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Research in cooperative games often assumes that agents have complete in-
formation regarding the coalitional values, and that they can belong to one
coalition only. In this thesis, we remove these unrealistic restrictions, and
study various aspects of uncertainty facing agents in coalition formation en-
vironments, while allowing them to belong to multiple coalitions simultane-
ously.

We begin by focusing on agent uncertainty regarding the resource contribu-
tions of potential partners. To tackle this, we provide three novel methods
that obtain probability bounds for assessing the success of teams towards
coalitional task completion. Our first method is based on an improvement
of the Paley-Zygmund inequality, while the second and the third are devised
based on the two-sided Chebyshev’s inequality and the Hoeffding’s inequal-
ity, respectively. Our methods allow agents to demand certain confidence
levels regarding the resource contribution of coalitions; and agent beliefs are
updated in a Bayesian manner, following formation decisions.

We then proceed to study situations where agent uncertainty is over the un-
derlying collaboration structure, which determines the values of the (possi-
bly overlapping) coalitions. In this context, we first propose a novel con-
cise representation scheme, termed ”Relational Rules“, which extends the
celebrated MC-nets representation to cooperative games with overlapping
coalitions. We then present a novel decision-making method for decentral-
ized overlapping coalition formation, which employs, for the first time in
the coalition formation literature, “Probabilistic Topic Modeling” (a highly
successful unsupervised learning approach). We demonstrate experimen-
tally that by interpreting formed coalitions as documents, agents using our
approach are able to effectively and efficiently learn profitable collaboration
patterns (or “topics”).
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Abstract in Greek

Στα συνεργατικά παίγνια συχνά γίνεται η υπόθεση ότι οι πράκτορες έχουν πλήρη

γνώση της χρησιμότητας που αποφέρει ο σχηματισμός των συνασπισμών, και ότι

ο καθένας μπορεί να συμμετέχει μόνο σε ένα συνασπισμό. Στην παρούσα με-

ταπτυχιακή εργασία, αφαιρούμε αυτούς τους περιορισμούς, οι οποίοι συχνά δε

συνάδουν με τα πραγματικά περιβάλλοντα. Ως εκ τούτου, μελετάμε διάφορες πη-

γές αβεβαιότητας με τις οποίες έρχονται αντιμέτωποι οι πράκτορες σε συνεργατικά

περιβάλλοντα, ενώ τους επιτρέπουμε να συμμετέχουν σε πολλούς συνασπισμούς

ταυτόχρονα.

Αρχικά εστιάζουμε στα προβλήματα που αντιμετωπίζουν οι πράκτορες σχετικά

με την αβεβαιότητα που προέρχεται από τη συνεισφορά των εν δυνάμει συνερ-

γατών τους. Για την αντιμετώπιση αυτού του προβλήματος αναπτύσσουμε τρεις

μεθόδους οι οποίες βασίζονται στον υπολογισμό φραγμάτων πιθανοτήτων για την

εκτίμηση της ικανότητας ομάδων πρακτόρων να πραγματοποιήσουν μία εργασία.

Η πρώτη μέθοδος βασίζεται σε μία βελτίωση της ανισότητας Paley-Zygmund,
ενώ η δεύτερη και η τρίτη βασίζονται στη διμερή ανισότητα του Chebyshev και
την ανισότητα του Hoeffding, αντίστοιχα. Οι μέθοδοί μας επιτρέπουν στους
πράκτορες να απαιτούν επίπεδα εμπιστοσύνης της επιλογής τους σχετικά με τη

συνεισφορά πόρων των συνασπισμών. Οι πράκτορές μας διατηρούν Μπαεσιανές

πεποιθήσεις, που ανανεώνονται μετά από κάθε σχηματισμό συνασπισμών.

΄Επειτα, μελετάμε καταστάσεις στις οποίες οι πράκτορες έχουν αβεβαιότητα σχετι-

κά με την υποκείμενη συνεργατική δομή, βάση της οποίας καθορίζονται τα κέρδη

των (πιθανώς επικαλυπτόμενων) συνασπισμών. ΄Ετσι, αρχικά προτείνουμε ένα

καινοφανές σχήμα συνοπτικής αναπαράστασης, το οποίο ονομάζουμε "Relational
Rules", και το οποίο επεκτείνει την εξαιρετικά γνωστή αναπαραστάση "MC-
nets" σε συνεργατικά παίγνια με επικαλυπτόμενους συνασπισμούς. Στη συνέχεια
παρουσιάζουμε μία νέα μέθοδο λήψης αποφάσεων για αποκεντροποιήμενο σχημα-

τισμό επικαλυπτόμενων συνασπισμών, η οποία χρησιμοποιεί, για πρώτη φορά στη

βιβλιογραφία της δημιουργίας συνασπισμών, μια επιτυχημένη προσέγγιση μή επι-

βλεπόμενης μηχανικής μάθησης "Probabilistic Topic Modeling" (¨Πιθανοτικής
Θεματικής Μοντελοποίησης¨). Τα πειράματά μας δεικνύουν ότι οι πράκτορες, ερ-

μηνεύοντας τους συνασπισμούς ως έγγραφα, μπορούν αποτελεσματικά να μάθουν

επικερδή πρότυπα συνεργασίας (ή "topics") με αποδοτικό τρόπο.
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Chapter 1

Introduction

Multi-agent systems (Wooldridge, 2009) has risen as a multidisciplinary field
whose roots lie in artificial intelligence, but spread further beyond to eco-
nomics, sociology and distributed systems. In particular, early research fo-
cused on formal methods and logic-based approaches. A number of models
for building cognitive agents was initially proposed, with Beliefs-Desires-
Intentions (BDI) (Rao and Georgeff, 1991; Cohen and Levesque, 1990) emerg-
ing as the most promising one. However, despite that aspects of major con-
sideration in multi-agent systems, such as bounded rationality (Bratman, Is-
rael, and Pollack, 1988), had already been recognized, research focus soon
took a turn to aspects of computational economics (Boutilier, Shoham, and
Wellman, 1997). At that time, it was evident that a formal theory for the
description of agent interactions was needed.

Game theory (Osborne and Rubinstein, 1994; Myerson, 2013) not only ap-
peared as the most prominent candidate for formalizing economic agents,
but its adoption gave birth to additional research questions and directions
in multi-agent systems, as well. This was not accidental, since the inter-
play between computer science and game theory had already been trans-
parent, leading to the emergence of algorithmic game theory (Nisan et al.,
2007). Therefore, it did not take long for cooperative game theory (Chalki-
adakis, Elkind, and Wooldridge, 2011) to attract the interest of a plethora of
researchers. One of the main points of focus of cooperative game theory is
the study of stability, i.e., the conditions under which no subset of agents
has an incentive to deviate from a given coalition structure. Naturally, this
gives rise to the question of how the agents proceed in forming coalitions in
the first place, which is termed as the coalition formation problem. The coali-
tion formation problem is especially concerned with finding the best possible
way, in terms of gained utility, for agents to form teams (coalitions) and pro-
ceed to joint actions. Both centralized and decentralized approaches have
been studied in multi-agent systems literature. The difference between these
two is essentially in that in the former approach a solution is given for the
agents, while in the latter the agents have to make decisions by themselves.

In this thesis, we study agent decision-making methods for coalition forma-
tion under uncertainty, focusing on environments where agents can partici-
pate in more than one coalition simultaneously. As such, the approach that
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this thesis adopts is a decentralized one. There is a number of reasons that
this approach is preferred to a centralized one. First, providing a solution
to an agent disturbs the notion of autonomy, which is of major importance
in the definition of the characteristics of an agent (Wooldridge and Jennings,
1995). Secondly, it is highly unlikely that even if all agents of a system trust an
“one-above-all entity”, that entity will manage to inform everyone regarding
the right decision on time. This becomes apparent once one thinks of a fu-
ture where agents all over the Internet need to take decisions during ongoing
negotiations or have to rapidly form beneficial coalitions in electronic mar-
ketplaces (Li et al., 2005). Furthermore, we are interested in environments
where an agent can participate in multiple coalitions at the same time. This
can be the case when agents hold some amount of divisible resource(s), e.g.,
money, time, computational power. Therefore, the emergence of the concept
of overlapping coalitions (Chalkiadakis et al., 2008; Chalkiadakis et al., 2010)
raises a number of interesting questions.

Moreover, learning in environments with high degree of uncertainty has
been a major task in artificial intelligence and machine learning (Bishop,
2006). Naturally, research on multi-agent systems could not have been un-
affected. It is a major challenge to keep on improving the way that an agent
learns how to act, in the presence of other agents (Tuyls and Weiss, 2012).

The insight on the reasons that led to the conduction of this thesis is provided
in the next subsection. Finally, at the end of the chapter, the contributions of
this thesis are briefly overviewed, followed by its outline.

1.1 Motivation

Cooperative transferable utility (TU) games have been widely studied (Chalki-
adakis, Elkind, and Wooldridge, 2011) as they provide a rich framework
for cooperation and coordination among rational utility-maximizing agents.
They model a plethora of real-world scenarios where agents need to jointly
tackle tasks that result to some utility (coalitional value) awarded to the team
(coalition). Their applications range from efficient buyer coalitions in e-market-
places (Yamamoto and Sycara, 2001) to smart grid technologies (Chalkiadakis
et al., 2011; Robu et al., 2012) and the power distribution in council bod-
ies (Elkind, Pasechnik, and Zick, 2013). The importance of their study is also
indicated by the fact that in many real-world settings it may be impossible for
agents to achieve their goals on their own, or that it is simply more profitable
to form coalitions with other agents.

Even though the vast majority of literature assumes that coalitions have to
be disjoint—i.e., an agent can belong in only one coalition—this assumption
does not hold in many realistic scenarios, in which an agent can be in sev-
eral coalitions simultaneously (Chalkiadakis et al., 2010). Therefore, research
on overlapping coalition formation (OCF) has been greatly neglected. How-
ever, it is very common for agents that operate in real-world environments
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to hold some divisible resource. The introduction of coalition structures with
overlapping coalitions creates a whole new research direction in cooperative
game theory and coalition formation. This alone is exciting, not to mention
the impact that the relevant results can bring in the application of multi-agent
systems in the real world.

Naturally, uncertainty is inherited in most realistic scenarios. We believe that
neglecting it is a major pitfall. Usually, agents have incomplete information
regarding either the resource investment of the other agents, that is needed
for the completion of coalitional tasks, or the relations that agents have and
which determine the coalitional values. Therefore, this thesis is concerned
with providing effective methods for overlapping coalition formation under un-
certainty. In particular, we approach this problem by exploiting concepts
from two distinct fields: Probabilistic Computing (and in particular Proba-
bility Inequalities) and Probabilistic Topic Modeling.

Randomized algorithms (Motwani and Raghavan, 1995; Mitzenmacher and
Upfal, 2005) lie at the heart of the foundations of computer science. Their
popularity stems from the beneficial trade-offs that they provide towards at-
tacking hard problems. Probabilistic computing, in general, offers a plethora
of valuable concepts and solutions. Motivated by this fact, in this thesis we
exploit probability inequalities, and provide three methods for overlapping
coalition formation that build on obtained probability bounds.

Moreover, interconnected electronic societies (Papadimitriou, 2001) and so-
cial networks offer a natural environment for the completion of goals of in-
dividuals, most of the times by completing tasks through common actions.
Therefore, it is intriguing to conduct research on coalition formation prob-
lems where the structure of the network affects the plausibility of cooperation
among the agents.

Learning is one of the fundamental problems in artificial intelligence (Rus-
sell and Norvig, 1995). The vast majority of approaches in single and multi-
agent environments that are modeled as games (cooperative or not), is con-
cerned with Reinforcement Learning algorithms (Sutton and Barto, 1998).
However, the field of machine learning has, especially in recent years, devel-
oped a number of supervised and unsupervised methods which exhibit ro-
bust performance in many application domains—notably in domains involv-
ing big data (Bishop, 2006; Barber, 2012; Michalski, Carbonell, and Mitchell,
2013; Sebastiani, 2002; Cortes and Vapnik, 1995). In this thesis, we employ
an unsupervised machine learning paradigm, Probabilistic Topic Modeling
(PTM) (Blei, 2012), motivated by its success on the problems it has been ap-
plied to. Therefore, as we want to approach multi-agent learning for overlap-
ping coalition formation under uncertainty, we have found the exploitation
of PTM to be both intriguing and effective. It is the first time that PTM is used
in a multi-agent problem, and, thus, this alone is a source of motivation.

As mentioned above, overlapping coalition formation has, surprisingly, at-
tracted little of attention in cooperative game theory and multi-agent systems
literature. Furthermore, overlapping coalition formation under uncertainty
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has not been studied at all. Therefore, dealing with a problem that is both
interesting and has the potential to offer a number of solutions in real-world
applications, for the first time in literature is quite a source to derive motiva-
tion from.

1.2 Contributions and Thesis Outline

This thesis essentially consists of two conceptually interlinked works, which
both attack the overlapping coalition formation under uncertainty problem,
but from different perspectives. Thus, the contributions of each are distinctly
presented in this section. However, it has to be emphasized that this the-
sis consists the very first approach in overlapping coalition formation under
uncertainty.

