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Abstract

The objective of this paper is the regulation of freeway traffic by means
of optimal control techniques. A first innovative aspect of the proposed
approach is the adopted objective function in which, besides the reduction
of traffic congestion (which is typically considered in traffic control schemes),
the minimization of traffic emissions is also included. Moreover, a multi-
class framework is defined in which two classes of vehicles (cars and trucks)
are explicitly modelled, and specific control actions for each vehicle class are
sought. This results in the formulation of a multi-objective optimal control
problem which is described in the paper and for which a specific solution
algorithm is developed and used. The algorithm exploits a specific version
of the feasible direction algorithm whose effectiveness is demonstrated in the
paper by means of simulation results.

Keywords: Freeway traffic control, two-class traffic model and control,
ramp metering, traffic emissions

1. Introduction

Phenomena of recurrent and nonrecurrent congestion in freeway systems
can be relieved by applying proper control techniques, that have been studied
by researchers for some decades. A very successful and widespread control
measure is ramp metering, which allows to control the traffic flow enter-
ing the freeway mainstream by using traffic lights at the on-ramps. Ramp
metering is applied to achieve maximum mainline throughput downstream
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of the ramp (local control) or, more generally, optimal traffic conditions in
the freeway network (networkwide approaches) [1]. One of the first effec-
tive ramp metering strategies is the local feedback traffic controller ALINEA
[2], dating back to the Nineties, that has been applied in many freeways all
over the world. It has been shown that ALINEA, despite being a local con-
troller, is quite effective in increasing the motorway throughput [3]. During
the years, ALINEA has been further extended, resulting in a proportional-
integral version, called PI-ALINEA [4], or through a coordination of the local
ramp-metering actions, thus enabling the linked control of the inflow from
consecutive on-ramps [5].

Different traffic control methodologies have been developed in the last
decades, also including approaches based on optimization or optimal control
algorithms [6]. In some works, the problem of controlling a freeway is formu-
lated as a discrete-time constrained nonlinear optimal control problem (see
[7] and the references therein), whose numerical solution is often hard to find
by directly using the available Nonlinear Programming codes, because of the
problem dimensions and complexity. A very efficient numerical solution has
been adopted in the optimal freeway traffic control tool AMOC [8, 9], by
using the so-called feasible direction algorithm. Then, more sophisticated
control architectures have been investigated, again based on AMOC, such
as for instance the three-layer hierarchical control approach described in [10]
and the mainstream traffic flow control scheme proposed in [11].

Optimal control algorithms may be embedded in Model Predictive Con-
trol schemes, using real-time measurements (feedback) as initial states. For
instance, in [12, 13] nonlinear MPC frameworks adopting the macroscopic
model METANET [14] for prediction are presented and described. Also in
these works, nonlinear optimization problems have to be solved, since the
considered prediction model is nonlinear, thus efficient numerical solution al-
gorithms are needed to enable on-line application for large freeway networks.
In other approaches, e.g. [15, 16, 17], the considered prediction models are
rewritten in linear form by adding integer and binary variables to the finite
horizon optimal control problem, which turns out to have a mixed-integer
linear or quadratic programming form.

In most of the research works dealing with ramp metering control the
main objective of the controller is to minimize congestion, often measured
in terms of total time spent by the drivers in the traffic network [18]. How-
ever, the congestion reduction is not the only important objective to pursue,
since there are other aspects to be considered in traffic control schemes, such
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as the minimization of traffic emissions. For instance, in [19] a control ap-
proach to minimize both travel times and traffic emissions on freeways is
discussed, while [20] presents a dynamic model for the dispersion of freeway
traffic emissions. Moreover, [21] proposes a parameterized MPC approach
where the travel times and the traffic emissions are minimized jointly, and in
[22] an MPC scheme is considered in which the macroscopic traffic flow mod-
els and the microscopic emission and fuel consumption models are properly
integrated.

In order to explicitly consider traffic emissions as an objective to be min-
imized, models for evaluating hot exhaust emissions are needed. Emission
models have been studied for some decades [23] and can be classified accord-
ing to the geographical scale, the accuracy of the model, and the nature of the
emission calculation approach. Among others, simple but very widespread
models are the so-called average-speed emission models which assume that
the average emission factor for a certain pollutant and a given type of vehicle
only depends on the average speed during a trip [24]. Different average-speed
models have been studied and progressively updated including new vehicle
classifications and new emission factors, on the basis of real measured data
obtained from different sources [25, 26].

In this paper, we propose a freeway traffic control approach which con-
siders, as control objectives, both the minimization of traffic emissions and
the reduction of traffic congestion. A similar idea was proposed in previ-
ous works [27, 28], where the control scheme was based on a local regulator
inspired by ALINEA. In this work, instead, an optimal control problem is
formulated and solved by applying the feasible direction algorithm and, in
particular, a specific version of this algorithm which adopts the derivative
backpropagation method RPROP, the effectiveness of which has been widely
proven for different traffic control applications [9].

A further characteristic of this work is that a two-class macroscopic traffic
model and a two-class controller are considered, i.e. two classes of vehicles
(cars and trucks) are explicitly modelled and the control scheme is designed
in order to define specific control actions for each vehicle class. First of all,
the use of a two-class traffic model allows to represent the system behaviour
more accurately than with a one-class macroscopic model that considers the
whole traffic as a homogeneous fluid. Moreover, from the point of view of
control, it is possible to devise separate control actions for the two vehicle
classes, for instance by differently weighing the presence of cars and trucks
in the freeway system; in practice, this calls for separate on-ramp lanes and
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signals for cars and trucks, something that is anyhow routinely practiced in
some countries (e.g. in The Netherlands and in Australia). Some multi-class
models can be found in the literature, such as for instance in [29] introducing
a gas-kinetic traffic flow model using a platoon-based multi-class description
of traffic flows, and in [30] where the LWR model is extended to include
heterogeneous drivers. A more recent multi-class model is FASTLANE, a first
order traffic model which considers state-dependent passenger car equivalents
[31]. Moreover, some Model Predictive Control approaches for multi-class
ramp metering can be found in [32, 33, 34]. The two-class model presented
in this paper extends the model proposed in [35], which was based on the
macroscopic traffic flow model METANET.

