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Abstract

Integrated motorway traffic flow control considering the use of Vehicle Automation

and Communication Systems (VACS) is considered in this paper. VACS may act both

as sensors (providing information on traffic conditions) and as actuators, permitting the

deployment of Ramp Metering, Variable Speed Limits, and Lane Changing Control. The

integrated traffic control problem is addressed through the formulation of a linearly con-

strained optimal control problem based on the first-order multi-lane model for motorways

introduced and validated in a companion paper (Part I). A case study illustrating the

potential improvements achievable using this approach is presented.

1 Introduction

In a companion paper (Roncoli et al., 2015), Part I of this work, a first-order multiple-lane

traffic flow model for motorways has been developed and validated, mainly for the purpose of

supporting the formulation of an integrated optimal control problem for motorways under a

mixture of traditional and novel control measures, which is the main subject of this Part II
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paper. In particular, this work takes into account the potential presence of Vehicle Automation

and Communication Systems (VACS) in a portion of vehicles. VACS may provide novel

opportunities to improve traffic control performance by use of control actions, some of which

would be hardly possible with traditional control actuators. In the last decades, we have

witnessed a significant and steadily increasing effort of research and development of various

types of VACS, some of which (e.g. Adaptive Cruise Control - ACC) have already been

introduced in several car models. In contrast, there has been rather limited research to address

the implications of emerging VACS on the traffic flow characteristics and their potential

exploitation for improved traffic flow operations on motorways.

The concept of vehicle-platoon based fully-Automated Highway System (AHS) had been

widely elaborated by several research groups in the more distant past, and a multi-layer

control structure was proposed by Varaiya (1993) to tackle the huge problem complexity.

Control decisions addressing the aggregated traffic flow were assigned, within the hierarchical

structure, to the link layer. Specifically, the link control layer in these works is decentralised,

i.e. it consists of a number of parallel link layer controllers, each of them addressing a

corresponding highway link (of about 2 km in length). Each link layer controller decides on

vehicle paths (in terms of driving lanes), as well as on targeted vehicle speed and platoon size

within the corresponding highway link. One of the first works addressing link-layer control

strategies, by Rao and Varaiya (1994), introduced a number of structural simplifications to

tackle the problem complexity; specifically, unidirectional lane changings (either inwards or

outwards) are allowed within 1-km long 4-lane highway sections, while decisions may differ

according to the prevailing (normal or incident) traffic conditions. Lane changing and lane

assignment for individual vehicles is the fundamental issue addressed via a set of well-justified

and structured heuristic rules.

An alternative approach to local (link layer) lane assignment, based on very similar

assumptions, was presented by Lee and Lee (1997). Another interesting, though rather

theoretical, work in this context was presented by Li et al. (1997), proposing a space-time

continuous decentralised-overlapping control law for the stabilisation of traffic conditions.
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Specifically, the authors addressed the problem of driving the traffic conditions back to

(pre-fixed) desired speed and density values (per lane) in case of disruptions (e.g. incidents)

via appropriate vehicle-speed and lane-changing control decisions. More recently, an MPC

(model predictive control) approach was proposed by Baskar et al. (2012) for the integrated

control (addressing speed, lane assignment and ramp metering) of platoon-based AHS; the

method involves both real-valued and integer variables and leads to a mixed non-convex

optimisation problem that may be difficult to be solved in real time. Finally, a number of

recent works (e.g., Zhang and Ioannou, 2007, Kesting et al., 2008, Schakel and van Arem,

2014) proposed local reactive rules and feedback laws for mixed traffic flow (comprising both

equipped and non-equipped vehicles) under various assumptions and vehicle-to-vehicle and

vehicle-to-infrastructure communication architectures.

A number of other works addressed specifically the problem of deciding on vehicle lane-

paths for a whole (long) highway under fully automated (AHS) or semi-automated driving.

To tackle the problem complexity, a number of assumptions are typically made, such as

known and constant prevailing speeds along the highway and absence of traffic congestion,

thanks to the assumed (but not addressed) appropriate operation of ramp metering at the

highway entrances; also, a number of structural assumptions are made to limit the (otherwise

vast) space of potential path assignments. Specifically, Hall and Lotspeich (1996) proposed

an AHS model in form of a static trip-based multi-commodity network, with the objective of

maximising the total flow served subject to pre-determined O-D (origin-destination) patterns,

resulting in a linear programming formulation. The model was extended to the dynamic

case by Hall and Caliskan (1999), but it was clearly stated that the method is not intended

for real-time usage. Ramaswamy et al. (1997) formulated two static optimisation problems

aiming at the minimisation of the total travel time. The difference between them lies in

whether the cost for manoeuvring depends on highway congestion (generating a non-linear

problem) or not (generating a linear problem); it was shown that the non-linear problem is

more appropriate in case of heavily congested networks. Kim et al. (2008) introduced an

optimisation problem aiming at identifying the best lane assigning strategies (subject to a
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partitioning assumption, for simplification) proposing a genetic algorithm for its solution. It

should be pointed out that none of these works take into account the traffic dynamics as

reproduced by a traffic flow model.

On the other hand, it is worth noting that the integrated control of motorway network

traffic via conventional means (road-side variable message signs for route guidance and variable

speed limits; traffic signal based ramp metering) was addressed, typically via nonlinear optimal

control approaches, in a number of works (see, e.g., Kotsialos et al., 2002, Hegyi et al., 2005,

Carlson et al., 2010, Lu et al., 2010). Of course, these works do not include lane changing

control, while the assumed granularity of variable speed limits and route guidance actions is

limited by the use of road-side VMS (variable message signs) to display the messages, which

are visible by all the drivers. In fact, the spatial density of VMS or gantries is limited due to

economic and physical reasons; while any provided advice or order is identical for all drivers

on all lanes.

