially when an observer manipulates interactive scenes [Sundstedt

et al., 2008].

2.2.3 Modern LOD Approaches

Modern video games consist of various interconnected software components such

as a graphics engine and an audio engine that share hardware resources. LOD

methods are essential to improve the interactivity and responsiveness of graphics
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systems by distributing resources to the image regions that are expected to be

attended [Luebke, 2003]. Traditional LOD approaches reduce polygon count by

selecting an appropriate instance of polygonal complexity for each model depend-

ing on its importance [Luebke, 2003]. Object importance can be determined by

attention deployment over the scene or perceptually motivated criteria such as

the projected screen size of the object, eccentricity and velocity of objects [Clark,

1976].

However, polygonal counts are usually low in mobile devices and mobile GPUs are

fill-rate bound deeming polygonal complexity LOD algorithms ineffective [Çapin

et al., 2008]. Pixel shaders reproduce high quality visual details by exchanging

polygonal complexity for additional ALU operations and heavy texture memory

accesses. As computation power in mobile GPUs increases faster than memory

bandwidth [Owens, 2005] a modern LOD manager should target significantly re-

duced texture fetches.

In this thesis, we develop and employ a sophisticated, multi-factor, context-based,

attention predictor for interactive environments that takes into account contextual

information about a scene to predict fixations more accurately when task-imposed

restrictions exist compared to the state-of-the-art. We employ this predictor to

optimize LOD for mobile platforms, balance game levels and manipulate stereo

disparity.

2.3 Attention in Computer Games

Attention deployment greatly depends on game-play and vice versa [Sundstedt

et al., 2013]. Eye tracking data has revealed that players playing First Person

Shooter (FPS) games tend to concentrate on the center of the screen searching

for enemies while in an Action-Adventure game players mostly explore the entire

screen for game props to advance game-play [El-Nasr and Yan, 2006].
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Attention in games may also get manipulated. A guiding principle and method

based on the Guided Search theory [Wolfe, 1994] has been proposed to direct

attention to target items that should be noticed by an observer in a video game

e.g. an advertisement. In particular, when a frequently searched game object is

modified to share perceptual features such as color or orientation with a target

item, the item will attract attention [Bernhard et al., 2011].

2.3.1 Game Challenge

Player enjoyment is crucial for the success of a computer game. An enjoyable/op-

timal experience, also termed flow, is shown to be so satisfying that players take

pleasure in the game with little concern for what they will get out of it [Czik-

szentmihalyi, 1990]. Sweetser and Wyeth [2005] suggested that flow experiences

in games arise from eight core elements: concentration, challenge, skills, control,

clear goals, feedback, immersion, and social interaction.

Challenge in particular, which is considered as the most important aspect of game

design, refers to the ability of a game to be sufficiently intriguing and match

the player’s skill level. Both failure and success may become repetitive quickly.

Successful games provide different levels of difficulty of their game play that adapt

to player’s increasing skills at an appropriate pace in order to maintain his interest

[Desurvire et al., 2004, Pagulayan et al., 2003]. Thus, games should be designed

with a proper balance of challenges and player skills. Improper balancing provokes

anxiety (in a discouragingly hard game) or apathy (in a boringly easy game)

[Johnson and Wiles, 2003].

2.3.2 Game Balancing and Search Tasks

Looking for an object is a common task in Adventure or Action-Adventure video

games, often guiding level advances. The time spent searching for an object in a
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game should be in proportion to the advantage it conveys in game-play. Designers

mostly rely on their experience and instinct while calculating cost/benefit ratios

by manually placing objects and obstacles in their levels [Pagulayan et al., 2003].

Multiple rounds of play-testing and observation can stabilize choices in a level of a

specific difficulty [Sweetser and Wyeth, 2005]. When using this approach, players

themselves have to select a desired difficulty level via a menu. However a simple

“easy, medium, hard” selection has very fuzzy borders between levels; easy and

hard is not simple to define. A more sophisticated game difficulty management

method is necessary.

Modern games of a vast variety of genres rely a lot to such manipulations. In

a FPS special objects termed power-ups, offer an immediate means to replenish

player’s health levels or instil him with new capabilities [Lazzaro, 2004]. Game

levels can be designed in a way to aid or burden the character to hide and protect

himself. Role Playing Games and (Action-) Adventures employ special objects

that can be found and collected in an inventory supporting the narrative and

progressing the game when used in solving riddles or winning battles. Guidance

in such games through portals or intuitive level design can assist roaming and

feeling of immersion. The aim of these approaches is to solely prevent players

from making errors and ultimately losing the game.

Since players’ abilities vary and play-testers are not abundant to every game de-

signer, a sophisticated approach such as the model we propose, that guides auto-

matic object manipulation and game balancing based on high-level visual attention

is crucial.

2.4 Quantifying Scene Semantics

Object perception in scenes relies on the integration of pre-existing knowledge

with recently acquired knowledge from attentional processing [Henderson et al.,
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1999, Rensink, 2000]. This observation has been accounted for in a schema-based

LOD framework where consistent with the context objects are rendered with lower

quality without affecting information uptake [Zotos et al., 2009].

2.4.1 The Differential-Weighting Model

The DWM [Eckstein, 1998, Eckstein et al., 2006, 2002] estimates the interaction

between visual evidence concerning a target in a scene and Bayesian prior proba-

bilities indicating expectation and context of a scene. By combining sensory data

with existing knowledge it calculates the posterior probability that a location will

be fixated in a visual search task and thus predicts saccadic targeting.

DWM assumes that when searching for a target, each location in a scene elicits

neuronal activity in relevant sensory units of each visual feature. This response is

subject to Gaussian independent neutral noise, i.e. the outcome of the perceptual

processing of this response is probabilistic. When a sensory unit is tuned to

observe a specific feature, it responds at a higher rate when the observed feature

is present. Neurons are subject to internal noise and have a response following a

Gaussian distribution [Tolhurst et al., 1983]. After many trials, Figure 2.6 depicts

the internal response probability density functions for noise-alone (left curve) and

for signal-plus-noise trials (right curve). The model calculates the ratio of the

joint likelihood of observing the feature’s neural responses in each image region

given that the target is present and the joint likelihood of observing the feature’s

responses given that the target is absent according to a selected probability. This

noisy response is then weighted by context effects encoded in Bayesian priors

relevant to specific stimuli. The Bayesian priors embody the probability of these

stimuli to co-occur with other highly visible visual features of the image.

In this work we quantify for the first time critical high level factors and extend

DWM to encode them in Bayesian priors (Chapter 4).
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Figure 2.6: Internal response probability density functions for noise-alone
(left curve) and for signal-plus-noise trials (right curve).

2.5 Eye Tracking

The gaze point of an observer can be directly determined via eye-tracking, however

eye-tracking is rarely available in consumer applications.

Video-based eye-tracking (video-occulography) is the de facto standard in gaze

estimation. Research in eye-tracking focuses in two major areas. Eye detection

(locating/tracking eyes in an image) and Gaze tracking (determining the 3D line

of sight & identifying attended location).

Eye detection techniques consist of feature/shape-based approaches, appearance-

based approaches and hybrid approaches. Feature-based approaches rely on iden-

tifying local point features/contours of the eyes e.g. the iris center or limbus by

fitting them to a rigid or deformable model of the eye. Appearance-based methods

rely on an image template matching model built from the entire eye image. Hybrid

approaches combine the benefits of feature- and appearance-based methods.

Gaze tracking techniques generate a gaze direction or Point-of-Regard from the

image data via tracker calibration, saccade/fixation identification and by perform-

ing Gaze-to-Object-Mapping (GTOM). These techniques are either 2D-regression-

based or 3D-model-based. 2D-regression-based methods assume the mapping of im-

age features to gaze coordinates by parametrizing a polynomial. 3D-model-based

methods compute the gaze direction by parametrizing a 3D geometric model of

the eye.
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Both feature-based [Ishimaru et al., 2013, Miluzzo et al., 2010] and appearance-

based [Holland and Komogortsev, 2012] eye detection techniques can work on un-

modified desktops and portable devices by using their embedded cameras. For gaze

tracking both 2D [Holland and Komogortsev, 2012] and 3D [Wood and Bulling,

2014] models have been used. Feature-based methods on tablets are computation-

ally intensive not allowing the device to perform any other task. Appearance-based

methods on tablets require a lot of per-subject training and a lot of pre-processing

to train a neural network for template matching. These methods have only been

tested with the tablet performing eye tracking, and not with any other intensive

application running simultaneously.

In this work, we propose two context-aware gaze prediction models that eliminate

the need for real-time eye tracking allowing gaze-aware application deployment on

most hardware platforms.

2.6 Machine Learning in Games

Machine learning algorithms can learn correlations of data from an existing dataset

and make data predictions on novel data sets. Machine learning algorithms have

been used in video games to accomplish a more believable, variable and challenging

AI [Laird and VanLent, 2001]. In commercial video games machine learning

has been employed both to learn at design-time, where its results are applied

before publishing the game and to learn at runtime, for an individually customized

game experience. For example, LiveMoveTM is a machine learning tool recognizing

motion and converting it to game-play actions to train a computer opponent.

Another example is Black and WhiteTM where the player’s pet learns what to do

in the game via reward and punishment.

Video Game State Variables. Game structure is defined during the design

phase of a video game and is used to represent relationships between objects



Chapter 2 51

and player actions (obstacles to overcome etc.). Structure is represented in the

source code via variables, which are used to represent commands and storage

needs [Crawford, 1984]. For example, a player in a typical shooting game may

be described by two vectors indicating location and rotation in the game scene,

a value indicating health and a value indicating available ammo. The value of

these variables in relation to the location or availability of ammo as well as to the

location of an AI Non-Playable Character (NPC) influences the behavior of the

player, e.g., whether he will run away from an enemy or engage in close combat.

A key idea of our work is that the players’ behavior is related to the game state,

and their gaze or attention will be related to their behavior. So, by automat-

ically analyzing exposed variables of a video game, we can predict where they

are looking. In our work we use Decision Forests (DFs), which provide powerful

multi-label classification [Breiman, 2001] and support our goal of predicting the

object class the user looks at, based on game state in real-time while a player is

actively involved in game-play. DFs were selected since they use averaging to find

a balance point between extremities in the samples, unlike single decision trees or

Support Vector Machines (SVMs) that are likely to suffer from high variance or

high bias depending on tuning parameters. DFs have very few parameters to tune

and are effectively non-parametric. DFs do not require any knowledge about the

underlying model of the data to yield predictions on novel data.

2.7 Gazing Stereoscopic 3D

Stereoscopic 3D displays create the illusion of depth by presenting a different image

to each eye simulating natural vision. Stereo rendering significantly constrains

attention modeling [Bruce and Tsotsos, 2005]. When attending a specific depth

due to disparity, objects on other depth planes are not attended, and attention

shifts faster to nearby objects than to objects deep into the scene [Han et al., 2005].
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In this section we investigate stereoscopic rendering technologies and common

issues during stereopsis.

2.7.1 The Rise of Stereo 3D

Stereoscopic 3D as a visualization medium for movies and games tells a story in the

visual space both behind and in front of the screen, allowing for engaging content,

stemming from the increased perceivable depth, enhancing artists’ creativity. The

addition of the third dimension in cinema is similar to the giant leap occurred

with audio added to silent movies. Stereoscopic 3D aids character identification

as it provides spatial detail missing from flat projection. From an information

theoretic point of view, 3D essentially integrates two image views of the world in

a single perceived scene, inherently providing extra information about the scene

layout and character formation. Stereoscopic 3D also allows for increased sense of

immersion since suspension of disbelief is effortless when simulating the sense of

depth perceived in the real world. Depth aids the understanding of the current

emotions experienced by the characters and allows the viewers to emotionally

engage with them [Atkinson, 2011]. In close stereoscopic shots, the emotional

charge increases because an actor’s 3D volume now occupies the 3D visual space

and human movement of bones and muscles is intensely visible [Mendiburu, 2012].

Stereoscopic 3D displays and content is soon to become ubiquitous. Visiting the

movie theater is a popular social event and consumer HMDs are now becoming

omnipresent with the extraordinary advent of the Oculus Rift, Samsung GearVR

and HTC Vive. 3D displays have become an irreplaceable tool not only for en-

tertainment but also for specialized applications including scientific visualization,

image-guided surgical procedures, remote guidance of robots and battlefield re-

connaissance.

In particular, 3D movie releases increase every year and a complete switch-over

to 3D is expected to materialize soon since larger cinema screens yield intense
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Figure 2.7: Graph showing that 3D movies earn one order of magnitude more
revenue when compared to their 2D versions [Mendiburu, 2012]

stereo perception [Mendiburu, 2012]. Ultimately, 3D has the potential to become

so ubiquitous but also critical for medical or simulation visualization applications,

to the point that watching 2D content may occur only for the sake of nostalgia

just like we watch black-and-white movies on TV (Figure 2.7) [Mendiburu, 2012].

Scientific visualization in stereoscopic 3D provides an additional visual axis dis-

playing application-critical information. Perspective depth cues attract attention.

Stereoscopic depth-of-focus techniques may be used to guide attention [Ware,

2012]. Stereoscopic 3D constitutes a valuable resource for the diagnosis and sur-

gical treatment of pathologies [Udupa and Herman, 1999]. Image-guided surgical

procedures decrease the mental effort of a doctor by guiding movements in three

dimensions, since the necessary depth cues are provided by the 3D display itself.

Tasks hazardous to human life can be accomplished remotely through tele-robotic

control benefiting from 3D displays. Immediate binocular coding of depth for

tele-manipulation tasks critically requires operators to fully understand the rel-

ative locations of objects in the remote world. Experiments comparing 2D vs
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stereoscopic 3D interfaces indicated that 3D tele-operation reduces task execution

time, error rates and time needed for training [Drascic, 1991].

2.7.2 Stereoscopic Viewing Details

In this section the basic geometry of stereoscopic vision relevant to this work is

presented [Woods et al., 1993]. In stereoscopic rendering and in order to induce

stereo perception, each eye obtains its own view rendered with a slightly offset

camera location. The virtual screen is then perceived on the intersection of the

left and right frusta. A stereo projection matrix is defined as a horizontally offset

version of the regular monoscopic projection matrix, both offsetting for the left

and right eyes along the x-axis. The projection axes should be parallel in order

to avoid a converged configuration that introduces keystone distortions into the

image, which can produce visual discomfort [Stelmach et al., 2003]. We use the

standard asymmetric viewing frusta, as presented among others [Woods et al.,

1993] shown in Figure 2.8.

Figure 2.8: Asymmetric frustum stereo geometry.
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The two cameras are symmetrically offset from the origin of x-axis at points L

and R (Figure 2.8). The separation LR between them is Deye. The cameras are

directed parallel to one another, looking down z− axis. Dnear is the near clipping

distance and C is the distance between the camera and the perceived plane of

focus, known as convergence distance. The left and right extremities of the virtual

screen lie at points A and B respectively.

To generate an asymmetric viewing frustum the near clipping plane’s top, bottom,

left and right coordinates in addition to the near and far clipping planes distances

are required [Woo et al., 1999]. To define a virtual screen a mono-frustum would be

AOB. For this monoscopic frustum let us denote the Field-of-View (FOV) angle

along the y-axis as θFOV y and the aspect ratio of the mono-frustum as raspect. We

then estimate the top and bottom margins for both left and right frustums, in

addition to Deye as a system of simultaneous linear equations:

top = Dnear tan
θFOV y

2
& bottom = −top (2.1)

The left frustum ALB, intersects the near clipping plane at dleft distance left of

LL′ and at dright distance right of LL′. Given the triangles ALL′ and BLL′ we

find that:

a = raspectC tan
θFOV y

2
&

dleft
b

=
dright
c

=
Dnear

C
(2.2)

b = a− Deye

2
& c = a+

Deye

2
(2.3)

By interchanging b and c we estimate parameters for the right frustum ARB.