This paper is organized as follows. Section 2 introduces the modeling
framework, i.e. describes the two-class traffic model, the emission model
and the performance indicators used in the paper. Section 3 is devoted to
the optimal control problem formulation, whereas Section 4 describes the
numerical solution algorithm adopted in this work. Then, in Section 5 some
simulation results are reported and discussed, and the conclusions are drawn
in Section 6.

2. The modeling framework

This section reports, first of all, the two-class macroscopic traffic flow
model adopted for representing the freeway dynamic behaviour, then, the
average-speed emission model considered in the paper and, finally, some per-
formance indicators which are considered of particular interest for this work.
Some of these indicators are used in the subsequent definition of the proposed
control scheme.

2.1. The two-class traffic model

The considered two-class macroscopic traffic flow model is based on the
division of the freeway stretch in N sections and the discretization of the
time horizon in K time steps. In the following, k = 0, . . . , K denotes the
temporal stage, i = 1, . . . , N indicates the section of the freeway stretch, and
c = 1, 2 represents the vehicle class (c = 1 represents the class of cars whereas
c = 2 indicates the class of trucks). Moreover, let T indicate the sample time
interval and Li the length of section i.

The main aggregate variables of the considered model are specifically
defined for each class of vehicles, as listed in the following (see also Fig. 1):
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ρi,1(k), ρi,2(k)

vi,1(k), vi,2(k)

si,1(k), si,2(k)

qi,1(k), qi,2(k)
ri,1(k)

ri,2(k)di,1(k)

di,2(k)

li,1(k)
li,2(k)

Section i− 1 Section i Section i+ 1

Figure 1: The model variables for a generic freeway section i at a generic time step k.

• ρi,c(k) is the traffic density of class c in section i at time kT (expressed
in vehicles of class c per kilometre);

• vi,c(k) is the mean traffic speed of class c in section i at time kT (ex-
pressed in kilometre per hour);

• qi,c(k) is the traffic volume of class c leaving section i during time
interval [kT, (k + 1)T ) (expressed in vehicles of class c per hour);

• li,c(k) is the queue length of vehicles of class c waiting on the on-ramp
of section i at time kT (expressed in vehicles of class c);

• di,c(k) is the traffic volume of class c requiring to access section i from
the on-ramp during time interval [kT, (k + 1)T ) (expressed in vehicles
of class c per hour);

• ri,c(k) is the on-ramp traffic volume of class c entering section i during
time interval [kT, (k + 1)T ) (expressed in vehicles of class c per hour);

• si,c(k) is the off-ramp traffic volume of class c exiting section i during
time interval [kT, (k + 1)T ) (expressed in vehicles of class c per hour).

In case a certain section i is not provided with on-ramps and off-ramps,
the corresponding variables ri,c(k), si,c(k), li,c(k) and di,c(k), k = 0, . . . , K−1,
c = 1, 2, are fixed equal to 0. To correctly define the two-class model, some
variables referred to the total flow of vehicles are also required, as follows:

• ρi(k) is the total traffic density in section i at time kT (expressed in
cars per kilometre);
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• ri(k) is the total on-ramp traffic volume entering section i during time
interval [kT, (k + 1)T ) (expressed in cars per hour).

The considered model includes some traffic parameters. Specifically, vfi,c
is the free-flow speed referred to class c = 1, 2 and section i = 1, . . . , N
(expressed in kilometre per hour), ρcri is the critical density of section i =
1, . . . , N (expressed in cars per kilometre), ρmax

i is the jam density of section
i = 1, . . . , N (expressed in cars per kilometre), rmax

i,c is the on-ramp capacity
for class c = 1, 2 and section i = 1, . . . , N (expressed in vehicles of class c
per hour). The choice of expressing the quantities ρi(k), ri(k), ρ

cr
i and ρmax

i

in terms of cars is not mandatory (i.e. the same quantities could have been
referred to trucks alternatively) but is the most common in the literature.

Moreover, the parameter ς is a conversion factor between cars and trucks.
Its meaning is analogous to the definition of passenger car equivalents (PCE),
that are considered as the number of passenger cars displaced by a single
heavy vehicle of a particular type under prevailing roadway, traffic and con-
trol conditions [36]. The factor ς depends on the considered freeway portion
and the traffic conditions present in it, as discussed for instance in [37]. In
this work a constant factor ς is considered, assuming that it has been suitably
estimated on the basis of real data.

The two-class traffic model is given by the following dynamic equations

ρi,c(k + 1) = ρi,c(k) +
T

Li

[

qi−1,c(k)− qi,c(k) + ri,c(k)− si,c(k)

]

c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (1)

vi,c(k + 1) = vi,c(k) +
T

τc

[

Vi,c(k)− vi,c(k)

]

+
T

Li

vi,c(k)
(

vi−1,c(k)− vi,c(k)
)

−
νcT

(

ρi+1(k)− ρi(k)
)

τcLi

(

ρi(k) + χc

) − δonc T
vi,c(k)ri(k)

Li(ρi(k) + χc)

c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (2)

li,c(k + 1) = li,c(k) + T
[

di,c(k)− ri,c(k)
]

c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (3)
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where τc, νc, χc, δ
on
c , c = 1, 2, are suitable parameters which in general can

be related to each vehicle class. In a real application, these parameters have
to be properly tuned with specific identification procedures.

