

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

Διπλωματική Εργασία

«ΓΕΩΧΗΜΙΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΠΕΤΡΕΛΑΙΩΝ ΜΕ ΒΑΣΗ ΤΗΝ ΣΥΣΤΑΣΗ ΤΟΥ ΕΛΑΦΡΟΥ (< 210°C) ΚΛΑΣΜΑΤΟΣ»

ΚΟΥΡΜΠΕΤΗ ΙΩΑΝΝΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: ΠΑΣΑΔΑΚΗΣ ΝΙΚΟΛΑΟΣ, ΚΑΘΗΓΗΤΗΣ (ΕΠΙΒΛΕΠΩΝ) ΒΑΡΟΤΣΗΣ ΝΙΚΟΛΑΟΣ, ΚΑΘΗΓΗΤΗΣ ΓΑΓΑΝΗΣ ΒΑΣΙΛΕΙΟΣ, ΕΔΙΠ

ΧΑΝΙΑ, ΝΟΕΜΒΡΙΟΣ 2016

Ευχαριστήριες Αναφορές

Η παρούσα διπλωματική δεν θα μπορούσε να έχει πραγματοποιηθεί χωρίς την καθοδήγηση και την βοήθεια διαφόρων ατόμων, που με τον ένα ή τον άλλο τρόπο, προσέφεραν την πολύτιμη στήριξη στην προετοιμασία και την ολοκλήρωση της εργασίας αυτής.

Πρώτα από όλα θα ήθελα να ευχαριστήσω ειλικρινά και θερμά τον επιβλέποντα της παρούσας εργασίας Καθηγητή Νικόλαο Πασαδάκη ο οποίος αρχικά μου έδωσε τη δυνατότητα να πραγματοποιήσω την εργασία αυτή και στην συνέχεια με καθοδήγησε με τις πολύτιμες συμβουλές αλλά και με τις καίριες παρατηρήσεις του σε όλη την διάρκεια διεκπεραίωσης της.

Επιπλέον θα ήθελα να εκφράσω τις ευχαριστίες μου στον καθηγητή Βαρότση Νικόλαο και στον κύριο Γαγάνη Βασίλειο για την συμμετοχή τους στην εξεταστική επιτροπή.

Επίσης ευχαριστώ τον κ. Τριανταφύλλου Γεώργιο για την συμβολή του στην επεξεργασία του κειμένου και την κ. Ελένη Χαμηλάκη για την υποστήριξη.

Τέλος οφείλω το μεγαλύτερο ευχαριστώ στην οικογένειά μου και τους φίλους μου που με στήριξε στην πορεία μου στο τμήμα Μηχανικών Ορυκτών Πόρων του Πολυτεχνείου Κρήτης.

Σε αυτούς, που με την καθημερινή τους συμπαράσταση, την υπομονή τους και την θετική τους σκέψη, συνέβαλαν στην εκπλήρωση του στόχου μου αφιερώνεται η εργασία αυτή.

Πίνακας περιεχομένων

Περίληψη	8
Κεφάλαιο 1 . Εισαγωγή	9
Ενότητα 1-1 Περιγραφή του θέματος και των στόχων της εργασίας	9
Ενότητα 1-2 Περιγραφή της περιοχής προέλευσης των δειγμάτων	10
Ενότητα 1-3 Γεωλογικό υπόβαθρο και ιστορικό προηγούμενων μελετών	12
Τα Δεβόνια συστήματα πετρελαίου και οι δυνατότητες εξερεύνησης τους	12
Σχηματισμοί μητρικών πετρωμάτων στον δυτικό Καναδά	13
Σύνοψη προηγούμενων μελετών	15
Ενότητα 1-4 Πειραματική διαδικασία	18
Κεφάλαιο 2 . Θεωρητικό υπόβαθρο	18
Ενότητα 2-1 Θεωρία σχηματισμού του πετρελαίου με έμφαση στο ελαφρύ κλάσμα	
υδρογονανθράκων	18
2-1.1 Προέλευση της οργανικής ύλης	19
2-1.2 Συστήματα δημιουργίας αναγωγικού περιβάλλοντος απόθεσης	22
2-1.3 Ο μετασχηματισμός της οργανικής ύλης εντός των ιζημάτων	25
Ενότητα 2-2. Θεωρίες δημιουργίας των ελαφρών υδρογονανθράκων	36
2-2.1 Θεωρία της θερμικής διάσπασης	36
2-2.2 Θεωρία της κατάλυσης από στοιχεία μετάπτωσης	38
2-2.3 Θεωρία της κατάλυσης από όξινα ορυκτά (Catalysis by acidic clay minera	ls). 48
Ενότητα 2-3. Τεχνικές γεωχημικού χαρακτηρισμού με την χρήση του ελαφρού κλάσμα	ατος 49
2-3.1 Τεχνική τριγωνικού διαγράμματος ten Haven (1996)	50
2-3.2 Τεχνική του Thompson (1983)	51
2-3.3 Τεχνική του αμετάβλητου λόγου K1 Mango (1987)	55
2-3.4 Τεχνική των Zhang et al. (2005)	56
Ενότητα 2-4 Τεχνικές προσδιορισμού ωριμότητας	57
2-4.1 Τεχνική του Thompson (1983)	57
2-4.2 Μέγιστη θερμοκρασία ταφής BeMent (1995) - Mango (1997)	57
2-4.3 Υπολογισμός του δείκτη ανάκλασης βιτρινίτη (Schaefer 1992)	58
2-4.4 Υπολογισμός χρόνου ταφής Reznikov (1967)	59
Ενότητα 2-5 Δευτερογενείς διεργασίες	60

2-5.1 Ατμοσφαιρική εξάτμιση των πετρελαίων62
2-5.2 Έκπλυση του πετρελαίου από υπόγεια νερά6
2-5.3 Βιοαποδόμηση του πετρελαίου6
2-5.4 Κλασματοποίηση λόγω υπόγειας εξάτμισης6
Κεφάλαιο 3 . Μονο-μεταβλητή (Univariate) ανάλυση δεδομένων
Ενότητα 3-1. Οπτικός έλεγχος των δειγμάτων70
Ενότητα 3-2. Ποιοτικός έλεγχος των δειγμάτων70
Ενότητα 3-3.Ποιοτικός έλεγχος των δειγμάτων με βάση γεωχημικούς δείκτες
3-3.1 Δείκτες παραφινικότητας και αρωματικότητας
3-3.2 Συσχετισμός Δεικτών Παραφινικότητας και Αρωματικότητας και Έλεγχος ενδείξεων κλασματοποίησης7!
Ενότητα 3-4. Έλεγχος επίδρασης δευτερογενών διεργασιών
3-4.1 Έλεγχος ενδείξεων υπόγειας έκπλυσης76
3-4.2 Έλεγχος ενδείξεων βιοαποδόμησης
3-4.3 Υλοποίηση των δεικτών του Thompson με τη χρήση του Matlab
Κεφάλαιο 4 .Διερευνητική Ανάλυση Δεδομένων EDA (Exploratoty Data Analysis)8
Ενότητα 4-1. Εισαγωγή στην έννοια της συσταδοποίησης8
Ενότητα 4- Μέτρο Απόστασης (Distance Measure)88
Ενότητα 4-4 Ιεραρχικοί Αλγόριθμοι Συσταδοποίησης (Hierarchical Clustering Algorithms) 90
4-4.1 Συσσωρευτική Ιεραρχική Συσταδοποίηση (Agglomerative Hierarchical Clustering) 9:
4-4.2 Διαιρετική Ιεραρχική Συσταδοποίηση (Divisive Hierarchical Clustering)9
4-4.3 Ορισμός Απόστασης Συστάδων9
Ενότητα 4-5 Υλοποίηση της Ιεραρχικής Συσταδοποίησης στη Matlab

Πίνακας Εικόνων

Εικόνα 1-1 Η Δυτική Καναδική Ιζηματογενής λεκάνη (WCSB) (URL1)
Εικονά 1-2 Οι βασικές λεκάνες παραγωγής πετρελαίου και αερίου του Δυτικού κανάδα
(URL2)
Eικονα 1-3 Γεωφυσικος χαρτης της Alberta Basin (URL3)
Εικόνα 1-4 Πίνακας των λιθοστρωματογραφικών μοναδων του Δεβόνιου υπεδάφους της
ιζηματογενής λεκάνης του δυτικού Καναδά (Fowler et al 2001)
Εικόνα 1-5 Η κατανομή των μητρικών πετρωμάτων του Elk Point, οι κυρίες εμφανίσεις αποθέσεων και τα παλαιο-περιβαλλοντα της ιζηματογενούς λεκάνης του δυτικού Καναδά
(Fowler et al 2001)
Εικόνα 2-1 Ποσοστό ΤΟC στο ίζημα σε σχέση με την περιεκτηκότητα του νερού σε οξυγόνο
(Hunt 1996) 21
Εικόνα 2-2 Μηχανισμός δημιουργίας αναγωγικών συνθηκών στη Μαύρη θάλασσα (Hunt
1996)
Εικόνα 2-3 Ζώνη με περιορισμένη περιεκτικότητα οξυγόνου (Hunt 1996)
Εικόνα 2-4 Σχηματική απεικόνιση των τεσσάρων σταδίων μετασχηματισμού της οργανικής
ύλης (Tissot and Welte 1984)
Εικόνα 2-5 Μεταβολή του λόγου διακλαδισμένα προς κανονικά πεντάνια και της ποσότητας
των παραγόμενων $C_6 - C_7$ υδρογονανθράκων ανά γραμμάριο ιζήματος συναρτήσει του
βάθους (Hunt 1996)
Εικόνα 2-6 Σχηματική αναπαράσταση της δημιουργίας του κηρογόνου (Tegelaar 1989) 28
Εικόνα 2-7 Ανθεκτικά βιομακρομόρια σε αντιστοιχία με τα «macerals» απομεινάρια τους
μέσα στο κηρογόνο καθώς και τους αναμενόμενους υδρογονάνθρακες που θα παραχθούν
κατά την καταγένεση (Tegelaar 1989)
Εικόνα 2-8 Παράδεινμα διανράμματος Van Krevelen με δείκτη ανάκλασης του βιτρινίτη 30
Εικόνα 2-9 Διαγράμματα προϊόντων της πυρόλυσης για τρεις διαφορετικούς τύπους
κηρονόνου (Ι. ΙΙ. IIS) (Hunt 1996)
Εικόνα 2-10 Η μεταβολή στο λόνο Υ:Α και στο χοώμα του κηρονόνου σε σχέση με το
παράθυρο πετρελαίου σε ένα κοίτασμα των δυτικών ΗΠΑ (Clavpool et al. 1978)
Εικόνα 2-11 Το παράθυρο δημιουργίας των ελαφρών υδρογονανθράκων (Cs-C7) σε
συνάρτηση με το βάθος (Hunt 1996)
F_{1} Είτα ματά ματά ματά ματά ματά ματά ματά μα
υδρογογανθράκων συναρτήσει της θερμοκρασίας ταφής (Hunt 1996)
Εικόνα 2-13 Προιόντα διάσπασης χολεστανίου (Mango 1990)
Εικόνα 2-14 Τρία ισομερή που σχηματίζονται με καταλυτική πυρόλυση: κανονικό εξάνιο, 2-
μεθυλοπεντάνιο και 3-μεθυλοπεντάνιο, με ενδιάμεσο ποοϊόν το ισομερές κυκλοποσπυλίου
(Mango 2000) 39
Εικόνα 2-15 Διάνοαμμα γινομένου μεθυλοπεντανίων, κανονικού επτανίου ποος γινόμενο
μεθυλεξανίων κανονικού εξανίου (Mango 2000)
Εικόνα 2-16 Διάνοαμμα γινομένου 3-μεθυλοπεντανίου 13-διμεθυλοκικλοπεντανίου ποος
2 = 10 = 10 = 10 = 10 = 100
εικόνα 2-17 Μανανισμός δαμιουργίας κυκλικών ισομερών με καταλυτικά πυρόλυσα (Mango
2000
Εικόνα 2-18 Σχριματική παράσταση των ισομερών του επτανίου που δριμουργούνται με
καταλυτική πυρόλυση (Mango 1994)
Γικόνα 2-19 Χοιωματονοάφημα ελαφοών V/Δ που δημιομονόθηκαν με καταλυτικό
πιοόλιση (Mango 2000) /2
10p0/001 (Wallgo 2000)

Εικόνα 2-20 Σχηματική αναπαράσταση της ανταγωνιστικής σχέσης μεταξύ κλεισίματος	
δακτυλίου (k _{rc}) και υδρογονόλυσης (k _h) (Mango 1994) 4	õ
Εικόνα 2-21 Σχέση μεταξύ προτίμησης δακτυλίου (λόγος k³/ (k⁵ + k⁶)) και λόγου «γονέα»	
προς «θυγατέρων» (λόγος P ₁ / D ₁) (Mango 1994)	7
Εικόνα 2-22 Μικρές διαφοροποιήσεις στην προτίμηση δακτυλίου μεταξύ των πετρελαίων	
της ίδιας οικογένειας (οικογένειας Midland και Sabine) (Mango 1977)	3
Εικόνα 2-23 Τριγωνικό διάγραμμα προτίμησης δακτυλίου (Ten Haven 1996))
Εικόνα 2-24 Τριγωνικό διάγραμμα προτίμησης δακτυλίου με προβολή δειγμάτων	
θαλάσσιας, λιμναίας και χερσαίας προέλευσης (Ten Haven 1996)	1
Εικόνα 2-25 Προσδιορισμός του τύπου κηρογόνου ανάλογα με την "Τιμή Επτανίου" και την	
"Τιμή Ισοεπτανίου" (Thompson 1983)	3
Εικόνα 2-26 Συσχετισμός της "Τιμής Επτανίου" με τον δείκτη ανακλαστικότητας του	
βιτρινίτη Ro (Thompson 1983)	1
Εικόνα 2-27 Διάγραμμα 3MC6+24DMC5 ως προς 2MC6+23DMC5 με τη τεχνική	
αμετάβλητου λόγου K1 (Mango,1987)	5
Εικόνα 2-28 Διαχωρισμός πετρελαίων χερσαίας και θαλάσσιας προέλευσης σύμφωνα με	
την τεχνική των Zhang et al. (2005)	5
Εικόνα 2-29 Ο σχηματισμός κυκλοπροπυλίου ως ενδιάμεσο προϊόν (Mango 1997)	7
Εικόνα 2-30 Συσχέτιση του δείκτη ανάκλασης του βιτοινίτη με τον λόνο Ι του Schaefer	
(1992)	9
Εικόνα 2-31 Συσνέτιση του χρόνου ταφής και της θεουρκρασίας ταφής με την σύσταση του	-
ελαφορμ κλάσματος (Margo 1997)	n
Εικόνα 2-32 Τοινωνικό διάνοσμμα των αθορισμάτων των ισοαλκανίων τοιών διαδονικών	<i>,</i>
$a_1 = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$	2
U_{1} μομων ανομακά (2 C) - 2 Cg - 2 Cg (Geolge 2002)	<u>~</u>
	2
1990)	2
	^
	+
εικονά 2-35 Η μετατοπισή των πετρελατών που εχουν οποστεί εκπλυσή στο σιαγραμμα του	_
	S
Εικονά 2-36 Παρουσιάση των ισομερών του επτανίου κατά σειρά αντιστάσης στην	
βιοαποσομηση (μεγαλυτερο ποσοστο βιοαποσομησης → μικροτερη αντισταση) (George	_
2002)	C
Εικόνα 2-37 Η γραφική τάση πετρελαίων που έχουν υποστεί βιοαποδόμηση (George 2002).	
	7
Εικόνα 3-1 Τριγωνικό διάγραμμα (George 2002)	1
Εικόνα 3-2 Δείκτης παραφινικότητας δειγμάτων και αναπαράσταση του κατά αύξουσα	
σειρά τιμών72	2
Εικόνα 3-3 Ο δείκτης παραφινικότητας ως προς τις τοποθεσίες προέλευσης των δειγμάτων.	
	3
Εικόνα 3-4 Ο δείκτης παραφινικότητας στους σχηματισμούς Nisku,Leduc,Keg	
River, Arcs, Leduc/Nisku	3
Εικόνα 3-5 Δείκτης αρωματικότητας δειγμάτων και αναπαράσταση του κατά αύξουσα σειρά	X
τιμών74	4
Εικόνα 3-6 Ο δείκτης αρωματικότητας ως προς τις τοποθεσίες προέλευσης των δειγμάτων.	
	4
Εικόνα 3-7 Ο αρωματικότητας στους σχηματισμούς Nisku,Leduc,Keg River,Arcs,Leduc/Nisku	
	5

Εικόνα 3-8 Διάγραμμα κλασματοποίησης (Thompson 1988)	76
Εικόνα 3-9 Διάγραμμα έκπλυσης (τεχνική Lafargue 1996)	76
Εικόνα 3-10 Διάγραμμα έκπλυσης (George 2002)	77
Εικόνα 3-11 Διάγραμμα ελέγχου βιοαποδόμησης (George 2002)	77
Εικόνα 4-1 Παράδειγμα τυπικού δενδρογράμματος	91
Εικόνα 4-2 Ομοιότητα συστάδων βάσει του κριτηρίου απλού συνδέσμου (single link)	92
Εικόνα 4-3 Ομοιότητα συστάδων βάσει κριτηρίου πλήρους συνδέσμου (complete link)	92
Εικόνα 4-4 Ομοιότητα συστάδων βάσει μέσου όρου συστάδας (average link)	93
Εικόνα 4-5 Ομοιότητα συστάδων βάσει απόστασης μεταξύ κέντρων (centroid)	93
Εικόνα 4-6 Δενδρόγραμμα συσταδοποίησης απλού δεσμου	94
Εικόνα 4-7 Δενδρόγραμμα Συσταδοποίησης Πλήρους Δεσμού (Complete Link Method)	95
Εικόνα 4-8 Δενδρόγραμμα συσταδοποίησης μέσου συνδέσμου (average link)	95
Εικόνα 4-9 Δενδρόγραμμα Μεθόδου του Ward (Ward Clustering Method)	96
Εικόνα 4-10 Δενδρόγραμμα Μεθόδου Centroid (Centroid Clustering Method)	96
Εικόνα 4-11 Δενδρόγραμμα Μεθόδου Median (Median Clustering Method)	97

Περίληψη

Ο γεωχημικός χαρακτηρισμός του πετρελαίου, με βάση το ελαφρύ κλάσμα, προϋποθέτει την κατανόηση των διεργασιών που λαμβάνουν χώρα κατά την γένεση του πετρελαίου. Κατανοώντας αυτές τις διεργασίες μπορεί να γίνει εντοπισμός των «στοιχείων» που αυτές αφήνουν πίσω τους και τα οποία διαμορφώνουν την σύσταση του πετρελαίου. Με τη χρήση των «στοιχείων» αυτών σε ένα άγνωστο δείγμα πετρελαίου, μπορεί να γίνει η ανασύνθεση της πορείας δημιουργίας του και ο εντοπισμός των γεωχημικών χαρακτηριστικών που θα βοηθήσουν στον χαρακτηρισμό του, δηλαδή μπορεί να γίνει προσέγγιση της προέλευση της οργανικής ύλης που το δημιούργησε, του περιβάλλοντος ενταφιασμού της οργανικής ύλης, του χρόνου και της θερμοκρασίας ωρίμανσης καθώς και άλλων χαρακτηριστικών δευτερογενών διεργασιών που τυχόν διεξάχθηκαν μετά την γένεση του πετρελαίου και τροποποίησαν την σύστασή του.

Στην παρούσα διπλωματική εργασία αναπτύχθηκαν οι πιο σύγχρονες θεωρίες γένεσης, προέλευσης και ο μηχανισμός δημιουργίας των ελαφρών Υ/Α, καθώς και οι τεχνικές γεωχημικού χαρακτηρισμού των. Για την εφαρμογή τους χρησιμοποιήθηκαν 139 δείγματα που προέρχονται από την ιζηματογενή λεκάνη της Αλμπέρτα, του Δυτικού Καναδά, τα οποία αναλύθηκαν με τη χρήση αέριας χρωματογραφίας.

Η μονομεταβλητή ανάλυση των δεδομένων περιλαμβάνει την υλοποίηση και την παρουσίαση των αποτελεσμάτων κάθε γεωχημικού χαρακτηριστικού που μπορεί να προσδιοριστεί από το ελαφρύ κλάσμα, είτε γενετικό, είτε δευτερογενές και κατόπιν εξετάζονται σύμφωνα με τη θεωρία. Οι παραπάνω έλεγχοι πραγματοποιήθηκαν σε περιβάλλον Matlab, με την εφαρμογή ενός νέου κώδικα που δημιουργήθηκε στα πλαίσια της εργασίας.

Η διερευνητική ανάλυση για την εξαγωγή "κρυφών" πληροφοριών που πιθανών υπάρχουν στη βάση δεδομένων των πετρελαϊκών δειγμάτων, πραγματοποιήθηκε με την μέθοδο της ιεραρχικής συσταδοποίησης. Συγκεκριμένα έγινε χρήση του μέτρου της ευκλείδειας απόστασης για κάθε κριτήριο απόστασης και δημιουργήθηκαν τα αντίστοιχα δενδρογράμματα.

Από την εφαρμογή των μεθοδολογιών που προτάθηκαν αλλά και την εξονυχιστική μελέτη των αποτελεσμάτων τους, δεν προέκυψαν συμπεράσματα που να οδηγούν σ διαφοροποίηση ανάμεσα στα δείγματα.

Με βάση την εφαρμογή των τεχνικών γεωχημικού χαρακτηρισμού και συνεκτιμώντας τα αποτελέσματα της πολυμεταβλητής ανάλυση των δεδομένων, δεν προέκυψαν διαφοροποιήσεις ανάμεσα στα δείγματα. Παρόλο που τα υπό μελέτη δείγματα προέρχονται από διαφορετικούς σχηματισμούς εμφανίζουν κοινά χαρακτηριστικά.

Κεφάλαιο 1. Εισαγωγή

Ενότητα 1-1 Περιγραφή του θέματος και των στόχων της εργασίας.

Στόχος της παρούσας εργασίας είναι η ανάδειξη της χρησιμότητας της χημικής σύστασης του ελαφρού κλάσματος στον γεωχημικό χαρακτηρισμό του πετρελαίου. Ως ελαφρύ κλάσμα ορίζονται οι πτητικοί υδρογονάνθρακες (Υ/Α) της υγρής φάσης του πετρελαίου μεταξύ των πεντανίων και του κανονικού δωδεκανίου, τα οποία μπορούν να ανακτηθούν με ατμοσφαιρική απόσταξη. Όπως θα δειχθεί παρακάτω η σύσταση του ελαφρού κλάσματος του πετρελαίου μπορεί να παρέχει πληροφορίες σχετικές με τα χαρακτηριστικά γένεσης του πετρελαίου, τις δευτερογενείς διεργασίες που τυχόν έχει υποστεί καθώς και πληροφορίες που αναδεικνύουν συσχετίσεις μεταξύ των πετρελαίων. Σε αντίστοιχες μελέτες γεωχημικού χαρακτηρισμού και συσχετισμού πετρελαίων συνήθως χρησιμοποιούνται οι βιοδείκτες του πετρελαίου και όχι το ελαφρύ κλάσμα του πετρελαίου. Βιοδείκτες καλούνται τα «απολιθώματα» ή απομεινάρια οργανικών ενώσεων βιολογικής προέλευσης που συνδέονται απευθείας με την αρχική οργανική ύλη που αποτέθηκε στο ίζημα ή από τους μικροοργανισμούς που συμμετείχαν στην διάσπασή της κατά τα πρώτα στάδια ενταφιασμού της. Αποτελούνται κυρίως από άνθρακα και υδρογόνο, αλλά και από άλλα στοιχεία σε μικρότερες ποσότητες όπως το άζωτο και το οξυγόνο. Οι ενώσεις αυτές έχουν διατηρήσει έστω μερικώς την αρχική τους δομή και μπορούν να προσφέρουν πληροφορίες σχετικά με το είδος της αρχικής οργανικής ύλης, τις συνθήκες της ιζηματογένεσης, την ηλικία, την ωριμότητα του πετρελαίου, το πιθανό μητρικό πέτρωμα αλλά και τυχόν δευτερογενείς διεργασίες που μετασχημάτισαν το πετρέλαιο μετά την πρωτογενή μετανάστευσή του από το μητρικό πέτρωμα.

Καθώς η ανάλυση του ελαφρού κλάσματος του πετρελαίου είναι σχετικά ευκολότερη και γρηγορότερη συγκριτικά με τη διαδικασία διαχωρισμού και ταυτοποίησής των βιοδεικτών, έχουν αναπτυχθεί καινούριες θεωρίες και εμπειρικοί συσχετισμοί που σχετίζονται με την προέλευση των ελαφρών υδρογονανθράκων. Από αυτές τις θεωρίες μπορεί να γίνει άντληση πληροφοριών και ενδείξεων σχετικών με το ιστορικό του πετρελαίου, παρόμοιων με των πληροφορίων που θα παρείχε η ανάλυση των βιοδεικτών. Στο επόμενο κεφάλαιο θα παρουσιαστεί το θεωρητικό υπόβαθρο που αφορά τους συσχετισμούς αυτούς. Ενότητα 1-2 Περιγραφή της περιοχής προέλευσης των δειγμάτων.

Τα δείγματα που χρησιμοποιήθηκαν στην παρούσα εργασία προέρχονται από την ιζηματογενή λεκάνη του Δυτικού Καναδά (Western Canadian Sedimentary Basin) WCSB και συγκεκριμένα από την περιοχή της Αλμπέρτα (εικόνα 1-1).

Εικόνα 1-1 Η Δυτική Καναδική Ιζηματογενής λεκάνη (WCSB) (URL1).

Η ιζηματογενής λεκάνη του δυτικού Καναδά είναι μια απέραντη ιζηματογενής λεκάνη που βρίσκεται κάτω από 1.400.000 τετραγωνικά χιλιόμετρα του δυτικού Καναδά, συμπεριλαμβανομένων των περιοχών της νοτιοδυτικής Manitoba, του νοτίου Saskatchewan, της Αλμπέρτα, της βορειοανατολικής British Columbia και του νοτιοδυτικού τμήματος των Βορειοδυτικών περιοχών. Αποτελείται από μια ογκώδη σφήνα ιζηματογενούς πετρώματος εκτεινόμενη από τα Rocky Mountains στη δύση έως το Καναδικό οροπέδιο (τόξο) στην ανατολή. Αυτή η σφήνα κάτω από τα Rocky Mountains έχει πάχος περίπου 6 χιλιόμετρα, αλλά λεπταίνει και φτάνει τα μηδέν χιλιόμετρα στις ανατολικές άκρες της. Η WCSB περιέχει ένα από τα μεγαλύτερα παγκόσμια αποθέματα πετρελαίου και φυσικού αερίου και εφοδιάζει ένα μεγάλο μέρος της βορειοαμερικανικής αγοράς, παράγοντας περισσότερα από 16.000.000.000 κυβικά πόδια αερίου ανά ημέρα το 2000. Έχει επίσης τεράστια αποθέματα άνθρακα. Από τις επαρχίες και τα εδάφη που περικλείονται εντός της WCSB, η Αλμπέρτα έχει το μεγαλύτερο απόθεμα πετρελαίου, φυσικού αερίου και σχεδόν όλων των ασφαλτούχων άμμων.

Εικόνα 1-2 Οι βασικές λεκάνες παραγωγής πετρελαίου και αερίου του Δυτικού Καναδα (URL2).

Η ιζηματογενής λεκάνη της Αλμπέρτα βρίσκεται κατά μήκος της ανατολικής άκρης των Rocky Mountains του δυτικού Καναδά και επεκτείνεται από τη British Columbia μέσω της Αλμπέρτα και του Saskatchewan στη λεκάνη της Manitoba. Διαμορφώθηκε κατά τη διάρκεια της Δεβόνιας περιόδου (περίπου 415 έως 360 εκατομμύριο έτη πριν) και από τότε μέχρι την πρόσφατη κρητιδική περίοδο (περίπου 100 έως 65 εκατομμύριο έτη πριν), η περιοχή καλύφθηκε θαλάσσια σε διάφορα διαστήματα. Θαλάσσια ιζήματα συσσωρεύτηκαν βαθμιαία στα βαθύτερα μέρη της λεκάνης, και μεγάλοι ύφαλοι που αποτελούνται από θαλάσσια απολιθώματα και άλγη διαμορφώθηκαν κατά μήκος των περιθωρίων της λεκάνης. Η άνοδος της περιοχής άρχισε περίπου 65 εκατομμύρια χρόνια και εξέθεσε της αποθέσεις της λεκάνης στις διάφορες διαβρωτικές δυνάμεις. Η οργανική ουσία που θάφτηκε στα στρώματα του ιζήματος και που υποβλήθηκε σε έντονη θερμότητα και πίεση δημιούργησε το πετρέλαιο και το φυσικό αέριο που υπάρχει σήμερα εντός της λεκάνης.

Εικόνα 1-3 Γεωφυσικός χάρτης της Alberta Basin (URL3).

Ενότητα 1-3 Γεωλογικό υπόβαθρο και ιστορικό προηγούμενων μελετών

Τα Δεβόνια συστήματα πετρελαίου και οι δυνατότητες εξερεύνησης τους.

Με τον όρο Δεβόνια περίοδος, εννοείται εκείνη η γεωλογική περίοδος της παλαιοζωικής εποχής, η οποία έχει ως σημείο έναρξης το τέλος της Σιλούριας περιόδου, δηλαδή πριν από 420 εκατομμύρια έτη και ολοκληρώνεται 359 εκατομμύρια έτη πρίν όταν ξεκινά η Λιθανθρακοφόρος περίοδος. Η Δεβόνια περίοδος διαιρείται περαιτέρω σε τρεις υποδιαιρέσεις, την Πρώιμη, Μέση και Ύστερη .Η παρούσα διπλωματική εργασία θα εστιάσει στον σχηματισμό πετρωμάτων που αντιστοιχούν στη μέση Δεβόνια γεωλογική περίοδο.

Στην νοτιά Αλμπέρτα και ιδιαίτερα στους Δεβόνιους σχηματισμούς υπάρχουν πολλοί πορώδεις και διαπερατοί ταμιευτήρες, αλλά έχουν αποκαλυφθεί μόνο μερικοί σημαντικοί ταμιευτήρς υδρογονανθράκων, καθώς οι γεωτρητικές δραστηριότητες είναι περιορισμένες. Προηγούμενες μελέτες έχουν δείξει ότι υπάρχουν μητρικά πετρώματα και υδρογονάνθρακες έχουν παραχθεί στις περιοχές Nisku, Winnipegosis, Exshaw/Lower Banff της νότιας Αλμπέρτα. Υπάρχει επίσης παραγωγή υδρογονανθράκων στο Lower Banff που συνδέεται με το Big Valley, στο Nisku και στο Winnipegosis όπως φαίνεται και στην εικόνα 1-5.

Ο Mort (Mort,2015) της Γεωλογικής υπηρεσίας του Καναδά, σε προηγούμενη του εργασία πάνω στην αξιολόγηση μητρικών πετρωμάτων επιλεγμένων δειγμάτων από πυρήνες στο Beaverhill Land και Winnipegosis, δείχνει την ύπαρξη μητρικών πετρωμάτων με τάσεις δημιουργίας πετρελαίου. Η αξιολόγηση των πετρελαίων στις περιοχές Leduc, Nisku, Beaverhill Lake και Winnipegosis αποκαλύπτει μια πηγή που σχετίζεται με εβαποριτικά πετρώματα.

Πετρέλαιο παράγεται σε δολομιτικούς ορίζοντες στον σχηματισμό του Winnipegosis στην περιοχή Rich ακριβώς νοτιά του ορίζοντα Big Valey Stettler Leduc. Το περιβάλλον απόθεσης

του Winnipegosis σε αυτή την περιοχή ήταν εβαποριτικο στο εσωτερικό έως και ανθρακικό στη συνέχεια του ορίζοντα. Το πετρέλαιο που είχε παγιδευτεί στον ταμιευτήρα είναι βαρύ με πυκνότητα API 25 και η γεωχημική ανάλυση δείχνει μια εβαποριτική φυκώδη πηγή, η οποία είναι σύνηθες φαινόμενο στο εσωτερικό ενός ορίζοντα.

Στην εικόνα παρουσιάζεται ο πίνακας των λιθοστρωματογραφικών μονάδων για το Δεβόνιο υπέδαφος της ιζηματογενής λεκάνης του δυτικού Καναδά.

Εικόνα 1-4 Πίνακας των λιθοστρωματογραφικών μονάδων του Δεβόνιου υπεδάφους της ιζηματογενής λεκάνης του δυτικού Καναδά (Fowler et al 2001).

Σχηματισμοί μητρικών πετρωμάτων στον δυτικό Καναδά

Στον χάρτη που ακολουθεί παρακάτω παρουσιάζεται η κατανομή των μητρικών πετρωμάτων του Elk Point, οι κυρίες εμφανίσεις αποθέσεων και τα παλαιό-περιβάλλοντα της ιζηματογενούς λεκάνης του δυτικού Καναδά (Western Canada Sedimentary Basin).

Εικόνα 1-5 Η κατανομή των μητρικών πετρωμάτων του Elk Point, οι κυρίες εμφανίσεις αποθέσεων και τα παλαιο-περιβαλλοντα της ιζηματογενούς λεκάνης του δυτικού Καναδά (Fowler et al 2001).

Παρακάτω θα γίνει μια σύντομη περιγραφή των σημαντικότερων συστημάτων σχηματισμού που εμπεριέχονται στην παρούσα περιοχή μελέτης .

Elk point system

Στο Elk point system οι ορίζοντες έχουν σχηματιστεί από την ακτογραμμή έως υπεράκτιες περιοχές και εντός τους υπάρχει κυριαρχία κλαστικών ανθρακικών πετρωμάτων που επικαλύπτονται από εβαποριτες,. Στην περιοχή Rich υπάρχουν 2.6 mmbbl (εκατομμυρια βαρέλια) πετρελαίου με πυκνότητα API 23. Το κύριο υλικό των μητρικών πετρωμάτων είναι βασικοί φυκώδης λαμινίτες.

Beaverhill Lake system

Στην νοτιοανατολική Αλμπέρτα το σύνολο του Beaverhill Lake αποτέθηκε ως κομμάτι του σχηματισμού ανθρακικών στρωμάτων κατά την διαδικασία δημιουργία (prograding series), των βορειοδυτικών ανθρακικών στρωμάτων στον ορίζοντα Souris River. Το σύνολο των στρωμάτων είναι χρονικά αντίστοιχο των αλλούβιων αποθέσεων του ορίζοντα των Swan Hills, που αναπτύχθηκε στην δυτική Αλμπέρτα Ridge, βορειά και δυτικά. Το Slave point που αντιστοιχεί στην βάση του συστήματος είχε μια λεκάνη απόθεσης αλατιού που περιβάλλεται από έναν εβαποριτικό ορίζοντα που εσωτερικά αποτελείται από ιζήματα. Σε αυτό το σημείο τα γεωχημικά δεδομένα από τις προηγούμενες μελέτες δείχνουν επίσης μια εβαποριτική πηγή. Δεν υπάρχει παραγωγή πετρελαίου από το Beaverhill Lake παρόλο που υπάρχουν ταμιευτήρες που εμπεριέχουν δολομίτες και πολλές ενδείξεις για μητρικά πετρώματα.

Leduc System

Το μοτίβο του περιβάλλοντος απόθεσης του σχηματισμού Leduc είναι το ακόλουθο: Τα όρια του ανθρακικού ορίζοντα έχουν κατεύθυνση βορειά και δυτικά και παρουσιάζουν καλά ανεπτυγμένο δολομιτικό πορώδες. Το εσωτερικό του σχηματισμού αποτελείται κυρίως από ανθρακικά πετρώματα και εβαπορίτες.

Επίσης, το Leduc παρουσιάζει παραγωγή πετρελαίου και αερίου, η οποία αποκαλύπτει μια δυσκολία στην παγίδευση. Η δυσκολία αυτή οφείλεται στις δομικές παγίδες που δημιουργήθηκαν κατά το στάδιο της διαγένεσης και εμποδίζουν τη ροή (Mort et al, 2015).

Nisku System

Το σύστημα Nisku είναι αποδεδειγμένα ο κύριος παραγωγικός σχηματισμός στην νοτιά Αλμπέρτα. Ένας από τους πρώτους ανθρακικούς ορίζοντες είναι παρόν στα νοτιά με ένα φράγμα από συσσωρευμένα βιογενικά ανθρακικά πετρώματα και έναν ορίζοντα που εσωτερικά αποτελείται από μια εβαποριτικη λεκάνη. Αυτοί οι εβαποριτικοί δολομίτες έχουν μεταβλητό πάχος λόγω του φαινομένου διάλυσης του άλατος, το οποίο οδηγεί στην δημιουργία δομικών παγίδων που πληρούνται με ελαφρύ πετρέλαιο. Στην περιοχή Enchant υπάρχουν πάνω από 40 εκατομμύρια βαρέλια που έχουν παραχθεί από δολομίτες Nisku/Arcs. Γεωχημικά δεδομένα δείχνουν πως η περιοχή Nisku τροφοδοτείται από εβαπορίτες που έχουν φυκώδη προέλευση.

Wabamun System

Στην περιοχή του Wabamun Stettler το αποθετικό περιβάλλον αποτελείται από εβαπορίτες και δολομίτες που έχουν αποτεθεί σε έναν ορίζοντα εσωτερικά μιας εβαποριτικής λεκάνης. Η υπερκείμενη περιοχή του Upper Big Valley Wabamun είναι ασβεστολιθική, αλλά υπάρχει η πιθανότητα να υπάρχουν και κάποιες δολομιτικές περιοχές που τελικά παράγουν πετρέλαιο και αέριο από οριζόντια πηγάδια. Η πιθανή πηγή είναι το υπερκείμενο μητρικό πέτρωμα του Exshaw, το Alberta Bakken, που αποτελείται από δολομίτες του Big Valley, δολομιτικούς ιλυόλιθους του Bakken και το πιο παραγωγικό μέλος, τον ασβεστόλιθο και ιλυόλιθο του Lodgepole lower Banff.

Η γεωλογική δομική ιστορία της νοτιά Αλμπέρτα είναι αρκετά περιπλοκή. Η δημιουργία της υπήρξε αποτέλεσμα της ανάπτυξης ενός συστήματος κέρατος τάφρου (horst and graben system).

Επιπροσθέτως, υπάρχει δυνατότητα για αντισυμβατικές περιφερικές παγίδες υδρογονανθράκων που αναπτυχθήκαν σε χαμηλής διαπερατότητας πορώδεις δολομιτικούς σχηματισμούς, οι οποίοι αποτελούσαν μέρος των εβαποριτών των ανθρακικών οριζόντων.

Σύνοψη προηγούμενων μελετών

Για την πλειοψηφία των περιοχών του Δυτικού Καναδά η κυριά φάση της παραγωγής του πετρελαίου και η μετανάστευση του από την Devonian Strata έλαβε χωρά κατά το τέλος της Κρητιδικής και τις αρχές της Τριτογενούς περιόδου. Εν συντομία οι μητρικοί σχηματισμοί έχουν τα ακόλουθα χαρακτηριστικά.

Keg River

Ο σχηματισμός Keg River θεωρείται ως μια τέλεια περίπτωση για τον σχηματισμό μητρικού πετρώματος. Η οργανική ύλη χαρακτηρίζεται ως τύπου ΙΙ, με την τιμή του δείκτη υδρογόνου (ΗΙ) να κυμαίνεται από 500 έως 600. Θεωρείται πως έχει χαμηλό επίπεδο ωριμότητας, με οργανικές εμφανίσεις κυρίως φυκώδους προέλευσης. Τα δείγματα κηρογόνου από το Keg River συμπεριφέρονται σαν ανωριμά και ωριμάζουν οριακά τις περισσότερες φορές σε θερμοκρασίες που παρουσιάζουν μέγιστες τιμές (Tmax) 420-430 °C [Fowler et al 2001].

Στο Upper/Lower Keg River οι διαθέσιμες μελέτες αποκαλύπτουν διαφορετικά χαρακτηριστικά βιοδεικτών. Το Saturated Fraction Gas Chromatogram (SFGCs) των κατωτέρων μελών περιλαμβάνει: κανονικά αλκάνια χαμηλού μοριακού βάρους με χαμηλές αναλογίες πριστανίου/φυτανίου. Στα βαρύτερα κλάσματα: παρουσιάζονται υψηλότερες συγκεντρώσεις C20+ και κανονικών αλκανίων.

Beaverhill Lake

Το μητρικό πέτρωμα είναι κυρίως ανθρακικό. Συγκεκριμένα στην νοτιά Αλμπέρτα φαίνεται να είναι ένα αρκετά καλό μητρικό πέτρωμα για τη δημιουργία υδρογονανθράκων. Η οργανική ύλη που εμπεριέχει κατηγοριοποιείται ως τύπου ΙΙ, με τιμές ωριμότητας που κυμαίνονται από 0.55-0.65% Ro.

Slave Point Formation

Η οργανική ύλη του σχηματισμού Slave Point είναι κηρογόνο τύπου II/III, οι τιμές του δείκτη υδρογόνου έχουν εύρος 170-390 και το βασικό περιβάλλον απόθεσης είναι λιμνοθαλάσσιο. Τα πετρέλαια που προέρχονται από την περιοχή Nisku παρουσιάζουν υψηλότερη ωριμότητα σε σύγκριση με τα πετρέλαια της περιοχής Leduc. Οι σχηματισμοί Lower Nisku εμφανίζονται κυρίως σε λεκανοειδείς ορίζοντες και έχουν πάχος 1-7 μετρά. Οι αποθέσεις τους είναι κατά κύριο λόγο ανοιχτής θαλάσσης και η οργανική τους ύλη χαρακτηρίζεται ως τύπου ΙΙ , με δείκτη υδρογόνου που παίρνει τιμές από 400-600 στην ανατολική κεντρική Αλμπέρτα. Τα πετρέλαια αυτά χαρακτηρίζονται ως ανώριμα. Επίσης, το περιβάλλον απόθεσης ήταν θαλάσσιας προέλευσης και κυρίως μονοκύτταροι αλγκινίτες

Carmose formation

Για τον σχηματισμό Carmose προηγούμενες μελέτες εντόπισαν 4 δυνατούς σχηματισμούς για ανάπτυξη μητρικού πετρώματος που έχουν τα ακόλουθα χαρακτηριστικά:

Σχηματισμός 1: πιθανό μητρικό πέτρωμα που έχει οργανική ύλη τύπου Ι και υψηλούς δείκτες υδρογόνου.

Σχηματισμός 2: πιθανό μητρικό πέτρωμα με πάχος του πετρελαιοφόρου στρώματος 1-2 μετρά που εμπεριέχει οργανική ύλη τύπου Ι.

Σχηματισμός 3: πιθανό μητρικό πέτρωμα υπάρχει στη μέση του σχηματισμού Nisku,πάχους 3-4 μέτρων που αποτελείται από οργανική ύλη τύπου Ι.

Τέλος, το πιθανό μητρικό πέτρωμα του σχηματισμού 4 περιέχει ένα απομονωμένου τύπου οργανικό υλικό. Επιπρόσθετα, η ωριμότητα της οργανικής ύλης ποικίλει από ανώριμο στις ανατολικές περιοχές έως πετρέλαιο από μεταγενεση ή καταγενεση (late oil window).

Carmose/Nisku formation

Για τα μέλη του σχηματισμού Carmose/Nisku τα χρωματογραφήματα του κορεσμένου κλάσματος αεριού (SFGC) κυριαρχούνται από κανονικά αλκάνια χαμηλότερου μοριακού βάρους. Ο λόγος πριστανίου/φυτανίου κυμαίνεται μεταξύ 0.6-1.2 (για τα περισσότερα δείγματα σε προηγούμενες μελέτες η τιμή αυτού του δείκτη είναι μικρότερη από 1). Επιπλέον, παρόμοια αποτελέσματα επιπέδου ωριμότητας βρέθηκαν μεταξύ των σχηματισμών Carmose και Nisku.

Birdbear Formation

Ο σχηματισμός Birdbear είναι ένα πολύ λεπτό πιθανό μητρικό πέτρωμα, με οργανική ύλη τύπου Ι και ΙΙ. Οι τιμές του δείκτη υδρογόνου έχουν εύρος 138-802 mg HC/g TOC, το οποίο είναι αρκετά παρόμοιο με το Carmose. Το μοτίβο του περιβάλλοντος απόθεσης κυμαίνεται από λιμναίας θάλασσας έως περιβάλλον παλιρροιακών επιπέδων (tidal flat).

Wabanum group

To Wabanum group αναφέρεται σε πολύ λίγες έρευνες, μια από αυτές είναι των Fowler et al 2001. Στην περιοχή British Columbia υπάρχει μια λεκανοειδής εμφάνιση λαμινίτη.

Στον πίνακα 1.1 παρουσιάζεται μια σύντομη σύγκριση μεταξύ των διάφορων μητρικών πετρωμάτων.

Formation	Organic matter	HI valu e and Tmax	Additional Information
Keg River	Type II to Type II-I	500-600 420-430 °C	Upper and Lower Keg River members. In lower molecular weight n-alkanes with low pristine/phytane ratios. In Upper members: higher amounts of C20+ n-alkanes.
Beaverhill Lake	Type II	high HI values	Source rock is carbonate. Maturity ranges ~0.55% to 0.65% RoVE. Immature
Slave Point	Type II/III	170-390 HI value	Lagoonal type settings
Nisku	Туре II	400-600 HI value	SFGs are dominated by C15-C21 n-alkanes. Marine-derived, unicellular Prasinophyte alginites. Relatively low thermal maturity.
Leduc			Immature in comparison with Nisku.
Carmose	Type I	HI high	Units 1, 2, 3 and 4 potential source rocks. Unit 4 is isolated and has terrestrialinfluenced organic facies. Maturity of organic matter varies from immature (Eastern region) to late oil window.
Carmose / Nisku			SFGC dominated by lower molecular weight n- alkanes, low amount of C17 compounds.
Birdbear	Type I and III	138-802	Very similar to the Carmose. Few millimeters potential source rock. Organic facies C and E. Water lagoonal to tidal flat paleoenviroments.
Wabaunum			Thermal over-mature difficult to access its original hydrocarbon potential.

Πίνακας 1-1-1 Σύγκριση των διάφορων μητρικών πετρωμάτων.

Ενότητα 1-4 Πειραματική διαδικασία

Η ανάλυση του ελαφρού κλάσματος (iC5-C8) των 139 Devonian πετρελαίων που χρησιμοποιήθηκαν στη παρούσα εργασία έγινε με τη χρήση αέριας χρωματογραφίας (GC). Συγκεκριμένα, χρησιμοποιήθηκε ο αέριος χρωματογράφος Varian 3800 FID, που είναι εξοπλισμένος με μια χρωματογραφική στήλη DB-1, με τα εξής χαρακτηριστικά: Μήκος 30m, εσωτερική διάμετρο 0.25mm, πάχος ενεργού στρώματος 0,25μm και φέρον αέριο το ήλιο, το οποίο χρησιμοποιείται για να ληφθούν τα χρωματογραφήματα του κορεσμένου κλάσματος (SFGCs).

Το θερμοκρασιακό πρόγραμμα του χρωματογράφου είναι το ακόλουθο:

Αρχική θερμοκρασία Τ1: 50 °C

Χρόνος ισόθερμης παραμονής T1: 0 min

Ρυθμός αύξησης θερμοκρασίας: 4 °C/min

Τελική θερμοκρασία Τ2 : 280 °C

Χρόνος ισόθερμης παραμονής T2: 30 min

Η ολοκλήρωση των κορυφών των χρωματογράφων που προκύπτουν γίνεται με τη βοήθεια του ειδικό λογισμικού χρωματογραφίας *Turbonchrom ver. 6.1.1*. Οι παράμετροι του ελαφρού κλάσματος υπολογίστηκαν από τη μέτρηση και την κανονικοποίηση των ποσοστών των εμβαδών των χρωματογραφικών κορυφών.