The image disparity p of a vertex with scene distance w is positive when the

object is behind the virtual scene, and negative otherwise and is known as parallax.



Chapter 2 56

Parallax depends both on interaxial separation Deye and convergence distance C.

We estimate Deye for a predetermined maximum on-screen parallax |p| (see [Jones

et al., 2001, Shibata et al., 2011]) based on user-display distance and display size:

Deye =
w|p|
w − c

(2.4)

For the left eye frustum, parameters are:

leftL = −raspect × a+ (Deye ∗ b) rightL = raspect × a+ (Deye ∗ b) (2.5)

For the right eye frustum, parameters are:

leftR = −raspect × a− (Deye ∗ b) rightR = raspect × a− (Deye ∗ b) (2.6)

2.7.3 Stereo Technology and Common Issues

With the exception of HMDs that employ a dedicated display for each eye, stereo-

scopic 3D displays project the left and right views encoded together on a 2D

screen and the display then relies on a decoding system which is commonly a pair

of glasses, to selectively allow only one image to reach each eye. Based on the

encoding/decoding domain of use, certain glasses work in the color spectrum such

as Anaglyph and Infitec, others are time-driven such as active shutter glasses with

Digital Light Processing (DLP), 3DTV and 3D projectors and others based on

polarization (RealD) or space (Auto-Stereoscopic). Currently four fundamental

stereoscopic technologies are adopted in the consumer market.

Passive filtered lenses. The classic red-blue “anaglyph” glasses. A modern

version of filtered lenses uses polarization filters either linear or circular and is

the de-facto standard for movie theaters. Color perception is negatively affected.

Current generation polarized filters exhibit poor light output, essentially halving
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the light throughput of the projector. Visual discomfort is further increased due

to the different spectral content presented to each eye, increasing the color rivalry.

Optical crosstalk between channels stemming from poor spectral separation of

colored lenses is a huge challenge [Konrad and Halle, 2007].

Active shutter glasses. The standard for 3DTV, also employed in some movie

theaters (XpanD 3D). The media are displayed at a high frame rate and the glasses

rapidly switch between black and clear using a pair of low-latency transparent

Liquid Crystal Displays (LCD) (Liquid Crystal Shutters - LCS). One eye sees

nothing while the other sees the correct image; a few milliseconds later, the viewing

is reversed. Active shutter glasses suffer from [Konrad and Halle, 2007]: (i) A

prismatic effect derived from the LCDs not being aligned correctly with the screen.

(ii) Absolute precision is necessary for the glasses to produce accurate imagery; the

error must be kept down to fractions of a microsecond. (iii) A transceiver device is

often required to dispatch synchronization signals for the shutters. Despite these

drawbacks, active shutter glasses are easy to employ with existing movie theater

and television technology. Consumer electronics companies do not have to modify

their screens in any way other than increasing the refresh rate.

VR goggles/HMDs. VR goggles employ a different display for each eye and are

worn directly on the head of the user. There is no need for a decoding scheme.

Commercial examples of HMDs include the recent excitement over the Oculus

Rift (Figure 2.9), the Samsung GearVR and the HTC Vive. HMDs suffer from

large disparities that cause fatigue in addition to the issues haunting the rest of

the 3D display technologies. There are reports of people experiencing extreme

binocular instability, poor depth perception and eye fatigue after being exposed

to stereoscopic content [Williams and Wann, 1993]. 3D gaming in HMDs may

even exacerbate this since one is not simply viewing a virtual 3D space but is also

interacting with it.
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Figure 2.9: The Oculus Rift HMD.

Auto-stereoscopic displays producing stereo without glasses. Commer-

cially employed by the Nintendo 3DS. Two types of auto-stereoscopic displays

exist. They can be either based on a lenticular lens, e.g. a saw-tooth prism in

front of the screen that directs light in varying direction to separate each eye’s

view, or a parallax barrier, e.g. a series of slits in the display precisely placed

to allow light from every other line of pixels to go one way or the other. These

displays suffer from low resolution and need precise observer placement in front of

the screen; otherwise the 3D illusion is destroyed. Effective resolution and bright-

ness is halved since half of the lines are going one way and half the other way. In

order to display 1080p content, a 4K display is needed. This method also requires

modification of existing screens [Konrad and Halle, 2007].

2.7.4 Visual Discomfort, Fatigue & Stereo-Grading

Moving on from standard 2D/flat content to stereoscopic 3D triggers significantly

more muscular and brain activity [Mun et al., 2012]. Viewer fatigue due to the

vergence - accommodation conflict is common when viewing stereoscopic 3D con-

tent. The conflict is caused because the plane of focus (i.e., the screen) is fixed
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whereas eye vergence movements continuously occur when fusing stereoscopic con-

tent. Large stereoscopic disparities in video games further increase visual fa-

tigue [Hoffman et al., 2008, Lambooij et al., 2011]. Symptoms range from an

insensible overload of the visual system or slight discomfort that can cause ma-

jor eye strain, provoke visually-induced headaches and lead to total loss of the

depth perception [Lambooij et al., 2009]. The level of discomfort increases with

the exposure time to 3D content not optimized for comfortable viewing.

High disparities force the eyes to rotate unnaturally in relation to each other. The

standard tolerated disparity threshold is 24arcmin between the same point on two

retinas [Jones et al., 2001] which however reproduces very small perceivable depths.

Disparities can go well above this low threshold, however, visual discomfort may

build up which should be avoided.

A solution to these issues is the stereo grading process, i.e. altering the depth

structure of a scene by drawing objects in a user’s comfortable disparity range, also

known as the comfort zone of the observer [Shibata et al., 2011]. When objects are

drawn in the comfort zone, clear and correctly fused binocular vision is achieved

and discomfort is minimized [Shibata et al., 2011]. Such approaches have been

developed for interactive stereoscopic applications or film, attempting to match the

depths between cuts [Templin et al., 2014] or compress the depths of a scene [Lang

et al., 2010, Oskam et al., 2011]. A perceptual disparity metric that can compare

one stereo image to another to assess the magnitude of the perceived disparity

change has been proposed [Didyk et al., 2011]. Universal depth compression may

lead to limited depth perception or the cardboarding effect [Chapiro et al., 2014,

Meesters et al., 2004].

Low quality stereo grading results to low quality stereo content and revenue

losses because of decreased enthusiasm to play stereoscopic 3D games or watch

stereoscopic 3D movies. Moreover, sales of 3DTVs, immersive headsets or auto-

stereoscopic game consoles plummet and task execution times for tele-operation
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applications are increased together with reduced accuracy of tasks in the 3D space.

Visual Discomfort in Movies. In motion pictures, non-optimal stereo rig cam-

era calibration leads to poor quality content acquisition for cinema. In stereo-

scopic movies it is common to adapt the range of disparities to a comfortable

zone [Mendiburu, 2012] by adjusting the camera rig disparity during filming or

via post-processing of the content. If this fails, novel views have to be generated

from the start or composited from multiple stereo rigs of different disparities in

order to alter the perceived depth of a scene.

Visual Discomfort in VEs. Interactive VEs such as video games accentuate

the vergence - accommodation conflict since the viewer is not simply gazing at a

virtual 3D space but is also interacting with it, altering the distance from objects in

real time [Gateau and Neuman, 2010]. A virtual object closer to the observer than

the in-focus depth plane exerts strong negative (crossed) disparity that may result

in uncomfortable viewing, eye strain and diplopia. This discomfort in interactive

scenes is due to both the selected disparity parameters and the lateral or in-depth

motion of the objects [Jones et al., 2001].

Other Causes of Discomfort. The production of 3D imagery often results in

image geometry defects such as image misalignment, keystone effects and colori-

metric errors, i.e. color grading inconsistencies [Mendiburu, 2012]. In such cases,

total loss of depth perception is common [Lambooij et al., 2009].

In this thesis we employ machine learning to automatically learn gaze patterns

for different object categories and tasks without manual tagging, and accurately

predict gaze accounting for complex task-dependent situations which would be

very hard to encode explicitly. Our solution introduces dynamic and localized

stereoscopic disparity management applied to 3D video games, for attended objects

or areas based on the current task. Our approach smoothly relocates the perceived

depth of attended objects/areas into the comfort zone of the observer, maintaining
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a rich sense of depth in sharp contrast to previous methods that suffer from severe

depth compression (cardboarding).

2.8 Chapter Summary

We presented previous work on visual attention prediction and prediction of at-

tention as employed in computer graphics and computer games. We presented

related work on game balancing & LOD and investigated the internals of the

DWM, eye tracking, machine learning for games and stereo disparity manipula-

tion algorithms. In the following chapter we present a technical overview of the

deployment test-bed and data acquisition framework for our saliency models.
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Overview of Data Acquisition

Framework

Game engine pre-requisites in addition to eye- and head-tracking data acquisition

and processing technical implementation details are presented in this Chapter.

The data acquisition framework is employed in model formation and validation

experiments of the following chapters.

3.1 Eye-tracker & Head-tracker Integration

3.1.1 Essential Unity3D Concepts

We employed the Unity 3D game engine. Each project in Unity 3D is composed

of scenes. Employing several scenes distributes loading times and allows for better

organization of the project in modules that can be tested individually. However,

only a single scene can be loaded at one time for editing. The building blocks of

each Unity project are called Assets. Assets include textures in the form of image

files, 3D models in the form of meshes, audio files for sound effects etc. Every

Asset (e.g. a mesh) when instantiated in a scene becomes a GameObject. Example

62
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GameObjects include lights, cameras, particle emitters etc. GameObjects can be

nested with each other to create parent-child relationships.

GameObjects are formed from Components; a Component is a script or module

performing a function. Every GameObject must contain at least one Component,

the Transform component holding the position, rotation and scale of the GameOb-

ject. More functionality can be introduced by adding more Components. Com-

ponents introduce behavior, define appearance and interaction with the physics

engine, etc. Example Components are Rigidbody, Collider, Animations, Audio

sources, Scripts etc. In particular, a Script is a component that extends or modi-

fies existing functionality of Unity3D. Scripts can be developed either in C-Sharp

or JavaScript. A Prefab is a stored version of an object complete with its Compo-

nents, Assets etc. that can be re-used in different parts of a project or even other

projects. By employing Prefabs complex objects can be instantiated at any time.

3.1.2 Essential Eye-tracker Software Concepts

The eye-tracker of our HMD comes with Viewpoint; a software library by Ar-

rington Research. The software provides a complete eye tracking Graphical User

Interface (GUI) including stimulus presentation, eye movement and pupil monitor-

ing paired with a Software Developer’s Kit (SDK) for communication with other

applications. Important Viewpoint eye-tracker concepts are presented below. For

a complete reference please consult Viewpoint documentation [Arrington, 2015].

The Viewpoint main window includes the EyeCamera, GazeSpace, Status, and

PenPlot windows (Figure 3.1). The EyeCamera window displays the video image

of each eye providing controls to get more reliable eye tracking results by adjusting

camera parameters. The GazeSpace window is the normalized coordinates window

of the corresponding calibration geometry as estimated from EyeSpace coordinates

in turn estimated from the EyeCamera image. GazeSpace displays fixation based

on the relative location of the pupil, glint, and pupil-glint delta-vector as obtained
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Figure 3.1: The Viewpoint Interface.

during calibration. EyeSpace provides information about calibration accuracy

and allows identification and correction of individual calibration errors by allowing

manual recalibration of individual points or the ability to omit problematic points.

The Controls window allows the user to adjust the image-analysis and gaze-

mapping parameter settings and to specify the feedback information to be dis-

played in both the Stimulus window and the GazeSpace window. The user can

select pupil segmentation and corneal reflection parameters to exclude erroneous

reflections or shadows. Image quality adjustments can be made here and the track-

ing method specified. Smoothing parameters and segmentation criteria can also

be set in this form. The Status window presents details about processing perfor-

mance and measurements. The Stimulus window is a new window that pops up

when calibration begins. The Pen Plot window displays plots of X and Y position

of gaze, velocity, ocular torsion, pupil width, pupil aspect ratio and drift in real

time.
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3.1.3 Eye Tracking Pipeline

An infra-red light source both illuminates eyes and provides a specular reflec-

tion (glint) from the cornea. The video signal from the camera containing both

the pupil and the glint is digitized by a video capture device. Image segmenta-

tion methods are applied to the eye image to identify the locations of the pupil

and glint. Additional image processing operations locate the coordinates of these

features and estimate the difference vector between these locations. A mapping

function transforms eye position signals from EyeSpace coordinates to the sub-

ject’s GazeSpace coordinates as mapped by a calibration procedure. A calibration

component presents calibration stimuli at known locations to map points of the

screen to specific intervals of the pupil-glint delta vector. A mapping function is

then generated to map eye position in relation to display locations. Viewpoint

data transfers are made possible via a Dynamic Link Library (DLL) for real-time

access to all ViewPoint data. The VPX InterApp.lib library file is imported in

C-Sharp and its functions called.

3.1.4 Calibration

Prior to acquiring eye fixations the user must undergo a personal calibration pro-

cess in order to match eye coordinates (EyeSpace) to gazed display coordinates

(GazeSpace). Calibration takes approximately 1-2 minutes to complete during

which several green square targets are displayed at different locations of the screen

while the user is directed to fixate on their centers. During the calibration process

it must be ensured that the pupil is accurately tracked at all times by paying

attention to the camera window. Regarding calibration points at least 9 should be

used; tests has shown that the best calibration results are yielded with around 16

to 20 points. Successful calibration is indicated by a rectilinear calibration point

grid and well separated configuration points following calibration. Stray calibra-

tion points can be identified and re-calibrated or omitted. The EyeSpace window
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allows the user to select stray calibration points for re-calibration. If a point is

selected to be re-calibrated it is then re-presented in the screen and the participant

is asked to look at the center of it. If the calibration points grid is not rectilinear

e.g. lines are crossing each other, a complete re-calibration should be done.

3.1.5 Head-Tracker Data Communication

The head tracker of our HMD is the InterSense InertiaCube3. It is an inertial

Three Degrees of Freedom (3-DOF) orientation tracking sensor and software. It

obtains motion sensing data using a miniature solid-state inertial measurement

unit sensing angular rate of rotation, gravity and earth magnetic field along its

three main axes. Angular rates are integrated to obtain the orientation (yaw,

pitch, and roll) of the sensor. Gravimeter and compass measurements are used

to prevent the accumulation of gyroscopic drift. The isense.dll SDK library pro-

vides a standard interface for the device that we integrate with Unity to receive

head-tracking data. The InterSense Server Application, ISERVER provides com-

munication services to applications requiring tracker data. It is the link between

the head tracker’s data output and third party applications such as Unity3D.

3.2 Data Processing

In order to receive data form the eye tracker the application needs to register with

its DLL. Following registration, the Unity application obtains a unique message

identifier used by ViewPoint for inter-process communication. Since the DLL is

already pre-compiled and written in C++ which is an unmanaged programming

language, we implemented a new class MyVPX in C-Sharp that binds the library

with our application. C-Sharp allows calling unmanaged code from managed ap-

plications, through the DLLImport attribute. Using the DLLImport attribute we
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can tell the compiler to declare a function residing in the VPX InterAPP.dll. The

sample code below imports the necessary functions from the DLL.

Figure 3.2: Sample function calls inside Unity3D.

C-Sharp allows using pointer variables in an unmanaged function code block only

when the block is marked with the unsafe keyword. To be able to run unsafe code

Unity needs two files to be included in the Unity project directory: smcs.rsp and

gmcs.rsp file, containing only the command ”-unsafe”.