The major contribution of the first work consists of three novel methods
which benefit from obtained probability bounds for assessing the ability of
teams of agents to accomplish coalitional tasks. It is the first time that prob-
ability bounds are computed for coalition formation under uncertainty. Fur-
thermore, we provide a way for modeling agent beliefs regarding the contri-
bution of other agents to potential coalitions, when they do not know with
certainty the resource quantity the others possess. Moreover, we prove an
improvement of the Paley-Zygmund inequality (Paley and Zygmund, 1932),
a probability inequality that our first method exploits and that is used for de-
riving lower probability bounds. Despite that this improvement is reported
at some places on the Web, we did not manage to find a reference to a for-
mal proof, and, thus, we had to prove it ourselves. Finally, the contributions
of this work include an overlapping coalition formation protocol, with the
motivation behind its design stemming from real-world scenarios.

In the second work, we exploit probabilistic topic modeling for overlapping
coalition formation under uncertainty. This work essentially presents an en-
tirely novel agent-learning paradigm for coalition formation. We consider
the case where there is structural uncertainty, and thus agents do not know
how well they can cooperate with others. We show how an agent can gain
and exploit knowledge by providing a correspondence between probabilis-
tic topic modeling and learning the profitability of the coalitions. We believe
that it can also be employed in non-cooperative environments (though we
did not test it in such), and thus serve as a widely accepted technique in
multi-agent learning. A key point on the effectiveness of probabilistic topic
modeling for overlapping coalition formation is the way via which agents in-
terpret coalitions as documents, and so they can proceed with their learning
process. Furthermore, in order to concisely represent the (unknown) under-
lying inter-agent collaboration structure, we have extended the much cele-
brated Marginal Contribution networks (MC-nets) (Ieong and Shoham, 2005)
representation scheme to cooperative games with overlapping coalitions.

The rest of the thesis is structured as follows:
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∙ In Section 2 we provide basic background on coalition formation, in-
cluding solution concepts in cooperative game theory, concise represen-
tation schemes for cooperative games, and work on centralized coali-
tion formation (coalition structure generation). Moreover, we overview
the literature on overlapping coalition formation, uncertainty and learn-
ing in, mainly, cooperative games, and stability results on cooperative
games on graphs and networks.

∙ In Section 3 we present the main results from literature on probability
inequalities. That section thus provides basic background before the
presentation of the main part of our work on probability bounds for
overlapping coalition formation.

∙ In Section 4 we provide the basic background on probabilistic topic
modeling. In particular, we introduce the terminology that is widely
used in the document analysis domain, and describe the Latent Dirich-
let Allocation and the online Latent Dirichlet Allocation algorithms used
in our work.

∙ In Section 5 we present the first of our two major contributions. It in-
cludes our three proposed methods for obtaining and deriving prob-
ability bounds for overlapping coalition formation— namely, 𝐼𝑃𝑍𝑌 ,
𝐶𝐻2𝑆, and 𝐻𝐹—and an overlapping coalition formation protocol
through which agents can iteratively form (overlapping) coalitions. It
concludes with the results of the experiments we conducted on both a
random graph of 300 nodes (agents) and a large-scale real social net-
work from Facebook of 4039 users.

∙ In Section 6 we present our second major contribution, which is con-
cerned with overlapping coalition formation via probabilistic topic mod-
eling. After providing the basic background on PTM and Online Latent
Dirichlet Allocation (the PTM method we exploit), we present Relational
Rules, which consist the extension of MC-nets to cooperative games
with overlapping coalitions. Next, we show how agents can learn by in-
terpreting coalition as documents and a present OVERPRO, a method for
taking decisions based on the the gained knowledge. We also present
a Q-learning algorithm that we have developed and which we use as a
baseline. Our experiments show that OVERPRO decisively outperforms
the baseline and is highly effective regarding the social welfare and the
efficient investment of agent resources.

∙ Finally, Section 7 summarizes the results of this thesis and outlines fu-
ture work.
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Chapter 2

Coalition Formation and
Cooperative Games

Coalition formation is the problem where the self-interested agents of a system
have to form effective teams (coalitions) in order to achieve their goals. Ef-
fectiveness is expressed in terms of gained utility which agents seek to max-
imize. Therefore, in a typical coalition formation environment, autonomous
agents act in a decentralized manner seeking to gain as much utility as pos-
sible. The importance of the coalition formation problem rises from the fact
that in a plethora of real-world environments agents cannot satisfy their goals
on their own, or they simply can gain more by cooperating with other agents.
Coalition formation is being formally treated within cooperative game the-
ory (Myerson, 2013; Chalkiadakis, Elkind, and Wooldridge, 2011); and much
of the work in the field is concerned with the development and study of
solution concepts related to stability, such as the core (Gillies, 1959). De-
spite that the approach of this thesis is not game-theoretical per se, in this
chapter we overview the basic concepts of cooperative game theory, since
they are closely related to our work. Furthermore, the basic principles of
multi-agent systems (Wooldridge, 2009) indicate that agents have to act au-
tonomously and in a decentralized manner. However, in order to prevent the
occurrence of any misunderstandings, it has to be emphasized that norms and
rules (Dechesne et al., 2013) do exist in multi-agent systems. For instance, auc-
tions (Shoham and Leyton-Brown, 2008) consist a broadly accepted decen-
tralized mechanism for item allocation, but agents that participate in those
have to take actions in strictly specified time moments.

Despite that the coalition formation problem is specified for autonomous
agents in distributed environments, works in literature often mistakenly re-
fer to the problem of finding the coalition structure that maximizes the social
welfare (sum of agents’ utility), via a centralized algorithm or heuristic, by
the same name. The proper way that one should refer to that problem is
coalition structure generation (Rahwan et al., 2015), and it often proves to be
valuable, as it can serve as a quality indicator of a decentralized solution,
in the spirit of price of anarchy (Koutsoupias and Papadimitriou, 1999) and
price of democracy (Chalkiadakis et al., 2009). It is, thus, also overviewed in
this chapter.
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2.1 Transferable Utility Games

Game theory offers a mathematical framework for the analysis of the interac-
tion of self-interested agents. Therefore, a game, despite that it may appear
as an abstract notion at first, has a solid definition. Cooperative game theory
is concerned with both transferable and non-transferable utility games (Chalki-
adakis, Elkind, and Wooldridge, 2011) (though technically this equation of
terms is not entirely correct, due to the existence of partition function games).
This thesis approaches only the former, which are often referred to as charac-
teristic function games. In non-transferable utility games, a coalition of agents
cannot arrange the distribution of the payments. Instead, the gain of a partic-
ipant is defined based solely on her preferences (Chalkiadakis, Elkind, and
Wooldridge, 2011). Hedonic games (Brandt et al., 2016; Aziz and Brandl,
2012; Elkind and Wooldridge, 2009), for instance, consist a class of non-
transferable utility games where the utility that an agent gains by his par-
ticipation in a coalition is defined by the identity of the other participants.
In a sense, the company of the members of a group offers some amount of
“pleasure” to a participant (hedony stand for joy, or pleasure, in greek).

A transferable utility game 𝐺 = (𝑁, 𝑢) is defined by a set of agents 𝑁 =
{1, . . . , 𝑛} and a characteristic function 𝑢 : 2𝑁 → R. Therefore, 𝑢(𝐶), where
𝐶 ⊆ 𝑁 , is the value earned by coalition 𝐶. The allocation vector is denoted as
𝑥 = (𝑥1, . . . , 𝑥𝑛), and defines the payoff distribution among the agents of the
game. Often, 𝑥(𝐶) is used as a notation for the allocation of the utility earned
by the members of 𝐶. A coalition structure 𝐶𝑆 is an exhaustive partition of
𝑁 , and, thus, consists of a set of coalitions {𝐶1, . . . , 𝐶𝑘}, such that 𝐶𝑎∩𝐶𝑏 = ∅,
for any two coalitions 𝐶𝑎, 𝐶𝑏 ⊆ 𝐶𝑆, and ∪𝐶∈𝐶𝑆 = 𝑁 . Naturally, an allocation
𝑥 is feasible if

∑︀
𝑖∈𝐶 𝑥𝑖 ≤ 𝑢(𝐶), for every 𝐶 ∈ 𝐶𝑆. A coalition that consists

of a single agent is called a singleton. Agent 𝑖 can earn his reservation value
𝑟𝑣𝑖 by forming a singleton. Therefore, a coalition structure 𝐶𝑆 consists of at
least one coalition, the grand coalition (𝐶 = 𝑁 , where all agents join forces
together), and at most 𝑛 coalitions, where each agent forms a singleton. It is
apparent that characteristic function games are of great interest since agents
are able to make binding agreements on the distribution of the utility, which
are usually conducted via a specified interaction protocol.

Some subclasses of transferable utility games have played an important role
on cooperative game theory research, as their properties have both theoret-
ical and practical implications. In superadditive games it is always profitable
for two coalitions to merge, i.e., 𝑢(𝐶 ∪ 𝐷) ≥ 𝑢(𝐶) + 𝑢(𝐷), 𝐶,𝐷 ⊆ 𝑁 . There-
fore, in such games it is natural to expect the grand coalition to form. The
key question in superadditive games is on how the utility 𝑢(𝑁) of the grand
coalition should be allocated to the agents with respect to a stability solution
concept (an overview follows on the next section). Another subclass that has
played a significant role, especially in applications that involve elections and
political parties, is that of simple games. In simple games a coalition can be
(strictly) either winning or losing, i.e., 𝑢(𝐶) = 1 or 𝑢(𝐶) = 0. A player 𝑖 is
said to be dummy if his membership in a coalition makes no difference in the
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gained utility, i.e., 𝑢(𝐶 ∪ 𝑖) = 𝑢(𝐶), for every 𝐶 ⊆ 𝑁 ∖ 𝑖. Player 𝑖 is veto if
𝑢(𝐶) = 0 for every 𝐶 ⊆ 𝑁 ∖ 𝑖, i.e., a coalition cannot win if 𝑖 is not a member
of it. However, this does not imply that every coalition that includes 𝑖 has to
be winning. Furthermore, there might zero to 𝑛 veto players. Simple games
are related to weighted voting games, where agents have weights and coalition
𝐶 wins, i.e., 𝑢(𝐶) = 1, if the sum of the weights of its members surpasses a
certain quota (threshold).

2.2 Solution Concepts

Stability is an issue of major concern when self-interested autonomous agents
seek to achieve their goals. Therefore, various concepts of stability have been
developed since the very early years of game theory. In non-cooperative
game theory Nash-equilibrium (Nash, 1951) is probably the most well-celebra-
ted concept of stability, with significant results on its approximability having
been recently found (Daskalakis and Papadimitriou, 2015).

Stability in cooperative game theory takes under consideration coalitions of
agents, rather than individual agents—a single agent is represented as a sin-
gleton. A coalitional configuration is characterized by a coalition structure
𝐶𝑆 and a vector of payoffs 𝑥. One of the most well-known solution con-
cepts is the core (Gillies, 1959), and it consists the closest analogy to Nash-
equilibrium, in terms of non-cooperative game theory. An outcome (𝐶𝑆, 𝑥)
is in the core if no coalition can benefit by deviating. Therefore, the core is
set that includes all the outcomes (𝐶𝑆, 𝑥) such that 𝑥(𝐶) ≥ 𝑢(𝐶) for every
𝐶 ⊆ 𝑁 . The core might seem as an ideal concept of stability in cooperative
games, but it has one major drawback: in the general case, it is computation-
ally intractable (Rapoport, 1970; Conitzer and Sandholm, 2003).

The kernel (Davis and Maschler, 1965) is another solution concept that is
related to the surplus among every pair of agents. One of the attractive prop-
erties of the kernel is that it admits good polynomial-time approximation
schemes (Shehory and Kraus, 1999; Bistaffa et al., 2015). Other solutions
concepts are the nucleolus (Schmeidler, 1969), which is based on the notion
of deficit, the bargaining set (Aumann and Maschler, 1964), which is based on
objections and counterobjections, and the stable set (Von Neumann and Mor-
genstern, 1947), which is based on the notion of dominance. In contrast to
the ones already presented, the Shapley value (Shapley, 1952) is a value-based
solution concept, but its exact computation cannot be efficiently performed.

Solution concepts are fundamental in cooperative game theory, but the com-
putation of the most is intractable. In particular, the core, which is the most
attractive solution concept, not only cannot be efficiently computed, but it
might even be empty. Given this, in this thesis we focus on the problem of
decision-making that an agent has to tackle when there is uncertainty, with-
out proceeding in the computation of solution concepts.
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2.3 Consice Representation Schemes

It is apparent that the utility function 𝑢 of a transferable utility game 𝐺 =
(𝑁, 𝑢) plays a central role on the decisions of the agents. However, since
𝑢 is defined as 𝑢 : 2𝑁 → R, making an optimal decision is, in general, in-
tractable, as it involves 𝑂(2𝑛) computation steps. Therefore, the need for suc-
cinct representation formalism has led to the development of concise represen-
tation schemes (Chalkiadakis, Elkind, and Wooldridge, 2011). Such schemes
are divided in two main categories, (𝑖) schemes that never fail to compactly
represent a game, but cannot represent every possible game, and (𝑖𝑖) schemes
that can represent any game but can fail to do so in a compact way.