This paper proposes an optimal control problem formulation for integrated motorway

traffic control under the assumption that a sufficient percentage of vehicles are equipped with

VACS, which permits vehicle-to-infrastructure (V2I) communication, to enable variable speed

limit control per lane, lane changing control (both at arbitrary spatial resolution) and ramp

metering. The approach is based on a novel linear dynamic multi-lane traffic flow model

for motorways (developed and validated in Part I) with linear constraints, which allows for

consideration of long motorways with moderate computational effort. The employed model

is flexible enough to consider a variety of potential cases, objectives, and infrastructures.

With appropriate extensions, the proposed method could be used as the kernel for real-time

motorway traffic control actions in presence of VACS. In addition, the method may be used

in order to study and analyse the complex dynamic interactions among equipped vehicles,

traffic conditions and appropriate control actions for various scenarios and settings of VACS

penetration and infrastructure type, as well as to guide and provide a reference case for the

development and assessment of simpler or complementary control strategies and approaches.

The paper is structured as follows: in Section 2, the adaptation of the traffic flow model for
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the optimal control problem formulation is described and a quadratic programming problem

is developed, aiming at the minimisation of traffic congestion. In Section 3, an application

example is worked out for a real motorway stretch, comparing the obtained results with the

no-control case. Finally, Section 4 concludes the paper, highlighting the main results and

introducing some research challenges for the future.

2 Optimal control problem

2.1 The application framework

We consider motorway traffic flow with a sufficient percentage of VACS-equipped vehicles.

“Sufficient percentage” in the present context means that the control variables considered in

the optimal control problem can be actually implemented via appropriate actuators. Although

the details of this assumption are currently being worked out and will be presented in the

near future, it is useful, for better appreciation of the work presented here, to provide some

preliminary clarifications. The basic architecture considers a central Decision Maker (DM)

that computes the solution of the optimisation problem, disaggregates the results and assigns

specific vehicle control tasks that are sent for execution by the corresponding equipped

vehicles. It is assumed that the DM has the complete knowledge of the traffic state when

necessary; this may be achieved directly if all vehicles are equipped and in communication

with the infrastructure (V2I), or via an appropriate state estimation algorithm.

As traffic evolves from the present situation to the future, a number of VACS are expected

to appear at diverse and gradually increasing penetration levels. Some of these VACS may be

exploited, as novel actuators, for more pertinent traffic control. For example, if some vehicles

have V2I capabilities, there is a possibility to impose to them variable speed limits, or even

dictate to them their driving speed, according to the real-time decisions of the central DM.

In the envisioned scenario, the DM is aware of all the equipped vehicles travelling in each

segment-lane considered in the control problem; once the optimal speeds are computed, they

can be dispatched through the V2I system, to the on-board system of each vehicle. Then,
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depending on the specific device and on the level of automation, the speed limit can be

visualised on an on-board console, or directly applied in the ACC or CACC control system;

in this last cases, the VSL takes part in the local control tasks performed by the automated

car, without needing any intervention by the driver. The frequency of updating the specified

speed limit must be carefully chosen, particularly in case of non fully-automated vehicles, in

order to avoid excessive nuisance to drivers and passengers. This low-nuisance issue is also

considered in the presented approach, by penalising the space-time differences of speed limits.

Of course, the optimal control decisions are meant for the aggregate traffic flow in specific

space-time windows, not for some individual vehicles only; however, if the percentage of

equipped vehicles is sufficiently high, the imposed speed (limit) will necessarily also affect the

vehicles following an equipped vehicle.

Similarly, V2I-equipped vehicles may receive from the DM lane-changing advices, so as to

implement corresponding lateral flow decisions. Since lateral flows are limited, only accordingly

few equipped vehicles need to be present in the traffic flow to receive the corresponding advice;

in case of higher percentages of equipped vehicles, “keep lane” advices may also be issued to

the rest of the equipped vehicles. In the initial phases with low penetration rates of equipped

vehicles, traditional actuators, i.e. road-side VMS, may also be employed in parallel, to the

extent possible.

More specifically, the following control actions may be taken into account:

• Ramp-metering (RM): these actions consist in regulating the inflow from the on-ramps

to the motorway mainstream and they are currently applied on many motorways (see

e.g. Papamichail et al., 2010); since they are applied directly at on-ramps, they do

not necessarily require any particular in-vehicle equipment to be performed, as the

computed inflow may be directly applied using ordinary traffic signals.

• Mainstream Traffic Flow Control (MTFC) via Variable Speed Limits (VSL): the use of

VSL to regulate the mainstream flow with the purpose of mitigating traffic congestion

was proposed by Hegyi et al. (2005) and Carlson et al. (2010) and has been exploited

in an increasing number of research works. In the present work, it is assumed that
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the exiting flows (and consequently, the speeds) are specified by the DM for each

segment-lane; thus all equipped vehicles travelling on a segment-lane will receive and

apply the respective speed or speed limit. For a sufficient penetration of equipped

vehicles, this will be sufficient to impose the speed limit to non-equipped vehicles as

well.

• Lane Changing Control (LCC): the optimal lateral flows are computed for each segment-

lane, but the implementation of this control action is more challenging and uncertain

than the previous two, unless all vehicles are under full guidance by the control center;

in this latter case, it is not difficult to implement the control action by sending lane-

changing orders to an appropriate number of vehicles. In all other cases, an intermediate

algorithm should decide on the number and IDs of equipped vehicles that should receive

a lane-changing advice, taking into account the compliance rate and the spontaneous

lane changes; the latter may be reduced by involving additional “keep-lane” advices

to other equipped vehicles. Cooperative possibilities of vehicles equipped with V2V-

communication capabilities may further facilitate this control action. It is important

to highlight that these lateral flows are intended here as macroscopic variables, which

does not involve explicitly the characteristics of different drivers, e.g. the origin-

destination of drivers is not considered. This aspect should be accounted for in an

intermediate algorithm, that assigns appropriate lane-changing advices to individual

vehicles according to their specific needs (e.g., vehicles approaching the desired off-ramp

should move towards external lanes). These issues are currently in course of detailed

investigation and development.