Κεφάλαιο 2. Θεωρητικό υπόβαθρο

Ενότητα 2-1 Θεωρία σχηματισμού του πετρελαίου με έμφαση στο ελαφρύ

κλάσμα υδρογονανθράκων.

Ο γεωχημικός χαρακτηρισμός του πετρελαίου, με βάση το ελαφρύ κλάσμα, προϋποθέτει την κατανόηση των διεργασιών που λαμβάνουν χώρα κατά την γένεση του πετρελαίου. Κατανοώντας αυτές τις διεργασίες μπορεί να γίνει εντοπισμός των «στοιχείων» που αυτές αφήνουν πίσω τους και τα οποία διαμορφώνουν την σύσταση του πετρελαίου. Με τη χρήση των «στοιχείων» αυτών σε ένα άγνωστο δείγμα πετρελαίου, μπορεί να γίνει η ανασύνθεση της πορείας δημιουργίας του και ο εντοπισμός των γεωχημικών χαρακτηριστικών που θα βοηθήσουν στον χαρακτηρισμό του, δηλαδή μπορεί να γίνει προσέγγιση της πορέλευση της οργανικής ύλης που το δημιούργησε, του περιβάλλοντος ενταφιασμού της οργανικής ύλης, του χρόνου και της θερμοκρασίας ωρίμανσης καθώς και άλλων χαρακτηριστικών δευτερογενών διεργασιών που τυχόν διεξάχθηκαν μετά την γένεση του πετρελαίου και τροποποίησαν την σύστασή του.

Στο κεφάλαιο αυτό αρχικά θα γίνει η θεωρητική περιγραφή των διεργασιών που δημιουργούν το πετρέλαιο από την οργανική ύλη και έπειτα θα αναλυθούν οι διάφορες τεχνικές γεωχημικού χαρακτηρισμού που έχουν αναπτυχθεί μέχρι σήμερα και βασίζονται στη σύσταση του ελαφρού κλάσματος. Ακόμη, θα αναπτυχθούν οι θεωρίες που σχετίζονται με τις δευτερογενείς διεργασίες που ενδέχεται να έχει υποστεί το πετρέλαιο.

2-1.1 Προέλευση της οργανικής ύλης

Η προέλευση της οργανικής ύλης του πετρελαίου μπορεί να είναι θαλάσσια αλλά και χερσαία. Το φυτοπλαγκτόν, το ζωοπλαγκτόν και τα βακτήρια αποτελούν τα τρία είδη έμβιων οργανισμών με τη μεγαλύτερη συμμετοχή στη δημιουργία του πετρελαίου και γενικά των ορυκτών καυσίμων, μέσω της παραγωγής οργανικού υλικού στο υδάτινο περιβάλλον.

Το 90% του συνόλου της θαλάσσιας ζωής αποτελείται από φυτοπλαγκτόν και ζωοπλαγκτόν. Οι κυριότεροι παραγωγοί οργανικής ύλης μεταξύ των οργανισμών του φυτοπλαγκτόν που επιπλέουν στη στήλη νερού είναι τα διάτομα (diatoms) που ανήκουν σε οικογένεια μονοκυτταρικής άλγης με πυριτικό σκελετό και απαντώνται κυρίως σε περιοχές με δροσερά και κρύα νερά, τα περιδίνια (peridineans) που απαντώνται σε θερμά νερά, τα κοκκολιθοφόρα (coccolithophores), μονοκύτταρα φυτά με ασβεστούχο σκελετό που απαντώνται σε μεγάλους αριθμούς σε ζεστά νερά, τα δινομαστιγωτά (dinoflaggelates) και τα μπλε-πράσσινα φύκη (blue-green algae).

Οι οργανισμοί που τρέφονται κατά κύριο λόγο από το φυτοπλαγκτόν είναι το φυτοφάγο ζωοπλαγκτόν, όπως τα κοπέποδα (copepods). Αυτά με την σειρά τους αποτελούν τροφή για είδη σαρκοφάγου ζωοπλαγκτόν και διάφορα είδη ψαριών που αποτελούν τον επόμενο κρίκο της τροφικής αλυσίδας.

Τα βακτήρια, λόγω του τεράστιου πληθυσμού τους και της ποικιλίας των ειδών τους, κατέχουν μια ξεχωριστή θέση τόσο γενικά στο φαινόμενο της ζωής όσο και στο ισοζύγιο του άνθρακα. Είναι παρόντα παντού και συμμετέχουν στις βιογεωχημικές διεργασίες με τρόπο σημαντικότερο από αυτό των ανώτερων οργανισμών. Όλοι οι χημειοσυνθετικοί οργανισμοί είναι βακτήρια, όπως και σχεδόν όλοι οι αναερόβιοι οργανισμοί των ιζημάτων. Η σημαντικότερη βιογεωχημική δραστηριότηα τους είναι ο μετασχηματισμός των υπολειμμάτων των οργανισμών (βιοπολυμερών) στα αντίστοιχα μονομερή, εξασφαλίζοντας έτσι την πρώτη ύλη για τη δημιουργία των οργανογενών ορυκτών καυσίμων.

Όλοι αυτοί οι θαλάσσιοι οργανισμοί συνιστούν την τροφοδοσία της θαλάσσιας οργανικής ύλης. Σε αυτήν την τροφοδοσία πρέπει να προστεθεί και η τροφοδοσία της οργανικής ύλης χερσαίας προέλευσης που μπορεί να είναι σπόροι και γύρη που παρασύρονται από τον άνεμο, διάφορα οργανικά απόβλητα ζωικά, φυτικά αλλά και ξυλώδη υλικά που φθάνουν στην θάλασσα ή σε λίμνες από ποτάμια συστήματα απορροής. Αυτή η οργανική ύλη μπορεί να αναμειχθεί με την θαλάσσια οργανική ύλη και να αλλάξει σημαντικά την σύστασή της. Η οργανική ύλη καθιζάνει στον θαλάσσιο πυθμένα και μετασχηματίζεται από βακτήρια τα οποία με την σειρά τους προσθέτουν την δική τους συνεισφορά σε οργανική ύλη.

Συμμετοχή στη δημιουργία της οργανικής ύλης έχουν και τα χερσαία ανώτερα φυτά. Οι οργανισμοί αυτοί υπερτερούν ποσοτικά των αντίστοιχων θαλάσσιων, όμως έχει αποδειχθεί ότι η δέσμευση του διοξειδίου του άνθρακα από τους θαλάσσιους οργανισμούς είναι

μεγαλύτερη λόγω του ταχύτερου ρυθμού του μεταβολισμού τους. Ο Lijmbach (Lijmbach, 1975) πρώτος παρατήρησε ότι η αυξημένη παραγωγικότητα των θαλάσσιων οργανισμών και η αποδόμηση της οργανικής ύλης στον πυθμένα από τα βακτήρια σε συνδυασμό με τις ευνοϊκές συνθήκες διατήρησης που επικρατούν στο υδάτινο περιβάλλον έχουν ως αποτέλεσμα τη δημιουργία μίας άμορφης οργανικής ύλης, υψηλής περιεκτικότητας σε υπολείμματα σωμάτων βακτηρίων που μετατρέπεται ευκολότερα σε πετρέλαιο.

Το χημικό προφίλ αυτής της οργανικής ύλης που εναποτίθεται στον πυθμένα της ιζηματογενούς λεκάνης αποτελείται κυρίως από βιοπολυμερή, όπως υδατάνθρακες, πρωτεΐνες, λιπίδια, λιγνίνη και υποομάδες όπως κιτίνη, κηροί, ρητίνες, γλυκίδια, χρωστικές ενώσεις, λίπη και αιθέρια έλαια. Από το σύνολο αυτό της οργανικής ύλης, το ποσοστό που θα διατηρηθεί και θα ενσωματωθεί μέσα στο ιζηματογενές πέτρωμα μπορεί να διαφέρει σημαντικά και εξαρτάται από συγκεκριμένους παράγοντες. Αυτοί οι παράγοντες είναι:

α. Οι οξειδοαναγωγικές συνθήκες

Οι οξειδοαναγωγικές συνθήκες που επικρατούν κατά την διάρκεια της εναπόθεσης της οργανικής ύλης. Όταν το νερό στον πυθμένα της απόθεσης ανακυκλώνεται με φρέσκο, πλούσιο σε οξυγόνο, τότε αυτό ευνοεί την επιβίωση μικροοργανισμών και βακτηρίων που καταναλώνουν την οργανική ύλη πριν αυτή προλάβει να ενσωματωθεί στο ίζημα. Αντίθετα αν το νερό στον πυθμένα είναι στάσιμο, τότε δεν υπάρχει επάρκεια σε οξυγόνο και μόνο ένας μικρός αριθμός αναερόβιων βακτηρίων μπορεί να επιζήσει. Έτσι μεγαλύτερη ποσότητα της οργανικής ύλης καταλήγει να ενσωματωθεί στο ίζημα. Είναι χαρακτηριστικό ότι σε οξειδωτικά (oxic) περιβάλλοντα απόθεσης (περισσότερο από 1ml/l οξυγόνο στο νερό) το ποσοστό της οργανικής ύλης που επιβιώνει και εναποτίθεται στο πέτρωμα είναι της τάξης του 0.05 έως 1% σε συνολικό οργανικό άνθρακας (Total Organic Carbon – TOC)(Hunt,1979). Σε υποξειδωτικά (suboxic) περιβάλλοντα απόθεσης (οξυγόνο στο νερό μεταξύ 0.1 ml/l και 1 ml/l) το ποσοστό της οργανικής ύλης που επιβιώνει είναι αντίστοιχα από 1 έως 3% TOC, ενώ σε αναγωγικά (anoxic) περιβάλλοντα (οξυγόνο στο νερό λιγότερο από 0.1 ml/l) το ποσοστό της οργανικής ύλης στο ίζημα μπορεί να φτάσει από 3 έως 20% TOC (εικόνα 2-1). Η έλλειψη οξυγόνου δεν οδηγεί μόνο σε αύξηση του ΤΟC αλλά και σε αύξηση του λόγου υδρογόνου προς άνθρακα (λόγος Υ:Α) στην διατηρητέα οργανική ύλη. Γι' αυτό το λόγο τα αναγωγικά περιβάλλοντα απόθεσης έχουν μεγαλύτερη πιθανότητα να δημιουργήσουν μητρικά πετρώματα πετρελαίο, ενώ τα υποξειδωτικά μικρότερη πιθανότητα δημιουργίας πετρελαίου, ενώ μπορεί να δώσουν αέριους Υ/Α. Τέλος τα οξειδωτικά περιβάλλοντα συνήθως δεν δημιουργούν μητρικό πέτρωμα πετρελαίου, ενώ σπάνια δημιουργούν μητρικό πέτρωμα αερίου. Οι γεωλογικές συνθήκες που διευκολύνουν την δημιουργία αναγωγικού περιβάλλοντος απόθεσης είναι:

- Υδάτινο περιβάλλον περιορισμένης ανάδευσης και
- Εκτενής ζώνη με περιορισμένη περιεκτικότητα οξυγόνου στις θαλάσσιες ακτές.

Στην επόμενη ενότητα (2-1.2) περιγράφεται εν συντομία πως δημιουργούνται αυτές οι συνθήκες αναγωγικού περιβάλλοντος απόθεσης

	Oxic	sca	Benthic avengers
and the second	Suboxic	Worms	BUROWIN
Sediment	Anoxic Bacteria Laminated, no bioturbation	Micro to macro burrowed	Coarse bioturbation
% TOC	3 to 20	1 to 3	0.05 to 1
H/C of OM	1.6	1.2	0.8
OM type	I and II	–	III – IV

Εικόνα 2-1 Ποσοστό ΤΟC στο ίζημα σε σχέση με την περιεκτηκότητα του νερού σε οξυγόνο (Hunt 1996).

β. Η σύνθεση της οργανικής ύλης

Η σύνθεση της οργανικής ύλης είναι σημαντικός παράγοντας που καθορίζει το ποσοστό που θα διατηρηθεί από αυτή. Όπως θα παρουσιαστεί αναλυτικότερα παρακάτω, διαφορετικές ομάδες βιοπολυμερών παρουσιάζουν διαφορετική αντίσταση στην βιοαποδόμηση καθώς δέχονται επίθεση από βακτήρια που χρησιμοποιούν ένζυμα για να τα διασπάσουν στις βασικές τους δομικές μονάδες για να τα καταναλώσουν. Για παράδειγμα οι πρωτεΐνες και το DNA έχουν πολύ μικρή αντίσταση στην βιοαποδόμηση σε αντίθεση με τις κιτίνες και τανίνες που έχουν μεγάλο δυναμικό διατίρησης (Tegelaar, 1989).

γ. Ο ρυθμός εναπόθεσης του ιζήματος

Το ποσοστό της οργανικής ύλης που θα διατηρηθεί στο πέτρωμα επηρεάζεται επίσης από το ρυθμό εναπόθεση του ιζήματος. Ο πληθυσμός των μικροοργανισμών και βακτηρίων που μπορεί να επιβιώσει κάτω από τον πυθμένα της θάλασσας έχει βρεθεί ότι μειώνεται εκθετικά με το βάθος. Για παράδειγμα σε λεπτόκοκκα ιζήματα στην επιφάνεια του πυθμένα οι μικροοργανισμοί αριθμούν σε εκατομμύρια ανά κυβικό εκατοστό, ενώ σε βάθος μόλις τριών μέτρων αριθμούν μόλις σε μερικές εκατοντάδες ανά κυβικό εκατοστό (Hunt,1996). Αυτό σημαίνει ότι όσο μεγαλύτερος είναι ο ρυθμός εναπόθεσης του ιζήματος τόσο λιγότερο χρόνο είναι εκτεθειμένη η οργανική ύλη στους μικροοργανισμούς που την καταναλώνουν.

Σύμφωνα λοιπόν με τα παραπάνω η διατήρηση της οργανικής ύλης και οι παράγοντες που την επηρεάζουν και την ευνοούν είναι πολύ πιο σημαντικοί σε σύγκριση με την ποσότητα οργανικής ύλης που παράγεται και καταλήγει στον πυθμένα. Στατιστικές μελέτες σε παγκόσμια κλίμακα έχουν δείξει ότι κατά μέσο όρο μόλις το 0.6% της οργανικής ύλης που παράγεται σε θαλάσσιες λεκάνες, διατηρείται κατά την ταφή μέσα στο πέτρωμα(Hunt,1996).

- 2-1.2 Συστήματα δημιουργίας αναγωγικού περιβάλλοντος απόθεσης
- α. Υδάτινο περιβάλλον περιορισμένης ανάδευσης

Η οργανική ύλη στα υδάτινα περιβάλλοντα δημιουργείται μέσω της διαδικασίας της φωτοσύνθεσης του φυτοπλαγκτόν, το οποίο αποτελεί τη βάση της τροφικής αλυσίδας. Η παραγωγικότητα της φωτοσύνθεσης καθορίζει την ανάπτυξη των υπόλοιπων μορφών ζωής (ζωοπλαγκτόν και ανώτεροι οργανισμοί) και καθορίζεται από φυσικούς και χημικούς παράγοντες, οι κυριότεροι από τους οποίους είναι η ένταση της ηλιακής ακτινοβολίας, η θερμοκρασία, η διαθεσιμότητα των θρεπτικών συστατικών και η χημεία του νερού.

Η φωτοσύνθεση λαμβάνει χώρα μέσα στην υδάτινη ζώνη που εισχωρεί το φως. Επομένως, η ένταση της ηλιακής ακτινοβολίας είναι σημαντική, διότι δεν ορίζει μόνο την ευφωτική ζώνη αλλά και το ρυθμό της φωτοσύνθεσης. Η ευφωτική ζώνη φτάνει ανάλογα με τη θέση και την καθαρότητα του νερού μέχρι τα 200 m από την επιφάνεια.

Η διεργασίας της φωτοσύνθεσης εμπλουτίζει με οξυγόνο τα επιφανειακά νερά καθώς είναι κύριο προϊόν της. Κάτω από την ζώνη του φωτός όμως η λειτουργία της αναπνοής και η βιοχημική αποσύνθεση της οργανικής ύλης καταναλώνει οξυγόνο χωρίς να υπάρχει παραγωγή. Όταν λοιπόν, ο ρυθμός συγκέντρωσης της οργανικής ύλης ξεπεράσει το ρυθμό τροφοδοσίας της περιοχής με οξυγόνο, δημιουργούνται συνθήκες διαφοροποίησης της συγκέντρωσης του οξυγόνου με το βάθος. Στα επιφανειακά στρώματα το οξυγόνο μπορεί να αναπληρώνεται από το ατμοσφαιρικό, ενώ σε μεγαλύτερα βάθη διαμορφώνονται ανοξικές συνθήκες. Αυτό σημαίνει ότι αν δεν υπήρχε ανάδευση του νερού που φέρνει νέο οξυγόνο, όλες οι υδάτινες λεκάνες του κόσμου θα ήταν αναγωγικές κάτω από την ζώνη που εισχωρεί το φως.

Η κινητήρια δύναμη που προκαλεί την ανάδευση είναι η διαφορά πυκνότητας του νερού που οφείλεται είτε σε διαφορά θερμοκρασίας είτε σε διαφορά αλατότητας. Ένα παράδειγμα διαφοράς αλατότητας είναι όταν η εξάτμιση επιφανειακού νερού λόγω ηλιοφάνειας προκαλεί αύξηση της συγκέντρωσης των αλάτων στα επιφανειακά στρώματα, δηλαδή αύξηση της πυκνότητας του νερού. Αυτό το νερό στη συνέχεια βυθίζεται και νερό από τον πυθμένα ανέρχεται να το αντικαταστήσει στην επιφάνεια. Ένα παράδειγμα διαφοράς θερμοκρασίας είναι όταν σε βόρειες περιοχές ψυχρό ποτάμιο νερό εισέρχεται σε λίμνες. Το νερό της λίμνης είναι θερμότερο άρα μικρότερης πυκνότητας οπότε το ποτάμιο νερό βυθίζεται φέρνοντας καινούριο οξυγόνο στον πυθμένα.

Εικόνα 2-2 Μηχανισμός δημιουργίας αναγωγικών συνθηκών στη Μαύρη θάλασσα (Hunt 1996).

Υπάρχουν όμως περιπτώσεις που δεν υπάρχει ανάδευση του νερού καθώς ο πυθμένας έχει πάντοτε νερό μεγαλύτερης πυκνότητας. Ένα τέτοιο παράδειγμα είναι η Μαύρη θάλασσα όπου θαλάσσιο αλμυρό νερό έχει παγιδευτεί στον πυθμένα ενώ το νερό που εισέρχεται στην λεκάνη είναι νερό χαμηλής αλατότητας, μικρότερης πυκνότητας ποτάμιας προέλευσης (εικόνα 2-2). Λόγω της έλλειψης οξυγόνου στα κατώτερα στρώματα του νερού επικρατούν αναγωγικές συνθήκες και το νερό περιέχει υδρόθειο σαν αποτέλεσμα της δράσης αναερόβιων μικροοργανισμών (sulfate reducing bacteria). Η οργανική ύλη συσσωρεύεται στον πυθμένα χωρίς να υπάρχει το απαραίτητο οξυγόνο για να αποσυντεθεί και φτάνει σε 18 και 15% ΤΟC στα ιζήματα.

β. Εκτενής ζώνη με περιορισμένη περιεκτικότητα οξυγόνου στις θαλάσσιες ακτές.

Η διαστρωμάτωση του νερού παρατηρείται όχι μόνο σε κλειστά υδάτινα σώματα, αλλά και σε ανοικτούς ωκεανούς και θάλασσες. Στις σύγχρονες θάλασσες έχει παρατηρηθεί ένα παγκόσμιο φαινόμενο κατά το οποίο η συγκέντρωση του οξυγόνου με το βάθος εμφανίζει ένα χαρακτηριστικό προφίλ. Συγκεκριμένα παρουσιάζεται μια ζώνη μείωσης της περιεκτικότητας του οξυγόνου στη στήλη του θαλάσσιου νερού που φτάνει στο ελάχιστο στα 200 μέτρα, ενώ στη συνέχεια αυξάνεται και σταθεροποιείται με το βάθος (περίπου στα 500 μέτρα). Το φαινόμενο αυτό παρατηρείται κυρίως σε παράκτιες περιοχές, είναι απόρροια της έντονης βιολογικής δραστηριότητας που εκδηλώνεται σε αυτά τα βάθη και έχει ως αποτέλεσμα την ανακύκλωση μεγάλης ποσότητας οργανικής ύλης. Η δραστηριότητα αυτή οδηγεί σε μεγάλη κατανάλωση οξυγόνου χωρίς να υπάρχει πρωτογενής παραγωγή οξυγόνου καθώς αυτή η ζώνη βρίσκεται κάτω από την ευφωτική ζώνη της υδάτινης μάζας. Έτσι η ζώνη αυτή παρουσιάζει ελάχιστη περιεκτικότητα σε οξυγόνο και δημιουργούνται ανοξικές συνθήκες (εικόνα 2-3). Η πιθανότητα να εκδηλωθεί το φαινόμενο αυτό σε παράκτιες περιοχές εξαρτάται από την κυκλοφορία/ανακύκλωση του νερού και την ένταση της βιολογικής δραστηριότητας.

Εικόνα 2-3 Ζώνη με περιορισμένη περιεκτικότητα οξυγόνου (Hunt 1996).

Εδώ πρέπει να αναφερθεί και ένα άλλο φαινόμενο παγκόσμιας κλίμακας. Αυτό της μεταβολής της στάθμης των θαλασσών. Όταν η στάθμη της θάλασσας ανεβαίνει είτε λόγω της τήξης των παγετώνων είτε λόγω τεκτονικής διαστολής του θαλάσσιου πυθμένα τότε παρατηρείται μία φάση διείσδυσης (transgression). Κατά τη φάση αυτή τα θαλάσσια νερά εισχωρούν και καλύπτουν ηπειρωτικές παράκτιες περιοχές. Ενώ σε περιόδους που παρουσιάζεται πτώση της στάθμης της θάλασσας, είτε τοπικά, όπως στην περίπτωση απόθεσης ηπειρωτικών ιζημάτων σε ένα δέλτα ποταμού, είτε λόγω άλλων παραγόντων παγκόσμιας εμβέλειας, τότε παρατηρείται μία φάση οπισθοχώρησης (regression), δηλαδή οι ακτές της θάλασσας υποχωρούν.

Σε περίπτωση που παρουσιαστεί φάση διείσδυσης σε ζώνη με περιορισμένη περιεκτικότητα οξυγόνου τότε μεγάλη έκταση πυθμένα μπορεί να βρεθεί σε αναγωγικές συνθήκες. Αυτό συμβαίνει διότι η κλίση κοντά στις ακτές είναι συχνά μικρή. Ενώ αντίθετα σε φάση οπισθοχώρησης η στάθμη της θάλασσας πέφτει σε περιοχές που βρίσκονται πιο απομακρυσμένες από τις ακτές όπου η κλίση του πυθμένα είναι εντονότερη και επομένως η έκταση που μπορεί να καλύψει η ανοξική ζώνη είναι μικρότερη.

Όμως τα παραπάνω δε συνεπάγονται πως με την ύπαρξη φάσης διείσδυσης με μεγάλη βιολογική δραστηριότητα θα υπάρξουν αναγκαστικά και αναγωγικές συνθήκες απόθεσης οργανικής ύλης. Η κυριότερη και πιο καθοριστική συνθήκη για την απόθεση οργανικής ύλης είναι η ύπαρξη ζώνης με περιορισμένη περιεκτικότητα οξυγόνου σε επαφή με την επιφάνεια ιζηματογενούς απόθεσης.

Σύμφωνα με τους Ronov (Ronov, 1994) και Vail (Vali, 1977) η μεγαλύτερη περίοδος διείσδυσης ξεκίνησε κατά την διάρκεια του Ιουρασικού και κράτησε μέχρι το τέλος του Κρητιδικού γεωλογικού αιώνα. Κατά την περίοδο αυτή έλαβε χώρα η απόθεση των ιζημάτων των μητρικών πετρωμάτων της Βόρειας Θάλασσας, της Μέσης Ανατολής, της δυτικής Σιβηρίας, της Βενεζουέλας και μεγάλου μέρους της κεντρικής Αμερικής (Klemme, 1991). Υπολογίζεται ότι πάνω από τα μισά πετρελαϊκά κοιτάσματα της περιόδου αυτής δημιουργήθηκαν από την διείσδυση αυτή.

2-1.3 Ο μετασχηματισμός της οργανικής ύλης εντός των ιζημάτων

Η οργανική ύλη στα ιζήματα μαζί με τα ορυκτά και την υδάτινη φάση αποτελούν ένα ενιαίο σύνολο, το οποίο μετασχηματίζεται υπό την επίδραση διαφόρων φυσικοχημικών διεργασιών. Οι διεργασίες μετασχηματισμού της οργανικής ύλης παρουσιάζονται γραφικά στο σχήμα της εικόνας 2-4, σύμφωνα με το οποίο διακρίνονται σε τρία στάδια μετασχηματισμού, τη διαγένεση (diagenesis), τη καταγένη (katagenesis) και τη μεταγένεση (metagenesis). Υπάρχει ένα ακόμη στάδιο μετασχηματισμού, αυτό της μεταμόρφωση (metamorphism) που δεν εμπεριέχεται στην εικόνα 2-4.

Εικόνα 2-4 Σχηματική απεικόνιση των τεσσάρων σταδίων μετασχηματισμού της οργανικής ύλης (Tissot and Welte 1984).

α. Φάση διαγένεσης του πετρελαίου.

Η διαγένεση αποτελεί το πρώτο στάδιο μετασχηματισμού της οργανικής ύλης και λαμβάνει χώρα στα ιζημάτα σε χαμηλές θερμοκρασίες, κάτω των 50°C. Ξεκινά άμεσα με το θάνατο των οργανισμών και την εναπόθεση της οργανικής ύλης στα ιζήματα και οφείλεται στην δραστηριότητα των βακτηρίων και μικροοργανισμών που ζουν μέσα σε αυτά. Ο όρος διαγένεση συνοψίζει το σύνολο των διεργασιών μετασχηματισμού της οργανικής ύλης έως και την έναρξη της δημιουργίας των υδρογονανθράκων του πετρελαίου από τις αντιδράσεις θερμικής διάσπασης μορίων.

Κατά το στάδιο της διαγένεσης η οργανική ύλη ευρισκόμενη σε μικρό βάθος υφίσταται τη δράση μικροοργανισμών και κυρίως βακτηριδίων. Η βιολογική αυτή δραστηριότητα σχετίζεται έντονα με το βάθος. Έτσι η διαγένεση είναι πολύ έντονη για μικρά βάθη, ενώ ελαττώνεται γρήγορα βαθύτερα. Κατά την φάση της διαγένεσης, από τη διάσπαση της οργανικής ύλης, παρουσιάζεται αποβολή διοξειδίου του άνθρακα, υδρόθειου και μεθανίου και παράλληλα δημιουργείται το κηρογόνο και μικρές ποσότητες βιτουμενίων όπως κανονικές παραφίνες, ισοπρένια, στεράνια, τριτερπάνια και πορφυρίνες, τα οποία και αποτελούν βιολογικούς δείκτες (βιοδείκτες). Σε αντίθεση με το κηρογόνο, τα βιτουμένια είναι διαλυτά σε οργανικούς διαλύτες. Το ποσοστό των βιτουμενίων στη συγκεκριμένη φάση δεν ξεπερνά το 5 έως 15% του ολικού οργανικού άνθρακα (TOC).

Εικόνα 2-5 Μεταβολή του λόγου διακλαδισμένα προς κανονικά πεντάνια και της ποσότητας των παραγόμενων C₆ - C₇ υδρογονανθράκων ανά γραμμάριο ιζήματος συναρτήσει του βάθους (Hunt 1996).

Στα νέα ιζήματα οι ελαφροί υδρογονάνθρακες απαντώνται μόνο σαν ίχνη σε περιεκτικότητες μερικών μερών του δισεκατομμυριού (ppb) και είναι κυρίως κανονικοί με ευθεία αλυσίδα ενώ όσο προχωρά η διαγένεση εμφανίζεται αύξηση των διακλαδισμένων ελαφρών Y/A λόγω των αντιδράσεων χαμηλής θερμοκρασίας (carbonium ion ή free-radical reactions). Ο λόγος διακλαδισμένων προς κανονικών ισομερών του πεντανίου ή του εξανίου στα επιφανειακά

ιζήματα είναι μεταξύ 0.2 και 0.5, ενώ με την αύξηση του βάθους ταφής κατά την διαγένεση φτάνει στο μέγιστο λόγο που είναι μεταξύ 2 και 5. Το μέγιστο του λόγου αυτού συμπίπτει με την αρχή δημιουργίας μεγάλων ποσοτήτων πετρελαίου δηλαδή το τέλος της διαγένεσης και την αρχή της καταγένεσης. Από αυτό το σημείο και έπειτα ο λόγος μειώνεται εξαιτίας της δημιουργίας μεγάλων ποσοτήτων κανονικών Υ/Α από θερμική διάσπαση. Η εικόνα 2-5 δείχνει ένα παράδειγμα μεταβολής του λόγου με το βάθος από τον κόλπο του Μεξικού καθώς και την ποσότητα των παραγόμενων $C_6 - C_7$ υδρογονανθράκων ανά γραμμάριο ιζήματος, συναρτήσει του βάθους.

Το κηρογόνο και η δημιουργία του.

Κηρογόνο ονομάστηκε αρχικά η οργανική ύλη ιζηματογενών σχηματισμών στη Σκωτία, η οποία με θερμική πυρόλυση παρήγαγε μείγματα υγρών και αέριων υδρογονανθράκων (oil shales). Στη γεωχημεία του πετρελαίου σήμερα ο όρος χρησιμοποιείται με την ευρύτερη έννοια ως ομάδα συστατικών με όμοια διαλυτότητα (τάξη διαλυτότητας) και διαφοροποιεί το κηρογόνο που απαντάται στα συμπαγή ιζηματογενή πετρώματα από την οργανική ύλη (OY) που εγκλωβίζεται μέσα στα πρόσφατα ιζήματα. Συγκεκριμένα ο όρος «κηρογόνο» αναφέρεται στο αδιάλυτο υλικό των ιζηματογενών πετρωμάτων σε οργανικούς διαλύτες, στο νερό και σε οξυγονούχα οξέα. Το 40 έως 60% της οργανικής ύλης στα πρόσφατα ιζήματα διαλύεται με οξέα, βάσεις και οργανικούς διαλύτες, ενώ αντίστοιχα μόνο το 20% του κηρογόνου των πετρωμάτων διαλύεται από τους ίδιους διαλύτες (Connan 1967, Huc et al. 1978).

Κατά την κλασσική θεωρεία σχηματισμού του κηρογόνου η δημιουργία του είναι απόρροια αλλεπάλληλων και τυχαίων αντιδράσεων πολυμερισμού και πολυσυμπύκνωσης των προϊόντων βιοαποδόμησης της οργανικής ύλης. Τα νέα προϊόντα που προκύπτουν από τις αντιδράσεις αυτές ονομάζονται γεωπολυμερή και συνεχίζουν να υπόκεινται σε αλλεπάλληλες αντιδράσεις χαμηλής θερμοκρασίας κατά το στάδιο της διαγένεσης που τα μετασχηματίζουν σε όλο και περισσότερο συμπυκνωμένες δομές που είναι λιγότερο διαλυτές σε οργανικούς διαλύτες. Ανάλογα με την αρχική οργανική ύλη προκύπτουν διαφορετικού τύπου κηρογόνα που σε επόμενο στάδιο με την έκθεσή τους σε υψηλότερες θερμοκρασίες μπορούν να δώσουν διαφορετικού τύπου υδρογονάνθρακες (Durand 1980, Tissot and Welte 1984). Η παραπάνω θεωρεία σχηματισμού οδηγεί στο συμπέρασμα ότι το κηρογόνο που θα προκύψει από αυτή την διαδικασία πρέπει να είναι άμορφο, αφού προέρχεται κυρίως από πολυμερισμό οργανικών ενώσεων που έχουν προηγουμένως βιοαποδομηθεί. Πράγματι η οπτική εξέταση του κηρογόνου στο μικροσκόπιο δείχνει μεγάλα τμήματα του κηρογόνου να είναι άμορφα.

Τα τελευταία χρόνια όμως προτάθηκε μία διαφορετική θεωρεία για τη δημιουργία του κηρογόνου. Συνδυασμένες μελέτες με χρήση ηλεκτρονικού μικροσκοπίου και χημικών αναλύσεων εντόπισαν μη διαλυτές και μη υδρολυώμενες μακρομοριακές δομές μέσα σε προστατευτικές μεμβράνες μικροοργανισμών που παρουσιάζουν πολύ μεγάλη αντίσταση στην βιοαποδόμηση. Το μεγάλο δυναμικό διατήρησης των βιομακρομοριακών δομών αυτών έχει ως αποτέλεσμα την επιλεκτική διατήρησή τους (selective preservation) και τον επακόλουθο εμπλουτισμό τους κατά την διάρκεια της ιζηματογένεσης και της διαγένεσης του πετρελαίου. Παρά την αρχική μικρή συγκέντρωσή τους στους ζώντες οργανισμούς, ο συνεχείς εμπλουτισμός αυτών των βιομακρομοριακών δομών με μεγάλη αντοχή μπορεί να οδηγήσει στην αύξηση της συγκέντρωσής τους κατά 2 με 3 τάξεις μεγέθους. Αυτό οφείλεται στο γεγονός ότι άλλα βιοπολυμερή που απαντώνται συχνότερα στους οργανισμούς όπως τα

πολυζακχαρίδια και τα πολυπεπτίδια βιοαποδομούνται πολύ εύκολα (Tegelaar, 1989). Κατά τη διάρκεια της διαγένεσης τα βιοπολυμερή αυτά, εκτός από τον εμπλουτισμό τους, υπόκεινται και σε μία σειρά άλλων αντιδράσεων χαμηλής θερμοκρασίας που τα μετασχηματίζουν ελαφρά, όπως αποκαρβοξυλίωση, αποαμίνωση και αναγωγή. Επίσης όμως και τα διαλυτά, μη υδρολυώμενα βιοπολυμερή μπορούν και συμμετέχουν στην δημιουργία του κηρογόνου καθώς η συνεχής δημιουργία δεσμών μεταξύ τους τα καθιστά όλο και λιγότερο διαλυτά σε οργανικούς διαλύτες.

Εικόνα 2-6 Σχηματική αναπαράσταση της δημιουργίας του κηρογόνου (Tegelaar 1989).

Σύμφωνα λοιπόν με αυτή τη διαδικασία το κηρογόνο μπορεί να θεωρηθεί ως ένα φυσικό μείγμα που αποτελείται κυρίως από επιλεκτικά διατηρημένα και μερικές φορές ελαφρώς αλλοιωμένα βιομακρομόρια μεγάλης αντοχής στην βιοαποδόμηση (Tegelaar, 1989).

Στην εικόνα δίνεται σχηματικά η διαδικασία δημιουργίας του κηρογόνου. Με αυτή τη θεωρία δημιουργίας του κηρογόνου μέσω επιλεκτικής διατήρησης εισάγεται για πρώτη φορά και στον τομέα της οργανικής γεωχημείας και της γεωχημείας του πετρελαίου η έννοια των «macerals». Μία έννοια που αν και είναι θεμελιώδης στον κλάδο της πετρολογίας γαιανθράκων πολλά χρόνια είχε αγνοηθεί στον τομέα του πετρελαίου. Τα «macerals» είναι τύποι οργανικών δομικών συστατικών και έχουν για το κηρογόνο το ρόλο των ορυκτών στα πετρώματα. Η έννοια τους συνδέει τα απολιθωμένα απομεινάρια της οργανικής ύλης βάση της μορφολογικής τους ομοιότητας με ζώντες οργανισμούς όπως ανώτερα φυτά, κατώτερη χλωρίδα, άλγη και άλλα από τα οποία προέρχονται. Στην εικόνα 2-7 παρουσιάζεται ένας πίνακας συσχετισμού γνωστών ανθεκτικών βιομακρομορίων προερχομένων απευθείας από έμβιους οργανισμούς με τα «macerals» απομεινάρια τους μέσα στο κηρογόνο καθώς και τους αναμενόμενους υδρογονάνθρακες που θα προκύψουν από την διάσπασή τους κατά την φάση της καταγένεσης του πετρελαίου.

RESISTANT BIOMACROMOLECULES	MACERALS	EXPECTED MAJOR CATAGENIC PRODUCTS	REFERENCES
Algaenans	Alginites	predominantly <i>n</i> -alkanes and some aromatics	Largeau et al., 1984; 1986; Derenne et al., 1988; Goth et al., 1988; Burczyk and Dworzanski, 1988; Zelibor et al., 1988.
Cutans	Cutinite	predominantly n-alkanes	Nip et al., 1986a; 1986b; 1989; Tegelaar et al., 1989a.
Suberans	Suberinite	predominantly <i>n</i> -alkanes and aromatics	Tegelaar et al., 1989b.
Lignins	Vitrinite/ Fusinite	predominantly condensed aromatics and CH ₄	Stach et al., 1982
Polysesqui- and polyditerpenoids	Resinites	predominantly bicadinanes, sesquiterpanes and (condensed) aromatics	Mukhopadhyay and Gormly, 1984; Lewan and Williams, 1987; B.G.K. Van Aarssen, unpublished results.
Tannins	Vitrinites/ Fluorinites?	predominantly condensed aromatics	Stach et al., 1982; Wilson and Hatcher, 1988.
Sporopollenins	Sporinites	predominantly <i>n</i> -alkanes or (condensed) aromatics	Prahl et al., 1985; Schulze Osthoff and Wiermann, 1987; Guilford et al., 1988.

Εικόνα 2-7 Ανθεκτικά βιομακρομόρια σε αντιστοιχία με τα «macerals» απομεινάρια τους μέσα στο κηρογόνο καθώς και τους αναμενόμενους υδρογονάνθρακες που θα παραχθούν κατά την καταγένεση (Tegelaar 1989).

Σύμφωνα λοιπόν με τα παραπάνω συμπεραίνεται πως η συγκέντρωση των πιο ανθεκτικών βιομακρομορίων που παρουσιάζονται στην εικόνα 2-7, αυξάνεται και αποτελούν την πρώτη ύλη δημιουργίας του κηρογόνου κατά την διάρκεια της διαγένεσης. Τα ίδια μακρομόρια είναι εύκολο να εντοπιστούν και να αναγνωριστούν ελαφρώς αλλαγμένα με την μορφή macerals μέσα στο κηρογόνο. Έτσι λοιπόν μελετώντας ένα άγνωστο κηρογόνο μπορεί να γίνει προσέγγιση της προέλευσης της οργανικής ύλης που το δημιούργησε.

β. Φάση καταγένεσης του πετρελαίου.

Πρόκειται για το δεύτερο στάδιο ωρίμανση της οργανικής ύλης, κατά το οποίο αυτή μεταβάλλεται θερμικά, λόγω της ταφής και θέρμανσης της σε μια περιοχή θερμοκρασιών μεταξύ των 50-200°C περίπου. Ειδικότερα μετά τα πρώτα 500 μέτρα, η ταχύτητα και η ένταση της καταβύθισης των ιζημάτων, και κατά συνέπεια η αύξηση της θερμοκρασίας που προκύπτει, αρχίζουν να έχουν βασικό ρόλο στην ωρίμανση της οργανικής ύλης. Η αύξηση της

θερμοκρασίας επιφέρει χημικές μεταβολές οι οποίες οδηγούν σε ένα σταθερό προϊόν στο οποίο έχουν εξαφανιστεί όλοι οι ασταθείς δεσμοί (διπλοί, τριπλοί). Έτσι σε θερμοκρασία 50-60°C οι πρώτες χημικές αντιδράσεις οδηγούν στο σπάσιμο των πιο αδυνάτων δεσμών και στην ταυτόχρονη απελευθέρωση διοξειδίου του άνθρακα, υδρόθειου και νερού.

Το κηρογόνο κατά την διάρκεια της φάσης της καταγένεσης υπόκειται σε όλο και μεγαλύτερες θερμοκρασίες που κυμαίνονται μεταξύ των 50 και 200°C. Με την πάροδο του χρόνου αυτές οι υψηλές θερμοκρασίες προκαλούν την διάσπασή του σε υδρογονάνθρακες χαμηλότερου μοριακού βάρους. Ο Engler (1913) πρώτος έδειξε πειραματικά την διάσπαση της οργανικής ύλης σε Y/A όλου του φάσματος του πετρελαίου με την θέρμανσή της σε θερμοκρασία μικρότερη των 250°C. Επίσης υποστήριξε ότι η δημιουργία του πετρελαίου γίνεται σε δύο στάδια με την δημιουργία του βιτουμενίου να είναι το ενδιάμεσο στάδιο. Όπως αναφέρθηκε νωρίτερα, το βιτουμένιο ορίζεται ως η μη πτητική οργανική ύλη που δημιουργείται στο ιζηματογενές πέτρωμα κατά τα πρώτα στάδια θέρμανσης και μπορεί να διαλυθεί σε οργανικούς διαλύτες σε αντίθεση με το κηρογόνο που είναι αδιάλυτο σε αυτούς. Πιο σύγχρονες μελέτες διαπίστωσαν ότι το βιτουμένιο είναι το ενδιάμεσο προϊόν που παράγεται κατά τη θερμική διάσπαση αλλά όχι από όλους τους τύπους κηρογόνου (Miknis et al. 1987).

Κάθε κηρογόνο ανάλογα με την περιεκτικότητα τους σε Άνθρακα, Υδρογόνο και Οξυγόνο κατατάσσεται σε ένα από τους τέσσερις τύπους Ι, ΙΙ, ΙΙΙ, ΙV. Για την κατηγοριοποίηση αυτή οι Tissot et al. (Tissot B., 1974) πρώτοι υιοθέτησαν τα διαγράμματα Van Krevelen που ως τότε χρησιμοποιούνταν για την κατηγοριοποίηση των γαιανθράκων. Αργότερα τα διαγράμματα αυτά βελτιώθηκαν με την προσθήκη του δείκτη ανάκλασης του βιτρινίτη από τον Jones (Jones, 1987) για να συνδεθεί ο τύπος κηρογόνου με την ωριμότητά του. Παρακάτω παρατίθεται ένα παράδειγμα τέτοιου διαγράμματος (εικόνα 2-8).

Εικόνα 2-8 Παράδειγμα διαγράμματος Van Krevelen με δείκτη ανάκλασης του βιτρινίτη.

Οι τύποι Ι και ΙΙ έχουν το μεγαλύτερο δυναμικό παραγωγής πετρελαίου και είναι υπεύθυνοι για τα περισσότερα κοιτάσματα πετρελαίου που έχουν βρεθεί. Ο τύπος ΙΙΙ παράγει κυρίως

φυσικό αέριο και αέρια συμπυκνώματα και σε ορισμένες περιπτώσεις παραφινικά πετρέλαια. Ενώ ο τύπος ΙV παράγει μόνο μικρές ποσότητες μεθανίου και διοξειδίου του άνθρακα CO2.

Το βιτουμένιο είναι το σύνηθες ενδιάμεσο προϊόν στους τύπους Ι και ΙΙ αλλά όχι απαραίτητα στον τύπο ΙΙΙ (Miknis F.P., 1987). Διαπιστώνεται ότι η παραγωγή βιτουμενίου είναι αντιστρόφως ανάλογη της περιεκτικότητας του κηρογόνου σε αρωματικούς υδρογονάνθρακες, καθώς στον τύπο ΙΙΙ η περιεκτικότητα σε αυτούς μεγαλύτερη.

Στα παρακάτω διαγράμματα (εικόνα 2-9) παρουσιάζονται τα αποτελέσματα προσομοίωσης της δημιουργίας πετρελαίου με εργαστηριακό πείραμα πυρόλυσης κατά το οποίο μητρικό πέτρωμα θερμαίνεται ομοιόμορφα με παρουσία νερού σε κλειστό σύστημα. Κατά την διάρκεια του πειράματος μετρήθηκε η αρχική οργανική ύλη ως ΤΟC, το διαλυτό βιτουμένιο, και το παραγόμενο πετρέλαιο. Στο συγκεκριμένο πείραμα χρησιμοποιήθηκαν μητρικά πετρώματα με τύπο κηρογόνου Ι, ΙΙ και ΙΙS. Ο Τύπος κηρογόνου ΙΙS αντιστοιχεί σε κηρογόνο τύπου ΙΙ με αρκετά μεγάλη περιεκτικότητα σε θείο. Έτσι παρατηρείται πως και στους τρεις τύπους κηρογόνου (Ι, ΙΙ, ΙΙS) το ΤΟC μειώνεται όσο αυξάνεται το βιτουμένιο, ενώ παραμένει σταθερό κατά την διάρκεια παραγωγής του πετρελαίου που σημαίνει ότι η μείωση του κηρογόνου οφείλεται στην δημιουργία βιτουμενίου και όχι στην δημιουργία πετρελαίου. Επίσης το βιτουμένιο κατά τη διάρκεια παραγωγής του πετρελαίου ελαττώνεται, υποδεικνύοντας έτσι πως το πετρέλαιο έχει ως πρώτη ύλη το βιτουμένιο. Η κορυφή της παραγωγής βιτουμενίου καθώς και η κορυφή παραγωγής πετρελαίου είναι σε χαμηλότερη θερμοκρασία στο κηρογόνο τύπου IIS, αυξάνεται στο κηρογόνο τύπου ΙΙ και έχει την μεγαλύτερη τιμή στο κηρογόνο τύπου Ι. Αυτό εξηγείται καθώς η ενέργεια ενεργοποίησης που απαιτείται για να διασπαστεί το κηρογόνο τύπου Ι είναι μεγαλύτερη από αυτή του τύπου ΙΙ, η οποία με την σειρά της είναι μεγαλύτερη από αυτή που απαιτείται για να διασπαστεί το κηρογόνο τύπου IIS.

Εικόνα 2-9 Διαγράμματα προϊόντων της πυρόλυσης για τρεις διαφορετικούς τύπους κηρογόνου (Ι, ΙΙ, IIS) (Hunt 1996).

Το στάδιο της καταγένεσης χαρακτηρίζεται από την μεγάλη παραγωγή υδρογονανθράκων. Όλοι οι υδρογονάνθρακες από τα αέρια συστατικά έως τα σαραντάνια (C40) δημιουργούνται σε αυτό το στάδιο σε μεγαλύτερη ποσότητα από ότι σε οποιοδήποτε άλλο. Αρχικά σχηματίζονται τα βαρύτερα κλάσματα του πετρελαίου από θερμική διάσπαση και στη συνέχεια το ελαφρύ κλάσμα και οι αέριοι υδρογονάνθρακες. Το στάδιο αυτό της μεγάλης παραγωγής Υ/Α ονομάζεται επίσης "παράθυρο δημιουργίας πετρελαίου". Για τα περισσότερα πετρέλαια το παράθυρο δημιουργίας συμβαίνει σε μία περιοχή θερμοκρασιών μεταξύ 60°C και 160°C. Οι θερμοκρασίες αυτές αντιστοιχούν σε βάθη ταφής μεταξύ 2500 και 5000 μέτρων. Μπορεί να υπάρξουν μικρές αποκλίσεις και στις θερμοκρασίες του παράθυρου δημιουργίας ανάλογα με την προέλευση της οργανικής ύλης και τα «macerals» που περιλαμβάνει το κηρογόνο καθώς, όπως αναφέρθηκε προηγουμένως, διαφορετικοί τύποι κηρογόνου χρειάζονται διαφορετική ενέργεια ενεργοποίησης για να διασπαστούν θερμικά. Ο σχηματισμός των αέριων και ελαφριών Υ/Α από τα βαρύτερα κλάσματα και το βιτουμένιο δημιουργεί τοπικά υψηλότερες πιέσεις που ωθούν το παραχθέν πετρέλαιο έξω από το μητρικό πέτρωμα μέσω των μικρορωγμών και των διαπερατών τμημάτων του σχηματισμού. Αυτή η διεργασία αποτελεί την πρωτογενή μετανάστευση του πετρελαίου.