The traffic flow in (1) is obtained as

qi,c(k) = ρi,c(k) · vi,c(k) c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (4)

whereas the total density and the total on-ramp traffic volume used in (2)
can be computed respectively as

ρi(k) = ρi,1(k) + ςρi,2(k) i = 1, . . . , N, k = 0, . . . , K − 1 (5)

ri(k) = ri,1(k) + ςri,2(k) i = 1, . . . , N, k = 0, . . . , K − 1 (6)

The steady-state speed density relation Vi,c(k) in (2) can be expressed as:

Vi,c(k) = vfi,c ·

[

1−

(

ρi(k)

ρmax
i

)lc]mc

c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (7)

where lc, mc, c = 1, 2, are other model parameters specific for each vehicle
class. It is important to note that the steady-state speed density relation for
class c depends on the overall traffic density.

If the freeway system is controlled, the on-ramp entering flow ri,c(k) is
a portion µi,c(k) of the flow r̄i,c(k) that would enter the mainstream if the
ramp were not controlled. Therefore µi,c(k) ∈ [µmin

i,c , 1] is the metering rate
for the on-ramp of section i at time kT for class c, and when µi,c(k) is set
equal to 1 no ramp metering is applied. Then, the following relations hold:

ri,c(k) = µi,c(k) · r̄i,c(k) c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (8)

r̄i,c(k) = min

{

di,c(k) +
li,c(k)

T
, rmax

i,c , rmax
i,c ·

ρmax
i − ρi(k)

ρmax
i − ρcri

}

c = 1, 2, i = 1, . . . , N, k = 0, . . . , K − 1 (9)
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2.2. The average-speed emission model

The average-speed emission models are based on the assumption that
the average emissions for a certain pollutant and for a certain type of vehicle
only depend on the average speed during a trip. Since analysing the emission
models that characterize all the possible typologies of vehicles is out of the
scope of this work, in this paper we consider a simplified traffic composition.
In particular, as regards the first class of vehicles, we only consider gasoline
cars, split in four legislation emission categories (from Euro 1 to Euro 4).
For the second class of vehicles, we consider only the case of roads with no
slope and half loaded trucks. In case more complex traffic compositions were
taken into account, the methodology proposed in this paper could be easily
extended.
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Figure 2: CO emissions for a car (2a) and for a truck (2b).

Let us start from the first class of vehicles, i.e. cars. Relying on the
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COPERT model proposed in [26], the hot emissions for a gasoline passenger
car of legislation emission category j are calculated as a function of the mean
speed v, with v between 10 and 130 [km/h], i.e.

Ξj
1(v) =

aj1 + ej1v + f j
1v

2

1 + bj1v + dj1v
2

(10)

where aj1, b
j
1, d

j
1, e

j
1 and f j

1 , j = 1, . . . , 4, are parameters assuming specific
values depending on the pollutant under study.

The COPERT model [26] for trucks, in case of roads with no slope and
half loaded vehicles, is the following

Ξ2(v) = a2 +
b2

1 + exp(−c2 + d2 ln(v) + e2v)
(11)

where a2, b2, c2, d2 and e2 are specific parameters and (11) is defined for
values of the mean speed v between 12 and 86 [km/h].

Fig. 2 shows the curves of CO emissions depending on the mean speed,
respectively according to (10) and (11), with the values of the parameters
reported in [26].

2.3. Performance indicators

The aim of this work is to control a freeway stretch via ramp metering in
order to reduce both congestion and total traffic emissions. It is then useful
to introduce some indicators which take into account these aspects.

Let us start from the indicators of traffic emissions. First of all, the
emissions in the mainstream (referred to the entire time horizon and the
whole freeway stretch), denoted as ME, can be computed by adopting the
average-speed models referred to one single vehicle, multiplied by the number
of vehicles, as

ME =

K−1
∑

k=0

N
∑

i=1

[ 4
∑

j=1

Li ·ρi,1(k)·γ
j
1 ·Ξ

j
1

(

vi,1(k)
)

]

+

[

Li ·ρi,2(k)·Ξ2

(

vi,2(k)
)

]

(12)

The first term in (12) considers the average-speed model (10) referred to
one single car of category j, multiplied by the number of these cars, where γj1
represents the composition rate of cars of legislation emission j. Obviously,
these composition rates must be such that

∑4
j=1 γ

j
1 = 1. The second term

in (12) considers the average-speed model (11) referred to one single truck,
multiplied by the number of trucks.
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The emissions in the on-ramp (referred to the entire time horizon and the
whole freeway stretch), denoted as RE, are computed as

RE =

K−1
∑

k=0

N
∑

i=1

[ 4
∑

j=1

γj1 · α
j
1 · li,1(k)

]

+

[

α2 · li,2(k)

]

(13)

where αj
1, j = 1, . . . , 4, are constant emission factors obtained from (10) in

case of minimum average speed v = 10 [km/h]. Analogously, α2 is obtained
from (11) with v = 12 [km/h].

Finally, the Total Emissions TE in the freeway can be computed as

TE =ME +RE (14)

Besides the emissions in the freeway, other important indexes regard the
capability of the control scheme to reduce congestion. In the following, some
very common performance indexes adopted in the literature (see for instance
[38]) are described, properly adapted to the two-class case. First of all, the
Total Time Spent (TTS) can be seen as the sum of the Total Travel Time
(TTT ) and the Total Waiting Time (TWT ) and is computed as

TTS = TTT + TWT

=
K−1
∑

k=0

N
∑

i=1

TLi

[

ρi,1(k) + ς · ρi,2(k)

]

+
K−1
∑

k=0

N
∑

i=1

T

[

li,1(k) + ς · li,2(k)

]

(15)

where the traffic density and the queue length for trucks are reported in terms
of cars thanks to parameter ς. Hence, the TTS is measured in [cars·hour].