After registering with the Eye-tracking software, myVPX class defines a callback

function which is managed by the library VPX InterApp.dll. Inside the callback

functions limited coding can be used. Since it interacts with unmanaged code

written in C++ only standard data types such as integers or characters can be

defined and used. In any other case the application crashes. For example, C-Sharp

handles strings differently than C++. Inter-process communication fails for such

data structures.

The theCallBackFunction function is responsible for data exchange between the

library and the executable. When a connection is established, ViewPoint Status

Window DLL Sharing counter denoting the number of third party applications

that are currently registered increases by one.

Several times a second fresh data arrive from the frame grabber and the application

sends them to all registered applications. The library VPX InterApp.dll calls

every function that was defined as a callback for each application in order to

forward incoming data. Incoming data inform the application about possible new

fixations, saccades, or error messages. For every new data entry quality checks

are made, using the VPX GetDataQuality2() function of the VPX InterApp.dll.
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5 Pupil scan threshold failed.
4 Pupil could not be fit with an ellipse.
3 Pupil bad: criteria limits exceeded.
2 Wanted glint, but it was bad, using the good pupil.
1 Wanted only the pupil and got a good one.
0 Glint and pupil OK.

Table 3.1: Quality Codes and information depending on quality code by Ar-
rington. Data may be either fetched or discarded. Quality codes 0, 1 and 2 are

considered as good data and fetched. Quality codes 3,4,5 are discarded.

Depending on quality check results codes (Table 3.1), gaze data are fetched using

the VPX GetGazePoint2() function.

Before exiting the application, the registration must be cancelled. This is manda-

tory since if not done probably, ViewPoint keeps sending data on a non-existent

receiver, possibly crashing later application instances.

3.2.1 2D Gaze points De-projection

A 2D projection maps a 3D point from a 3D world space coordinate system to a

2D screen coordinate system. De-projection is the opposite. When receiving a 2D

coordinate gaze point on screen we want to reconstruct the viewing ray emanating

from the observers eyes that generated this point. This ray is described by a

3D world space origin and a direction. This is necessary for GTOM in order to

detect fixated objects in the 3D scene. The raw data received form the ViewPoint

application denote user’s fixations in 2D normalized coordinates [0,1] in x−y axes.

We perform a ray reconstruction using this point. The ray origin is the virtual

camera. The ray direction is such, that the ray passes through the gaze point.

First, the normalized 2D GazeSpace coordinates must be converted into 2D screen

coordinates (pixels). Since the total resolution of our HMD display is 2560 x 1024

pixels every gaze data value has to be multiplied and scaled based on this custom

resolution. In some experiments, only the dominant eye’s data are considered as
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processable gaze data used and therefore, only the dominant half of the screen, 0

to 1280 pixels, horizontally is de-projected into the scene.

Having transformed the 2D gaze data into 2D screen coordinates the next step is

to cast a ray into the scene. The ray must be cast in order to determine what the

user is looking in the 3D world. The ray is cast in every frame having as the origin

the dominant eye-camera location and direction passing through the GazePoint.

The ray’s depth is set to infinity.

If the ray cast does not hit anything then no action is taken but if a GameObject is

hit, collider information are further processed. In our projects we usually consider

the hit GameObject’s name or tag; depending on the purpose of the ray cast the

main controller class of the application decides on the action to be taken.

3.2.2 Head-Tracker Data acquisition

Data is passed from the head-tracking device through the InertiaCube3 software’s

SDK using a registration link with the tracker’s isense.dll. The DLL is accessed

with the C-Sharp DLLImport attribute, similarly to eye-tracking data acquisi-

tion. Using the ISD OpenTracker function, the application searches for a tracker

connected to the computer. If a tracker is detected then a timer is set to count

the connection duration. ISD ResetHeading synchronization is then performed.

Following a successful connection, head-tracking data are passed from the device

to our application by calling the ISD GetTrackingData function once per frame.

When the application exits, ISD CloseTracker is called to terminate the connec-

tion.

The yaw, pitch and roll orientation data received from the head-tracker are used

to adjust orientation. The ISD CloseTracker function is responsible to terminate

the connection when exciting the application.
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3.2.3 SQLite integration

To record experimental data from the eye-tracker and head-tracker we employ

an SQLite database. SQLite is a relational database management system con-

tained in a programming library. SQLite is not a client-server database engine

like common database systems. It is directly embedded to the end application.

The SQLite engine has no standalone processes with which the application pro-

gram communicates. The SQLite library is linked to the application and becomes

part of it. SQLite’s functionality can be called via function calls reducing latency

in database access. The entire SQLite database is stored as a single self-contained

cross-platform file on the host machine.

3.3 nVisor SX111 Stereo Camera

Binocular displays have a parameter called optical FOV overlap that is usually

100%. However, our nVisor SX111 HMD is designed with partial overlap, meaning

that a portion of the FOV includes the same image in both eyes (binocular part)

while separate, extended images are displayed in the left and right eyes displays

(monocular part).

Partial overlap dramatically increases the FOV since the monocular portions of

an image extend the viewing range of the field beyond the binocular part. How-

ever, the partial optical overlap configuration of the nVisor SX111 optical system

requires more complex viewing frustum parameters.

The percentage of optical overlap is expressed as a fraction of the binocular FOV

(50 degrees) over the monocular FOV (76 degrees). In the case of the SX111, this

is 50 to 76 degrees = 65.7%. The decrease in optical overlap results in a decrease

in the stereoscopic region of the display. Since most people perceive stereopsis in

the center of their FOV, the reduced stereo angle remains acceptable.
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Figure 3.3: Parameters of the right virtual camera.

In order to display the left and right cameras outputs to each HMD screen we use

both graphics card’s outputs. The HMD requires SXGA resolution for each eye

to work. Based on the SXGA format each camera of the HMD has a resolution

of 1280 x 1024 pixels, amounting to a total of 2560 x 1024 pixels for the display

of the HMD screens. The application view-port is expanded using the graphics

card’s option to consider both outputs as a single display of a total 2560 x 1024

pixels.

We designed a virtual head model with eyes and neck in Unity3D bearing the two

virtual cameras. Both cameras were positioned at 2/3rds of head’s height. We

account for neck distance; the neck is the pivot point of rotation. The eye pair

was displaced off-neck-axis.

The Inter-Pupillary Distance (IPD) between the two eyes/cameras was based on

the average pupil distance measurement; 65mm (0.065 Unity3D world units). The

IPD could be changed manually by using the keyboard.

Based on the HMD’s specifications, the FOV of each camera-eye was set to 90

degrees and the cameras were rotated outwards by 13 degrees left and right re-

spectively in relation to the virtual neck (Figure 3.3).
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Figure 3.4: Twin render textures for the parallel camera rig.

In order to display the scene to the user, each camera’s video output is projected

on two render textures that correspond to the HMD screens. A third camera with

a parallel projection matrix records the side-by-side render texture outputs and is

used as the main output of the application (Figure 3.4).

3.4 Chapter Summary

This chapter included the technical overview of the deployment test-bed and data

acquisition framework for our saliency models. In the following chapters we de-

scribe the employment of the aforementioned code bases for eye-tracking data

acquisition and experimental validation of our results.
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High Level Saliency Modeling for

Game Balancing

In this chapter, we present our new model of high-level attention. Before presenting

our new model, we first describe how DWM handles Bayesian priors. We then

explain how we extended DWM equations by encoding the interaction of novel

factors affecting gaze deployment (Chapter 2) based on the Bayesian priors of the

original model. This chapter represents our first attempt to identify the effect of

the first two high level saliency factors on attention and also verifies our model

validity on game balancing. The remaining four factors are integrated in Chapter

5. 1

1The contributions in this chapter were published in the ACM Transactions on Applied Per-
ception [Koulieris et al., 2014a] and presented at ACM SIGGRAPH [Koulieris et al., 2014c].
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4.1 High Level Saliency Modeling

4.1.1 The Differential-Weighting Model

The DWM [Eckstein, 1998, Eckstein et al., 2006, 2002] estimates the interaction

between visual evidence concerning a target in a scene and Bayesian prior proba-

bilities indicating expectation and context of a scene. By combining sensory data

with existing knowledge it calculates the posterior probability that a location will

be fixated on in a visual search task and thus predicts saccadic targeting.

For each image frame f and each visual field location (x, y), each sensory unit

responds in a noisy manner for each feature λj. DWM calculates the likelihood

lj,x,y,f of observing the response λj given the presence of the target’s jth feature at

that location and the likelihood of the response given the absence of the feature.

The response has a Gaussian distribution [Tolhurst et al., 1983] with a mean of d′j

and a standard deviation σ. The likelihood lj,x,y,f that the jth sensory unit takes

a value λj,x,y,f given the presence of the target’s jth feature at (x, y) on frame f is

then

lj,x,y,f (λj,x,y,f |s) =
1√

2πσ2
exp (−

(
(λj,x,y,f − d′j)2

2σ2

)
) (4.1)

s stands for signal and denotes the presence of the target.

The likelihood that the jth sensory unit takes a value λj given the absence of the

target’s jth feature is

lj,x,y,f (λj,x,y,f |n) =
1√

2πσ2
exp (−

(
(λj,x,y,f )2

2σ2

)
) (4.2)

n stands for noise and denotes the absence of the target.

A likelihood ratio LR [Green et al., 1966] can be calculated as

LRj,x,y,f =
lj,x,y,f (λj,x,y,f |s)
lj,x,y,f (λj,x,y,f |n)

= exp

(
λj,x,y,fd

′
j − 0.5d′2j
σ2

)
(4.3)
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4.1.2 A New High-level Attention Model

As a first step, we propose a new two-factor model by integrating high-level in-

formation implied from semantic (schema inconsistency) or physical (singletoness)

context represented by Bayesian priors in the DWM. We assume that (i) the in-

ternal response associated with high level saliency components is also subject to

noise, (ii) dedicated, high-level sensory units are analogous to low-level sensory

units. The high-level units fire at their highest rate when fed with the correct

high-level feature, much as a low-level edge-detection unit reacts highest when an

edge with the proper orientation is presented [Eckstein, 1998, Eckstein et al., 2006,

2002]. Whether the neural mechanism underlying a high-level sensory unit is a

single neuron or a cluster of neurons does not matter. What matters is that there

is an internal (neural) state reflecting whether this high-level feature is present or

not. For example, we propose a sensory unit that monitors the degree to which

an object is isolated. Such a unit would fire when a singleton object is in the

FOV [Steinmetz et al., 2000].

We extended the original DWM equations to describe two high-level sensory units

tuned to schema inconsistencies and the singleton state of objects. Equations

4.1 - 4.3 assume that the internal response generated by the presence of each

visual feature is known a priori. Since neuronal response strength is unknown

concerning scene schemata and singletons, we alter the DWM and instead calculate

the posterior probability that the target is present at each pixel as a sum of K

different feature strengths d′k associated with scene schemata and singletoness.

Psemantic,x,y,f (s|λ) =
K∑
k=1

LRsemantic,x,y,f,k (4.4)

Pphysical,x,y,f (s|λ) =
K∑
k=1

LRphysical,x,y,f,k (4.5)
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We then average the components 4.4, 4.5 using weights wsemantic and wphysical

that we obtain from perceptual studies (Section 4.2) to calculate the posterior

probability that a location will be attended. A linear combination of components

is a common practice in saliency detection algorithms [Frintrop et al., 2010].

Px,y,f = wsemanticPsemantic,x,y,f + wphysicalPphysical,x,y,f (4.6)

Manipulating Attention for Adaptive Game Balance. Let us consider an

example game balancing condition in a game. Suppose that a virtual object de-

picting a key is required to be collected in an adventure game to open a door. The

player knows that he is searching for a key. Bayesian priors for the key as a target

can be computed and weighted based on the location of the key. These priors

could be evaluated in real time during game level loading and according to the

desirable level of difficulty. Probabilities of existence in specific locations or as a

singleton object can be inquired to anticipate the difficulty of a search task for this

key and ultimately employed to modulate the cost/benefit curve. For example for

an easy level of difficulty the key could be placed on a table (a consistent location

for placing a key) or kept isolated. On the contrary, placing a key inside a set

of other keys makes the task very hard and time consuming. Schema consistency

can also be used inversely: When the player does not know exactly what he is

looking for, an inconsistent placement of a searched-for object makes it salient

and probably will attract user fixations.

Now let us consider an example execution of our model for a bar counter. A coffee

mug which is consistent with the context and a medical kit which is inconsistent

with the context are shown in Figure 4.1 (top). Consider a sensory unit that

tracks schema inconsistencies. The λsemantic of the image regions corresponding to

the medical kit is higher than the λsemantics associated to the mug and counter.

The λsemantic communicates a subjective rating of consistency, e.g. the higher the

number, the more inconsistent the object is in relation to the context (Figure 4.1
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bottom left). Let us assume that K = 1, d′semantic = 0.6 and σ = 0.2. Because

the medical kit is inconsistent, we assume for this example that λsemantic = 1.0,

similarly for the mug λsemantic = 0.16, for the bar counter λsemantic = 0.22 because

they are both highly consistent. The likelihoods ratios of observing the medical

kit, mug and counter are LRmedikit = 36315.5, LRmug = 0.1, LRcounter = 0.3 re-

spectively as derived from equation 4.3. The schema inconsistency unit would then

estimate the medical kit as the most salient (Figure 4.1 bottom right). Similarly,

λphysical is used to calculate the likelihood ratios of observation based on whether

an object is placed as singleton (not visualized in Figure 4.1).

Figure 4.1: A bar counter context (top), λsemantic visualization (bottom left)
and highest LRsemantic highlighted (bottom right).

4.2 Real-time Evaluation of High Level Saliency

Components

We examined the real-time effect of scene schemata and singleton on game-play

for two reasons:

• The role of scene schemata and singletons in interactive, synthetic environ-

ments is unknown, even though their effects are well-documented for target
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detection displays or static real photographs [Einhäuser et al., 2008, Hen-

derson et al., 1999, Rensink, 2000, Theeuwes and Godijn, 2002].

• Our extension of the DWM requires an empirical classification of objects in

relation to scene schemata and the determination of the weighting factors wj

that signify the interaction between semantic (scene schemata) and physical

context (singletons).

Inspired by Adventure games [Ju and Wagner, 1997], a suitable game genre to

apply our method, we designed an environment that allows us to investigate the

impact of high-level saliency on visual attention & game-play and recorded the

time it took to search for plot-critical objects. The storyboard was based on

the popular video game L.A. NoireTM, a 2011 Action-Adventure neo-noir crime

video game developed by Team BondiTM and published by Rockstar GamesTM. A

scene depicting a Coffee Shop (Figure 4.2) inspired by the “Driver’s Seat” case of

the game was heavily modified to include multiple areas representing a car schema

and a cafeteria schema inclusive of sub-schemata representing a coffee shop counter

and a lounge loft. We systematically controlled the semantic and physical states

of plot-critical objects. Each object could be in a schema-consistent or a schema-

inconsistent location, and could be in either a singleton state (positioned by itself)

or a compound state (positioned in cluttered surroundings).

Figure 4.2: The Coffee Shop scene.
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4.2.1 Experiment 1: Defining Object Consistency

Here, we empirically classify scene objects as either consistent or inconsistent in

relation to the context of each part of the scene. Specifically, a list of 50 objects

(Appendix) was assembled and given to 21 graduate students (14 male, 7 female).

Each participant used a 7-point Likert scale to rate how likely each item was to

appear in a given scene. A rating of 7 meant that the object was very much

expected to be in that location and 1 meaning the object was very much not

expected. Half of the objects were tested in the Coffee Shop counter context

and the other half were tested in the car context. We then selected a set of

consistent objects from the high end of the scale and a set of inconsistent ones

from the low end (based on the approach used in [Brewer and Treyens, 1981]). The

classification of objects in relation to scene schemata is independent from a specific

game scenario, i.e. a teapot is consistent with a kitchen context irrespectively of a

background story. A taxonomy of common objects in relation to scene schemata

that can be used in any game will be provided as part of the production level

version of our system.