Τα πετρέλαια που δημιουργούνται σε νωρίτερο στάδιο και είναι «ανώριμα» έχουν την τάση να είναι βαριά και συχνά με μεγάλη περιεκτικότητα σε θείο. Τα κηρογόνα που περιέχουν υψηλές περιεκτικότητες σε θείο δημιουργούν και απελευθερώνουν νωρίτερα πετρέλαιο σε χαμηλότερη θερμοκρασία ταφής, γιατί επιδεικνύουν χαμηλότερη ενέργεια ενεργοποίησης σε σχέση με τα συμβατικά πετρέλαια.

Θα πρέπει να σημειωθεί πως η ωρίμανση του κηρογόνου, δηλαδή ο βαθμιαίος μετασχηματισμός της χημικής σύστασης του υπό την επίδραση της θερμοκρασίας, οδηγεί σε αλλαγές της στοιχειακής σύστασης κατά μήκος των χαρακτηριστικών γραμμών του διαγράμματος Van Krevelen. Με βάση το επίπεδο της θερμικής ωρίμανσης, τα κηρογόνα διακρίνονται σε ανώριμα, ώριμα και υπερώριμα. Έτσι και η στρωματογραφική ακολουθία που βρίσκεται πάνω από το βάθος έναρξης του παράθυρου πετρελαίου, συνήθως γύρω στα 2500m, ονομάζεται «ανώριμη» για δημιουργία πετρελαίου, η στρωματογραφική ακολουθία που βρίσκεται μέσα στα όρια του παραθύρου ονομάζεται «ώριμη» για δημιουργία πετρελαίου, ενώ αυτή που βρίσκεται βαθύτερα από το όριο του παραθύρου πετρελαίου ονομάζεται «υπερώριμη» (postmature).

Μία μεταβολή που υφίσταται το κηρογόνο κατά την διάρκεια του παράθυρου παραγωγής πετρελαίου είναι η μείωση του λόγου υδρογόνου προς άνθρακα Y:A. Αυτό συμβαίνει γιατί ο μέσος λόγος Y:A στους υδρογονάνθρακες που αποτελούν το πετρέλαιο είναι μεγαλύτερος από ότι στο αρχικό κηρογόνο. Έτσι, όσο συνεχίζεται οι παραγωγή υδρογονανθράκων, το υδρογόνο καταναλώνεται γρηγορότερο από τον άνθρακα στο κηρογόνο και η αναλογία του μειώνεται. Για παράδειγμα ένα κηρογόνο τύπου ΙΙ που στην αρχή του παράθυρου δημιουργίας πετρελαίου έχει λόγο 1.2 Y:A, προς το τέλος του παράθυρου ο λόγος μπορεί να έχει μειωθεί στο 0.6 Y:A. Αντιστοίχως, ένα κηρογόνο τύπου Ι τυπικά έχει αρχικό λόγο 1.6 Y:A επομένως και μεγαλύτερο δυναμικό παραγωγής πετρελαίου, ενώ ένα κηρογόνο τύπου ΙΙΙ μπορεί να έχει αρχικό λόγο 0.8 Y:A ή και λιγότερο και για τον αυτό τον λόγο έχει πολύ μικρότερο δυναμικό παραγωγής πετρελαίου. Η αλλαγή στο χρώμα του. Επομένως, ενώ το κηρογόνο με μεγάλη περιεκτικότητα υδρογόνου είναι ανοιχτόχρωμο, όσο μειώνεται η περιεκτικότητα σε υδρογόνο μετατρέπεται σε πιο σκούρο καφέ και αργότερα σε μαύρο. Το παρακάτω διάγραμμα (εικόνα 2-10)

παρουσιάζει την μεταβολή στο λόγο Y:A και στο χρώμα του κηρογόνου σε σχέση με το παράθυρο πετρελαίου σε ένα κοίτασμα των δυτικών ΗΠΑ (Claypool et al. 1978).

Εικόνα 2-10 Η μεταβολή στο λόγο Υ:Α και στο χρώμα του κηρογόνου σε σχέση με το παράθυρο πετρελαίου σε ένα κοίτασμα των δυτικών ΗΠΑ (Claypool et al. 1978).

Στην εικόνα 2-11 που παρατίθεται παρακάτω παρατηρείται πως στο ίδιο παράθυρο δημιουργίας του πετρελαίου εμπεριέχεται και το παράθυρο δημιουργίας των ελαφρών υδρογονανθράκων με τη διαφορά πως ξεκινάει ελαφρώς αργότερα. Δηλαδή το κλάσμα των ελαφρών Υ/Α δημιουργείται στην ίδια φάση της καταγένεσης.

Εικόνα 2-11 Το παράθυρο δημιουργίας των ελαφρών υδρογονανθράκων (C5-C7) σε συνάρτηση με το βάθος (Hunt 1996).

Στα διαγράμματα του παράθυρου παραγωγής πετρελαίου που παρουσιάζονται εδώ, η καμπύλη παραγωγής πετρελαίου είναι συνάρτηση τριών διαφορετικών παραγόντων.

Α) Της δημιουργίας πετρελαίου

B) Της πρωτογενούς μετανάστευσης του πετρελαίου έξω από το μητρικό πέτρωμα και

C) Της μετατροπής του πετρελαίου σε αέριους Y/A.

Τα παραπάνω σημαίνουν ότι το μέγιστο της καμπύλης δεν σημαίνει αναγκαστικά και το μέγιστο της παραγωγής πετρελαίου. Καθώς αυτοί οι παράγοντες είναι ανταγωνιστικοί για να υπάρξει αύξηση της κλίσης της καμπύλης, δηλαδή αύξηση των Y/A του πετρελαίου μέσα στο μητρικό, πρέπει να ισχύει η σχέση A>B+C. Το μέγιστο της καμπύλης παρουσιάζεται όταν A=B+C, ενώ μείωση της κλίσης της καμπύλης έμφανίζεται όταν ισχύει A<B+C. Επειδή σε μερικά μητρικά πετρώματα υπάρχει μεγάλη διαφοροποίηση στο βαθμό μικρορωγμάτωσης του πετρώματος και στην διαπερατότητα του, το πετρέλαιο που δημιουργείται κοντά σε περιοχές μεγάλης πυκνότητας μικρορωγμών ή κοντά σε διαπερατά στρώματα μπορούν και διαφεύγουν αμέσως από το μητρικό πέτρωμα ενώ σε άλλα σημεία εγκλωβίζονται για περισσότερο χρόνο. Αυτό το φαινόμενο δημιουργεί διαφοροποιήσεις στην καμπύλη του παράθυρου πετρελαίου και μπορεί να δημιουργήσει αποκλίσεις για διαφορετικά βάθη δειγματοληψίας.

γ. Φάση μεταγένεσης του πετρελαίου.

Το στάδιο της μεταγένεσης είναι το τελευταίο σημαντικό στάδιο μετασχηματισμού της οργανικής ύλης. Στο στάδιο αυτό παράγεται σχεδόν αποκλειστικά ξηρό αέριο (μεθάνιο) από τη διάσπαση των δεσμών C-C των υδρογονανθράκων που έχουν δημιουργηθεί στα προηγούμενα στάδια ωρίμανσης. Η παραγωγή του μεθανίου ελαττώνεται συνεχώς κατά τη διάρκεια της φάσης της μεταγένεσης και το υπόλειμμα της οργανικής ύλης μετατρέπεται σε γραφιτικές δομές. Οι θερμοκρασία σε αυτό το στάδιο κυμαίνεται μεταξύ 200 και 250°C η οποία συνήθως αντιστοιχεί σε βάθη ανώτερα των 5000m. Κάτω από αυτές τις συνθήκες ο λόγος υδρογόνου προς άνθρακα Υ:Α στο κηρογόνο πέφτει κάτω από το 0.4 ενώ γίνεται και η έναρξη της διαδικασίας μεταμόρφωσης των ιζηματογενών πετρωμάτων σε μεταμορφωσιγενή, όπως για παράδειγμα την δημιουργία του μεταμορφωσιγενούς φυλλίτη που σχηματίζεται από την ανακρυστάλωση λεπτόκοκκων ιζηματογενών πετρωμάτων.

Ο όρος "Μεταμορφισμός" στην ανόργανη γεωχημεία χρησιμοποιείται για να περιγράψει τις αλλαγές στην δομή των ορυκτών που οφείλονται σε μεγάλη πίεση και θερμοκρασία λόγω μεγάλου βάθους ταφής. Οι χαμηλότερες θερμοκρασίες όπου μπορεί να ξεκινήσει ο μεταμορφισμός είναι της τάξης των 200 με 300°C. Παραδείγματος χάριν στην περίπτωση του Καολινίτη που μετατρέπεται σε Μοσχοβίτη οι πρώτες πράσινες επιφάνειες Μοσχοβίτη εμφανίζονται σε αυτές τις θερμοκρασίες (Hunt,1996). Από τα παραπάνω συμπεραίνεται ότι τα ανώτερα στάδια της μεταγένεσης συμπίπτουν με τα αρχικά στάδια της ανόργανης θερμικής μεταμόρφωσης.

Ανακεφαλαιώνοντας, στο διάγραμμα που παρατίθεται παρακάτω (εικόνα 2-12) παρουσιάζεται η παραγωγή των υδρογονανθράκων του πετρελαίου κατά τα στάδια της Διαγένεσης, Καταγένεσης και Μεταγένεσης. Οι υδρογονάνθρακες - συστατικά του πετρελαίου χωρίζονται σε τρεις ομάδες. Οι ομάδες αυτές είναι οι εξής:

• Οι αέριοι υδρογονάνθρακες από το Μεθάνιο μέχρι το Προπάνιο

- Οι ελαφριοί υδρογονάνθρακες από το Βουτάνιο μέχρι το Δεκατετράνιο C4 C14
- Το βαρύτερο κλάσμα του πετρελαίου από C15 C40.

Το εμβαδό που περικλείεται κάτω από κάθε καμπύλη είναι ανάλογο της ποσότητας των υδρογονανθράκων που παράγονται στο συγκεκριμένο στάδιο.

Εικόνα 2-12 Παραγωγή αέριων (C₁-C₃), ελαφρών (C₄-C₁₄) και βαριών (C₁₅-C₄₀) υδρογονανθράκων συναρτήσει της θερμοκρασίας ταφής (Hunt 1996).

Από το διάγραμμα συμπεραίνεται πως το 76% των αέριων υδρογονανθράκων παράγονται κατά το στάδιο της καταγένεσης, ενώ το υπόλοιπο 24% παράγεται εξίσου στα στάδια της διαγένεσης και μεταγένεσης. Το 97% του κλάσματος των ελαφρών υδρογονανθράκων και το 86% του βαρύτερου κλάσματος παράγονται κατά το στάδιο της Καταγένεσης, ενώ το υπόλοιπο 3% και 14% αντίστοιχα παράγονται κατά το στάδιο της Διαγένεσης. Κατά την διάρκεια της διαγένεσης οι υδρογονάνθρακες που παράγονται είναι κυρίως μεθάνιο το οποίο συχνά αναφέρεται και ως βιογενικό μεθάνιο επειδή προέρχεται από βιολογικές διεργασίες καθώς και ελάχιστες ποσότητες άλλων ελαφριών υδρογονανθράκων. Ακόμη απελευθερώνονται σημαντικές ποσότητες βαρύτερων υδρογονανθράκων, οι οποίοι είναι βιολογικοί δείκτες καθώς είναι δομές που συνδέονται απευθείας με οργανικές ενώσεις που παράγονται στους έμβιους οργανισμούς. Τέτοιοι υδρογονάνθρακες είναι οι κανονικές παραφίνες, τα ισοπρένια, τα στεράνια, τα τριτερπάνια και οι πορφυρίνες.

Ενότητα 2-2. Θεωρίες δημιουργίας των ελαφρών υδρογονανθράκων

2-2.1 Θεωρία της θερμικής διάσπασης

Μέχρι σχετικά πρόσφατα είχε κυριαρχήσει ως θεωρία της δημιουργίας των ελαφρών υδρογονανθράκων η θεωρία της θερμικής διάσπασης. Σύμφωνα με τη θεωρία αυτή όλοι οι υδρογονάνθρακες του πετρελαίου, επομένως και το ελαφρύ του κλάσμα αποτελούν διασπασμένα τμήματα βαρύτερων υδρογονανθράκων. Έτσι υποστηρίχθηκε για παράδειγμα ότι τα κυκλοπεντάνια και κυκλοεξάνια του κλάσματος μεταξύ C5 και C9 που αποτελούν το 5 με 10% όλων των υδρογονανθράκων στο πετρέλαιο, προέρχονται από την διάσπαση βαρύτερων πολυκυκλικών υδρογονανθράκων όπως των στερανίων και τριτερπανίων (Thompson,1979).

Ο Thompson υποστήριξε πως οι πολυκυκλικοί υδρογονάνθρακες παρουσιάζουν μεγαλύτερη θερμική αστάθεια συγκριτικά με τους αντίστοιχους υδρογονάνθρακες ανοιχτής αλυσίδας και γι' αυτό και διασπώνται νωρίτερα κατά τη φάση της καταγένεσης και σε μικρότερα βάθη. Αυτό έχει ως αποτέλεσμα την συγκέντρωση μεγαλύτερων ποσοτήτων κυκλοπεντανίων και κυκλοεξανίων σε μικρότερα βάθη. Στην συνέχεια σε μεγαλύτερα βάθη και θερμοκρασίες ο δακτύλιος των κυκλοαλκανίων διαρρηγνύεται θερμικά και παράγονται ελαφροί υδρογονάνθρακες ανοιχτής αλυσίδας. Για τον λόγο αυτό πρότεινε ο λόγος κανονικό επτάνιο/μεθυλοκυκλοεξάνιο (n-heptane/methylcyclohexane - n-C7/MCH), τον οποίο ονόμασε "παραφινικότητα" (paraffinicity) να χρησιμοποιείται ως ένας δείκτης ωριμότητας καθώς αυτός αυξάνεται όσο αυξάνεται το βάθος και η θερμοκρασία ταφής(Thompson,1983).

Επίσης παρατήρησε πως ορισμένα πετρελαϊκά δείγματα που ήταν αποδεδειγμένα μεγάλης ωριμότητας, ο δείκτης παραφινικότητας τα υποδείκνυε ως ανώριμα ενώ ταυτόχρονα παρουσίαζαν εξαιρετικά υψηλές τιμές σε έναν άλλο λόγο, τον λόγο τολουόλιο/κανονικό επτάνιο (toluene/n-heptane - Tol/n-C7). Τον λόγο αυτόν ο Thompson τον ονόμασε δείκτη αρωματικότητας. Η εξήγηση που δόθηκε ήταν ότι δείγματα αυτά είχαν υποστεί επιλεκτική κλασματοποίηση (evaporative fractionation) που προκλήθηκε από την διαφυγή πτητικών συστατικών του πετρελαίου μέσω υπόγειων ρωγμών. Έτσι λοιπόν ο λόγος n-C7/MCH μειώθηκε στο πετρέλαιο καθώς το κανονικό επτάνιο είναι πιο πτητικό από το μεθυλκυκλοεξάνιο και διέφυγε σε μεγαλύτερο βαθμό. Αντιστοίχως το τολουόλιο που είναι ο λόγος Tol/n-C7 αυξήθηκε. Με βάση τα παραπάνω προτάθηκε ένας εμπειρικός τρόπος προσδιορισμού των κλασματοποιημένων πετρελαίων από εξάτμιση, σύμφωνα με τον οποίο τα δείγματα που επιδεικνύουν λόγο Tol/n-C7>1 και n-C7/MCH<0.5 και χαρακτηρίζονται κλασματοποιημένα.

Παρά το γεγονός ότι η θεωρία δημιουργίας των ελαφρών υδρογονανθράκων έγινε ευρέως αποδεκτή εξακολούθουσε να αφήνει ορισμένα ερωτηματικά.

- Εκ των ισχυροτέρων ερωτημάτων που αντικρούουν τη θερμική δίασπαση αποτελεί η αδυναμία της να δώσει προϊόντα όμοια με αυτά που απαντώνται στους ελαφρούς υδρογονάνθρακες και στο φυσικό αέριο. Παραδείγματος χάριν στο φυσικό αέριο το μεθάνιο που εμπεριέχεται, βρίσκεται συνήθως σε συγκεντρώσεις της τάξεως των 80-85%, παρόλα αυτά η θερμική διάσπαση δεν μπορεί να δώσει αέριο με συγκέντρωση μεθανίου πάνω από 60% (Mango,2000).
- Κατά τη θεωρία της θερμικής διάσπασης η δομή των υδρογονανθράκων απ΄τους οποίους προκύπτουν οι ελαφροί υδρογονάνθρακες διατηρείται, με άλλα λόγια η
δομή των βαρύτερων υδρογονανθράκων βιολογικής προέλευσης που διασπάστηκαν θερμικά, ταυτίζεται με τη δομή των ελαφρών υδρογονανθράκων που προέκυψαν. Όμως η δομή ορισμένων ελαφρών Y/A είναι διαφορετική από οποιεσδήποτε γνωστές βιολογικές πρόδρομες δομές. Για παράδειγμα μεταξύ των ισομερών του επτανίου 2μεθυλεπτάνιο (2-methylheptane, 2-MH), 3μεθυλεπτάνιο (3-methylheptane, 3-MH), 2,3-διμεθυλοπεντάνιο (2,3dimethylpentane, 2,3-DMP) και 2,4-διμεθυλοπεντάνιο (2,4-dimethylpentane, 2,4DMP), υπάρχουν πρόδρομες δομές μεταξύ των ισοπρενοειδών μόνο για τα 2-MH και 3MH και πιο σπάνια για το 2,3-DMP ενώ για το 2,4-DMP είναι εξαιρετικά σπάνιο να δημιουργηθεί από βιολογική προέλευση. Όμως το 2,4-DMP υπάρχει πάντα, χωρίς εξαίρεση, και μάλιστα σε σταθερή αναλογία όπως θα διαπιστωθεί παρακάτω με τα 2-MH, 3-MH και 2,3-DMP και αυτή η αναλογία διατηρείται σε όλες τις συγκεντρώσεις, από μερικά ppm μέχρι συγκεντρώσεις της τάξης του 10%(Mango, 1994).

3. Ένα ακόμη πεδίο αμφιβολίας αποτελεί η προέλευση των κυκλικών ελαφρών υδρογονανθράκων και η διάσπαση τους σε ανοιχτές αλυσίδες. Σύμφωνα με την θεωρία της θερμικής διάσπασης του Thompson, οι κυκλικοί Υ/Α είναι πιο ασταθείς σε σύγκριση με τους Υ/Α ανοιχτής αλυσίδας. Παρόλα αυτά, σύμφωνα με θεωρητικές μελέτες αποδείχτηκε το αντίθετο ως προς την αντοχή των κυκλικών υδρογονανθράκων. Έχει υπολογιστεί ότι η ενέργεια ενεργοποίησης για την διάσπαση του δεσμού άνθρακα-άνθρακα στους κυκλικούς Υ/Α είναι ίση ή μεγαλύτερη του 36 kcal/mol, όταν η αντίστοιχη των Υ/Α ανοιχτής αλυσίδας είναι από 22 έως 26 kcal/mol(Mango, 1990). Παράλληλα, η προέλευση των κυκλοπεντανίων και κυκλοεξανίων από τους βιολογικούς προγόνους τους, τα στεράνια και τριτερπάνια δεν επιβεβαιώθηκε από πειραματικές μελέτες. Συγκεκριμένα έγινε μια προσπάθεια να αναπαραχθεί η διάσπαση πρώτα των υποθετικά πιο αδύναμων κυκλικών δεσμών του χολεστάνιου σε ελαφρά κυκλοαλκάνια και κατόπιν της υποθετικά πιο δυνατής ανοιχτής πλευρικής αλυσίδας. Αντί αυτού τα προϊόντα της διάσπασης ήταν κανονικοί Y/A (εικόνα 2-13) προερχόμενοι από την ανοιχτή πλάγια αλυσίδα ενώ η κυκλική δομή του χολεστανίου στο μεγαλύτερο ποσοστό της παρέμεινε ανέπαφη(Mango, 1990).

Εικόνα 2-13 Προιόντα διάσπασης χολεστανίου (Mango 1990).

4. Η θερμική σταθερότητα των υδρογονανθράκων και η θερμοκρασιακή περιοχή στην οποία διασπώνται υπήρξε ένα ακόμη ερώτημα. Σύμφωνα με αυτά που αναφέρθηκαν προηγουμένως οι ελαφροί υδρογονάνθρακες δημιουργούνται κυρίως κατά την φάση

της καταγένεσης μεταξύ 70 και 140°C (Hunt 1996, Mango 2000), όμως και στις πιο συντηρητικές προβλέψεις η αρχή της θερμικής διάσπασης τοποθετείται πάνω από τους 150°C (Jackson K.J., 1997).

- 5. Το 1987 ο Mango παρατήρηση πως κάποιες αναλογίες ισομερών του επτανίου παρέμεναν σταθερές σε όλα τα δείγματα ομολόγων πετρελαίων, δηλαδή πετρελαίων που προέρχονται από το ίδιο μητρικό πέτρωμα και έχουν απελευθερωθεί σε διαφορετική χρονική στιγμή της ωρίμανσης. Ένας τέτοιος λόγος είναι ο K1 = (2-MH + 2,3-DMP) / (3-MH + 2,4-DMP). Υπάρχουν ελάχιστες περιπτώσεις το παραπάνω φαινόμενο να συμβεί με θερμική δίασπαση καθώς ανεξάρτητα από το αν υπάρχουν οι βιολογικοί πρόγονοι των παραπάνω συστατικών, θα πρέπει να διασπώνται με τον ίδιο ρυθμό ακριβώς καθώς και στην ίδια κλίμακα θερμοκρασιών προκειμένου να δώσουν σταθερούς λόγους προϊόντων διάσπασης.
- 6. Τέλος η εξήγηση ότι οι ανωμαλίες που παρουσιάζουν κάποια δείγματα στον δείκτη "παραφινικότητας" οφείλονται σε κλασματοποίηση από υπόγεια εξάτμιση και η χρησιμοποίηση ως απόδειξης του δείκτη "αρωματικότητας" έρχεται σε αντίθεση με άλλες μετρήσεις. Αν όντως αυτά τα δείγματα ήταν κλασματοποιημένα θα έπρεπε να υπάρχει αντίστοιχη αλλαγή και σε άλλους λόγους ελαφρών Υ/Α με μεγάλη διαφορά πτητικότητας. Για παράδειγμα ο λόγος MCP/1,3-DMCP θα έπρεπε να μειωθεί σε αυτά τα κλασματοποιημένα πετρέλαια καθώς το MCP είναι πολύ πιο πτητικό από το 1,3-DMCP. Ο Mango έκανε αυτές τις μετρήσεις σε 145 δείγματα πετρελαίου που ικανοποιούσαν την συνθήκη κλασματοποιημένου δείγματος (Tol/n-C7 > 1, n-C7/MCH < 0.5) και ανακάλυψε ότι ο λόγος MCP/1,3-DMCP αντίθετα αυξάνεται, κάτι που θέτει σε ερώτημα την ορθότητας της θεωρίας του Thompson (Mango, 1990).</p>

2-2.2 Θεωρία της κατάλυσης από στοιχεία μετάπτωσης

Ο Mango θέλοντας να δώσει μια απάντηση στα παραπάνω αναπάντητα ερωτήματα διατύπωσε μία καινούρια θεωρία δημιουργίας των ελαφρών υδρογονανθράκων, την θεωρία της κατάλυσης από στοιχεία μετάπτωσης.

Σύμφωνα με τη νέα θεωρία του Mango, οι ελαφροί Υ/Α είναι ενδιάμεσα προϊόντα κατά την καταλυτική διάσπαση-πυρόλυση του πετρελαίου σε συνεχώς ελαφρύτερους Υ/Α μέχρι την πλήρη μετατροπή του σε ξηρό αέριο. Η νέα αυτή θεωρία έρχεται σε αντίθεση την προγενέστερη διότι μόνο η μετατροπή του κηρογόνου σε πετρέλαιο οφείλεται σε θερμική διάσπαση. Κατόπιν το πετρέλαιο υπόκειται σε κατάλυση εξαιτίας της παρουσίας ενεργών στοιχείων μετάπτωσης (active transition metals) στο ιζηματογενές πέτρωμα σύμφωνα με την εξίσωση:

 $\begin{array}{c} \Delta & [M^*] \\ \text{Kerogen} \xrightarrow{} \text{oil} \xrightarrow{} \text{LHs} + \text{Wet Gas} \xrightarrow{} \text{Dry Gas} \end{array}$

όπου:

Δ = Θερμική διάσπαση και

[M*] = Κατάλυση στοιχείων μετάπτωσης

Μια ακόμη διαφορά της θεωρίας κατάλυσης από στοιχεία μετάπτωσης σε σχέση με την αντίστοιχη της θερμική διάσπασης έγκειται στο ότι η πρώτη ύλη των ελαφρών

υδρογονανθράκων είναι κορεσμένοι υδρογονάνθρακες του πετρελαίου και όχι βιολογικοί πρόγονοι όπως στεράνια, τριτερπάνια, ισοπρένια και άλλα βιολογικής προέλευσης μόρια.

Η διατύπωση αυτής της θεωρίας από τον Mango ήταν αποτέλεσμα μίας σειράς παρατηρήσεων που έκανε στην σύσταση των ελαφρών υδρογονανθράκων. Η αρχική του παρατήρηση ήταν πως οι λόγοι των συγκεντρώσεων ορισμένων ισομερών του επτανίου είναι σταθεροί. Έτσι υποστήριξε ότι αυτοί οι λόγοι είναι σταθεροί σε όλα τα πετρέλαια παγκοσμίως, όμως αργότερα αποδείχθηκε και από άλλους μελετητές(Ten Haven, 1996), (Jarvie, 2001), ότι αυτοί οι λόγοι είναι σταθεροί μόνο σε ομόλογα πετρέλαια, δηλαδή σε πετρέλαια προερχόμενα από το ίδιο μητρικό πέτρωμα ανεξάρτητα από τον χρόνο απελευθέρωσής τους και την ωριμότητά τους. Αντίθετα παρουσιάζουν διαφορές σε διαφορετικές οικογένειες πετρελαίων. Ένας τέτοιος λόγος είναι ο K1 = (2-MH + 2,3-DMP) / (3-MH + 2,4-DMP).

Επίσης το 2000 ο Mango ανακάλυψε πως ισομερή με διαφορετικό αριθμό ανθράκων που όμως είναι δομικά παρόμοια εμφανίζουν σταθερό λόγο. Έτσι αν εξετασθεί για παράδειγμα ο παρακάτω μηχανισμός δημιουργίας τριών ισομερών:

Εξίσωση (1)

Όπου:

S = κάποιος υδρογονάνθρακας του πετρελαίου που είναι η πρώτη ύλη

 $[S_X^*]$ = κυκλοπροπύλιο – ενδιάμεσο προϊόν καταλυτικής πυρόλυσης.

Εικόνα 2-14 Τρία ισομερή που σχηματίζονται με καταλυτική πυρόλυση: κανονικό εξάνιο, 2-μεθυλοπεντάνιο και 3-μεθυλοπεντάνιο, με ενδιάμεσο προϊόν το ισομερές κυκλοπροπυλίου (Mango 2000).

Θα εξετασθούν δύο περιπτώσεις του ίδιου μηχανισμού. Στην πρώτη περίπτωση (εικόνα 2-14), αντικαθιστώντας το C₁ με τη ρίζα μεθύλ- και το C2 με τη ρίζα αιθύλ- τα τρία ισομερή που σχηματίζονται είναι x = κανονικό εξάνιο (normal hexane, n-C₆), x_i = 2μεθυλοπεντάνιο (2methylpentane, 2-MP) και x_{ii} = 3-μεθυλοπεντάνιο (3-methylpentane, 3-MP). Στον ίδιο μηχανισμό αλλά με ένα άλλο αρχικό υδρογονάνθρακα [S_Y*] και στην θέση C₁ υπάρχει πάλι τη ρίζα μεθύλ- αλλά στη θέση C₂ έχει τοποθετηθεί η ρίζα προπύλ-. Τα τρία ισομερή που θα προκύψουν θα είναι το y = κανονικό επτάνιο (normal heptane, n-C₇),το y_i = 2μεθυλεξάνιο (2-methylhexane, 2-MH) και το y_{ii} = 3-μεθυλεξάνιο (3-methylhexane, 3-MH). Τα παραπάνω τρία ισομερή [S_x*], ανεξάρτητα από την μεταξύ τους αναλογία, θα πρέπει θεωρητικά να παραμένουν πάντα σε αναλογία με τα αντίστοιχα τρία ισομερή [S_Y*] κάτω από οποιαδήποτε συνθήκες και ανεξάρτητα από τις συγκεντρώσεις των αρχικών υδρογονανθράκων [S_x*] και [S_Y*] που τα δημιούργησαν καθώς μοιράζονται τον ίδιο μηχανισμό κατάλυσης που τα δημιούργησε. Δηλαδή θα πρέπει να ισχύει:

 $(x/x_i) = \alpha (y/y_i)$

επομένως ο λόγος των προϊόντων θα πρέπει να παραμένει σταθερός:

 $(xy_i) / (x_iy) = a$

Εξίσωση (2)

Για τις καταλυτικές αντιδράσεις η εξίσωση (2) είναι θεμελιώδης και αποτελεί βασικό κριτήριο διάκρισης από οποιαδήποτε άλλη μη καταλυτικής προέλευσης. Για παράδειγμα δεν μπορεί να υπάρχει στην θερμική διάσπαση όπου ο μηχανισμός αναδιάταξης της εξίσωσης (1) δεν λαμβάνει χώρα (Mango, 2000). Ο Mango χρησιμοποίησε δεδομένα από 900 δείγματα πετρελαίου που είχαν αναλυθεί ως προς την σύστασή τους για να υπολογίσει τους παραπάνω λόγους. Πράγματι, όπως φαίνεται από τα παρακάτω διαγράμματα, τα ισομερή επιβεβαιώνουν την εξίσωση (2) με πολύ μεγάλη ακρίβεια και γραμμικό συντελεστή r² = 0.99. Άρα παρέχουν μία πολύ ισχυρή ένδειξη ότι προέρχονται από καταλυτικό μηχανισμό ανάλογο της εξίσωσης (1).

Εικόνα 2-15 Διάγραμμα γινομένου μεθυλοπεντανίων, κανονικού επτανίου προς γινόμενο μεθυλεξανίων, κανονικού εξανίου (Mango 2000).

Επιπρόσθετα, ο Mango υποστήριξε ότι υπάρχει ένας παρόμοιος μηχανισμός κατάλυσης υπεύθυνος για την δημιουργία των ελαφρών κυκλικών υδρογονανθράκων καθώς και τα ισομερή των ελαφρών κυκλικών Υ/Α επαληθεύουν με σταθερούς λόγους τη εξίσωση (2) όπως φαίνεται από το διάγραμμα της εικόνας 2-16.

Εικόνα 2-16 Διάγραμμα γινομένου 3-μεθυλοπεντανίου, 1,3-διμεθυλοκυκλοπεντανίου προς γινόμενο 2μεθυλοπεντανίου, 1,2-διμεθυλοκυκλοπεντανίου (Mango 2000).

Στην εικόνα 2-17 απεικονίζεται ο μηχανισμός κατάλυσης και παραγωγής των κυκλικών ισομερών με την βοήθεια στοιχείων μετάπτωσης που προτάθηκε από τον Mango.

Εικόνα 2-17 Μηχανισμός δημιουργίας κυκλικών ισομερών με καταλυτική πυρόλυση (Mango 2000).

Βασιζόμενος στα παραπάνω δεδομένα ο Mango πρότεινε ένα ολοκληρωμένο μοντέλο καταλυτικής μετατροπής όλων των ισομερών του επτανίου. Ως πρώτη ύλη όλων των ισομερών του επτανίου, στο συγκεκριμένο μοντέλο χρησιμοποιείτε το κανονικό επτάνιο, σύμφωνα με την θεωρία που αναπτύχθηκε παραπάνω και παρουσιάζει μία σειρά από ξεχωριστά μονοπάτια κατάλυσης που οδηγούν στην δημιουργία όλων των ισομερών του επτανίου (εικόνα 2-18). Κάθε μονοπάτι χαρακτηρίζεται από ένα σταθερό συντελεστή σχηματισμού k με δύο δείκτες. Ο πάνω δείκτης δείχνει πόσα άτομα άνθρακα συμμετέχουν στο κλείσιμο του δακτυλίου, ενώ ο κάτω δείκτης δείχνει ποιος είναι ο "γονέας" των ισομερών, δηλαδή ποιος υδρογονάνθρακας χρησιμοποιείται ως πρώτη ύλη.

Εικόνα 2-18 Σχηματική παράσταση των ισομερών του επτανίου που δημιουργούνται με καταλυτική πυρόλυση (Mango 1994).

Όπου:

Ρ1 = κανονικό επτάνιο

Ρ₂ = 2-μεθυλεξάνιο + 3-μεθυλεξάνιο

P₃ = 3-αιθυλοπεντάνιο + 3,3- + 2,3- + 2,4- + 2,2-διμεθυλοπεντάνιο + 2,2,3τριμεθυλοβουτάνιο

 N_1^5 = αιθυλοκυκλοπεντάνιο + 1,2-διμεθυλοκυκλοπεντάνιο (cis + trans)

 N_1^6 = τολουόλιο + μεθυλοκυκλοεξάνιο

 $N_2 = 1,1-\delta$ ιμεθυλοκυκλοπεντάνιο + 1,3-διμεθυλοκυκλοπεντάνιο (cis + trans)

 k_1^3 , k_1^5 , k_1^6 , k_2^3 , k_2^5 = είναι οι σταθεροί συντελεστές σχηματισμού της καταλυτικής αντίδρασης για τα αντίστοιχα μονοπάτια της εικόνας 2-15.

Η παραπάνω θεωρία ενισχύθηκε περισσότερο από μία πειραματική μελέτη κατά την οποία ποσότητα πετρελαίου, από την οποία είχαν αφαιρεθεί οι ελαφροί υδρογονάνθρακες εισήχθη σε αντιδραστήρα με μείγμα ενεργοποιημένου οξειδίου του κοβαλτίου (CoO) και οξειδίου του πυριτίου. Ο αντιδραστήρας λειτουργούσε στους 200 °C με ροή υδρογόνου και το πετρέλαιο παρέμεινε μέσα για 20 λεπτά. Για να αποκλιστεί η περίπτωση θερμικής διάσπασης το

πείραμα επαναλήφθηκε ακριβώς με τις ίδιες συνθήκες αλλά ο αντιδραστήρας δεν περιείχε τον ενεργοποιημένο καταλύτη (CoO). Στην πρώτη περίπτωση όλο το δείγμα πετρελαίου μετατράπηκε σε ελαφρούς Y/A και αέριο, ενώ στην δεύτερη το δείγμα παρέμεινε άθικτο καθώς σε αυτή τη θερμοκρασία δεν υπήρχε θερμική διάσπαση (mango, 2000).

Οι ελαφροί Υ/Α που παρήχθησαν από την παραπάνω κατάλυση επιδεικνύουν το ίδιο χρωματογραφικό προφίλ αλλά και τους ίδιους σταθερούς λόγους ισομερών που αναφέρθηκαν προηγουμένως με αυτούς των ελαφρών Υ/Α ενός φυσικού πετρελαίου, όπως φαίνεται στο χρωματογράφημα της εικόνας 2-19 και στον πίνακα 2-1 που παρατίθενται παρακάτω.

Εικόνα 2-19 Χρωματογράφημα ελαφρών Υ/Α που δημιουργήθηκαν με καταλυτική πυρόλυση (Mango 2000).

Source	x	x _i	у	y_i	$(xy_i)/(x_iy)$
Crude oils	n-C ₆	MPs	n-C ₇	MHs	0.75 ± 0.31
Catalytic	n-C ₆	MPs	n-C7	MHs	0.91 ± 0.07
Crude oils	2-MP	3-MP	2-MH	3-MH	1.77 ± 0.35
Catalytic	2-MP	3-MP	2-MH	3-MH	1.81 ± 0.79

Πίνακας 2-1 Οι σταθερές κατάλυσης α = (xy_i)/(x_iy) (εξίσωση 1) των ελαφρών Υ/Α για δείγμα αργού πετρελαίου και για δείγμα από καταλυτική πυρόλυση (Mango 2000).

Από τη θεωρία δημιουργίας των ελαφρών υδρογονανθράκων γεννώνται σημαντικά ερωτήματα τα οποία εξετάζονται:

1. Υπάρχουν ικανές ποσότητες στοιχείων μετάπτωσης στα ιζηματογενή πετρώματα που περιέχουν το κηρογόνο;

Σύμφωνα με προηγούμενες μελέτες παρόλο που τα στοιχεία μετάπτωσης απαντώνται μόνο ως ιχνοστοιχεία στα νερά των ιζηματογενών σχηματισμών (10⁻³ ως 10⁻⁵ ml/l στο θαλασσινό νερό), εμπλουτίζονται στα οργανικά ιζήματα. Επομένως, το τυπικό πετρέλαιο μπορεί να περιέχει περίπου 10ppm Ni (Hunt, Petroleum geochemistry and geology, 1996) που σημαίνει εμπλουτισμός στο συγκεκριμένο μέταλλο κατά 1000 φορές. Οι Lewan και Maynard (1982) εξήγησαν το φαινόμενο λόγω της ύπαρξης διάχυσης ιόντων μετάλλου στα οργανικά ιζήματα από τα στρώματα νερού που κυκλοφορούν από πάνω τους. Ακόμη η μεταφορά μετάλλων από το ανόργανο ιζηματογενές υλικό μπορεί να εναποθέσει οξείδια μετάλλων στην οργανική ύλη. Άρα οξείδια στοιχείων μετάπτωσης μπορούν να βρεθούν στην οργανική ύλη των ιζηματογενών σχηματισμών.

 Εφόσον υπάρχουν ικανές ποσότητες στοιχείων μετάπτωσης στα ιζηματογενή πετρώματα που περιέχουν το κηρογόνο, ποιος είναι ο μηχανισμός ενεργοποίησης για να λειτουργήσουν ως καταλύτες;

Σύμφωνα με τον Mango (1996) τα οξείδια μετάλλων και οι οργανομεταλλικές ενώσεις είναι ανενεργές, αλλά καθίστανται ενεργές στο εργαστήριο αν αναχθούν με υδρογόνο στους 400°C τα οξείδια και στους 200°C οι μεταλλοπορφυρίνες. Η ενεργοποίηση αυτή όμως μπορεί να συμβεί και στο υπέδαφος, στα μητρικά πετρώματα όπου η μερική πίεση του υδρογόνου είναι εξαιρετικά μεγάλη και οδηγεί στην αναγωγή των οξειδίων των μετάλλων. Έτσι για παράδειγμα μπορεί να αποσταθεροποιήσει το NiO και να το ανάγει σε Ni. Επομένως, η σταθερότητα του πετρελαίου εξαρτάται από τις συνθήκες αυτές που οδηγούν στην αναγωγή των μετάλλων (υψηλή θερμοκρασία, υψηλή πίεση υδρογόνου) αλλά και από την παρουσία παραγόντων που την αποτρέπουν, όπως η παρουσία H₂S.Υπάρχει ένα κρίσιμο όριο θερμοκρασίας και μερικής πίεσης υδρογόνου πάνω από το οποίο το πετρέλαιο είναι σταθερό μέχρι τους 150°C και διασπάται σταδιακά σε φυσικό αέριο και ξηρό αέριο σε μεγαλύτερες θερμοκρασίες (Hunt, 1996).

 Αφού η κατάλυση δημιουργεί σταθερούς λόγους ισομερών σε πετρέλαια της ίδιας οικογένειας, ποιοι είναι εκείνοι οι παράγοντες που δημιουργούν διαφοροποιήσεις στους λόγους αυτούς σε πετρέλαια από διαφορετικές οικογένειες;

Οι παράγοντες που δημιουργούν διαφοροποιήσεις σε πετρέλαια από διαφορετικές οικογένειες, όπως εξηγήθηκε προηγουμένως, στην θεωρία δημιουργίας των ελαφρών Y/A του Mango, οι συντελεστές σχηματισμού k παραμένουν σταθεροί στην ίδια οικογένεια πετρελαίων. Αντίθετα μεταξύ των πετρελαίων από διαφορετικές οικογένειες έχουν διαφορετικές τιμές. Έτσι οι συντελεστές σχηματισμού k³, k⁵ και k⁶ (επεξήγηση εικόνας 2-18) καθορίζουν την δημιουργία ισομερών ισοαλκανίων, κυκλοπεντανίων και κυκλοεξανίων αντίστοιχα. Αν μία οικογένεια πετρελαίων παρουσιάζει μεγαλύτερους συντελεστές μετατροπής k³, αυτό σημαίνει ότι οι συγκεντρώσεις ισοαλκανίων είναι μεγαλύτερες και μπορούμε να πούμε ότι η οικογένεια παρουσιάζει προτίμηση δακτυλίου τριών ατόμων άνθρακα (3 Ring Preference, 3RP). Αντίστοιχα μία οικογένεια που έχει μεγαλύτερους συντελεστές k⁵, θα έχει μεγαλύτερες συγκεντρώσεις ελαφρών κυκλοπεντανίων και λέμε ότι έχει προτίμηση δακτυλίου πέντε ατόμων άνθρακα (5RP) και τέλος αυτή με μεγάλους συντελεστές k⁶, παρουσιάζει μεγαλύτερες συγκεντρώσεις ελαφρών κυκλοεξανίων ή και αρωματικών Y/A και έχει προτίμηση δακτυλίου έξη ατόμων άνθρακα (6RP). Αυτοί οι συνδυασμοί διαφορετικών συντελεστών σχηματισμού k δημιουργούν τις διαφοροποιήσεις στις αναλογίες των ελαφρών Y/A μεταξύ των διαφορετικών οικογενειών. Εδώ πρέπει να γίνει σαφές ότι αναφερόμαστε στις αναλογίες των ισομερών και όχι στην συνολική συγκέντρωση όλων των ελαφρών Y/A μέσα στο πετρέλαιο καθώς η ποσότητα αυτή όπως αναφέρθηκε νωρίτερα είναι συνάρτηση της μέγιστης θερμοκρασίας και του χρόνου παραμονής του πετρελαίου στο μητρικό πέτρωμα που το φιλοξενεί.

Ποιοι είναι όμως οι παράγοντες που καθορίζουν τους συντελεστές σχηματισμού των ελαφρών Υ/Α και ποια προτίμηση δακτυλίου θα παρουσιάσει μία οικογένεια πετρελαίου; Σύμφωνα με τον Mango (Mango, 1994), οι παράγοντες που καθορίζουν τους συντελεστές σχηματισμού είναι η σύσταση του καταλύτη και ο λεγόμενος ελεύθερος όγκος που θα εξηγήσουμε παρακάτω. Από αυτούς τους δύο παράγοντες ο πιο σημαντικός πρέπει να είναι η σύσταση του καταλύτη και καθορίζει σε μεγαλύτερο βαθμό την προτίμηση δακτυλίου και τους συντελεστές σχηματισμού. Η σύσταση δακτυλίου είναι συνάρτηση των μετάλλων, της κατάστασης οξείδωσής τους και περισσότερο από τα προηγούμενα των μοριακών δομών γύρω του (surrounding ligands). Έχει αποδειχθεί σε προηγούμενες μελέτες ότι η μοριακή δομή γύρω από το μέταλλο μπορεί να καθορίσει την καταλυτική συμπεριφορά. Ασύμμετρη στερεοχημική επαγωγή (chiral induction) είναι ένα φαινόμενο όπου η ασυμμετρία της δομής του καταλύτη επάγει την ίδια ασυμμετρία στα προϊόντα της κατάλυσης. Οι δομές των μετάλλων που απαντώνται συνήθως στο κηρογόνο ιζηματογενών πετρωμάτων, επιδεικνύουν σε μεγάλο βαθμό ασύμμετρη επαγωγή σε μία σειρά καταλυτικών αντιδράσεων όπου όπως έχει δειχθεί από προηγούμενες μελέτες καθορίζουν και την επιλεκτικότητα του ενάντιο-ισομερούς (enantioselectivity) που θα παραχθεί από την κατάλυση (Mango, 1994). Εάν λοιπόν η μοριακή δομή γύρω από το μέταλλο καθορίζει την ενάντιοεπιλεκτικότητα, σίγουρα θα μπορεί να επηρεάσει και το τρόπο του κλεισίματος του δακτυλίου κατά την κατάλυση (εικόνα 2-18) αφού προκύπτουν σημαντικά διαφορετικές δομές. Έτσι η δομή του καταλύτη μπορεί να επηρεάσει καθοριστικά ποιο από τα μονοπάτια της εικόνας 2-18 θα ενισχυθεί ή θα ελαττωθεί δηλαδή μπορεί να καθορίσει σε μεγάλο βαθμό τους συντελεστές σχηματισμού Κ.

Υπάρχει όμως μεγάλη ποικιλία διαφορετικών συστάσεων καταλύτη που εξηγεί τις μεγάλες διαφορές στις αναλογίες των ελαφρών ισομερών Υ/Α δηλαδή τις μεγάλες διαφορές στην προτίμηση δακτυλίου (ring preference, RP) που παρατηρούνται μεταξύ διαφορετικών οικογενειών πετρελαίου; Είναι γνωστό ότι στα ιζηματογενή πετρώματα με κηρογόνο απαντώνται αρκετά στοιχεία μετάπτωσης που θα μπορούσαν να παίξουν τον ρόλο του καταλύτη. Τέτοια μέταλλα είναι τα: Ni, V, Ti, Fe, Mo, Cr και Co. Όσον αφορά την ύπαρξη διαφορετικών στερεοχημικών δομών γύρω από το μεταλλικό στοιχείο που να επάγουν διαφορετικές προτιμήσεις δακτυλίου, έχει ήδη παρουσιαστεί στην παρούσα εργασία στην ενότητα που εξηγεί την δημιουργία του κηρογόνου, ότι ένα μεγάλο μέρος της δομής της αρχικής οργανικής ύλης διατηρείται κατά την δημιουργία του κηρογόνου, σύμφωνα με την σύγχρονη θεωρεία του Tegelaar (Tegelaar, 1989). Καθώς είναι δυνατή η ύπαρξη οργανικής ύλης κατά την ιζηματογένεση με διαφορετική βιολογική προέλευση, όπως θαλάσσια, χερσαία, φυτική, ζωική και άλλα, αναμένεται επίσης και μεγάλη ποικιλία σε στερεοχημικές δομές. Επομένως, ο συνδυασμός των διαφορετικών μετάλλων που μπορούν να παίξουν τον ρόλο του καταλύτη με της διαφορετικές μοριακές δομές στο κηρογόνο, μπορούν να δώσουν μια μεγάλη ποικιλία σύστασης καταλυτών που εξηγεί και τις διαφοροποιήσεις στην προτίμηση δακτυλίου που απαντούμε σε διαφορετικές οικογένειες πετρελαίων.