In order to guarantee an adequate flexibility, it is supposed that each control action

is updated according to a specific control time step which may be specified according to

human-factors and other operational requirements. The control time steps are assumed to be

integer multiples of the traffic flow model time step. Specifically, we denote by T the model

time step, TQ the MTFC (longitudinal flow control) time step, TF the lateral (lane-changes)

flow control time step, and TR the RM time step. The corresponding discrete time indices
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are k = 0, 1, 2, . . . ,K; kQ =
⌈
kT
TQ

⌉
; kF =

⌈
kT
TF

⌉
; kR =

⌈
kT
TR

⌉
1.

Since the main objective is the reduction of traffic congestion, these control actions are

taken as the decision variables in the optimisation problem stated in Section 2.2. In order to

make the problem solvable for large networks, it is formulated as a Quadratic Program (QP),

characterised by a convex quadratic cost function and linear constraints. This formulation is

derived from the traffic flow model described by Roncoli et al. (2015).

2.2 Problem formulation

The following notation is used for the problem formulation in accordance with the Part I

paper:

ρi,j(k) density [veh/km] in the segment i, lane j at time step k; i.e. the number of

vehicles travelling in the segment-lane divided by the segment length Li;

qi,j(k
Q) longitudinal flow [veh/h] leaving segment i and entering segment i + 1,

remaining in lane j, during time interval
(
kQ, kQ + 1

]
; this flow is a control

input that reflects the MTFC actions;

fi,j,j̄(k
F ) lateral flow [veh/h] moving from lane j to lane j̄ during the interval(

kF , kF + 1
]
; this is a control input that reflects the LCC actions;

ri,j(k
R) the flow [veh/h] entering from the on-ramp located in segment i, lane j

during time interval
(
kR, kR + 1

]
; this is a control input which represents

the RM actions;

γi,j(k) turning rates for assigning off-ramp flows; for the computation of off-ramp

flows, all the lanes of segment i are considered (see Roncoli et al., 2015).

Based on these definitions, we may immediately write the conservation equation for each

segment-lane:

ρi,j(k + 1) = ρi,j(k) +
T

Li

[
qi−1,j(k

Q) + ri,j(k
R) − qi,j(k

Q) − γi,j(k)

J∑
j=1

qi,j(k
Q)

+ fi,j+1,j(k
F ) + fi,j−1,j(k

F ) − fi,j,j−1(kF ) − fi,j,j+1(kF )
]
.

(1)

The conservation equation (1) is directly taken from the model defined in Part I, with the

1The ceiling function y = dxe is used here, where y is the smallest integer not less than x.
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minor difference that, because of the possible ramp-metering actions, the entering external

flow is actually the ramp outflow ri,j .

Each on-ramp (i, j) receives an external (uncontrollable) demand Di,j [veh/h]; since the

respective on-ramp outflows ri,j are controllable via corresponding RM actions, this may lead

to the creation of ramp queues wi,j [veh]. Since the motorway sections and the on-ramps have

finite storage capacities, to be imposed as hard constraints in the optimal control problem

formulation, excessive external demand scenarios may lead to an infeasible optimisation

problem, whereby no control action can accommodate the external demands without violating

the storage capacity constraints. To avoid such situations, where the admissible control region

is void, and enable the computation of optimal control for any arbitrary demand scenario, we

introduce two extra variables: Wi,j [veh] that represents a virtual extra-queue state variable;

and di,j [veh/h] that represents the demand flow that is capable to enter into the real queue

wi,j without violating its corresponding upper bound wmaxi,j . The dynamics at on-ramps are

thus stated as follows:

wi,j(k + 1) = wi,j(k) + T
[
di,j(k) − ri,j(k

R)
]

(2)

Wi,j(k + 1) = Wi,j(k) + T
[
Di,j(k) − di,j(k)

]
. (3)

Thus, Di,j is the external demand feeding the extra-queue Wi,j , while the internal demand

di,j connects the extra-queue with the real queue wi,j . The idea is to apply an extra-strong

penalty factor to the variables Wi,j so that the solution of the optimisation problem is forced

to keep the extra-queues equal to zero, if at all possible; but if, due to an excessive demand

scenario, there is no other admissible solution, the problem will remain feasible by charging

the extra-queues.

The longitudinal lane-inflows entering the segment-lanes (1, j) of the first segment are

formally treated as on-ramps, however by setting wmaxi,j = 0, they are actually considered

uncontrollable. Anyway, also in this case, in order to avoid infeasibility, the same extra-queue

approach is applied.

The computation of lateral flows is fully delegated to the optimiser; only upper bounds
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are specified to the non-negative lateral flows as follows:

[
fi,j,j−1(kF ) + fi,j,j+1(kF )

]
≤ Li
T
ρi,j(k) (4)[

fi,j−1,j(k
F ) + fi,j+1,j(k

F )
]
≤ Li
T

[
ρjami,j − ρi,j(k)

]
(5)

fi,j,j−1(kF ) ≤ fmax (6)

fi,j,j+1(kF ) ≤ fmax.

Equation (4) represents the upper-bound for lateral flows determined by the number of

vehicles in the current lane-segment; (5) is an upper-bound considering the available space

(ρjam is the maximum admissible density) in the segment-lane that is receiving the lateral

flow; and (6) are hard constraints considered in order to strictly limit lateral movements

avoiding unrealistic values that cannot be suggested in a real case. Moreover, a cost function

term will be introduced in order to discourage lane changings in dependence of the specific

location of each segment-lane.