4.2.2 Experiments 2 & 3: Determining the Roles of Se-

mantic and Physical Context

In Experiments 2 and 3 we examine the effect of physical (singletoness) and se-

mantic (consistency effects) manipulations on game task completion time for two

common tasks appearing in (Action-)Adventure games. In both tasks, the same

general scenario was used: “Adrian Black, a married man and a barista at the

Coffee Shop decides to start a new life with his customer Nicole staging his own

murder to cover a getaway with her” (Appendix for the complete story). Partic-

ipants were instructed in both tasks to find three decisive objects as quickly and

as accurately as possible in order to solve the mystery (Figure 4.3). Experiment
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2 used a Search task (participants knew exactly what they were searching for:

a pair of spectacles, a pig purchase receipt and a wallet). Experiment 3 used a

Non-Search task (participants did not know what they were searching for, and as

such were exploring the environment with less of the specific purpose; the objects

in quest were a photograph, a receipt, and a train ticket).

Our two main predictions are:

• Singleton objects will require less time to be recovered compared to objects

in compound state because they capture attention no matter what the task

is [Theeuwes and Godijn, 2002].

• When searching for an object, consistent locations will attract attention and

therefore will require less time to be recovered than inconsistent locations.

When not searching, on the other hand, objects at inconsistent locations

should attract attention and therefore will require less time to be recovered

compared to consistent locations [Eckstein et al., 2006].

Figure 4.3: One of the desicive objects, the spectacles, as positioned in differ-
ent conditions: Consistent/Compound (left) vs Inconsistent/Singleton (right).

4.2.2.1 Method

Each of the two main factors (Semantic Context and Physical Context) had two

levels, which were factorially combined to produce four experimental conditions:
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Consistent/Compound, Inconsistent/Compound, Consistent/Singleton and Incon-

sistent/Singleton object placement. The objects were positioned so as to maintain

constant navigation time while reaching them across conditions and on similar

visual angles within the VE. The four conditions above were the same for both

experiments. A between-participants design was used, meaning that each person

participated in only one experiment and in only one experimental condition.

Participants A total of 80 participants (56 male, 24 female; ages between 21 - 33)

were recruited from the undergraduate and research population of our institution

and were rewarded with pastry for their participation. All participants were fa-

miliar with first person perspective navigation and had normal to corrected vision.

Upon arrival, each participant was randomly assigned to one of eight groups so

that each group had 10 participants. Each group participated in only one of the

experimental conditions.

Procedure and Apparatus Upon arrival, the participants signed a consent form

and were then allowed to practice navigating in a training scene. The participants

were then informed of the experimental scenario and positioned about 60cm from

a 20” flat screen monitor (screen width of 44cm) at a resolution of 1680x1050. The

game environment was rendered in real-time at a 60Hz constant refresh rate. First

person viewing mode was used for navigation. The virtual camera was positioned

at the level of the eyes of the subject’s avatar which was 1.80m in height. The

avatar had three degrees of displacement freedom. Yaw and pitch angles of the

camera were controlled with the mouse, while walking was controlled with the

arrow keys of the keyboard. Task completion time as well as inspection start/end

timings indicated by a mouse over a possible clue, collect attempts, collected

(decisive or not) objects were stored in a database along participants’ age and

gender.
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4.2.2.2 Results

We subjected the completion times to a Multiple Linear Regression (MLR) anal-

ysis which, like the ANOVA, is a subclass of general linear modelling. Unlike the

ANOVA, a linear regression also provides an explicit, quantitative model of how

the different experimental factors affect performance along with the relative impor-

tance of the different factors [Cunningham and Wallraven, 2011]. This information

is critical for deriving the DWM weights.

In MLR, the line y = m1x1 + · · · + mnxn + b is fit to the data, with y being the

participants’ performance (e.g., task completion time) and each xi being an exper-

imental factor (e.g., physical or semantic context) and b being the intercept. Since

our two factors are categorical, they must be dummy coded. We gave Compound

a value of 0 and Singleton a value of 1. Likewise, Inconsistent and Consistent

were set to 0 and 1, respectively. Each regression coefficient mi indicates how

many seconds faster a unit change (i.e., from 0 to 1) in the factor xi will cause the

completion time to be. Critically, the ratio of the mean squared prediction error

of a model to the variance in completion time is directly related to the Pearson

correlation coefficient [Cunningham and Wallraven, 2011] and indicates how much

of the variance in completion time can be “explained” or predicted by the change

in the independent variables. We will use this relative predictive values to derive

the DWM weights.

Experiment 2: Search Task On average, participants needed 64.81, 72.10,

135.03 and 164.5 seconds to complete the Singleton/Consistent, Singleton/Incon-

sistent, Compound/Consistent, and Compound/Inconsistent conditions, respec-

tively (see Figure 4.4). Regressing physical context onto completion time yields a

model that explains 80.7% of the variation in completion time. This is a significant

amount, F1,38 = 159.1, p < .001, showing the significant effect of physical context.

There was also a significant effect of semantic context: a two predictor model re-

gressing both physical and semantic context onto completion time explains 84.8%
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of the variance. This increase in predictive power of 4.1% is statistically signif-

icant, F1,37 = 10.068, p < 0.0031. Finally, the interaction between physical and

semantic context was marginally significant: adding a term to capture the variance

jointly explained by semantic and physical context – while controlling for multi-

collinearity – explains an additional 1.5%, F1,37 = 3.9621, p < 0.055. The intercept,

regression coefficients and statistical significance of each predictor in the two and

three predictor models can be seen in Table 4.1. As can be seen in the table,

the two predictor model predicts that performance in the Compound/Inconsistent

condition should be 158.962 (the intercept) which is close to the actual value of

164.5. Changing from compound to singleton should speed up performance by

81.309 seconds (the regression coefficient for physical context), and changing from

inconsistent to consistent should speed up performance by 18.381 seconds. Thus,

performance in the Singleton/Consistent condition is predicted to be 59.272, which

matches the actual value of 64.81 well.

Experiment 3: Non-Search Task On average, participants needed 89.74, 94,

173.05 and 144.90 seconds to complete the Singleton/Consistent, Singleton/Incon-

sistent, Compound/Consistent, and Compound/Inconsistent conditions, respec-

tively (see Figure 4.5). The effect of physical context was again significant; a single

predictor model explains 77.7% of the variance, a statistically significant amount,

F1,38 = 132.1, p < .001. Semantic context was also significant; the two predictor

model explained 80.2% of the variance, a statistically significant increase of 2.5%,

F1,37 = 4.578, p < 0.04. The interaction was also significant; the three predictor

model explains 84.7% of the variance, an increase of 4.5%, F1,37 = 3.258, p < 0.003.

The intercepts and significance of the three predictors can be seen in Table 4.2.

Coefficients Estimate Time p-value

Intercept 158.962 < 0.0001
+Singleton placement -81.309 < 0.0001
+Consistent placement -18.381 0.003
+Joint Term 22.190 0.055

Table 4.1: The regression coefficients and their significance on the overall
model, for the case of a Search task
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Coefficients Estimate Time p-value

Intercept 153.008 < 0.0001
+Singleton placement -67.111 < 0.0001
+Consistent placement 11.944 0.039
+Joint Term -32.407 0.025

Table 4.2: The regression coefficients and their significance on the overall
model, for the case of a Non-Search task

Figure 4.4: Task completion time distribution in a Search task. The thick,
horizontal line in each box represents the median for that condition. The col-
ored box around the median represents the middle quartiles and the outer bars

represent the extremes.

4.2.3 Discussion

Both semantic and physical context play a statistically significant role in attention

deployment, with physical context playing the dominant role. Moreover, an object

is often inconsistent with its surroundings (and thus will probably grab attention)

but neither in a singleton state nor salient in terms of low level features. In

such cases, the scene schemata theory can predict its prominence. In agreement

with our first prediction, placing an object in a singleton state decreased task

completion time. The two predictor model indicates that performance in the

singleton conditions is about 49% of that in the compound conditions for Search

tasks, and about 59% for Non-Search tasks. In agreement with the first part of our

second prediction, consistency decreases task completion time for a Search task.

The significant interaction for Non-Search tasks, however, means that the effects
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Figure 4.5: Task completion time distribution in a Non-Search task (the
small circle visualizes an outlier’s completion time).

of semantic was dependent upon physical consistency: inconsistent locations were

only faster for compound objects. Contrary to prediction, inconsistency increased

search time in a Non-Search task for singleton objects.

4.2.4 Model Initialization

We used the results of experiments 2 & 3 to derive weighting factors wj for each di-

mension. In a Search task, a two predictor model explained 84.8% of the variance,

with object singletoness explaining 80.7% and schema consistency 4.1%. Thus,

wphysicalSEARCH = 0.95 (80.7% out of 84.8%) and wsemanticSEARCH = 0.05. In a

Non-Search task, object singletoness explained 77.7% of the total 80.2%, giving

us wphysicalSEARCH = 0.97 and wsemanticSEARCH = 0.03.

In order to calculate the likelihood values associated to the scene schema hypoth-

esis we compare the associated scene schema of each examined object determined

in Experiment 1 against the scene schemata associated with the objects that sur-

round it. We define an object neighborhood of radius N as a multiple of the

examined object’s radius. We define c the count of all objects residing in this

neighborhood and m the count of objects tagged with the same schema as the
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examined object inside the neighborhood.

We then define λsemantic as:

λsemantic =
c−m
c

(4.7)

Inconsistent objects signified by their varied schema relatively to their surround-

ings have greater λsemantic values than consistent objects.

In order to calculate the likelihood values associated to the singleton hypothesis,

we both examine the number of neighbours for each examined object and em-

ploy the available image depth information. In particular, we can use the spatial

derivatives to estimate the magnitude of the depth gradient. This operator indi-

cates how distinct an object is from its environment and is a strong indication of

whether it is a singleton.

We thus define λphysical as:

λphysical =
1

|1− c|
×

√
(
∂f

∂x
)2 + (

∂f

∂y
)2 (4.8)

Always c > 1.

4.3 Implementation and Game Balancing

In this section we describe a GPU implementation of our model and its integration

in a game engine to assess game level difficulty. The efficiency of our model in

predicting attention deployment is evaluated in Experiments 4 & 5.
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4.3.1 GPU based Implementation

We developed a plug-in for Unity 3DTM game engine which we call High Level

Saliency Modeler (HLSM). HLSM highlights objects expected to attract attention

by estimating in real time the posterior probability term (Equation 4.6) of our

new high level attention model in a pixel shader. Equations 4.1 - 4.5 are supplied

with semantic consistency and object singletoness information in terms of the

λphysical and λsemantic variables as determined by the experiments. The λsemantic

(Equation 4.7) and λphysical (Equation 4.8) are calculated at runtime by both

querying the scene graph and utilizing an edge detection kernel run over the depth

buffer. The obtained likelihood ratio sums are then combined according to the wj

factors obtained from the regression analysis applied to the experimental task

completion timings (Section 4.2.4). The d′, σ and K values are user controlled

via the system’s user interface. Manipulating these parameters either increases or

decreases the system’s sensitivity to saliency resulting in more or fewer objects to

be highlighted as salient respectively (Figure 4.7).

The pixel shader approach offers view-dependent estimations i.e. an object may

or may not appear as singleton depending on the viewpoint. Additionally, the

linearity of the likelihoods calculated allows for linear quantitative measurements.

For instance, “an object x is more inconsistent than object z by a factor of q”.

This offers rich information about the semantic context of objects as opposed to

the previously defined binary definition of an object being characterized as either

consistent or inconsistent [Zotos et al., 2009].

4.3.2 Game Level Editing

Game balancing is a meaningful application of high level saliency modeling. Plot-

critical objects are placed in their respective locations by game designers to achieve
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a purpose: Ease or make it difficult for the player when searching for them depend-

ing on the plot. Placing objects far from expected locations is standard in game

balancing [Feil and Scattergood, 2005]. Integration of a high level saliency model

in a game level editor can assist the level artists by highlighting salient objects.

Designers using the proposed editor are able to reposition or tint props to make

them less/more visible in real-time. This way, designers modulate the search-

cost/benefit curve for easier or harder object recovery in Adventure or Action-

Adventure games. When working with our tool, the game level designer proceeds

as normal to place game objects as desired. The designer observes saliency visu-

alization and examines the attention prediction for the current view. The current

view or object placement may then be modified and high level saliency can be

re-assessed in real-time. The overhead of investigating the attention predictions

is minimal since the game level designer may save on time by not needing to

elaborate on suitable locations for prop placement depending on the current game

difficulty level that is developed. Our plug-in works in parallel with the editor,

allowing the game designer to play-test the level while designing it.

4.3.3 Experiments 4 & 5: Evaluation of the Implementa-

tion

We designed an experiment to evaluate the efficiency of our model in predicting

attention deployment by examining its effect on task completion time and by

acquiring eye-tracking data. Since our tool is intended to be used by game level

designers when creating game levels, the evaluation also indicates the model’s

potential as a means to adjust game level difficulty.
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4.3.3.1 Design

We created four game levels corresponding to two experimental conditions (Easy /

Hard) of a Search and a Non-Search Task. The placement of three critical objects

was manipulated to systematically alter game difficulty. Our model implementa-

tion (HLSM) assisted object placement by highlighting objects that were expected

to pop out in a Search task for the first two conditions (Experiment 4 ) and in a

Non-Search task for the last two conditions (Experiment 5 ). Figure 4.6 shows

a vase at a consistent/singleton layout expected to attract attention in a Search

Task and thus marked as red by HLSM. When the vase is placed on the chair

therefore being at an inconsistent/compound location it is not expected to pop-up

in a Search Task. When objects pop out we expect a shorter task completion

time, thus the easy level for the Search task was created by placing consistent

objects at a singleton state in the scene. A hard game level expected to be com-

pleted slower was created by placing inconsistent objects at a compound state

(Table 4.1). In relation to the Non-Search task the easy level was created by plac-

ing consistent objects at a singleton state and the hard level by placing consistent

objects at a compound state expected to have the fastest/slowest recovery times

respectively (Table 4.2). In all cases we use our saliency modeler, which indicates

the appropriate configurations. We used the Saliency Toolbox [Walther and Koch,

2006] to ensure that the requested objects exhibited a minimum low level saliency

(Figure 4.8). Constant navigation time to the individual objects was maintained

regardless of location. Similar visual angles within the VE were maintained for all

objects.

4.3.3.2 Participants and Apparatus

Forty participants (34 male, 6 female; mean age 23) were split in four groups;

10 played the easy Search task level, 10 played the hard Search task level, 10

played the easy Non-Search task level and the rest played the hard Non-Search
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task level. For the Search task participants were instructed to find three specific

objects. For the Non-Search task participants observed the VE to identify three

unknown objects that were indirectly described: “identify objects necessary for

a car trip” (Figure 4.9). For both tasks participants were instructed to find the

objects as quickly and as accurately as they could. Each subject participated in

only one of the experimental conditions. The VEs were presented in stereo at

SXGA resolution on an NVIS nVisor SX111 Head Mounted Display with a Field-

of-View of 102 degrees horizontal. An InterSense InertiaCube3, three degrees of

freedom head tracker was utilized for rotation and a game-pad for translation.

Attached to the HMD was an eye-tracker by Arrington Research reconstructing

the subject’s eye position through the Pupil-Center and Corneal-Reflection method

at a rate of 30Hz. The eye tracking was performed to the dominant eye of each

subject.

4.3.3.3 Completion Time Analysis

Experiment 4: Search Task An independent-samples t-test was conducted,

revealing a significant difference between easy (M=42.83, SD=11.83) and hard

(M=82.2, SD=21.88) level completion times, t(9) = −4.54, p < 0.0001. The

easy task completion time was reduced to 52.1% of the hard task; 42.83 vs 82.2

seconds, that is consistent with the results of the regression analyses of Experiment

2: A consistent/singleton object placement is predicted to be reduced to 37% of

an inconsistent/compound object placement completion time derived from 59.272

(intercept+singleton+consistency terms) vs 158.962 seconds (Table 4.1).