Ο δεύτερος κατά σειρά σημαντικότητας παράγοντας, που επηρεάζει τους συντελεστές σχηματισμού είναι ο ελεύθερος όγκος ν_f. Ως ελεύθερος όγκος ορίζεται η διαφορά του συνολικού όγκου που έχει προσπελάσιμο η οργανική ύλη μέσα στο πέτρωμα, με το άθροισμα των μοριακών όγκων των ενώσεων που αποτελούν την οργανική ύλη. Ο ελεύθερος όγκος είναι ο χώρος όπου λαμβάνουν χώρα οι μοριακές διεργασίες και επηρεάζεται περισσότερο από την πίεση και σε λιγότερο βαθμό από την θερμοκρασία. Η αύξηση της πίεσης θα τον συρρικνώσει, ενώ η αύξηση της θερμοκρασίας θα τον αυξήσει. Μεταβολές του όγκου επηρεάζουν τις μοριακές διεργασίες που λαμβάνουν χώρα σι μοριακός θα τον αυξήσει. Μεταβολές του όγκου επηρεάζουν τις μοριακές διεργασίες που λαμβάνουν χώρα σε αυτόν. Για παράδειγμα ο ρυθμός αντίδρασης και ο ρυθμός διάχυσης των πολυμερών υλικών μειώνονται όταν ο ελεύθερος όγκος ελαττώνεται εξαιτίας της άσκησης πίεσης (Tazuke and Hayashi 1978, Ju and Duda 1981). Επειδή το κηρογόνο είναι ένα μακρομοριακό δίκτυο που δέχεται την πίεση των υπερκείμενων γεωλογικών στρωμάτων, ο ελεύθερος όγκος μπορεί να παίζει ένα σημαντικό ρόλο στις χημικές διεργασίες του κηρογόνου στο ιζηματογενές πέτρωμα.

Ο καταλυτικός σχηματισμός των ελαφρών Υ/Α πραγματοποιείται μέσω μεταβατικού σχηματισμού δακτυλίων τριών, πέντε και έξη ανθράκων με διαφορετικούς συντελεστές σχηματισμού k³, k⁵ και k⁶ αντίστοιχα. Ο όγκος ενεργοποίησης για τον μονοπάτι k³ είναι μικρότερος σε σχέση με τον όγκο ενεργοποίησης του k⁵ ο οποίος με την σειρά του είναι ελαφρώς μικρότερος από αυτόν του k⁶, λόγω του μεγέθους του δακτυλίου που πρέπει να σχηματιστεί. Άρα ο περιορισμός του ελεύθερου όγκο λόγω αύξησης της πίεσης θα περιορίσει περισσότερο τους μεγαλύτερους δακτυλίους και επομένως θα πρέπει να αυξηθεί η προτίμηση δακτυλίου 3RP.

Δεδομένα από προηγούμενες μελέτες του Philipi (Philipi, 1975) και του Thompson (Thompson, 1979) δείχνουν πως ο λόγος k3/ (k5+k6) αυξάνεται με την αύξηση του βάθους άρα και της πίεσης των υπερκείμενων στρωμάτων. Επίσης ο Schaefer (Schaefer, 1992) έδειξε ότι ο λόγος μεθυλεξανίων/διμεθυλκυκλοπεντανίων (k3/k5) αυξάνεται εκθετικά σε συνάρτηση με την αύξηση της ανακλαστικότητας του βιτρινίτη (Rm) στα δείγματα από την ιζηματογενή λεκάνη της κάτω Σαξονίας. Η ανακλαστικότητα του βιτρινίτη όμως είναι επίσης συνδεδεμένη με το βάθος ταφής και άρα με την υπερκείμενη πίεση.

Η απεικόνιση της κινητικών διεργασιών σταθερής κατάστασης (Steady State kinetics) της εικόνας 2-20 παρουσιάζει τη σχέση μεταξύ ελεύθερου όγκου vf και προτίμησης δακτυλίου RP.

Εικόνα 2-20 Σχηματική αναπαράσταση της ανταγωνιστικής σχέσης μεταξύ κλεισίματος δακτυλίου (k_{rc}) και υδρογονόλυσης (k_h) (Mango 1994).

Ο λόγος μεταξύ του "γονέα" Υ/Α και των "θυγατέρων" (P1/D1), όπως τους ονομάζει ο Mango (Mango, 1994), δηλαδή ο λόγος μεταξύ του κανονικού Υ/Α που αποτελεί την πρώτη ύλη της κατάλυσης και των προϊόντων της, είναι συνάρτηση δύο ανταγωνιστικών αντιδράσεων. Του κλεισίματος δακτυλίου με συνολικό συντελεστή σχηματισμού krc (όπου $k_{rc} = k^3 + k^5 + k^6$) και της αντίδρασης υδρογονόλυσης με συντελεστή k_h . Οποιοδήποτε κινητικό φαινόμενο αλλάζει την ισορροπία μεταξύ των k_{rc} και k_h θα αλλάξει ανάλογα και τον λόγο (P₁/D₁). Έτσι αν μειωθεί ο ελεύθερος όγκος v_f θα ελαττωθεί ο συντελεστής σχηματισμού krc και επομένως θα αυξηθεί και ο λόγος $k^3 / (k^5 + k^6)$ καθώς όπως εξηγήσαμε η μείωση του ελεύθερου όγκου θα επηρεάσει άνισα τους συντελεστές σχηματισμού.

Οι παραπάνω κινητικές μεταβολές λόγω της μείωσης του ελεύθερου όγκου επιβεβαιώθηκαν από τον Mango (Mango, 1994). Ο Mango χρησιμοποίησε μία οικογένεια πετρελαίων, τα Sabine Oils, τα οποία από προηγούμενη μελέτη (Mango, 1990b) έχει διαπιστωθεί ότι είναι ομοιογενή, δηλαδή προέρχονται από ένα μητρικό πέτρωμα το οποίο έχει ομοιογενή γεωχημική σύσταση κηρογόνου σε όλο του τον όγκο. Το γεγονός αυτό αποκλείει κάθε άλλη περίπτωση χημικής διαφοροποίησης του κηρογόνου και αφήνει ως μόνο λόγο χημικής μεταβολής τις φυσικές συνθήκες. Έτσι στην εικόνα 2-21 παρατηρείται ότι δείγματα από μεγαλύτερο βάθος δειγματοληψίας και άρα μεγαλύτερης πίεσης, παρουσιάζουν αυξημένο λόγο P₁ / D₁ και ανάλογη αύξηση της προτίμησης δακτυλίου 3RP.

Εικόνα 2-21 Σχέση μεταξύ προτίμησης δακτυλίου (λόγος $k^3 / (k^5 + k^6)$) και λόγου «γονέα» προς «θυγατέρων» (λόγος P_1 / D_1) (Mango 1994).

Εν κατακλείδι συμπεραίνεται πως οι διαφορές στην σύσταση του καταλύτη που μαρτυρούν διαφορετικό περιβάλλον απόθεσης, μπορούν να προκαλέσουν μεγάλες διαφοροποιήσεις στην προτίμηση δακτυλίου μεταξύ πετρελαίων διαφορετικών οικογενειών. Η μεταβολή του ελεύθερου όγκου μπορεί να προκαλέσει μικρότερες διαφοροποιήσεις στην προτίμηση δακτυλίου μεταξύ των πετρελαίων της ίδιας οικογένειας. Το φαινόμενο αυτό παρατηρείται στην εικόνα 2-22 όπου δύο οικογένειες πετρελαίων, Midland και Sabine έχουν εμφανώς διαφορετικές προτιμήσεις δακτυλίου, ενώ ταυτόχρονα και οι δύο παρουσιάζουν μία μικρή τάση αύξησης της προτίμησης δακτυλίου 3RP στα πετρέλαια της ίδιας οικογένειας όσο αυξάνεται το βάθος δειγματοληψίας. Η αύξηση αυτή εκφράζεται με την αύξηση του λόγου P3/N2. Τα P3 και N2 είναι τα διμεθυλοπεντάνια και διμεθυλοκυκλοπεντάνια αντίστοιχα όπως παρουσιάστηκαν στο μοντέλο της εικόνας 2-18.

Εικόνα 2-22 Μικρές διαφοροποιήσεις στην προτίμηση δακτυλίου μεταξύ των πετρελαίων της ίδιας οικογένειας (οικογένειας Midland και Sabine) (Mango 1977).

2-2.3 Θεωρία της κατάλυσης από όξινα ορυκτά (Catalysis by acidic clay minerals) Στα αρχικά στάδια της καταγένεσης υπάρχουν ισχυρές ενδείξεις κατάλυσης από όξινα ορυκτά. Τα επονομαζόμενα αδαμαντάνια (diamondoids ή adamantanes) επαπαντώνται σε μεγάλες ποσότητες ως προϊόντα όξινης κατάλυσης από αναδιοργάνωση της δομής των τρικυκλικών αλκανίων. Αντίθετα είναι πολύ σπάνιο να απαντηθούν στην φύση ως προϊόντα θερμικής διάσπασης ή κατάλυσης στοιχείων μετάπτωσης (Mango, 1977). Επομένως, είναι δυνατό να υποστηριχτεί θεωρητικά πως η κατάλυση από όξινα ορυκτά είναι υπεύθυνη για την δημιουργία των ελαφρών υδρογονανθράκων (Mango, 1977) αφού ως προϊόντα κατάλυσης ικανοποιούν την εξίσωση (2). Όπως προαναφέρθηκε η εξίσωση (2) ισχύει μεταξύ όμοιων δομικά ισομερών στους ελαφρούς Υ/Α και μπορεί να προκύψει μόνο από κάποιο μηχανισμό κατάλυσης. Όμως ο μηχανισμός αποτυγχάνει στο να εξηγήσει την δημιουργία του φυσικού αερίου. Τα αέρια που δημιουργούνται από κατάλυση όξινων ορυκτών έχουν συγκέντρωση σε μεθάνιο μικρότερη του 40% δηλαδή πολύ μικρότερη της τυπικής συγκέντρωσης μεθανίου στο φυσικό αέριο και επομένως δεν προσομοιάζουν το προφίλ του φυσικού αερίου.

Επομένως, από τις τρεις θεωρίες σχηματισμού των ελαφρών Υ/Α που παρουσιάστηκαν παραπάνω (θερμική διάσπαση, κατάλυση στοιχείων μετάπτωσης και κατάλυση όξινων ορυκτών) μόνο αυτή της κατάλυσης στοιχείων μετάπτωσης μπορεί να εξηγήσει καλύτερα την δημιουργία όλων των ελαφρών Υ/Α συμπεριλαμβανομένων των ελαφρών Υ/Α του πετρελαίου, του φυσικού αερίου και τέλος του ξηρού αερίου.

Στην επόμενη ενότητα θα παρουσιαστούν μέθοδοι που χρησιμοποιούν όλες τις παραπάνω γνώσεις της γένεσης των ελαφρών υδρογονανθράκων με σκοπό την κατασκευή γεωχημικών μοντέλων χαρακτηρισμού των πετρελαίων στηριζόμενες μόνο στις πληροφορίες της σύστασης των ελαφρών Y/A.

Ενότητα 2-3. Τεχνικές γεωχημικού χαρακτηρισμού με την χρήση του ελαφρού

κλάσματος

Η πλειονότητα των τεχνικών γεωχημικού χαρακτηρισμού που θα εξεταστούν παρακάτω προτιμούν τη χρήση των ισομερών του επτανίου από όλα τα ελαφρά συστατικά. Οι λόγοι που προτιμούν τα συστατικά αυτά είναι οι ακόλουθοι:

 Είναι ο τελευταίος αριθμός άνθρακα κατά τον οποίο μπορεί να επιτευχθεί πλήρης διαχωρισμός των ισομερών του με τη χρήση αέριας χρωματογραφίας. Τα ισομερή με αριθμό άνθρακα οκτώ και άνω είναι πάρα πολλά και αλληλεπικαλύπτονται στην αέρια χρωματογραφία.

 Συγκριτικά με τα ελαφρύτερα συστατικά του πετρελαίου τα ισομερή του επτανίου είναι λιγότερο πτητικά και μπορούν ευκολότερα να διατηρηθούν αναλλοίωτα.

 Περιλαμβάνουν υδρογονάνθρακες όλων των κατηγοριών δηλαδή αρωματικούς, ναφθενικούς, παραφινικούς και μεγάλο αριθμό ισομερών ανοιχτής αλυσίδας διαφορετικής διακλάδωσης. Αυτός ο μεγάλος αριθμός ισομερών διαφορετικών τύπων επιτρέπει την δημιουργία τεχνικών που προσδιορίζουν τις γενετικές καταβολές των πετρελαίων.

Μοντελοποιώντας λοιπόν την δημιουργία των ισομερών του επτανίου μπορεί να προσδιοριστεί ποιοι συντελεστές σχηματισμού και ποιά μονοπάτια κατάλυσης ευθύνονται για την δημιουργία συγκεκριμένων ισομερών (εικόνα 2-18). Σε περίπτωση χαρακτηρισμού ενός γεωχημικά αγνώστου δείγματος, αρχικά θα πρέπει να γίνει υπολογισμός των λόγων των ισομερών που προέρχονται από διαφορετικά μονοπάτια σχηματισμού και έπειτα συσχέτιση των λόγων αυτών με γνωστά δείγματα ή με τυχόν γεωχημικούς κανόνες που έχουν αναπτυχθεί για τους συγκεκριμένους λόγους. Από την βιβλιογραφία είναι δυνατό να βρεθεί

μία σειρά από προηγούμενες μελέτες και γεωχημικά μοντέλα που αναπτύχθηκαν πάνω σε αυτή την θεωρεία σχηματισμού:

2-3.1 Τεχνική τριγωνικού διαγράμματος ten Haven (1996)

Στηριζόμενος στον πυρήνα της θεωρίας του Mango, δηλαδή στην διαφορετική προτίμηση δακτυλίου ανάλογα με το περιβάλλον απόθεσης που είναι άμεσα συνδεδεμένο με την σύσταση του καταλύτη, το 1996 ο Ten Haven ανέπτυξε ένα γραφικό τρόπο συσχετισμού των άγνωστων πετρελαϊκών δειγμάτων. Συγκεκριμένα πρότεινε τον υπολογισμό της συγκέντρωσης των ισομερών επτανίου 3RP, 5RP και 6RP αντίστοιχα επί του συνόλου της ομάδας των επτανίων. Οι τιμές αυτές προβάλλονται σε ένα τριγωνικό διάγραμμα όπου οι τρεις κορυφές του αντιστοιχούν σε συγκέντρωση 100% 3RP, 5RP και 6RP αντίστοιχα. Χρησιμοποιώντας δείγματα γνωστού περιβάλλοντος απόθεσης από το Βιετνάμ, ο Ten Haven (Haven, 1996) διαπίστωσε ότι τα δείγματα χερσαίας προέλευσης παρουσίαζαν μία ισχυρή προτίμηση δακτυλίου 3RP (εικόνα 2-23):

Εικόνα 2-23 Τριγωνικό διάγραμμα προτίμησης δακτυλίου (Ten Haven 1996).

Κάνοντας χρήση ενός μεγάλου αριθμού δειγμάτων πετρελαίου από διαφορετικά μέρη του κόσμου που περιλάμβαναν δείγματα θαλάσσιας, χερσαίας και λιμναίας προέλευσης, διαπίστωσε πως αν και υπάρχει μεγάλο ποσοστό αλληλοεπικάλυψης, τα πετρέλαια θαλάσσιας προέλευσης παρουσιάζουν μεγαλύτερα κατά κανόνα ποσοστά σε ισομερή προτίμησης δακτυλίου 5RP, ενώ παράλληλα επαλήθευσε τις προηγούμενες διαπιστώσεις για τα πετρέλαια χερσαίας και λιμναίας προέλευσης (εικόνα 2-24).

Εικόνα 2-24 Τριγωνικό διάγραμμα προτίμησης δακτυλίου με προβολή δειγμάτων θαλάσσιας, λιμναίας και χερσαίας προέλευσης (Ten Haven 1996).

Οι παραπάνω διαπιστώσεις παρουσιάζουν πως παρόλο που υπάρχει μεγάλος αριθμός συνδυασμών διαφορετικών μετάλλων με διαφορετικές μοριακές δομές γύρω τους, υπάρχουν κάποιες συστάσεις καταλύτη που απαντώνται συχνότερα σε θαλάσσια περιβάλλοντα, όπως αντίστοιχα άλλες που απαντώνται συχνότερα σε χερσαία και λιμναία περιβάλλοντα αντίστοιχα και οδηγούν στις συγκεκριμένες προτιμήσεις δακτυλίου. Αυτή η παρατήρηση συμφωνεί και με την σύγχρονη θεωρία σχηματισμού του κηρογόνου (Tegelaar, 1989) που παρουσιάστηκε νωρίτερα και καταλήγει στο συμπέρασμα ότι οι ανθεκτικές μοριακές δομές της βιομάζας διατηρούνται στο κηρογόνο. Επομένως οι διαφορετικές μοριακές δομές της χερσαίας βιομάζας θα παρουσιάζουν διαφορετική σύσταση όπως και διαφορετική προτίμηση δακτυλίου από ότι για παράδειγμα οι διαφορετικές μοριακές δομές.

Το παραπάνω μοντέλο γεωχημικού χαρακτηρισμού μπορεί να χρησιμοποιηθεί για συσχετισμούς οικογενειών πετρελαίων αλλά και για πιθανή ένδειξη του περιβάλλοντος απόθεσης αν δείχνει έντονη τάση προς μία κορυφή 3RP, 5RP ή 6RP χωρίς όμως να αποτελεί από μόνη της ικανή συνθήκη προσδιορισμού του περιβάλλοντος απόθεσης.

2-3.2 Τεχνική του Thompson (1983)

Ο Thompson το 1983 (Thompson, 1983) ανέπτυξε ένα ακόμη σημαντικό μοντέλο χαρακτηρισμού των πετρελαίων που βασίζεται αποκλειστικά στους ελαφρούς υδρογονάνθρακες. Στηρίχθηκε σε μία σειρά από παλαιότερες μελέτες που έδειχναν πως η παραφινικότητα των πετρελαίων και των εκχυλισμάτων μητρικών πετρωμάτων αυξάνεται σε σχέση με το βάθος ταφής αλλά και με τον βαθμό ωρίμανσης, όπως αυτός καθορίζεται από την ανακλαστικότητα του βιτρινίτη (Philipi, 1975). Ο ίδιος ο Thompson χρησιμοποιώντας μία συλλογή από 76 πετρέλαια από διαφορετικές περιοχές της βόρειας Αμερικής, κατάφερε να συσχετίσει τους λόγους κάποιων ελαφρών Υ/Α με την ωριμότητα του πετρελαίου αλλά και τον τύπο του κηρογόνου από το οποίο προήλθε. Συγκεκριμένα χρησιμοποιήσε δύο λόγους ελαφρών υδρογονανθράκων. Ο πρώτος που ονομάστηκε "Τιμή Ισοεπτανίου" (Isoheptane Value) είναι ο λόγος των 2-μεθυλεξάνιου και 3-μεθυλεξάνιου προς τα 1,cis-3διμεθυλκυκλοπεντάνιο και 1,trans-3-διμεθυλκυκλοπεντάνιο και 1,trans-2διμεθυλκυκλοπεντάνιο. Δηλαδή η "Τιμή Ισοεπτανίου ορίζεται ως:

 Τιμή Ισοεπτανίου = (2-μεθυλεξάνιο + 3-μεθυλεξάνιο) / (1,cis-3διμεθυλοκυκλοπεντάνιο + 1,trans-3-διμεθυλοκυκλοπεντάνιο + 1,trans-2διμεθυλοκυκλοπεντάνιο)

Ο δεύτερος λόγος που ονομάστηκε "Τιμή Επτανίου" (Heptane Value), είναι ο λόγος της συγκέντρωσης του επτανίου προς το άθροισμα των συγκεντρώσεων όλων των ισομερών μεταξύ κυκλοεξανίου και μεθυλκυκλοεξανίου. Δηλαδή ορίζεται ως:

Τιμή Επτανίου = 100 * κανονικό επτάνιο / (κυκλοεξάνιο + 2-μεθυλεξάνιο + 1,1διμεθυλοκυκλοπεντάνιο + 3-μεθυλεξάνιο + 1,cis-3-διμεθυλοκυκλοπεντάνιο + 1,trans-3-διμεθυλοκυκλοπεντάνιο + 1,trans-2-διμεθυλοκυκλοπεντάνιο + κανονικό επτάνιο + μεθυλοκυκλοεξάνιο)

Επομένως σύμφωνα με τους παραπάνω δύο λόγους τα πετρέλαια χωρίζονται σε τέσσερις κατηγορίες:

- Α. Τα "κανονικά" πετρέλαια που βρίσκονται στο μέγιστο της παραγωγικότητας της καταγένεσης. Αυτά τα πετρέλαια απελευθερώνονται από το μητρικό πέτρωμα σε θερμοκρασίες μεταξύ 138° ως 149° C και δίνουν "Τιμή Επτανίου" μεταξύ 18 και 22 ενώ η "Τιμή Ισοεπτανίου" είναι μεταξύ 0.8 και 1.2.
- B. Τα "ώριμα" πετρέλαια που σύμφωνα με τον Thompson έχουν υποστεί σημαντική θερμική διάσπαση με διάσπαση κυκλικών δακτυλίων και μείωση του μήκους των αλυσίδων άνθρακα. Αυτά τα πετρέλαια απελευθερώνονται από το μητρικό πέτρωμα σε θερμοκρασίες μεταξύ 150º και 190ºC και δίνουν "Τιμή Επτανίου" μεταξύ 22 και 30 ενώ η "Τιμή Ισοεπτανίου" είναι μεταξύ 1.2 και 2.0.
- C. Τα "υπερώριμα" πετρέλαια που έχουν υποστεί παρατεταμένη θερμική διάσπαση και μεγάλο βαθμό αεριοποίησης, δηλαδή αποδόμησης του πετρελαίου και μετατροπής του σε αέριους υδρογονάνθρακες κατά το στάδιο της μεταγένεσης. Αυτά τα πετρέλαια συναντιόνται σε μητρικά πετρώματα με θερμοκρασία μεγαλύτερη των 190°C και δίνουν "Τιμή Επτανίου" μεταξύ 30 και 60 ενώ η "Τιμή Ισοεπτανίου" είναι μεταξύ 2.0 και 4.0.
- D. Και τέλος τα "βιοαποδομημένα" πετρέλαια που έχουν αλλοιωθεί μετά την απελευθέρωσή τους από το μητρικό πέτρωμα, από βακτήρια και έχουν χάσει σημαντικό ποσοστό των κανονικών υδρογονανθράκων αλλά και άλλων ισομερών ανοιχτής κυρίως αλυσίδας. Τα πετρέλαια αυτά δίνουν "Τιμή Επτανίου" μεταξύ 0 και 18 ενώ η "Τιμή Ισοεπτανίου" είναι μεταξύ 0 και 0.8.

Η μέθοδος ταξινόμησης του Thompson με όλες τις ομάδες ταξινόμησης καθώς και τα όρια των τιμών "Επτανίου" και "Ισοεπτανίου" που μπορούν να πάρουν παρουσιάζονται στον πίνακα 2-2.

Petroleum Class	Class Limits			
2 19 200 31 19	Heptane Value	Isoheptane Value		
Normal, Paraffinic	18 + 22	0.8 - 1.2		
Mature	22 - 30 (26%)	1.2 - 2.0 (28%)		
Supermature	30 - 60 (13%)	2.0 - 4.0 (10%)		
Biodegraded	0 - 18 (20%)	0 - 0.8 (20%)		

Πίνακας 2-2 Ταξινόμηση των πετρελαίων ανάλογα με την "Τιμή Επτανίου" και την "Τιμή Ισοεπτανίου" (Thompson 1983)

Ο Thompson χρησιμοποίησε τις παραπάνω τιμές "Τιμή Επτανίου" και "Τιμή Ισοεπτανίου" για να ταξινομήσει τα πετρέλαια ανάλογα και με το είδος κηρογόνου από το οποίο προέρχονται. Με αυτόν τον τρόπο κατάφερε να συσχετίσει εμπειρικά τα πετρέλαια σε δύο κατηγορίες κηρογόνου. Τα αλειφατικά πετρέλαια ή πετρέλαια από αλειφατικό κηρογόνο, το οποίο αντιστοιχεί στο κηρογόνο τύπου Ι και τύπου ΙΙ σύμφωνα με την κατάταξη κηρογόνου του Tissot et al. (Tissot B., 1974) και στα αρωματικά πετρέλαια ή πετρέλαια ή πετρέλαια ο από αλειφατικό κηρογόνου του Tissot et al. (Tissot B., 1974) και στα αρωματικά πετρέλαια ή πετρέλαια ο από αλειφατικός αυτός συσχετισμός φαίνεται στην εικόνα 2-25 όπου παρουσιάζονται οι καμπύλες που οριοθετούν τα πετρέλαια σε αλειφατικού τύπου και αρωματικού τύπου κηρογόνο σε συνάρτηση με την "Τιμή Επτανίου" και την "Τιμή Ισοεπτανίου".

Εικόνα 2-25 Προσδιορισμός του τύπου κηρογόνου ανάλογα με την "Τιμή Επτανίου" και την "Τιμή Ισοεπτανίου" (Thompson 1983).

Τέλος συσχέτισε την "Τιμή Επτανίου" με τον δείκτη ανακλαστικότητας του βιτρινίτη Ro o οποίος είναι χαρακτηριστικός του σταδίου ωρίμανσης του πετρελαίου. Στην εικόνα 2-26 που παρατίθεται παρακάτω παρουσιάζεται η καμπύλη συσχετισμού του δείκτη ανακλαστικότητας με την τιμή επτανίου. Παρατηρείται πως τα "κανονικά" πετρέλαια, δηλαδή αυτά που εμφανίζουν τιμή επτανίου μεταξύ 18 και 22, αντιστοιχούν σε τιμές δείκτη ανακλαστικότητας μεταξύ 0.86 και 1.05. Σημειώνεται επίσης ότι ο συσχετισμός αυτός επαληθεύεται από το γεγονός ότι η τιμή ανακλαστικότητας 0.86 θεωρείται η αρχή του παράθυρου δημιουργίας του πετρελαίου όπως και η τιμή 18 για την πρώτη ομάδα ταξινόμησης του Thompson.

Εικόνα 2-26 Συσχετισμός της "Τιμής Επτανίου" με τον δείκτη ανακλαστικότητας του βιτρινίτη Ro (Thompson 1983).

Ο Thompson (Thompson, 1983) προσπάθησε να εξηγήσει τους παραπάνω εμπειρικούς συσχετισμούς με την θεωρία την θερμικής προέλευσης των ελαφρών υδρογονανθράκων. Θεώρησε πως η αύξηση των κανονικών Y/A άρα και του κανονικού επτανίου (n-Heptane) οφείλεται στο γεγονός ότι όσο το βάθος ταφής και η θερμοκρασία ταφής αυξάνεται υπάρχει διάρρηξη των κυκλικών δακτυλίων και μείωση του μήκους της ανοιχτής αλυσίδας βαρύτερων Y/Α. Επομένως παράγεται περισσότερο κανονικό επτάνιο και ισοεπτάνια ανοιχτής αλυσίδας που οδηγεί στην αύξηση της "Τιμής Επτανίου" και της τιμής "Ισοεπτανίου" όσο αυξάνεται η ωρίμανση του πετρελαίου. Όμως όπως απέδειξε αργότερα ο Mango (1990b, 1994, 1997, 2000) και πειραματικά οι κυκλικοί δακτύλιοι των Υ/Α είναι εξαιρετικά ανθεκτικοί σε αυτές τις θερμοκρασίες και δεν οφείλεται στην διάρρηξη αυτών η αύξηση των κανονικών Υ/Α. Παρόλα αυτά, σύμφωνα με την καταλυτική θεωρία δημιουργίας των ελαφρών Υ/Α όπως αναλύθηκε νωρίτερα, υπάρχει ένας άλλος κινητικός μηχανισμός, αυτός της μείωσης του ελεύθερου όγκου που είναι υπεύθυνος για την μεταβολή των συντελεστών σχηματισμού με μεταβολή της προτίμησης δακτυλίου 6RP→5RP→3RP αλλά και με μεταβολή της ισορροπίας μεταξύ συντελεστή υδρογονόλυσης k_h και συντελεστή σχηματισμού k_{rc} όπως παρουσιάστηκε νωρίτερα στην εικόνα 2-19. Έτσι οι εμπειρικοί συσχετισμοί του Thompson (1983) ισχύουν όχι για τους λόγους τους οποίους υπέθεσε αλλά εξηγούνται σύμφωνα με την σύγχρονη θεωρία σχηματισμού των ελαφρών Y/A.

2-3.3 Τεχνική του αμετάβλητου λόγου K1 Mango (1987)

Ο λεγόμενος "αμετάβλητος λόγος K1" είναι ένα ακόμη μοντέλο συσχετισμού των πετρελαίων που στηρίζεται αποκλειστικά στους ελαφρούς υδρογονάνθρακες και συγκεκριμένα σε ισομερή του επτανίου. Ο λόγος είναι ανακάλυψη του Mango (Mango, 1987) και υπήρξε μια από τις πρώτες παρατηρήσεις του που το οδήγησαν αργότερα στην αναπτύξη της ολοκληρωμένης θεωρίας καταλυτικού σχηματισμού των ελαφρών Y/A. Ο λόγος K1 χρησιμοποιεί τα μεθυλοεξάνια και τα διμεθυλοπεντάνια που αντιστοιχούν στο μονοπάτι σχηματισμού k³2 της εικόνας 2-18 και εκφράζεται ως εξής:

K1 = (2-μεθυλεξάνιο + 2,3-διμεθυλοπεντάνιο) / (3-μεθυλεξάνιο + 2,4διμεθυλοπεντάνιο)

Η αρχική υπόθεση του Mango ήταν πως ο λόγος αυτός είναι αμετάβλητος για όλα τα πετρέλαια παγκοσμίως, όμως αργότερα διαπιστώθηκε από τον ίδιο και άλλους μελετητές (ten Haven 1996) ότι ο λόγος παραμένει αμετάβλητος μόνο μεταξύ των ομόλογων πετρελαίων, δηλαδή των πετρελαίων που σχετίζονται γενετικά και προέρχονται από το ίδιο μητρικό πέτρωμα. Άλλωστε αν ο λόγος αυτός ήταν σταθερός για όλα τα πετρέλαια δεν θα είχε καμιά αξία σαν μοντέλο συσχετισμού και ούτε θα μπορούσε να εξηγηθεί από την καταλυτική θεωρεία σχηματισμού των ελαφρών Υ/Α. Στην πραγματικότητα όμως ο λόγος αυτός διαφέρει μεταξύ διαφορετικών οικογενειών πετρελαίων γιατί η σύσταση του καταλύτη, άρα και η προτίμηση δακτυλίου και ο συντελεστής σχηματισμού k_{2}^{3} μεταβάλλεται. Έτσι για να εξετασθεί αν ένας ικανός αριθμός δειγμάτων πετρελαίου ανήκουν στην ίδια οικογένεια υπολογίζονται τα αθροίσματα των συγκεντρώσεων των ισομερών 3-μεθυλεξάνιο + 2,4-διμεθυλπεντάνιο (3-MH + 2,4-DMP) και 2-μεθυλεξάνιο + 2,3-διμεθυλπεντάνιο (2-MH + 2,3-DMP) για κάθε πετρέλαιο και οι τιμές όλων των πετρελαίων τοποθετούνται σε ένα γράφημα (3-MH + 2,4-DMP) vs (2-MH + 2,3-DMP). Το διάγραμμα αυτό παρουσιάζεται στην εικόνα 2-27 όμως δεν καθίσταται ικανό να διακρίνει το αν τα υπό μελέτη δείγματα προέρχονται από διαφορετικές οικογένειες πετρελαίων.

Εικόνα 2-27 Διάγραμμα 3MC6+24DMC5 ως προς 2MC6+23DMC5 με τη τεχνική αμετάβλητου λόγου K1 (Mango,1987).

2-3.4 Τεχνική των Zhang et al. (2005)

Μία ακόμα τεχνική χαρακτηρισμού των πετρελαίων και καθορισμού πετρελαϊκών συστημάτων, που στηρίχθηκε στη θεωρία σχηματισμού των ελαφρών Y/A του Mango, αναπτύχθηκε από τους Zhang et al. (Zhang C., 2005). Σύμφωνα με το μοντέλο σχηματισμού των ισομερών του επτανίου (εικόνα 2-18) υπολογίζονται οι ομάδες ισομερών P₂, P₃, N₂ και N₁⁶ ως προς το σύνολο των ισομερών του επτανίου. Δηλαδή αθροίζονται οι μάζες κάθε ομάδας ισομερών και υπολογίζονται ως ποσοστό στο σύνολο της μάζας όλων των ισομερών του επτανίου. Κατόπιν οι ομάδες αυτές προβάλλονται σε ένα διάγραμμα P₃ + P₂ + N₂ προς N₁⁶. Επομένως γίνεται μια προβολή των ισομερών προτίμησης δακτυλίου 3RP (τα P₃ + P₂) και 5RP (τα N₂) ως προς τα ισομερή προτίμησης δακτυλίου 6RP (τα N₁⁶).

Η παραπάνω προβολή των ισομερών προτίμησης δακτυλίου επιδεικνύει την ανταγωνιστική σχέση μεταξύ των ισομερών με δακτυλίους έξι ανθράκων έναντι όλων των άλλων ισομερών. Δηλαδή με άλλα λόγια επιδεικνύει την αρωματικότητα ενός πετρελαίου, μιας και οι αρωματικοί δακτύλιοι συγκαταλέγονται στην ομάδα GRP. Επομένως η συγκεκριμένη τεχνική εκτός από την προσπάθεια συσχετισμού των πετρελαίων σε οικογένειες με κοινή γενετική προέλευση αναδεικνύει και την διαφορά των πετρελαϊκών οικογενειών ως προς την αρωματικότητα τους, που μπορεί να μεταφραστεί και ως ένδειξη χερσαίας ή θαλάσσιας προέλευσης. Όπως είναι γνωστό η οργανική ύλη χερσαίας προέλευσης έχει μεγαλύτερη περιεκτικότητα σε αρωματικούς υδρογονάνθρακες και δημιουργεί σε μεγαλύτερο ποσοστό κηρογόνο τύπου ΙΙΙ (Tissot B., 1974) (αρωματικό κηρογόνο) σε σχέση με την οργανική ύλη θαλάσσιας προέλευσης που δημιουργεί κηρογόνο τύπου Ι και ΙΙ (αλειφατικό κηρογόνο). Παρακάτω δίνεται ένα παράδειγμα, στο διάγραμμα του οποίου (εικόνα 2-28) είναι φανερός ο διαχωρισμός δύο πετρελαϊκών συστημάτων, ενός χερσαίας προέλευσης με μεγαλύτερες τιμές Ν₁⁶ και ενός θαλάσσιας προέλευσης με χαμηλότερες τιμές Ν₁⁶:

Εικόνα 2-28 Διαχωρισμός πετρελαίων χερσαίας και θαλάσσιας προέλευσης σύμφωνα με την τεχνική των Zhang et al. (2005).

Ενότητα 2-4 Τεχνικές προσδιορισμού ωριμότητας

Κατά την διάρκεια της ταφής η σύσταση της οργανική ύλη υφίσταται συνεχώς μετασχηματισμούς. Το στάδιο των μετασχηματισμών που έχει φτάσει η οργανική ύλη σε ένα μητρικό πέτρωμα ή ένα πετρέλαιο εκφράζει την ωριμότητα του και μαρτυρά το ιστορικό ταφής του. Η ωριμότητα του πετρελαίου εξαρτάται από την θερμοκρασία ταφής του αλλά και από τον ρυθμό θέρμανσής του. Η θερμοκρασία ταφής είναι άμεσα συνδεδεμένη με το βάθος ταφής. Αν και υπάρχει διακύμανση στην γεωλογική βαθμίδα σε διαφορετικές περιοχές είναι γνωστό ότι το παράθυρο δημιουργίας του πετρελαίου υφίσταται μεταξύ 60° και 160°C και συνήθως αντιστοιχεί σε βάθη μεταξύ 2500m και 5000m. Ο ρυθμός θέρμανσής εξαρτάται από τον χρόνο που μεσολάβησε για να βρεθεί το πετρέλαιο στο συγκεκριμένο βάθος και στην συγκεκριμένη θερμοκρασία. Αν και υπάρχει μεγάλη διακύμανση στον ρυθμό θέρμανσης είναι γνωστό από τα μέχρι τώρα γνωστά συστήματα πετρελαίου ότι χρειάζονται εκατομμύρια χρόνια για να ωριμάσει η οργανική ύλη στο μητρικό πέτρωμα και το πετρέλαιο να μεταναστεύσει έξω από αυτό. Οι δείκτες ωριμότητας συσχετίζουν τις μεταβολές που παρατηρούνται στην οργανική ύλη με τις συνθήκες ταφής της, δηλαδή την θερμοκρασία και τον χρόνο ταφής. Πολλοί μελετητές έχουν χρησιμοποιήσει ισομερή ελαφρών Υ/Α σαν δείκτες ωριμότητας. Αυτοί οι δείκτες στηρίζονται στο γεγονός ότι κάποια ισομερή σχηματίζονται νωρίτερα στο παράθυρο σχηματισμού του πετρελαίου από κάποια άλλα λόγω της μικρότερης ενέργειας σχηματισμού που απαιτούν.

2-4.1 Τεχνική του Thompson (1983)

Νωρίτερα εξετάσθηκε ο συσχετισμός μεταξύ ωριμότητας και «Τιμής Επτανίου» και «Τιμής Ισοεπτανίου» όπως διατυπώθηκαν από τον Thompson. Ένα αρνητικό που παρουσιάζει τεχνική αυτή είναι επηρεάζεται από γενετικές διαφορές καθώς στηρίζεται σε λόγους ισομερών διαφορετικού δακτυλίου. Αυτό σημαίνει ότι ενώ μπορεί να είναι ικανοποιητικός δείκτης ωριμότητας σε πετρέλαια από το ίδιο μητρικό πέτρωμα, υπάρχουν αποκλίσεις σε πετρέλαια με διαφορετικές γενετικές ιδιότητες όπως διαφορετικό τύπο κηρογόνου. Πιο σύγχρονες μελέτες, οι οποίες παρουσιάζονται παρακάτω, έλυσαν αυτό το πρόβλημα και βρήκαν τεχνικές προσδιορισμού της ωριμότητας κοινές για όλα τα πετρέλαια και ανεξάρτητες από τα γενετικά χαρακτηριστικά του κάθε πετρελαίου.

2-4.2 Μέγιστη θερμοκρασία ταφής BeMent (1995) - Mango (1997)

Ο Mango (1990, 1994, 1997) στηριζόμενος στην θεωρία της καταλυτικής δημιουργίας των ελαφρών Y/A κατέληξε στο να προτείνει τον λόγο 2,4-διμεθυλοπεντάνιο / 2,3διμεθυλοπεντάνιο (2,4-DMP / 2,3-DMP) ως άμεσα συνδεδεμένο με την θερμοκρασία ταφής και ανεξάρτητο από τον τύπο του κηρογόνου. Αυτό οφείλεται στο γεγονός ότι τα δύο ισομερή σύμφωνα με το μονοπάτι k_2^3 στο μοντέλο σχηματισμού των ισομερών του επτανίου (εικόνα 2-18) έχουν μοναδικό γονέα το 2-μεθυλεξάνιο (2-MH) και δημιουργούνται με κατάλυση και με ενδιάμεσο προϊόν το σχηματισμό δακτυλίου κυκλοπροπυλίου 3RP όπως φαίνεται στην εικόνα 2-29.

Εικόνα 2-29 Ο σχηματισμός κυκλοπροπυλίου ως ενδιάμεσο προϊόν (Mango 1997).

Με την διάσπαση του ασταθούς δακτυλίου του κυκλοπροπυλίου 3RP στην θέση a προκύπτει το ισομερές 2,3-DMP, ενώ με την διάσπαση στην θέση b προκύπτει το ισομερές 2,4-DMP. O Mango υποστήριξε ότι ο αμετάβλητος λόγος K1 που παρατηρείται μεταξύ των πετρελαίων οφείλεται στην αποκλειστική σχέση αντιδρώντων και προϊόντων των ομάδων ισομερών P2 (2-MH, 3-MH) και P3 (2,4-DMP, 2,3-DMP) καθώς αν τα ισομερή P3 είχαν και άλλη πηγή σχηματισμού ο λόγος αυτός θα παρουσίαζε πολύ μεγαλύτερη διακύμανση. Άρα ο λόγος δεν εξαρτάται από τον βαθμό προτίμησης του δακτυλίου 3RP σε σχέση με τους άλλους δακτυλίους 5RP και 6RP αφού δεν χρησιμοποιούνται ισομερή από τους άλλους δακτυλίους. Επίσης ο λόγος δεν εξαρτάται από την απόλυτη ποσότητα του γονέα 3-MH και επομένως είναι ανεξάρτητος από τον τύπο κηρογόνου.

Για να βαθμονομηθεί αυτός ο λόγος σε σχέση με την μέγιστη θερμοκρασία ταφής χρησιμοποιήθηκαν ελαφροί Υ/Α προερχόμενοι από εκχύλιση μητρικών πετρωμάτων και συσχετίστηκαν με τα δεδομένα της ανακλασης βιτρινίτη R_o από τα ίδια μητρικά πετρώματα. Χρησιμοποιήθηκαν μητρικά πετρώματα με διαφορετικούς τύπους κηρογόνου και διαφορετικής ηλικίας (BeMent, 1995). Ο Mango (Mango, 1997) δημοσίευσε την παρακάτω μαθηματική σχέση μεταξύ μέγιστης θερμοκρασίας ταφής και λόγου (2,4DMP / 2,3-DMP):

Μέγιστη Θερμ. Ταφής (ºC) = 140 + 15(ln[2,4-DMP / 2,3DMP])

2-4.3 Υπολογισμός του δείκτη ανάκλασης βιτρινίτη (Schaefer 1992)

O Schaefer (1984, 1988, 1992) μελέτησε τον προσδιορισμό της ωριμότητας του πετρελαίου με την χρήση ισομερών του επτανίου. Συγκεκριμένα προσπαθώντας να πετύχει τον καλύτερο δυνατό συσχετισμό της μεταβολής της σύστασης του ελαφρού κλάσματος των Υ/Α με τις μετρήσεις ανακλαστικότητας του βιτρινίτη R_o, πειραματίστηκε με μία σειρά από διαφορετικούς λόγους ισομερών . O Schaefer ακολούθησε την ίδια λογική με τον Mango χρησιμοποιώντας μάλιστα συμπεράσματα από τα αρχικά στάδια ανάπτυξης της θεωρίας σχηματισμού των ελαφρών Y/A του Mango (1987, 1990). Έτσι πειραματίστηκε και αυτός με τον λόγο 2,4-DMP / 2,3-DMP προσπαθώντας όμως να τον συσχετίσει με την ανάκλαση του βιτρινίτη και όχι με την θερμοκρασία. Επειδή η συνάρτηση συσχέτισης όμως που προέκυψε ήταν μη γραμμική ο Schaefer δεν είχε αρκετά δεδομένα για να την καθορίσει επαρκώς και δεν κατέληξε σε συγκεκριμένη μαθηματική εξίσωση. Αντίθετα κατάφερε να καθορίσει με μεγάλη ακρίβεια μία γραμμική σχέση μεταξύ ενός άλλου λόγου ελαφρών Y/A και της ανάκλασης του βιτρινίτη. Ο λόγος (J) που χρησιμοποίησε ο Schaefer ορίζεται από τα παρακάτω ισομερή του επτανίου:

J = (2-Μεθυλεξάνιο + 3-Μεθυλεξάνιο) / (1, cis-2- + 1, trans-2- + 1, cis-3-, + 1,trans-3διμεθυλοκυκλοπεντάνιο)

Στο διάγραμμα που παρατίθεται παρακάτω παρουσιάζεται γραμμική σχέση που ανακάλυψε ο Schaefer πως υπάρχει μεταξύ αυτού του λόγου και των τιμών ανάκλασης του βιτρινίτη (εικόνα 2-30). Η τιμές ανάκλασης καλύπτουν ένα πολύ ευρύ φάσμα ωριμότητας του πετρελαίου, από τιμή $R_o = 0.48$ (ανώριμου πετρελαίου) μέχρι τιμή $R_o = 1.45$ (υπερώριμου πετρελαίου):

Εικόνα 2-30 Συσχέτιση του δείκτη ανάκλασης του βιτρινίτη με τον λόγο J του Schaefer (1992).

Η μαθηματική συνάρτηση που εκφράζει αυτή τη γραμμική σχέση είναι (Schaefer 1992):

$R_o = 0.84 + 1.1 \log J$

Μελετώντας προσεκτικά τα ισομερή που συμμετέχουν στην διαμόρφωση αυτού του λόγου παρατηρείται ότι είναι μεθυλεξάνια και διμεθυλκυκλοπεντάνια. Σύμφωνα όμως με την θεωρία σχηματισμού των ελαφρών Y/A οι δύο αυτές ομάδες προέρχονται από δύο διαφορετικά μονοπάτια σχηματισμού και σχηματίζονται από διαφορετική προτίμηση δακτυλίου 3RP και 5RP αντίστοιχα. Επομένως, ο λόγος J δεν μπορεί να είναι ανεξάρτητος από τον τύπο κηρογόνου. Ο Schaefer βαθμονόμησε την παραπάνω εξίσωση χρησιμοποιώντας το ελαφρό κλάσμα Y/A από δείγματα πυρήνων ταμιευτήρων από την περιοχή Hils της λεκάνης απόθεσης Lower Saxony της Γερμανίας. Το κηρογόνο που περιέχει αυτό το μητρικό πέτρωμα χαρακτηρίζεται ως αλειφατικό, τύπου II. Άρα θα ήταν λογικό να θεωρηθεί πως η συσχέτιση του Schaefer είναι σχετικά ακριβείς σε δείγματα πετρελαίου που προέρχονται από τον ίδιο τύπο κηρογόνου, ενώ παρουσιάζει κάποιες αποκλίσεις σε δείγματα διαφορετικού τύπου.

2-4.4 Υπολογισμός χρόνου ταφής Reznikov (1967)

Ο χρόνος ταφής είναι μία ακόμη βασική παράμετρος ωριμότητας του πετρελαίου . Οι ερευνητές Reznikov (Reznikov, 1967) και Young (Young, 1977) προσπάθησαν, ο καθένας με το δικό του τρόπο, να συσχετίσουν τον χρόνο ταφής με ισομερή του ελαφρού κλάσματος του πετρελαίου. Ο Reznikov στηριζόμενος στην παλαιότερη θεώρηση δημιουργίας των ελαφρών υδρογονανθράκων πρότεινε την αντίδραση σχηματισμού των ελαφρών Υ/Α:

κυκλοαλκάνια \rightarrow αλκάνια + αρωματικοί Y/A(1)

Στην ουσία η αντίδραση αυτή σημαίνει πως τα κυκλοαλκάνια είναι θερμικά ασταθή και κατά την διάρκεια της καταγένεσης υπόκεινται σε διάσπαση του δακτυλίου και μετατροπή τους σε αλκάνια όπως υποστήριξε αργότερα και ο Thompson (1982) με την διαφορά ότι ο Reznikov εφάρμοσε την διατήρηση της μάζας (mass balance) στην εξίσωση θεωρώντας ότι όσο προχωρά η καταγένεση ένα μέρος των κυκλοαλκανίων που δεν διασπώνται μετατρέπονται σε αρωματικούς Y/A. Για παράδειγμα η εξίσωση (1) για ισομερή ενός συγκεκριμένου αριθμού ανθράκων θα γινόταν:

$$4N = 3\Pi + A(2)$$

Όπου:

Ν = Ναφθενικά ισομερή (κυκλοαλκάνια)

Π = Παραφινικά ισομερή (κανονικά αλκάνια και ισοαλκάνια) Α = Αρωματικά ισομερή

Ο Reznikov αποσκοπώντας στον υπολογισμό του χρόνου ταφής υπέθεσε ότι η σταθερά δράσης της μάζας (mass action constant) της εξίσωσης (2) K = [ΑΠ³ / Ν⁴] είναι γραμμική συνάρτηση του γινομένου του χρόνου t και της θερμοκρασίας T, δηλαδή K = a(tT) + b. Χρησιμοποιώντας 10 δείγματα πετρελαίων γνωστής ηλικίας, τα οποία δεν έχουν μετασχηματιστεί από δευτερογενής διεργασίες, κατάφερε να συσχετίσει τον χρόνο και την θερμοκρασία ταφής με την αναλογία των ελαφρών ισομερών όπως φαίνεται στην εικόνα 2-31.