Combinatorial optimization games always provide succinct representation, but
cannot model every game, and are largely based on graph theory (Myerson,
1977). Induced subgraph games (Deng and Papadimitriou, 1994) consist the
first such representation. In this one, a game is described by a weighted undi-
rected graph 𝐺 = (𝑁,𝐸), where each node 𝑖 ∈ 𝑁 represents an agent. The
value 𝑢(𝐶) of coalition 𝐶 is defined as 𝑢(𝐶) =

∑︀
{𝑖,𝑗}∈𝐶∩𝐸 𝑤𝑖,𝑗 , where 𝑤𝑖,𝑗 is the

weight of the edge {𝑖, 𝑗}. Despite that computing the value of a coalition is
tractable (there is a polynomial time and space algorithm), induced subgraph
games are not complete, since the value of a coalition is often not defined
by pairs of agents only. However, induced subgraph games are especially
valuable in modeling agent interactions in social networks. Other subclasses
of combinatorial optimization games are the network flow games (Kalai and
Zemel, 1982a; Kalai and Zemel, 1982b), the matching games (Deng, Ibaraki,
and Nagamochi, 1999), the minimum cost spanning games (Bird, 1976), and the
facility location games (Goemans and Skutella, 2004).

Complete representation schemes owe their characterization to the fact that they
can represent every transferable utility game However, they do not always
succeed in achieving succinctness. One of the most popular is the Marginal
Contribution networks (MC-nets) (Ieong and Shoham, 2005). In MC-nets, coali-
tional games are represented by a set of rules of the form:

𝑃𝑎𝑡𝑡𝑒𝑟𝑛→ 𝑣𝑎𝑙𝑢𝑒

where 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 is a conjunction of literals (representing the participation or
absence of agents), and applies to coalition 𝐶 if it satisfies 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, with
𝑣𝑎𝑙𝑢𝑒 ∈ R being added to the coalitional value of 𝐶. For instance, if the
set of the rules of a game consists of {1 ∧ 2 ∧ 3} → 8, {1 ∧ 2} → −6 and
{2} → 4, then the value of coalition 𝐶 = {1, 2, 3} is 𝑢𝐶 = 8− 6 + 4 = 6, since
all rules apply, and the value of coalition 𝐶 ′ = {1, 2} is 𝑢𝐶′ = −6 + 4 = −2,
since only two of the rules apply. Therefore, the basic idea of this scheme is
that the relations among the agents can be described by the rules mentioned
above. The succinctness they offer strongly depends on the number of rules
that exist in a cooperative game. In many settings, it is natural to expect that
not all of the subsets of agents are characterized by a rule. Nevertheless, this
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might not hold, and, thus, the number of rules in MC-nets can be exponen-
tial in the number of the agents. Another interesting concise representation
scheme that is based on synergies among agents is presented in (Conitzer and
Sandholm, 2006). That scheme relies on super-additivity, and allows efficient
checking of whether a given outcome is in the core of the game. Other rep-
resentation schemes rely on agent types. In (Ueda et al., 2011) the presented
scheme exploits recognizable equivalence of the agents, where agent 𝑖 and 𝑗 are
recognizably equivalent if for any coalition 𝐶, such that 𝑖, 𝑗 /∈ 𝐶, it holds that
𝑢(𝐶 ∪ {𝑖}) = 𝑢(𝐶 ∪ {𝑗}). Therefore, letting 𝑇 = {1, . . . , 𝑡} be the set of rec-
ognizable types, coalition 𝐶 is characterized by the vector 𝑛𝐶 = ⟨𝑛1

𝐶 , . . . , 𝑛
𝑡
𝐶⟩,

where 𝑛𝑘
𝐶 is the number of agents of type 𝑘 that are in 𝐶. Other complete con-

cise representation schemes are based on skills of agents (Ohta et al., 2006)
and algebraic decision diagrams (Bahar et al., 1997; Aadithya, Michalak, and
Jennings, 2011).

2.4 Coalition Structure Generation

As mentioned in the introduction, it is valuable to consider settings where
agents do not take action according to their free will, but follow the instruc-
tions of a central designer who is interested in maximizing the social welfare,
i.e, the total utility earned by the agents. Despite that taking this as a norm
of agent decision making would disturb the notion of autonomy, which lies
in the foundations of multi-agent systems (Wooldridge and Jennings, 1995),
studying coalition structure generation, i.e. centralized coalition formation, is
important in evaluating the quality of the solutions given by decentralized
approaches and equilibria (Koutsoupias and Papadimitriou, 1999; Chalki-
adakis et al., 2009).

One of the early works in coalition structure generation presented a search
algorithm that establishes lower bounds on the quality of the solution (Sand-
holm et al., 1999). Other approaches are based on dynamic programming (Rah-
wan and Jennings, 2008) and integer-partition (Rahwan et al., 2009). In par-
ticular, dynamic programming enables the reduction of number of partitions
from 𝑂(𝑛𝑛) to 𝑂(3𝑛). Subspace search and integer-partition techniques that
build on dynamic programming have shown to perform even better.

Graph representation is useful when there are restrictions on the coalitions
that can be formed, since in real-world applications one agent might be un-
able to directly reach another due to constraints on communication. Coali-
tion structure generation on graphs was studied in (Voice, Polukarov, and
Jennings, 2012), providing results that rely heavily on tree decomposition
techniques. This approach is actually quite common in games with an un-
derlying feasibility-formation structure, where the notion of treewidth is usu-
ally exploited. Intuitively, treewidth is a measure of telling how far a graph
is from being a tree. Many problems that are hard in the general case be-
come easy when the treewidth is small (Bodlaender and Koster, 2008). A
recent work on coalition structure generation on graphs (Bistaffa et al., 2014)
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exploits the concept of edge contraction which allows the efficient representa-
tion of the search space. That proposed algorithm is anytime, i.e., it can be
stopped during runtime and still provide a solution, but as long as it keeps
on running it can only improve it. Furthermore, it is parallelizable, and it
is shown to experimentally perform better than the previous state-of-the-art
algorithm (Voice, Ramchurn, and Jennings, 2012). Coalition structure gener-
ation has many real-world applications, varying from smart grid (Oliveira
Ramos and Bazzan, 2012) to ride sharing (Bistaffa et al., 2015) problems.
There is a (relatively) recent survey on coalition structure generation (Rah-
wan et al., 2015).

2.5 Overlapping Coalition Formation

Overlapping coalition formation was initially studied in (Shehory and Kraus,
1998), which provided an approximate solution to the corresponding opti-
mal coalition structure generation problem (Rahwan et al., 2015), in a setting
where the costs of the coalitions and the capabilities of the agents are glob-
ally announced. The proposed method of (Shehory and Kraus, 1998) em-
ploys concepts from combinatorics and approximation algorithms. Though
related, our approach differs in that it is decentralized, since the (overlapping)
coalitions are formed by the agents themselves, and are not provided for the
agents by an algorithm. The subsequent work of (Dang et al., 2006) presented
an application of overlapping coalitions in sensor networks. An approximate
greedy algorithm with worst-case guarantees is introduced, and constitutes
a real-world example of employing overlapping coalitions. However, in that
work, the agents do not form coalitions acting in a completely autonomous
manner, since they are hardwired to agree on taking a specific action (regard-
ing the choice of an agent), in a step of the algorithm.

As illustrated by the work of (Chalkiadakis et al., 2008; Chalkiadakis et al.,
2010), in overlapping coalition formation games an agent can be part of a
number of coalitions simultaneously, and thus coalition structures are much
more complex than in games without overlapping coalitions. One reason that
gives rise to this complexity is the fact that the number of different coalition
structures cannot be enumerated; even a single agent can form an infinite
number of singletons. Furthermore, the concept of stability in games with
overlapping coalitions is quite different, since it is not just the membership of
an agent in a coalition that matters, but the degree by which she participates
in that. Therefore, a payoff-allocation has to be determined by taking under
consideration much more complex structures (Chalkiadakis et al., 2010). Ad-
ditionally, in such settings, it is not just agents that can deviate, but whole
coalition structures, since coalitions of agents can withdraw just a portion
of their resource from the formed coalitions. Such complex structures give
rise to more challenging problems than those imposed by non-overlapping
coalition formation games (Chalkiadakis et al., 2010).
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Indeed, the formal definition of cooperative games with overlapping coali-
tions was not until (Chalkiadakis et al., 2008; Chalkiadakis et al., 2010). In
that model, an agent is allowed to be part of more than one coalition, by
contributing some portion of his resources to each one; and thus a partial
coalition is given by a vector 𝑟𝐶 = (𝑟𝐶1 , . . . , 𝑟

𝐶
𝑛 ), where 𝑟𝐶𝑖 ∈ [0, 1] denotes the

resource fraction which agent 𝑖 contributes to coalition 𝐶, so 𝑟𝐶𝑖 = 0 means
that agent 𝑖 is not part of coalition 𝐶. In this way, an overlapping coalition for-
mation game (OCF-game) is given by (𝑖) a set of players 𝑁 = {1, . . . , 𝑛} and
(𝑖𝑖) a characteristic function 𝑣 : [0, 1]𝑛 ↦→ R. One point of focus of the works
mentioned above, is the characterization of the core for OCF games. Espe-
cially, the notion of balancedness (Bondareva, 1963; Shapley, 1967), in the con-
text of overlapping coalition formation, is studied. Balancedness consists a
condition that an outcome (𝐶𝑆, 𝑥) has to satisfy, in order to belong to the core.
In (Chalkiadakis et al., 2010) it is shown that the condition of balancedness is
more complicated in OCF settings, as the linear program that describes core
allocations requires a larger set of constraints.

In (Chalkiadakis et al., 2010), an expressive class of OCF games, threshold
task games (TTGs), is also put forward. A threshold task game 𝐺 = (𝑁 ;𝑤; 𝑡) is
given by (𝑖) a set of agents 𝑁 = {1, . . . , 𝑛}, (𝑖𝑖) a vector 𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ R+

denoting the quantity of resources the agents possess and (𝑖𝑖𝑖) a list 𝑡 =
(𝑡1, . . . , 𝑡𝑙) of task types where each 𝑡ℎ is described by a threshold value 𝑇ℎ ≥ 0
and a utility 𝑣ℎ ≥ 0, so a task type is denoted 𝑡ℎ = (𝑇ℎ, 𝑣ℎ). In TTGs, agents
form coalitions to complete tasks, in order to gain utility 𝑣ℎ by fulfilling the
requirement 𝑇ℎ for 𝑡ℎ.

In a series of works (Zick and Elkind, 2011; Zick, Chalkiadakis, and Elkind,
2012; Zick, Markakis, and Elkind, 2014) stability with respect to the behaviour
of non-deviating players towards deviators is studied. Various variations of
the core are developed, namely the conservative core, the refined core, and the
optimistic core, and the approach is based on the notion of arbitration func-
tions, which define the payoff of the deviators according to the attitude of the
non-deviators. The circumstances under which these solution concepts are
non-empty are also studied.

Furthermore, the most related class of games to the cooperative games with
overlapping coalitions is the one of fuzzy coalitional games (Aubin, 1981). In
a fuzzy game, an agent can be part of a coalition at various levels. Thus,
the coalitional value of 𝐶 ⊆ 𝑁 is defined by the level at which the agents
have joined 𝐶. While there is a number of differences between overlapping
coalition formation and fuzzy games, the greatest one is that in fuzzy games
the core is the only acceptable outcome. Finally, coalition structure genera-
tion with overlapping coalitions is studied in (Zhang et al., 2010), where a
metaheuristic is developed, based on particle swarm optimization (Eberhart,
Kennedy, et al., 1995).
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2.6 Uncertainty and Learning

Stochasticity in the value of payoffs in non-overlapping cooperative games
has been studied in (Suijs et al., 1999), in a setting where agents have dif-
ferent preferences over a set of random variables. The focus of this study
is on core-stability. Bayesian coalitional games are introduced in (Ieong and
Shoham, 2008), where suitable variations of the core are also defined. In
(Kraus, Shehory, and Taase, 2003; Kraus, Shehory, and Taase, 2004) agents
have incomplete information regarding the costs that the other agents incur
by performing a task within a coalition, while the formation of the coalitions
takes place through information-revealing negotiations and the conduction
of auctions. Nevertheless, the formation of overlapping coalitions is not al-
lowed in (Kraus, Shehory, and Taase, 2003; Kraus, Shehory, and Taase, 2004).
An approach to coalition formation via bargaining where an agent has beliefs
regarding the types of the others is presented in (Chalkiadakis and Boutilier,
2007). It is shown that the game can be described as a Bayesian game in ex-
tensive form, and a heuristic for approximating the optimal solution is given.
A link between non-cooperative and cooperative solution concepts in coali-
tional bargaining under uncertainty is studied in (Chalkiadakis and Boutilier,
2007).

