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Abstract— This work is devoted to the construction of 

feedback laws which guarantee the robust global exponential 

stability of the uncongested equilibrium point for general 

discrete-time freeway models. The feedback construction is 

based on a control Lyapunov function approach and exploits 

certain important properties of freeway models. The developed 

feedback laws are tested in simulation. A comparison with 

existing feedback laws in the literature is demonstrated as well. 

I. INTRODUCTION 

Freeway traffic congestion during peak periods and 
incidents has become a significant problem for modern 
societies, which leads to excessive delays, reduced traffic 
safety, increased fuel consumption and environmental 
pollution. The main traffic control measures employed 
(albeit not always in appropriate ways) to tackle traffic 
congestion, are ramp metering (RM) and variable speed 
limits (VSL). RM is implemented by use of traffic lights 
positioned at on-ramps to control the entering traffic flow 
[24]. VSL are used for speed harmonization, it may be used 
as a mainstream metering device as well [4]. To achieve their 
goal, these control measures must be driven by appropriate 
control strategies. A branch of related research has 
considered nonlinear optimal control and MPC (Model 
Predictive Control) as a network-wide freeway traffic control 
approach, see, e.g. [2, 3, 9, 11]. However, possibly due to 
the involved control strategy complexity, none of the 
proposed methods has advanced to a field-operational tool. 
Another significant branch of freeway traffic control 
research has considered explicit feedback control approaches 
to tackle congestion problems. A pioneering development in 
this direction was the I-type local feedback ramp metering 
regulator ALINEA [22], which has been used in hundreds of 
successful field implementations around the world, see, e.g. 
[23, 25]. ALINEA controls the traffic entering from an on-
ramp and targets a critical density in the mainstream merging 
segment so as to maximize the freeway throughput. Most 
relevant extensions and modifications of ALINEA in the 
present context is the extension to a PI-type regulator so as 
to efficiently address bottlenecks which are located far 
downstream of the merge area [27]; and the parallel 
deployment of PI-type regulators to address multiple 
potential bottlenecks downstream of the metered on-ramp 
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[28]. On the other hand, feedback control approaches for 
mainstream traffic control by use of VSL have been rather 
sparse, see [5]; see also [12] for a recent extension to the 
multiple bottleneck case. 

To adequately address the increasing freeway traffic 
congestion problems, it is essential to investigate, develop 
and deploy the potentially most efficient methods; and recent 
control theory advances should be appropriately exploited to 
this end. In this work, we provide a rigorous methodology 
for the construction of explicit feedback laws that guarantee 
the robust global exponential stability of the uncongested 
equilibrium point for general nonlinear discrete-time freeway 
models. We focus on discrete-time freeway models which 
are generalized versions of the known first-order discrete 
Godunov approximations to the kinematic-wave partial 
differential equation of the LWR-model (see [21, 26]) with 
nonlinear ([17]) or piecewise linear (Cell Transmission 
Model - CTM, [7]) outflow functions. The constructed 
freeway models allow all possible cases for the relative 
priorities of the inflows to be taken into account and even 
allow time-varying (and unknown) priority rules. The 
construction of the robust global exponential feedback 
stabilizer is based on the Control Lyapunov Function (CLF) 
approach (see [13]) as well as on certain important 
properties of freeway models. The formulae for the 
Lyapunov function are explicit and can be used in a 
straightforward way for various purposes. A parameterized 
family of global exponential feedback stabilizers for the 
uncongested equilibrium point of freeway models is 
constructed. The achieved stabilization is robust with respect 
to all priority rules that can be used for the inflows. 

A comparison is made, by means of simulation, with 
existing feedback laws proposed in the literature and 
employed in practice. More specifically, we focus on the 
Random Located Bottleneck (RLB) PI-type regulator which 
was proposed in [28] and is the most sophisticated of the 
very few comparable feedback regulators that have been 
employed in field operations [25]. The simulations, 
presented in Section IV of the present work, reveal that the 
performance guaranteed by the implementation of the 
proposed feedback law is better than the performance 
induced by the RLB PI regulator. 
   Due to space limitations all proofs are omitted and can be 
found in [15]. 