Experiment 5: Non-Search Task An independent-samples t-test was con-

ducted, revealing a significant difference between easy (M=61.86, SD=17.57) and

hard (M=138.35, SD=16.1) level completion times, t(9) = −14.48, p < 0.0001.

The easy task completion time was reduced to 44.7% of the hard task; 61.86 vs

138.35 seconds, that is consistent with the results of the regression analyses of
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Experiment 3: A consistent/singleton object placement is predicted to be reduced

to 39.67% of a consistent/compound object placement completion time derived

from 65.434 (intercept+singleton+consistent+joint terms) vs 164.952 seconds (Ta-

ble 4.2).

The reduction of task completion time in the easy conditions when compared to the

hard conditions for both the Search and Non-Search tasks validate our hypothesis

that game level completion time depends on object topology as predicted by our

system.

4.3.3.4 Eye-tracking Data Analysis

For every object in quest a Region-Of-Interest (ROI) was defined. Each ROI

held meta-data indicating a consistent/inconsistent placement and a singleton/-

compound placement of the object in relation to its surroundings. In total 9837

fixations to the ROIs were recorded. As a fixation we considered every spatially

stable gaze lasting for at least 300 milliseconds [Salvucci and Goldberg, 2000].

For Experiment 4 an independent-samples t-test was conducted on total object

fixations per condition, revealing a significant difference between consistent/sin-

gleton (M=265.3, SD=15.41) and inconsistent/compound (M=182.6, SD=25.16)

object placement, t(9) = 7.45, p < 0.0001.

For Experiment 5 an independent-samples t-test was conducted on total object

fixations per condition, revealing a significant difference between consistent/single-

ton (M=364.5, SD=44.92) and consistent/compound (M=171.3, SD=19.04) object

placement, t(9) = 15.6, p < 0.0001.
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The results indicate a clear influence of context consistency in attention deploy-

ment for the Search Task. Singleton objects attracted attention in both conditions

since the total number of fixations for ROIs defined for objects in a singleton state

was higher for both the Search and Non-Search tasks. We aggregated fixations

collected over raw eye data from all participants and visual angles in multiple

heat-maps (Figure 4.9). Observing the heat-maps indicated that in a Search task

eye gaze is directed significantly more often to consistent locations in relation to

the requested object (Figure 4.9). In a Non-Search task the eye scan pattern spans

over the entire scene, which is consistent with previous literature stating that in

an Action-Adventure game players mostly explore the entire screen for game props

to advance the game-play [El-Nasr and Yan, 2006] (Figure 4.9).

Our model implementation successfully predicts the saliency of objects (Figure 4.6)

that were identified as non-salient in terms of low level features (Figure 4.8) further

validated by the eye-tracking study (Figure 4.9). Adjusting game level difficulty by

manipulating object topology is thus feasible in Adventure or Action-Adventure

games.

Figure 4.6: In a Search task, our tool highlights the vase at a consistent/sin-
gleton location signifying an easier recovery than at an inconsistent/compound

location (on chair). The green hue indicates non-salient areas.
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Figure 4.7: The system’s sensitivity to saliency can be adjusted, resulting in
more (left, water-clock & spectacles) or fewer (right, only water-clock) objects

to be highlighted as salient.

Figure 4.8: The Saliency Toolbox [Walther and Koch, 2006] indicates that
the most salient area of the image is the dark area behind the chair.

4.4 Chapter Summary

This chapter presents a first attempt to devise a high level saliency predictor based

on the topological relationships of objects with their surroundings and object-

scene schema conformance for common tasks in (Action-)Adventure games. The

framework automatically estimates attention deployment by identifying salient

regions in the viewpoint. We conducted three experiments to verify that high level

saliency of objects affects the time needed to find them in a VE and also obtained

all the necessary weighting factors for our model [Koulieris et al., 2014a][Koulieris

et al., 2014c].

Then we developed a GPU based computational model that implements our new
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Figure 4.9: The left image indicates fixations for a Search task where subjects
were requested to find a pair of spectacles. The right image indicates fixations
for a Non-Search task where subjects were requested to identify objects nec-
essary for a car trip. Areas receiving less than 100 fixations are excluded to

eliminate noise.

model incorporating high level saliency components. The system estimates the

probabilities of individual objects to be foveated in real time and can be used in an

innovative game level editor automatically suggesting game objects’ positioning in

order to adjust the difficulty of the game. The system can be adapted to additional

tasks, different than the ones presented here by acquiring the necessary parameters

using the methodology we presented.

In the following Chapter we extend this model with additional high level saliency

factors and develop a gaze-aware LOD manager based on the extended model.
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Context-Aware Level-of-Detail for

Mobile Devices

In this chapter we present additional studies that extend the HLSM with four addi-

tional components: (i) an object-context singletoness factor that traces contextual

object isolation, (ii) an object-intrinsic cognitive factor, termed canonical form of

objects [Becker et al., 2007], (iii) a biologically motivated feature uniqueness factor

[Frintrop et al., 2010] and (iv) a factor for temporal object coherence.

The first two new factors (contextual isolation and canonical form) are incorpo-

rated through two new high level sensory units. To account for feature uniqueness,

equations determine the number of local maxima found in the probability output

of a sensory unit. That is, the more maxima there are, the less unique a feature

is. For example, if there is only a single violation of canonical form, its uniqueness

weight is high. If several violations exist, all violations are less unique. Recurring

fixations to areas containing canonical form violations or schema inconsistencies

are generated by multiplying a unit’s current output with a number of logarithmi-

cally attenuated previous outputs. We employ the model for LOD management

on mobile devices. 1

1 The contributions in this chapter were published in the Eurographics’ Association Computer
Graphics Forum Journal [Koulieris et al., 2014b], and presented at Eurographics Symposium

95
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5.1 Extending HLSM

For the basic equations of the HLSM please consult Chapter 4.

The probability output P of all units is multiplied with a feature uniqueness weight:

wunq
unit =

1

| ∨ |Punit,x,y,f

(5.1)

x, y denotes image location, f denotes frame number, | ∨ | the number of posterior

probability local maxima estimated using the GPU (Section 5.4.2) (Figure 5.1).

Figure 5.1: A single violation of canonical form in the FOV (a) provokes
a response in the canonical form sensory unit (b). When more violations of

canonical form exist (c) the sensory unit’s output is attenuated (d).

The output of the schema consistency unit and the canonical form unit are also

multiplied with a temporal context weight:

wtmp
unit,x,y,f =

F∏
f=1

Punit,x,y,fe
−af (5.2)

F the number of previous frames examined, a is a user-defined attenuation factor

(Figure 5.2).

The posterior probability Px,y,f that an observer attends an image location, as part

of our enhanced model, is linearly estimated [Frintrop et al., 2010] from both the

semantic consistency (sem) and physical isolation (phy) units defined in Chapter 4

on Rendering 2014 and ACM SIGGRAPH winning 3rd place at the ACM Graduate Student
Research Competition [Koulieris et al., 2014d].
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Figure 5.2: The slipper on the right is in a non-canonical form (a). The output
of the canonical form unit is shown in the current frame (b), in a subsequent
frame (c) and in a third frame after the first (d). The increasing probability

will generate recurring fixations for our model.

Figure 5.3: The posterior probability Px,y,f term of the integrated model.

combined with the novel contextual isolation (cnt) and canonical form (cfr) units,

updated for feature uniqueness and temporal context (Figure 5.3):

Px,y,f = wsemw
unq
semw

tmp
sem,x,y,fPsem,x,y,f + wphyw

unq
phyPphy,x,y,f

+ wcntw
unq
cnt Pcnt,x,y,f + wcfrw

unq
cfrw

tmp
cfr,x,y,fPcfr,x,y,f (5.3)

In Section 5.3 the contribution weights wsem and wphy that were estimated in

Chapter 4 are adapted to our model and the weights wcnt and wcfr are estimated

based on additional experimental data.
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5.2 Perceptual Study

We conducted a perceptual experiment using a Search task to be comparable to

the findings of Chapter 4. We thus: (i) examine the effect of violations of canonical

form and contextual singletoness on visual attention and (ii) obtain contribution

weights of each factor for our model.

Stimuli We factorially combined the two factors to control the spatial arrange-

ment of three objects (a tablet computer, a pair of spectacles and a remote control;

see Figure 5.4) in four VEs. The four scenes were contextually compound/canon-

ical, contextually compound/non-canonical, contextually singleton/canonical, or

contextually singleton/non-canonical (Figure 5.5). All objects were consistent

with the scenes and were physically compound. The Saliency Toolbox [Walther

and Koch, 2006] (Figure 5.6) was used to ensure that the three objects had a

minimum low-level saliency.

Figure 5.4: The subjects searched for three objects, a tablet computer, a
remote control and a pair of spectacles.

Participants Forty-eight people participated (8 female, mean age 23) in the ex-

periment, with 12 people being assigned to each of the 4 conditions.

Apparatus The stimuli were displayed on a nVisorTM SX111 HMD, which has

stereo SXGA resolution and a FOV of 102 degrees horizontal by 64 degrees verti-

cal. Participants moved through the VE using a game-pad for translation and an

InterSenseTM InertiaCube3TM 3DoF head tracker for rotation. Navigation was re-

stricted to -70/70 degrees vertically. Eye tracking information was recorded using

a twin-CCD binocular eye-tracker by Arrington ResearchTM, which was attached

to the HMD. The eye tracker was updated at a frequency of 30Hz.
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Figure 5.5: The tablet is in a (a) contextually compound canonical form
(tablet and keyboard), (b) contextually compound non-canonical form (slanted),
(c) contextually singleton canonical form and (d) contextually singleton non-

canonical form.

Procedure Participants sat on a swivel chair and were familiarized with the setup

in a training session. They were then asked to navigate around the scene in order

to find and collect all three objects. Task accuracy, completion time, and eye-

tracking data were recorded.

Results Task accuracy was always 100%. On average, participants needed 167.788,

255.386, 82.189, and 195.985 seconds for the compound/canonical, compound/non-

canonical, singleton/canonical, and singleton/non-canonical conditions, respec-

tively (Figure 5.7). Task completion times were analyzed with a linear Hier-

archical Multiple Regression analysis (HMR) with contextual singletoness being

entered at stage one and canonical form at stage two. HMR fits a linear model

to the data, with one term for each factor. The weight associated with each

term is related to the correlation coefficient between the dependent variable (here,

completion time) and the different factors. This effectively describes how well
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Coefficients Estimate Time p-value

Intercept 161.238 < 0.0001
+Non-Canonical Form term 100.697 < 0.0001
+Singleton Placement term -72.500 < 0.0001

Table 5.1: The regressions coefficients for each factor.

changes in the measured data can be explained or predicted by changes in the

factors. Contextual singletoness contributed significantly to the regression model,

F (1, 46) = 16.83, p < .001 and accounted for 26.79% of the variation in task

completion time. Introducing canonical form explained an additional 51.68%,

F (2, 45) = 82.03, p < .001, for a total explained variance of 78.47%. The coef-

ficients for the two factors can be seen in Table 5.1. Predictions for a condition

can be obtained by combining the intercept (i.e., performance in the compound/-

canonical condition) with the appropriate modifiers (i.e., the non-canonical form

and/or singleton terms; see Table 5.1). The predictions of the model are consistent

with the actual recorded completion times.

An analysis of the eye-tracking ROIs showed that attention is indeed attracted

both to contextually singleton objects and to objects in a non-canonical form.

Discussion The canonical form and contextual isolation of objects play a sig-

nificant role in attention deployment. In particular, in the non-canonical form

conditions the objects were actively observed despite the fact that their recogni-

tion was extremely slow when compared to the canonical form condition. This is

apparently in contradiction with the findings of Chapter 4 indicating that actively

attended salient objects are easy to find. Thus, when managing LOD, an object

in non-canonical form is salient and should always be rendered in high quality.

5.3 Weight Generation

In Chapter 4 the model weights were derived from the correlation coefficients by

dividing the amount of variance that a factor explained by the total explained
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Figure 5.6: The yellow contour delineates the most salient region of the image
as predicted by the Saliency Toolbox [Walther and Koch, 2006]. Our hypothesis
is that the tablet in a non-canonical form is the most salient object in this image.

Figure 5.7: Task completion time distribution of the experimental condi-
tions. The median value for each condition is depicted by the horizontal line.
The notched boxes depict the middle quartiles. The outer bars represent the

extremes for each case. The circles visualize outliers’ completion times.

variance. Since a single, between-participants experiment using a factorial combi-

nation of all levels of all four factors does not exist (it would require a prohibitively

large number of participants), it is not possible to directly determine the relative

amount of variance each factor explains.

Thus the wsem, wphy, wcnt and wcfr weights are estimated by re-calibrating and

merging the data from Chapter 4 with the newly acquired experimental results [Cun-

ningham and Wallraven, 2011]. The relative increase in task completion time for

each condition will be used to generate the weights for each factor. Note that in
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our experiment all object placements were contextually consistent and physically

compound. That is, the factors of Chapter 4 were held constant. Since these

factors were the same in all conditions, the difference in completion time between

conditions can not have been influenced by these factors. Likewise, in Chapter 4

all objects were in a canonical form. When an object was physically compound

it was also always also contextually compound. Again, since these two factors

did not differ between conditions, they can not have influenced the differences in

completion times between conditions.

In addition, there is a baseline condition that is the same in both experiments.

The physically compound/consistent condition in Chapter 4 is identical to our

contextually compound/canonical condition. To re-calibrate the data, we divide

the actual means of the conditions examined in Chapter 4 by the predicted value

for this baseline condition (140.581). The means for the singleton/consistent,

singleton/inconsistent, compound/consistent, and compound/inconsistent condi-

tions, were 64.81, 72.10, 135.03 and 164.5, respectively. After normalization, these

values become 0.46, 0.51, 0.96, and 1.17. By examining how changing from schema-

inconsistent to schema-consistent for physically singleton objects (0.51−0.46) and

for physically compound objects (1.17−0.96), we can determine the average effect

of schema consistency (0.13). Likewise, the increase due to going from physically

compound to physically singleton for consistent objects is 0.96− 0.46 and for in-

consistent objects is 1.17− 0.51, given an average change of 0.58. The total time

difference between slowest and fastest conditions (1.117− .46) is .71. Thus, phys-

ical isolation accounts for .58/.71 or 82% of the time change. Weights of .82 and

.18 do not vary significantly from .95 and .05 found in Chapter 4.

The completion time for the baseline condition was predicted to be 161.238. Di-

viding the means in our four conditions (167.788, 255.386, 82.189 and 195.985

for the compound/canonical, compound/non- canonical, singleton/canonical, and

singleton/non-canonical conditions, respectively) gives normalized completion times
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of 1.04, 1.58, 0.51 and 1.22. Thus, the increase due to canonical form for contex-

tually compound objects is 1.58 − 1.04 and for contextually isolated objects is

1.22− 0.51, giving us an average difference of 0.63. Likewise, the decrease due to

contextual singletoness is the average of the differences for canonical (1.04− 0.51)

and non-canonical objects (1.58 − 1.22), which is 0.45. We then ensure that all

weights sum to one by dividing them by the current sum (1.79).

The final weights are 0.07 for schema, 0.33 for physical isolation, 0.35 for canonical

form and 0.25 for contextual isolation.