One of the very early attempts in approaching learning in cooperative set-
tings was presented in (Claus and Boutilier, 1998), where the dynamics of a
set of reinforcement learning (RL) algorithms (Sutton and Barto, 1998) were
studied. In (Kapetanakis and Kudenko, 2002) a heuristic for action selection
strategy in Q-learning in cooperative environments was developed, which
is experimentally shown to almost always converge to a desirable state. A
Bayesian approach to reinforcement learning for coalition formation is pre-
sented in (Chalkiadakis and Boutilier, 2004), along with the introduction of a
variation of the core. The recent work of (Balcan, Procaccia, and Zick, 2015)
explores a PAC (probably approximately correct) model for obtaining theo-
retical predictions for the value of coalitions that have not been observed in
the past. Common classes of cooperative games are examined there regard-
ing their PAC learnability, among which Threshold Task Games (TTGs) (Chalki-
adakis et al., 2010), a class of OCF games already presented. The links be-
tween evolutionary game theory and multi-agent reinforcement learning is
the topic of study in (Tuyls and Parsons, 2007; Kaisers and Tuyls, 2009). For
a discussion on the fundamental connections between multi-agent learning
and game theory, and the impact that the latter has on the former, one should
study (Shoham, Powers, and Grenager, 2007) and (Stone, 2007).

Multi-agent learning in non-cooperative games (Fudenberg and Levine, 1998)
has been studied for a longer time. Much of the early seminal work (Littman,
1994; Hu and Wellman, 1998; Hu and Wellman, 2003) is interested in the
study of Q-learning algorithms and their convergence to Nash equilibria (Nash,
1951). In particular, the algorithm presented in (Hu and Wellman, 1998) is
shown to converge to a Nash equilibrium if every state and action has been
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visited infinitely often and the learning rate satisfies some conditions regard-
ing the values it takes over time. Therefore, despite that in theory conver-
gence can be guaranteed, in practice the first assumption cannot hold. Over-
all, the literature on multi-agent learning (Tuyls and Weiss, 2012), in both co-
operative and non-cooperative settings, is largely concerned with the study
of reinforcement learning algorithms.

2.7 Stability in Networks

Cooperative games on graphs were introduced in the seminal paper of (My-
erson, 1977). In that work the notion of connectedness of the agents was
presented, relying on the structure of the underlying graph, whose nodes
represent the agents of the game and a coalition is feasible only if the in-
duced subgraph is connected. A plethora of complexity-theoretic results on
transferable utility games with graph restrictions are presented in (Chalki-
adakis, Greco, and Markakis, 2016). The stability of a game with respect
to the type (line, tree, cycle) of the underlying graph structure was studied
in (Chalkiadakis, Markakis, and Jennings, 2012). In that work, partition func-
tion games (i.e., games where the value of a coalition depends on the other
formed coalitions) are also taken under consideration, while a Bayesian ex-
tension of those is proposed, too. Stability in hedonic games where the com-
munication among the agents is restricted by the graph structure was re-
cently studied in (Igarashi and Elkind, 2016). The positive results of that
work depend on graph acyclicity, by large. Most results, just as in charac-
teristic function games, are negative, since most problems are 𝑁𝑃 -𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒.
Non-cooperative solution concepts for coordination games on graphs, which
are closely related to cooperative games, were studied in (Apt, Simon, and
Wojtczak, 2015). The results are related to the existence of Nash equilibria,
and it is shown that the underlying problems are 𝑁𝑃 -𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒. Now, sta-
bility on overlapping coalition formation games on graphs has been studied
in (Zick, Chalkiadakis, and Elkind, 2012). The derived positive results hold
only under very limiting restrictions, and are related to the maximum num-
ber of agents that can participate in a coalition and the treewidth of the graph.
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Chapter 3

Probability Inequalities

Given that digital computers are completely deterministic machines, the ad-
dition of randomness in computation seems quite frustrating. At first sight,
it may not be clear why one would desire to get an outcome that comes out
of a distribution, rather than a deterministic one. Still, randomness, and thus
probability theory, has played a major role in computer science. Compu-
tational complexity characterizes the difficulty of problems based on every
possible instance. Therefore, it might be the case that only a fraction of in-
stances of a problem are hard to solve. In that case, it sounds a like good idea
to get an approximate solution to that problem most times. Indeed, worst-case
complexity might fail to capture the underlying difficulty of a problem, while
average-case complexity (Impagliazzo, 1995) can be more suitable. Develop-
ing a randomized algorithm (Motwani and Raghavan, 1995; Mitzenmacher and
Upfal, 2005), one where the toss of a coin is involved, has become quite a pop-
ular approach, closely related to that of approximation algorithms (Vazirani,
2001). A Las Vegas randomized algorithm is one that always returns correct
results, while a Monte Carlo randomized algorithm is one whose output may
not be correct, with some probability which is typically small. The latter is
most commonly used in practice. Thus, the fundamental idea behind ran-
domized algorithms is that a polynomial algorithm can be developed for an
intractable problem, by taking a decision at random at a step, with a (known)
probability of returning a wrong result. Sometimes, the quality of the solu-
tion can be bounded.

A major concept in randomized algorithms and decision making under un-
certainty is that of probability inequalities. Probability inequalities provide
bounds on the values of probabilities of events that are related to tails of
distributions. They are commonly used in the analysis of algorithms, as they
are in many cases a useful tool for bounding time complexity. However, their
applications are not limited to that. In particular, in the context of this thesis,
we exploit probability inequalities for agent decision-making, as they pro-
vide a means of approximating the values of probabilities that are otherwise
expensive to compute.
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3.1 Expectation and Variance of Random Variables

A random variable is a function whose domain is the set of events of the
sample space, and takes values from the set of (greater or equal to zero) real
numbers. For instance, the domain of a variable that represents the toss of a
(fair) six-sided dice is Ω = {1, 2, 3, 4, 5, 6}, and for an event 𝑥 ∈ Ω, 𝑃 (𝐴 = 𝑎) =
1/6. Formally:

Definition 1. A random variable (r.v.) 𝐴 is a real-valued function on sample space
Ω, i.e., 𝐴 : Ω → R. A random variable can be either discrete or continuous, that
is it can take values from either a discrete space (or a countably infinite one) or a
continuous space.

Furthermore, independence of random variables is one of the most funda-
mental concepts in probability theory. Intuitively, two random variables are
independent if the value that the one takes does not affect the one of the
other. Formally:

Definition 2. Two random variables 𝐴 and 𝐵 are independent if and only if:

𝑃
(︀
(𝐴 = 𝑎) ∩ (𝐵 = 𝑏)

)︀
= 𝑃 (𝐴 = 𝑎) · 𝑃 (𝐵 = 𝑏)

It further holds for independent random variables 𝐴 and 𝐵 that:

𝑃 (𝐴 = 𝑎|𝐵 = 𝑏) = 𝑃 (𝐴 = 𝑎)

We now define expectation of a random variable, which is essentially the
weighted average of the values of its sample space, where the weight that
is given to each value is equal to the probability that the random variable
takes that value.

Definition 3. The expectation of the discrete random variable 𝐴, whose sample space
is Ω, is:

𝐸[𝐴] =
∑︁
𝑎∈Ω

𝑎 · 𝑃 (𝐴 = 𝑎)

An important property that is related to the sum of a finite number of random
variables is the linearity of expectations, which is defined as follows:

Definition 4. The expected value of the sum of the (either dependent or independent)
discrete random variables 𝐴1, . . . , 𝐴𝑛 is:

𝐸[𝐴] = 𝐸
[︀ 𝑛∑︁

𝑖=1

𝐴𝑖

]︀
=

𝑛∑︁
𝑖=1

𝐸[𝐴𝑖]

Now, the variance of a random variable is a measure that, intuitively, tells how
far the random variable is likely to be from its expected value. The standard
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deviation of a random variable is the square root of its variance.

Definition 5. The variance of random variable 𝐴 is:

𝑉 𝑎𝑟[𝐴] = 𝐸[(𝐴− 𝐸[𝐴])2] = 𝐸[𝐴2]− 𝐸[𝐴]2

Therefore, the standard deviation of 𝐴 is 𝜎[𝐴] =
√︀

𝑉 𝑎𝑟[𝐴].

The joint variability of two random variables is termed as covariance and is
defined as follows:

Definition 6. The covariance of two random variables 𝐴 and 𝐵 is:

𝐶𝑜𝑣[𝐴,𝐵] = 𝐸[(𝐴− 𝐸[𝐴]) · (𝐵 − 𝐸[𝐵])]

As we have already presented, the expected value of the sum of random
variables is simply the sum of the expected value of each distinct random
variable, and it is not different for dependent and independent random vari-
ables. However, the variance of the sum of two random variables involves
one extra term, that of covariance.

Definition 7. The variance of the sum of two random variables 𝐴 and 𝐵 is:

𝑉 𝑎𝑟[𝐴 + 𝐵] = 𝑉 𝑎𝑟[𝐴] + 𝑉 𝑎𝑟[𝐵] + 2 · 𝐶𝑜𝑣[𝐴,𝐵]

For two independent random variables 𝐴 and 𝐵 it holds that:

𝐶𝑜𝑣[𝐴,𝐵] = 0

Therefore, the variance of the sum of two independent r.v.’s 𝐴 and 𝐵 is:

𝑉 𝑎𝑟[𝐴 + 𝐵] = 𝑉 𝑎𝑟[𝐴] + 𝑉 𝑎𝑟[𝐵]

3.2 Markov’s Inequality

One of the most fundamental probability inequalities is Markov’s inequality.
Despite that the bounds it offers are far from tight (except to the case that
only the expected value is known), it often consists the basis for the develop-
ment of more sophisticated inequalities. Furthermore, it only assumes that
the expected value of the random variable, whose tail distribution is com-
puted, is known, and that the sample space consists of events whose values
are greater than zero.
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Theorem 1. Let 𝐴 be a random variable whose sample space includes only non-
negative values. Then, for any 𝜂 ∈ R+, it holds that:

𝑃 (𝐴 ≥ 𝜂) ≤ 𝐸[𝐴]

𝜂

For a proof of Markov’s inequality one can see (Mitzenmacher and Upfal,
2005).

Assume a six-sided dice and let 𝐴 be the random variable of the outcome of
the roll of the dice. Thus, Ω = {1, 2, 3, 4, 5, 6}. Since the dice is fair, we know
that 𝐸[𝐴] = 3.5, 𝑃 (𝐴 ≥ 4) = 1/2, 𝑃 (𝐴 ≥ 5) = 1/3, and 𝑃 (𝐴 ≥ 6) = 1/6.
According to Markov’s inequality 𝑃 (𝐴 ≥ 4) ≤ 0.875, 𝑃 (𝐴 ≥ 5) ≤ 0.7, and

𝑃 (𝐴 ≥ 6) ≤ 0.583. Ideally, we would like the ratio 𝑏𝑜𝑢𝑛𝑑
𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒 to get closer to 1,

as the value of 𝑎 increases. However, we see that 0.875
1/2

= 1.75, 0.7
1/3

= 2.1, and
0.583
1/6

= 3.5.

3.3 One-sided Chebyshev’s Inequality

An inequality that provides upper bounds on either the lower or the upper
tail distribution, with respect to the distance from the expected value is the
one-sided Chebyshev’s inequality. Thus, the one-sided Chebyshev’s inequality
has two forms and is defined as follows:

Theorem 2. Let 𝐴 be a random variable and 𝜂 ∈ R+. It holds that:

𝑃 (𝐴 ≥ 𝐸[𝐴] + 𝜂) ≤ 𝑉 𝑎𝑟[𝐴]

𝑉 𝑎𝑟[𝐴] + 𝜂2

𝑃 (𝐴 ≤ 𝐸[𝐴]− 𝜂) ≤ 𝑉 𝑎𝑟[𝐴]

𝑉 𝑎𝑟[𝐴] + 𝜂2

For a proof on one-sided Chebyshev’s inequality one can see (Bast and We-
ber, 2005) and (Grimmett and Stirzaker, 2001).

In the six-sided dice example, the one sided Chebyshev’s inequality yields
𝑃 (𝐴 ≥ 4) ≤ 0.853, 𝑃 (𝐴 ≥ 5) ≤ 0.66, and 𝑃 (𝐴 ≥ 4) ≤ 0.538. Thus, even in this
naive problem, we can see that this inequality offers better (tighter) bounds
than Markov’s inequality.