Definitions and Notation Throughout this manuscript, we 

adopt the following notation and terminology:  

  ),0[:  . For every set S , 
timesn

n SSS   for 

every positive integer n . For a set 
nS  , )int(S  

denotes the interior of 
nS  . Let nx  . By x  we 

denote the Euclidean norm of x .      
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  By );(0 AC , we denote the class of continuous 

functions on 
nA  , which take values in 

m . By   

);( AC k
, where 1k  is an integer, we denote the class 

of functions on 
nA   with continuous derivatives of 

order k , which take values in 
m .   

 

   Let 
nS  , 

lD   be non-empty sets and consider the 

uncertain, discrete-time, dynamical system  

( , ), ,x F d x x S d D                            (1) 

where SSDF :  is a mapping. Let Sx   be an 

equilibrium point for the dynamical system, i.e., Sx   

satisfies ),(   xdFx  for all Dd . Notice that Sx  

denotes the state of the dynamical system while Dd  

denotes a vanishing perturbation. We use the following 

definitions throughout the paper. 
 

Definition 1.1: We say that Sx   is Robustly Globally 

Exponentially Stable (RGES) for system (1) if there exist 

constants 0, M  such that for every Sx 0  and for every 

sequence   0)( tDtd  the solution )(tx  of (1) with initial 

condition 0)0( xx   corresponding to input   0)( tDtd  

(i.e., the solution that satisfies ))(),(()1( txtdFtx   and 

0)0( xx  ) satisfies the inequality 

  xxtMxtx 0)exp()(   for all 0t .  

 

Definition 1.2: A function SV :  for which there exist 

constants 012  KK , 0p  and )1,0[  such that the 

inequalities 
pp

xxKxVxxK   21 )(  and 

)()),(( xVxdFV   for all SDxd ),( , is called a 

Lyapunov function with exponent 0p  for (1).  

 

Remark 1.3: If a Lyapunov function with exponent 0p  

exists for (1) then Sx   is RGES. Indeed, if the state space 

were n  and not 
nS   and if no disturbances were 

present then we would be able to use Theorem 13.2 on pages 
765-766 in [10]. However, since the uncertain dynamical 

system (1) is defined on 
nS   with disturbances Dd , 

we cannot use Theorem 13.2 on pages 765-766 in [10]. On 
the other hand, we can use the inequality 

)()),(( xVxdFV   inductively and obtain the estimate 

))0(())(( xVtxV t  for every solution of (1) for every 

sequence   0
1]1,0[)( t

ntd  and for every integer 0t . The 

required exponential estimate of the solution is obtained by 
combining the previous estimate with the inequality 

pp

xxKxVxxK   21 )( . 

 

II. FREEWAY MODELS AND THEIR PROPERTIES 

We consider a freeway which consists of 3n  

components or cells; typical cell lengths may be 200-500 m. 
Each cell may have an external controllable inflow (on-ramp 
flow), located near the cell’s upstream boundary; and an 
external outflow (off-ramp flow), located near the cell’s 
downstream boundary (Figure 1). The number of vehicles at 

time 0t  in component },...,1{ ni  is denoted by )(txi . 

The total outflow and the total inflow of vehicles of the 

component },...,1{ ni  at time 0t  are denoted by 

, ( ) 0i outF t   and , ( ) 0i inF t  , respectively. All densities and 

flows during a time interval are measured in [veh]. The 

balance of vehicles for each component },...,1{ ni  gives: 

, ,( 1) ( ) ( ) ( )i i i out i inx t x t F t F t    ,    (2) 

for ni ,...,1  and 0t . 

Each component of the network has storage capacity 

0ia  (i.e. [0, ]i ix a  for each ni ,...,1 ). Based on (2) 

and the assumption that the outflows of every cell are 
constant percentages of the total outflow from the same cell 
as proposed in [8], we obtain the freeway model: 

 1 1 2 1 1 1 1 1 1 1

1 2 1 1 1 1

( ) min , ( ),

( )

x x s f x q c a x u

x s f x w u

    

  
   (3) 

 1 1 1 1

1 1 1 1

( ) min , ( ),(1 ) ( )

( ) (1 ) ( )

i i i i i i i i i i i i i

i i i i i i i i i i

x x s f x q c a x p f x u

x s f x s p f x w u


   

   

     