Η μαθηματική σχέση που εκφράζει τον παραπάνω συσχετισμό είναι:

Όπου:

t = χρόνος σε εκατομμύρια χρόνια Τ = θερμοκρασία σε ⁰C / 100

Εικόνα 2-31 Συσχέτιση του χρόνου ταφής και της θερμοκρασίας ταφής με την σύσταση του ελαφρού κλάσματος (Mango 1997).

Ενότητα 2-5 Δευτερογενείς διεργασίες

Οι συσχετισμοί των ελαφρών ισομερών που αναφέρθηκαν παραπάνω και σχετίζονται με τα γενετικά χαρακτηριστικά των πετρελαίων έχουν αναπτυχθεί χρησιμοποιώντας πρωτογενή δείγματα πετρελαίων και εκχυλισμάτων μητρικών πετρωμάτων. Με τον όρο πρωτογενή εννοούνται τα πετρέλαια αυτά που μετά την δημιουργία τους δεν έχουν υποστεί δευτερογενείς διεργασίες αλλοίωσης της σύστασής τους. Οι δευτερογενείς αυτές διεργασίες μπορεί να είναι η έκπλυση του πετρελαίου από υπόγεια νερά, η κλασματοποίηση μέσω επιλεκτικής εξάτμισης στον υπόγειο ταμιευτήρα, η βιοαποδόμηση του πετρελαίου από μικροοργανισμούς και η ατμοσφαιρική εξάτμιση κατά την δειγματοληψία και τους άλλους χειρισμούς των δειγμάτων στην διάρκεια των πειραματικών μετρήσεων. Οι παραπάνω διεργασίες είναι ικανές να αλλοιώσουν την σύσταση των ελαφρών ισομερών και να επηρεάσουν τα αποτελέσματα των τεχνικών συσχετισμού και γεωχημικού χαρακτηρισμού, άλλα σε μικρότερο και άλλα σε μεγαλύτερο βαθμό. Παρακάτω θα εξεταστεί ο τρόπος με τον ποιο οι διεργασίες αυτές αλλοιώνουν την σύσταση του πετρελαίου και τι αντίκτυπο έχουν στην δυνατότητα γεωχημικού χαρακτηρισμού του.

2-5.1 Ατμοσφαιρική εξάτμιση των πετρελαίων

Η διεργασία της ατμοσφαιρικής εξάτμισης αλλοιώνει το καθένα από τα συστατικά του ελαφρού κλάσματος του πετρελαίου σε διαφορετικό βαθμό. Η ικανότητα του κάθε συστατικού να περάσει στην αέρια φάση εξαρτάται από την πτητικότητά του (fugacity), η οποία εξαρτάται από το μοριακό βάρος, την δομή του συστατικού, τη κατηγορία ενώσεων που ανήκει και τέλος την σύσταση του διαλύματος στο οποίο βρίσκεται (Thompson 1988). Την μεγαλύτερη βαρύτητα στα αέρια συστατικά έχει το μοριακό βάρος όμως η επίδρασή του φθίνει στα συστατικά του κλάσματος C5-C12. Έτσι στα συστατικά αυτού του κλάσματος όπου υπάρχουν πολλά ισομερή, οι κατηγορίες Υ/Α παίζουν σημαντικό ρόλο. Οι αρωματικοί Υ/Α έχουν την μικρότερη πτητικότητα καθώς έχουν δομή δίπολου και ασκούν ελκτικές δυνάμεις μεταξύ τους στην υγρή φάση. Ακολουθούν τα ναφθένια τα οποία επίσης παρουσιάζουν μειωμένη πτητικότητα αλλά μεγαλύτερη από τα αρωματικά. Ακόμα μεγαλύτερη πτητικότητα παρουσιάζουν οι κανονικοί Υ/Α ενώ την μεγαλύτερη από όλες τις ομάδες επιδεικνύουν τα ισοαλκάνια. Τέλος θα πρέπει να επισημανθεί πως η πτητικότητα ενός συστατικού επηρεάζεται και από την σύσταση του πετρελαίου και την αλληλεπίδραση με άλλα διαλυμένα συστατικά. Έτσι έχει δειχθεί πειραματικά ότι σε ορισμένα πετρέλαια το ποσοστό εξάτμισης των συστατικών δεν ακολουθεί πάντα την ίδια σειρά με την κατάταξη σύμφωνα με τα σημεία βρασμού των συστατικών μεμονωμένα (Capina-Morales N.K., 2003). Στον πίνακα 2-3 που ακολουθεί παρουσιάζονται τα ποσοστά εξάτμισης των ισομερών του επτανίου δύο διαφορετικών πετρελαίων και για τέσσερις διαφορετικούς χρόνους εξάτμισης, πέντε, δέκα, δεκαπέντε και είκοσι ώρες αντίστοιχα. Για παράδειγμα είναι εμφανές πως το 2-μεθυλεξάνιο και το 3-μεθυλεξάνιο αλλά και άλλα συστατικά τα ποσοστά εξάτμισης δεν ακολουθούν την ίδια σειρά με τα σημεία βρασμού τους:

Compound	Boiling point (°C)	38° API			54°API				
		$\%E_{5h}$	$\%E_{10h}$	$\%E_{15h}$	$\%E_{\rm 20h}$	%E _{5h}	$%E_{10h}$	$\%E_{15h}$	$\%E_{20h}$
22DMP	79.2	42.06709	67.53419	100	100	23.1257	38.13188	65.32643	77.51697
24DMP	80.4	37.96403	63.30074	79.01743	100	20.255	35.17757	61.23868	74.71641
223TMB	80.8	33.03684	100	100	100	16.30685	38.18509	100	100
33DMP	86	26.42201	45.1968	100	100	12.76752	24.36137	46.103	57.2817
11DMCP	87.5	20.00467	35.13296	50.37545	100	10.68042	20.10236	38.77007	50.35651
23DMP	89.7	16.14523	31.43465	44.79697	50.89581	7.367704	14.46917	28.73275	39.78401
2MH	90	16.22366	32.79775	47.53612	53.39424	6.705239	12.49461	25.45253	35.59556
c13DMCP	90.8	13.07315	30.11213	40.19899	44.28502	7.343954	14.13382	27.56349	39.42438
t13DMCP	91.7	16.07523	25.16431	39.04102	43.91523	6.24963	12.30319	23.73136	34.28375
t12DMCP	91.9	9.47956	21.11224	37.32606	42.71634	5.497962	10.83646	20.85741	31.62854
3MH	92	11.83456	24.937	37.94731	44.0634	4.682923	8.917462	18.92634	27.1768
3EP	93.5	15.6012	24.41113	34.87165	36.91807	2.773426	5.190199	11.01812	17.92063
nC7	98.5	-3.51135	-4.06047	-2.09086	-0.71904	-2.92009	-5.7882	-11.1426	-15.0565
MCH	100.9	-6.60383	-13.6943	-19.3286	-18.7262	-2.95361	-5.29175	-10.2506	-14.3618
ECP	103.5	-12.1824	-26.6827	-33.8079	-36.2507	-6.01793	-11.1677	-23.5292	-34.5734
TOL	110.6	-19.8325	-43.9976	-74.8981	-94.356	-5.74694	-10.1272	-22.3977	-33.1778

Πίνακας 2-3 Ποσοστά εξάτμισης (%Ε) των συστατικών δύο διαφορετικών πετρελαίων σε σχέση με τον χρόνο (5 εώς 20 ώρες) (Canipa-Morales 2003).

Το 2002 ο George ανέπτυξε μια νέα τεχνική η οποία με τη χρήση του ελαφρού κλάσματος του πετρελαίου, ελέγχει αν τα δείγματα έχουν υποστεί εξάτμιση. Σύμφωνα με αυτή αθροίζονται όλα τα ισομερή ανοιχτής αλυσίδας τα οποία έχουν κάποιο συγκεκριμένο αριθμό ανθράκων εξαιρώντας όλα τα ισομερή κλειστής αλυσίδας, αρωματικά και ναφθενικά. Έτσι για τα ισομερή με 7 άτομα άνθρακα, αθροίζονται όλα τα ισομερή επτανίου εκτός του αρωματικού τολουολίου και του ναφθενικού μεθυλκυκλοεξανίου. Η διαδικασία αυτή επαναλαμβάνεται για τα ισομερή τριών διαδοχικών ατόμων άνθρακα του ελαφρού κλάσματος. Για παράδειγμα είναι δυνατό να υπολογιστούν τα αθροίσματα των ισομερών ανοιχτής αλυσίδας πεντανίου, εξανίου και επτανίου (C6:C7:C8). Στο άθροισμα αυτό δεν περιλαμβάνονται τα αρωματικά ή τα ναφθενικά ισομερή γιατί όπως αναφέρθηκε και προηγουμένως έχουν μεγάλες διαφορές πτητικότητας που υπερβαίνουν τον αριθμό άνθρακα και επίσης μπορούν να εισάγουν ανωμαλίες στο άθροισμα που οφείλονται σε άλλες δευτερογενείς διεργασίες όπως στην έκπλυση από υπόγεια νερά. Κατόπιν τα τρία αυτά αθροίσματα κανονικοποιούνται ως ποσοστά επί τις εκατό μεταξύ τους και προβάλλονται σε ένα τριγωνικό διάγραμμα όπου οι τρεις κορυφές αντιστοιχούν σε ποσοστό 100% ενός αριθμού άνθρακα. Ένα παράδειγμα τέτοιου διαγράμματος αποτελεί η εικόνα 2-32.

Εικόνα 2-32 Τριγωνικό διάγραμμα των αθροισμάτων των ισοαλκανίων τριών διαδοχικών αριθμών άνθρακα (Σ C₇ - Σ C₈ - Σ C₉) (George 2002).

Αν υπάρχουν κάποια δείγματα που έχουν υποστεί ατμοσφαιρική εξάτμιση μεταξύ των δειγμάτων, λόγω της διαφοράς πτητικότητας μεταξύ των τριών αριθμών ανθράκων θα εμφανίζουν μεγάλη μείωση ποσοστού στο μικρότερο αριθμό άνθρακα, σταθερό ποσοστό η μικρή μείωση στο μεσαίο αριθμό άνθρακα και μεγάλη αύξηση στο μεγάλο αριθμό άνθρακα. Έτσι σε περίπτωση εξάτμισης εμφανίζεται μία τάση με τα δείγματα που έχουν υποστεί μεγαλύτερη εξάτμιση να πλησιάζουν την κορυφή μεγάλο αριθμό άνθρακα με μεγάλη πτώση του μικρού αριθμού άνθρακα και μικρή πτώση του μεσαίου όπως φαίνεται στο παραπάνω διάγραμμα.

Με την επανάληψη της παραπάνω τεχνικής και τη δημιουργία ενός δεύτερου διαγράμματος με διαφορετικό αριθμό ατόμων άνθρακα, μπορεί να επιβεβαιωθεί η εξάτμιση και να φανεί καλύτερα το εύρος της. Έτσι για παράδειγμα αν υπάρχει μικρή εξάτμιση μπορεί να φανεί σε ένα διάγραμμα C5:C6:C7 μιας και τα πεντάνια είναι εξαιρετικά πτητικά, ενώ ένα διάγραμμα C6:C7:C8 θα υποδείξει τα δείγματα με προχωρημένη εξάτμιση σε ισομερή μεγαλύτερου αριθμού άνθρακα.

2-5.2 Έκπλυση του πετρελαίου από υπόγεια νερά

Μία άλλη δευτερογενής διεργασία ικανή να αλλοιώσει τη σύσταση του πετρελαίου και να επηρεάσει την αξιοπιστία των αποτελεσμάτων του γεωχημικού χαρακτηρισμού είναι η έκπλυση του πετρελαίου από υπόγεια νερά που μπορεί να λάβει μέρος κατά την μετανάστευση του από το μητρικό πέτρωμα προς τον ταμιευτήρα αλλά και κατά την διάρκεια της παραμονής του εντός του ταμιευτήρα αν υπάρχει επαφή με υπόγεια νερά. Η έκπλυση επηρεάζει σημαντικά τη σύσταση του ελαφρού κλάσματος του πετρελαίου διότι η διαλυτότητα του κάθε συστατικού μεμονωμένα στο νερό διαφέρει. Όμως όπως έδειξε ο Lafargue (1996) στην πραγματικότητα υπεισέρχονται και άλλοι παράγοντες που μπορεί να μεταβάλουν τον βαθμό απώλειας των ελαφρών συστατικών. Ο Lafargue προσομοίωσε τις υπόγειες συνθήκες έκπλυσης χρησιμοποιώντας μία συνεχή ροή νερού με σύσταση αλάτων παρόμοια με αυτή που απαντάται στους ταμιευτήρες, σε διαφορετικές θερμοκρασίες ταμιευτήρα, και για διαφορετικού χρόνους έκθεσης. Τα αποτελέσματά του δείχνουν ότι η απώλεια των ελαφρών συστατικο η θερμοκρασία και ο χρόνος επαφής με τα υπόγεια νερά και εξαρτάται από τους παράγοντες:

- Το αριθμό ατόμων άνθρακα που έχουν στην αλυσίδα τους οι Υ/Α
- Την κατηγορία στην οποία ανήκουν (αρωματικόι, ναφθενικοί κτλ)
- Την σύσταση του πετρελαίου καθώς δημιουργεί φαινόμενα συνδιαλυτότητας

Έτσι όσον αφορά τον αριθμό άνθρακα οι απώλειες είναι μεγαλύτερες για τα συστατικά με τον μικρότερο αριθμό άνθρακα εφόσον ανήκουν στην ίδια κατηγορία Υ/Α. Για τα συστατικά με περισσότερα από 10 άτομα άνθρακα οι απώλειες είναι αμεληταίες. Μεταξύ των συστατικών με τον ίδιο αριθμό άνθρακα μετρήθηκε ότι την μεγαλύτερη απώλεια επιδείκνυαν οι αρωματικοί Υ/Α, επόμενοι ήταν οι κανονικοί και αυτοί με ανοιχτή αλυσίδα και τέλος λιγότερες απώλειες εμφάνισαν οι κυκλικοί Υ/Α. Το γεγονός ότι οι κανονικοί υδρογονάνθρακες διαλύονται περισσότερο στο νερό από τους κυκλικούς του ίδιου αριθμού άνθρακα, έρχεται σε αντίθεση με τα βιβλιογραφικά δεδομένα διαλυτότητας των Υ/Α μεμονωμένα. Το παράδοξο αυτό πιθανόν εξηγείται λόγω φαινόμενων συνδιαλυτότητας που υπάρχουν και εξαρτώνται από την σύσταση του πετρελαίου. Στην εικόνα 2-33 παρουσιάζονται τα πειραματικά αποτελέσματα έκπλυσης συστατικών του πετρελαίου:

Εικόνα 2-33 Πειραματικά αποτελέσματα έκπλυσης συστατικών του πετρελαίου (Lafargue 1996).

Με βάση τα παραπάνω δεδομένα είναι δυνατή η εφαρμογή μιας σειράς διάφορων τεχνικών που αποσκοπούν στον προσδιορισμό του αν τα δείγματα του πετρελαίου έχουν υποστεί έκπλυση από υπόγεια νερά. Ο Lafargue (Lafargue E., 1996) χρησιμοποιώντας την διαφορά διαλυτότητας μεταξύ των αρωματικών και κανονικών συστατικών πρότεινε τον υπολογισμό των λόγων βενζόλιο/κανονικό εξάνιο (BENZENE/n-C6) και τολουόλιο/κανονικό επτάνιο (TOLUENE/n-C7) και κατόπιν την προβολή αυτών σε διάγραμμα. Ο υπολογισμός αυτός μπορεί να χρησιμοποιηθεί σε μία ομάδα ομόλογων πετρελαίων για να διαπιστωθεί αν κάποια από αυτά έχουν υποστεί έκπλυση και σε ποιο βαθμό. Έτσι η τάση που δημιουργείται σε περίπτωση έκπλυσης στο διάγραμμα αυτό είναι η μείωση και των δύο λόγων με μεγαλύτερη μείωση στον λόγο BENZENE/n-C6. Όσο μεγαλύτερη έκπλυση έχουν υποστεί κάποια δείγματα τόσο εντονότερη είναι αυτή η τάση όπως φαίνεται στην εικόνα 2-34:

Εικόνα 2-34 Η μετατόπιση των πετρελαίων που έχουν υποστεί έκπλυση στο διάγραμμα του Lafargue (1996).

Ο George (George S.C., 2002) ανέπτυξε μια παρόμοια τεχνική με μοναδική διαφορά το ότι προτίμησε να χρησιμοποιήσει τη διαφορά διαλυτότητας μεταξύ των αρωματικών με τα ισοαλκάνια και τα ναφθενικά, αντί των κανονικών Υ/Α. . Έτσι πρότεινε τον υπολογισμό των λόγων 3-μεθυλοπεντάνιο/βενζόλιο (3-MP/benzene) και μεθυλοκυκλοεξάνιο/τολουόλιο (MCH/toluene). Ο George προτίμησε τα ισομερή αυτά διότι είναι λιγότερο επιδεκτικά σε μία άλλη δευτερογενή διεργασία που θα εξετασθεί παρακάτω, τη βιοαποδόμηση. Επομένως, οι λόγοι αυτοί είναι περισσότερο ευαίσθητοι στην έκλυση και λιγότερο στην βιοαποδόμηση και η τάση που επιδεικνύουν είναι περισσότερο αξιόπιστη στο ότι οφείλεται μόνο στην έκπλυση του πετρελαίου. Αφού υπολογισθούν οι λόγοι αυτοί προβάλλονται σε ένα διάγραμμα 3MP/Benzene προς MCH/Toluene. Η χρήση της τεχνικής αυτής μπορεί να γίνει μόνο μεταξύ ομόλογων πετρελαίων που έχουν την ίδια γενετική προέλευση ώστε σε περίπτωση αυτή υπάρχει αύξηση και των δύο λόγων και δημιουργείται στο διάγραμμα μια διαγώνια αυξητική τάση σαν και αυτή που εμφανίζεται στο διάγραμμα της εικόνας 2-35. Όσο μεγαλύτερος είναι ο βαθμός έκπλυσης τόσι χροφικά αυτή η αυξητική τάση:

Εικόνα 2-35 Η μετατόπιση των πετρελαίων που έχουν υποστεί έκπλυση στο διάγραμμα του George (2002).

2-5.3 Βιοαποδόμηση του πετρελαίου

Μία άλλη δευτερογενής διεργασία είναι η βιοαποδόμηση του πετρελαίου. Η βιοαποδόμηση λαμβάνει χώρα όταν τα υπόγεια νερά που μεταφέρουν μικροοργανισμούς, έρχονται σε επαφή με το πετρέλαιο. Τότε οι μικροοργανισμοί αυτοί, καταναλώνουν ως τροφή επιλεκτικά κάποια συστατικά του πετρελαίου, μετασχηματίζοντας έτσι τη σύσταση του. Όπως γίνεται κατανοητό, η έκπλυση του πετρελαίου από υπόγεια νερά συχνά συνεπάγεται και τη βιοαποδόμηση χωρίς όμως να είναι απαραίτητο καθώς υπάρχουν αρκετές περιπτώσεις ύπαρξης έκπλυσης χωρίς να υπάρχει βιοαποδόμηση. Ο George (George S.C., 2002) έκανε μία αναλυτική μελέτη πάνω στις μεταβολές που προκαλεί η βιοαποδόμηση στο ελαφρύ κλάσμα του πετρελαίου και στους παράγοντες που καθορίζουν την επιλεκτικότητα των μικροοργανισμών σε συγκεκριμένα συστατικά και κατέληξε στους τρεις παρακάτω παράγοντες:

- 1. Τον τύπο του σκελετού του Υ/Α.
- 2. Τον βαθμό αλκυλίωσης, δηλαδή τον αριθμό των διακλαδώσεων του σκελετού.
- 3. Τις θέσεις των αλκυλίων.

Σχετικά με τον τύπο του σκελετού κατέληξε στα παρακάτω συμπεράσματα. Οι κανονικοί Υ/Α και οι αρωματικοί του ελαφρού κλάσματος πάντα παρουσίαζαν την μεγαλύτερη απώλεια με την σημείωση όμως ότι το μεγαλύτερο ποσοστό της απώλειας των αρωματικών να οφείλεται στην έκπλυση λόγω της επαφής με τα υπόγεια νερά και της μεγάλης διαλυτότητας των αρωματικών στο νερό. Άρα η ευθεία αλυσίδα των κανονικών Υ/Α είναι η ευκολότερη λεία των μικροοργανισμών. Με σειρά αυξανόμενης αντίστασης στην αποδόμηση έρχεται η ομάδα ισομερών ανοιχτής αλυσίδας με ένα μόνο μεθύλιο και αμέσως μετά έρχεται η ομάδα των ναφθενίων με δακτύλιο έξι ατόμων (κυκλοεξάνια). Μοναδική εξαίρεση είναι το 3μεθυλεξάνιο (3-methylhexane, 3MH) που παρουσιάζει μεγαλύτερη αντίσταση από τα κυκλοεξάνια. Επόμενη ομάδα είναι των ναφθενίων με δακτύλιο πέντε ατόμων άνθρακα (κυκλοπεντάνια). Και τέλος ακολουθούν τα ισομερή πολλαπλών αλκυλίων όπως διμεθυλτριμεθυλ-αλκάνια με την μεγαλύτερη αντίσταση στην βιοαποδόμηση. Επίσης εξαίρεση αποτελεί στα ισομερή των επτανίων το 1,1διμεθυλοκυκλοπεντάνιο (1,1dimethylcyclopentane, 11DMCP) που αν και κυκλοπεντάνιο αποτελεί το συστατικό με την μεγαλύτερη αντίσταση από όλα τα επτάνια.

Σχετικά με τον βαθμό αλκυλίωσης ο George οδηγήθηκε στο συμπέρασμα ότι όσο περισσότερες διακλαδώσεις υπάρχουν, δηλαδή περισσότερα αλκύλια τόσο αυξάνεται και η αντίστασή των ισομερών στην βιοαποδόμηση. Το συμπέρασμα αυτό ισχύει για κάθε τύπο σκελετού ξεχωριστά. Δηλαδή ένα διμεθυλοκυκλοεξάνιο θα είναι πιο ανθεκτικό από ένα μεθυλοκυκλοεξάνιο.

Τέλος από τα συμπεράσματα που αφορούν τη θέση των αλκυλίων προκύπτει πως όσο μεγαλύτερο τμήμα μιας αλυσίδας μένει εκτεθειμένο χωρίς διακλαδώσεις τόσο πιο αδύναμο γίνεται σε πιθανή επίθεση από μικροοργανισμούς, ανεξαρτήτως απ' το εάν η αλυσίδα είναι ανοιχτή ή κυκλική. Συγκεκριμένα τα αλκύλια που βρίσκονται κοντύτερα στη μέση της αλυσίδας δίνουν μεγαλύτερη αντίσταση από αυτά που βρίσκονται στην άκρη. Ακόμη τα αλκύλια που έχουν διαδοχικές και ισομοιρασμένες θέσεις δίνουν μεγαλύτερη ανθεκτικότητα από αυτά που είναι σε θέσεις με μεγάλες αποστάσεις μεταξύ τους.

Στην εικόνα 2-36 που παρατίθεται στη συνέχεια παρουσιάζονται οι διαφορετικές αντιστάσεις των ισομερών του επτανίου στην βιοαποδόμηση. Ο υπολογισμός αυτός έγινε συγκρίνοντας πετρέλαια τις ίδιας γενετικής προέλευσης εκ των οποίων κάποια είχαν υποστεί βιοαποδόμηση ενώ κάποια άλλα όχι (George S.C., 2002).

Εικόνα 2-36 Παρουσίαση των ισομερών του επτανίου κατά σειρά αντίστασης στην βιοαποδόμηση (μεγαλύτερο ποσοστό βιοαποδόμησης → μικρότερη αντίσταση) (George 2002).

Με τη γνώση των παραπάνω και τη χρήση επιλεγμένων συστατικών του ελαφρού κλάσματος, μπορεί να προσδιοριστεί αν κάποιο πετρέλαιο μιας οικογένειας πετρελαίων έχει υποστεί βιοαποδόμηση και σε ποιο βαθμό.

Ο George (2002) χρησιμοποιώντας τις πειραματικές παρατηρήσεις του πρότεινε ένα τρόπο προσδιορισμού της βιοαποδόμησης. Γνωρίζοντας ότι τα αλκύλια κοντύτερα στο κέντρο της αλυσίδας καθιστούν πιο ανθεκτικό το συστατικό από το αντίστοιχο με τα αλκύλια στην άκρη πρότεινε τον υπολογισμό των λόγων 2μεθυλοπεντάνιο/3-μεθυλοπεντάνιο (2MP/3MP) και 2μεθυλεξάνιο/3-μεθυλεξάνιο (2MH/3MH). Ο George πρότεινε τον υπολογισμό των συγκεκριμένων λόγων διότι οι κανονικοί Y/A είναι οι πρώτοι που βιοαποδομούνται και πολλές φορές δεν ανιχνεύονται καθόλου, επομένως οι λόγοι αυτοί καθίστανται ικανοί να χρησιμοποιηθούν και σε δείγματα με προχωρημένη βιοαποδόμηση. Αφού υπολογιστούν αυτοί οι λόγοι προβάλλονται σε ένα διάγραμμα 2MP/3MP προς 2MH/3MH. Και οι δύο λόγοι μειώνονται όσο αυξάνεται η βιοαποδόμηση με αποτέλεσμα να δημιουργείται μεταξύ των δειγμάτων ομόλογων πετρελαίων μία τάση προς τα κάτω και αριστερά όπως φαίνεται στην εικόνα 2-37.

Εικόνα 2-37 Η γραφική τάση πετρελαίων που έχουν υποστεί βιοαποδόμηση (George 2002).

2-5.4 Κλασματοποίηση λόγω υπόγειας εξάτμισης

Η κλασματοποίηση του πετρελαίου λόγω υπόγειας εξάτμισης αποτελεί μια ακόμη δευτερογενή διεργασία ικανή να αλλοιώσει την αρχική σύσταση του. Η διαφυγή αυτή μπορεί να είναι απόρροια της ρηγμάτωσης του πετρώματος που φιλοξενεί το πετρέλαιο καθώς όσο προχωράει η ωρίμανση του περισσότεροι και ελαφρύτεροι Υ/Α δημιουργούνται με αποτέλεσμα η πίεση να αυξάνεται συνεχώς. Μέσα από αυτές τις μικρορηγματώσεις τα πιο ελαφρά και πτητικά συστατικά του πετρελαίου περνούν στην αέρια φάση και διαφεύγουν προς ανώτερα στρώματα μικρότερης πίεσης. Οι παράμετροι που καθορίζουν τη πτητικότητα (fugacity), δηλαδή ποια συστατικά έχουν την μεγαλύτερη τάση να διαφύγουν είναι το μοριακό βάρος, η δομή του ισομερούς, η κατηγορία ενώσεων που ανήκει (αρωματικοί, ναφθενικοί κτλ) και η σύσταση του διαλύματος στο οποίο είναι διαλυμένο (Thompson 1988). Το μοριακό βάρος έχει τον πρώτο λόγο στους αέριους Υ/Α και μέχρι τα πεντάνια ενώ στους Υ/Α της περιοχής της βενζίνης υπάρχουν περιπτώσεις Υ/Α μεγαλύτερου μοριακού βάρους με μεγαλύτερη πτητικότητα από Υ/Α μικρότερου μοριακού βάρους που ανήκουν σε άλλη κατηγορία (π.χ. αρωματικοί). Ανάμεσα στους Υ/Α του ίδιου μοριακού βάρους κατά σειρά αυξανόμενης πτητικότητας υπάρχουν οι εξής κατηγορίες: αρωματικοί, ναφθενικοί, κανονικοί και τέλος τα ισοαλκάνια με την μεγαλύτερη πτητικότητα. Οι αλλαγές που παρατηρούνται σε ένα πετρέλαιο λόγω της κλασματοποίησης από εξάτμιση όπως αυτές μελετήθηκαν από τον Thompson (Thompson, 1988) είναι:

- Η αύξηση του αριθμού άνθρακα (carbon number) του κυρίαρχου κανονικού άνθρακα όπως αυτός εμφανίζεται στο χρωματογράφημα του πετρελαίου.
- Η αύξηση της αναλογίας των αρωματικών Υ/Α προς τους κανονικούς Υ/Α λόγω της μικρότερης πτητικότητας των πρώτων.
- Η αύξηση της αναλογίας των κανονικών Υ/Α προς τους τα ισοαλκάνια.
- Η αύξηση της αναλογίας των ναφθενικών προς τους κανονικούς Υ/Α.

Με βάση τα παραπάνω μπορεί να πραγματοποιηθεί έλεγχος για πιθανή κλασματοποίηση του πετρελαίου από υπόγεια εξάτμιση μόνο με τη χρήση συστατικών του ελαφρού κλάσματος. Ο Thompson (1988) πρότεινε τον υπολογισμό των λόγων τολουόλιο προς κανονικό επτάνιο (Tol/n-C7) (δείκτης B) που ονόμασε δείκτη αρωματικότητας και κανονικό επτάνιο προς μεθυλοκυκλοεξάνιο (n-C7/MCH) (δείκτης F) που ονόμασε δείκτη κανονικότητας. Οι λόγοι αυτοί προβάλλονται σε ένα διάγραμμα nC7/MCH προς Tol/n-C7 (εικόνα 2-38). Σύμφωνα με τη θεωρία στο διάγραμμα «δείκτη κανονικότητας» προς «δείκτη αρωματικότητας» σε περίπτωση που τα δείγματα είχαν υποστεί κλασματοποίηση θα έπρεπε να παρουσίαζαν μια απότομη αύξηση του «δείκτη αρωματικότητας» με ταυτόχρονη ελαφριά μείωση του «δείκτη κανονικότητας. Ακόμη πρότεινε μια σείρα άλλων δεικτών αλλοίωσης που παρουσιάζονται στο πίνακα 2-4.

Name	Ratio	Property	Process
A	Benzene/n-hexane	Aromaticity	Fractionation, water washing, TSR
В	Toluene/n-heptane	Aromaticity	Fractionation, water washing, TSR
X	(m-Xylene + p-xylene)/n-octane	Aromaticity	Fractionation, water washing, TSR
С	<i>n</i> -hexane + <i>n</i> -heptane cyclohexane + methycyclohexane	Paraffinicity	Maturity, biodegradation
I	$\frac{2-+3-\text{methylhexane}}{1\ell 3-+1\ell 3+1\ell 2-\text{DMCPs}}$	Paraffinicity	Maturity, source, biodegradation
F	n-Heptane/methylcyclohexane	Paraffinicity	Maturity, biodegradation
Н	$\frac{100 \times n\text{-heptane}}{(\Sigma \text{ cyclohexane} + C_7 \text{ HCs})}$	Paraffinicity	Maturity, source, biodegradation
S	n-Hexane/2,2-dimethylbutane	Paraffin branching	Maturity, source, biodegradation
R	n-Heptane/2-methylhexane	Paraffin branching	Maturity, source, biodegradation
U	Cyclohexane/methylcyclohexane	Naphthene branching	Maturity, source

Πίνακας 2-4 Οι δείκτες του Thompson που επηρεάζονται από τις διάφορες διεργασίες αλλοίωσης.

Στο διάγραμμα του Thompson που ακολουθεί (εικόνα 2-39) συνοψίζονται οι μεταβολές στους ίδιους δείκτες από όλες τις διεργασίες που μπορούν να εκδηλωθούν σε μια οικογένεια πετρελαίων. Η ωρίμανση του πετρελαίου εκφράζεται με την ταυτόχρονη αύξηση και των δύο λόγων. Η διεργασία της έκπλυσης από υπόγεια νερά καθώς διαλύει επιλεκτικά το τολουόλιο, εμφανίζει μείωση του λόγου toluene/nC7 με ταυτόχρονη ελάχιστη μείωση του λόγου nC7/MCH διότι τα μικρόβια απομακρύνουν επιλεκτικά το nC7. Καθώς η έκπλυση συνοδεύεται πάντα (και πιθανώς προηγείται) από μικροβιακή αλλοίωση, η βιοαποδόμηση οδηγεί τα κανονικά πετρέλαια στην αρχική τους προέλευση. Η τάση που δημιουργείται όταν κάποια δείγματα πετρελαίου που ανήκουν στην ίδια οικογένεια, έχουν υποστεί κλασματοποίηση από υπόγεια εξάτμιση είναι μεγάλη αύξηση του δείκτη αρωματικότητας (toluene/nC7) με ταυτόχρονη ελαφριά μείωση του δείκτη κανονικότητας (nC7/MCH).

Εικόνα 2-38 Συγκεντρωτικό διάγραμμα δευτερογενών διεργασιών (Thompson).

Κεφάλαιο 3. Μονο-μεταβλητή (Univariate) ανάλυση

δεδομένων

Ενότητα 3-1. Οπτικός έλεγχος των δειγμάτων

Αποσκοπώντας στην κατανόηση του πετρελαϊκού συστήματος των Devonian Oils, διερευνήθηκε η δυνατότητα ομαδοποίησης των δειγμάτων με βάση τη κοινή προέλευση ή/και τις κοινές διεργασίες, χρησιμοποιώντας αποκλειστικά το ελαφρύ κλάσμα (<210 °C). Η ανάλυση του ελαφρού κλάσματος 146 Devonian πετρελαίων που προέρχονται από την ιζηματογενή λεκάνη του δυτικού Καναδά ,οδήγησε στην ταυτοποίηση 35 συστατικών. Τα εμβαδά των χρωματογραφικών κορυφών των συστατικών παρατίθενται σε πίνακα στο παράρτημα 1. Όμως καθώς ο αριθμός των δειγμάτων αλλά και των συστατικών τους, είναι μεγάλος, έγινε μια προσπάθεια οπτικού ελέγχου με σκοπό την περαιτέρω μελέτη τους για την κατάταξη τους σε οικογένειες με κοινά χαρακτηριστικά. Ακόμη εξετάστηκε και η πιθανότητα αλλοίωσης των δειγμάτων από την επίδραση δευτερογενών διεργασιών. Με τη χρήση του λογισμικού Matlab έγινε κανονικοποίηση των δειγμάτων ως προς την συνολική τους έκταση και στη συνέχεια απεικόνιση των ραβδοειδών διαγραμμάτων τους ως προς τις ενώσεις που εμπεριέχουν καθώς και ιστογράμματα που παρουσιάζουν τη συγκέντρωση της κάθε ένωσης στο σύνολο των δειγμάτων. Τα διαγράμματα αυτά, παρατίθενται στο παράρτημα 1, και οδήγησαν στην απόρριψη του δείγματος L01654a διότι δεν εμπεριέχει αρκετά συστατικά, όπως τολουόλιο (TOL), ισο-πεντάνιο (iC5), κυκλοπεντάνιο (CYC5) κ.ά., πράγμα που δεν το καθιστά ικανό να προσφέρει τις απαραίτητες πληροφορίες για την παρούσα μελέτη. Τέλος, να σημειωθεί πως έγινε απόρριψη των δειγμάτων L02082, L02084 και L01655, διότι δεν διέθεταν τις απαραίτητες πληροφορίες για την τοποθεσία προέλευσης τους και των L0794, L0858, L01277, L01354, L02106, L02112, L02223, L02254, L02257, L01598 και L02290, καθότι προέρχονται από εννέα διαφορετικούς σχηματισμούς, οι οποίοι δεν παρουσιάζουν καμία διαφοροποίηση σε σχέση με τους 5 σχηματισμούς (Nisku, Leduc, Keg River, Arcs, Leduc-Nisku) που κυριαρχούν στο υπό μελέτη σύνολο δεδομένων.

Επομένως, η μελέτη της παρούσας εργασίας θα στηριχθεί σε 132 δείγματα με 35 συστατικά το καθένα.

Ενότητα 3-2. Ποιοτικός έλεγχος των δειγμάτων

Ο ποιοτικός έλεγχος των δειγμάτων περιλαμβάνει τον έλεγχο πιθανής αλλοίωσης της σύστασης των δειγμάτων από διαφορική εξάτμιση, η οποία είναι δυνατόν να συμβεί σε κάποιο στάδιο μεταξύ της δειγματοληψίας και της ολοκλήρωσης της πειραματικής διαδικασίας. Για τον έλεγχο αυτό έγινε χρήση της τεχνικής που αναπτύχθηκε από τον George (George S.C., 2002). Σύμφωνα με αυτή αθροίστηκαν όλα τα ισομερή ανοιχτής αλυσίδας τριών διαδοχικών ατόμων άνθρακα (ΣC5, ΣC6 και ΣC7) εξαιρώντας όλα τα ισομερή κλειστής αλυσίδας, αρωματικά και ναφθενικά. Κατόπιν τα τρία αυτά αθροίσματα κανονικοποιήθηκαν ως ποσοστά επί τις εκατό και προβλήθηκαν σε ένα τριγωνικό διάγραμμα όπου οι τρείς κορυφές αντιστοιχούν σε ποσοστό 100% ενός αριθμού άνθρακα. Σε περίπτωση που τα δείγματα είχαν υποστεί ατμοσφαιρική εξάτμιση, θα έπρεπε να παρουσιάζουν γραφική μετατόπιση η οποία θα έδειχνε δραματική μείωση του ψευδοσυστατικού C5 και C6 και απότομη αύξηση του ψευδοσυστατικού C7. Στην εικόνα 3-1 δεν παρουσιάζεται τέτοιο φαινόμενο, επομένως ο έλεγχος καταλήγει στο συμπέρασμα πως τα δείγματα της παρούσας έρευνας δεν έχουν υποστεί διαφορική εξάτμιση.

Εικόνα 3-1 Τριγωνικό διάγραμμα (George 2002).

Ενότητα 3-3.Ποιοτικός έλεγχος των δειγμάτων με βάση γεωχημικούς δείκτες.

3-3.1 Δείκτες παραφινικότητας και αρωματικότητας

Σύμφωνα με τη θεωρία δημιουργίας των ελαφρών υδρογονανθράκων από θερμική διάσπαση, το ελαφρύ κλάσμα όπως και οι υπόλοιποι υδρογονάνθρακες, είναι διασπασμένα τμήματα βαρύτερων υδρογονανθράκων. Έτσι υποστηρίχθηκε ότι τα κυκλοπεντάνια και κυκλοεξάνια του κλάσματος μεταξύ C5 και C9, που αποτελούν το 5 με 10% όλων των υδρογονανθράκων στο πετρέλαιο, προέρχονται από την διάσπαση βαρύτερων πολυκυκλικών υδρογονανθράκων όπως των στερανίων και τριτερπανίων (Thompson 1979).

Το 1983 ο Thompson υποστήριξε πως οι πολυκυκλικοί υδρογονάνθρακες είναι σχετικά πιο ασταθείς θερμικά και διασπώντα νωρίτερα κατά το στάδιο της καταγένεσης και σε μικρότερα βάθη, από τους αντίστοιχους υδρογονάνθρακες ανοιχτής αλυσίδας. Απόρροια των παραπάνω είναι οι μεγαλύτερες συγκεντρώσεις κυκλοπεντανιών και κυκλοεξανίων σε μικρότερα βάθη. Στην συνέχεια σε μεγαλύτερα βάθη και θερμοκρασίες ο δακτύλιος των κυκλοαλκανίων διαρρηγνύεται θερμικά και παράγονται ελαφροί υδρογονάνθρακες ανοιχτής αλυσίδας. Για τον λόγο αυτό πρότεινε ο λόγος κανονικό επτάνιο/μεθυλοκυκλοεξάνιο (n-heptane/methylcyclohexane - n-C7/MCH), τον οποίο ονόμασε "παραφινικότητα" (paraffinicity) να χρησιμοποιείται ως ένας δείκτης ωριμότητας καθώς αυτός αυξάνεται όσο αυξάνεται το βάθος και η θερμοκρασία ταφής. Παρατήρησε όμως πως ορισμένα πετρελαϊκά δείγματα που ήταν αποδεδειγμένα μεγάλης ωριμότητας, ο δείκτης παραφινικότητας τα υποδείκνυε ως ανώριμα ενώ ταυτόχρονα παρουσίαζαν εξαιρετικά υψηλές τιμές σε έναν άλλο λόγο, τον λόγο τολουόλιο/κανοικό επτάνιο (toluene/n-heptane - Tol/n-C7).Τον λόγο αυτό

αυτά είχαν υποστεί επιλεκτική κλασματοποίηση (evaporative fractionation) που προκλήθηκε από την διαφυγή πτητικών συστατικών του πετρελαίου μέσω υπόγειων ρωγμών. Έτσι λοιπόν ο λόγος n-C7/MCH μειώθηκε στο πετρέλαιο καθώς το κανονικό επτάνιο είναι πιο πτητικό από το μεθυλκυκλοεξάνιο και διέφυγε σε μεγαλύτερο βαθμό. Αντίστοιχα το τολουόλιο είναι λιγότερο πτητικό από το κανονικό επτάνιο και εμπλουτίστηκε στο υπολειμματικό πετρέλαιο, οπότε ο λόγος Tol/n-C7 αυξήθηκε. Με βάση τα παραπάνω προτάθηκε ένας εμπειρικός τρόπος προσδιορισμού των κλασματοποιημένων πετρελαίων από εξάτμιση σύμφωνα με τον οποίο τα δείγματα που επιδεικνύουν λόγο Tol/n-C7>1 και n-C7/MCH<0.5 και χαρακτηρίζονται κλασματοποιημένα.

Παρακάτω παρατίθενται τα διαγράμματα των δεικτών παραφινικότητας και αρωματικότητας που δημιουργήθηκαν με τη χρήση της εφαρμογής Matlab.

Δείκτης Παραφινικότητας

Εικόνα 3-2 Δείκτης παραφινικότητας δειγμάτων και αναπαράσταση του κατά αύξουσα σειρά τιμών.

Από τα διαγράμματα της εικόνας 3-2 διακρίνονται 3 ομάδες δειγμάτων. Η πρώτη ομάδα που ευκόλως διακρίνεται αποτελείται από τα δείγματα που έχουν τιμές δείκτη παραφινικότητας μικρότερες του 0.5, επομένως μπορεί να χαρακτηριστεί ως ομάδα κλασματοποιημένων δειγμάτων. Η δεύτερη ομάδα αποτελείται από τα δείγματα με τιμές από 0,5 έως 2 και η τρίτη από αυτά που έχουν τιμές μεγαλύτερες του 2. Από την παραπάνω διάκριση συμπεραίνεται πως η δεύτερη και η τρίτη ομάδα δειγμάτων δεν παρουσιάζουν καμία ένδειξη κλασματοποίησης, καθώς δεν πληρούν προϋπόθεση χαρακτηρισμού κλασματοποιημένων δειγμάτων (n-C7/MCH<0.5).

Εικόνα 3-3 Ο δείκτης παραφινικότητας ως προς τις τοποθεσίες προέλευσης των δειγμάτων.

Εικόνα 3-4 Ο δείκτης παραφινικότητας στους σχηματισμούς Nisku,Leduc,Keg River,Arcs,Leduc/Nisku.

Στο διάγραμμα της εικόνας 3-3 απεικονίζεται ο δείκτης παραφινικότητας όλων των δειγμάτων ως προς τις συντεταγμένες προέλευσης τους, προκειμένου να εξεταστεί αν υπάρχει κάποια γεωγραφική διαφοροποίηση, ικανή να οδηγήσει στην ομαδοποίηση των δειγμάτων. Καθώς όμως στο διάγραμμα δεν παρατηρείται κάτι τέτοιο, η ομαδοποίηση των δειγμάτων με τη χρήση της συγκεκριμένης τεχνικής καθίσταται ανέφικτη.

Η εικόνα 3-4 παρουσιάζει τις τιμές που παίρνει ο δείκτης παραφινικότητας στους σχηματισμούς Nisku, Leduc, Keg River, Arcs και Leduc/Nisku. Στο διάγραμμα του σχηματισμού Nisku παρατηρείται πως ο δείκτης παραφινικότητας παίρνει τιμές αρκετά μικρότερες του 1. Επίσης, εμφανίζεται ένα δείγμα που έχει τιμή αρκετά μεγαλύτερη του 10, αυτό πιθανώς οφείλεται σε κάποια ακραία τιμή (outlier). Τα δείγματα των σχηματισμών

Leduc, Keg River και Arcs παρουσιάζουν τιμές δείκτη παραφινικότητας που κυμαίνονται από 0,5 έως 2, ενώ στο σχηματισμό Leduc/Nisku οι τιμές του είναι αρκετά μεγαλύτερες του 50. Από τα παραπάνω συμπεραίνεται πως μόνο τα δείγματα του σχηματισμού Nisku ενδέχεται να έχουν κλασματοποιηθεί.

Δείκτης Αρωματικότητας

Εικόνα 3-5 Δείκτης αρωματικότητας δειγμάτων και αναπαράσταση του κατά αύξουσα σειρά τιμών.

Από τα διαγράμματα αρωματικότητας της εικόνας 3-5 διακρίνονται 3 ομάδες δειγμάτων Η πρώτη ομάδα που ευκόλως διακρίνεται αποτελείται από τα δείγματα που έχουν τιμές δείκτη αρωματικότητας μικρότερο του 0,1.Η δεύτερη ομάδα αποτελείται από τα δείγματα με τιμές από 0,1 έως 0,2 και η τρίτη από αυτά που έχουν τιμές μεγαλύτερες του 0,3. Από την παραπάνω διάκριση δεν προκύπτουν ενδείξεις κλασματοποίησης, διότι δεν πληρείται η προϋπόθεση χαρακτηρισμού τους ως κλασματοποιημένα (Tol/n-C7>1).

Εικόνα 3-6 Ο δείκτης αρωματικότητας ως προς τις τοποθεσίες προέλευσης των δειγμάτων.

Στο διάγραμμα της εικόνας 3-6 απεικονίζεται ο δείκτης αρωματικότητας όλων των δειγμάτων ως προς τις συντεταγμένες προέλευσης τους, προκειμένου να εξεταστεί αν υπάρχει κάποια γεωγραφική διαφοροποίηση, ικανή να οδηγήσει στην ομαδοποίηση των δειγμάτων. Καθώς όμως στο διάγραμμα δεν παρατηρείται γεωγραφική διαφοροποίηση των δειγμάτων, η ομαδοποίηση με τους, με τη χρήση της συγκεκριμένης τεχνικής καθίσταται ανέφικτη.

Εικόνα 3-7 Ο αρωματικότητας στους σχηματισμούς Nisku,Leduc,Keg River,Arcs,Leduc/Nisku.

Στην εικόνα 3-7 παρουσιάζονται οι τιμές που παίρνει ο δείκτης παραφινικότητας στους σχηματισμούς Nisku, Leduc, Keg River, Arcs και Leduc/Nisku. Από την μελέτη των παραπάνω διαγραμμάτων δεν προκύπτουν ενδείξεις κλασματοποίησης, διότι οι τιμές του δείκτη αρωματικότητας είναι μικρότερες του 1 σε όλους τους σχηματισμούς.

3-3.2 Συσχετισμός Δεικτών Παραφινικότητας και Αρωματικότητας και Έλεγχος

ενδείξεων κλασματοποίησης.