3.4 Two-sided Chebyshev’s Inequality

We can also derive a similar inequality for both tails of the distribution of
a random variable known as the two-sided Chebyshev’s inequality, which is
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defined as follows:

Theorem 3. Let 𝐴 be a random variable and 𝜂 ∈ R+. It holds that:

𝑃 (|𝐴− 𝐸[𝐴]| ≥ 𝜂) ≤ 𝑉 𝑎𝑟[𝐴]

𝜂2

Proof. We see that 𝑃 (|𝐴 − 𝐸[𝐴]| ≥ 𝜂) = 𝑃
(︀
(𝐴 − 𝐸[𝐴])2 ≥ 𝜂2

)︀
. Thus, we can

apply Markov’s inequality, as (𝐴− 𝐸[𝐴])2 ≥ 0:

𝑃 ((𝐴− 𝐸[𝐴])2 ≥ 𝜂2) ≤ 𝐸[(𝐴− 𝐸[𝐴])2]

𝜂2
=

𝐸[𝐴2]− 𝐸[𝐴]2

𝜂2
=

𝑉 𝑎𝑟[𝐴]

𝜂2

3.5 Chernoff Bounds

An exceptionally powerful and widely used family of inequalities is the Cher-
noff bounds (Chernoff, 1952). They essentially consist a tool that provides
exponentially decreasing bounds on the upper tail distribution. A general
guideline in deriving Chernoff bounds is that Markov’s inequality can be ap-
plied to 𝑒𝑡𝐴, where 𝐴 is a random variable and 𝑡 is a value that determines
the quality of the obtained bound. Thus, a general form Chernoff bound can
be derived as follows, where 𝑡 > 0:

𝑃 (𝐴 ≥ 𝜂) = 𝑃 (𝑒𝑡𝐴 ≥ 𝑒𝑡𝜂) ≤ 𝐸[𝑒𝑡𝐴]

𝑒𝑡𝜂

However, tighter, and thus better, Chernoff bounds can be derived for some
special cases. For instance, for the sum of independent 0-1 random variables,
the following bounds for the lower tail hold, where 𝐴1, . . . , 𝐴𝑛 are random
variables whose sample space is Ω = {0, 1}, 𝐴 =

∑︀𝑛
𝑖=1𝐴𝑖, 𝜇 = 𝐸[𝐴], and

𝛿 ∈ (0, 1):

𝑃 (𝐴 ≤ (1− 𝛿)𝜇) ≤
(︁ 𝑒−𝛿

(1− 𝛿)1−𝛿

)︁𝜇

𝑃 (𝐴 ≤ (1− 𝛿)𝜇) ≤ 𝑒−𝜇𝛿2/2

If 𝐴1, . . . , 𝐴𝑛 are independent random variables such that 𝑃 (𝐴𝑖 = 1) = 𝑃 (𝐴𝑖 =
−1) = 1

2
, and 𝐴 =

∑︀𝑛
𝑖 𝐴𝑖, then for any 𝜂 > 0 it holds that:

𝑃 (𝐴 ≥ 𝜂) ≤ 𝑒−𝜂2/2𝑛
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Anther interesting case is when 𝐴1, . . . , 𝐴𝑛 are independent and 𝑃 (𝐴𝑖 = 1) =
𝑃 (𝐴𝑖 = 0) = 1

2
. Let 𝐴 =

∑︀𝑛
𝑖=1 𝐴𝑖 and thus 𝜇 = 𝐸[𝐴] = 𝑛/2. The following

two Chernoff bounds hold:

For 0 < 𝜂 < 𝜇

𝑃 (𝐴 ≤ 𝜇− 𝜂) ≤ 𝑒−2𝜂2/𝑛

For 0 < 𝛿 < 1

𝑃 (𝐴 ≤ (1− 𝛿)𝜇) ≤ 𝑒−𝛿2𝜇

3.6 Hoeffding’s Inequality

A probability inequality for obtaining bounds on both tails around the mean
value of the sum of independent random variables was proven in 1963 by
Wassily Hoeffding (Hoeffding, 1963). However, it only holds for variables
that are bounded by both sides.

Theorem 4. Let 𝐴1, . . . , 𝐴𝑛 be independent random variables, where all 𝐴𝑖 are
bounded so that 𝐴𝑖 ∈ [𝑎𝑖, 𝑏𝑖], and let 𝐴 =

∑︀𝑛
𝑖=1𝐴𝑖. Then, it holds that:

𝑃 (|𝐴− 𝐸[𝐴]| ≥ 𝑘) ≤ 2𝑒𝑥𝑝
(︁
− 2𝑘2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)︁
Naturally, the value of the bound provided by Hoeffding’s inequality largely
depends on the values of bounds 𝑎𝑖 and 𝑏𝑖 of the variables. However, it con-
sists one of the most fundamental probabilities inequalities with various ap-
plications in statistics (Massart, 2000; Glynn and Ormoneit, 2002).

3.7 Paley-Zygmund Inequality

Most probability inequalities are helpful in providing upper bounds on tail
distributions. Deriving inequalities for lower bounds is considered harder,
in general. Nevertheless, one such inequality is the Paley-Zygmund inequal-
ity (Paley and Zygmund, 1932) which provides lower bounds on the upper
tail of the distribution of a random variable.

Theorem 5. Let a random variable 𝐴 (with finite variance), and 0 ≤ 𝑡ℎ𝑒𝑡𝑎 ≤ 1. It
holds that:

𝑃
(︁
𝐴 > 𝜃𝐸[𝐴]

)︁
≥ (1− 𝜃)2𝐸[𝐴]2

𝐸[𝐴2]
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Chapter 4

Probabilistic Topic Modeling

The emergence of Big Data has made it more difficult than ever to organize
and even identify the information and knowledge contained in large corpora
of documents. Probabilistic topic modeling (PTM)1 (Blei, 2012) is a form of
unsupervised learning which is particularly suitable for unravelling informa-
tion from massive sets of documents. Probabilistic topic models essentially
consist of statistical methods that analyze words of documents and infer the
probability with which each word of a given “vocabulary” is part of a topic.
Intuitively, the words that have high probability in a topic, are very likely to
appear together in a document that refers to this topic with high probabil-
ity. Therefore, a topic, which is essentially a probability distribution of the
words of a given vocabulary, reveals the underlying hidden structure. One
of the most popular PTM algorithms (Blei, 2012) is online Latent Dirichlet Al-
location (online LDA) (Hoffman, Bach, and Blei, 2010), which, as its name
indicates, is a an online version of the well-known Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan, 2003) algorithm. LDA is a generative proba-
bilistic model for sets of discrete data, while online LDA can handle docu-
ments that arrive in streams, enabling the continuous evolution of the topics.
Furthermore, LDA can be interpreted as a graphical model (Jordan, 1998;
Jordan et al., 1999; Koller and Friedman, 2009) and a multinomial Principal
Component Analysis (PCA) procedure (Hoffman, Bach, and Blei, 2010; Jol-
liffe, 2002; Abdi and Williams, 2010). Other notable PTMs are the mixture
of unigrams model (Nigam et al., 2000) and the probabilistic latent semantic
indexing model (Hofmann, 1999),

In this section, we provide the background that is essential for Chapter 6,
where we present a novel method for agent-decision making in overlap-
ping coalitional settings which is based on PTM, and specifically online LDA.
Therefore, we begin by introducing LDA and then proceed in presenting on-
line LDA.

1We may use the abbrevation PTM to refer to either Probabilistic Topic Modeling or Prob-
abilistic Topic Model.
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4.1 Latent Dirichlet Allocation

Since the field of Probabilistic Topic Modeling has emerged from applications
in document analysis, the terminology that is usually used stems from that.
However, the applications of PTM are much broader. In particular, the spec-
trum of domains in which Latent Dirichlet Allocation has been applied to
ranges from bioinformatics (Liu et al., 2010) to music harmonic analysis (Hu
and Saul, 2009) and software engineering (Maskeri, Sarkar, and Heafield,
2008).

Now, we define basic terms and notation:

∙ A word is the basic unit of discrete data. A vocabulary consists of words
and is indexed by {1, 2, . . . , 𝑉 }, while it is fixed and has to be known to
the LDA.

∙ A document is a series of 𝐿 words, denoted by 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝐿),
where the 𝑙𝑡ℎ word is denoted by 𝑤𝑙.

∙ A corpus is a collection of 𝑀 documents, denoted by 𝐷 = {𝑤1,𝑤2, . . . ,𝑤𝑀}.

∙ A topic is a distribution over a vocabulary.

LDA is a Bayesian probabilistic model, the intuition behind it being that a
document is a mixture of topics. For each document 𝑤 in 𝐷, LDA assumes
the following generative process:

1. Pick in a random way a distribution over topics.

2. For each word in the document proceed in two steps:

(a) Pick in a random way a topic from the distribution that was picked
in step 1.

(b) Pick in a random way a word from the topic that was picked in (a).

As implied by this generative process, documents share the same set of top-
ics, but each exhibits topics in different portions.

While LDA observes only documents, i.e. sequences of words, its objective
is to discover the topic structure which is hidden. It is thus assumed that the
generative process includes latent variables. The topics are 𝛽1:𝐾 , where 𝐾
is their number; each topic 𝛽𝑘 is a distribution over the vocabulary, where
𝑘 ∈ {1, . . . , 𝐾}; and 𝛽𝑘𝑤 is the probability of word 𝑤 in topic 𝑘. For the 𝑑𝑡ℎ

document the topic proportion of topic 𝑘 is 𝜃𝑑𝑘, as 𝜃𝑑 is a distribution over the
topics. The topic assignments for the 𝑑𝑡ℎ document are denoted by 𝑧𝑑, with
𝑧𝑑𝑙 being the topic assignment for the 𝑙𝑡ℎ word of the 𝑑𝑡ℎ document. Thus, 𝛽, 𝜃
and 𝑧 are the latent variables of the model, while the only observed variable
is 𝑤, where 𝑤𝑑𝑙 is the 𝑙𝑡ℎ word that is observed in the 𝑑𝑡ℎ document. Given the
documents, the posterior of the topic structure is:

𝑃 (𝛽1:𝐾 , 𝜃1:𝐷, 𝑧1:𝐷 | 𝑤1:𝐷) =
𝑃 (𝛽1:𝐾 , 𝜃1:𝐷, 𝑧1:𝐷, 𝑤1:𝐷)

𝑃 (𝑤1:𝐷)
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FIGURE 4.1: The intuitions behind Latent Dirichlet Alloca-
tion (Blei, 2012). Every document exhibits the same topics, but
in different portion, and every topic exhibits the same words,
but in different portion. Here, there are four topics (left), and
the illustrated document is a distribution over these topics

(right).

where the computation of 𝑃 (𝑤1:𝐷), the probability of seeing the given doc-
uments under any topic structure, is intractable (Blei, Ng, and Jordan, 2003;
Blei, 2012). The difficulty of performing this computation stems from the
coupling between 𝜃 and 𝛽. Furthermore, LDA introduces priors, so that
𝛽𝑘 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜂) and 𝜃𝑑 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼). The graphical model representa-
tion of LDA is depicted in Figure 4.2.

FIGURE 4.2: Graphical model representation of Latent Dirichlet
Allocation (Blei, Ng, and Jordan, 2003).

Though the exact computation of the posterior, and thus the topic structure
as a whole, cannot be efficiently computed, it can be approximated (Blei, Ng,
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and Jordan, 2003). The two most prominent alternatives for this are Markov
Chain Monte Carlo (MCMC) sampling methods (Jordan, 1998) and varia-
tional inference (Jordan et al., 1999).

In variational inference for LDA, the true posterior is approximated by a sim-
pler distribution 𝑞 that depends on parameters (matrices) 𝜑1:𝐷, 𝛾1:𝐷 and 𝜆1:𝐾 ,
defined as follows:

𝜑𝑑𝑤𝑘 ∝ 𝑒𝑥𝑝{𝐸𝑞[𝑙𝑜𝑔 𝜃𝑑𝑘] + 𝐸𝑞[𝑙𝑜𝑔 𝛽𝑘𝑤]},

𝛾𝑑𝑘 = 𝛼 +
∑︁
𝑤

𝑛𝑑𝑤𝜑𝑑𝑤𝑘, 𝜆𝑘𝑤 = 𝜂 +
∑︁
𝑑

𝑛𝑑𝑤𝜑𝑑𝑤𝑘

The variable 𝑛𝑑𝑤 is the number of times that word 𝑤 has been observed in
document 𝑑. Parameters 𝛾1:𝐷 and 𝜆1:𝐾 are associated with 𝑛𝑑𝑤, while 𝜑𝑑𝑤𝑘

denotes the probability (under distribution 𝑞) that the topic assignment of
word 𝑤 in document 𝑑 is 𝑘 (Blei, Ng, and Jordan, 2003).

The variational inference algorithm (depicted in Algorithm 1) performs by
minimizing the Kullback-Leibler (KL) divergence between the variational distri-
bution and the true posterior. This is achieved via an Expectation Maximiza-
tion (EM) procedure, where the algorithm iterates between assigning values
to document-level variables and updating topic-level variables.