    
, 

 for  1,...,2  ni                                     (4) 

 1 1 1

1 1 1

( ) min , ( ),(1 ) ( )

( ) (1 ) ( )

n n n n n n n n n n n n

n n n n n n n n n

x x f x q c a x p f x u

x f x s p f x w u


  

  

     

    
(5) 

where if , denote the attempted outflow from cell i  to cell 

1i  , illustrating what in the specialized literature of Traffic 

Engineering (see, e.g., [17]) is called the demand-part of the 
fundamental diagram of the i -th cell. Moreover, 

(0, )iq    denotes the maximum flow that the i -th cell 

can receive (or the capacity flow of the i -th cell) and 

(0,1]ic   ( 1,...,i n ) is the jam velocity of the i-th cell. The 

variables ( ) 0iu t   denote the attempted external inflow to 

component },...,1{ ni  from regions out of the freeway and 

the variables ]1,0[)( twi  indicate the percentage of the 

attempted external inflow to component },...,1{ ni  that 

becomes actual inflow. The variables ]1,0[)( tsi , for each 

ni ,...,2 , indicate the percentage of the attempted outflow 

1 1( )i if x  , that becomes actual outflow and they are given 

by the following formula: 

 
  

   

  
   

1 1 1

1 1 1

min , ( ) ( )
( ) 1 ( ) min 1,max 0,

1 ( )

min , ( )
( )min 1,

1 ( )

i i i i i

i i
i i i

i i i i

i
i i i

q c a x t u t
s t d t

p f x t

q c a x t
d t

p f x t

  

  

   
   

  
  

 
 
 
 

(6) 



  

where ]1,0[)( tdi , ni ,...,2 , 0t  are time-varying 

parameters and the constants ip  are the well-known exit 

rates of the freeway. Since the n -th cell is the last 

downstream cell of the considered freeway, we may assume 

that 1np . We also assume that 1ip  for 1,...,1  ni , 

and that all exits to regions out of the network (i.e. all off-
ramps, as well as the main exit) can accommodate the 
respective exit flows. Although the parameters ]1,0[)( tdi  

can be estimated by use of empirical or infrastructure-related 
(see, e.g. [1]) data, when they are constant or when they are 
slowly varying, we will treat them as unknown time-varying 
parameters (disturbances). The reader should notice that by 
introducing the parameters ]1,0[)( tdi  (and by allowing 

them to be time-varying), we have taken into account all 
possible cases for the relative priorities of the inflows (and 
we also allow the priority rules to be time-varying); see [6, 
14, 16, 19, 20] for freeway models with specific priority 
rules, which are special cases of our general approach.  

Furthermore, notice that iu , ni ,...,2 , correspond to 

external on-ramp flows which may be determined by a ramp 
metering control strategy. For the very first cell 1, we 

assume, for convenience, that there is just one inflow, 1u .  

 Taking all the above into account, we can say that the 
freeway model (3), (4), (5), (6) is an uncertain control system 

on ],0(],0(],0( 21 naaaS    (i.e., Sxxx n  ),...,( 1 ) 

with inputs 
1

1 ),0(),...,( 
 n

nuuu  and disturbances 

1
2 ]1,0[),...,(  n

nddd . Notice also that the uncertainty 

1
2 ]1,0[),...,(  n

nddd  appears in the equations (3), (4) 

and (5) only when congestion phenomena are present after 

the first cell, i.e., only when 1 1 1( ) (1 ) ( ( ))i i i iu t p f x t     

( ( ))i i ic a x t   for certain },...,2{ ni .  

We next make the following assumption for the functions 

],0[: ii af  ( ni ,...,1 ): 

(H) The function )];,0([0
 ii aCf  satisfies 0 ( )if z z   

for all (0, ]iz a . There exists ],0( ii a  such that if  is 

increasing on ],0[ i  and non-increasing on ],[ ii a . 

Moreover, there exist constants )1,0(iL , ],0(
~

ii    such 

that ],0[: ii af  is 1C  on ),0( i  and 1 ( )i iL f z   for 

all )
~

,0( is   and ( ) 1if z   for all (0, )iz  .  