5.4 LOD for Mobile Graphics

We developed a generic material LOD manager based on attention for Unity 3DTM

game engine that we call Contextual-LOD (C-LOD). C-LOD is a reactive fixed

frame rate scheduler [Luebke, 2003] that constantly examines frame rate and at-

tention deployment predictions using the criteria of our model. When frame rate

drops below 30 frames per second on fill-rate bound mobile devices, C-LOD auto-

matically lowers the rendering quality of objects predicted not to be attended until

performance is restored (Figure 5.11). The highest quality possible is maintained

for all attended objects. Our LOD manager adjusts LOD only during player mo-

tion. Pop-out artifacts [Luebke, 2003] are eliminated by exploiting the observer

insensitivity to perceive changes occurring during a brief interruption known as

the CB phenomenon [Simons and Levin, 1997].

5.4.1 C-LOD Effects

C-LOD can manage any effect that has at least two levels of detail. For this

proof-of-concept implementation we selected three complex effects that are usually

omitted in mobile devices as they require many texture fetches [Çapin et al., 2008].
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Figure 5.8: Left to right: Subsurface scattering, refraction and bump mapping
low to high quality.

We used two LOD fall-backs for each effect, that require fewer texture fetches

(Figure 5.8).

Subsurface light transport in translucent materials requires intense analytical

calculations, making it impossible for mobile devices to render this effect [Jensen

et al., 2001]. To simulate the high quality effect, we approximated light transport

using a pre-computed map of local thickness for each model calculated by invert-

ing the normals of the model and estimating ambient occlusion with the inverted

normals [Barre-Brisebois, 2011]. The medium LOD level substitutes the thick-

ness map with a standard distance-attenuated diffuse lighting combined with the

distance-attenuated dot product of the view vector and the inverted light vector.

The low quality fall-back is an opaque Blinn-Phong specular pixel shader.

Refraction is a computationally expensive effect for mobile devices. OpenGL

ES2.0 devices do not support Multiple Render Targets (MRTs) thus existing meth-

ods that estimate refraction for both the front and back interfaces of an object

are slow [Wyman, 2005]. Single interface refraction produces convincing results.

Single interface refraction with chromatic aberration [Lindholm et al., 2001] was

selected as the high level refraction effect. The medium effect removes chromatic

aberration by exchanging the wavelength-dependent sampling of the RGB chan-

nels with a single lookup, significantly reducing texture fetches by a factor of

three. The low quality effect is a uniformly distorted transparent pixel shader

(Figure 5.9).

Bump Mapping via tessellation and displacement mapping is not available on

OpenGL ES2.0 devices. For high quality bump mapping we incorporated the
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Figure 5.9: When rendered with C-LOD (right), the bottles in canonical form
which are not expected to attract attention, receive a lower quality but faster

refraction shader when compared to an all-high setting (left).

texture-heavy Parallax Occlusion Mapping method [Tatarchuk, 2006]. For the

medium quality level effect, we employed simple parallax mapping that does not

support self-shadowing [Kaneko et al., 2001]. The low quality is a standard normal

mapped shader.

5.4.2 C-LOD Components

The Predictor We implemented our model in the GPU. Our system detects non-

canonical object forms by examining object position in relation to the view vector.

We utilize object IDs to locate contextually singleton objects. An analytical de-

termination of feature uniqueness would require the calculation of the bi-variate

partial derivative of each unit’s output. Identifying local maxima in a Gaussian

pyramid [Ziegler et al., 2006] is slow on mobile as it uses render buffer ping ponging.

We count local maxima by employing an approximation that exploits hardware’s

linear interpolation capabilities. We render each unit’s output in a 4x4 resolu-

tion frame buffer object only once each second. By thresholding 16 texel fetches

per unit buffer we count up to 16 local maxima competently. We approximate
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temporal context calculations by storing up to F low resolution previous frame

buffer objects and combine them using hardware blending and an 1D ramp texture

storing the pre-calculated logarithmically attenuated function (Equation 5.2). We

initialized our model equations using the the weights estimated in Section 5.3.

The Texel Engine C-LOD’s Texel Engine constantly monitors object predic-

tions derived from our attention model. A special 2D texture is updated that

works as a material quality lookup table (Figures 5.10, 5.11). The columns of the

texture correspond to all object/material combinations found in a scene and each

row represents a LOD for all object/material combinations. A higher row number

(bottom rows in the table) signifies a more aggressive simplification overall. Intro-

ducing a simplification for object/material combination x in row y imposes that

all subsequent rows have the same or lower quality for x. This restriction main-

tains visual coherence between LODs and induces the smallest possible number of

quality reductions. As a result, values over the diagonal of the texture are always

the highest (white) signifying the highest quality possible. The system updates

the texture once per second in synchronization with camera movement.

Figure 5.10: The Texel Engine precomputed texture used for communicating
LOD selections. The columns of the texture correspond to all object/material
combinations found in a scene and each row represents a LOD for all object/ma-
terial combinations. A higher row number (bottom rows in the table) signifies
a more aggressive simplification overall. Darker color denotes a lower visual

fidelity LOD

The Bootstrapper The interaction between the graphics processor, CPU and

memory of a mobile device is not trivial. When bootstrapping, C-LOD performs
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Figure 5.11: The C-LOD system architecture.

system profiling. The materials managed are initially rendered at their lowest

quality. Then, in rapid succession, the quality level of each object’s material is

increased while frame rate is monitored. This procedure determines a scale factor

that controls the aggressiveness of simplifications by the Texel Engine.

The Manager A Finite State Machine (FSM) monitors frame rate during exe-

cution. When frame rate drops and motion is detected, a counter is increased.

This counter is communicated to all managed materials. A re-mapped object ID

of each object is appointed as the u texture coordinate to sample the look-up table

texture and the counter variable as the v texture coordinate. The sampled value is

communicated to the fragment shader where it controls a conditional branch that

selects the appropriate LOD for the shader or acts as an iteration counter, e.g.

for ray marching in the parallax occlusion mapping shader. Updating the counter

only when camera moves, reduces luminance offsets and flickering effects. Frame

rate is constantly re-evaluated and the counter is increased/decreased to maintain

the best LOD for the current conditions (Figure 5.11).



Chapter 5 108

5.5 Evaluation of C-LOD

We evaluated C-LOD’s efficacy both via eye tracking and by acquiring GPU per-

formance data on a mobile device. We also measured battery performance.

Model Accuracy To measure the model’s accuracy in predicting attention we

performed an experiment on the eye-tracked HMD set-up of our lab.

Design To empirically verify that changes in LOD were not perceived and did not

affect attention deployment, we rendered a scene consisting of 50k triangles and

complex pixel shaders twice. In the first version of the scene (HQ), all effects

were set in the highest quality possible. In the second condition (C-LOD) quality

was managed by our system. The rendering was performed on a high-end desktop

computer to eliminate fluctuations in the frame rate that would have occurred in a

tablet device inadvertently affecting attention deployment. The FOV of the HMD

was restricted to 40 degrees horizontally and 23 degrees vertically to simulate a

10.1” tablet held at a 30cm observer distance [Slater et al., 2010]. Participants

were asked to find and collect seven objects placed in consistent, inconsistent,

physically isolated, contextually compound, contextually isolated locations and in

a canonical/non-canonical form. In total, 22 people participated (2 female, mean

age 22), with 11 people in each of the two conditions.

Results In total, 88, 404 object fixations were recorded for all participants (Figure

5.12). Given that human attention may be directed at multiple foci [Awh and

Pashler, 2000], we recorded the three most prominent objects predicted to be fix-

ated by our system for each frame of the simulation. We defined three quantitative

estimators to denote the ratio of frames that gaze was allocated in an increasingly

larger subset of the predicted objects, to the total number of simulation frames.

A baseline R estimator was defined that selects a random object in the FOV for

each frame. Both conditions yielded similar results. We summarize the estima-

tors and their results in Table 5.2. In short, the addition of the C-LOD changes
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Est. Object gazed HQ C-LOD Total

R random object < 5% < 5% < 5%
E1 1st prediction 40% 42.3% 41.1%
E2 1st or 2nd 69.9% 74.8% 72.3%
E3 1st or 2nd or 3d 86.9% 92.7% 89.7%

Table 5.2: The ratio of frames that the attended object was predicted cor-
rectly for the high quality condition, the C-LOD managed condition and in
total. E1 denotes that the gazed object matches the first prediction. E2 de-
notes that the gazed object matches either the first or the second predicted
object. E3 denotes that the gazed object matches either the first, or the second

or the third object.

did not alter gaze performance, and thus were most likely not perceived by the

participants.

Figure 5.12: Our validation tool indicates the subject’s gaze point with
magenta colored beams. The green beams indicate predictions by our attention

model.

Model Efficiency To assess the impact of C-LOD on GPU performance we re-

constructed 2, 947 seconds of player motion of both experimental conditions on an

Android quad-core Cortex A9 1.6GHz OpenGL ES2.0 mobile device and sampled

the frame-rate at a 5Hz rate. A total of 17, 681 frame rate samples were collected.

An independent-samples t-test was conducted, revealing a significant difference
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between the HQ (M = 24.05, SD = 2.92) and C-LOD (M = 25.6, SD = 1.33)

conditions; t(8, 418) = −44.16, p < 0.0001. The C-LOD condition exhibits a con-

sistently stabler frame rate and provides a slightly higher mean frame rate when

compared to the HQ quality setting (Figure 5.13). The Android Debug Bridge

(ADB) and Tracer for OpenGL tools were employed to conduct a deep frame

inspection. C-LOD estimations run for 4ms on average per frame. Given the in-

crease in mean frame rate between the two conditions it can be concluded that

this cost is amortized between frames.

Figure 5.13: Frame time for 128 random sequential frames of the HQ and
C-LOD conditions. Notice the intense fluctuation of the frame time in the HQ

condition when compared to the C-LOD condition.

Battery life improvement Quering ADB indicated that the battery’s average

voltage drop was 21mVolts greater for the HQ condition versus the C-LOD man-

aged condition. This indicates an increased discharge rate that was also portrayed

in the total run time. Player motion data from the validation experiment were re-

played in the HQ and C-LOD settings until battery run out. The C-LOD condition

lasted 249 minutes; the HQ condition lasted for 233 minutes.

Discussion Results indicate that C-LOD identifies the observed object 8 times

better than a random estimator in the worst case (Table 5.2). For three attended
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objects prediction rate approaches 90%. This also suggests that quality reductions

go mostly unnoticed. Integrating C-LOD in a mobile 3D graphics application

stabilizes frame rate without sacrificing perceived quality and boosts battery run

time by 6.5% (Figure 5.13).

5.6 Chapter Summary

We presented an extension to the HLSM (presented in Chapter 4) by introducing

four novel factors that affect attention deployment: object canonical form, con-

textual singletoness, feature uniqueness and temporal context. We acquired the

parameters to re-initialize our model in a perceptual experiment [Koulieris et al.,

2014b][Koulieris et al., 2014d].

We developed a LOD manager for mobile devices that maintains a constant frame-

rate by selecting an appropriate LOD for materials based on attention. We eval-

uate the performance our algorithm via eye-tracking and by acquiring GPU per-

formance data on mobile devices, confirming that complex effects such as parallax

occlusion mapping that are usually omitted in mobile devices can now be employed

without exhausting GPU capability. We verified an 6.5% increase in battery life

due to less GPU utilization.

In the following Chapter we present our attempt to employ machine learning for

gaze prediction, limiting the necessity to manually annotate objects with meta-

data. We also develop a gaze-aware local disparity manipulation algorithm.
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Gaze Prediction using Machine

Learning for Dynamic Stereo

Manipulation

Our work presented in previous chapters requires manual pre-processing in terms of

tagging to define object semantics and/or high-level scene descriptions (schemas)

and is restricted to scenes with static objects. In this section we present our latest

method that does not suffer from these restrictions. This novel, machine learning

method learns to predict gaze based on game state variables and ground truth

eye-tracking data. 1

6.1 Machine Learning-based Gaze Prediction

Our machine learning approach has three steps: identification of important game

variables and object classes, data collection and classifier training. We used the

Realistic First Person Shooter Toolkit, RFPSTM from the Unity3DTM Asset Store

1The contributions in this chapter are submitted for publication to the IEEE VR special issue
Transactions on Visualization and Computer Graphics.
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to demonstrate our approach. Screen-shots of the game are shown in Figures 6.1

and 6.3.

6.1.1 Identifying Important Variables and Object Classes

We investigated both variable range and employed a high pass filter on variable

derivatives to measure their variation. We run the filter on all internal variables

of the game as well as agent location/distance variables exposed by the game AI

(Figure 6.1). In our example game, the total number of game variables was over

300. Similar to other machine learning algorithms that perform dimensionality

reduction, we ignored the variables that exhibited little variability, focusing on

the most informative 5% of the variables. The feature vector thus consists of 13

game variables. These can be seen in Table 6.1; e.g., the variables Robotdx,dy,dz

encode the distance to the closest robot. All variables thus have valid values at

any given time.

Propdx Robotdx NPCdx Health Ammo

Propdy Robotdy NPCdy Hunger

Propdz Robotdz NPCdz Thirst

Table 6.1: The most informative variables that were selected for data collec-
tion. dx, dy, dz variables denote distances from the object.

To determine object classes, we parsed the game scene hierarchy generating a set Λ

of object categories or class labels used for training. Automatic parsing is possible

since game objects are not randomly named and usually follow standard naming

conventions [Gahan, 2013]. A common naming scheme is “Identificator - Modifier

- Variant - Footprint - Optical Distinction”. For example “Tree broadLeaved 01

2x2 Green”. We exploit this scheme by employing a 3D model name parser that

infers abstract object classes from object names, avoiding manual object tagging.

Using this approach, 25 categories were found (Table 6.2).
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Figure 6.1: Distance vectors exposed by game AI were recorded.

FallenLog Boat WoodFence Fence Can

Ammo Barrels Brickhouse Crate Door

Rock Tree Water Pickable Woodboard Pond

Platform Elevator Robot Soldier Bush

Zombie Mine Food Pickable Gun Pickable

Table 6.2: Automatically extracted class labels

The data collection step uses eye-tracking to identify the correlation between the

feature vector and the class labels, based on the object class being attended given

the current state of the game.

6.1.2 Data Collection Setup Details

Apparatus. The stimuli were displayed on a nVisorTM SX111 HMD, which has

stereo SXGA resolution and a FOV of 102 degrees horizontal by 64 degrees ver-

tical. Participants navigated through the VE using a keyboard and mouse to

simulate the FPS input paradigm; the HMD head tracker was disabled. Expe-

rienced gamers had no trouble controlling the game with standard WASD keys

despite the keyboard been occluded by the HMD. Eye-tracking information was

recorded using a twin-CCD binocular eye-tracker by Arrington ResearchTM, which

was attached to the HMD. The eye tracker was updated at a frequency of 30Hz.
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The FOV of the HMD was restricted to 47.8 degrees horizontally and 23 degrees

vertically to simulate a 24” display placed at a 60cm observer distance [Slater

et al., 2010]. This was necessary since the eye-tracked HMD of our lab is a partial

overlap HMD, which would otherwise force us to converge the virtual cameras.

However, the central 50 degrees of its FOV are fully overlapped. By setting the

horizontal FOV to be less then 50 degrees, no converging camera setup was neces-

sary allowing us to correctly test our parallel camera stereo grading method. This

is not a limitation of the method; employing a desktop eye tracker would yield

similar results.

Procedure. All participants underwent a RANDOT stereo vision test (Figure

6.2) [Simons, 1981] and an eye dominance test to select the dominant eye for

eye tracking before proceeding with the main experiment. Then the standard

Arrington ResearchTM eye tracker calibration procedure was performed by each

participant. We measured and set the correct IPD for each subject and selected

very conservative parameters for the stereo pair in order to obtain a fail-safe and

comfortable stereo for all participants, however, with minimal depth complexity.

We collected 200 minutes of game-play data in total. During game-play, game state

variables were recorded for every sample instance (e.g. ~Robotdx,dy,dz = (x, y, z)).