Algorithm 1: Variational Inference for LDA (Blei, Ng, and Jordan, 2003).
1 Initialize 𝜆 randomly
2 repeat
3 E step :
4 for d = 1 to D do
5 Initialize 𝛾𝑑𝑘 = 1 (or any other arbitrary constant)
6 repeat
7 Set 𝜑𝑑𝑤𝑘 ∝ 𝑒𝑥𝑝{𝐸𝑞[𝑙𝑜𝑔 𝜃𝑑𝑘] + 𝐸𝑞[𝑙𝑜𝑔 𝛽𝑘𝑤]}
8 Set 𝛾𝑑𝑘 = 𝛼 +

∑︀
𝑤 𝑛𝑑𝑤𝜑𝑑𝑤𝑘

9 until 1
𝐾

∑︀
𝑘 |change in𝛾𝑑𝑘| < 𝜖

10 M step :
11 Set 𝜆𝑘𝑤 = 𝜂 +

∑︀
𝑑 𝑛𝑑𝑤𝜑𝑑𝑤𝑘

12 until relative KL divergence has not significantly decreased

4.2 Online Latent Dirichlet Allocation

In online LDA (Hoffman, Bach, and Blei, 2010), documents can arrive in
batches (streams), and the value of 𝜆1:𝐾 is updated through analyzing each
batch of documents. The variable 𝜌𝑡 = (𝜏0+𝑡)−𝜅 controls the rate at which the
documents of batch 𝑡 impact the value of 𝜆1:𝐾 . Assigning a value to 𝜅 such
that 𝜅 ∈ (0.5, 1] guarantees the convergence of the algorithm. Furthermore,
the algorithm requires an estimation, at least, of the total number of docu-
ments, 𝐷, in case this is not known in advance. The values of 𝛼 and 𝜂 can
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be assigned once and remain fixed. Essentially, the probability of word 𝑤 in
topic 𝛽𝑘, can be estimated as 𝛽𝑘𝑤 = 𝜆𝑘𝑤/

∑︀
𝜆𝑘. Online LDA (using variational

inference) is shown in Alg. 2 below.

Furthermore, a common means in document modeling for measuring the
performance of the model is perplexity, which is computed over a held-out
set of documents. Perplexity is estimated as the geometric mean of the in-
verse marginal probability of the held-out set of documents, and the lower the
perplexity the better the generalization performance of the model (Blei, Ng, and
Jordan, 2003). Formally, for a test set of documents 𝐷, where their number is
𝑀 , the perplexity is:

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷test) = exp
{︁
−

∑︀𝑀
𝑑=1 𝑙𝑜𝑔𝑃 (𝑤𝑑)∑︀𝑀

𝑑=1𝑁𝑑

}︁
where 𝑁𝑑 is the number of words of document 𝑑 belonging in the test set.

Algorithm 2: Online Variational Inference for LDA (Hoffman, Bach, and Blei,
2010).

1 Initialize 𝜆 randomly
2 for t = 1 to∞ do
3 𝜌𝑡 = (𝜏0 + 𝑡)−𝜅

4 E step :
5 Initialize 𝛾𝑡𝑘 randomly
6 repeat
7 Set 𝜑𝑡𝑤𝑘 ∝ 𝑒𝑥𝑝{𝐸𝑞[𝑙𝑜𝑔 𝜃𝑡𝑘] + 𝐸𝑞[𝑙𝑜𝑔 𝛽𝑘𝑤]}
8 Set 𝛾𝑡𝑘 = 𝛼 +

∑︀
𝑤 𝑛𝑡𝑤𝜑𝑡𝑤𝑘

9 until 1
𝐾

∑︀
𝑘 |change in 𝛾𝑡𝑘| < 𝜖

10 M step :
11 Compute �̃�𝑘𝑤 = 𝜂 + 𝐷𝑛𝑡𝑤𝜑𝑡𝑤𝑘

12 Set 𝜆 = (1− 𝜌𝑡)𝜆 + 𝜌𝑡�̃�
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Chapter 5

Probability Bounds for
Overlapping Coalition Formation

This chapter describes the first of the two main parts of this thesis. The main
contribution is the development of three novel methods which benefit from
obtaining probability bounds for assessing the ability of teams of agents to
accomplish coalitional tasks. As argued before, in many realistic settings it
is natural that individual agents contribute some amount of their (divisible)
resource in order to complete the coalitional task. Therefore, we allow agents
to join a number of overlapping coalitions, which are also referred to as partial
coalitions (Chalkiadakis et al., 2010). Moreover, interconnected electronic so-
cieties (Papadimitriou, 2001) and social networks offer a natural environment
for the completion of goals of individuals, most of the times by completing
tasks through common actions. In this setting, the formation of a coalition is
feasible only if its members are interconnected (Myerson, 1977).

Moreover, it is conceivable that an agent is certain only of the quantity of her
own resource, while she has private beliefs about others’ potential contribu-
tion. Thus, acting under incomplete information, she can only reason in a
probabilistic manner about the success of a potential coalition (Chalkiadakis,
Markakis, and Boutilier, 2007; Kraus, Shehory, and Taase, 2003). Against this
background, we provide three novel methods that allow agents to establish
probability bounds on the corresponding uncertainty. The bounds are de-
rived given private agent beliefs about others’ potential resource investment.
These beliefs correspond to Beta and Dirichlet distributions which can be eas-
ily manipulated and updated in a principled manner. Our first method ex-
ploits an improvement of the Paley-Zygmund inequality (Paley and Zygmund,
1932), while the second and the third proceed by appropriately handling the
two-sided Chebyshev’s inequality (Mitzenmacher and Upfal, 2005) and the Ho-
effding’s inequality (Hoeffding, 1963), respectively. Agents (where the their set
is denoted by 𝑁 = {1, . . . , 𝑛}) using any of them can demand an arbitrary
confidence level for the resource contribution of a (partial) coalition.

In order for agents to complete tasks by forming overlapping coalitions in a
decentralized manner, an appropriate protocol is required. Thus, we provide
a generic protocol for iterated overlapping coalition formation. Under this
protocol, in each iteration (round) a number of tasks arrives, and a proposer
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gets assigned to each task, who is responsible for forming a coalition so that
the task gets completed; naturally, the underlying graph structure influences
the plausibility of emergence of the coalitions. Though it suits the case of
overlapping coalition formation, the protocol is not specific to it. To the best
of our knowledge, this is the first paper to compute probability bounds for
coalition formation under uncertainty.

We evaluate our methods by conducting experiments over both a 300 nodes
Erdős-Renyi random graph and a real social network which is a 4039 nodes
snapshot from Facebook (Leskovec and Krevl, 2014). Our results show that
our methods consistently outperform, in terms of effectiveness in task com-
pletion, a baseline method that selects coalitions based only on expected re-
source quantity. Moreover, they are also time-efficient, and their behaviour
is robust against increases in demanded confidence level. As such, we can
conclude that they are indeed suitable for probabilistic reasoning in order to
form coalitions in large-scale networks.

The focus of our work in this paper is not game-theoretical, nor do we at-
tempt to conduct optimal coalition structure generation (Chalkiadakis, Elkind,
and Wooldridge, 2011; Rahwan et al., 2015). Instead, we are interested in pro-
viding methods which, when employed by the agents, result in the effective
formation of overlapping coalitions. We note that although we allow over-
lapping coalitions to form (in order to approach more realistic scenarios),
our methods can be directly utilized by agents who operate in environments
where no overlapping coalitions are plausible, also.

5.1 Modeling Uncertainty

The concise representation scheme of (Ueda et al., 2011), which is based on
the idea of agent types (where agents 𝑖, 𝑗 ∈ 𝑁 are recognizably equivalent if
for any coalition 𝐶, 𝑖, 𝑗 /∈ 𝐶 : 𝑣(𝐶 ∪ 𝑖) = 𝑣(𝐶 ∪ 𝑗)) cannot apply as a scheme
for conciseness in threshold task games, as a task is characterized by a scalar,
which is the sum of the resources required for its completion, and not by
type vectors (as in (Ueda et al., 2011)). However, we achieve representa-
tional conciseness by restricting the quantities of the agent resources and the
threshold values of the task types to integer values. Without these restric-
tions, the number of possible partial coalitions would be infinite. We thus
assume that resources are integers, and an agent 𝑖 ∈ 𝑁 possesses a resource
amount 𝑤𝑖 ∈ {1, . . . , 𝑞𝑚𝑎𝑥}, where 𝑞𝑚𝑎𝑥 ∈ N+.

5.1.1 Agent Beliefs

Each agent 𝑖 knows with certainty only the quantity of her own resource,
while she has a private belief 𝑋 𝑖

𝑗 about the resource investment of each other
agent 𝑗. Belief 𝑋 𝑖

𝑗 is composed of random variables 𝐷𝑖
𝑗 and 𝐵𝑖

𝑗 , which are
distributed as follows:
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∙ 𝐷𝑖
𝑗 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︀
𝑝𝑖𝑗 = (𝑝𝑖𝑗1 , . . . , 𝑝

𝑖𝑗
𝑞𝑚𝑎𝑥

)
)︀
, where 𝑝𝑖𝑗𝑟 is the probability

that 𝑗 offers quantity 𝑟 of her resource in a coalition.

∙ 𝑝𝑖𝑗 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝑖𝑗), 𝛼𝑖𝑗 = (𝛼𝑖𝑗
1 , . . . , 𝛼

𝑖𝑗
𝑞𝑚𝑎𝑥

)

∙ 𝐵𝑖
𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑞𝑖𝑗), where 𝑞𝑖𝑗 is the probability that 𝑗 accepts an offer

by 𝑖 for participation in a coalition.

∙ 𝑞𝑖𝑗 ∼ 𝐵𝑒𝑡𝑎(𝑎𝑖𝑗, 𝑏𝑖𝑗), where 𝑎𝑖𝑗 (𝑏𝑖𝑗) corresponds to the number of propos-
als from 𝑖 that 𝑗 has accepted (declined).

Note that 𝛼𝑖𝑗 , 𝑎𝑖𝑗 and 𝑏𝑖𝑗 above are hyperparameters corresponding to easily
updated counters (as we explain later). We estimate 𝑝𝑖𝑗𝑟 as 𝛼𝑖𝑗

𝑟 /
∑︀

𝛼𝑖𝑗 , and 𝑞𝑖𝑗

as 𝑎𝑖𝑗/(𝑎𝑖𝑗 + 𝑏𝑖𝑗). Thus, 𝐸[𝑋 𝑖
𝑗] = 𝑞𝑖𝑗

∑︀𝑞𝑚𝑎𝑥

𝑟=1 𝑝𝑖𝑗𝑟 · 𝑟. Therefore, the expected, ac-
cording to 𝑖’s beliefs, quantity of the sum of resource contribution of a group
of agents 𝑋 𝑖

𝐶 =
∑︀

𝑗∈𝐶 𝑋 𝑖
𝑗, 𝐶 ⊆ 𝑁 ∖ 𝑖, can be computed in 𝑂(𝑛 · 𝑞𝑚𝑎𝑥) time,

through linearity of expectations. We assume that 𝑋 𝑖
1, . . . , 𝑋

𝑖
𝑖−1, 𝑋

𝑖
𝑖+1, . . . 𝑋

𝑖
𝑛

are independent. Due to independence, the variance of 𝑋 𝑖
𝐶 is the sum of the

variances of each 𝑋 𝑖
𝑗, 𝑗 ∈ 𝐶, and thus it can be computed in 𝑂(𝑛 · 𝑞𝑚𝑎𝑥) time

as well.

5.2 Obtaining and Exploiting Probability Bounds

Agents act under uncertainty regarding the amount of resources that the
other agents may contribute to a coalition, for the completion of a common
task, in the context of a threshold task game. In this section we describe how
probability bounds over the resource contribution of a group of agents can
be obtained, and how these can be exploited.

We henceforth refer to 𝑋 𝑖
𝐶 as 𝑋 , for fixed 𝑖 ∈ 𝑁 and 𝐶 ⊆ 𝑁 ∖ 𝑖, when this

causes no confusion. The threshold value 𝑇 of a task 𝑡 = (𝑇, 𝑢) must be
exceeded, so that utility 𝑢 is granted to the members of the successful coali-
tion, and thus agent 𝑖 is interested in computing 𝑃 (𝑋 ≥ 𝑇 ). Since the cost
of this computation can be extremely high,1 the agents resort to computing
bounds over this quantity. In the following subsections, we also provide re-
minders (as they were previously presented in section 3) of the definitions of
the exploited probability inequalities.

1The distribution of the sum of independent integer-valued random variables can be
computed via the Convolution Theorem, which exploits Fast Fourier Transform (Proakis and
Manolakis, 1996), in 𝑂(𝑛2 · 𝑞𝑚𝑎𝑥 · log(𝑛 · 𝑞𝑚𝑎𝑥)) time. However, this is pseudopolynomial,
as it is polynomial in the numeric value 𝑞𝑚𝑎𝑥, and also quadratic in 𝑛 (where we actually
care about large 𝑛), and thus this computation time can be prohibitive. By contrast, we ob-
tain (lower) probability bounds in 𝑂(𝑛 · 𝑞𝑚𝑎𝑥) time, since the inequalities we utilize depend
on the expected value and variance of 𝑋 .
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5.2.1 IPZY Method

Our first method builds on an improvement of the Paley-Zygmund inequal-
ity (IPZY).