Assumption (H) reflects the basic properties of the so-called 
“demand function” [17] in the Godunov discretization; 

whereby i  is the critical density, where )( ii xf  achieves a 

maximum value. Note, however, that Assumption (H) 
includes the possibility of reduced demand flow for 

overcritical densities (i.e., when ii tx )( ), since ( )i if x  is 

allowed to be decreasing for [ , ]i i ix a ; this could be used 

to reflect the capacity drop phenomenon as proposed in [18]. 
Assumption (H), has non-trivial consequences. A list of the 
most important consequences can be found in [15]. These 
consequences play a crucial role at the proof of Theorem 3.1, 
which is the main result of this work. 

In conclusion, the model (3)-(6) is a generalized version 
of the known first-order discrete Godunov approximation to 

the kinematic-wave partial differential equation of the LWR-
model (see [21, 26]) with nonlinear ([17]) or piecewise 
linear (Cell Transmission Model - CTM, [7]) outflow 
functions. However, the presented framework can also 
accommodate recent modifications of the LWR-model as in 
[18] to reflect the so-called capacity drop phenomenon.  

III. ROBUST GLOBAL EXPONENTIAL STABILIZATION OF 

FREEWAYS 

Define the vector field 
1 1: [0,1] (0, )n nF S 

       

S , for all ],0(],0(: 1 naaSx  , 1
2 ]1,0[),...,(  n

nddd  

and 
1

1 ),0(),...,( 
 n

nuuu :  

1( , , ) ( ( , , ),..., ( , , )) n
nF d x u F d x u F d x u    with 

 1 1 2 1 1 1 1 1 1 1( , , ) : ( ) min , ( ),F d x u x s f x q c a x u    , 

1( , , ) ( )i i i i iF d x u x s f x    

 1 1 1min , ( ), (1 ) ( )i i i i i i i iq c a x p f x u      , 

for 1,...,2  ni , and 

( , , ) ( )n n n nF d x u x f x    

 1 1 1min , ( ), (1 ) ( )n n n n n n n nq c a x p f x u       

and 

 
 

 

1 1 1

1 1 1

min , ( )
1 min 1,max 0,

(1 ) ( )

min , ( )
min 1,

(1 ) ( )

i i i i i
i i

i i i

i i i i
i

i i i

q c a x u
s d

p f x

q c a x
d

p f x

  

  

   
        

 
    

  (7) 

for ni ,...,2 . 

 

Notice that, using definition (7), the control system (3)-(6) 

can be written in the following vector form: 

1

( , , )

, , (0, ) n

x F d x u

x S d D u








    
    (8) 

Consider the freeway model (8) under Assumption (H). 

We suppose that there exist 01 u , 0
iu ( ni ,...,2 ) and 

a vector 1( ,..., )nx x x    1(0, )   (0, )n  with: 

  111 )( uxf , 

11

1 1 1

1

( ) (1 ) ( ) (1 )
ii

i i i i i i i k j

j k j

f x u p f x u p u


    
  

 

 
      

 
 

  , 

for ni ,...,2  and 

 *
1 1 1 1 1min , ( )u q c a x   , 

 *
1 1 1(1 ) ( ) min , ( )i i i i i i i iu p f x q c a x 
      , 

for ni ,...,2 . This is the uncongested equilibrium point 

 
Figure 1.   The Freeway Model (schematically). 



  

(UEP) of the freeway model (8). Notice that, Assumption 
(H) guarantees that an UEP always exists for the freeway 

model (8) when 
*
iu  are sufficient small. The UEP is not 

globally exponentially stable for arbitrary 
*
iu ; indeed for 

relatively large values of external demands 
*
iu , there exist 

other equilibria for model (8) (congested equilibria) for 
which the cell densities are large and can attract the solution 
of (8) (see the numerical example (Figure 3) in section IV). 

The following result is our main result in feedback design. 
The result shows that a continuous, robust, global 
exponential stabilizer exists for every freeway model of the 
form (8) under assumptions (H). The formula for the 
feedback law is explicit.  