Eye-tracking fixations were used to identify the object via ray-casting and the

object together with the game state were inserted into a database.

Eye-Tracking Data De-projection. The eye tracker yields time-coded [x,y]

coordinates of fixations in the [0,1] range. To identify which object was fixated in

the game FOV, we de-projected the eye-gaze space [x,y] coordinates in the frus-

tum of the participant’s dominant eye. A ray was then reconstructed originating

from the dominant eye camera center and passing through the de-projected eye

coordinates. The ray was advanced through the scene. The first non-transparent

3D model bounding volume that the ray hit, was considered the attended object.

Stimuli. We modified the game level to have 60-90 seconds of game-play for data
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Figure 6.2: A RANDOT stereo test. Please use red/cyan anaglyph glasses;
best viewed on a monitor.

collection. The players are required to reach a flaming spaceship while avoiding

threatening robots, soldiers, zombies and mines (Figure 6.3). During data col-

lection, the starting position of the player and the spaceship were all similar for

every player and trial. An equal number of robots, soldiers, zombies and mines

were spawned in random locations in the level during game-play, ensuring neces-

sary variability in the stimuli, and a dense dataset of possible fixation patterns.

Pilot Study. A pilot study indicated that due to differences in individual per-

formance, it was best to fix play time to at least 20 minutes rather than fix the

number of trials. We use a speed based sample rate, with a low rate of 5 sam-

ples/second, which was increased linearly when the user moved faster through the

environment. This allowed a reliable sampling of the obstacle configuration space.

Participants. Ten people participated in the study (2 female, mean age 25). We

selected only experienced FPS gamers since our goal is to provide a stereo optimizer

for gamers, rather than general VE navigation. All participants played a training

level to (i) subjectively verify that participants were indeed experienced gamers,

and (ii) familiarize the participants with input controls and the VE. To avoid a
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Figure 6.3: The player must reach the flaming spaceship while avoiding sol-
diers, zombies, robots and mines.

training effect for a search task, participants were instructed to locate a spacecraft

during the training session. Participants were given candy as compensation.

Figure 6.4: The experimental setup.

At the end of data collection, our database contains training data T , having N

samples of M = 13 features (Table 6.1), T = (X1, y1), (X2, y2), ..., (XN , yN) that

will be used to train the DF. Each record ∈ T includes an input feature vector,

Xi = xi1, xi2, ..., xiM and the object class label yi ∈ Λ (Table 6.2) indicated by the

eye tracker at the specific moment that sample Xi was taken.
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6.1.3 DF Training and Tuning Details

To validate training accuracy, we use Out-of-Bag (OOB) estimates [Breiman, 1996,

2001], which have been shown to be as accurate as using a novel test set of the

same size as the training set. Tuning is necessary for the forest to grow optimally

in terms of OOB error. We validate test-time prediction accuracy experimentally

in Sec. 6.3.1.

We employed a custom-made ID3 dichotomizer method in C-Sharp to generate

a decision tree from the dataset. By employing a more sophisticated decision

tree generation implementation, higher tree throughput could be achieved. As

suggested in [Breiman, 2001], each tree was grown using mtry =
⌊
logM
log 2

⌋
random

features/game variables for each split of the tree and we have confirmed that this

value is the optimal splitting parameter in terms of OOB error.

The procedure yields ntree datasets of the same size as T , grown from a random

re-sampling of data in T with-replacement, N times for each dataset. 64% of the

data in T were used for the generation of each tree [Breiman, 2001]. This results in

T1, T2, ..., Tntree bootstrap datasets. For each Ti bootstrap dataset a tree is grown.

To classify any new input data D = x1, x2, . . . , xM we test them against each tree

to produce ntree results Y = y1, y2, ..., yntree. For classification, the prediction for

this data is the majority vote on this set (Figure 6.5).

Figure 6.5: Each new vector instance is tested against each tree. The majority
vote on this sample is the prediction of the DF.
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Tuning. In DFs, there is no need for cross-validation or a separate test set to get

an unbiased estimate of the test set error in contrast to other ML methods [Bishop

et al., 2006]. The study of error estimates for bagged classifiers in [Breiman, 1996]

indicates that the OOB estimate is as accurate as using a novel test set of the

same size as the training set. Using the OOB error estimate removes the need for

a set aside test set. Tuning is necessary for the forest to grow optimally in terms

of OOB error.

To estimate the OOB error [Breiman, 2001], after creating the ntree classifier

trees, we proceed for each (Xi, yi) in the original training set T and select all Tk

which do not include (Xi, yi). This subset is a set of boostrap datasets which

does not contain any record from the original dataset. This is known as the OOB

set. There exist N such subsets, one for each data record in the original dataset

T . The OOB classifier is the aggregation of votes only over Tk such that it does

not contain (Xi, yi). The OOB estimate for the generalization error is the error

rate of the OOB classifier on the training set, compared to known yi’s. Simply

put, the error rate for classification on the OOB portion of the data for each tree

is recorded and the same is done after permuting all predictor variables. The

difference between the two is then averaged over all trees, and then normalized by

the standard deviation of the differences. The OOB error estimate is estimated

internally, during forest generation (scripts in Appendix A.1).

Frequent Classes Under-sampling. When initially processing the data we en-

countered a class imbalance issue. Since the participants mostly attended moving

objects (soldiers, robots, etc.) in the environment, more samples for these objects

were recorded. When a subset of the classes accounts for the majority of the data,

the classifier achieves high accuracy by erroneously classifying all the observations

into these most frequent classes. This gives high accuracy for frequent classes, but

poor predictions for the least frequent ones. To partially compensate we randomly

under-sampled frequently sampled classes to balance the data and then trained

the model with this balanced data [Breiman, 1996].
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The final, balanced set T ′ spanned N = 55151 samples × M = 13 features &

Class. We optimized the number of trees to make the OOB error rate converge in

terms of a pre-selected error threshold. In the optimized dataset we only kept the

object categories for which successful prediction rate > 55% was achieved. The

prediction error rate for the 8 object categories that exceed this threshold can be

seen in Table 6.3. The imbalance between sampling rates described previously

explains why objects encountered less frequently have a higher prediction error

rate in the DF structure, e.g. “Food” and “Explosives”. The DF OOB estimate

of error rate was found to converge to 16.26% for 100 trees (Figure 6.6). The class

imbalance issue for complex games can be amended by increasing the DF training

samples. This is expected to increase the number of successfully predicted object

categories.

Robot Soldier Zombie Health Pack
7.1 11.2 19.9 20.9
Gun Pickable Explosives Ammo Food Pickable
25 36.3 37.8 40.6

Table 6.3: Prediction error rate for each object category.

Figure 6.6: Prediction error rate for each object category in relation to forest
growth.

6.2 Dynamic Stereo Grading based on Gaze

Now that we have a classifier that can predict gaze based on game state, we can

place attended objects inside the comfort zone and as close to the plane of zero
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disparity possible, i.e. onto the virtual screen plane. We describe this dynamic

stereo grading process next.

Our system linearly interpolates camera separation and asymmetric frustum pa-

rameters to avoid visual artifacts and observers becoming aware of the change. We

use the standard asymmetric viewing frusta, as presented among others by Woods

et al. [Woods et al., 1993] (details in Chapter 2).

Compared to previous stereo grading algorithms, e.g., [Oskam et al., 2011] our

method performs automatic localization of the disparity manipulation.

The trained DF component of the stereo grader receives a game state variable

vector as an input, and generates an object category prediction. The trained

data structure is serialized and stored on the disk. This speeds up application

loading time since tree generation only happens once. Our system is scalable;

the number of queries to the DF structure, is a parameter that depends on the

number of trees in the DF and system throughput. On our test setup (Intel Core

I7@3.4GHz, 8Gb RAM) a DF structure based on 100 decision trees responds at a

rate of 2 queries/second at runtime. However, this scales automatically: the faster

the machine, the more times the DF can be queried.

After obtaining a prediction, the system searches for same-category objects in the

viewing frustum, with three possible outcomes (Algorithm 1): A single, multiple

or no objects of that category are found. If a single object is found, its distance to

the camera is estimated via ray casting within the depth buffer. Then asymmetric

frustum parameters are estimated [Woods et al., 1993] that shift the zero-parallax

plane and thus the comfort zone close to the barycentre of that object. The

distance of the object from the zero-parallax plane is a parameter that defines

how deep or shallow these objects are perceived. To estimate this parameter we

take into account the object’s bounding volume radius. If multiple objects of that

category are found, the combined barycentre of these objects is estimated. The

zero-parallax plane is then brought close to the novel barycentre. If no object of
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that category is found this indicates that the predictor has failed. To achieve fail-

safe stereo, the zero parallax plane is brought close to the largest object adjacent

to the center of the view frustum.

Optimizations. The system is more aggressive when grading negative disparities

that cause more strain than positive disparities [Mendiburu, 2012]. If the estimated

negative disparity is larger than 3% of the distance of the virtual camera pair to the

virtual plane, our method pushes the objects that are closest to the screen further

back to minimize eye strain [Mendiburu, 2012]. By employing this approach, the

system manages to keep all important objects in terms of gaze inside the comfort

volume.

We linearly interpolate in time all camera transitions so that changes are not per-

ceived by an observer, similarly to [Oskam et al., 2011]. However, OSCAM adjusts

disparity in terms of the whole scene depth or by pre-determined manually selected

depth ratios that are least-squares fit to the desired mapping. OSCAM’s automatic

fail-safe mode suffers from cardboarding when grading scenes with large depths.

Our method generalizes OSCAM’s by minimizing cardboarding automatically.

6.3 Evaluation and Results

We experimentally validated the accuracy of our predictor. We also compared its

performance to a low-level saliency predictor and measured the perceived quality

of our stereo grading compared to other approaches.

The validation experiment was split in 3 sessions with a 10-minute break between

sessions to reduce eye strain. The 3 sessions were a pairwise comparison of Stan-

dard stereo (no disparity management), Ours and OSCAM: a: Standard <> Ours,

b: Ours <> OSCAM, c: OSCAM <> Standard. We used our HMD’s eye tracker
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Algorithm 1 : Stereo Manipulation Process

1: procedure Trace
2: for each second do
3: Obtain game state variable vector
4: Query DF to find object category
5: if No. of objects == 1 then
6: Estimate object barycentre
7: Find its distance from camera & adjust parameters to bring it to

the zero parallax plane
8: end if
9: if No. of objects > 1 then

10: Estimate combined object barycentre State Find its distance from
camera & adjust parameters to bring that to the zero parallax plane

11: end if
12: if No. of objects == 0 then
13: Find the largest object in the centre in the FOV
14: Estimate its barycentre
15: Find its distance from camera and bring this to the zero parallax

plane.
16: end if
17: end for
18: end procedure

to obtain gaze data only during session a. Ten participants not previously in-

volved in any related experiment (2 female, mean age 23.5) completed the sessions

successfully.

In each session players played 10 pairwise 10-second game rounds of predetermined

game-play, lasting in total for 200 seconds (10 pairs × 2 conditions × 10 sec).

The order in each pair was randomized. Session pairs intentionally imposed large

disparity changes: objects moving in the view frustum, camera wildly panning, etc.

Example conditions were designed having in mind common disparity events that

cause strain and affect depth perception in a game. For example, a moving object

(e.g., an enemy) is about to appear, and will be far away in depth. Depths should

be compressed in time to prepare the observer for the moving object to avoid

intense convergence motion. A second example is an object that is expected to

appear due to a lateral movement and which will introduce an extreme disparity.

Another example is an enemy that is shooting and threatening the -devoid of
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Figure 6.7: Visualization of successful attention predictions of our method
with green beams. The blue beams indicate eye tracking data. The grey beams
indicate failed predictions. The cyan colored squares indicate major frustum

reconfigurations.

ammo- player but the player will not look at the enemy, instead the player will

search for ammo lying on the floor.

6.3.1 DF-based Predictor Quality

We have already presented a validation of the training using OOB estimates in

Section 6.1; here we perform test-time evaluation of our DF predictor using eye-

tracking and compare to a state-of-the-art low-level predictor [Walther and Koch,

2006].

During session a, low level (x,y) predicted coordinates, DF predictions and eye

tracking data of the view frustum were obtained at a rate of 1Hz, 1Hz and 30Hz

respectively. An eye fixation was considered to be spatially stable if it lasted at

least 300 milliseconds [Salvucci and Goldberg, 2000]. Thus for every second we

obtain up to 3 possible fixation locations. We also define a baseline estimator R

that selects a random object in the same view frustum at 1Hz.
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Est. Object gazed Hits

R random object < 5%
Low x,y,radius 44.1%
DF object category 76.2%

Table 6.4: The ratio of frames for which the attended object was predicted
correctly during session a.

We perform a temporal window integration comparison for the 3 predictors (Low-

level, DF and baseline). Since the sampling rate of all three compared predictors

is 1Hz, if any of the user fixations within this one-second window are predicted

correctly by a method, we consider that a hit. In particular, for the low level

predictor, a prediction is considered a hit if the actual fixation lies inside a 128

pixel radius circle around the predicted x,y coordinates.

In our approach, if a fixation is on an object of a predicted category this is con-

sidered a prediction hit. We visualize our predictions compared to eye-tracking in

Fig. 6.7. Table 6.4 shows the success rate of low-level and DF predictors. Our DF

predictor outperforms the low level predictor when task-imposed constraints exist

(Fig. 6.8).

Figure 6.8: Comparison of low level gaze prediction (middle) and our DF
predictor (right) for the same scene (left). The player is threatened by the

soldier.

6.3.2 Dynamic Disparity Management

We used a protocol inspired by both [Lang et al., 2010, Oskam et al., 2011]. At

the end of each pair in a session, participants were asked to choose between the
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No display management Ours OSCAM

Figure 6.9: Left to right: No display management, Ours, OSCAM. Please use
red/cyan anaglyph glasses; best viewed on a monitor.

two sessions of a given pair, to determine (i) which one had more depth and (ii)

which was more comfortable in terms of diplopia and eye fatigue.

We received 600 answers in total (2 questions × 3 sessions × 10 conditions × 10

participants) (Table 6.5). For the first question about which condition had more

depth, our method outperforms both OSCAM and Standard. Our method was

preferred 71% of the time when compared to Standard, and 67% of the time when

compared to OSCAM. We also confirmed that OSCAM is preferred over standard

(68% of the time). All results are statistically significant (t-test, p < 0.01).

For question 2 on comfort our method and OSCAM outperform Standard being

preferred 73% and 78% of the time respectively. These results are statistically

significant (t-test, p < 0.01). However, when comparing our method to OSCAM

in terms of eye strain, participants did not have a clear preference (52% vs 48%

respectively, p = 0.27).

Ours/Stan. Ours/OSCAM OSCAM/Stan.
Depth Ours 71% Ours 67% OSCAM 68%

stdev: 14.4 stdev: 24.5 stdev: 7.9
Strain Ours 78% Ours 52 % OSCAM 78%

stdev: 13.3 stdev: 10.3 stdev: 6.3

Table 6.5: Preferred method of stereo grading for each question and session.
Ours<>OSCAM results for eye strain are non-significant.
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6.4 Chapter Summary

We presented our latest generation predictor that yields high prediction success

rates, is automatic, avoiding the need for manual tagging of objects and supports

object motion in contrast to our previous high level approach (Chapters 4 + 5).

However, it requires an eye-tracker in order to be trained.

The localized stereo grading approach presented provides better perceived depth

than previous global methods, while maintaining similar levels of viewing comfort.

In the following chapter we conclude the thesis discussing current limitations and

potential future applications
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Conclusion, Limitations and

Future Work

We presented two gaze prediction models that account for task and high level

saliency effects on visual attention. We developed three gaze-aware applications

that exploit the prediction accuracy of our models to adjust game level difficulty,

optimize GPU performance on mobile devices and reduce eye strain when watching

stereoscopic 3D content.