The modelling approach for longitudinal flows, proposed and tested in Part I, is based

on the piecewise-linear fundamental diagram (FD) displayed in Figure 1. More specifically,

Figure 1 displays the demand part, which determines the flow based on the upstream density,

and the supply part, which determines the flow based on the downstream density. Note that,

as detailed in Part I, the employed FD demand part provides for the possibility to reflect the

capacity drop phenomenon if the upstream density is over-critical (ρ(k) > ρcr, where ρcr is

the critical density). This is achieved via the introduction of a linear function that decreases

(according to the slope wD) as the density in the current segment increases. The minimum

flow achievable due to the capacity drop is qjam, which occurs when ρ(k) = ρjam. In case

no control actions are applied, the actual flow equals the minimum between the demand

and supply flows. For optimal control, the longitudinal flows are assumed controllable via

corresponding lowering of equipped vehicle speeds as mentioned earlier. Hence, the lines of

the piecewise-linear FD of Figure 1 may be simply used as upper bounds for the controllable
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Demand part

Supply part

Figure 1: The proposed FD including both the demand and the supply piecewise-linear

functions.

longitudinal flows as follows:

qi,j(k) ≤ vfreei,j ρi,j(k) (7)

qi,j(k) ≤ −
vfreei,j ρcri,j − qjami,j

ρjami,j − ρcri,j
ρi,j(k) +

ρcri,j

(
vfreei,j ρjami,j − qjami,j

)
ρjami,j − ρcri,j

(8)

qi,j(k) ≤ vfreei+1,jρ
cr
i+1,j (9)

qi,j(k) ≤ −
vfreei+1,jρ

cr
i+1,j

ρjami+1,j − ρcri+1,j

ρi+1,j(k) +
vfreei+1,jρ

cr
i+1,jρ

jam
i+1,j

ρjami+1,j − ρcri+1,j

. (10)

Equations (7) and (8) represent the demand part of the FD, whereas (9) and (10) are the

bounds accounting for the supply part of the FD.

Note that, as also mentioned in Roncoli et al. (2015), the left-hand side of the FD may be

modelled via any concave piecewise-linear function, rather than one single line as in Figure

1, to better approximate the undercritical speed behaviour of real traffic flow. This would

merely increase the number of linear inequalities to be considered, in addition to (7), in

the optimal control problem formulation, it should also be noted that the FD is meant to

reflect the traffic flow behaviour given the presence and penetration rates of various VACS,

irrespective of the traffic control actions that this work aims at optimising. For example, a

percentage of vehicles may be equipped with ACC or cooperative ACC systems that alter

the inter-vehicle time-gaps, thus influencing flows and capacities. These features would then

reflect on the FD, and, of course, would be present with or without the traffic control actions
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that this work attempt to optimise.

Furthermore, upper-bounds are considered for on-ramp queues (wi,j(k) ≤ wmaxi,j ), entering

flows at on-ramps (ri,j(k
R) ≤ rmaxi,j ), and exiting flows at off-ramps (γi,j(k)

∑J
j=1 qi,j(k

Q) ≤

qoff,maxi,j ). It is worth to highlight that the last constraint provides the possibility to consider

a limited off-ramp capacity; this is of particular relevance in the frequent practical case of

off-ramp queues that over-spill onto the motorway mainstream and may lead to substantial

obstruction and delays. With this constraint, the model is enabled to reflect the potential of

over-spilling, and the resulting optimal control may address this phenomenon via appropriate

control actions. Finally, non-negativity constraints are also specified for all the variables.

The cost criterion to be minimised is defined by the following equation:

Z = T

K∑
k=1

I∑
i=1

J∑
j=1

[
Liρi,j(k) + wi,j(k)

]
+M

K∑
k=1

I∑
i=1

J∑
j=1

Wi,j(k)

+

KF∑
kF =1

I∑
i=1

J∑
j=1

[
βi,j,j−1 fi,j,j−1(kF ) + βi,j,j+1 fi,j,j+1(kF )

]

+ λr
KR∑
kR=2

I∑
i=1

J∑
j=1

[
ri,j(k

R) − ri,j(k
R − 1)

]2
+ λf

KF∑
kF =2

I∑
i=1

{ J∑
j=2

[
fi,j,j−1(kF ) − fi,j,j−1(kF − 1)

]2
+

J−1∑
j=1

[
fi,j,j+1(kF ) − fi,j,j+1(kF − 1)

]2
}

+ λst
K−1∑
k=2

I∑
i=1

J∑
j=1

{
qi,j(k

Q) − qi,j(k
Q − 1) + v∗i,j

[
ρi,j(k) − ρi,j(k − 1)

]}2

(
ρ∗i,j
)2

+ λsl
K−1∑
k=1

I∑
i=2

J∑
j=1

{
qi,j(k

Q) − qi−1,j(k
Q) + v∗i,j

[
ρi,j(k) − ρi−1,j(k)

]}2

(
ρ∗i,j
)2

(11)

The cost function in (11) is composed by the weighted sum of seven different terms, the first

three linear and the last four quadratic:

• The first linear term represents the Total Time Spent (TTS) [veh·h]; it considers both

the time travelled and the time spent queuing at on-ramps; this is the most important
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term that is used to evaluate the goodness of the solution in terms of traffic flow

efficiency.

• The second linear term (weighted by M) is a penalty value for the extra-queues that

may be generated in the optimal solution. The coefficient M must be big enough to

obtain that all variables Wi,j are as close as possible to 0, if the demand scenario allows.

• The third linear term (weighted by coefficients βi,j,j̄) aims at penalising lateral flows; it

has the purpose of reducing the lane changings (thus giving priority to the other control

actions); however, the use of lower values for the weights βi,j,j̄ at specific locations (e.g.

upstream of lane drops) may facilitate reasonable and beneficial lane changing actions.

• The quadratic terms are penalty terms aiming at penalising the variation of control

variables from a time step to the next one or between neighbouring segments. These

terms are introduced in order to reduce, or even suppress, space-time fluctuations of the

control variables, that have a minor contribution to the resulting traffic flow efficiency.