The Total Travelled Distance (TTD), measured in [cars·km], is given by

TTD =
K−1
∑

k=0

N
∑

i=1

[

Li · T

(

qi,1(k) + ς · qi,2(k)

)]

(16)

where, analogously, the traffic volume of trucks is converted in terms of cars
by means of ς.

3. Problem formulation

As already mentioned, the objective of the present work is to define a
coordinated ramp metering strategy aimed at the reduction of traffic conges-
tion in the freeway and, at the same time, at the minimization of the total
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emissions of cars and trucks (both in the mainstream and at the on-ramps).
The control strategy is here sought by defining and solving an optimal con-
trol problem which turns out to be a finite horizon nonlinear optimal control
problem with constrained control variables. An algorithm for obtaining the
numerical solution of the proposed problem is described in the following sec-
tion.

Consider the following discrete-time dynamic system

x(k + 1) = f
[

x(k), u(k)
]

(17)

where x(k) ∈ R
n, k ∈ N, is the system state and with x(0) = x0. The system

state depends on the system dynamics and on the input control variables
u(k) ∈ R

m, k ∈ N.
The general formulation of the optimization problem over a finite horizon

of K time steps is the following.

Problem 1. Given the system initial conditions x(0) = x0, find the control
sequence u(k), k = 0, . . . , K − 1, that minimizes

J = ϑ[x(K)] +
K−1
∑

k=0

ϕ
[

x(k), u(k)
]

(18)

subject to (17) and

umin ≤ u(k) ≤ umax k = 0, . . . , K − 1 (19)

In (18) ϑ[·] represents the final cost while ϕ[·] is the stage cost. The
general formulation of Problem 1 is applied to freeway traffic control in the
following way. On the basis of the two-class model defined in Section 2.1, it
may be observed that by substituting (4) into (1), (5), (6), (7) into (2), and
(8), (9) into (3), the two-class traffic flow model equations can be expressed by
the general discrete-time model (17). The state vector x(k), k = 0, . . . , K−1,
consists of the densities ρi,c(k), the mean speeds vi,c(k), and the queues li,c(k)
for every section i = 1, . . . , N and for each class c = 1, 2. The control vector
u(k), k = 0, . . . , K − 1, corresponds to the ramp metering rates µi,c(k),
i = 1, . . . , N , c = 1, 2.
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Moreover, in accordance with the purposes of the considered approach,
the chosen objective function is defined as follows

J = β · Γ · TE + (1− β) · TTS

+
K−1
∑

k=1

N
∑

i=1

2
∑

c=1

wµ
i,c ·

[

µi,c(k)− µi,c(k − 1)
]2

+
K−1
∑

k=0

N
∑

i=1

2
∑

c=1

wl
i,c · ψc

[

li,c(k)
]2

(20)

with

ψc

[

li,c(k)
]

= max
{

0, li,c(k)− lmax
i,c

}

c = 1, 2, i, . . . , N, k = 0, . . . , K − 1 (21)

µmin
i,c ≤ µi,c(k) ≤ 1 c = 1, 2, i, . . . , N, k = 0, . . . , K − 1 (22)

The first two terms in cost function (20) are the Total Emissions and
the Total Time Spent, given respectively by (14) and (15). In (20) Γ is a
coefficient used to make these two terms (TTS and TE) of the same order
of magnitude, whereas β ∈ [0, 1] is used to properly weigh these two cost
terms. The third term in (20), with the weights wµ

i,c, i = 1, . . . , N , c = 1, 2, is
introduced in order to prevent oscillations of the control trajectories, whereas
the last cost term, with weights wl

i,c, i = 1, . . . , N , c = 1, 2, is included to
limit the queue lengths at on-ramps.

4. Numerical solution algorithm

As already addressed in the previous section, Problem 1 is a constrained
nonlinear optimal control problem. Such problems have appeared in various
forms within the freeway traffic control domain, see [6] for an overview. Their
numerical solution may be attempted by direct use of available Nonlinear
Programming codes, but, given the problem dimensions and complexity, this
approach is likely to present unsurmountable difficulties in the case of large
freeway infrastructures. A much more efficient numerical solution is obtained
by use of the feasible direction algorithm which is adopted within the optimal
freeway traffic control tool AMOC [8] and leads to low computation times
even for very large-scale freeway traffic control problems, see, e.g. [7, 11]. A
version of this algorithm is therefore adopted for the present problem.
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The feasible direction algorithm produces the control actions u(k), k =
0, . . . , K − 1, and the state trajectories x(k), k = 1, . . . , K, over the whole
time horizon. The algorithm is first of all based on the fulfilment of the
necessary optimality conditions. These conditions are expressed in terms of
the discrete-time Hamiltonian function that is defined as follows

H
[

x(k), u(k), λ(k + 1)
]

= J
[

x(k), u(k)
]

+ λ(k + 1)T · f
[

x(k), u(k)
]

(23)

where the vector λ(·) is calculated via backward integration by using the
following

λ(k) =
∂H

∂x(k)
=
∂J

[

x(k), u(k)
]

∂x(k)
+

(

∂f
[

x(k), u(k)
]

∂x(k)

)T

· λ(k + 1)

k = 0, . . . , K − 1 (24)

starting from the final condition

λ(K) =
∂ϑ

[

x(K)]

∂x(K)
(25)

The optimality conditions that have to be satisfied are (17), (19), (24),
(25). For a given control sequence u(k), k = 0, . . . , K − 1, and for a given
initial condition, the state trajectory x(k+1) can be found by applying (17),
so that the cost criterion only depends on the control variables u(k) that
can be considered as the independent optimization variables. Thus, the cost
criterion can be expressed as J̄ [u(k)], and the reduced gradient g(k) is given
by

g(k) =
∂H

∂u(k)
=
∂J̄ [u(k)]

∂u(k)
+

(

∂f
[

x(k), u(k)
]

∂u(k)

)T

· λ(k + 1) (26)

Moreover, a saturation vector function sat(π) is defined as

sat(π) =











πmax, if π > πmax

πmin, if π < πmin

π, else

(27)

The adopted numerical algorithm, i.e. the feasible direction algorithm, is
widely known in the literature (for more details refer to [39]). In this work a

13



specific version of this algorithm is used, that is the derivative backpropaga-
tion method RPROP, in the version proposed in [9] (the original form of the
same algorithm is proposed in [40]). The phases of the adopted algorithm
follow.