Theorem 6 (Paley-Zygmund inequality). Let a random variable 𝑋 ≥ 0 with
finite variance and 0 ≤ 𝜃 ≤ 1. It holds:

𝑃 (𝑋 > 𝜃𝐸[𝑋]) ≥ (1− 𝜃)2𝐸[𝑋]2

𝐸[𝑋2]
(5.1)

Since 𝐸[𝑋2] = 𝑉 𝑎𝑟[𝑋] + 𝐸[𝑋]2, it follows that:

𝑃 (𝑋 > 𝜃𝐸[𝑋]) ≥ (1− 𝜃)2𝐸[𝑋]2

𝑉 𝑎𝑟[𝑋] + 𝐸[𝑋]2
(5.2)

We now state and prove the following inequality that provides a better bound:2

Theorem 7. Let a random variable 𝑋 ≥ 0 with finite variance, and 0 ≤ 𝜃 ≤ 1. It
holds that:

𝑃 (𝑋 > 𝜃𝐸[𝑋]) ≥ (1− 𝜃)2𝐸[𝑋]2

𝑉 𝑎𝑟[𝑋] + (1− 𝜃)2𝐸[𝑋]2
(5.3)

Proof. The proof exploits the one-sided Chebyshev’s inequality which states
that for 𝜂 > 0 the following two inequalities hold:

𝑃 (𝑋 ≥ 𝐸[𝑋] + 𝜂) ≤ 𝑉 𝑎𝑟[𝑋]

𝑉 𝑎𝑟[𝑋] + 𝜂2
(5.4)

𝑃 (𝑋 ≤ 𝐸[𝑋]− 𝜂) ≤ 𝑉 𝑎𝑟[𝑋]

𝑉 𝑎𝑟[𝑋] + 𝜂2
(5.5)

We proceed by exploiting Eq. (5.5), where the referred variables are defined
as above, as follows:

𝑃
(︀
𝑋 ≤ 𝜃𝐸[𝑋]

)︀
= 𝑃

(︀
𝑋 ≤ 𝐸[𝑋]− (1− 𝜃)𝐸[𝑋]

)︀
≤ 𝑉 𝑎𝑟[𝑋]

𝑉 𝑎𝑟[𝑋] + (1− 𝜃)2𝐸[𝑋]2

2This improvement is reported at some places on the Web; to the best of our knowledge,
we are the first to provide a formal proof.
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It holds that:

𝑃
(︀
𝑋 > 𝜃𝐸[𝑋]

)︀
+ 𝑃

(︀
𝑋 ≤ 𝜃𝐸[𝑋]

)︀
= 1

⇔ 𝑃
(︀
𝑋 > 𝜃𝐸[𝑋]

)︀
= 1− 𝑃

(︀
𝑋 ≤ 𝜃𝐸[𝑋]

)︀
⇔ 𝑃

(︀
𝑋 > 𝜃𝐸[𝑋]

)︀
≥ 1− 𝑉 𝑎𝑟[𝑋]

𝑉 𝑎𝑟[𝑋] + (1− 𝜃)2𝐸[𝑋]2

⇔ 𝑃
(︀
𝑋 > 𝜃𝐸[𝑋]

)︀
≥ 𝑉 𝑎𝑟[𝑋] + (1− 𝜃)2𝐸[𝑋]2 − 𝑉 𝑎𝑟[𝑋]

𝑉 𝑎𝑟[𝑋] + (1− 𝜃)2𝐸[𝑋]2

⇔ 𝑃
(︀
𝑋 > 𝜃𝐸[𝑋]

)︀
≥ (1− 𝜃)2𝐸[𝑋]2

𝑉 𝑎𝑟[𝑋] + (1− 𝜃)2𝐸[𝑋]2

Clearly, Eq. (5.3) provides a better bound than Eq. (5.2), since for lower bounds
greater values are preferred, and the denominator of Eq. (5.3) is smaller than
the one of Eq. (5.2). Hence, lower probability bounds can be obtained via the
employment of Eq. (5.3). Figure 5.1 presents typical values of the lower prob-
ability bounds, according to the beliefs of a random agent in our Erdős-Renyi
experimental setting described later. Figure 5.1 also presents the correspond-
ing values derived by Eq. (5.1)

(︀
which provides the same results as Eq. (5.2)

)︀
,

for comparison.

FIGURE 5.1: Lower bounds provided by Eq. (5.3) and
Eq. (5.1)

(︀
which provides the same results as Eq. (5.2)

)︀
, for a

group of agents of size 45, with expected value 340.72 and vari-
ance 3529.71, based on the beliefs of a randomly selected agent.
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Agent 𝑖 wants to assess the ability of a group of agents 𝐶 to complete task
𝑡 = (𝑇, 𝑢). Thus, a lower bound for 𝑃 (𝑋 > 𝑇 ) can be obtained using Eq. (5.3),
by setting:

𝜃 = 𝑇/𝐸[𝑋] (5.6)

Notice that it must hold that 𝐸[𝑋] > 𝑇 , or else 𝜃 ≥ 1.

Furthermore, let 𝑖 demand a certain confidence level 𝑐, 0 < 𝑐 < 1, so that
the bound obtained for a group, using Eq. (5.3), with 𝜃 set as in Eq. (5.6), is
greater than 𝑐. To select a group of agents, either to directly join or invite its
members to join forces together, 𝑖 would select the group that has the smallest
size among those that offer her confidence level of at least 𝑐. In this way, 𝑖
would have her confidence requirement satisfied; and by selecting an appro-
priate group with the smallest possible size, a greater portion of 𝑢 could be
distributed to each individual in the coalition.

5.2.2 CH2S Method

Our second method builds on a manipulation of the two-sided Chebyshev’s
inequality, and it is thus termed CH2S.

Theorem 8 (Two-sided Chebyshev’s inequality). Let a random variable 𝑋 with
finite variance, for any 𝑘 > 0:

𝑃 (|𝑋 − 𝐸[𝑋]| ≥ 𝑘) ≤ 𝑉 𝑎𝑟[𝑋]

𝑘2
(5.7)

Now, we can manipulate Eq. (5.7), in order to obtain a lower probability bound,
in the following way:

𝑃 (|𝑋 − 𝐸[𝑋]| < 𝑘) ≥ 1− 𝑉 𝑎𝑟[𝑋]

𝑘2
(5.8)

The probability bound obtained by Eq. (5.8) can be exploited in a similar way
as in the IPZY method, so we adopt the same notation as before. Here again,
agent 𝑖 wants to assess the ability of a group 𝐶 to complete task 𝑡 = (𝑇, 𝑢),
and the lower bound of Eq. (5.8) can be obtained, by setting:

𝑘 = 𝐸[𝑋]− 𝑇 (5.9)

Thus, 𝑖 can obtain a lower bound, equal to 1− 𝑉 𝑎𝑟[𝑋]/𝑘2, for the probability
of the event that 𝑋 ∈ (𝑇,𝐸[𝑋] + 𝑘), as illustrated in Figure 5.2. Agent 𝑖 can
select a group of agents, out of potentially many, as follows. She chooses the
one that has the smallest size among those which provide her with a bound,
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computed by Eq. (5.8), and with k as in Eq. (5.9), that exceeds her required
confidence level 𝑐, 0 < 𝑐 < 1.

FIGURE 5.2: Illustration of Eq. (5.8)

5.2.3 HF Method

The third method (HF) is based on Hoeffding’s inequality.

Theorem 9 (Hoeffding’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables, where all 𝑋𝑖 are bounded so that 𝑋𝑖 ∈ [𝑙𝑖, 𝑢𝑖], and let 𝑋 =

∑︀𝑛
𝑖=1 𝑋𝑖.

Then it holds that:

𝑃 (|𝑋 − 𝐸[𝑋]| ≥ 𝑘) ≤ 2𝑒𝑥𝑝

(︂
− 2𝑘2∑︀𝑛

𝑖=1(𝑢𝑖 − 𝑙𝑖)2

)︂
(5.10)

Hoeffding’s inequality can be applied since random variables 𝑋 𝑖
𝑗 are inde-

pendent and 𝑋 𝑖
𝑗 takes integer values in [0, 𝑞𝑚𝑎𝑥]. HF exploits Eq. (5.10) iden-

tically to the manner that 𝐶𝐻2𝑆 exploits Eq.(5.7), since both Eq.(5.7) and
Eq.(5.10) provide upper bounds on both tails, and thus their difference is
only on the value of the obtained bound.

5.2.4 Discussion

The power of our methods lies in the fact that they do not need to compute
the exact distribution of 𝑋 , since they obtain probability bounds. We have as-
sumed variable independence, and thus an agent’s beliefs can be represented
by easy-to-maintain conjugate priors (Betas and Dirichlets) over these vari-
ables (Grimmett and Stirzaker, 2001). However, our methods do not depend
in any way on the exact priors used.

Note also that 𝐼𝑃𝑍𝑌 and 𝐶𝐻2𝑆 do apply if dependence among the variables
holds, as well. In that case, computing the distribution of 𝑋 would require
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Algorithm 3: Coalition selection
Data: Agent’s confidence level 𝑐 ∈ (0, 1)
Input: A set of coalitions C = {𝐶1, 𝐶2, . . .};

Task Threshold 𝑇
Output: Coalition 𝐵𝑒𝑠𝑡 ∈ C

1 𝑚𝑖𝑛← +∞, 𝐵𝑒𝑠𝑡← ∅, 𝑏𝑜𝑢𝑛𝑑← 0
2 foreach 𝐶 ∈ C do
3 if method = 𝐼𝑃𝑍𝑌 then
4 𝜃 ← 𝑇/𝐸[𝑋]

5 𝑏𝑜𝑢𝑛𝑑← (1−𝜃)2𝐸[𝑋]2

𝑉 𝑎𝑟[𝑋]+(1−𝜃)2𝐸[𝑋]2

6 else
7 𝑘 ← 𝐸[𝑋]− 𝑇
8 if method = 𝐶𝐻2𝑆 then
9 𝑏𝑜𝑢𝑛𝑑← 1− 𝑉 𝑎𝑟[𝑋]

𝑘2

10 else // 𝑚𝑒𝑡ℎ𝑜𝑑 = 𝐻𝐹
11 𝑏𝑜𝑢𝑛𝑑← 1− 2𝑒𝑥𝑝(−2𝑘2/(|𝐶|𝑞2𝑚𝑎𝑥))

12 if 𝑏𝑜𝑢𝑛𝑑 > 𝑐 ∧ |𝐶| < 𝑚𝑖𝑛 then

13 𝐵𝑒𝑠𝑡← 𝐶
14 𝑚𝑖𝑛← |𝐵𝑒𝑠𝑡|
15 return 𝐵𝑒𝑠𝑡

the computation of the joint probability distribution of the dependent vari-
ables, leading to the following computation for 𝑃 (𝑋 𝑖

𝐶 ≥ 𝑇 ) and 𝑚 = |𝐶|:

𝑃 (𝑋 𝑖
𝐶 ≥ 𝑇 ) =

𝑚·𝑞𝑚𝑎𝑥∑︁
𝜅=𝑇

𝑃 (𝑋 𝑖
𝐶 = 𝜅) =

𝑚·𝑞𝑚𝑎𝑥∑︁
𝜅=𝑇

𝑃
(︀ 𝑚∑︁

𝑗=1

𝑋 𝑖
𝑗 = 𝜅

)︀
where the first equality holds since the events are mutually exclusive. The
number of solutions to the equation 𝑋 𝑖

1 + . . . + 𝑋 𝑖
𝑚 = 𝜅, where every 𝑋 𝑖

𝑗 is a
non-negative integer, is known (Komatsu, 2003) to be

(︀
𝜅+𝑚−1
𝑚−1

)︀
= 𝑂((𝜅+𝑚)𝑚).

Therefore, the computation of 𝑃 (𝑋 ≥ 𝑇 ) is exponential in the number of the
agents when 𝑋 𝑖

𝑗 , 𝑗 ∈ 𝐶, are dependent. However, 𝐼𝑃𝑍𝑌 and 𝐶𝐻2𝑆 would
still work though requiring more time, since computing the variance of 𝑋
would now take 𝑂(𝑛2 · 𝑞𝑚𝑎𝑥), due to the computation of the covariance of
each pair of variables.3 Experimentation with dependent variables is future
work.

One issue that arises regards the decision of an agent when her confidence
level is not satisfied. This can occur in cases where either the cardinality of
the set of coalitions to choose from is very small (i.e., the number of coalitions
to pick from is very limited), or when the required confidence level 𝑐 has
a very high value. For instance, it is natural to expect that an agent with

3Furthermore, a different modeling of beliefs as Dirichlets over the Cartesian product of
all variables, or perhaps as Dirichlet mixture models, would also be required.
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𝑐 = 1 − 𝜖 (with 𝜖 very close to 0) will probably not manage to exceed it. In
our experimental setting, we let the agents who did not manage to satisfy
their confidence level to choose the coalition which provided the confidence
level closest to 𝑐. Though this is natural, considering different alternatives is
interesting future work also.

5.3 An Overlapping Coalition Formation Protocol

We now propose a generic protocol for iterated overlapping coalition forma-
tion. It models real-world situations where 𝑆 tasks per iteration arrive, over
a period of 𝐼 iterations (or rounds), and the resources of the agents are re-
plenished at the end of each round (as such, there is no need for long-term
strategic planning on the part of the agents). In each round a proposer can-
not be assigned with more than one task. Here we assume an underlying
graph, however the protocol can be applied in environments where this is
not the case. The agents of a coalition 𝐶 must be connected by some path,
however not all agents connected by a given path have to be members of 𝐶.
The protocol is purposely kept simple, so that it does not interfere with the
agents’ deliberations over bounds. Despite it not being our most important
contribution in this paper, we note that this is in fact the first generic protocol
for decentralized overlapping coalition formation under uncertainty.