The first penalty term (weighted by λr) is related to time-variations of the on-ramp

flows; the second one (weighted by λf ) penalises the time-variation of lateral flows;

and the last two terms have the purposes of penalising, respectively, time and space

variations of speed values. Since the speed is not a problem variable and could only

be included via the non-linear relation v = q/ρ, a linearisation approximation of the

speed is utilised in the proposed approach. The term weighted by λst represents the

penalisation of speed from one step to the next one, whereas the one weighted by λsl is

related to the penalisation from a segment to the next one. The derivation of the last

two terms is detailed here below.

The penalisation of space-time variations of the mean speed is deemed necessary in order

to accordingly limit, or even suppress, driving speed changes for the individual vehicles,

whenever such changes would lead to only marginal TTS improvements. Since the mean

speed is not an explicit model variable, the non-linear relation v = q/ρ is considered; this,

however, would introduce an undesired non-linearity; therefore, the following approximating
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linearisation is used instead, which was found in several test examples to lead to excellent

results. In the case of time-variations, the target is to penalise the difference between the

speeds v(k) and v(k+ 1); the abbreviation ∆v = v(k+ 1)−v(k) is introduced, with analogous

definitions ∆q for the corresponding flow and ∆ρ for the density. v(k + 1) may then be

expressed as:

v(k + 1) = v(k) + ∆v =
q(k) + ∆q

ρ(k) + ∆ρ
, (12)

which implies

∆v =
∆q − v(k)∆ρ

ρ(k) + ∆ρ
=

∆q − v(k)∆ρ

ρ(k + 1)
. (13)

This relation is again non-linear; however fixed values for v(k) and ρ(k+ 1) may be considered

in order to treat this penalty term as a linear approximation around nominal values:

v(k + 1) − v(k) ≈ ∆q − v∗∆ρ

ρ∗
. (14)

Possible nominal values may be the free speed and the critical density; nevertheless a different

linearisation point can also be chosen if considered more appropriate. Equation (14) is thus

utilised as quadratic penalty term for time variations of the mean speed, and the corresponding

penalty term for space variation of the mean speed may be derived in the same way.

The formulated discrete-time optimal control problem can be written in matrix form as:

min
x
z = cTx +

1

2
xTHx (15)

subject to

Aix ≤ bi (16)

Aex = be (17)

x ≤ d (18)

x ≥ 0 (19)

where the vector x contains all the state and control variables previously introduced. In

(15), the vector cT contains coefficients for all the linear terms of the cost function (11),

whereas matrix H gathers the specifics of the quadratic terms; since H derives from the
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weighted sum of quadratic terms (each one of them characterised by a positive-semidefinite

matrix), H is positive-semidefinite, which implies that the cost function is convex. The linear

inequality (16) derives from (4), (5), (7), (8), and (10); while the linear equality (17) represents

the conservation equations (1) - (3). The formulation is completed by upper-bounds (18),

including (6) and (9), and non-negativity constraints (19). This formulation corresponds to a

convex QP with very sparse matrices (due to the time dimension). Such a problem can be

solved very efficiently (even for large-scale infrastructures) using available numerical solution

codes.

2.3 Extensions

A number of extensions of the formulated optimal control problem may be envisaged, when

needed, under the requirement of preserving the quadratic structure of the cost criterion and

the linearity of the constraints.

To start with, mainstream congestion may sometimes reduce the level of flow that can

merge from on-ramps; in other words, mainstream congestion may, in some cases, also spill

back into merging on-ramps. This situation may be modelled via a corresponding limitation

of the on-ramp flow ri,j in dependence of the density ρi,j in the merging segment-lane. The

following on-ramp flow constraint, which is linearly decreasing with the mainstream density,

was proposed and validated by Papageorgiou et al. (1990) (see also Bar-Gera and Ahn, 2010

for similar modelling):

ri,j(k
R) ≤ rmaxi,j

[
ρjami,j − ρi,j(k)

]
[
ρjami,j − ρcri,j

] . (20)

The free flow speeds vfreei,j , introduced in Part I and in Section 2.2, may differ for different

lanes. This differentiation is essential for European motorways, since overtaking is only

allowed on one side, and trucks (or other slow vehicles) usually drive on the shoulder lane; for

North-American freeways, although often present, this phenomenon is less accentuated since

vehicle overtaking is allowed on any lane. It should be noted that, if different free speeds

for different lanes are actually foreseen in the model, the attempted TTS minimisation may

imply, at low densities, that fast lanes are favoured in the optimal control results, which would

15



contradict the current practice. This undesirable implication may be largely circumvented via

additional limitation of the density differences among lanes (e.g. ρi,j ≥ ρi,j̄), forcing a more

homogeneous flow distribution across (slow and fast) lanes, mainly via appropriate limitation

of the corresponding lateral flows. However, in case of ordinary traffic, some studies addressed

the problem of modelling lane distribution, e.g. Wu (2006), Lee and Park (2010), Knoop et al.

(2010), Duret et al. (2012), Samoili et al. (2015), showing that the lane distribution is affected,

among others, by some characteristics of the network layout (e.g., the total number of lanes);

however this choice is also behavioural, since every single driver may autonomously decide

to stay in a slower lane accepting the lower speed, stay in the slower lane and overtaking

when necessary (for lower densities), or choosing to travel constantly in a faster lane (in

higher densities). To account for these characteristics, without affecting the linear structure

of the proposed problem, an additional parameter Pi,j,j̄ can be included (similarly to the one

included in Part I to account for special infrastructure conditions), that can be properly tuned

in order to alter the equilibrium of lane distribution, according to ρi,j ≥ Pi,j,j̄ρi,j̄ . Moreover,

as mentioned earlier, a piecewise-linear FD for undercritical densities may also be used as a

tool to influence the optimal results towards more realistic lane distribution at low densities

in presence of different free speeds for different lanes.