Theorem 3.1: Consider system (8) with 3n   under 

Assumption (H). Then, there exist a subset },...,1{ nR   of 

the set of all indices },...,1{ ni  with 0
iu ,  constants 

(0,1]  , ),0(  ii ub  for Ri  and a constant 0  

such that for every ),0(    the feedback law 
nSk :  

defined by: 
n

n xkxkxk  ))(),...,((:)( 1  with 

 iiii bxuxk ),(max:)(    , for all Sx , Ri  and 

 ii uxk :)( , for all Sx , Ri                 (9) 

where )(: 1
iii bu    and 

 




n

i

ii
i xxx

1

,0max:)(  , for all Sx   (10) 

achieves robust global exponential stabilization of the 

uncongested equilibrium point x  of system (8), i.e., x  is 

RGES for the closed-loop system (8) with ( )u k x . 

Moreover, for every ),0(    there exist constants 

, , , , 0Q h A K   so that the function SV :  defined 

by: 














 



 )()(,0max)(:)(

11

xPxIKxAxxxV

n

i

ii

n

i

ii
i   

(11) 

for all Sx , where 
1

( ) : , 1,...,
j

j ii
I x x j n


   and 

 ( ) : min , ( )P x Q h x        (12) 

is a Lyapunov function with exponent 1 for the closed-loop 

system (8) with )(xku  . 

Remark 3.2: The importance of Theorem 3.1 lies on the 

facts that: (i) it provides a family of robust global 

exponential stabilizers (parameterized by the parameter 

(0, )   ) and an explicit formula for the feedback law 

(formula (9)); (ii) the achieved stabilization result is robust 

for all possible (and even time-varying) priority rules for the 

junctions that may apply at specific freeways; thus, there is 

no need to know or estimate the applied priority rules; and 

(iii) it provides an explicit formula for the Lyapunov 

function of the closed-loop system; this is important, because 

the knowledge of the CLF can allow the study of the 

robustness of the closed-loop system to various disturbances 

(measurement/modeling errors, etc.) as well as the study of 

the effect of interconnections of freeways (by means of the 

small gain theorem; see [13]). 

IV. SIMULATIONS 

In this section, we consider a freeway model of the form (3)-

(6) with 5n  cells. Each cell has the same critical density 

55i   and the same jam density 170ia  . The considered 

freeway stretch has no intermediate on/off-ramps (i.e. 

0)( *  ii utu  for 5,4,3,2i , 0ip  for 4,...,1i ). Thus, 

the only control possibility is the inflow 1u  of the first cell. 

We also suppose that the cell flow capacities are 25iq   for 

1,2,3,4i   and 5 20q  , i.e. the last cell has 20% lower 

flow capacity than the first four cells and is therefore a 

potential bottleneck for the freeway. Finally, we suppose that 

each cell is described by a triangular FD (Figure 2). Then, 

the demand functions are given by the following formula: 
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      Assumption (H) holds with 55i i    ( 5,...,1i ), 

6 /11iL   ( 4,...,1i ), 5 7 /11L  . The uncongested 

equilibrium point 
* *

111 / 5ix u  ( 4,...,1i ), 5 111 / 4x u   

exists for 1 20u  .  Simulations showed that the open-loop 

system converges to an UEP for main inflow 
*
1 17u  . For 

higher values of the main inflow, the UEP is not globally 
exponentially stable due to the existence of additional 
(congested) equilibria. Therefore, if the objective is the 
operation of the freeway with large flows, then a control 
strategy will be needed. 

   We are in a position to achieve global exponential 

stabilization of the UEP for the above model by using 

Theorem 3.1. Indeed, Theorem 3.1 guarantees that for every 

]1,0(  there exist a constant ),0( 11
 ub  and a constant 

 
Figure 2   Fundamental diagram of every cell. 

 



  

0  such that for every 
   the feedback law 

5]10,0(:k  defined by: 

 













 




1

5

1

11 ,,0maxmax bxxuu

i

ii
i    (13) 

achieves robust global exponential stabilization of the UEP 

1 5( ,..., ) (0,55) (0,55)x x x       of system.                                   

      We selected 1 19.99u  , which is very close to 20, the 

capacity flow of cell 5. The corresponding equilibrium 

values are 
* 43.978ix   for 4,...,1i  and 5 54.9725x  ; the 

value of the constant ),0( 11
 ub  was chosen to be 0.2. 