Phase 1 Guess a feasible initial control sequence u(0)(k), k = 0, . . .K − 1,
and set the iteration index ı = 0.

Phase 2 For each iteration ı, using u(ı)(k) and the initial conditions x(0),
apply (17) to calculate x(ı)(k + 1); then, using x(ı)(k + 1) and u(ı)(k),
apply (24) via backward integration from the final state (25) to get

λ(ı)(k + 1).

Phase 3 Use x(ı)(k+ 1), u(ı)(k) and λ(ı)(k+ 1) to compute the components
of the reduced gradient g(ı)(k).

Phase 4 Apply the RPROP method to get a new, improved admissible con-
trol sequence u(ı+1)(k) by applying the following relation

u(ı+1)(k) = sat
(

u(ı)(k) + ∆u(ı)(k)
)

(28)

Each component ∆u
(ı)
i (k) of the control variable increment ∆u(ı)(k) is

calculated according to the sign of the gradient component g
(ı)
i (k) and

the increment component at the previous iteration ∆u
(ı−1)
i (k), as fol-

lows

∆u
(ı)
i (k) =

{

−sign
(

g
(ı)
i (k)

)

· η+ ·∆u
(ı−1)
i (k) if g

(ı−1)
i (k) · g

(ı)
i (k) > 0

−sign
(

g
(ı)
i (k)

)

· η− ·∆u
(ı−1)
i (k) otherwise

(29)

where 0 < η− < 1 < η+. The algorithm starts with ∆u(0)(k) = ∆
verifying (28). For the following iterations, according to (28) and (29),
if the gradient component maintains its sign, the corresponding in-
crement ∆u

(ı)
i (k) is slightly increased, by the factor η+, in order to

accelerate the convergence in that region. On the other hand, if there
is a change of sign of the gradient component, this means that the
algorithm has jumped over a local minimum and the corresponding in-
crement ∆u

(ı)
i (k) is decreased by the factor η−. Nevertheless, at each
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iteration the calculated ∆u(ı)(k) may be restricted in a specific interval
[∆min

,∆max
].

Phase 5 If for a given scalar σ the convergence test |J (ı+1) − J (ı)|/J (ı) < σ
is satisfied, stop; otherwise start a new iteration ı = ı+1, and go back
to Phase 2.

As it is known, there are several techniques for the identification of the
search direction, such as steepest descent, quasi-Newton, conjugate gradient
methods (for major details see [39]). However the choice to apply the afore-
mentioned method to our optimization problem is suggested by the effective
results obtained by applying the RPROP method for traffic control problems,
as reported in [9]. Moreover such application does not require a line-search
routine as requested by other algorithms, since the control variable incre-
ments are calculated, for each iteration, only on the basis of the sign of the
gradient components g

(ı)
i (k).

5. Simulation results

In order to demonstrate the effectiveness of the methodology proposed in
this paper, a case study has been considered and the results obtained from
the application of different control strategies to two control scenarios of such a
case study have been compared. In particular, Scenario 1 corresponds to the
case in which no restrictions on the maximum queue lengths at the on-ramps
are applied, while in Scenario 2 a limit of 50 cars and 5 trucks is imposed
for each on-ramp. For each scenario, the system behaviour in the no-control
case will be compared with the one provided by the application of the local
controller PI-ALINEA (here adopted in the two-class version presented in
[27]), and with the optimal solutions found by using the feasible direction
algorithm described in this paper. Three optimal solutions adopting the
feasible direction algorithm will be analysed, setting different values of the
parameter β; these cases correspond to β = 0 (i.e., only minimizing TTS),
β = 0.5 (i.e., minimizing both TTS and TE) and β = 1 (i.e., only minimizing
TE).

The considered three-lane freeway stretch is 10 [km] long, is composed of
N = 20 sections with length Li, i = 1, . . . , 20, set equal to 500 [m]. This
stretch presents two on-ramps, located in sections i = 14 and i = 16, and
one off-ramp, located in section i = 15. The sample time T = 10 [s] has been
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Figure 3: No-control case.

chosen and a total time horizon of two and a half hours (corresponding toK =
900) has been used for the simulation tests. The case study is characterized
by trapezoidal demand profiles for both vehicle classes, as shown in the upper
plots in Fig. 3, whereas the mainstream flow is composed by 3900 [cars/h]
and 86 [trucks/h] (344 [PCE/h]). The exit flows from the off-ramps are
computed as a percentage, specifically 5%, of the relative mainstream flow.

In order to apply the two-class PI-ALINEA, the set-point value for the
density is set equal to the critical density, i.e. 150 [cars/km], while the
adopted parameters for the RPROP algorithm are η+ = 1.2, η− = 0.5,
∆max = 0.2, ∆min = 10−6, σ = 10−6.

As aforementioned, in Fig. 3 the upper plots indicate the on-ramp de-
mands, whereas the plots in the middle and in the bottom show, respec-
tively, the density and flow evolution downstream the two on-ramps in case
the freeway is not controlled. Analysing this figure, it can be noted that
the no-control case is characterized by a high congestion in the downstream
sections, in which for most of the time the density is much higher than the
critical value (indicated in the density plots with a dotted line).