Lateral flow into a segment-lane may affect its capacity. To reflect this possibility within

our approach, we may readily render the flow capacity of a segment-lane linearly dependent

on the entering lateral flows (and analogously on the flow entering from on-ramps). The

following linear relation, that replaces (8), can be considered, with the purpose of limiting

the capacity proportionally to the flow entering a segment-lane:

qi,j(k) ≤ −
vfreei,j ρcri,j − qjami,j

ρjami,j − ρcri,j
ρi,j(k)+

ρcri,j

(
vfreei,j ρjami,j − qjami,j

)
ρjami,j − ρcri,j

−αef [fi,j−1,j(k) + fi,j+1,j(k)]−αrri,j(k)

(21)

where αef and αr are weigh parameters that reflect the impact of entering flows from adjacent

lanes or on-ramps respectively.
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3 Case study

3.1 Network description

The motorway used with the purpose of evaluating and illustrating the concepts described

in this paper is the same one utilised in Part I for the calibration of the proposed model.

The Part I results are therefore useful to provide the real demand data, the calibrated values

related to the FD, and also to act as a reference case to evaluate the control actions suggested

and the improvements obtained by solving the optimisation problem.

The network is a stretch of 5.26 km in length of the Monash Freeway (M1) located in

the area of Melbourne, Victoria, Australia. It is composed by four lanes and it presents

three on-ramps and three off-ramps; a graphical representation of its structure may be seen

in Figure 2. The lanes are numbered 1, . . . , 4 from the inner lane (close to the roadside),

to the outer lane (close to the road median). The addressed time-horizon is from 5 AM to

9 AM and it includes the morning peak period, when a high flow of vehicles is travelling

towards the centre of Melbourne. Figure 3 provides the validated (Part I) simulation data

produced with real demands from 14 August 2013. As it may be seen in the contour plots of

Figure 3, a first congestion is appearing in proximity of on-ramp R1 (segment 2), due to the

increased demand. Then, the main congestion starts in segments 17-20 at about 6:15 AM due

to the high number of trucks reducing their velocity because of the slope of the motorway.

The increased number of trucks in lane 1 causes most car drivers to decide to move into the

adjacent lanes, causing an increase of density that, quite rapidly, triggers a capacity drop

due to the starting of a strong congestion. This congestion spills back, covering the whole

stretch at about 6:35 AM. This causes further speed reductions in the merging area of all

the on-ramps, contributing to the creation of a generalised congestion. Around 8 AM, since

the demand decreases, the congestion reduces and finally disappears, restoring the free-flow

conditions. A more detailed description of the uncontrolled congestion pattern is presented

in Part I, that also includes a detailed description of the model calibration and the model

capability to reproduce the different traffic phenomena.
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R1R2R3 E1E2E3

Figure 2: A schematic representation of the motorway stretch used in the case study.

Figure 3: Contour plots of the speed per lane in the no-control case of Scenario 1.
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The choice of the simulation step is a crucial aspect that must be carefully taken into

account. In fact, a too long simulation step could allow vehicles to travel in more than one

cell during its duration, causing numerical instability of the mathematical model; on the

other hand, the size of the optimisation problem is affected by this choice. In this case, a

value T = 7.5 s is set, that represents the maximum value that satisfies the CFL condition

(Courant et al., 1928) for model stability.

Once the simulation step is chosen, the control steps are defined as a multiple of the

simulation step. A first issue here is to specify the range of control update frequencies that

appear suitable for the physical system addressed. Typical control time steps for traditional

ramp metering are in the range 20 s - 1 min, while traditional VSL systems typically employ

a time step of 1 min. In the case of VACS presence, RM may be implemented either with

ordinary traffic signals or via direct communication to the vehicles waiting at the on-ramp (if

the penetration rate and the compliance level are 100%). VSLs (or driving speeds) will be

communicated to equipped vehicles, preferably for automated application. A time step of

30 s to 1 min appears reasonable for these control applications. As for lane changing, the

corresponding advices will be addressing very few vehicles, hence the frequency of updating

is not a major concern.

Beyond the physical relevance, the choice of a control time step may be based on a

trade-off between the computation time and the resulting cost function value. As a matter of

fact, the minimum cost is achieved by setting the control step equal to the simulation step; in

this case, the control variables are updated synchronously with the state variables and have

the highest degree of freedom to react immediately to any variations. Increasing the control

step means that the control variables are kept constant for a period of some simulation steps,

therefore the control actions are less able to handle the changes in the state variables, which

results in an accordingly degraded cost value. An illustrative comparison is shown in Table 1

where, for the sake of simplicity, all the control steps are set to the same value. It may be seen

that, as expected, the cost function deteriorates while the control step grows. Certainly, these

results are dependent on all the other parameters, however the cost function value seems
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Control step [s] 7.5 15 30 60 120

Computation time [s] 951 1097 703 678 675

TTS [veh · h] 1514 1522 1532 1549 1576

Improvement 23.3% 22.9% 22.4% 21.5% 20.1%

Table 1: Comparison in terms of computation time and TTS value in case different control

steps are defined (the same step value is used for all the control actions). The improvement

is related to the no-control case. The computation time has not a strictly monotonic trend

possibly because of a slower convergence for some specific instances of the problem.

to be quite stable until the control steps are set to TQ = TR = TF = 4T = 30s; in which

case the cost function is only 1.1% worse than in the best case, but the solution is obtained

in a shorter time; whereas for bigger values, the cost function value starts to increase more

substantially. Thus, a unique time step of 30 s for all control applications is utilised in the

rest of the paper.