Σύμφωνα με την τεχνική του Thompson (1988) μπορεί να πραγματοποιηθεί έλεγχος πιθανής κλασματοποίησης των δειγμάτων από υπόγεια εξάτμιση, με την αναπαράσταση των δεικτών παραφινικότητας και αρωματικότητας σε ένα διάγραμμα nC7/MCYC6 ως προς Tol/nC7. Σύμφωνα με τη θεωρία στο διάγραμμα «δείκτη κανονικότητας» προς «δείκτη αρωματικότητας» του Thompson σε περίπτωση που τα δείγματα είχαν υποστεί κλασματοποίηση θα έπρεπε να παρουσίαζαν μια απότομη αύξηση του «δείκτη αρωματικότητας» με ταυτόχρονη ελαφριά μείωση του «δείκτη κανονικότητας» (παράδειγμα στην εικόνα 2-38, κεφάλαιο 2). Στο διάγραμμα της εικόνας 3-8 παρατηρείτε ότι τα πετρέλαια

όλων των σχηματισμών έχουν τάση αύξησης τόσο του «δείκτη αρωματικότητας όσο και του «δείκτη κανονικότητας». Σύμφωνα με τον Thompson (1988) αυτό είναι ένδειξη ωρίμανσης και όχι κλασματοποίησης.

Εικόνα 3-8 Διάγραμμα κλασματοποίησης (Thompson 1988).

Ενότητα 3-4. Έλεγχος επίδρασης δευτερογενών διεργασιών.

3-4.1 Έλεγχος ενδείξεων υπόγειας έκπλυσης

Για τον έλεγχο πιθανής αλλοίωσης των δειγμάτων από υπόγεια έκπλυση χρησιμοποιήθηκαν οι τεχνικές του George (George S.C., 2002) και του Lafargue (Lafargue E., 1996).

Εικόνα 3-9 Διάγραμμα έκπλυσης (τεχνική Lafargue 1996).

Στο διάγραμμα του Lafargue (εικόνα 3-9) είναι εμφανής η μεγάλη διασπορά των δειγμάτων με γραφική μετατόπιση που αντιστοιχεί στην μετατόπιση που αναμένεται να παρουσιάσουν τα δείγματα που έχουν υποστεί υπόγεια έκπλυση, δηλαδή μείωση και των δύο παραμέτρων του διαγράμματος. Και στο διάγραμμα του George (εικόνα 3-10) παρατηρείται ύπαρξη μεγάλης διασποράς και οι δύο παράμετροι αυξάνονται στα δείγματα όλων των σχηματισμών που έχουν υποστεί έκπλυση ακολουθώντας την αναμενόμενη γραφική μετατόπιση. Αυτή είναι ισχυρή ένδειξη ότι κάποια από τα δείγματα πιθανόν να έχουν υποστεί έκπλυση.

Εικόνα 3-10 Διάγραμμα έκπλυσης (George 2002).

3-4.2 Έλεγχος ενδείξεων βιοαποδόμησης

Για τον έλεγχο πιθανής αλλοίωσης των δειγμάτων από βιοαποδόμηση έγινε χρήση των τεχνικών εντοπισμού βιοαποδόμησης του George (George S.C., 2002) και του Thompson (Thompson, 1983). Στην περίπτωση ύπαρξης δειγμάτων που έχουν υποστεί έκπλυση από υπόγεια νερά είναι γνωστό από την θεωρία πως είναι πολύ πιθανό αλλά όχι και απαραίτητα να έχουν δεχτεί επίθεση από μικροοργανισμούς που τα βιοαποδομούν.

Στο διάγραμμα ελέγχου για βιοαποδόμηση του George (εικόνα 3-11) αν τα δείγματα έχουν υποστεί βιοαποδόμηση πρέπει να εμφανίζουν μια γραφική διασπορά και μετατόπιση κατά την φορά του βέλους, δηλαδή να παρουσιάζουν αύξηση και των δύο παραμέτρων. Στη συγκεκριμένη περίπτωση παρουσιάζεται μια γραφική διασπορά, η οποία όμως δεν ακολουθεί τις παραπάνω προδιαγραφές και επομένως καταλήγει στο συμπέρασμα πως ο έλεγχος για ύπαρξη βιαποδόμησης είναι αρνητικός.

Εικόνα 3-11 Διάγραμμα ελέγχου βιοαποδόμησης (George 2002)

3-4.3 Υλοποίηση των δεικτών του Thompson με τη χρήση του Matlab.

Με τη χρήση του λογισμικού Matlab υπολογίστηκαν οι δείκτες αλλοίωσης του Thompson, που αναφέρονται στον πίνακα 2-4, και αναπαραστάθηκαν σε δυσδιάστατα και τρισδιάστατα διαγράμματα ως προς τις συντεταγμένες των σημείων συλλογής των δειγμάτων. Τα διαγράμματα που προέκυψαν είναι τα εξής:

Δείκτες Α και Β

Ο δείκτης A (Benzene/n-hexane) όπως και ο B αναφέρονται στον αρωματικό χαρακτήρα των πετρελαίων και μπορούν να χρησιμοποιηθούν για τον έλεγχο αλλοίωσης των δειγμάτων από τις δευτερογενείς διεργασίες της κλασματοποίησης από υπόγεια εξάτμιση και της έκπλυσης από υπόγεια νερά.

Thompson A parameter vs sample location

Δείκτης B (Toluene/n-heptane)

Οι Δείκτες C και F

Οι δείκτες C [(n-hexane+n-heptane)/cyclohexane+methycyclohexane)] και F (n-Heptane/methylcyclohexane) αναφέρονται στην παραφινικότητα των πετρελαίων. Μπορούν να χρησιμοποιηθούν για τον προσδιορισμό της ωριμότητας των δειγμάτων, καθώς και για τον έλεγχο αλλοίωσης τους από τη δευτερογενή διεργασία της βιοαποδόμησης.

Δείκτης F (n-Heptane/methylcyclohexane)

Thompson F parameter vs sample location

Οι Δείκτες Η και Ι

18

Οι δείκτες Η (100*n-heptane)/(Σcyclohexane+C7HCs) και Ι [(2-+3-methylhexane)/(1c3-+1t3-+ 1t2-DMCP)] αναφέρονται στην παραφινικότητα των πετρελαίων. Η χρήση τους παρέχει πληροφορίες σχετικές με την πηγή (μητρικό πέτρωμα) και την φάση ωρίμανσης των πετρελαίων. Ακόμη μπορούν να χρησιμοποιηθούν για τον προσδιορισμό και για τον έλεγχο αλλοίωσης τους από τη δευτερογενή διεργασία της βιοαποδόμησης

Thompson H parameter vs sample location

Δείκτης Ι [(2- + 3-methylhexane)/(1c3- + 1t3- + 1t2-DMCP)]

Δείκτης R (n-heptane/2-methylhexane)

Thompson R parameter vs sample location

Δείκτης S (n-Hexane/2,2-dimethylbutane)

Thompson U parameter vs sample location

Διάγραμμα F-B

Σύμφωνα με τη θεωρία (εικόνα 2-38,κεφάλαιο 2), στο διάγραμμα συσχετισμού των λόγων F-B που παρουσιάζεται παρακάτω, μπορούν να συνοψιστούν όλες οι μεταβολές που πιθανόν να έχουν υποστεί τα δείγματα. Από την αύξηση και των δυο λόγων, προκύπτουν ενδείξεις ωρίμανσης των πετρελαίων όλων των σχηματισμών. Ακόμη, σε αρκετά δείγματα του σχηματισμού Nisku (γαλάζια αστεράκια) υπάρχουν ενδείξεις αλλοίωσης από τη διεργασία της έκπλυσης από υπόγεια νερά, καθώς εμφανίζεται μείωση του λόγου F με ταυτόχρονη ελάχιστη μείωση του λόγου B.

Κεφάλαιο 4 .Διερευνητική Ανάλυση Δεδομένων EDA

(Exploratoty Data Analysis)

Καθώς δεν παρατηρήθηκαν διαφοροποιήσεις από τη μελέτη του κάθε δείκτη ξεχωριστά, κρίθηκε απαραίτητη πολυπαραμετρική ανάλυση των δειγμάτων. Κύριος στόχος της διερευνητικής ανάλυσης στο παρόν κεφάλαιο είναι η εξαγωγή "κρυφών" πληροφοριών που πιθανών υπάρχουν στη βάση δεδομένων των πετρελαϊκών δειγμάτων, η διαδικασία αυτή λέγεται εξόρυξη δεδομένων (Data Mining).Η εξόρυξη δεδομένων χρησιμοποιείται ευρέως σε τομείς όπως στην έρευνα της αγοράς και των καταναλωτών, στην ανάλυση προϊόντων, στην ανάλυση προσφοράς και ζήτησης, το ηλεκτρονικό εμπόριο και άλλα. Με την συσταδοποίηση παρέχεται η δυνατότητα επεξεργασίας των διαθέσιμων δεδομένων και η ανακάλυψη των ομοιοτήτων και των μεταξύ τους σχέσεων. Συσταδοποίηση καλείται ο διαχωρισμός ενός συνόλου αντικειμένων σε μικρότερα υποσύνολα που έχουν νόημα. Τα δεδομένα που ανήκουν στην ίδια ομάδα θα είναι πιο όμοια μεταξύ τους από ότι με τα υπόλοιπα αντικείμενα, θυσιάζοντας έτσι την κατανόηση του κάθε επιμέρους αντικειμένου για χάριν της απλότητας και της καλύτερης κατανόησης.

Ενότητα 4-1. Εισαγωγή στην έννοια της συσταδοποίησης

Η συσταδοποίηση (Clustering) είναι μια από τις πιο χρήσιμες διεργασίες στην διαδικασία εξόρυξης γνώσης για την ανακάλυψη συστάδων που παρουσιάζουν ενδιαφέρον στα υπό μελέτη δείγματα. Το πρόβλημα της συσταδοποίησης σχετίζεται με την τμηματοποίηση (partitioning) ενός συνόλου δεδομένων σε συστάδες, έτσι ώστε τα στοιχεία του συνόλου των δεδομένων που ανήκουν σε μια συστάδα να είναι περισσότερο όμοια μεταξύ τους από ότι είναι με τα στοιχεία των άλλων συστάδων. Για παράδειγμα, έστω μια βάση δεδομένων με εγγραφές λιανικών πωλήσεων. Μια διαδικασία συσταδοποίησης θα ομαδοποιούσε τους πελάτες με τέτοιο τρόπο ώστε οι πελάτες που παρουσιάζουν όμοια αγοραστικά πρότυπα να ανήκουν στην ίδια συστάδα (cluster). Έτσι, το κύριο μέλημα της ομαδοποίησης είναι η ανάκτηση «λογικών» ομάδων (Clusters) οι οποίες προϋπάρχουν στα δεδομένα και οι οποίες επιτρέπουν την ανακάλυψη ομοιοτήτων και διαφορών ανάμεσα στα δεδομένα έτσι ώστε να παράγονται χρήσιμα συμπεράσματα για αυτά. Η Ομαδοποίηση χρησιμοποιείται για τον χειρισμό του μεγάλου πλήθους των δεδομένων που λαμβάνουν καθημερινά οι άνθρωποι. Η εξαντλητική επεξεργασία της πληροφορίας αυτής είναι αδύνατη. Συνεπώς είναι απαραίτητη η κατηγοριοποίηση των οντοτήτων, δηλαδή των αντικειμένων, των προσώπων, των γεγονότων, σε ομάδες. Κάθε ομάδα χαρακτηρίζεται μέσω του κοινού χαρακτηριστικού των οντοτήτων που περιέχει.

Τα αντικείμενα που θα καταταχτούν σε ομάδες περιγράφονται είτε από ένα σύνολο μετρήσεων είτε από τις σχέσεις που έχει αυτό το αντικείμενο με τα άλλα υπό εξέταση αντικείμενα. Η απουσία ετικετών κατηγορίας είναι αυτό που ξεχωρίζει την Ανάλυση ομαδοποίησης από την διακριτή ανάλυση, από την αναγνώριση προτύπων και από την ανάλυση αποφάσεων. Το αντικείμενο της Ανάλυσης Ομαδοποίησης αφορά στο να βρει κανείς μια πρόσφορη και έγκυρη οργάνωση των δεδομένων.

Η συσταδοποίηση μπορεί να βρεθεί με διαφορετικά ονόματα σε διαφορετικά πεδία, όπως μη εποπτευόμενη μάθηση (unsupervised learning) ή εκπαίδευση χωρίς δάσκαλο (learning without a teacher), στην βιολογία και στην οικολογία αναφέρεται ως αριθμητική ταξινόμηση (numerical taxonomy), στις κοινωνικές επιστήμες ως τυπολογία (typology), ενώ στην θεωρία των γράφων ως τμηματοποίηση (partition). Τέλος στο πεδίο της εξόρυξης δεδομένων ονομάζεται και μη κατευθυνόμενη ανακάλυψη γνώσης (undirected knowledge discovery). Εκτός απ' τα παραδείγματα που αναφέρθηκαν παραπάνω ,η ανάλυση σε συστάδες βρίσκει πληθώρα εφαρμογών σχεδόν σε κάθε επιστήμη και επομένως αποτελεί ένα πολυτιμότατο εργαλείο στα χέρια όλων των επιστημονικών κλάδων.

Στη διαδικασία της συσταδοποίησης δεν υπάρχουν προκαθορισμένες κατηγορίες, ούτε κάποιο παράδειγμα μεταξύ των δεδομένων. Για το λόγο αυτό είναι γνωστή ως διαδικασία μη εποπτευόμενης μάθησης. Αντίθετα, η κατηγοριοποίηση είναι μια διαδικασία ανάθεσης ενός αντικειμένου από το σύνολο των δεδομένων σε μια προκαθορισμένη κατηγορία. Η συσταδοποίηση παράγει τις αρχικές κατηγορίες στις οποίες οι τιμές ενός συνόλου δεδομένων μπορούν να κατηγοριοποιηθούν κατά την διαδικασία της κατηγοριοποίησης.

Η διαδικασία συσταδοποίησης μπορεί να οδηγήσει σε διαφορετικές τμηματοποιήσεις ενός συνόλου δεδομένων, ανάλογα με το κριτήριο που χρησιμοποιείται για την συσταδοποίηση. Επομένως, το άτομο που εκτελεί τη συσταδοποίηση θα πρέπει να επιλέξει και να θέσει το κατάλληλο κριτήριο, ώστε το αποτέλεσμα να ικανοποιεί τις ανάγκες του.

Δύο βασικές έννοιες για την ανάλυση κατά συστάδες είναι οι έννοιες της απόστασης και της ομοιότητας. Εύκολα διαπιστώνεται οι δύο έννοιες είναι αντίθετες, καθώς οι παρατηρήσεις που είναι όμοιες θα έχουν μεγάλη ομοιότητα και μικρή απόσταση. Οι έννοιες αυτές ουσιαστικά ποσοτικοποιούν αυτό που εννοούν στην καθημερινή γλώσσα. Δηλαδή οι παρατηρήσεις που μοιάζουν πολύ μεταξύ τους θα έχουν σχετικά όμοιες τιμές. Επομένως, η τιμή του μέτρου ομοιότητας που θα χρησιμοποιηθεί θα πρέπει να είναι μεγάλη, ενώ της απόστασης πολύ μικρή. Θα γίνει εκτενέστερη αναφορά των εννοιών αυτών παρακάτω. Η χρησιμότητα των παραπάνω εννοιών είναι αρκετά μεγάλη, καθώς παρέχουν τη δυνατότητα μέτρησης του κατά πόσο μοιάζουν οι παρατηρήσεις μεταξύ τους και της τοποθέτησης τους στην ίδια ομάδα. Επομένως, σκοπός της ανάλυσης σε συστάδες είναι να δημιουργήσει ομάδων απέχουν αρκετά.

Τέλος θα πρέπει να σημειωθεί πως υπάρχουν αρκετές διαφορετικές προσεγγίσεις για το πώς μπορεί να πραγματοποιηθεί η ομαδοποίηση των δεδομένων. Οι βασικότερες και πιο διαδεδομένες προσεγγίσεις είναι:

- Ιεραρχικές μέθοδοι: Ξεκινούν με κάθε παρατήρηση σαν να είναι από μόνη της μια ομάδα και σε κάθε βήμα ενώνουν τις 2 παρατηρήσεις που έχουν την πιο μικρή απόσταση. Αν 2 παρατηρήσεις έχουν ενωθεί σε προηγούμενο βήμα, ενώνεται μια προϋπάρχουσα ομάδα με μια παρατήρηση μέχρι να φτιαχτεί μια ομάδα. Παρατηρώντας τα αποτελέσματα, επιλέγεται πόσες ομάδες τελικά προκύπτουν.
- Κ-Means: Ο αριθμός των ομάδων είναι γνωστός από πρίν. Με τη χρήση ενός επαναληπτικού αλγορίθμου μοιράζονται οι παρατηρήσεις στις ομάδες ανάλογα με το ποια ομάδα είναι πιο κοντά στην παρατήρηση.
- Στατιστικές μέθοδοι: Και οι δύο μέθοδοι που αναφέρθηκαν στηρίζονται καθαρά σε αλγοριθμικές λύσεις και δεν προϋποθέτουν κάποιο μοντέλο. Υπάρχουν σε αρκετές στατιστικές μέθοδοι όπου ξεκινώντας από κάποιες υποθέσεις κατατάσσουν τις παρατηρήσεις.

Ενότητα 4- Μέτρο Απόστασης (Distance Measure)

Όπως αναφέρθηκε νωρίτερα σημαντικό βήμα για κάθε συσταδοποίηση αποτελεί η επιλογή ενός μέτρου, το οποίο θα καθορίσει τον τρόπο με τον οποίο θα υπολογιστεί η ομοιότητα των δύο στοιχείων. Αυτό θα επηρεάσει τη διαμόρφωση των συστάδων, αφού ορισμένα στοιχεία

μπορεί να είναι κοντά το ένα στο άλλο σύμφωνα με μία απόσταση και πιο μακριά, σύμφωνα με μια άλλη. Τα πιο συνήθη μέτρα αποστάσεων είναι τα εξής:

α. Ευκλείδεια Απόσταση (Euclidean Distance)

Η ευκλείδεια απόσταση είναι πιθανόν η πιο συχνά χρησιμοποιούμενη για αριθμητικά δεδομένα. Για δύο σημεία x και y σε ένα πολυδιάστατο χώρο, η ευκλείδεια απόσταση μεταξύ τους δίνεται από την σχέση :

$$deuc(x,y) = \sqrt{\sum_{i=1}^{d} (xi - yi)^2}$$

Όπου το x_i και i_j είναι τιμές του i_{th} στοιχείου των x και y, αντίστοιχα. Δηλαδή η απόσταση μεταξύ των αντικειμένων x,y είναι η τετραγωνική ρίζα του αθροίσματος των τετραγώνων των διαφορών των τιμών των μεταβλητών. Πολλές φορές προτιμάται η τετραγωνική ευκλείδεια απόσταση (squared Euclidean distance), ώστε να δοθεί σταδιακά μεγαλύτερη βαρύτητα στην ανομοιογένεια των αντικειμένων που βρίσκονται σε μεγάλη απόσταση.

Η τετραγωνισμένη ευκλείδεια απόσταση δίνεται από τον τύπο :

$$deuc(x, y)^2 = \sum_{i=1}^{d} (xi - yi)^2$$

Πρέπει να σημειωθεί ότι η ευκλείδεια απόσταση (όπως και η τετραγωνική) υπολογίζεται βάσει μη κανονικοποιημένων δεδομένων. Έχει αρκετά πλεονεκτήματα, όπως ότι η απόσταση μεταξύ δύο στοιχείων δεν επηρεάζεται με την προσθήκη νέων στοιχείων στην ανάλυση, παρόλα αυτά ένα σημαντικό μειονέκτημα της ευκλείδειας μετρικής βρίσκεται στο γεγονός ότι οι αποστάσεις επηρεάζονται ιδιαίτερα από τις διαφορές στην κλίμακα μεταξύ των διαστάσεων. Για παράδειγμα, αν μια μεταβλητή μετράει μήκος σε εκατοστά, και κατόπιν μετατραπεί σε χιλιοστά, η ευκλείδεια απόσταση που θα προκύψει από τον πολυδιάστατο πίνακα θα επηρεαστεί σημαντικά (κυρίως από τις μεταβλητές με μεγαλύτερη κλίμακα μέτρησης), και συνεπώς θα είναι πολύ διαφοροποιημένα και τα αποτελέσματα της συσταδοποίησης. Γι' αυτό, είναι προτιμότερο να γίνει μετατροπή των διαστάσεων ώστε να έχουν παρόμοιες κλίμακες μέτρησης.

β. Απόσταση City-block (Manhattan)

Η απόσταση City-block ονομάζεται και μετρική Manhattan καθώς προσομοιάζει την απόσταση μεταξύ δύο σημείων στην περιοχή του Manhattan της Νέας Υόρκης, όπου η απόσταση μεταξύ δύο σημείων ισοδυναμεί με τον αριθμό των οικοδομικών τετραγώνων που θα πρέπει να διανυθούν στις κατευθύνσεις Βόρεια-Νότια και Ανατολικά-Δυτικά. Ορίζεται ως το άθροισμα των αποστάσεων όλων των στοιχείων. Δηλαδή, για δύο σημεία x και y σε ένα πολυδιάστατο χώρο, η απόσταση Manhattan μεταξύ τους δίνεται από τον τύπο:

$$d(x,y) = \sum_{i=1}^{d} |xi - yi|$$

Τα αποτελέσματα της μετρικής city-block είναι παρόμοια με αυτά της Ευκλείδειας, με την διαφορά ότι μειώνονται οι επιδράσεις των διαφορών των ακραίων τιμών καθώς δεν υψώνονται στο τετράγωνο.

γ. Μέγιστη Απόσταση ή Απόσταση Chebyshev (Maximum Distance, Chebyshev Distance)

Η μέγιστη απόσταση ορίζεται ως η μέγιστη τιμή της απόστασης των στοιχείων. Δηλαδή, για δύο σημεία x και y σε ένα πολυδιάστατο χώρο, η μέγιστη απόσταση μεταξύ τους δίνεται από τον τύπο :

$$dmax = max|xi - yi|$$

1≤i≤d

Είναι επίσης γνωστή και ως απόσταση σκακιέρας αφού σε ένα παιχνίδι σκακιού, ο ελάχιστος αριθμός κινήσεων που χρειάζεται ο βασιλιάς για να μετακινηθεί από ένα τετράγωνο σε ένα άλλο ισούται με την απόσταση Chebyshev μεταξύ των κέντρων τους εάν τα τετράγωνα έχουν μήκος πλευράς ένα με άξονες ευθυγραμμισμένους στις άκρες της σκακιέρας.

δ. Μετρική Απόσταση Mahalanobis

Διαφέρει από την Ευκλείδεια μετρική διότι λαμβάνει υπόψη της τις συσχετίσεις μεταξύ των δεδομένων καθώς επίσης δεν επηρεάζεται από την κλίμακα μέτρησης των μεταβλητών και δίνεται από τον τύπο:

$$d^{2}(x, y) = (x - y)^{T} S^{-1}(x - y)$$

Ενότητα 4-4 Ιεραρχικοί Αλγόριθμοι Συσταδοποίησης (Hierarchical Clustering

Algorithms)

Οι ιεραρχικοί αλγόριθμοι συσταδοποίησης, όπως δηλώνει και το όνομά τους, δημιουργούν μια ιεραρχία εμφωλευμένων συσταδοποιήσεων. Δηλαδή, οι συστάδες περιέχουν μεμονωμένα στοιχεία και άλλες συστάδες, οι οποίες με τη σειρά τους μπορεί να περιέχουν και αυτές άλλες, μικρότερες συστάδες, δημιουργώντας έτσι τα επίπεδα της ιεραρχίας.

Οι ιεραρχικοί αλγόριθμοι διακρίνονται σε δυο υποκατηγορίες: τους συσσωρευτικούς και του διαιρετικούς. Οι αλγόριθμοι μπορούν να αναπαρασταθούν πλήρως με δενδρογράμματα, δηλαδή με δενδρικά διαγράμματα, τα οποία παρουσιάζουν τη διάταξη των συστάδων που δημιουργήθηκαν από την ιεραρχική συσταδοποίηση. Ουσιαστικά, κάθε επίπεδο ενός δενδρογράμματος ορίζει ένα βήμα του αλγορίθμου. Το βασικό πλεονέκτημα των ιεραρχικών αλγορίθμων είναι ότι δεν είναι απαραίτητη η υπόθεση συγκεκριμένου αριθμού συστάδων, αφού οποιοσδήποτε αριθμός μπορεί να επιτευχθεί, απλά κόβοντας το δενδρόγραμμα στο κατάλληλο επίπεδο. Στην εικόνα 4-1 παρουσιάζεται ένα παράδειγμα τυπικού δενδρογράμματος.

Εικόνα 4-1 Παράδειγμα τυπικού δενδρογράμματος.

4-4.1 Συσσωρευτική Ιεραρχική Συσταδοποίηση (Agglomerative Hierarchical

Clustering)

Στην περίπτωση της συσσωρευτικής ιεραρχικής συσταδοποίησης, οι αλγόριθμοι ξεκινάνε με κάθε ένα από τα η δείγματα να ανήκει σε μια συστάδα, δηλαδή ξεκινάνε με η συστάδες. Σε κάθε βήμα, συγχωνεύονται οι δυο πιο κοντινές συστάδες, δηλαδή το πλήθος των συστάδων μειώνεται κατά ένα. Αυτή η διαδικασία επαναλαμβάνεται, μέχρις ότου ο αλγόριθμος καταλήξει σε μια μοναδική συστάδα, η οποία θα εμπεριέχει όλα τα η δείγματα. Ολόκληρη η διαδικασία του αλγορίθμου, όπως αναφέρθηκε νωρίτερα, αναπαρίσταται σε ένα δενδρόγραμμα με n-1 επίπεδα, όπου το κάθε επίπεδο αντιστοιχεί σε ένα βήμα του αλγορίθμου.

4-4.2 Διαιρετική Ιεραρχική Συσταδοποίηση (Divisive Hierarchical Clustering)

Στη διαιρετική ιεραρχική συσταδοποίηση, οι αλγόριθμοι ξεκινάνε με όλα τα δείγματα να ανήκουν σε μια ενιαία συστάδα. Σε κάθε βήμα, μια ομάδα διασπάται σε δύο. Αυτό γίνεται επαναληπτικά, μέχρι να καταλήξουμε σε n ομάδες. Η πολυπλοκότητά των διαιρετικών αλγορίθμων είναι μεγαλύτερη από αυτή των συσσωρευτικών, καθώς η διάσπαση μιας ομάδας σε δυο άλλες μπορεί να γίνει με 2ⁿ⁻¹-1 τρόπους. Η επιλογή της βέλτιστης διάσπασης πρακτικά είναι αδύνατη ακόμη και δια μικρό n. Στην πράξη η διάσπαση πραγματοποιείται, αλλά όχι κατά τον βέλτιστο τρόπο. Η όλη διαδικασία του αλγορίθμου, αναπαρίσταται με δενδρόγραμμα, όπως και στους συσσωρευτικούς.

4-4.3 Ορισμός Απόστασης Συστάδων

Μερικοί από τους κυριότερους τρόπους προσδιορισμού της απόστασης των συστάδων είναι οι εξής:

- Ελάχιστης απόστασης ή απλού συνδέσμου (single link).
- Μέγιστης απόστασης ή πλήρους συνδέσμου(complete link).
- Μέσου όρου της συστάδας(group average).
- Απόσταση κεντρικών σημείων (centroid).
- Μέθοδος του Ward.

Με βάση το κριτήριο απλού συνδέσμου, η ομοιότητα μεταξύ δύο συστάδων βασίζεται στα πιο όμοια (πιο γειτονικά) σημεία στις διαφορετικές συστάδες (εικόνα 4-2), δηλαδή με την ελάχιστη απόσταση μεταξύ τους. Είναι γνωστή και ως μέθοδος συσταδοποίηση κοντινότερου γείτονα. Τα προτερήματα αυτής της μεθόδου είναι ότι δημιουργούνται συνεχόμενες συστάδες, ενώ μπορεί να χειριστεί και μη ελλειπτικά σχήματα. Το βασικό μειονέκτημα είναι η ευαισθησία της στις ακραίες τιμές (outliers).

Εικόνα 4-2 Ομοιότητα συστάδων βάσει του κριτηρίου απλού συνδέσμου (single link)

Με βάση το κριτήριο πλήρους συνδέσμου, η ομοιότητα μεταξύ δύο συστάδων βασίζεται στα δύο πιο ανόμοια (πιο απόμακρα) σημεία στις διαφορετικές συστάδες (εικόνα 4-3), δηλαδή στα σημεία με τη μέγιστη απόσταση μεταξύ τους. Το βασικό πλεονέκτημα αυτού του τρόπου σύνδεσης είναι η μικρή ευαισθησία στις ακραίες τιμές (outliers).

Εικόνα 4-3 Ομοιότητα συστάδων βάσει κριτηρίου πλήρους συνδέσμου (complete link).

Ο μέσος όρος συστάδων είναι ουσιαστικά η μέση τιμή των αποστάσεων μεταξύ κάθε πιθανού ζεύγους μεταξύ των δύο συστάδων (εικόνα 4-4). Βρίσκεται κάπου ανάμεσα στην ελάχιστη και τη μέγιστη απόσταση. Έχει μικρότερη ευαισθησία σε ακραίες τιμές και ευνοεί τις συστάδες με κυκλικό σχήμα.

Εικόνα 4-4 Ομοιότητα συστάδων βάσει μέσου όρου συστάδας (average link).

Η απόσταση κεντρικών σημείων είναι η απόσταση μεταξύ των κέντρων των συστάδων (εικόνα 4-5). Το πρόβλημα με αυτή την απόσταση είναι ότι δεν έχει μονότονη αύξηση. Έτσι, δύο συστάδες που συγχωνεύονται μπορεί να έχουν μικρότερη απόσταση από συστάδες, οι οποίες έχουν συγχωνευτεί σε προηγούμενα βήματα.

Ακόμη υπάρχει και η απόσταση κεντρικών σημείων με βάρη (median). Η μέθοδος median αναφέρεται και ως "weighted centroid". Προτάθηκε πρώτα από τον Gower (1967) για να εξαλείψει κάποιες αδυναμίες της μεθόδου centroid. Στην μέθοδο centroid, εάν τα μεγέθη των συστάδων που συγχωνεύτηκαν είναι αρκετά διαφορετικά, τότε το νέο centroid (κέντρο βάρους) θα είναι κοντά σε αυτό της μεγαλύτερης συστάδας και μπορεί να παραμείνει μέσα σε αυτήν. Στην median το κέντρο βάρους της νέας συστάδας είναι ανεξάρτητο από τα μεγέθη των δύο συστάδων.

Εικόνα 4-5 Ομοιότητα συστάδων βάσει απόστασης μεταξύ κέντρων (centroid)

Τέλος, η βασική ιδέα πίσω από τη μέθοδο του Ward είναι ότι η απόσταση μεταξύ δύο συστάδων, C_i και C_j, είναι ίση με το πόσο θα αυξηθεί το άθροισμα των τετραγώνων της απόστασης των στοιχείων της κάθε συστάδας από το αντίστοιχο κεντροειδές (της κάθε συστάδας) μετά τη συγχώνευση τους, C_{ij}, δηλαδή:

$$D_{W}(C_{i},C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{y}} (x - r_{ij})^{2}$$

όπου r_i είναι το κεντροειδές της συστάδας C_i , r_j είναι το κεντροειδές της συστάδας Cj , και rij είναι το κεντροειδές της συστάδας C_{ij}, που προκύπτει από τη συγχώνευσή τους.

Ενότητα 4-5 Υλοποίηση της Ιεραρχικής Συσταδοποίησης στη Matlab

Με τη χρήση του λογισμικού Matlab και συγκεκριμένα της εντολής pdist δημιουργήθηκαν τα δενδρογράμματα των δειγμάτων με Ευκλείδεια μετρική απόσταση (Euclidean Distance) για κάθε κριτήριο συσταδοποίησης που αναφέρθηκε νωρίτερα. Τα δενδρογράμματα που προέκυψαν παρατίθενται παρακάτω.

Στην εικόνα 4-6 παρουσιάζεται το δενδρόγραμμα ιεραρχικής συσταδοποίησης με τη χρήση του κριτηρίου απλού συνδέσμου (single link). Όπως διαπιστώνεται από την μελέτη του διαγράμματος, δημιουργούνται συνεχόμενες συστάδες από τις οποίες δεν είναι δυνατό να προκύψουν συμπεράσματα ως προς την ομαδοποίηση των δειγμάτων.

Εικόνα 4-6 Δενδρόγραμμα συσταδοποίησης απλού δεσμου.

Αντίστοιχα, στην εικόνα 4-7 παρουσιάζεται το δενδρόγραμμα της ιεραρχικής συσταδοποίησης με χρήση κριτηρίου πλήρους συνδέσμου. Όπως παρατηρείται από το δενδρόγραμμα προκύπτουν δύο συστάδες. Η πρώτη συστάδα αποτελείται από όλα τα δείγματα του σχηματισμού Keg River και από αρκετά δείγματα που ανήκουν στους σχηματισμούς Nisku και Leduc.

Εικόνα 4-7 Δενδρόγραμμα Συσταδοποίησης Πλήρους Δεσμού (Complete Link Method)

Η εικόνα 4-8 παρουσιάζει το δενδρόγραμμα συσταδοποίησης με βάση το κριτήριο μέσου δεσμού (average link). Όπως διαπιστώνεται από την μελέτη του διαγράμματος, δεν είναι δυνατό να προκύψουν συμπεράσματα ως προς την ομαδοποίηση των δειγμάτων.

Εικόνα 4-8 Δενδρόγραμμα συσταδοποίησης μέσου συνδέσμου (average link).

Στην εικόνα 4-9 παρουσιάζεται το δενδρόγραμμα της ιεραρχικής συσταδοποίησης με τη χρήση της μεθόδου Ward. Όπως παρατηρείται από το δενδρόγραμμα προκύπτουν δύο συστάδες. Η πρώτη συστάδα αποτελείται από όλα τα δείγματα του σχηματισμού Keg River και από αρκετά δείγματα που ανήκουν στους σχηματισμούς Nisku και Leduc.

Εικόνα 4-9 Δενδρόγραμμα Μεθόδου του Ward (Ward Clustering Method).

Οι εικόνες 4-10 και 4-11 παρουσιάζουν την ιεραρχική συσταδοποίηση με τη χρήση των κριτηρίων απόστασης μεταξύ κέντρων και απόστασης κεντρικών σημείων με βάρη αντίστοιχα. Όπως παρατηρείται από την μελέτη και των δυο παρακάτω δενδρογραμμάτων, δεν προκύπτουν συμπεράσματα σχετικά με την ομαδοποίηση των δειγμάτων.

Centroid Method

Εικόνα 4-10 Δενδρόγραμμα Μεθόδου Centroid (Centroid Clustering Method).

Εικόνα 4-11 Δενδρόγραμμα Μεθόδου Median (Median Clustering Method).

Παράρτημα 1

Α. Αποτελέσματα χρωματογραφικών αναλύσεων.

Οι παρακάτω πίνακες παρουσιάζουν τα αποτελέσματα των χρωματογραφικών αναλύσεων. Σε κάθε πίνακα παρουσιάζονται τα εμβαδά όλων ων κορυφών των συστατικών του ελαφρού κλάσματος που χρησιμοποιήθηκαν στην εργασία αυτή, καθώς και οι ονομασίες των σχηματισμών απ' τους οποίου προέρχονται και οι συντεταγμένες τους.

Sample	L01143a	L01144	L01350	L01420	L01453	L01556	L01557
Unit	Nisku	Arcs	Nisku	Nisku	Leduc	Arcs	Nisku
Lat	52,021502	51,69111	53,37903	54,01195	54,46445	51,66458	52,11556
Long	-112,7692	-111,296	-115,27	-116,421	-117,745	-111,273	-112,99
iC5	57	10705	1779	96	63011	1337686	645184
nC5	183	25294	480	32	196468	2077489	1463635
22DMC4	384	1198	597		860	17272	509
CYC5	513	4745					128431
23DMC4	494	10414	3087	982	40634	233123	179269
2MC5	5290	85483		12148	409962	1950907	1165118
3MC5	5075	67979	11387	10872	234550	1320653	866213
nC6	14103	134045	7590	27802	1172874	2714502	2186399
22DMC5	169	120		2212			
MCYC5	16512	102294	32659	5051	531689	1761728	2543024
24DMC5	872	9368	3419	4367	33603	98983	46934
223TMC4		618	698	71	995	4927	1634
BEN	11980		496	5643	286952	1657	156737
33DMC5	76	2700	2087	2202	6649	20588	5056
CYC6	14386	69935	33871	508	277054	800209	583376
2MC6	11177	80022	23187	54646	556875	882450	645910
23DMC5	5896	44666	16448	7103	86736	286858	201731
11DMCYC5	1918	20813	51455	7377	113571	158558	108239
3MC6	20035	124043	41578	39974	613205	1209488	1039561
1c3DMCYC5	17533	73033	47744	8465	414060	728054	1479658
1t3DMCYC5	16320	66161	46232	7837	381118	657698	1389075
1t2DMCYC5	43881	163951	114786	30752	626397	1377375	2747625
nC7	45977	169667	45935	139664	2357481	1735697	2245994
MCYC6	45778	237284	234176	8208	1315715	1888641	1709038
22DMC6	4702	36510	101957	31739	225874	217251	168554
ECYC5	12805	42599	8752	6459	140213	383481	589860
25DMC6	2459	14067	9300	16161	68005	89885	53517
24DMC6	2335	15749	12295	13066	66077	100605	59925
223TMC5	20822	50767	81246	7994	255746	293185	745649
234TMC5	260	1332	493	187	2408	9873	4430
TOL	40998	10470	3387	1143	1241371	57841	169302
2MC7	25694	90621	97306	160387	945550	551972	814552
3MC7	4924	32229	60161	46547	201793	200168	137610
1c4DMCYC6	10191	23991	79498	17	106368	113872	243627
nC8	39386	76791	90822	146468	1543831	651325	823423

Sample	L01558	L01559	L01576	L01638	L01639	L01641	L01644b
Unit	Nisku	Arcs	Nisku	Nisku	Nisku	Nisku	Nisku
Lat	52,14638	50,96459	52,22727	53,17386	53,1208	53,04243	53,02228
					-		
Long	-112,773	-112,019	-113,331	-115,726	115,789	-115,974	-116,209
iC5	645193	294234	61040	92904	102807	178967	74877
nC5	1271849	496428	146757	183289	233845	518111	94965
22DMC4	5399	4151	2041	1931	3702	5132	19440
CYC5			12654	16301	25192	77132	10840
23DMC4	378347	85909	24728	19976	19263	29555	11766
2MC5	1448330	415814	269700	248957	343646	847979	164004
3MC5	1101542	298743	174102	158189	193890	477296	98155
nC6	3078933	754752	677143	381626	629334	2411892	766093
22DMC5	40	13	2879	18	14	10369	24297
MCYC5	2786816	486384	314419	366974	227738	825190	119154
24DMC5	87969	23350	20988	18462	28485	59221	21872
223TMC4	3583	1180	1310	1283	2019	2731	4601
BEN	1758047	13314	109611	31593	59815	286729	42343
33DMC5	12804	5794	7111	4795	11314	18645	26236
CYC6	1691191	256398	244532	186859	190512	401710	261992
2MC6	1324713	266197	312192	194478	374767	1101989	363522
23DMC5	346069	74792	66228	43935	39176	75812	87324
11DMCYC5	128293	49790	64294	109849	79533	157972	82069
3MC6	2015784	338109	359901	249628	349758	853607	152982
1c3DMCYC5	1682840	224357	198249	263940	151915	420975	76694
1t3DMCYC5	1552001	204580	182120	249036	138702	385596	72914
1t2DMCYC5	3457362	463580	432428	428466	222855	736811	169889
nC7	5121189	704255	1086244	472424	829305	3377825	966000
MCYC6	3533708	608206	749352	727489	883996	1528063	1527748
22DMC6	292618	68661	90868	177341	128603	269572	120803
ECYC5	1175662	138443	111887	51590	39222	198430	42559
25DMC6	205532	27697	31751	23302	50960	137812	55385
24DMC6	191646	29476	32495	26055	43425	82357	33589
223TMC5	1427889	125934	136140	172573	110114	121049	54385
234TMC5	12046	1805	185	168	42	468	11
TOL	3584501	132607	96802	18204	66814	607405	612769
2MC7	2377500	271855	361511	271965	415551	1286496	382286
3MC7	2761299	60918	64593	116284	152188	120949	235236
1c4DMCYC6	664984	76978	44217	93335	63658	47683	153770
nC8	3510987	434626	464393	225151	429151	1647809	517956

Sample	L01645	L01646	L01647d	L01648a	L01650	L01651	L01652
Unit	Nisku						
Lat	53,10956	53,11573	53,02817	53,14161	53,03202	53,18903	53,09129
Long	-115,896	-115,698	-115,964	-115,782	-116,091	-115,74	-115,868
iC5	168204	259288	34991	97223	206087	133873	46163
nC5	569754	630599	90378	214221	603507	532387	115359
22DMC4	4149	7660	2655	3809	5745	2005	1560
CYC5	64463	97996	17134	23467	80963	101702	14147
23DMC4	18089	37592	11533	11485	24256	7943	7646
2MC5	831579	837845	270233	262651	1003229	784797	188059
3MC5	477560	497368	158975	154911	569523	476882	113134
nC6	2471044	1993083	660383	483604	2616822	2051981	385969
22DMC5	28	3587	4340	12			2306
MCYC5	832244	693265	208073	133192	1017569	1369590	167093
24DMC5	65933	62577	30378	23091	75657	49039	17746
223TMC4	2253	3669	2072	1908	3853	1492	1447
BEN	491869	227699	133777	114561	406115	328077	39847
33DMC5	15115	21021	11742	9003	22004	8409	6444
CYC6	618643	476733	162168	143482	635440	584390	133605
2MC6	1271007	935449	471634	245444	1362817	854264	245125
23DMC5	132762	80597	47940	36656	131315	121320	29283
11DMCYC5	173869	177736	101257	68911	236144	200320	51005
3MC6	1304613	827186	424339	250493	1374017	1081977	243942
1c3DMCYC5	638883	387986	174174	82647	764748	988171	128220
1t3DMCYC5	591617	354437	157823	76138	710954	928608	117824
1t2DMCYC5	694099	640097	303136	157000	1040385	1192749	183427
nC7	5159405	2580108	1622903	535649	5073409	3734564	615647
MCYC6	3408287	1762097	883775	535898	3331536	2517219	691504
22DMC6	343641	276410	208185	84709	482596	436934	110635
ECYC5	208250	136549	70151	29715	278326	258541	34588
25DMC6	172278	111753	103771	30189	188879	112105	40770
24DMC6	146217	88473	78302	28082	136423	106676	33662
223TMC5	418079	191173	146700	68979	503923	544926	100756
234TMC5	1512	97	126	49	71	2170	14
TOL	1471060	342139	610200	45796	1549416	781157	62044
2MC7	2088777	1034126	1102636	232754	2303452	1771518	371821
3MC7	730947	205079	183548	61886	601981	484021	140429
1c4DMCYC6	296722	76817	71249	28261	277147	311351	65522
nC8	3882289	1246371	1719363	206288	3574482	2867501	406250

Sample	L01656a	L01658c	L01664	L01667	L01676	L01677	L01679
Unit	Nisku	Nisku	Arcs	Nisku	Keg River	Keg River	Keg River
Lat	53,15396	53,09544	51,50473	51,50136	56,71672	56,73744	56,72312
Long	-115,87	-116,067	-112,673	-112,668	-114,451	-114,383	-114,52
iC5	14022	10873	61827	192578	81884	51610	69535
nC5	34116	11111	160810	356371	161713	90606	141452
22DMC4	1185	7536	573	1860	5966	4008	4896
CYC5	4987	4151	12476	75411	22422	10915	14394
23DMC4	6173	8272	43315	9031	29512	20086	26729
2MC5	105981	50845	343814	472667	324164	209814	310175
3MC5	66702	36796	215336	297448	232106	147373	215068
nC6	210888	79290	957755	1092031	646764	388575	593974
22DMC5	1282	12318			43	14	52
MCYC5	95382	32363	517660	595735	497569	282453	418119
24DMC5	13443	13116	27889	31450	35077	25233	33329
223TMC4	1034	3664	1364	1738	3163	2750	2780
BEN	21519	11273	274509	154851	45052	32466	36906
33DMC5	5384	11493	4422	5368	10690		9757
CYC6	85476	67658	502987	560670	278146	157340	222503
2MC6	175749	123538	426618	397625	347496	239370	328206
23DMC5	21842	22858	122819	122572	137786	95050	125681
11DMCYC5	49831	27721	33203	37767	183480	121391	159920
3MC6	180588	116549	523029	478800	496426	338013	461383
1c3DMCYC5	90909	25671	247787	242553	461124	301078	412181
1t3DMCYC5	84028	24081	225862	220798	436061	281124	386631
1t2DMCYC5	126461	53145	525656	526338	907688	588203	789118
nC7	419307	233598	2180107	1601429	1352455	859900	1209093
MCYC6	579125	492756	1330723	1252528	1405050	897972	1204042
22DMC6	92061	47217	75766	73291	379795	262197	331681
ECYC5	22474	12441	241476	203578	145023	90725	122403
25DMC6	31169	37102	60641	50248	67408	49326	61983
24DMC6	28895	34312	55919	46634	76479	54742	68666
223TMC5	88467	28791	184149	169182	455845	310384	389923
234TMC5	55	62	3000	2588	2631	1962	1945
TOL	33778	53577	221573	117065	125153	71652	80942
2MC7	287860	225150	604166	484718	931206	630828	790314
3MC7	145261	113622	139094	119880	294101	193197	238220
1c4DMCYC6	71680	60331	83508	79206	346315	225898	263400
nC8	309242	309709	1471405	843556	1528635	957631	1184731

Sample	L01680	L01684	L01686	L01687	L01688	L01690	L01691
Unit	Keg River						
Lat	56,75265	56,71129	56,73082	56,73672	56,69365	56,69621	56 <i>,</i> 84899
Long	-114,537	-114,447	-114,395	-114,46	-114,379	-114,597	-114,767
iC5	116130	80402	45944	95198	84162	59309	78274
nC5	273627	165139	74016	189084	159766	86839	127461
22DMC4	6386	5524	5405	11234	6089	2667	6489
CYC5	30993	18132	7788	18750	15670	10670	18128
23DMC4	37389	29447	27203	50069	33318	13992	33777
2MC5	534333	334467	255438	518613	380272	149802	362175
3MC5	359306	233589	184096	364374	263638	106540	259359
nC6	993421	637508	476570	979753	680241	284369	652643
22DMC5		51	12	44		7707	52
MCYC5	699864	466495	354953	709829	498258	215124	529222
24DMC5	55790	32402	33957	71721	43475	19502	46607
223TMC4	4312	2956	3404	10474	3980	1865	4251
BEN	71933	30937	37503	118638	44336	26524	93990
33DMC5	15186	9079	10993	30199	13212	6568	14989
CYC6	356626	240240	209763	443854	270770	124799	313836
2MC6	544418	312758	333614	659597	416118	208109	463292
23DMC5	206914	119987	131833	242168	163090	78825	181770
11DMCYC5	243412	156752	178527	291537	208949	104208	248249
3MC6	757685	440287	469046	880216	581545	293240	652035
1c3DMCYC5	661311	404536	413538	703267	515878	256424	582444
1t3DMCYC5	617297	377028	386037	658827	481482	240367	548595
1t2DMCYC5	1251308	775097	826763	1372429	1006196	501281	1149927
nC7	1881605	1136775	1195809	2296280	1439434	800160	1662469
MCYC6	1886756	1150729	1266390	2570526	1525497	817902	1828825
22DMC6	521576	298745	384819	597709	440448	252853	541661
ECYC5	189401	120119	122926	224229	149069	84035	175409
25DMC6	97737	52765	70635	139683	81245	49898	98175
24DMC6	109230	59024	78269	157886	90247	54542	109667
223TMC5	600693	354255	446224	654474	507457	303155	618173
234TMC5	9625	2003	6207	12953	7789	5119	8600
TOL	121989	57393	98935	533215	98111	80439	172125
2MC7	1201663	682232	905822	1433585	995556	705765	1242623
3MC7	353697	210581	275073	505928	311306	204098	389353
1c4DMCYC6	219089	228781	332234	472925	344812	254557	274069
nC8	212226	976939	1366202	2539121	1439661	1106327	1661844