5.1. Scenario 1

Consider first of all Scenario 1, i.e. the case without queue constraints.
The system behaviour by applying the two-class PI-ALINEA and the feasible
direction algorithm (respectively with β = 0, β = 0.5 and β = 1) are reported
in Figs. 4-7. Every figure reports, for each section equipped with on-ramps,
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Figure 4: Scenario 1 - Two-class PI-ALINEA.
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Figure 5: Scenario 1 - Optimal solution with β = 0.

the queue lengths, the downstream density and the traffic flow. All the
controlled cases are characterized by lower densities in comparison with the
no-control case and some queues at the on-ramps. Such queues are present
in both the on-ramps when the control algorithm is applied, whereas they
are present only in the second on-ramp for the system controlled with the
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Figure 6: Scenario 1 - Optimal solution with β = 0.5.
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Figure 7: Scenario 1 - Optimal solution with β = 1.

two-class PI-ALINEA. By varying β in the control algorithm, the system
performances do not change significantly. Fig. 8 shows the density evolution
in all sections in the considered cases. Again, it is clear that all the controllers
are able to reduce congestion phenomena that are instead quite evident in
the no-control case.

In Table 1 the different control strategies are compared with the no-
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Figure 8: Scenario 1 - Mainstream density in the no-control case (8a), with two-class PI-
ALINEA (8b), applying the feasible direction algorithm with β = 0 (8c), β = 0.5 (8d) and
β = 1 (8e).

control case through some performance indexes. In particular, the consid-
ered indexes are the Total Waiting Time TWT , the Total Time Spent TTS,
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Table 1: Scenario 1 - Performance indicators.

Control TWT TTS TTS’ TTS’ Red. TE TE Red.
strategy [veh· h] [veh· h] [veh· h] [%] [g/km] [%]
No control 0.000 3266.995 3035.577 0.000 1033762.091 0.000
PI-ALINEA 327.058 2610.440 2379.021 21.629 724904.317 29.877

Algorithm β = 0 284.721 2577.556 2348.112 22.647 705762.085 31.729
Algorithm β = 0.5 267.458 2577.841 2348.397 22.638 703454.656 31.952
Algorithm β = 1 264.051 2583.033 2353.589 22.466 705121.848 31.791

the Total Time Spent TTS ′ computed after the beginning of the congestion
(i.e. after about 15 minutes, that is when the congestion starts in the sec-
ond on-ramp), the TTS ′ percentage reduction with respect to the no-control
case, the Total Emission TE, and the TE percentage reduction with respect
to the no-control case. The Total Travelled Distance TTD has been com-
puted and presents similar values for each considered case. The controllers
applying the feasible direction algorithm perform better than PI-ALINEA
both in terms of Total Time Spent reduction and in terms of Total Emission
reduction. By comparing the three cases with β = 0, β = 0.5 and β = 1,
it is possible to verify that the system performances are not so different, as
already stated by analysing Figs. 5-7. This result is in accordance with the
conclusions obtained in [28] where, only analysing the two-class PI-ALINEA
controller and considering again the average-speed emission model COPERT,
it is concluded that the minimization of emissions and the minimization of
congestion in the freeway are not conflicting goals.

All the simulations tests have been realized with a 2.30 GHz Intel(R)
Core(TM) i7-3610QM computer with 4 GB RAM with Matlab R2013a soft-
ware. The computational time requested to solve the three control problems
has been of about 120, 410, and 610 [s] for the cases corresponding to β = 0,
β = 1 and β = 0.5, respectively.

5.2. Scenario 2

Scenario 2 regards the same freeway stretch but the considered traffic
controllers are applied taking into account some limits to the queue lengths
at the on-ramps. In particular, the limit of 50 cars and 5 trucks (20 [PCE])
is considered. The evolution in time of the queue lengths, the downstream
density and the traffic flow for each section with on-ramps is reported in
Figs. 9-12 for the different controllers. As expected, by imposing a limit
to the on-ramp queues, such queues are reduced with respect to Scenario 1
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Figure 9: Scenario 2 - Two-class PI-ALINEA.
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Figure 10: Scenario 2 - Optimal solution with β = 0.

and, consequently, the density is increased in the section downstream the
on-ramp, exceeding for some periods the critical density.

Comparing Fig. 10 (optimal solution with β = 0, i.e. minimizing the
Total Time Spent) with Fig. 12 (optimal solution with β = 1, i.e. minimizing
the Total Emissions), it is quite interesting to see that the evolution of the
densities in the sections downstream the on-ramps present similar values
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Figure 11: Scenario 2 - Optimal solution with β = 0.5.
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Figure 12: Scenario 2 - Optimal solution with β = 1.

whereas the on-ramp queue lengths present quite different behaviours. In
particular, when the Total Time Spent is minimized (β = 0), both cars and
trucks are queued at the on-ramps, whereas no trucks are present in the
on-ramp queues when the Total Emissions are minimized (β = 1). This is
motivated by the fact that, as it is evident in Fig. 2, trucks present high
emissions in case of low speeds and, also, their emissions keep decreasing
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Figure 13: Scenario 2 - Mainstream density in the no-control case (13a), with the two-class
PI-ALINEA (13b), applying the feasible direction algorithm with β = 0 (13c), β = 0.5
(13d) and β = 1 (13e).

when speed increases. So, if emissions are explicitly minimized, the controller
makes trucks enter the freeway without waiting at the on-ramps. The same
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considerations can be given analysing the densities in all the freeway for the
entire time horizon, as shown in Fig. 13.

Table 2: Scenario 2 - Performance indicators.