Another significant aspect is the tuning of the cost function weights. First priority is given

to the parameter M , that is chosen in order to avoid the creation of extra-queues; a value

M = 10 was found to be appropriate in the related experiments. Then, the tuning procedure

is mainly focused in keeping essentially the same optimal TTS value while trying to obtain

reduced lateral flows and smoothed control actions. For the linear penalty terms related to

LCC, an important aspect is also related to the locations of these control actions. In locations

where strong lateral flow actions are expected (e.g. upstream of lane-drops or on-ramps), it is

not reasonable to discourage vehicles to change lane; hence, at segments immediately upstream

of such locations, the LCC weight is set to βi,j,j̄ = 0; in all other segments, the values are set

to βi,j,j̄ = 10−4. In addition, the weigh parameters of the quadratic terms have been tuned

and the following values are used in all the simulations: λf = 10−6, λr = 10−7, λst = 10−4,

and λsl = 10−3. Moreover, according to some experimental observations, the linearisation

point for suppressing the time-space speed oscillations has been chosen as v∗i,j = vfreei,j and

ρ∗i,j =
ρcri,j
4 .
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In addition, upper-bounds are provided for the on-ramps queues, obtained from an

estimation based on the length of the real ramp (wmax2,1 = 40 veh, wmax8,1 = 20 veh, and wmax12,1 =

20 veh); for the maximum flow allowed to enter from on-ramps ( rmax2,1 = rmax8,1 = rmax12,1 = 1600

veh/h); and for lateral movements (fmax = 400 veh/h).

3.2 Optimisation results

3.2.1 Scenario 1

As previously mentioned, the reference case for the Scenario 1 is taken from the results of

Part I, in which it is assumed that no control actions are applied. Computing the value of

the cost function according to (11), a TTS value Z∗
TTS = 1973 veh·h is obtained.

The optimisation problem is thus applied to the same network, using the same demand

profiles, shown in Figure 4, and the parameters described in the previous section. The demand

is fed as the external input Di,j at the mainstream entrance and at the on-ramps. Again,

similarly to the reference case, no boundary conditions are specified for the network exits,

allowing a fair comparison of the results. The obtained TTS part of the cost function is

Z∗
TTS = 1532 veh·h, that represents a 22.4% improvement with respect to the no-control

case. The traffic improvement may be seen by examination of the contour plot of Figure 5,

where it is clearly visible that speed reductions are almost completely avoided. Hereafter, the

intelligent control actions taken at critical locations are analysed and discussed.

• The first congestion appearing in the network is due to the increased flow at on-ramp R1

around 6 AM. It is tackled by the optimiser via a combined use of RM and LCC. As it

is shown in Figure 6, some space for the entering flow is created by moving vehicles from

lane 1 to lane 2 in the segment 1, upstream of the merging area (this is facilitated by

the weight βi,j,j̄ = 0 set for that location); in addition, RM actions are performed in the

period of maximum demand. Of course, the complete situation is more complex, since

some other actions are also performed while trying to avoid the creation of congestion

at downstream locations. The result is a local maximisation of the outflow from the

on-ramp location due to the avoidance of congestion.
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Figure 4: The network demand and the flow computed for the metered on-ramps.
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Figure 5: Contour plots of the computed speed in the optimal control case for Scenario 1.

• In the proximity of the on-ramp R2, a congestion, though not really extensive, appears

in the no-control case around 7 AM due to merging. However, since the overall flow is

not exceeding the capacity of the whole section, the optimiser simply designates some

vehicles to move from lane 1 to lane 2 within segment 7.

• The congestion that is created in the last part of the network (which, in the uncontrolled

case, is spilling back triggering stronger congestion at the upstream on-ramp locations),

is here managed through a proper assignment of flows among the lanes, performing

lateral movements well in advance, so as to avoid the sudden increase of density in

segment 17. As it may be seen in Figure 7, some lane-changes from lane 1 to 2 are

computed already at segment 12, with the purpose of not exceeding the critical density in

the bottleneck area of segments 17-20, thus avoiding the capacity drop. The last part of

the network is in fact, as mentioned in Section 3.1, characterised by a significant upward

slope, that generates a reduction of mainstream capacity. It should be emphasised that
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Figure 6: A graphical representation of the optimal results computed for the on-ramp R1.

More specifically, in the left diagram the lateral flow from lane 1 to lane 2 at segment 1 is

shown; whereas the right diagram displays the on-ramp queue at R1, where the dashed line

is the maximum queue length.
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Figure 7: The left picture shows the lateral flow assigned from lane 1 to 2 in segment 11; this

allows to keep the density in segment 17, shown in the right picture, below its critical value,

thus avoiding the triggering of a capacity drop.

the optimiser has a complete view of the motorway scenario, thus also all other (even

minor) actions performed in upstream locations may have a meaningful contribution in

improving the overall performance.

3.2.2 Scenario 2

As it can be noticed by the description of the control actions taken in Scenario 1, the

coordinated use of RM and LCC is sufficient to completely avoid any congestion, causing a

significant reduction of TTS. In this second demonstration example, the demand is increased

in order to obtain a scenario where the previously taken control actions are not sufficient to
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Figure 8: Contour plots of the speed in the no-control case for Scenario 2.

avoid a congestion, expecting therefore that also MTFC actions will be performed. More

specifically, the demand at on-ramps R2 and R3 (Figure 4) is increased by 30%.

For this scenario, the no-control case results are shown in the contour plots of Figure 8,

and the TTS part of the cost function is Z∗
TTS = 3561 veh·h. The optimal control problem

solution yields a value Z∗
TTS = 1700 veh·h, which is an improvement of 52.2% with respect to

the no-control case.

As expected, the improvement is obtained also because some MTFC actions are performed

in order to cope with the increased flow entering from the on-ramps R2 and R3. The overall

improvement is again clearly visible through a comparison of the respective contour plots in

Figures 8 and 9; in fact, it can be observed that the local speed actions taken upstream of the

two on-ramps R2 and R3 manage to avoid the creation of a larger congestion, contributing in

the amelioration of traffic conditions. These local control actions are here briefly analysed

and discussed:
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Figure 9: Contour plots of the computed speed in the optimal control case for Scenario 2.