Sample	L01692	L01693	L01810	L01816	L01819	L01820	L01821
Unit	Keg River	Keg River	Nisku	Nisku/Leduc	Leduc/Nisku	Leduc/Nisku	Nisku/Leduc
Lat	56,82601	56,70099	53,21439	51,98092	51,99535	52,10105	52,19548
Long	-114,724	-114,601	-115,656	-112,787	-112,788	-112,752	-112,77
iC5	72898	21553	184793	101970	468794	510228	87200
nC5	144371	30245	354815	180124	964103	983157	117508
22DMC4	5164	2489	9118	2154	6288	6206	1881
CYC5	16716	399		24697			13912
23DMC4	29349	5364	93393	20305	225782	210207	25553
2MC5	344967	127676	753477	251465	1156673	1086171	248057
3MC5	243822	97612	506896	191006	910386	795851	186364
nC6	636964	273267	789845	421039	1998339	1682619	402572
22DMC5	25	13	29	14	328	205	21
MCYC5	509736	205027	973923	386038	2151823	1514937	325460
24DMC5	38999	24671	69803	19132	74266	64230	23137
223TMC4	3253	2329	5287	1187	3555	3050	1183
BEN	84794	44025	29655	169719	705103	602240	243196
33DMC5	11307	8017	18561	3638	9143	7969	3373
CYC6	273972	128931	525894	214571	752002	886099	226336
2MC6	379275	268395	554881	205945	867484	634845	254689
23DMC5	152051	101910	243360	96809	408447	290856	109166
11DMCYC5	199661	129765	431317	47740	131075	93446	30772
3MC6	543789	378762	831263	334711	1450065	1045110	413041
1c3DMCYC5	516836	321757	917677	317772	1608066	925418	314138
1t3DMCYC5	486612	300967	852499	288489	1477578	843562	280480
1t2DMCYC5	1005483	636446	1702154	731173	3588857	2132420	732338
nC7	1362575	1041274	825838	735472	3077829	1880906	807130
MCYC6	1513641	1059408	2393890	697646	2515046	1950000	737375
22DMC6	427612	354450	787043	111839	327046	172774	83176
ECYC5	153840	106351	134605	174288	800996	520311	200102
25DMC6	74802	70487	92176	41059	139516	89296	58308
24DMC6	83108	77107	104138	42495	141905	89876	54374
223TMC5	509236	426360	712243	359502	1515505	747858	389512
234TMC5	3051	6700	5107	3382	11085	5162	3137
TOL	131986	115120	18380	236865	773020	506980	336378
2MC7	961838	956213	819774	518390	1573131	837757	578210
3MC7	302328	285382	392173	105071	2176023	781049	791082
1c4DMCYC6	357424	346982	14742	8549	658499	316897	231347
nC8	1403283	1474780	388666	203077	2182560	996135	727035

Sample	L01822	L01823	L01824	L01825	L01827	L01828	L01831
Unit	Leduc	Nisku	Leduc	Leduc	Leduc	Leduc	Nisku
Lat	52,2029	51,98398	52,60546	52,19268	52,62012	52,05289	53,18291
	-						
Long	112,776	-112,783	-114,196	-112,772	-114,184	-112,745	-115,637
iC5	117368	66778	514225	506226	177796	1427726	153680
nC5	206253	94263	1465858	904275	350264	2862099	244958
22DMC4	2636	1995	23230	8887	8725	16526	9055
CYC5	26780		253583	97446	57046	332892	29233
23DMC4	37775	69583	67640	103981	33202	148297	45990
2MC5	378775	274447	1936718	1073686	608897	3004427	412144
3MC5	277892	240673	1246363	756430	411606	2063488	283716
nC6	445614	262376	4275726	1667951	933202	4203875	682400
22DMC5	14	42	23	20952	37	209	10
MCYC5	434738	461146	2453006	1227877	738677	3514548	620977
24DMC5	33155	33100	138237	71539	64241	187791	39312
223TMC4	2086	221	8710	3874	4646	7715	4138
BEN	50700	18784	516813	563024	36420	737912	149155
33DMC5	5148	5361	43592	11905	20281	19379	13103
CYC6	382882	300150	1677849	889817	587108	1565554	389004
2MC6	286160	270264	1524301	731368	731299	1924167	362325
23DMC5	144448	191419	479633	303277	254228	735297	114229
11DMCYC5	33463	64365	482980	104238	212878	170928	247722
3MC6	436287	483861	1916547	1077946	956815	2891695	487117
1c3DMCYC5	253903	482937	1465181	652019	662790	2188324	497248
1t3DMCYC5	232487	446114	1343599	592173	606840	1950357	468492
1t2DMCYC5	616747	1378965	2879874	1464069	1345839	4656062	873752
nC7	430840	289532	5310697	2074613	1598012	4131435	1056802
MCYC6	983150	959957	5405327	2253467	3389966	4404916	1498879
22DMC6	66048	156912	734971	201020	545512	384487	388508
ECYC5	157633	153787	579282	456937	276256	1114756	101786
25DMC6	59160	65462	192276	136331	239811	307387	54032
24DMC6	53063	68369	202123	117824	270987	313247	61159
223TMC5	196744	650969	1057864	512077	774492	1565857	367951
234TMC5	188	6158	14704	6716	44872	18665	3829
TOL	21023	14675	881053	523978	77527	345790	164641
2MC7	312655	409818	2081612	1004507	2305935	1830395	598180
3MC7	110765	801374	651486	282090	847178	80798	244971
1c4DMCYC6	101330	12843	553762	257801	573768	29980	224345
nC8	178540	299324	2989509	1318422	1590602	1561525	702266

Sample	L01832	L01833	L01834	L02032	L02034	L02035	L02038
Unit	Leduc	Nisku	Leduc	Nisku	Leduc	Leduc	Leduc
Lat	52,75428	52,02095	51,99059	53,26003	53,26687	53,27047	53,27063
Long	-114,108	-112,758	-112,761	-113,797	-113,668	-113,687	-113,765
iC5	740686	211822	524030	68733	36854	24864	364790
nC5	1734905	415809	1162113	292501	61509	42338	598303
22DMC4	34693	7420	4757	15702	2775	2431	21323
CYC5	232631	66636	192280	40862	16073		116246
23DMC4	99197	42762	43341	64666	17767	19164	77282
2MC5	2262237	628811	1158062	541787	220224	163344	993216
3MC5	1464096	466171	871529	378588	175958	117011	717408
nC6	3419505	1194630	1793206	1264438	629557	431385	2376872
22DMC5	7	17	8				16
MCYC5	2369574	905291	1990708	872041	564987	260343	1759755
24DMC5	159779	56658	61870	78063	40834	27596	116005
223TMC4	11088	3340	2640	8560	3717	2632	8938
BEN	118446	467553	608943	358036	243900	182673	737577
33DMC5	50139	12983	6759	29799	18261	11892	42651
CYC6	1562398	560344	753871	775209	484503	196862	1244746
2MC6	1455647	651074	653252	803215	580228	339081	1375938
23DMC5	524460	250869	326581	264796	201477	112389	460284
11DMCYC5	593017	142684	104162	280538	239374	131372	554106
3MC6	1874107	966050	1115541	1009159	801462	437556	1808732
1c3DMCYC5	1549848	777151	1268607	732765	689716	338308	1546496
1t3DMCYC5	1424096	702413	1168952	692849	655744	310557	1445921
1t2DMCYC5	3175684	1716862	2834338	1546470	1459929	711931	3164994
nC7	2685885	2344074	1936905	3312301	2790143	1494357	5765797
MCYC6	4812590	1997164	2000136	3885467	3232552	1432617	5730525
22DMC6	865129	342544	227087	576186	577763	319061	1148864
ECYC5	389233	415702	623342	378408	376664	156465	669593
25DMC6	167944	119528	86580	169164	137510	80406	264246
24DMC6	172005	117575	89636	183833	142913	81717	278384
223TMC5	1043182	812905	1040783	773739	861037	455645	1620174
234TMC5	9261	7391	6826	16076	8509	3955	14790
TOL	57621	688945	473595	1081826	1037632	524666	2123018
2MC7	1417542	1343027	959044	1913238	1900782	1044396	3497894
3MC7	494394	315798	1400623	723767	687023	358374	1124930
1c4DMCYC6	411059	405654	425295	604132	642904	367209	1085660
nC8	763509	1874234	1019702	3813097	3587185	1929878	6321811

Sample	L02039	L02040a	L02041	L02042	L02043	L02044	L02045
Unit	Leduc	Leduc	Leduc	Leduc	Nisku	Nisku	Nisku
Lat	53,27097	53,27406	53,27409	53,27408	53 <i>,</i> 82364	53,82008	53,81636
Long	-113,753	-113,747	-113,705	-113,722	-113,481	-113,493	-113,475
iC5	176033	1306387	907311	204275	431523	1033431	854928
nC5	348379	4694300	1895337	332882	1455759	1490863	2967431
22DMC4	11347	83278	41383	13386	29672	33254	72424
CYC5	63771	29	501471	66807	215166	181152	411261
23DMC4	50130	1102419	104369	56494	134489	142900	318748
2MC5	648413	4235954	2314723	587675	1767515	1639496	3965471
3MC5	460650	2927733	1654841	431627	1287438	1183426	2764257
nC6	1432597	7146905	5627856	1353301	3214664	2941718	7311570
22DMC5	52		39	34602	28	34	6
MCYC5	1089260	6577572	4570855	1066572	2464723	2103960	4888355
24DMC5	69303	281148	208229	66999	139149	135680	351236
223TMC4	5337	22102	17169	6407	11285	11736	30145
BEN	473554	539606	1525284	493204	142368	67787	261311
33DMC5	24547	88500	78187	28730	43020	46598	104754
CYC6	688176	3777746	3040534	809490	1533191	1474626	3435134
2MC6	749923	2645076	2532244	803922	1323862	1333971	3344750
23DMC5	267718	934842	786127	280266	519164	493153	1073865
11DMCYC5	318997	1167933	968150	356216	656162	656081	1196250
3MC6	1004379	3511279	3327720	1069926	1885119	1861186	4361297
1c3DMCYC5	885582	3392493	2994815	911736	1785277	1625216	3432807
1t3DMCYC5	823295	3177011	2830364	854794	1666160	1510390	3195443
1t2DMCYC5	1825012	6933438	5973215	1963117	3612615	3210894	6283143
nC7	3013757	7036181	9768925	3676062	4719641	4807687	1000000
MCYC6	3129447	10000000	10000000	3960175	5517799	5666696	1000000
22DMC6	611197	1715636	1790970	735184	1180653	1261287	2248300
ECYC5	373757	1098746	1380216	456768	651412	590289	1275110
25DMC6	137826	348971	404376	185183	209849	235186	497185
24DMC6	143610	369006	422173	189261	234617	264902	567574
223TMC5	870161	2360572	2598767	1108987	1536065	1497464	2597271
234TMC5	7505	20420	24188	10823	14594	14608	38530
TOL	1112458	392247	3936815	2082762	900776	449807	890331
2MC7	1776017	3700966	5224060	2677553	2618682	2827252	4992245
3MC7	603293	1335575	1858151	919451	978297	1157756	2068030
1c4DMCYC6	585023	1254330	1655968	918125	1028083	995542	798105
nC8	3147344	3747295	9560252	5581600	4577007	4950647	8576728

Sample	L02077	L02078	L02079	L02080a	L02081a	L02082a	L02086
Unit	Nisku	Nisku	Nisku	Leduc	Leduc	Leduc	Nisku
Lat	52,51099	52,51794	52,5206	52,62858	52,64824	52,63602	52,47948
			-				
Long	-113,26	-113,261	113,267	-113,357	-113,337	-113,346	-113,182
iC5	253447	70981	65856	20818	24588	6700	194098
nC5	514168	162655	143517	7302	40227	15157	318070
22DMC4	10308	3687	3170	405	532	794	6808
CYC5	81833	36451	25424	3128	3374		50299
23DMC4	48828	18746	15461	6789		9846	26852
2MC5	610984	250908	203429	46682	52284	85539	311970
3MC5	408570	177233	139872	38523	42569	67319	216637
nC6	1229837	557533	417830	22405	91464	166805	558064
22DMC5							
MCYC5	714016	364529	261946	65354	86141	115647	302641
24DMC5	38008	18827	13942	3462	3509	9145	17674
223TMC4	2961	1607	1068	214	161	474	1282
BEN	313039	134865	90527	7708	25844	47916	212417
33DMC5	12046	6487	4668	657	765	2138	6230
CYC6	505857	282341	196079	47360	53759	90429	210897
2MC6	374431	202362	141065	30942	39502	104246	181797
23DMC5	151973	83287	57676	21000	19962	51568	65836
11DMCYC5	126165	71107	50175	8863	10752	24409	41885
3MC6	503037	277967	191449	59158	66910	173705	227397
1c3DMCYC5	395231	225989	152542	48070	56952	126463	132687
1t3DMCYC5	356557	206160	137663	44026	51862	114591	118509
1t2DMCYC5	891853	517196	352533	132507	134843	303743	331367
nC7	1392987	776127	506766	49745	119827	292557	563216
MCYC6	1198620	749439	492924	138374	153264	377842	434458
22DMC6	165391	98171	67462	18934	21023	51859	51615
ECYC5	173978	108298	69579	22334	30626	69688	87147
25DMC6	40922	23301	16982	7100	7436	17268	22695
24DMC6	43610	25409	17985	7018	7053	16650	22852
223TMC5	272998	163970	112977	48536	46719	111929	90933
234TMC5	2729	1368	941	72	251	778	1144
TOL	260835	110877	73949	5990	23358	31658	158588
2MC7	490705	284477	209220	42986	68886	153363	223923
3MC7	116757	74803	51171	58324	17552	38711	40423
1c4DMCYC6	112975	71106	52269	25213	23911	50620	39194
nC8	731800	424397	296335	17879	82581	142095	313730
Sample	L02098	L02099	L02100	L02103	L02108	L02109	L02110
-----------	----------	-------------	----------	----------	----------	-------------	-----------
Unit	Leduc	Leduc/Nisku	Leduc	Nisku	Nisku	Nisku/Leduc	Keg River
Lat	51,99341	52,38876	52,32724	52,79822	51,48797	52,25888	56,91252
Long	-114,053	-113,343	-112,876	-113,084	-112,746	-114,588	-114,684
iC5	94173	33012	10711	47616	42682	294549	104790
nC5	166389	58984	19013	114423	55377	471338	124251
22DMC4	3231	1193	220	3184	847	16809	3964
CYC5		5807	3081	26163	7748	51184	17170
23DMC4	15030	10708	2556	17990	7582	44814	17115
2MC5	172618	81354	24763	212404	61220	414795	151827
3MC5	105196	56249	18801	151246	40401	265591	107342
nC6	324345	129655	44036	474914	121835	756905	203991
22DMC5							
MCYC5	163216	103039	27338	291006	72563	402000	207627
24DMC5	11307	6424	1485	17843	4924	29169	11758
223TMC4	863	441	100	1426	316	2948	1082
BEN	37914	13350	16952	136520	17719	144145	11498
33DMC5	3686	1919	174	6301	956	12299	3518
CYC6	119052	80625	23384	231628	85317	384999	109211
2MC6	109093	58446	21684	198092	50706	223246	95275
23DMC5	40836	29861	9174	80647	24020	65811	41099
11DMCYC5	34097	24535	2421	64869	6551	144601	61437
3MC6	137429	83491	35243	271862	67366	259460	135532
1c3DMCYC5	81467	69110	19465	198355	32805	195859	134435
1t3DMCYC5	74347	62502	17382	180409	29450	181053	126663
1t2DMCYC5	186050	163504	45550	458189	78361	356493	268223
nC7	381542	140741	82597	789355	244622	651501	252984
MCYC6	332209	232248	64061	683477	207353	870450	371694
22DMC6	43311	39790	6972	101966	16790	136218	95098
ECYC5	38924	23499	15176	98712	30656	37805	32620
25DMC6	13361	9123	5628	27461	13287	20008	14715
24DMC6	13818	10209	5241	29192	12283	24839	16888
223TMC5	64302	61237	24493	168820	42226	120760	104129
234TMC5	308	364	323	1724	560	108	462
TOL	32788	7132	21967	149186	91471	80332	9290
2MC7	148621	91473	61908	336728	145937	196948	153371
3MC7	35680	29186	1786	83088	38485	95650	54084
1c4DMCYC6	29141	31059	17382	4516	36215	56955	58594
nC8	197327	59718	97952	476581	371943	264964	148477

Sample	L02151	L02152	L02153	L02154	L02155	L02156	L02157
Unit	Nisku	Leduc	Leduc	Nisku	Nisku	Nisku	Leduc/Nisku
Lat	51,54145	51,54145	51,54145	52,41677	52,39959	52,40738	52,40819
Long	-112,838	-112,838	-112,838	-113,3	-113,301	-113,338	-113,349
iC5	2896	3144	2178	34276	6782	1981	16093
nC5	6008	4743	3383	64731	13219	3649	36216
22DMC4	203			1472	303	30	907
CYC5	771	875	500	9471	2003	603	7377
23DMC4	1423	804	723	7593	2009	599	6542
2MC5	13648	8373	6741	83768	21666	6178	77413
3MC5	9398	6687	5246	56374	14953	4375	54660
nC6	32938	16235	12710	176762	48353	12569	178674
22DMC5	503					261	
MCYC5	16813	17560	12279	102557	26853	9297	121231
24DMC5	1620	806	614	6483	2044	531	7544
223TMC4				509	29	82	483
BEN	8468	5148	4087	36494	11490	2041	47098
33DMC5	529	84		2290	706	119	2385
CYC6	19190	13772	9229	81153	23598	8222	98361
2MC6	18971	10261	8108	69957	25402	7898	84991
23DMC5	7391	5554	4280	28037	9844	3258	37442
11DMCYC5	4680	2170	1683	24468	8098	2966	29976
3MC6	24485	17561	13591	93256	33694	11061	120304
1c3DMCYC5	12800	16324	11853	67194	21692	7953	95840
1t3DMCYC5	11722	15066	10868	61030	19796	7368	87379
1t2DMCYC5	29019	40085	29493	153270	51200	19423	214777
nC7	81320	42126	31921	273552	105105	27629	366173
MCYC6	75694	50144	36296	248749	91770	35616	348042
22DMC6	10440	6188	5021	37566	15295	6487	57258
ECYC5	8069	10393	7401	31662	12070	4067	45726
25DMC6	3876	2397	2226	9404	4914	1613	14176
24DMC6	4310	2259	1945	10299	5208	1701	15741
223TMC5	15663	19891	16139	57447	23198	10542	94845
234TMC5	292	34782	156	41	131	87	884
TOL	15473	8436	7946	43017	17706	2257	70552
2MC7	51052	31611	29528	116295	68232	24032	205436
3MC7	13911	3096	6316	31213	15378	6381	55478
1c4DMCYC6	11297	12144	12664	26156	14412	6570	56861
nC8	94994	41433	40815	170297	106262	25528	332425

Sample	L02158	L02159	L02160	L02161	L02162	L02163	L02164
Unit	Nisku	Leduc/Nisku	Leduc	Nisku	Nisku	Nisku	Nisku
Lat	52,32835	51,58022	52,5109	52,51126	52,27013	52,28353	52,27629
			-				
Long	-113,368	-113,278	113,426	-113,426	-113,346	-113,335	-113,347
iC5	5470		2182	3564	450	9324	2610
nC5	11062	4399	4203	7794	623	15829	4861
22DMC4	44	111	18	300		365	142
CYC5	1761	778	250	1256	18	2459	751
23DMC4	1697	911	220	2091	171	2015	1081
2MC5	19265	10124	7967	23208	3389	20975	11309
3MC5	13441	7216	5814	16225	2406	14498	7941
nC6	44870	24468	17090	53818	8452	42818,48	24272
22DMC5				746		613	406
MCYC5	28782	16371	13380	34579	4029	24393	13216
24DMC5	1955	1177	795	2683	625	1733	1247
223TMC4	71	7			101		
BEN	12519	7683	3210	12980	2433	7072	4375
33DMC5	667	345	86	878	144	627	567
CYC6	25235	14595	11416	28218	4168	22900	12984
2MC6	24273	15340	10128	30803	10143	21243	16218
23DMC5	10621	6668	4638	12593	3063	7885	5794
11DMCYC5	8773	5291	3716	11399	2254	6515	4434
3MC6	34325	22111	14747	42613	12872	28231	21100
1c3DMCYC5	26279	17386	11539	33229	6365	16715	11684
1t3DMCYC5	23971	15781	10571	30136	5747	15378	10629
1t2DMCYC5	59534	39294	26554	72986	15956	41498	29031
nC7	112644	70796	37362	125756	41998	75877	59361
MCYC6	108295	70203	46674	123213	33471	77891	54830
22DMC6	19533	12704	7848	24536	6945	10291	9069
ECYC5	13835	9252	5775	14950	4671	10461	7357
25DMC6	5323	3164	1975	5742	3098	3167	3560
24DMC6	5866	3491	2110	6191	3007	3323	3634
223TMC5	33008	22185	13503	36752	11940	16394	14627
234TMC5	143	75	58	16	118	29	11
TOL	24818	13449	4354	20078	8103	6719	7393
2MC7	88571	53871	29003	87801	47202	36872	46162
3MC7	22476	14334	8366	22520	8452	8807	9985
1c4DMCYC6	25007	15794	9036	23860	9548	7219	9232
nC8	154305	84637	34185	125412	75746	45864	65129

Sample	L02165	L02166	L02167	L02168	L02169	L02170	L02171
Unit	Nisku	Nisku	Nisku	Nisku	Leduc	Leduc/Nisku	Leduc
Lat	52,26258	52,2702	52,2914	52,07925	52,55221	52,58097	52,54484
		-	-				
Long	-113,33	113,323	113,342	-112,746	-113,145	-113,151	-113,133
iC5	977	1352	2951	1535	3476	13245	727
nC5	1640	2492	5295	2480	8379	27848	2470
22DMC4	26	11	225	14	400	946	
CYC5	225	335	699	282	1122	4401	679
23DMC4	420	587	1020	703	2610	5818	
2MC5	3949	6044	10122	6751	28690	58336	9311
3MC5	2817	4338	7265	5633	20374	40453	7275
nC6	8825	12841	21638	11563	70191	119512	24399
22DMC5	117	212	360	7	8		
MCYC5	4754	6823	12165	11675	37837	70390	15989
24DMC5	394	618	1008	844	3699	5186	1344
223TMC4					60	348	
BEN	2097	2579	4069	5570	22875	24805	6337
33DMC5	63	228	435		1281	1724	455
CYC6	4689	6464	11945	9232	32349	55590	15421
2MC6	6412	9307	14177	9344	47653	56454	18180
23DMC5	2296	3059	4885	4669	18201	21112	7036
11DMCYC5	1780	2700	3942	1392	13495	17483	4775
3MC6	8454	11792	18256	16297	64703	74451	25302
1c3DMCYC5	4567	6370	10166	13634	41772	50841	16608
1t3DMCYC5	4198	5788	9303	12505	37733	45824	15137
1t2DMCYC5	11591	15830	25220	33996	96935	117631	39698
nC7	24731	30379	48063	29080	201028	193120	75393
MCYC6	22731	29476	47669	36482	160598	176796	68901
22DMC6	3912	5100	7766	4240	30888	30154	12225
ECYC5	3247	3756	6269	9512	23028	23863	9739
25DMC6	1676	1877	2818	2358	9320	9110	4189
24DMC6	1656	2029	3014	2338	10015	9553	4298
223TMC5	6735	7861	12389	19643	51925	49628	21750
234TMC5	64	48	149	119	37	187	112
TOL	10973	4543	4727	8214	32702	22155	11823
2MC7	24168	24627	36224	28028	127252	112621	59191
3MC7	5245	5230	6773	26907	27475	25107	13347
1c4DMCYC6	6430	644	7434	14039	30191	26394	15096
nC8	38486	26269	41895	30406	185573	142280	92979

Sample	L02177	L02178	L02182	L02183	L02184	L02190	L02191
Unit	Leduc	Leduc	Leduc	Leduc	Nisku	Nisku	Leduc
Lat	51,61497	51,62427	52,59544	52,75407	52,8009	52,83786	52,83815
					-		
Long	-113,764	-113,791	-113,169	-113,127	113,086	-113,066	-113,062
iC5	4992	103	2302	3356	1391	1589	641
nC5	14841	1438	4651	10720	2545	3214	1205
22DMC4	294	43	17	322	68	258	27
CYC5	3253		84	2214	135	621	181
23DMC4	1451	883	272	2574	135	2167	348
2MC5	28574	8875	10456	35462	5791	20281	4601
3MC5	19086	6492	7739	25045	4477	14483	3499
nC6	90146	23948	22777	83939	12448	47953	9821
22DMC5			11			1180	11
MCYC5	38485	8611	14849	44432	8477	26636	6102
24DMC5	3278	1729	1136	3738	584	2875	582
223TMC4			75	30	27	91	
BEN	30226	4149	6543	19797	2941	19791	2337
33DMC5	1311	838	395	1138	70	1148	72
CYC6	69569	13472	11898	34036	7614	25256	6341
2MC6	48792	23661	14133	42690	8556	36948	8185
23DMC5	18640	6696	5928	16123	3354	14173	3208
11DMCYC5	8665	3978	3996	10883	2608	10423	2796
3MC6	59883	26913	19994	57211	12099	50627	11125
1c3DMCYC5	21666	7628	14330	36719	8357	32832	7295
1t3DMCYC5	20115	7096	13108	32930	7647	29780	6663
1t2DMCYC5	55668	20793	35608	83548	20527	77934	18237
nC7	279918	90290	55108	165254	26018	147943	22201
MCYC6	236628	72982	54490	125522	31944	127781	28714
22DMC6	17740	8956	9682	22890	6107	24623	6544
ECYC5	24578	7326	8493	17699	4325	19171	3563
25DMC6	10902	6469	3093	7291	1879	7976	2141
24DMC6	11073	6872	3259	7434	1857	8210	2371
223TMC5	21442	9737	19589	39419	10718	43416	11194
234TMC5	69	291	18	74	365	90	7
TOL	117716	18010	7258	30809	209	34254	3686
2MC7	154351	80772	45694	103413	22342	112190	26196
3MC7	34334	14630	9665	21549	21673	24084	4264
1c4DMCYC6	18943	7849	13618	22750	7098	27200	8998
nC8	386133	138876	53512	159904	18662	156200	19196

Sample	L02192	L02196	L02197	L02198	L02199	L02200	L02201
Unit	Leduc	Leduc	Nisku	Leduc	Nisku	Nisku	Nisku
Lat	52,33846	51,81394	51,83151	51,81826	51,99535	52,59156	52,61111
Long	-112,849	-113,586	-113,577	-113,588	-112,788	-113,295	-113,265
iC5	6260	358	1667	1299	6557	22731	34849
nC5	10689	686	3597	3256	9174	49383	66771
22DMC4	161	18	506	396	100	1577	1831
CYC5	1769	152	1122	639	1217	10155	11890
23DMC4	2730	516	2814	2049	1437	9720	10085
2MC5	21588	3923	23069	17627	13663	110481	108589
3MC5	17213	2853	16678	12039	10510	79909	76332
nC6	43798	9523	68177	43690	19732	247505	214592
22DMC5	354	247	2805	957			
MCYC5	26105	3278	21116	13803	19361	167022	146075
24DMC5	1751	690	4560	2600	1042	10874	8462
223TMC4	33		347	32		826	88
BEN	25185	3675	25784	8790	9621	109148	70358
33DMC5	402	380	2860	1320	5	3653	2939
CYC6	25749	6530	40504	17933	10897	133251	106322
2MC6	25163	10131	66491	31163	11666	127406	90730
23DMC5	11244	2026	15398	9724	5797	55003	38922
11DMCYC5	2957	2524	16251	7378	2029	36350	27661
3MC6	42471	9910	67530	35835	19534	183631	128125
1c3DMCYC5	22641	3049	20300	13179	18007	136167	95684
1t3DMCYC5	20636	2786	18533	11956	16137	124225	86472
1t2DMCYC5	55824	9083	61310	35479	42680	328270	228393
nC7	101606	30597	247538	105730	34178	553836	338382
MCYC6	81640	28234	177595	76161	36684	471040	307990
22DMC6	5964	4488	30636	13733	5553	72021	46496
ECYC5	20735	2471	16002	8263	9541	83283	51962
25DMC6	6614	2661	16394	6726	2551	23990	14727
24DMC6	5958	2551	16007	7022	2389	24938	15377
223TMC5	29624	3222	23700	16141	23194	152531	92435
234TMC5	48		598	320	159	1477	87
TOL	41453	10063	82767	13139	11012	184151	64016
2MC7	64698	29224	179753	70605	31298	342962	193132
3MC7	12237	4250	27269	12236	43998	75232	43013
1c4DMCYC6	18881	2748	14599	9908	16267	86775	48143
nC8	114961	37688	260731	93978	36198	566257	270731

Sample	L02202	L02203	L02205	L02206	L02207	L02208	L02209
Unit	Nisku	Nisku	Leduc	Leduc	Nisku	Nisku	Leduc
Lat	52,62592	52,64631	52,33768	52,33048	53,52126	53,54302	53,56794
Long	-113,265	-113,253	-112,864	-112,91	-113,723	-113,73	-113,729
iC5	13675	827	76	5168	33502	1523	9487
nC5	30561	1526	57	9408	43000	1989	13844
22DMC4	651		23	81	2086	96	763
CYC5	6063	228			9813	171	2599
23DMC4	3855	556		3279	7642	265	2849
2MC5	52024	6497	1569	23829	73395	4008	26864
3MC5	37397	4833	1720	19038	55733	3183	20074
nC6	111496	13569	5276	43967	125093	8173	48412
22DMC5		8	65		3931	239	
MCYC5	82551	9967	4796	29133	141072	9126	49330
24DMC5	4844	816	321	1991	7075	735	3370
223TMC4	323				610		75
BEN	43192	5721	5233	21318	10431	852	2631
33DMC5	1658	284	35	101	3172	297	1506
CYC6	62783	8178	7193	28830	102760	7751	37258
2MC6	59590	11691	8953	27306	66021	9345	33609
23DMC5	26142	5086	4216	12556	28501	3605	12777
11DMCYC5	16735	3058	978	3248	41565	4595	17403
3MC6	88203	17392	16590	46486	93104	13528	46163
1c3DMCYC5	66669	12529	8786	25487	93862	11904	41725
1t3DMCYC5	60963	11222	8224	23220	90009	11552	39598
1t2DMCYC5	161675	30939	23503	63502	211341	27293	91601
nC7	262776	46110	41101	94146	182739	33704	93344
MCYC6	241767	48421	43356	92689	355257	59241	166062
22DMC6	36290	8500	3738	7071	49982	13037	28460
ECYC5	44386	8663	10786	21912	36062	6625	16732
25DMC6	12254	3121	3833	7238	7875	2827	5454
24DMC6	12860	3178	3480	6673	8895	3105	5950
223TMC5	81087	20339	18149	33034	64093	19642	37948
234TMC5	189	121	122	184	110	180	70
TOL	64190	7819	13654	26012	9853	2620	4773
2MC7	187801	49697	44824	68791	76987	38115	54901
3MC7	41301	10907	9098	92348	35183	16104	23551
1c4DMCYC6	50595	15556	15849	22848	31911	18703	21853
nC8	310297	66915	68454	96162	77079	42611	50560

Sample	L02210	L02211	L02212	L02213	L02215	L02219	L02220
Unit	Leduc	Leduc	Nisku	Leduc	Leduc	Leduc/Nisku	Nisku
Lat	53,56116	53,51028	53,5357	53,60476	53,48118	52,15582	52,13719
			-				
Long	-113,724	-113,741	113,735	-113,704	-113,766	-112,77	-112,758
iC5	58441	34	1037	10076	4372	185593	139852
nC5	82318	43	1363	12126	6859	261826	208902
22DMC4	1357		20	227	277	3645	2075
CYC5	19884		72	3195	1508	24090	28851
23DMC4	10994		27	2574	2366	42384	23082
2MC5	113768	2287	6186	29175	29346	357092	231298
3MC5	84323	1941	4926	23536	23791	249661	174959
nC6	177926	5327	11690	36974	57369	481171	368131
22DMC5	10		13				
MCYC5	242759	6315	15932	69644	72837	353495	321103
24DMC5	9283	774	1109	3113	5641	21841	15882
223TMC4	751	112	29	83	336	1180	1050
BEN	24787	1989	2821	8900	14713	223732	164658
33DMC5	1877	159	23	519	1578	2915	2449
CYC6	136583	5077	11134	29633	46072	249476	209604
2MC6	81408	10374	13050	29515	68498	213717	156390
23DMC5	43477	5250	6752	16983	32765	92270	77864
11DMCYC5	48073	4810	6856	16307	42290	23977	25611
3MC6	130257	16785	21728	52991	115142	322759	262068
1c3DMCYC5	156551	16885	24214	66830	122231	192386	215835
1t3DMCYC5	146630	15855	22884	62041	114669	172006	197107
1t2DMCYC5	321787	36668	52511	148118	248330	440181	528562
nC7	292324	41488	54531	81684	281824	550071	532056
MCYC6	458150	66659	95555	146268	402289	609818	510032
22DMC6	100826	21914	26157	43772	136252	41666	55364
ECYC5	48239	7156	10409	22676	40627	145324	130633
25DMC6	15055	3944	4381	7523	19972	52266	31807
24DMC6	16422	4148	4941	7185	23132	38125	31018
223TMC5	125845	30368	36990	67543	158039	158777	238348
234TMC5	936	26	98	335	1461	201	2302
TOL	47427	7348	9780	17153	58278	282687	246542
2MC7	190449	56812	71017	97529	286292	354277	319762
3MC7	69546	20104	26892	25297	102018	72162	472090
1c4DMCYC6	83865	29901	37232	47123	123228	86543	142140
nC8	277791	76967	105384	85567	404157	452500	439687

Sample	L02221	L02224	L02225	L02226	L02255	L02291
Unit	Leduc/Nisku	Leduc	Nisku	Nisku	Keg River	Leduc
Lat	52,10469	52,28313	52,28664	52,25394	56,8946	55,10916
Long	-112,752	-112,835	-112,776	-112,788	-115,513	-117,661
iC5	74364	393	175879	44798	9402	6113
nC5	101858	101	213481	61527	11647	7170
22DMC4	1638		2570	968	619	258
CYC5	12175		25545	10576	1564	2339
23DMC4	16960		27172	10542	3759	1842
2MC5	154930	284	236555	86817	43158	19796
3MC5	115345	259	175262	67496	32220	15566
nC6	221071	910	337364	129446	93348	29754
22DMC5	16	12				
MCYC5	189500	1318	300586	129815	72629	47113
24DMC5	11777	79	15212	6162	6516	2369
223TMC4	621		765	159	514	38
BEN	96150	4603	168964	54732	7534	7411
33DMC5	1581		2081	947	2075	687
CYC6	110820	2595	203754	95505	48022	28069
2MC6	108088	3545	148254	60980	71227	22748
23DMC5	52179	1885	71574	31442	27869	12064
11DMCYC5	15163	330	21661	9787	35021	17138
3MC6	169623	6794	248393	104572	104651	37398
1c3DMCYC5	127988	3886	201523	84525	92866	41798
1t3DMCYC5	114449	3747	183507	77815	87843	38734
1t2DMCYC5	311297	10781	481377	210114	177936	86984
nC7	300047	18929	446759	177725	278227	69593
MCYC6	310350	25678	457663	211197	302192	128850
22DMC6	28204	2368	41597	19641	87321	34193
ECYC5	77090	6945	126343	54561	31206	13506
25DMC6	20789	2675	27632	12221	16706	3956
24DMC6	20487	2477	25471	11708	19011	5097
223TMC5	111337	12690	192447	87940	104497	37337
234TMC5	1136	10	1446	81	2836	397
TOL	103263	19125	171015	48510	26962	12181
2MC7	152420	35287	255374	107545	221953	51878
3MC7	36965	29864	360816	166639	69195	21591
1c4DMCYC6	53272	16920	94893	46838	82624	20853
nC8	225923	72201	300990	108867	348288	56535

Β. Σχηματισμοί προέλευσης των δειγμάτων

Formation	No
Arcs	4
Bearspaw	1
Beaverhill Lake	2
Camrose	1
Crossfield	1
Granite Wash	1
Jefferson	1
Keg River	14
Leduc	42
Leduc/Nisku	8
Nisku	63
Nisku/Leduc	3
Slave Point	1
Swan Hills	1
Wabamun	2
Sum	145

Γ. Αναλυτικός πίνακας ενώσεων

Συμβολισμός	Ονομασία
iC5	Ισοπεντάνιο
nC5	Κανονικό πεντάνιο
22DMC4	2,2-διμεθυλοβουτάνιο
CYC5	Κυκλοπεντάνιο
23DMC4	2,3-διμεθυλοβουτάνιο
2MC5	2-μεθυλοπεντάνιο
3MC5	3-μεθυλοπεντάνιο
nC6	Κανονικό εξάνιο
22DMC5	2,2-διμεθυλοπεντάνιο
MCYC5	Μεθυλοκυκλοπεντάνιο
24DMC5	2,2-διμεθυλοπεντάνιο
223TMC4	2,2,3-τριμεθυλοβουτάνιο
BEN	Βενζόλιο
33DMC5	3,3-διμεθυλοπεντάνιο
CYC6	Κυκλοεξάνιο
2MC6	2-μεθυλοεξάνιο
23DMC5	2,3-διμεθυλοπεντάνιο
11DMCYC5	1,1-διμεθυλοκυκλοπεντάνιο
3MC6	3-μεθυλοεξάνιο
1c3DMCYC5	1,cis-3-διμεθυλοκυκλοπεντάνιο
1t3DMCYC5	1,trans-3-διμεθυλοκυκλοπεντάνιο
1t2DMCYC5	1,trans-2-διμεθυλοκυκλοπεντάνιο
nC7	Κανονικό επτάνιο
MCYC6	Μεθυλοκυκλοεξάνιο
22DMC6	2,2-διμεθυλοεξάνιο
ECYC5	Αίθυλοκυκλοεξάνιο
25DMC6	2,5-διμεθυλοεξάνιο
24DMC6	2,4-διμεθυλοεξάνιο
223TMC5	2,2,3-τριμεθυλοπεντάνιο
234TMC5	2,3,4-τριμεθυλοπεντάνιο
TOL	Τολουόλιο
2MC7	2-μεθυλοεπτάνιο
3MC7	3-μεθυλοεπτάνιο
1c4DMCYC6	1,cis-4-διμεθυλοκυκλοεξάνιο
nC8	Κανονικό οκτάνιο

Α. Διαγράμματα δειγμάτων-συστατικών.

Τα παρακάτω κανονικοποιημένα ραβδοειδή διαγράμματα απεικονίζουν τα δείγματα της παρούσας μελέτης ως προς τις ενώσεις που εμπεριέχουν.

Β. Ιστογράμματα συστατικών-αριθμού δειγμάτων.

Τα παρακάτω ιστογράμματα απεικονίζουν των αριθμό των δειγμάτων που εμπεριέχουν το κάθε συστατικό και τις αντίστοιχες συγκεντρώσεις τους.

Παράρτημα 2

Στο παράρτημα αυτό παρουσιάζεται ο αναλυτικός κώδικας που γράφτηκε με τη χρήση του προγράμματος Matlab για τον υπολογισμό όλων των δεικτών που χρησιμοποιήθηκαν στην παρούσα έρευνα, καθώς και την δημιουργία των διαγραμμάτων συσχέτισης των.

```
% nr-number of samples
% nc-number of components
88
%Import Data from Excel file (.xlsx or .xls). Reads the first sheet
and stores separately Data and labels.
    clear all
    [filename, filepath] = uigetfile({'*.xlsx'; '*.xls'}, 'select
Data file');
    [Data,Labels] = xlsread(strcat(filepath,filename));
    clearvars -except Data Labels
      %% Define Data
8
      Coord = Data(:, 1:2);
8
     Data = Data(:, 3:end);
8
    %% Replace Nan with zeroes
    [nr,nc] = size(Data);
        for i=1:nr;
            for j=1:nc
                if isnan(Data(i,j))
                   Data(i,j)=0;
                end
            end
        end
        clearvars -except Data Coord Labels
 %% Determine outliers
 %% Normalize chromatograms (divide by total area)
    [nr,nc] = size(Data);
    Data norm area = Data./repmat(sum(Data')',1,nc);
    clearvars -except Data Coord Labels Data norm area
 %% Plot samples as subplots in a single figure
% sub r-number of rows in the plot
% sub c-number of columns in the plot
% Define sample and component names
    Sample names = Labels(2:end,1);
    Component names = Labels(1,5:end);
    [nr, nc] = size(Data);
% Define how to arrange subplots on a page
    sub r = 5;
    subc = 1;
% Calculate number of needed pages
    n_pages = nr/(sub_r*sub_c);
    n_pages = ceil(n_pages);
% Number of Pages np
    for j = 1:n pages;
         figure
           k = (j-1)*(sub r*sub c)+1;
    for i = k:k+(sub r*sub c)-1;
```

```
subplot(sub r, sub c, i-(sub r*sub c)*(j-1)),
bar(Data norm area(i,:), 'FaceColor', [0.8314 0.8157 0.7843]);
% Define plot limits
   xlim([0,nc+1]);
   ylim([0, max(max(Data))]);
8
% Create axes' labels
     xlabel('Component', 'FontSize',14);
2
    ylabel('Value', 'FontSize',14);
% Insert sample and variables names
   title(Sample_names{i}, 'FontSize', 12);
    set(gca,'XTickLabel', Component names,'XTick',1:nc,'FontSize',8);
2
   xticklabel rotate([], 30, Component names);
    end
    end
clearvars -except Data Coord Labels Data norm area
%% Check distributions of variables with histograms
% sub r-number of rows in the plot
% sub c-number of columns in the plot
% Define sample and component names
    Sample names = Labels(2:end,1);
    Component_names = Labels(1,5:end);
    [nr, nc] = size(Data);
% Define how to arrange subplots on a page
    sub r = 5;
    sub_c = 1;
% Calculate number of needed pages
    n pages = nc/(sub r*sub c);
    n pages = ceil(n pages);
for j = 1:n pages;
    figure
    k = (j-1) * (sub r*sub c) +1;
    for i = k:k+(sub r*sub c)-1;
% Histograms
    subplot(sub r,sub c,i-(sub r*sub c)*(j-1)),
hist(Data norm area(:,i));
% Define plot limits
    xlim([min(Data norm area(:,i)), max(Data norm area(:,i))]);
% Add title and axis labels
   xlabel('fraction');
    ylabel('Num of Samples');
    title(Component names{i}, 'FontSize', 12);
```