7.1 Limitations and Intuitions

Gaze prediction. The current version of both models does not take into account

low level image saliency which would otherwise further improve gaze prediction

accuracy. We plan to extend our model with low-level factors for more accurate

predictions when gross low level irregularities exist in an image.

The first object-semantics-based model requires object-class meta-data in order to

predict attention. The production-level working system will provide a taxonomy

128
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of objects in relation to scene schemata as a library limiting the need for further

experiments or manual input.

We expect that a trained instance of the machine learning-based model may be

extended to different games with similar mechanics. Our learning based predictor

could be used for additional applications, especially if the performance is improved.

If prediction becomes faster, it could be used to adjust LOD, depth-of-field or game

difficulty based on user gaze.

LOD and Game Balancing. The LOD manager only works with scenes where

object placement is not altered during rendering; only the camera may freely move

around the scene. We plan to investigate the performance of the proposed LOD

manager in dynamic scenes. Regarding our game balancing editor we would like

to evaluate our tool by presenting it to skilled experts in game level design.

Stereo manipulation. Although our experiments have focused on eye-glass-

based stereo displays, similar problems appear for any single-screen display that

supports stereo viewing [Masia et al., 2013]. Like all stereo grading methods, our

approach modifies depth and speed of objects in a scene. Even though speed

modification did not cause problems in our experiments, a more involved stereo-

motion speed-preserving optimization strategy [Kellnhofer et al., 2013] could be

required. Currently, the speed of the classifier is quite low (2 queries/second); a

more optimized implementation of DF’s would improve this speed. The training

phase required an eye-tracked HMD; the typical cost of such a setup is probably

a realistic option for a game-studio, however, a desktop eye tracker could be used

as well.

7.2 Future Work

Dynamic Game Balancing and AI. We intend to integrate our model in a game

engine for on-the-fly level difficulty adjustments and a smarter game AI. Objects
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could be repositioned dynamically resulting in an adjustable level of difficulty

depending on user performance so far. Object placement could automatically

shift after every re-spawn when a player comes back to life after being killed. A

smarter AI could use high level saliency data to spawn opponents that pop-out or

appear inconspicuously.

Cinematography. An attention based cinematography system could be devel-

oped that applies post-process effects based on attention. Simulating natural

effects such as depth-of-field, camera path generation, context-aware replay, cut-

scene generation, camera motion and dynamic lighting could benefit from a list

of potentially gazed objects based on high level saliency. It has been shown that

when these effects are dynamically adapted depending on gaze, users reproduce

distances better in a VE [Moehring et al., 2009].

In-App Advertising. Identifying salient areas in a game to place geometry

bearing corporate logos may improve in-app advertising since advertisements will

be more visible during game-play.

Production level stereo grading. Regarding stereo disparity manipulation

based on a machine learning predictor we demonstrated our ideas on a prototype

game level. In a production context, our approach could serve as a basis for the

development of a viable and attractive solution in game design. Training is easy

and can be incorporated to the existing game testing pipelines by simply adding an

eye tracker in the game testing rig. The trained model does not capture absolute

eye tracking coordinates but learns vergence patterns based on game mechanics.

Gaze prediction to improve eye-tracking. Real-time low quality eye-tracking

is feasible on mobile devices by acquiring images of the observer’s eye using the

front facing camera of a phone/tablet.

However, eye-tracking on mobiles suffers from all the standard issues of desktop

eye-tracking (e.g. eye drifting) in addition to specific weaknesses inherent to mobile

devices. In particular, eye-tracking on mobile devices by employing the front facing
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camera is hard for several reasons: (i) an infra-red light source is unavailable, thus

a clear glint image on the cornea can not be acquired, (ii) the front-facing cameras

are of low resolution, (iii) mobile devices have limited processing power, (iv) mobile

devices are portable, thus a. the distance between the camera and the eyes is not

standard, b. the head/device relation is not static and c. the environmental

lighting is out of control.

An ambitious extension of this research would be to increase the accuracy of eye-

tracking as estimated by the mobile device camera by probabilistically correlating

fixations with gaze predictions generated from a mobile-friendly attention model

which incorporates a high level saliency model based on semantics and a low level

saliency based on image characteristics optimizing the accuracy of sampled eye

data. The system proposed will generate attention predictions for the current

view of a computer graphics scene.
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Appendix

A.1 Analysis with R and Sample Scripts

The R language implements a variety of statistical and graphical techniques such

as linear and nonlinear modeling, classical statistical tests, classification and clus-

tering. R is extensible via functions and plug-ins. In this Appendix Sample R

Scripts of Chapters 4-6 are presented.

Chapter 4, Experiment 2 R-Code:

#read data into variable

datavar <- read.csv("exp1.csv")

#attach data variable

attach(datavar)

#display all data

dataFrame <- data.frame(datavar)

dataFrame

# represent a categorical variable numerically using as.numeric(VAR)

#dummy code the CONSISTENCY variable into CONS = 1 and INCONS = 0

dCONSISTENCY <- as.numeric(CONSISTENCY) - 1

132
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# represent a categorical variable numerically using as.numeric(VAR)

#dummy code the SINGLETONESS variable into COMP = 1 and SINGL = 0

dSINGLETONESS <- as.numeric(SINGLETONESS) - 1

#boxplot(TIME~SINGLETONESS*CONSISTENCY , data=dataFrame ,xlab =

"Semantic and Physical Context", ylab = "Time (seconds)", main = "")

boxplot(TIME~CONSISTENCY*SINGLETONESS , data=dataFrame ,

col=(c("orangered1","deepskyblue3")),

main="", ylab="Task Completion Time (seconds)")

#create a linear model using lm(FORMULA , DATAVAR)

onepredictor <-lm(TIME ~ dCONSISTENCY , datavar)

twopredictors <-lm(TIME ~ dSINGLETONESS + dCONSISTENCY , datavar)

#generate model summary

summary(onepredictor)

summary(twopredictors)

anova(onepredictor ,twopredictors)

Chapter 4, Experiment 3 R-Code:

#read data into variable

datavar <- read.csv("exp2.csv")

#attach data variable

attach(datavar)

#display all data

dataFrame <- data.frame(datavar)

dataFrame

# represent a categorical variable numerically using as.numeric(VAR)

#dummy code the CONSISTENCY variable into CONS = 1 and INCONS = 0

dCONSISTENCY <- as.numeric(CONSISTENCY) - 1

# represent a categorical variable numerically using as.numeric(VAR)

#dummy code the SINGLETONESS variable into COMP = 1 and SINGL = 0

dSINGLETONESS <- as.numeric(SINGLETONESS) - 1

#boxplot(TIME~SINGLETONESS*CONSISTENCY , data=dataFrame ,xlab = "Month",
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ylab = "Maximum Temperature", main = "Temperature at Southampton Weather

Station (1950 -1999)")

boxplot(TIME~CONSISTENCY*SINGLETONESS , data=dataFrame ,

col=(c("orangered4","deepskyblue4")),

main="", ylab="Task Completion Time (seconds)")

#create a linear model using lm(FORMULA , DATAVAR)

onepredictor <-lm(TIME ~ dSINGLETONESS , datavar)

twopredictors <-lm(TIME ~ dCONSISTENCY + dSINGLETONESS , datavar)

#generate model summary

summary(onepredictor)

summary(twopredictors)

anova(onepredictor ,twopredictors)

Chapter 4, Validation experiment R-Code:

#read data into variable

datavar <- read.csv("validation.csv")

#attach data variable

attach(datavar)

#display all data

dataFrame <- data.frame(datavar)

dataFrame

# represent a categorical variable numerically using as.numeric(VAR)

#dummy code the CONSISTENCY variable into CONS = 1 and INCONS = 0

dCONDITION <- as.numeric(CONDITION) - 1

#boxplot(TIME~SINGLETONESS*CONSISTENCY , data=dataFrame ,xlab = "Semantic

and Physical Context", ylab = "Time (seconds)", main = "")

boxplot(TIME~CONDITION , data=dataFrame ,

col=(c("green1","red1")),

main="", ylab="Task Completion Time (seconds)")

#create a linear model using lm(FORMULA , DATAVAR)

onepredictor <-lm(TIME ~ dCONDITION , datavar)

#generate model summary
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summary(onepredictor)

t.test(TIME~CONDITION)

Chapter 5, Main experiment R-Code:

library(lattice)

#read data into variable

datavar <- read.csv("timings.csv")

#attach data variable

attach(datavar)

#display all data

dataFrame <- data.frame(datavar)

dataFrame

dSINGLETONESS <- as.numeric(SINGLETONESS) - 1

dFORM <- as.numeric(FORM) - 1

#boxplot(TIME~SINGLETONESS*CONSISTENCY , data=dataFrame ,xlab = "Semantic

and Physical Context", ylab = "Time (seconds)", main = "")

# Example of a Bagplot

#library(aplpack)

#attach(dataFrame)

#bagplot(FORM ,TIME , xlab="Car Weight", ylab="Miles Per Gallon",

# main="Bagplot Example")

#qplot(FORM , TIME , data=dataFrame , geom=c("boxplot", "jitter"),

# fill=FORM , main="Mileage by Gear Number",

# xlab="", ylab="Miles per Gallon")

#qplot(TIME , SINGLETONESS , data=dataFrame ,

# facets=SINGLETONESS~FORM , size=I(2),

# xlab="Horsepower", ylab="Miles per Gallon")

boxplot(TIME~SINGLETONESS*FORM , data=dataFrame , notch=TRUE ,

main="", ylab="Task Completion Time (seconds)")

#points(TIME~FORM , pch = 1)

#beanplot(TIME , TIME , horizontal=T,
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# names=c("Business", "Law"),

# col=c("blue", "gold"))

## add some vertical jittering (use ‘factor=‘ to change its amount in both cases)

#dotplot(TIME~SINGLETONESS , data=dataFrame , jitter.x=TRUE , factor =0.5)

#stripplot(TIME~FORM , data=dataFrame , jitter.x=TRUE , factor =0.5)

#create a linear model using lm(FORMULA , DATAVAR)

onepredictor <-lm(TIME ~ dSINGLETONESS , datavar)

singlepredictor <-lm(TIME ~ dFORM , datavar)

twopredictors <-lm(TIME ~ dFORM + dSINGLETONESS , datavar)

#generate model summary

summary(onepredictor)

summary(singlepredictor)

summary(twopredictors)

anova(onepredictor ,twopredictors)

Chapter 6, Checking Random Forests R-Code:

library(randomForest)

D = read.csv ("8cats.csv", header = T)

rf = randomForest(as.factor(CATEGORY) ~ ., data=na.omit(D),

importance = TRUE , keep.forest=TRUE , mtry=4, ntree =100, do.trace =100)

plot(rf)

importance(rf)

varImpPlot(rf)
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A.2 Object Lists, Consent Form, Storylines

 
 

Experiment 1 – Object List 

Coffee Shop 

1. Tin Opener 

2. Receipt 

3. Vending Machine 

4. Suitcase 

5. Barrel 

6. Books 

7. Spectacles 

8. Tea Tray 

9. Train Ticket 

10. Newspaper 

11. Spectacle Case 

12. Trash Can 

13. Painting  

14. Bullet Casings 

15.  Sofa 

16. Chair 

17. Product Brochure 

18. Coffee Machine 

19. Candlestick 

20. Mobile Phone 

21. Pruning Hook 

22. Water Clock  

23. Picture Frame 

24. First Aid Kit 

25. Flowers 

26. Petrol Canister 

27. Bottled Water 

28. Wooden Box 

29. Barricade 

30. Bench 

31. Toy plane 

32. Piano 

33. Dishes 

34. Record Player 

35. Wallet 

36. Glasses 

37. Fire Hydrant 

38. Wall Clock 

39. Coffee Packs 

40. Notepad 

41. Shovel 

42. Pipe 

43. Cash Register 

44. Telephone 

45. Small Table 

46. Axe 

47. Cigarettes  

48. Banana Leaf 

49. Lamp 

50. Water Dispenser 

 

 

 

Coffee Shop Counter 

1. Receipt 

2. Books 

3. Spectacles 

4. Tea Tray 

5. Train Ticket 

6. Newspaper 

7. Spectacle Case 

8. Bullet Casings 

9. Product Brochure 

10. Coffee Machine 

11. Candlestick 

12. Mobile Phone 

13. Picture Frame  

14. Bottled Water 

15. Barricade 

16. Toy Plane 

17. Dishes 

18. Wallet 

19. Glasses  

20. Coffee Packs 

21. Shovel 

22. Cash Register 

23. Telephone 

24. Cigarettes 

25. Banana Leaf 

Car 

1. Tin Opener 

2. Receipt 

3. Suitcase 

4. Books 

5. Spectacles 

6. Train Ticket 

7. Newspaper 

8. Spectacle Case 

9. Bullet Casings 

10. Pruning Hook 

11. Water Clock 

12. Picture Frame 

13. First Aid Kit 

14. Flowers  

15. Petrol Canister 

16. Bottled Water 

17. Wallet 

18. Notepad 

19. Shovel 

20. Pipe 

21. Telephone 

22. Axe 

23. Cigarettes  

24. Banana Leaf 

25. Lamp 
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Context-aware Gaze Prediction Evaluation Study 

Consent Form 

You are requested to fill out a questionnaire which will help the research and experimental stage of a doctoral 

thesis carried out at the Electronic and Computer Engineering Department, Technical University of Crete. The 

experiment is performed by the PhD candidate George-Alex Koulieris supervised by Associate Professor 

Katerina Mania. The experiment investigates the modeling of high-level saliency optical characteristics of a 

virtual environment, both semantically and in terms of object topology. The experiment is expected to last no 

more than 20 minutes. We will use your data anonymously along with the data of other participants. 

Do you understand the consent form? 
 

Yes No 

Do you grant permission to process your data? 
 

Yes No 

Are you at least 18 years old? 
 

Yes No 

 

Name/Surname  

E-mail  

Age Group 18-22       23-27       28-32       33-37         38-42        > 43 

Gender Male / Female 

Date ___ / ___ / 201_ 

If you are a student please 
select 

 
Undergraduate      Graduate        PhD Candidate 

 

Current Status 

 
Student           Research 

 
Academic 

 
Other (report) ______________ 

 
 
 

 

Signature 
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Story Line 

Search task 

“Adrian Black works at the Coffee Shop that you will see. He is married, but very 

unhappy with his marriage. For this reason, Adrian engages in an affair with his 

customer Nicole and decides to start a new life with her. As he was too cowardly to file 

for divorce, he decides to fake his death to cover a getaway with her. He damps his car 

outside of his workplace, spoiling the car interior with blood from a live pig that he 

bought, but he was careless and left the receipt for the pig behind. He pretends that the 

murderer hides the body leaving the victim’s spectacles and wallet behind as a clue of a 

pretentious murder. You, in the role of detective Cole Phelps, have a hunch that the 

murder is staged. Find and collect as fast as you can, clues suggesting that Adrian is still 

alive, i.e. his spectacles, his wallet and the pig purchase receipt.” 

Non-Search task 

“Adrian Black works at the Coffee Shop that you will see. He is married, but very 

unhappy with his marriage. For this reason, Adrian engages in an affair with his 

customer Nicole and decides to start a new life with her. As he was too cowardly to file 

for divorce, he decides to fake his death to cover a getaway with her. He damps his car 

outside of his workplace, spoiling the car interior with blood from a live pig that he 

bought, but he was careless and left the receipt for the pig behind. You, in the role of 

detective Cole Phelps, have a hunch that the murder is staged. Find and collect as fast 

as you can, clues suggesting that Adrian is still alive, i.e. the pig purchase receipt, a clue 

that he was having an affair with Nicole, and a clue that he was planning to leave town 

with her.” 
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