Control TWT TTS TTS’ TTS’ Red. TE TE Red.
strategy [veh· h] [veh· h] [veh· h] [%] [g/km] [%]
No control 0.000 3266.995 3035.577 0.000 1033762.091 0.000
PI-ALINEA 217.393 3089.203 2857.784 5.857 943741.071 8.708

Algorithm β = 0 127.014 2783.742 2554.299 15.855 789240.018 23.654
Algorithm β = 0.5 117.886 2833.557 2604.114 14.214 806358.052 21.998
Algorithm β = 1 116.823 2767.310 2537.866 16.396 776091.347 24,925

In Table 2 the different control strategies are compared with the no-
control case through the same performance indexes already reported in Ta-
ble 1 (again, the Total Travelled Distance is similar in the different considered
cases). Since in this scenario some constraints on the maximum queue lengths
are imposed, the TTS ′ reductions and the TE reductions are lower than in
Scenario 1 but similar conclusions can be drawn. Again, when the control
algorithm is applied these reductions are higher than with PI-ALINEA and
similar system performances are achieved by varying β between 0 and 1. In
all the three cases, the computational time requested to solve the control
problem has been equal to 600 [s] approximately.

6. Conclusions

A multi-objective optimal control approach for freeway traffic regulation
has been stated and solved in the paper. The two considered control ob-
jectives refer to the reduction of traffic congestion situations and to the
minimization of traffic emissions. A specific feature of the proposed con-
trol scheme is the fact that it explicitly takes into account the presence of
two classes of vehicles for which two separate control actions are determined.
The overall control problem has been stated as a nonlinear constrained opti-
mal control problem whose solution has been sought by adopting a specific
version of the feasible direction algorithm, namely, the derivative backpropa-
gation method RPROP. The effectiveness of the proposed approach has been
analyzed and assessed through simulation results in which it is shown that
the two parts of the control function are largely non conflicting objectives
since both the average travel times and the emissions are reduced if the con-
trol actions manage to reduce or eliminate traffic congestion. Having said
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that, there are different control options for congestion mitigation, each of
which may favour more or less one of both objectives against the other. In
such cases, the proposed approach may be appropriately guided to the de-
sired control policy (which reflects a desired trade-off for both objectives)
via appropriate selection of the involved weight parameters in the overall ob-
jective function. The presented approach may provide an intelligent kernel
for flexible real-time control; it may also be used in order to analyse offline
potential control scenarios and the related objective trade-offs for specific
infrastructures.

Acknowledgments

For the research leading to these results, Prof. Markos Papageorgiou,
Prof. Ioannis Papamichail and Dr. Claudio Roncoli have received funding
from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 321132,
project TRAMAN21.

25



References

[1] M. Papageorgiou, I. Papamichail, Overview of traffic signal operation
policies for ramp metering, Transportation Research Record: Journal of
the Transportation Research Board, vol. 2047, 2008, pp. 28-36.

[2] M. Papageorgiou, H. Hadj-Salem, J.-M. Blosseville, ALINEA: A lo-
cal feedback control law for on-ramp metering, Transportation Research
Record, vol. 1320, 1991, pp. 58-64.

[3] M. Papageorgiou, E. Kosmatopoulos, I. Papamichail, Y. Wang, ALINEA
maximises motorway throughput - an answer to flawed criticism, TEC
Magazine, 2007, pp. 271-276.

[4] Y. Wang, M. Papageorgiou, J. Gaffney, I. Papamichail, J. Guo, Local
ramp metering in the presence of random-location bottlenecks downstream
of a metered on-ramp, Proc. of 13th IEEE Conference on Intelligent Trans-
portation Systems, 2010, pp. 1462-1467.

[5] I. Papamichail, M. Papageorgiou, Traffic-Responsive Linked Ramp-
Metering Control, IEEE Transactions On Intelligent Transportation Sys-
tems, vol. 9, 2008, pp. 111-121.

[6] A. Kotsialos, M. Papageorgiou, Motorway network traffic control systems,
European Journal of Operational Research, vol. 152, 2004, pp. 321-333.

[7] A. Kotsialos, M. Papageorgiou, M. Mangeas, H. Haj-Salem, Coordinated
and integrated control of motorway networks via non-linear optimal con-
trol, Transportation Research Part C, vol. 10, 2002, pp. 65-84.

[8] A. Kotsialos, M. Papageorgiou, F. Middelham, Optimal coordinated
ramp metering with AMOC, Transportation Research Record, vol. 1748,
2001, pp. 55-65.

[9] M. Papageorgiou, A. Kotsialos, Nonlinear optimal control applied to coor-
dinated ramp metering, IEEE Transactions on Intelligent Transportation
Systems, vol. 12, 2004, pp. 920-933.

[10] I. Papamichail, A. Kotsialos, I. Margonis, M. Papageorgiou, Coordi-
nated ramp metering for freeway networks A model-predictive hierarchi-
cal control approach, Transportation Research Part C, vol. 18, 2010, pp.
311-331.

26



[11] R.C. Carlson, I. Papamichail, M. Papageorgiou, A. Messmer, Optimal
mainstream traffic flow control of large-scale motorway networks, Trans-
portation Research Part C, vol. 18, 2010, pp. 193-212.

[12] A. Hegyi, B. De Schutter, H. Hellendoorn, Model predictive control for
optimal coordination of ramp metering and variable speed limits, Trans-
portation Research C, vol. 13, 2005, pp. 185-209.

[13] T. Bellemans, B. De Schutter, B. De Moor, Model predictive control
for ramp metering of motorway traffic: A case study, Control Engineering
Practice, vol. 14, 2006, pp. 757-767.

[14] M. Papageorgiou, J.-M. Blosseville, H. Hadj-Salem, Modelling and real-
time control of trafficc flow on the southern part of Boulevard Périphérique
in Paris: Part I: Modelling, Transportation Research A, vol. 24, 1990, pp.
345-359.