end

```
end
clearvars -except Data Labels Data norm area
%% Check distributions of variables within the Data set - boxplot -
in a single figure
% sub r-number of rows in the plot
% sub c-number of columns in the plot
% clear all
% Define sample and component names
    Sample names = Labels(2:end,1);
    Component names = Labels(1,4:end);
    [nr, nc] = size(Data);
% Define how to arrange subplots on a page
    sub c = 5;
    sub r = 1;
% Calculate np, number of needed pages
    n pages = nc/(sub r*sub c);
    n pagesp = ceil(n pages);
for j = 1:n_pages;
     figure;
        k = (j-1) * (sub r*sub c) +1;
    for i = k:k+(sub r*sub c)-1;
% Boxplot
    subplot(sub_r,sub_c,i-(sub_r*sub_c)*(j-1)),
boxplot(Data_norm_area(:,i));
    grid on
% Add title
    title(Component_names{i}, 'FontSize', 12);
    end
end
clearvars -except Data Labels Data norm area
%% Allocate imported array to column variable names
Sample names = Labels(2:end,1);
Unit = Labels(2:end,2);
Lat = Data(:, 1);
Long = Data(:,2);
iC5 = Data(:,3);
nC5 = Data(:, 4);
c 22DMC4 = Data(:,5);
CYC5 = Data(:, 6);
c 23DMC4 = Data(:,7);
c<sup>2</sup>MC5 = Data(:,8);
c 3MC5 = Data(:,9);
nC6 = Data(:,10);
c 22DMC5 = Data(:,11);
MCYC5 = Data(:, 12);
c 24DMC5 = Data(:,13);
```

```
c 223TMC4 = Data(:,14);
BEN = Data(:, 15);
c 33DMC5 = Data(:,16);
CYC6 = Data(:, 17);
c 2MC6 = Data(:, 18);
  23DMC5 = Data(:, 19);
С
c 11DMCYC5 = Data(:,20);
c 3MC6 = Data(:,21);
c 1c3DMCYC5 = Data(:,22);
c 1t3DMCYC5 = Data(:,23);
c_1t2DMCYC5 = Data(:,24);
nC7 = Data(:, 25);
MCYC6 = Data(:, 26);
c 22DMC6 = Data(:, 27);
ECYC5 = Data(:, 28);
c 25DMC6 = Data(:,29);
c_24DMC6 = Data(:,30);
c 223TMC5 = Data(:,31);
c 234TMC5 = Data(:,32);
TOL = Data(:, 33);
c 2MC7 = Data(:,34);
c 3MC7 = Data(:,35);
c 1c4DMCYC6 = Data(:,36);
nC8 = Data(:, 37);
clearvars -except Data Labels Data norm area iC5 nC5 c 22DMC4 CYC5
c 23DMC4...
    c 2MC5 c 3MC5 nC6 c 22DMC5 MCYC5 c 24DMC5 c 223TMC4 BEN c 33DMC5
CYC6 c 2MC6 c 23DMC5...
   c 11DMCYC5 c 3MC6 c 1c3DMCYC5 c 1t3DMCYC5 c 1t2DMCYC5 nC7 MCYC6
c 22DMC6 ECYC5 c 25DMC6...
    c 24DMC6 c 223TMC5 c 234TMC5 TOL c 2MC7 c 3MC7 c 1c4DMCYC6 nC8
Lat Long Unit
22
%Paraffinicity Index
Para=nC7./MCYC6;
figure
subplot(2,1,1)
bar(Para)
xlabel('Samples','FontSize',18)
ylabel('nC7/MCYC6', 'FontSize', 18)
title('Paraffinicity Index', 'FontSize', 22);
subplot(2,1,2)
bar(sort(Para))
xlabel('Samples', 'FontSize', 18)
ylabel('nC7/MCYC6', 'FontSize', 18)
title('Paraffinicity Index by ascending order', 'FontSize', 22);
% h = colorbar;
% set(h, 'ylim', [0 1])
figure
scatter(Long,Lat,80,Para,'filled'), colormap(jet(16)), colorbar;
xlabel('Longitude', 'FontSize', 18);
ylabel('Latitude', 'FontSize', 18);
title('Paraffinicity Index vs location sample', 'FontSize', 22);
Nisku Para=Para(strmatch('Nisku',Unit));
Leduc Para=Para(strmatch('Leduc',Unit));
```

```
KegRiver Para=Para(strmatch('Keg River', Unit));
Arcs Para=Para(strmatch('Arcs',Unit))
LeducNisku Para=(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'FontWeight', 'bold', 'FontSize', 11, ...
    'Position', [0.13 0.847575057736721 0.775 0.0662047729022321]);
ylim(axes1,[0 10]);
box(axes1, 'on');
hold(axes1, 'on');
bar(Nisku Para, 'DisplayName', 'Nisku', 'Parent', axes1, ...
    'FaceColor', [0.40000005960464 0.40000005960464 1]);
xlabel('Samples','FontSize',16);
title('Paraffinicity Index by Formation', 'FontSize', 22);
legend1 = legend(axes1, 'show');
set(legend1, 'FontSize', 11, 'Location', 'best');
axes2 = axes('Parent', figure1, 'FontWeight', 'bold', 'FontSize', 11,...
    'Position', [0.13 0.665127020785219 0.775 0.0717547527051372]);
ylim(axes2,[0 10]);
box(axes2, 'on');
hold(axes2, 'on');
bar(Leduc Para, 'DisplayName', 'Leduc', 'Parent', axes2,...
    'FaceColor', [0.20000002980232 0.600000023841858 1]);
xlabel('Samples','FontSize',16);
legend2 = legend(axes2, 'show');
set(legend2, 'FontSize', 11, 'Location', 'best');
axes3 = axes('Parent', figure1, 'XTick', [1 2 3 4 5 6 7 8 9 10 11 12 13
14],...
    'FontWeight', 'bold',...
    'FontSize',11,...
    'Position',[0.13 0.491916859122402 0.775 0.0722954228425313]);
ylim(axes3,[0 10]);
box(axes3, 'on');
hold(axes3, 'on');
bar(KegRiver Para, 'DisplayName', 'Keg River', 'Parent', axes3,...
    'FaceColor', [0.60000023841858 0.400000005960464 1]);
xlabel('Samples','FontSize',16);
ylabel('Paraffinicity Index', 'FontSize',18);
legend3 = legend(axes3, 'show');
set(legend3, 'FontSize', 11, 'Location', 'best');
axes4 = axes('Parent', figure1, 'XTick', [1 2 3
4], 'FontWeight', 'bold',...
    'FontSize',11,...
    'Position', [0.13 0.327944572748268 0.775 0.0732192142945688]);
ylim(axes4,[0 10]);
box(axes4, 'on');
hold(axes4, 'on');
bar(Arcs Para, 'DisplayName', 'Arcs', 'Parent', axes4,...
    'FaceColor', [1 0.60000023841858 0.800000011920929]);
xlabel('Samples','FontSize',16);
legend4 = legend(axes4, 'show');
set(legend4, 'FontSize', 11, 'Location', 'best');
axes5 = axes('Parent', figure1, 'XTick', [1 2 3 4 5 6 7
8], 'FontWeight', 'bold',...
    'FontSize',11,...
```

```
'Position', [0.13 0.166281755196305 0.775 0.0622125403211083]);
ylim(axes5,[0 10]);
box(axes5, 'on');
hold(axes5, 'on');
bar(LeducNisku Para, 'DisplayName', 'Leduc/Nisku', 'Parent', axes5,...
    'FaceColor', [0.40000005960464 1 0.40000005960464]);
xlabel('Samples','FontSize',16);
legend5 = legend(axes5, 'show');
set(legend5, 'FontSize', 11, 'Location', 'best');
clearvars -except Data Labels Data norm area iC5 nC5 c 22DMC4 CYC5
c 23DMC4...
    c 2MC5 c 3MC5 nC6 c 22DMC5 MCYC5 c 24DMC5 c 223TMC4 BEN c 33DMC5
CYC6 c 2MC6 c 23DMC5...
    c 11DMCYC5 c 3MC6 c 1c3DMCYC5 c 1t3DMCYC5 c 1t2DMCYC5 nC7 MCYC6
c 22DMC6 ECYC5 c 25DMC6...
    c 24DMC6 c 223TMC5 c 234TMC5 TOL c 2MC7 c 3MC7 c 1c4DMCYC6 nC8
Lat Long Unit Para
22
% Aromaticity Index
Arom=TOL/nC7;
figure
subplot(2,1,1)
bar(Arom)
xlabel('Samples','FontSize',18)
ylabel('TOL/nC7', 'FontSize',18)
title('Aromaticity Index', 'FontSize', 22);
subplot(2,1,2)
bar(sort(Arom))
xlabel('Samples','FontSize',18)
ylabel('TOL/nC7', 'FontSize', 18)
title('Aromaticity Index by ascending order', 'FontSize', 22);
% h = colorbar;
% set(h, 'ylim', [0 1])
Arom=TOL./nC7
figure
scatter(Long,Lat,80,Arom,'filled'), colormap(jet(16)), colorbar;
xlabel('Longitude','FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Aromaticity Index vs location sample', 'FontSize', 22);
Arom=TOL./nC7
Nisku Arom=Arom(strmatch('Nisku',Unit));
Leduc Arom=Arom(strmatch('Leduc',Unit));
KegRiver Arom=Arom(strmatch('Keg River', Unit));
Arcs Arom=Arom(strmatch('Arcs',Unit));
LeducNisku Arom=Arom(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'FontWeight', 'bold', 'FontSize', 11, ...
    'Position',[0.13 0.847575057736721 0.775 0.06620477290223211);
box(axes1, 'on');
hold(axes1, 'on');
```

```
bar(Nisku Arom, 'DisplayName', 'Nisku', 'Parent', axes1,...
    'FaceColor', [0.40000005960464 0.40000005960464 1]);
xlabel('Samples','FontSize',16);
title('Aromaticity Index by Formation', 'FontSize', 22);
legend1 = legend(axes1, 'show');
set(legend1, 'FontSize', 11, 'Location', 'best');
axes2 = axes('Parent', figure1, 'FontWeight', 'bold', 'FontSize', 11,...
    'Position', [0.13 0.665127020785219 0.775 0.0717547527051372]);
box(axes2, 'on');
hold(axes2, 'on');
bar(Leduc Arom, 'DisplayName', 'Leduc', 'Parent', axes2,...
    'FaceColor', [0.20000002980232 0.600000023841858 1]);
xlabel('Samples','FontSize',16);
legend2 = legend(axes2, 'show');
set(legend2, 'FontSize', 11, 'Location', 'best');
axes3 = axes('Parent', figure1, 'XTick', [1 2 3 4 5 6 7 8 9 10 11 12 13
14],...
    'FontWeight', 'bold',...
    'FontSize',11,...
    'Position', [0.13 0.491916859122402 0.775 0.0722954228425313]);
ylim(axes3,[0 1]);
box(axes3, 'on');
hold(axes3, 'on');
bar(KegRiver Arom, 'DisplayName', 'Keg River', 'Parent', axes3,...
    'FaceColor', [0.60000023841858 0.40000005960464 1]);
xlabel('Samples','FontSize',16);
ylabel('Aromaticity Index', 'FontSize', 18);
legend3 = legend(axes3, 'show');
set(legend3, 'FontSize', 11, 'Location', 'best');
axes4 = axes('Parent', figure1, 'XTick', [1 2 3
4], 'FontWeight', 'bold',...
    'FontSize',11,...
    'Position', [0.13 0.327944572748268 0.775 0.0732192142945688]);
ylim(axes4,[0 1]);
box(axes4, 'on');
hold(axes4, 'on');
bar(Arcs Arom, 'DisplayName', 'Arcs', 'Parent', axes4,...
    'FaceColor', [1 0.60000023841858 0.800000011920929]);
xlabel('Samples','FontSize',16);
legend4 = legend(axes4, 'show');
set(legend4, 'FontSize', 11, 'Location', 'best');
axes5 = axes('Parent', figure1, 'XTick', [1 2 3 4 5 6 7
8], 'FontWeight', 'bold',...
    'FontSize',11,...
    'Position', [0.13 0.166281755196305 0.775 0.0622125403211083]);
box(axes5, 'on');
hold(axes5, 'on');
bar(LeducNisku Arom, 'DisplayName', 'Leduc/Nisku', 'Parent', axes5, ...
    'FaceColor', [0.40000005960464 1 0.40000005960464]);
xlabel('Samples','FontSize',16);
legend5 = legend(axes5, 'show');
set(legend5, 'FontSize', 11, 'Location', 'best');
clearvars -except Data Labels Data norm area iC5 nC5 c 22DMC4 CYC5
c 23DMC4...
```

```
c_2MC5 c_3MC5 nC6 c_22DMC5 MCYC5 c_24DMC5 c_223TMC4 BEN c_33DMC5
CYC6 c_2MC6 c_23DMC5...
c_11DMCYC5 c_3MC6 c_1c3DMCYC5 c_1t3DMCYC5 c_1t2DMCYC5 nC7 MCYC6
c_22DMC6 ECYC5 c_25DMC6...
c_24DMC6 c_223TMC5 c_234TMC5 TOL c_2MC7 c_3MC7 c_1c4DMCYC6 nC8
Lat Long Unit Para Arom
```

%%
%Fractionation (Aromaticity_Paraffinicity)
Para=nC7./MCYC6;

```
Arom=TOL./nC7
```

```
Nisku Para=Para(strmatch('Nisku',Unit));
Nisku Arom=Arom(strmatch('Nisku',Unit))
Leduc Para=Para(strmatch('Leduc',Unit));
Leduc Arom=Arom(strmatch('Leduc',Unit));
KegRiver Para=Para(strmatch('Keg River',Unit));
KegRiver Arom=Arom(strmatch('Keg River',Unit));
Arcs Para=Para(strmatch('Arcs',Unit));
Arcs Arom=Arom(strmatch('Arcs',Unit));
LeducNisku Para=Para(strmatch('Leduc/Nisku',Unit));
LeducNisku Arom=Arom(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'FontWeight', 'bold', 'FontSize', 11);
box(axes1, 'on');
hold(axes1, 'on');
plot (Nisku Para, Nisku Arom, 'DisplayName', 'Nisku', 'Marker', '*', 'LineSt
yle', 'none<sup>-</sup>,...
    'Color',[0 0 0.40000005960464]);
hold on
plot (Leduc Para, Leduc Arom, 'DisplayName', 'Leduc', 'MarkerFaceColor', [0
.20000002980232 0.60000023841858 11,...
    'Marker', 'o',...
    'LineStyle', 'none',...
    'Color',[0.20000002980232 0.600000023841858 1]);
hold on
plot(KegRiver_Para,KegRiver_Arom,'DisplayName','Keg
River', 'MarkerFaceColor', [0.60000023841858 0.40000005960464 1],...
    'Marker', 'diamond',...
    'LineStyle', 'none',...
    'Color', [0.60000023841858 0.40000005960464 1]);
hold on
plot(Arcs_Para,Arcs_Arom,'DisplayName','Arcs','MarkerFaceColor',[1
0.400000005960464 0.800000011920929],...
    'Marker', 'square',...
    'LineStyle', 'none',...
    'Color',[1 0.40000005960464 0.800000011920929]);
```

```
plot(LeducNisku_Para,LeducNisku Arom,'DisplayName','LeducNisku','Mark
erFaceColor', [0 0.40000005960464 0.20000002980232],...
    'Marker', 'hexagram',...
    'LineStyle', 'none',...
    'Color',[0 0.40000005960464 0.20000002980232]);
legend1 = legend(axes1, 'show');
set(legend1, 'FontSize', 11, 'Location', 'best');
% Create arrow
annotation(figure1, 'arrow', [0.338213762811127 0.433382137628111],...
    [0.455397073363654 0.755348122314703]);
% Create textbox
annotation(figure1, 'textbox',...
    [0.251098096632504 0.751742540106081 0.137628111273792
0.0561565017261222],...
    'String', 'Maturation trend',...
    'FontWeight', 'bold',...
    'FontSize',14,...
    'FitBoxToText', 'off',...
    'EdgeColor', 'none');
xlabel('nC7/MCYC6(Paraffinicity Index)', 'FontSize',18);
ylabel('Tol/nC7(Aromaticity Index)', 'FontSize', 18);
88
%Water Washing Check 1
%Lafargue(1996)
TOL nC7=TOL./nC7
BEN nC6=BEN./nC6
Nisku BEN nC6=BEN nC6(strmatch('Nisku',Unit));
Nisku TOL nC7=TOL nC7(strmatch('Nisku',Unit));
Leduc BEN nC6=BEN nC6(strmatch('Leduc',Unit));
Leduc TOL nC7=TOL nC7(strmatch('Leduc',Unit));
KeqRiver BEN nC6=BEN nC6(strmatch('Keq River', Unit));
KegRiver TOL nC7=TOL nC7(strmatch('Keg River',Unit));
Arcs BEN nC6=BEN nC6(strmatch('Arcs',Unit));
Arcs TOL nC7=TOL nC7(strmatch('Arcs',Unit));
LeducNisku BEN nC6=BEN nC6(strmatch('Leduc/Nisku',Unit));
LeducNisku TOL nC7=TOL nC7(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'YMinorTick', 'on', 'YScale', 'log',...
    'XMinorTick', 'on',...
    'XScale','log',...
    'FontWeight', 'bold',...
    'FontSize',11);
box(axes1, 'on');
```

```
loglog(Nisku TOL nC7,Nisku BEN nC6,'DisplayName','Nisku','Marker','*'
,'LineStyle','none',...
    'Color',[0 0 0.40000005960464]);
hold on
loglog (Leduc TOL nC7, Leduc BEN nC6, 'DisplayName', 'Leduc', 'MarkerFaceC
olor', [0.20000002980232 0.60000023841858 1],...
    'Marker','o',...
    'LineStyle', 'none',...
    'Color',[0.20000002980232 0.600000023841858 1]);
hold on
plot(KegRiver TOL nC7, KegRiver BEN nC6, 'DisplayName', 'Keg
River', 'MarkerFaceColor', [0.600000023841858 0.400000005960464 1],...
    'Marker', 'diamond',...
    'LineStyle', 'none',...
    'Color',[0.60000023841858 0.40000005960464 1]);
hold on
loglog(Arcs TOL nC7,Arcs BEN nC6,'DisplayName','Arcs','MarkerFaceColo
r',[1 0.40000005960464 0.800000011920929],...
    'Marker', 'square',...
    'LineStyle', 'none',...
    'Color', [1 0.40000005960464 0.800000011920929]);
hold on
loglog (LeducNisku TOL nC7, LeducNisku BEN nC6, 'DisplayName', 'LeducNisk
u', 'MarkerFaceColor', [0 0.40000005960464 0.20000002980232],...
    'Marker', 'hexagram',...
    'LineStyle', 'none',...
    'Color',[0 0.40000005960464 0.20000002980232]);
legend('show');
set(legend, 'Location', 'best');
annotation(figure1, 'arrow', [0.663250366032213 0.472913616398245],...
    [0.555930693069307 0.3440594059405941);
annotation(figure1, 'textbox', ...
    [0.280648609077599 0.457920792079208 0.239117130307467
0.0940594059405941],...
    'String', 'Water washing trend',...
    'FontWeight', 'bold',...
    'FontSize',18,...
    'FitBoxToText', 'off',...
    'EdgeColor', 'none');
xlabel('BEN/nC6','FontSize',18);
ylabel('TOL/nC7', 'FontSize',18);
title('Water Washing check 1', 'FontSize', 22);
```

hold(axes1, 'on');

```
%%
%Water Washing Check 2
%George(2002)
c3MC5_BEN=c_3MC5./BEN
MCYC6_TOL=MCYC6./TOL
```

```
Nisku c3MC5 BEN=c3MC5 BEN(strmatch('Nisku',Unit));
Nisku MCYC6 TOL=MCYC6 TOL(strmatch('Nisku',Unit));
Leduc_c3MC5_BEN=c3MC5_BEN(strmatch('Leduc',Unit));
Leduc MCYC6 TOL=MCYC6 TOL(strmatch('Leduc',Unit));
KegRiver c3MC5 BEN=c3MC5 BEN(strmatch('Keg River',Unit));
KegRiver MCYC6 TOL=MCYC6 TOL(strmatch('Keg River',Unit));
Arcs c3MC5 BEN=c3MC5 BEN(strmatch('Arcs',Unit));
Arcs MCYC6 TOL=MCYC6 TOL(strmatch('Arcs',Unit));
LeducNisku_c3MC5_BEN=c3MC5_BEN(strmatch('Leduc/Nisku',Unit));
LeducNisku MCYC6 TOL=MCYC6 TOL(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'YMinorTick', 'on', 'YScale', 'log',...
    'XMinorTick', 'on',...
    'XScale', 'log',...
    'FontWeight', 'bold',...
    'FontSize',11);
xlim(axes1,[0.1 1000]);
ylim(axes1,[0.1 1000]);
box(axes1, 'on');
hold(axes1, 'on');
loglog(Nisku c3MC5 BEN,Nisku MCYC6 TOL,'DisplayName','Nisku','Marker'
,'*','LineStyle','none',...
    'Color', [0 0 0.40000005960464]);
hold on
loglog(Leduc c3MC5 BEN, Leduc MCYC6 TOL, 'DisplayName', 'Leduc', 'MarkerF
aceColor', [0.20000002980232 0.600000023841858 1],...
    'Marker','0',...
    'LineStyle', 'none',...
    'Color',[0.20000002980232 0.60000023841858 1]);
hold on
plot(KeqRiver c3MC5 BEN, KeqRiver MCYC6 TOL, 'DisplayName', 'Keq
River', 'MarkerFaceColor', [0.60000023841858 0.400000005960464 1],...
    'Marker', 'diamond',...
    'LineStyle', 'none',...
    'Color',[0.60000023841858 0.400000005960464 1]);
hold on
loglog (Arcs c3MC5 BEN, Arcs MCYC6 TOL, 'DisplayName', 'Arcs', 'MarkerFace
Color', [1 0.40000005960464 0.800000011920929],...
    'Marker', 'square',...
    'LineStyle', 'none',...
    'Color', [1 0.40000005960464 0.800000011920929]);
```

```
hold on
loglog(LeducNisku_c3MC5_BEN,LeducNisku MCYC6 TOL, 'DisplayName', 'Leduc
Nisku', 'MarkerFaceColor', [0 0.40000005960464 0.20000002980232],...
    'Marker', 'hexagram',...
    'LineStyle', 'none',...
    'Color',[0 0.40000005960464 0.20000002980232]);
legend1 = legend(axes1, 'show');
set(legend1, 'FontSize', 13, 'Location', 'best');
annotation(figure1, 'arrow', [0.177159590043924 0.440702781844803],...
    [0.317716930006041 0.677374173822296]);
annotation(figure1, 'textbox',...
    [0.232796486090777 0.623406129188967 0.234260614934114
0.073232323232324],...
    'String', 'Water washing trend',...
    'FontWeight', 'bold',...
    'FontSize',18,...
    'FitBoxToText', 'off',...
    'EdgeColor', 'none');
xlabel('3MC5/BEN', 'FontSize',18);
ylabel('MCYC6/TOL', 'FontSize', 18);
title('Water Washing check 2', 'FontSize', 22);
22
%Biodegradation check(George 2002)
iC5 nC5=iC5./nC5
c3MC5 nC6=c 3MC5./nC6
Nisku iC5 nC5=iC5 nC5(strmatch('Nisku',Unit));
Nisku c3MC5 nC6=c3MC5 nC6(strmatch('Nisku',Unit));
Leduc iC5 nC5=iC5 nC5(strmatch('Leduc',Unit));
Leduc c3MC5 nC6=c3MC5 nC6(strmatch('Leduc',Unit));
KegRiver iC5 nC5=iC5 nC5(strmatch('Keg River',Unit));
KegRiver c3MC5 nC6=c3MC5 nC6(strmatch('Keg River',Unit));
Arcs iC5 nC5=iC5 nC5(strmatch('Arcs',Unit));
Arcs c3MC5 nC6=c3MC5 nC6(strmatch('Arcs',Unit));
LeducNisku iC5 nC5=iC5 nC5(strmatch('Leduc/Nisku',Unit));
LeducNisku c3MC5 nC6=c3MC5 nC6(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'YMinorTick', 'on', 'YScale', 'log',...
    'XMinorTick', 'on',...
    'XScale', 'log',...
    'FontWeight', 'bold',...
    'FontSize',11,...
    'Position', [0.130732064421669 0.146303626527094 0.775
0.743217828347541]);
ylim(axes1,[0.1 10]);
xlim(axes1,[0.1 10]);
box(axes1, 'on');
hold(axes1, 'on');
```

```
loglog(Nisku iC5 nC5,Nisku c3MC5 nC6,'DisplayName','Nisku','Marker','
*', 'LineStyle', 'none',...
    'Color',[0 0 0.40000005960464]);
hold on
loglog(Leduc iC5 nC5,Leduc c3MC5 nC6,'DisplayName','Leduc','MarkerFac
eColor', [0.20000002980232 0.600000023841858 1],...
    'Marker','o',...
'LineStyle','none',...
    'Color', [0.20000002980232 0.600000023841858 1]);
hold on
plot(KegRiver iC5 nC5,KegRiver c3MC5 nC6,'DisplayName','Keg
River', 'MarkerFaceColor', [0.600000023841858 0.400000005960464 1],...
    'Marker', 'diamond',...
    'LineStyle', 'none',...
    'Color', [0.60000023841858 0.40000005960464 1]);
hold on
loglog(Arcs iC5 nC5,Arcs c3MC5 nC6,'DisplayName','Arcs','MarkerFaceCo
lor', [1 0.40000005960464 0.800000011920929],...
    'Marker', 'square',...
    'LineStyle', 'none',...
    'Color',[1 0.40000005960464 0.800000011920929]);
hold on
loglog (LeducNisku iC5 nC5, LeducNisku c3MC5 nC6, 'DisplayName', 'LeducNi
sku', 'MarkerFaceColor', [0 0.40000005960464 0.20000002980232],...
    'Marker', 'hexagram',...
    'LineStyle', 'none',...
    'Color',[0 0.40000005960464 0.20000002980232]);
legend1 = legend(axes1, 'show');
set(legend1,...
    'Position', [0.774425330399856 0.560506541042595 0.106149339200288
0.28921567823957],...
    'FontSize',13);
annotation(figure1, 'textbox',...
    [0.31212737920937 0.553921568627451 0.271327964860908
0.098920213246589],...
    'String', {'Theoritical biodegrdation trend'},...
    'FontWeight', 'bold',...
    'FontSize',18,...
    'FitBoxToText', 'off',...
    'EdgeColor', 'none');
annotation(figure1, 'arrow', [0.486822840409958 0.658125915080529],...
    [0.38174826059456 0.731442577030812]);
xlabel('iC5/nC5','FontSize',18);
ylabel('3MC5/nC6', 'FontSize',18);
title('Biodegradation check', 'FontSize', 22);
```
```
%Thompson(1983)
HeptaneValue=100*nC7./(CYC6+c 2MC6+c 11DMCYC5+c 3MC6+c 1c3DMCYC5+c 1t
3DMCYC5+c 1t2DMCYC5+nC7+MCYC6)
IsoheptaneValue=(c 2MC6+c 3MC6)./(c 1c3DMCYC5+c 1t3DMCYC5+c 1t2DMCYC5
)
응응
%K1 Mango(1987)
a = (c 3MC6 + c 24DMC5);
b = (c^2 M C 6 + c^2 3 D M C 5);
Nisku a=a(strmatch('Nisku',Unit));
Nisku b=b(strmatch('Nisku',Unit));
Leduc a=a(strmatch('Leduc',Unit));
Leduc b=b(strmatch('Leduc',Unit));
KegRiver a=a(strmatch('Keg River',Unit));
KegRiver b=b(strmatch('Keg River', Unit));
Arcs a=a(strmatch('Arcs',Unit));
Arcs b=b(strmatch('Arcs',Unit));
LeducNisku a=a(strmatch('Leduc/Nisku',Unit));
LeducNisku b=b(strmatch('Leduc/Nisku',Unit));
figure1 = figure;
axes1 = axes('Parent', figure1, 'FontWeight', 'bold', 'FontSize', 11);
box(axes1, 'on');
hold(axes1, 'on');
plot(Nisku a, Nisku b, 'DisplayName', 'Nisku', 'Marker', '*', 'LineStyle', '
none',...
    'Color',[0 0 0.40000005960464]);
hold on
plot(Leduc a, Leduc b, 'DisplayName', 'Leduc', 'MarkerFaceColor', [0.20000
0002980232 0.600000023841858 1],...
    'Marker','o',...
    'LineStyle', 'none',...
    'Color',[0.20000002980232 0.600000023841858 1]);
hold on
plot(KegRiver a, KegRiver b, 'DisplayName', 'Keg
River', 'MarkerFaceColor', [0.60000023841858 0.40000005960464 1],...
    'Marker', 'diamond',...
    'LineStyle', 'none',...
    'Color', [0.60000023841858 0.40000005960464 1]);
hold on
plot(Arcs a, Arcs b, 'DisplayName', 'Arcs', 'MarkerFaceColor', [1
0.400000005960464 0.800000011920929],...
    'Marker', 'square',...
    'LineStyle', 'none',...
    'Color',[1 0.40000005960464 0.800000011920929]);
hold on
plot (LeducNisku a, LeducNisku b, 'DisplayName', 'LeducNisku', 'MarkerFace
Color', [0 0.40000005960464 0.20000002980232],...
    'Marker', 'hexagram',...
    'LineStyle', 'none',...
    'Color', [0 0.40000005960464 0.20000002980232]);
```

```
xlabel('3MC6+24DMC5','FontSize',18);
ylabel('2MC6+23DMC5','FontSize',18);
legend('show');
set(legend,'FontSize',11,'Location','best');
annotation(figure1,'textbox',...
[0.303342606149341 0.942707279607358 0.419204978038067
0.0721966205837171],...
'String','3MC6+2,4DMC5 vs 2MC6+2,3DMC5',...
'HorizontalAlignment','center',...
'FontWeight','bold',...
'FontSize',20,...
'FitBoxToText','off',...
'EdgeColor','none');
```

```
% nr-number of samples
% nc-number of components
88
%Import data from Excel file (.xlsx or .xls). Reads the first sheet
and stores separately data and labels.
    clear all
    [filename, filepath] = uigetfile({'*.xlsx'; '*.xls'}, 'select
data file');
    [Data,Labels] = xlsread(strcat(filepath,filename));
    clearvars -except Data Labels
    %% Define chromatographic data
    Data = table2array(Dev gas(:, 5:end));
2
   Data = Data(:, 3:end);
    clearvars -except Data Labels Dev gas
    %% Replace Nan with zeroes
    [nr,nc] = size(Data);
        for i=1:nr;
            for j=1:nc
                if isnan(Data(i,j))
                   Data(i,j)=0;
                end
            end
        end
        clearvars -except Data Labels Data norm area
 %% Determine outliers
 %% Normalize chromatograms (divide by total area)
    [nr,nc] = size(Data);
    Data norm area = Data./repmat(sum(Data')',1,nc);
    clearvars -except Data Labels Data norm area Dev gas
%% Plot samples as subplots in a single figure
% sub r-number of rows in the plot
% sub c-number of columns in the plot
% Define sample and component names
    Sample names = Labels(2:end,1);
    Component names = Labels(1,5:end);
    [nr, nc] = size(Data);
% Define how to arrange subplots on a page
    sub r = 5;
    subc = 3;
% Calculate number of needed pages
    n_pages = nr/(sub_r*sub_c);
    n_pages = ceil(n_pages);
% Number of Pages np
    for j = 1:n pages;
         figure
           k = (j-1)*(sub r*sub c)+1;
    for i = k:k+(sub r*sub c)-1;
```

```
subplot(sub r, sub c, i-(sub r*sub c)*(j-1)),
bar(Data norm area(i,:), 'FaceColor', [0.8314 0.8157 0.7843]);
% Define plot limits
   xlim([0,nc+1]);
   ylim([0, max(max(Data))]);
8
% Create axes' labels
    xlabel('Component', 'FontSize',14);
    ylabel('Value','FontSize',14);
% Insert sample and variables names
   title(Sample_names{i}, 'FontSize', 12);
    set(gca,'XTickLabel', Component names,'XTick',1:nc,'FontSize',8);
      xticklabel_rotate([], 90, Component names);
8
    end
end
clearvars -except Data Labels Data norm area
%% Check distributions of variables with histograms
% sub r-number of rows in the plot
% sub c-number of columns in the plot
% Define sample and component names
    Sample names = Labels(2:end,1);
    Component names = Labels(1,5:end);
    [nr, nc] = size(Data);
% Define how to arrange subplots on a page
    sub r = 5;
    subc = 1;
% Calculate number of needed pages
    n_pages = nc/(sub_r*sub_c);
    n_pages = ceil(n_pages);
for j = 1:n pages;
    figure
    k = (j-1) * (sub r*sub c) +1;
    for i = k:k+(sub r*sub c)-1;
% Histograms
    subplot(sub r,sub c,i-(sub r*sub c)*(j-1)),
hist(Data norm area(:,i));
% Define plot limits
    xlim([min(Data norm area(:,i)), max(Data norm area(:,i))]);
% Add title and axis labels
   xlabel('fraction');
   ylabel('Num of Samples');
   title(Component_names{i}, 'FontSize', 12);
```

end

```
end
clearvars -except Data Labels Data norm area
%% Check distributions of variables within the data set - boxplot -
in a single figure
% sub r-number of rows in the plot
% sub c-number of columns in the plot
% clear all
% Define sample and component names
    Sample names = Labels(2:end,1);
    Component names = Labels(1,4:end);
    [nr, nc] = size(Data);
% Define how to arrange subplots on a page
    sub c = 5;
    subr = 1;
% Calculate np, number of needed pages
    n pages = nc/(sub_r*sub_c);
    n pagesp = ceil(n pages);
for j = 1:n_pages;
     figure;
        k = (j-1) * (sub r*sub c)+1;
    for i = k:k+(sub r*sub c)-1;
% Boxplot
    subplot(sub r,sub c,i-(sub r*sub c)*(j-1)),
boxplot(Data norm area(:,i));
   grid on
% Add title
    title(Component names{i}, 'FontSize', 12);
    end
end
clearvars -except Data Labels Data norm area
%% Hunt parameters
Hunt ratio = (c 22DMC5 + c 33DMC5) ./...
    (c 22DMC5 + c 33DMC5 + c 23DMC5 +c 24DMC5);
figure
scatter(Long,Lat,80,Hunt ratio,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude','FontSize',18);
ylabel('Latitude', 'FontSize',18);
title('Hunt Parameter vs sample location', 'FontSize', 22);
% Hunt_ratio_Nisku = Hunt_ratio(strcmp('Nisku', Dev_gas.Unit));
% scatter3(.Lat,Long, Hunt ratio, '*', 'c');
figure
```

```
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
```

```
Unit)), Hunt ratio(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Hunt ratio(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Hunt ratio(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Hunt ratio(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Hunt ratio(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude', 'FontSize',18);
h=get(gca,'ylabel');
set(h, 'rotation', -24)
zlabel('Hunt parameter', 'FontSize', 18);
title('Hunt Parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - A
Thompson A = (BEN ./nC6);
figure
scatter(Long,Lat,80,Thompson A, 'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson A parameter vs sample location', 'FontSize', 22);
% Hunt ratio Nisku = Thompson A(strcmp('Nisku', Dev gas.Unit));
% scatter3(Lat,Long, Thompson A, '*', 'c');
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson A(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson A(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson A(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson A(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson A(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize', 18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude', 'FontSize', 18);
```

```
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson A parameter parameter', 'FontSize', 18);
title('Thompson A parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - B
Thompson B = (TOL ./nC7);
figure
scatter(Long,Lat,80,Thompson B,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize',18);
title('Thompson B parameter vs sample location', 'FontSize', 22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson B(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson B(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
   Lat(strcmp('Keg River', Unit)), Thompson B(strcmp('Keg River',...
    Unit)), 'o', 'q');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson B(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson B(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude','FontSize',18);
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson B parameter', 'FontSize', 18);
title('Thompson B parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - C
Thompson C = (nC6 + nC7) ./ (CYC6 + MCYC6);
figure
scatter(Long,Lat,80,Thompson C,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson C parameter vs sample location', 'FontSize',22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson C(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson C(strcmp('Leduc', Unit)), 'o', 'b');
```

```
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson C(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson C(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson C(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude', 'FontSize', 18);
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson C parameter', 'FontSize', 18);
title('Thompson C parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - I
Thompson_I = (c_2MC6 + c_3MC6) ./...
                 (c 1c3DMCYC5 + c 1t3DMCYC5 + c 1t2DMCYC5);
figure
scatter(Long,Lat,80,Thompson I,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude','FontSize',18);
vlabel('Latitude','FontSize',18);
title('Thompson I parameter vs sample location', 'FontSize', 22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson I(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson I(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson I(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson I(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson I(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude', 'FontSize',18);
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson I parameter', 'FontSize', 18);
title('Thompson I parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - F
Thompson F = nC7./MCYC6;
```

```
scatter(Long,Lat,80,Thompson F,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson F parameter vs sample location', 'FontSize',22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson F(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson F(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson F(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
   Unit)), Thompson F(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
   Unit)), Thompson F(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude','FontSize',18);
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson F parameter', 'FontSize', 18);
title('Thompson F parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - H
Thompson H = (nC7 * 100) . / (CYC6 + c 2MC6 + c 23DMC5 + ...
    c 11DMCYC5 +c 3MC6 + c 1c3DMCYC5 + c 1t3DMCYC5 +...
    c 1t2DMCYC5 + MCYC6 + nC7);
figure
scatter(Long,Lat,80,Thompson H, 'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson H parameter vs sample location', 'FontSize', 22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
   Unit)), Thompson H(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson H(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson H(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
   Unit)), Thompson H(strcmp('Arcs', Unit)), 'o', 'r');
```

```
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson H(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude', 'FontSize', 18);
h=get(gca,'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson H parameter', 'FontSize', 18);
title('Thompson H parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - S
Thompson S = nC6 ./ c 22DMC4;
figure
scatter(Long,Lat,80,Thompson S,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson S parameter vs sample location', 'FontSize',22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson S(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson S(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson S(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson S(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson S(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation',14)
ylabel('Latitude', 'FontSize',18);
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson S parameter', 'FontSize', 18);
title('Thompson S parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - R
Thompson R = nC7 ./ c 2MC6;
figure
scatter(Long,Lat,80,Thompson R,'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize',18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson R parameter vs sample location', 'FontSize',22);
```

```
figure
```

```
scatter3(Long(strcmp('Nisku',Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson R(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson R(strcmp('Leduc', Unit)), 'o', 'b');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson R(strcmp('Keg River',...
    Unit)), 'o', 'g');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson R(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson R(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
ylabel('Latitude','FontSize',18);
h=get(gca, 'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson R parameter', 'FontSize', 18);
title('Thompson R parameter vs sample location', 'FontSize', 22);
%% Thompson parameters - U
% function = Thompson U;
Thompson U = CYC6 ./ MCYC6;
figure
scatter(Long,Lat,80,Thompson U, 'filled'), colormap(jet(16)),
colorbar;
xlabel('Longitude', 'FontSize', 18);
ylabel('Latitude', 'FontSize', 18);
title('Thompson U parameter vs sample location', 'FontSize', 22);
figure
scatter3(Long(strcmp('Nisku', Unit)),Lat(strcmp('Nisku',...
    Unit)), Thompson U(strcmp('Nisku', Unit)), '*', 'c',...
    'DisplayName', 'Nisku');
hold on
scatter3(Long(strcmp('Leduc', Unit)),Lat(strcmp('Leduc',...
    Unit)), Thompson U(strcmp('Leduc', Unit)), 'o', 'b',
'DisplayName', 'Leduc');
scatter3(Long(strcmp('Keg River', Unit)), ...
    Lat(strcmp('Keg River', Unit)), Thompson U(strcmp('Keg River',...
    Unit)), 'o', 'g', 'DisplayName', 'Keg River');
scatter3(Long(strcmp('Arcs', Unit)),Lat(strcmp('Arcs',...
    Unit)), Thompson U(strcmp('Arcs', Unit)), 'o', 'r',
'DisplayName', 'Arcs');
scatter3(Long(strcmp('Nisku/Leduc',
Unit)),Lat(strcmp('Nisku/Leduc',...
    Unit)), Thompson U(strcmp('Nisku/Leduc', Unit)), 'o', 'k',
'DisplayName', 'Nisku/Leduc');
```

```
hold off
xlabel('Longitude', 'FontSize',18);
h=get(gca, 'xlabel');
set(h, 'rotation',14)
ylabel('Latitude', 'FontSize', 18);
h=get(gca,'ylabel');
set(h, 'rotation', -24)
zlabel('Thompson U parameter', 'FontSize', 18);
title('Thompson U parameter vs sample location', 'FontSize', 22);
%% Cross plots Thompson C - I - F
figure
scatter3(Thompson C(strcmp('Nisku',
Unit)), Thompson I(strcmp('Nisku',...
    Unit)), Thompson F(strcmp('Nisku', Unit)), '*', 'c');
hold on
scatter3(Thompson C(strcmp('Leduc',
Unit)), Thompson I(strcmp('Leduc',...
    Unit)), Thompson F(strcmp('Leduc',Unit)), 'o', 'b');
scatter3(Thompson C(strcmp('Keg River', Unit)), ...
    Thompson I(strcmp('Keg River', Unit)), Thompson F(strcmp('Keg
River',...
    Unit)), 'o', 'g');
scatter3(Thompson C(strcmp('Arcs',
Unit)), Thompson I(strcmp('Arcs',...
    Unit)), Thompson F(strcmp('Arcs', Unit)), 'o', 'r');
scatter3(Thompson C(strcmp('Nisku/Leduc',
Unit)), Thompson I(strcmp('Nisku/Leduc',...
    Unit)), Thompson F(strcmp('Nisku/Leduc', Unit)), 'o', 'k');
hold off
xlabel('Thompson C parameter', 'FontSize', 18);
h=get(gca,'xlabel');
set(h, 'rotation', 14)
xlim([0 3]);
zlim([0 3]);
ylabel('Thompson I parameter', 'FontSize', 18);
h=get(gca,'ylabel');
set(h, 'rotation',-24)
zlabel('Thompson F parameter', 'FontSize', 18);
% title('Thompson F parameter vs sample location', 'FontSize',22);
%% Cross plots F - B
figure
scatter(Thompson F(strcmp('Nisku',
Unit)), Thompson B(strcmp('Nisku', Unit)), ...
     '*', 'c');
hold on
scatter(Thompson_F(strcmp('Leduc',
Unit)), Thompson B(strcmp('Leduc',...
    Unit)), 'o', 'b');
scatter(Thompson F(strcmp('Keg River', Unit)), ...
    Thompson B(strcmp('Keg River', Unit)), 'o', 'g');
```

```
scatter(Thompson_F(strcmp('Arcs', Unit)),Thompson_B(strcmp('Arcs',...
Unit)), 'o', 'r');
scatter(Thompson_F(strcmp('Nisku/Leduc',
Unit)), Thompson_B(strcmp('Nisku/Leduc',...
   Unit)), 'o', 'k');
hold off
xlabel('Thompson F parameter', 'FontSize',18);
% h=get(gca,'xlabel');
% set(h, 'rotation',14)
xlim([0 2.5]);
zlim([0 1]);
ylabel('Thompson B parameter', 'FontSize', 18);
% h=get(gca, 'ylabel');
% set(h, 'rotation', -24)
% zlabel('Thompson F parameter', 'FontSize', 18);
% title('Thompson F parameter vs sample location', 'FontSize', 22);%%
% Create legend
```

Βιβλιογραφία

Ανδρεάδης Λ., 2009, Ανάπτυξη γραφικού περιβάλλοντος σε Matlab για συσταδοποίηση δεδομένων των ιεραρχικών αλγορίθμων απλού δεσμού, πλήρους δεσμού, μέσου συνδέσμου και παρουσίαση των αποτελεσμάτων σε δενδρογράμματα., Τ.Ε.Ι. Σερρών

Μαρκαντωνάτου Μ., Ανάπτυξη γραφικού περιβάλλοντος σε Matlab για συσταδοποίηση μέσω του αλγορίθμου Isodata., Τ.Ε.Ι. Σερρών

Μπαρμπαλίαρης Α., Εξόρυξη γνώσης από βάσεις δεδομένων, Τ.Ε.Ι. Καβάλας

Μπεγκούμ Τζ. , Ανάλυση των Χρηματιστηριακών Δεδομένων με τη χρήση των Αλγορίθμων Εξόρυξης

Παπαδόπουλος Ε., 2012, Εγχειρίδιο Matlab Simulink:Εισαγωγή στη Θεωρία και Τεχνολογία του Αυτόματου Ελέγχου

Παπαστεργίου Θ., Πάτρα 2005, Μέτρα Ομοιότητας στην Τεχνική Ομαδοποίηση

Πασαδάκης Ν., 2010 ,Ορυκτά Καύσιμα

Πασαδάκης Ν., 2004, Οργανική Γεωχημεία Ιζηματογενών Πετρωμάτων

BeMent, W.O., Levey, R.A., Mango, F.D., 1995. The temperature of oil generation as defined with a C7 chemistry parameter (2,4-DMP/2,3-DMP). In: Grimalt, J.O., Dorronsoro, C. (Eds.),Organic Geochemistry:Developments and Applications to Energy, Climate, Environment and Human History. Proceedings of the 17th International Meeting on Organic Geochemistry, San Sebastian, September 1995, pp. 505±507.

Canipa-Morales N.K., Galan-Vidal C.A., Guzman-Vega M.A., Jarvie D.M., 2003. Effect of evaporation on C7 light hydrocarbon parameters. Organic Geochemistry 34, 813–826

Connan, J., 1967. Geochemical significance of the extraction of amino acids from sediments. Bull. Centre Rech. Pau.-SNPA, 1(1), 165-171.

Creaney S. - Imperial Oil Resoures Ltd., Calgary J. Allan - Imperial Oil Resources Ltd., Calgary K.S. Cole - Imperial Oil Resources Ltd., Calgary M.G. Fowler - Geological Survey of Canada, Calgary P.W. Brooks - Geological Survey of Canada, Calgary K.G. Osadetz - Geological Survey of Canada, Calgary R.W. Macqueen - Geological Survey of Canada, Calgary L.R. Snowdon - Geological Survey of Canada, Calgary CL. Riediger - The University of Calgary, Calgary (http://ags.aer.ca/publications/chapter-31-petroleum-generation-and-migration.htm τελευταία πρόσβαση στις 4/12/2016)

Editors of Encyclopædia Britannica, Alberta Basin, Deppresion, Alberta, Canada (<u>https://www.britannica.com/place/Alberta-Basin</u> τελευταία πρόσβαση στις 4/12/2016)

George S.C., Boreham C.J., Minifie S.A., Teerman S.C., 2002. The effect of minor to moderate biodegradation on C5 to C9 hydrocarbons in crude oils. Organic Geochemistry 33, 1293–1317.

Huc, A.Y., Durand, B., Monin, J.C., 1978. Humic compounds and kerogens in cores from Black Sea sediments. Initial Reports of the Deep Sea Drilling Project, Leg 42B. Pt 2, vol. 42, pp. 737-748.

Hunt J.M., 1979. Petroleum geochemistry and geology - WH Freeman San Francisco.

Hunt J.M., 1996. Petroleum geochemistry and geology - WH Freeman New York.

Jackson K. J., Burnham A. K., Braun R. L., and Knauss K. G., 1995. Temperature and pressure dependence of n-hexadecane cracking. Org. Geochem. 23, 941–953.

Jarvie, D.M., 2001. Williston Basin petroleum systems: inferences from oil geochemistry and geology. The Rocky Mountain Geologist 38, 19–41.

Jones R. W., 1987. Organic facies. Advances in petroleum geochemistry. London: Academic press, vol. 2, 1-90.

Klemme, H.D., Ulmishek, G.F., 1991. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG Bulletin, 75, 18091851.

Lafargue E. and Le Thiez P., 1996. Effect of waterwashing on light ends compositional heterogeneity. Org. Geochemistry Vol. 24, No. 12, pp. 1141-1150.

Lijmbach, G.W.M., 1975. On the origin of petroleum - Proceedings of the 9th world petroleum congress. London: Applied Science Publishers, vol. 2, pp. 357-369.

Mango F. D., 1987. An invariance in the isoheptanes of petroleum. Science 273, 514–517

Mango F. D., 1990a. The origin of light cycloalkanes in petroleum. Geochim. Cosmochim. Acta 54, 23-27.

Mango F. D., 1990b. The origin of light hydrocarbons in petroleum: A kinetic test of the steadystate catalytic hypothesis. Geochim. Cosmochim. Acta 54, 1315-1323

Mango F. D., 1994. The origin of light hydrocarbons in petroleum: Ring preference in the closure of carboncyclic rings. Geochim. Cosmochim. Acta 58, 895–901

Mango F. D. and Hightower J., 1997a. The catalytic decomposition of petroleum into natural gas. Geochim. Cosmochim. Acta 24, 5347–5350.

Mango F. D., 2000. The origin of light hydrocarbons. Geochimica et Cosmochimica Acta, Vol. 64, No. 7, pp. 1265–1277

Miknis F.P., Turner T.F., Berdan G.L., Conn P.J., 1987. Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales - Energy & Fuels, 1, 477-483.

Mort, A.J., Stevens, L. and Wierzbicki, R. (2015): Devonian petroleum systems and exploration potential in southern Alberta, Part 3 Core conference, GeoConvention 2015: New horizons.

Norford B.S.- Geological Survey of Canada, Calgary F.M. Haidl - Saskatchewan Geological Survey, Regina R.K. Bezys - Manitoba Energy and Mines, Winnipeg M.P. Cecile - Geological Survey of Canada, Calgary H.R. McCabe - Consultant, Winnipeg D.F. Paterson - Saskatchewan Geological Survey, Regina (<u>http://aqs.aer.ca/publications/chapter-9-middle-ordovician-to-</u> <u>lower-devonian-strata</u> τελευταία πρόσβαση στις 4/12/2016) Peters K.E., Walters C.C., Moldowan J.M., 2005. The Biomarker Guide, second edition, I.Biomarkers and Isotopes in the Environment and Human History

Philippi G. T., 1975. The deep subsurface temperature controlled origin of the gaseous and gasoline-range hydrocarbons of petroleum. Geochim. Cosmochim. Acta 39, 13531373.

Rencher A.C Methods of multivariate analysis

Reznikov, A. N., 1967. The geochemical conversion of oils and condensates in the zone of katagenesis. Geologiya Nefti I, Gaza 5, 24-28.

Ronov, A.B., 1994. Phanerozoic transgressions and regressions on the continents: A quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science, 294, pp. 777-801.

Schaefer R. G. and Littke R., 1988. Maturity-related compositional changes in the lowmolecular-weight hydrocarbon fraction of Toarcian shales. In Advances in Organic Geochemtstry 1987 Org. Geochem. Vol. 13, Nos 4-6, pp. 887-892.

Tegelaar E.W., de Leeuw J.W, Derenne S and Largeau C., 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta vol. 53, issue 11, pp. 3103-3106

Ten Haven, H. L., 1996. Applications and limitations of Mango's light hydrocarbon parameters in petroleum correlation studies. Organic Geochemistry 24, 957-976.

Tissot B., Durand B., Espitalie J., Combaz A., 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull, 58, 499-506.

Thompson K.F.M., 1979. Light hydrocarbons in subsurface sediments. Geochim. Cosmochim. Acta 43, 657-672.

Thompson K.F.M., 1983. Classification and thermal history of petroleum based on light hydrocarbons. Geochim. Cosmochim. Acta 47, 303-3 16

Thompson K.F.M. 1988. Gas-condensate migration and oil fractionation in deltaic systems. Marine and Petroleum Geology, 1988, Vol 5, August.

Vail, P.R., Mitchum, R.M., Thompson, S., 1977. Global cycles of relative changes of sea level. AAPG Memoir 26. Tulsa: AAPG, pp. 83-97.

Wendy L. Martinez Angel R. Martinez Jeffrey L. Solka., 2011. Exploratory Data Analysis with Matlab, second edition.

Young, A., Monaghan, P. H. and Schweisberger, R. T., 1977. Calculation of ages of hydrocarbons in oils. Physical chemistry applied to petroleum geochemistry I. Bulletin of the American Association of Petroleum Geologists 61, 573-600.

URL1: http://www.nrcan.gc.ca/energy/sources/shale-tight-resources/17679

URL2: http://www.thecanadianencyclopedia.ca/en/article/petroleum/

URL3: http://www.telusplanet.net/public/lyatskyh