Various values of the constants ]1,0(  and 0  were 

tested by performing a simulation study with respect to 

various initial conditions. Low values for   require large 

values for   in order to have global exponential stability for 

the closed-loop system. Moreover, in order to evaluate the 

performance of the controller, we used as a performance 

criterion, the total number of Vehicles Exiting the Freeway 

(VEF) on the interval ],0[ T , i.e., 






T

t

T txfVEF

0

55 ))((       (14) 

Notice that the freeway performs best (and total delays are 
minimised) if VEF is maximized; the maximum theoretical 

value for VEF is 20( 1)T  , which is achieved if cell 5 is 

operating at capacity 20 at all times (note that the maximum 
theoretical value of VEF for 200T  is 4020). 

   The responses of the densities of every cell for the closed-
loop system with the proposed feedback regulator (13) with 

0.7  , 0.6   and initial condition 0x  (60,57,58,6,62) 

are shown in Figure 4(a). For this case we had 

200 3979.8VEF  . The feedback regulator is seen to respond 

very satisfactorily in this test and achieves an accordingly 
high performance. All following tests of the proposed 
regulator (13) were conducted with the same values 0.7   

and 0.6  . 

   A comparison of the proposed feedback regulator (13) was 
made with the Random Located Bottleneck (RLB) PI 
regulator, which was proposed in [28] and is one of the very 
few comparable feedback regulators that has been employed 
in field operations [25]. Essentially, the RLB PI regulator for 
system reflects the parallel operation of five bounded PI-type 
regulators, one for each cell (see [15] for a detailed 
representation of the exact equations and the selection of the 
parameters for RLB PI).  
     When applied to the same initial condition  

0x  (60,57,58,6,62), the RLB PI regulator (Figure 4(b)) led 

to slower convergence compared with the proposed regulator 
(13). This is also reflected to the computed value of 

200 3785.9VEF   for the RLB PI regulator. In general, 

conducting a simulation study with various levels of initial 
conditions, the proposed regulator (13) exhibited faster 
performance than the RLB PI regulator. For example, Figure 

5 depicts the evolution of the Euclidean norm 
 xtx )(  for 

the closed-loop system with the proposed feedback regulator 
(13) (blue curve) and with the RLB PI regulator (red curve) 

and initial condition (170,170,...,170) , reflecting a fully 

congested original state. The computed values of 200VEF  for 

this case are: 200 3845.2VEF   for the proposed feedback 

regulator (13); and 200 3007.8VEF   for the RLB PI 

regulator.  

V. CONCLUSIONS 

This work provided a rigorous methodology for the 
construction of a parameterized family of explicit feedback 
laws that guarantee the robust global exponential stability of 
the uncongested equilibrium point for general nonlinear and 
uncertain discrete-time freeway models. The construction of 
the global exponential feedback stabilizer was based on the 
CLF approach as well as on certain important properties of 
freeway models. We also compared by means of simulations, 
the performance of the closed-loop system under the effect 
of the proposed feedback law and under the effect of the 
Random Located Bottleneck (RLB) PI regulator [28]. It was 
found that the performance guaranteed by the 
implementation of the proposed feedback law was better than 
that of the RLB PI regulator. 

Future research will address the robustness issues in a 

rigorous way: the knowledge of a Lyapunov function for the 

closed-loop system can be exploited to this purpose and 

 
Figure 3.   Open-loop system convergence (dashed lines correspond to the 

uncongested equilibrium point for the inflow 19.991u

  and initial 

condition (170, 170, 170, 170, 170). 

 

 
Figure 4.    The responses of the densities of every cell for the close loop 

system with initial condition (60,57,58,60,62) using (a) the proposed 

feedback regulator; and (b) the RLB PI regulator. 



  

explicit formulas for the gains of various inputs 

(measurement or modelling errors) can be derived. Also, the 

estimation of the gains of various inputs can allow the study 

and control of interconnected freeways (traffic networks). 

Finally, the present approach does not consider the impact of 

inflow control on upstream traffic flow conditions (e.g. 

queue forming at on-ramps); future extensions will address 

these issues appropriately. 
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Figure 5.   The evolution of the Euclidean norm for the closed-loop system 

and initial condition (170,170,170,170,170) for two cases: for the proposed 

feedback regulator (blue curve); and for the RLB PI regulator (red curve). 
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