[15] A. Ferrara, A. Nai Oleari, S. Sacone, S. Siri, An event-triggered Model
Predictive Control scheme for freeway systems, Proc. of the 51st IEEE
Conference on Decision and Control, 2012, pp. 6975-6982.

[16] N. Groot, B. De Schutter, S. Zegeye, H. Hellendoorn, Model-based pre-
dictive traffic control: A piecewise-affine approach based on METANET,
Proc. of the 18th IFAC World Congress, 2011, pp. 10709-10714.

[17] L. Maggi, M. Maratea, S. Sacone, S. Siri, Computational analysis of
freeway traffic control based on a linearized prediction model, Proc. of the
52nd IEEE Conference on Decision and Control, 2013, pp. 886-891.

[18] M. Papageorgiou, A. Kotsialos, Freeway Ramp Metering: An Overview,
IEEE Transactions on Intelligent Transportation Systems, vol. 3, 2002, pp.
271-281.

[19] A. Csikós, T. Luspay, I. Varga, Modeling and optimal control of travel
times and traffic emission on freeways, Proc. of the 18th IFAC World
Congress, 2011, pp. 13058-13063.

[20] A. Csikós, I. Varga, K.M. Hangos, A simple dynamic model for the
dispersion of motorway traffic emission, Proc. of 16th International IEEE
Annual Conference on Intelligent Transportation Systems, 2013, pp. 1559-
1564.

27



[21] S.K. Zegeye, B. De Schutter, J. Hellendoorn, E.A. Breunesse, A. Hegyi,
A predictive traffic controller for sustainable mobility using parameterized
control policies, IEEE Transactions on Intelligent Transportation Systems,
vol. 13, 2012, pp. 1420-1429.

[22] S.K. Zegeye, B. De Schutter, J. Hellendoorn, E.A. Breunesse, A. Hegyi,
Integrated macroscopic traffic flow, emission, and fuel consumption model
for control purposes, Transportation Research C, vol. 31, 2013, pp. 158-171.

[23] J.L. Horowitz, Air quality analysis for urban transportation planning,
MIP Press, 1982.

[24] T.J. Barlow, P.G. Boulter, Emissions factors 2009: Report 2 - a review
of the average-speed approach for estimating hot exhaust emissions, TRL,
2009.

[25] L. Ntziachristos, Z. Samaras, Speed-dependent representative emission
factors for catalyst passenger cars and influencing parameters, Atmo-
spheric Environment, vol. 34, 2000, pp. 4611-4619.

[26] L. Ntziachristos, C. Kouridis, Road transport emission chapter of the
EMEP/CORINAIR Emission Inventory Guidebook, European Environ-
ment Agency Technical Report No. 16/2007, Copenhagen, Denmark, 2007.

[27] C. Pasquale, S. Sacone, S. Siri, Two-class emission traffic control for
freeway systems, Proc. of the 19th IFAC World Congress, 2014, pp. 936-
941.

[28] C. Pasquale, S. Sacone, S. Siri, Ramp metering control for two vehicle
classes to reduce traffic emissions in freeway systems, Proc. of the European
Control Conference, 2014, pp. 2588-2593.

[29] S.P. Hoogendoorn, P.H.L. Bovy, Platoon-Based Multiclass Modeling of
Multilane Traffic Flow, Networks and Spatial Economics, vol. 1, 2001, pp.
137-166.

[30] G.C.K. Wong, S.C. Wong, A multi-class traffic flow model - an extension
of LWR model with heterogeneous drivers, Transportation Research A, vol.
36, 2002, pp. 827-841.

28



[31] J.W.C van Lint, S.P. Hoogendoorn, M. Schreuder, FASTLANE:
New Multiclass First-Order Traffic Flow Model, Transportation Research
Record, vol. 2088, 2008, pp. 177-187.

[32] P. Deo, B. De Schutter, A. Hegyi, Model predictive control for multi-
class traffic flows, Proc. of the 12th IFAC Symposium on Transportation
Systems, 2009, pp. 25-30.

[33] T. Schreiter, H. van Lint, S. Hoogendoorn, Multi-class Ramp Metering:
Concepts and Initial Results, Proc. of 14th International IEEE Conference
on Intelligent Transportation Systems, 2011, pp. 885-889.

[34] S. Liu, B. De Schutter, H. Hellendoorn, Model Predictive Traffic Control
Based on a New Multi-Class METANET Model, Proc. of 19th IFAC World
Congress, 2014, pp. 8781-8786.

[35] C. Caligaris, S. Sacone, S. Siri, Model predictive control for multiclass
freeway traffic, Proc. of the European Control Conference, 2009, pp. 1764-
1769.

[36] Special Report 209: Highway Capacity Manual, 3rd Edition, Transporta-
tion Research Board, Washington DC, 1994.

[37] A.F. Al-Kaisy, F.L. Hall, E.S. Reisman, Developing passenger car equiv-
alents for heavy vehicles on freeways during queue discharge flow, Trans-
portation Research A, vol. 36, 2002, pp. 725-742.

[38] H. Haj-Salem, M. Papageorgiou, Ramp metering impact on urban cor-
ridor traffic: Field results, Transportation Research A, vol. 29, 1995, pp.
303-319.

[39] M. Papageorgiou, M. Marinaki, A feasible direction algorithm for the
numerical solution of optimal control problems, Dynamic Syst. Simulation
Lab., Technical University of Crete, Chania, Greece, 1995.

[40] M. Riedmiller, H. Braun, A directive adaptive method for faster back-
propagation learning: the RPROP algorithm, Proc. IEEE International
conference Neural Networks, 1993, pp. 586-591.

29