• The congestion forming in the area of the on-ramp R1 is addressed in a similar way as

in Scenario 1, i.e. via synergistic combined RM and LCC actions.

• Because of the increased demand at on-ramps R2 and R3, a coordinated exploitation

of the three available control measures is performed in a similar way for both the

bottleneck locations. In fact, strong RM actions are needed in the periods of high

demand, causing the queues to approach their maximum values (Figure 10a); in addition,

lateral movements are performed in the segments immediately upstream the merging

areas (the ones characterised by a penalty cost βi,j,j̄ = 0), sending vehicles from lane 1

to 2 (Figure 10b). While the ramp queues are approaching their maximum values, also

some strong MTFC actions appear in the upstream segments (Figure 10c); because

of the specific penalty term in the cost function, these actions do not feature strong

oscillation among consecutive segments. The MTFC actions reduce the flow entering the

merging area, avoiding the capacity drop and causing again to obtain the corresponding
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Figure 10: The queue length generated at on-ramp R3 is shown in (a); the lateral movement

assigned from lane 1 to 2 of segment 11 is displayed in (b); the speed action performed

in segment 11 lane 1 is shown in (c); the density achieved at the final bottleneck location

(segment 17) is shown in (d).

critical density (hence maximum flows) at the final bottleneck area of segment 17-20

(Figure 10d).

3.3 Implementation and computation remarks

The optimisation problem has been implemented in MATLAB, using the optimisation solver

Gurobi (Gurobi Optimization, 2013), exploiting an algorithm based on the barrier method for

QP problems. All the experiments were performed on a personal computer equipped with a

processor Intel R© Core i5 3.20 GHz and 4 GB of RAM; it should be clear that, obviously, better

results in terms of computation time could be achieved using a more powerful workstation.

Considering the large size of this problem and the structure of the variables and constraints,

very sparse matrices occur, and the employed solver accounts efficiently for this fact. More

specifically, the size of the optimisation problem may be computed as following:

• the number of state variables is NS = 3 IJK;
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Optimisation horizon [min] 240 60 30 15

Computation time [s] 592 84 19 10

Table 2: Comparison in terms of computation time in case different different optimisation

horizons are considered.

• the number of control variables is NC = IJKQ + IJKR + 2 IJKF + IJK;

• the number of equality constraints is NE = 3 IJK;

• the number of inequality constraints is N I = 3 IJK + 2 IJK.

For the described example, characterised by I = 20, J = 4, K = 1920, and KQ = KF =

KR = 480, the following values are obtained: NS = 460, 800, NC = 307, 200, NE = 460, 800,

and N I = 768, 000. Despite the large size of this optimisation problem (mainly due to the

very large optimisation horizon considered), the solver was able to find the optimal solution

in a reasonable time (in all the tested scenarios, some minutes; see also Table 1).

As mentioned earlier, the presented methodology could provide a basis for real-time

control; this does not appear to be feasible in view of the computation times reported in Table

1. However, the use of optimal control in real-time is usually materialised via a MPC scheme,

as envisaged by Burger et al. (2013), whereby the required (rolling) optimisation horizon is in

the order of the time needed to drive the considered motorway stretch (rather than the 4-h

horizon used here to demonstrate the method); while the update period (for re-computation

of the solution) is surely not less than the control time step. Thus, to investigate this issue,

the possibility of decreasing the optimisation horizon is considered. The experiments made in

this direction led to the results shown in Table 2. A reasonable target is to be able to obtain

the optimal solution in a time that is smaller than the control time step, and this is indeed

readily achievable as Table 2 indicates.

Interested readers may consult the paper by Roncoli et al. (2014) for optimal control

results obtained with the same methodology, but for a different (real) motorway infrastructure

that features partly different phenomena and control actions.
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4 Conclusions

An optimal control problem has been developed for flow maximisation in multi-lane motorways

in presence of VACS. The traffic flow model presented by Roncoli et al. (2015) has been

utilised to define the constraints of a QP problem for the coordinated application of ramp

metering, variable speed limits, and lane changing control. The choice of introducing some

simplifications in the traffic flow model has permitted the formulation of an optimisation

problem with only linear constraints that is, as a consequence, solvable in a reasonable

computation time.

The optimal control has generated important and useful results, showing that the use

of VACS could enable strong benefits for the traffic conditions, alleviating congestion and

consequently improving safety. The results of this paper could be therefore utilised as a

starting point to better understand the strategies that must be exploited when defining

control actions in presence of VACS.

While some other approaches considering “intelligent vehicles”, e.g. the AHS (Varaiya,

1993), envision the creation of a novel highway infrastructure, dedicated exclusively to

autonomously driven vehicles, the assumption made in this model is the coexistence of fully

or partly automated vehicles with manually driven cars. In fact, the proposed control strategy

leads to throughput maximisation by reducing (or even avoiding) congestion phenomena,

irrespectively of the characteristics of the vehicles on the motorway. Further improvement may

be achieved by the adoption of proper control strategies at the vehicle level (e.g., considering

vehicles equipped with ACC or CACC systems); the adoption of these systems may also lead

to a substantial modification of the traffic behaviour (e.g., obtaining different capacities at

different critical densities), that can nevertheless be accounted for via a proper definition of

the FD structure and parameters, without compromising the effectiveness of the approach.

Since the direct application of these results is far from reality, because several years may

pass before a sufficiently large amount of vehicles are equipped with the necessary devices, the

only opportunity to test this control strategy is by use of appropriate simulations. Ongoing

work implements the optimisation problem in a MPC framework and applies the results to a
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microscopic simulator for various cases of penetration rate of VACS. In order to apply the

computed optimal strategies and react faster to the perturbations of traffic conditions, a

hierarchical control strategy could be applied, solving the QP problem in a high layer and

introducing a lower layer that includes a set of local feedback controllers, to obtain a faster

reaction to traffic disturbances (see e.g. Papamichail et al., 2010).
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