Indeed, while a protocol for task allocation is presented in (Weerdt, Zhang,
and Klos, 2007) it disregards uncertainty and no overlapping coalitions can
be formed. Similarly, protocols in (Kraus, Shehory, and Taase, 2003; Kraus,
Shehory, and Taase, 2004) involve formation via setting-specific negotiations
and auctions, and do not give rise to overlapping coalitions. To the best of
our knowledge, protocols for decentralized overlapping coalition formation
have only been developed in the field of telecommunications (Wang et al.,
2014), where they are mostly domain-oriented and disregard uncertainty on
the contribution of the agents.

The motivation behind our protocol’s design lies on the way that research
projects are assigned to institutions (e.g. universities, corporations with R&D
departments), and the emerging need for cooperation among partners, so
that the project gets successfully completed. Naturally, an institution (corre-
sponding to an agent) can be simultaneously involved in a number of projects.
Thus, it is natural to consider overlapping coalitions. Furthermore, not ev-
ery institution can offer the same number of resources that are needed for
the completion of a task, while others have (different) beliefs for one’s contri-
bution. Assuming an underlying social network is natural for representing
the plausibility of cooperation among the institutions. However, our proto-
col is not domain-specific, and can be straightforwardly employed for other
suitable applications.

We now present the details of the protocol. At each round, tasks are ex-
ogenously created and a proposer is exogenously associated with each task.
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Since the choice of the proposers has to be non-deterministic, their assign-
ment to tasks takes place uniformly at random. Right after the assignment of
proposers to tasks, the proposers are concurrently asked to form proposals to
be submitted to other agents. Therefore, each proposer has to select a group
of agents, offering a portion of 𝑢 (the utility granted by the completion of task
𝑡 = (𝑇, 𝑢)) to each of its members, and asking in return for a resource quantity
so that the threshold 𝑇 is exceeded and thus have the task completed.

5.3.1 Group Selection

The number of possible groups of agents is 𝑂(2𝑛), and thus taking all of them
under consideration would be inefficient for a proposer. Instead, we let a pro-
poser 𝑖 sample 𝐾 groups of agents, where each agent 𝑗 ∈ 𝑁 ∖ 𝑖 is included in a
group with probability 2−𝐷(𝑖,𝑗), where 𝐷(𝑖, 𝑗) is the geodesic distance (short-
est path) between nodes 𝑖 and 𝑗. Such a distance between every pair of nodes
can be computed in an offline step. Hence, the closer 𝑖 is to 𝑗, with respect
to their distance in the (undirected) graph, the more likely it is that 𝑗 will be
included in a group sampled by 𝑖, while if 𝑖 and 𝑗 are not connected, that is
𝐷(𝑖, 𝑗) =∞, then they cannot cooperate. In this way, the position of an agent
in the social network affects the likelihood of making a proposal to another
agent, for cooperation towards completing a common task. Thereafter, the
proposer uses one of our methods in order to select one of the 𝐾 groups, and
then submits individual ⟨𝑞, 𝜋⟩ proposals to its members. The requested quan-
tity 𝑞 ∈ N+ is the rounded average of samples taken from 𝛼𝑖𝑗 multiplied by 𝑞𝑖𝑗

(the belief that 𝑗 accepts a proposal), and agent payoff 𝜋 ∈ R+ is proportional
to 𝑞, and is distributed to 𝑗 upon the completion of the task.

Only the proposer and the proposed-to agent have knowledge of the pro-
posal submitted. Furthermore, all proposals to an agent are revealed to her
simultaneously.4

5.3.2 Response to Proposals

Each agent, who has received at least one proposal, responds by either ac-
cepting or rejecting each of the proposals. Therefore, agent 𝑗 has to select
which of the, at most 𝑆, proposals of the form ⟨𝑞, 𝜋⟩ to accept, where 𝑞 ∈ N+

and 𝜋 ∈ R+, in order to maximize her gained utility (at the completion of the
tasks), given her resource quantity 𝑤𝑗 ∈ N+. Thus, the optimal response of an
agent is the one that maximizes

∑︀
𝜏 𝑥𝜏 · 𝜋𝜏 , subject to

∑︀
𝜏 𝑥𝜏 · 𝑞𝜏 ≤ 𝑤𝑗 , where

𝑥 is a binary vector of size equal to the number of the proposals that agent 𝑗
has received.

4Guaranteeing that the protocol in fact succeeds in revealing all proposals to an agent
simultaneously, and ensuring that revelations are made to the members involved only, is a
problem of broad interest in distributed and multi-agent systems, and can be approached by
methods that are orthogonal to our work here. In particular, recent suggestions include the
use of crypto-systems (Franco, 2014).
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Proposition 1. The optimal response of an agent is NP-Hard.

Proof. This follows from a straightforward reduction from KNAPSACK (Garey
and Johnson, 1979). Given 𝜈 items with size 𝑠1, 𝑠2, . . . , 𝑠𝜈 , value 𝑣1, 𝑣2, . . . , 𝑣𝜈 ,
and capacity 𝐵, where 𝑠𝜅 ∈ N+, 𝑣𝜅 ∈ R+, for 𝜅 ∈ {1, . . . , 𝜈} and 𝐵 ∈ N+,
an item ⟨𝑠𝜅, 𝑣𝜅⟩ corresponds to a proposal ⟨𝑞, 𝜋⟩ and the capacity 𝐵 to the
resource quantity 𝑤𝑗 of agent 𝑗.

Notice that a responder has no knowledge of the other members that a pro-
poser has proposed to, and hence she cannot infer the probability of the
completion of the task. Moreover, since the response of an agent does not
depend on the responses of the rest of the agents, the assumption on the in-
dependence of the variables related to agent beliefs (regarding the resource
contribution of others), is reasonable.

5.3.3 Beliefs update

If the response of 𝑗 to proposal ⟨𝑞, 𝜋⟩, submitted by proposer 𝑖, is positive
then 𝑖 increases both 𝑎𝑖𝑗 (Beta update) and 𝛼𝑖𝑗

𝑞 (Dirichlet update) by 1. If the
response is negative then 𝑏𝑖𝑗 (only Beta update) is increased by 1. Further-
more, if coalition 𝐶 succeeds in completing a task, then every member of 𝐶
gets to learn the contribution of every other member, and has her Dirichlet
distribution updated in an identical way to that of the proposer.5

Notice this allows the modeling of agent behaviour and preferences, e.g., an
agent could observe that another agent accepts proposals from the rest of the
agents but not from her. We aim to study such phenomena in future work.

Finally, after receiving the responses, if the task of a proposer has not been
accomplished then she covers its remaining needs (if she is able to).

5.4 Experiments

In this section we provide results on the effectiveness of our methods. We
conducted experiments on both an Erdős-Renyi random graph (Bollobás,
2001) of 300 nodes-agents and a real social network—a snapshot of a part
of Facebook with 4039 agents (Leskovec and Krevl, 2014). Our methods are
tested for different values of confidence level 𝑐 demanded by the agents. We
compare our methods to a baseline method, in which the group that an agent
chooses to make proposals to is the smallest among those whose expected value
𝐸[𝑋] exceeds the task threshold value 𝑇 .6 Thus, we refer to this method

5 Notice that in that case, the Beta distribution of an agent is not updated (because Beta
models responses of others to our own proposals). We could have modeled the fact than an
agent accepts the proposals of others but not ours, via the use of additional Beta.

6The smaller the group, the greater the portion of utility 𝑢 its members receive upon task
completion.
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Algorithm 4: Overlapping Coalition Formation Protocol
1 𝐼 ← number of rounds
2 𝑆 ← number of tasks per round
3 for 𝑖 = 1 to 𝐼 do
4 𝑡𝑎𝑠𝑘𝑠← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑠𝑘𝑠(𝑆)
5 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟𝑠← 𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑟𝑠(𝑡𝑎𝑠𝑘𝑠)
6 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑟𝑠.𝑓𝑜𝑟𝑚𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠() concurrently
7 inform proposed-to members
8 inform proposers about responses
9 foreach uncompleted 𝑡 ∈ 𝑡𝑎𝑠𝑘𝑠 do

10 Let proposer of 𝑡 complete it
11 foreach completed 𝑡 ∈ 𝑡𝑎𝑠𝑘𝑠 do
12 inform members about the participation of the rest and distribute

utility
13 replenish the resources of the agents

Algorithm 5: formProposals
1 Sample 𝐾 groups of agents
2 𝐵𝑒𝑠𝑡← group selected using IPZY CH2S, or HF
3 foreach 𝑗 ∈ 𝐵𝑒𝑠𝑡 do
4 form a proposal ⟨𝑞, 𝜋⟩ for 𝑗

as EV. Selecting EV as the baseline is natural: EV essentially describes the
simplest course of action that an agent acting under uncertainty could take.
Moreover, there is no pool of alternative decision-making methods we can
use as a baseline in such a setting.7

Game parameters. In the experiments on both graphs, 𝑞𝑚𝑎𝑥 was set to 30 and
the resource weight 𝑤𝑖 of each agent was a (rounded to integer) sample from
𝒩 (15, 52). The hyperparameters of each agent’s Beta were initialized to 𝑎𝑖𝑗 =
1 and 𝑏𝑖𝑗 = 1; and the 𝛼𝑖𝑗

𝑟 of the Dirichlets to 𝛼𝑖𝑗
𝑟 = 𝑤𝑗/(𝐷(𝑖, 𝑗) · (|𝑟 − 𝑤𝑗|+ 1)).

In this way 𝛼𝑖𝑗 is bell-shaped, with its mode being at 𝑤𝑗 , the actual (maximum
offerable) resource quantity of 𝑗. Furthermore, the smaller 𝐷(𝑖, 𝑗) is, the more
sharply peaked the prior is, so the belief updates on 𝛼𝑖𝑗 have greater impact.
The value of 𝐾, the number of groups that a proposer 𝑖 samples, was set to 30.
The number of samples taken from 𝛼𝑖𝑗 , for defining the requested quantity
𝑞 of 𝑖’s proposal ⟨𝑞, 𝜋⟩ to 𝑗, was set to 20. The number of rounds 𝐼 and the
number of tasks per round 𝑆 were set to 200 and 16, respectively,8 for each

7The computation of a centralized solution is intractable, and thus it cannot be used as a
means of comparison. Even the positive results in Zick, Chalkiadakis, and Elkind, 2012 hold
for very restricted cases.

8In our experiments we used the standard pseudopolynomial dynamic programming al-
gorithm for KNAPSACK (Kellerer, Pferschy, and Pisinger, 2004), which, due to the limited
number of proposals, performed in a fraction of time (< 1 𝑚𝑠), as expected (despite Propo-
sition 1); so, agent responses were in fact optimal.
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run on both graphs. Before making proposals, a proposer invests 75% of her
resource to a task.

All results are average values across 30 runs for each experimental setting.
The same set of proposers and tasks were generated at the 𝑥𝑡ℎ round of the
𝑦𝑡ℎ run in each setting (𝑥 ∈ {1, . . . , 𝐼 = 200} and 𝑦 ∈ {1, . . . , 30}). We report
on the total number of completed tasks by the agents, where for each setting
the used method and the value of 𝑐 were the same for all agents. We tested
values of 𝑐 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. (In the case of EV there is no 𝑐.) We also
present the (average) size of the group that the proposers, using each method,
choose as the best one to make proposals to. Furthermore, since there is no
guarantee that the agents will have their demand for confidence level 𝑐 ful-
filled, we report the confidence fails, the number of times that a proposer failed
to achieve that 𝑐. In those cases, we let the proposer make proposals to the
group which provided the confidence level closest to 𝑐. Henceforth, we de-
note the best group size by bgs, and the confidence fails by cf. The total number
of tasks in a run was 𝐼 · 𝑆 = 200 · 16 = 3200 (thus cf has a max value of 3200).
The implementation was in Python 3 and experiments were run on a PC with
an i3 3.3GHz processor and 4GB of RAM.

Algorithm 6: Dynamic Programming Algorithm for KNAPSACK
Input: n (number of items), W (weight of knapsack), c (value of items), w

(weight of items)
Output: opt (the items that are included in the optimal solutions can be

found via employing an additional matrix)
1 for 𝑖 = 0 to 𝑊 do
2 𝑔[𝑖, 0]← 0
3 for 𝑗 = 0 to 𝑛 do
4 𝑔[0, 𝑗]← 0
5 for 𝑖 = 1 to 𝑊 do
6 for 𝑗 = 1 to 𝑛 do
7 if 𝑤[𝑗] > 𝑖 then
8 𝑔[𝑖, 𝑗]← 𝑔[𝑖, 𝑗 − 1]
9 else

10 𝑔[𝑖, 𝑗]← 𝑚𝑎𝑥{𝑔[𝑖, 𝑗 − 1], 𝑐[𝑗] + 𝑔[𝑖− 𝑐[𝑗], 𝑗 − 1]}
11 𝑜𝑝𝑡← 𝑔[𝑊,𝑛]
12 return 𝑜𝑝𝑡

5.4.1 Erdős-Renyi Graph Model

In this random graph model, edge {𝑖, 𝑗} is added on the (undirected) graph
with probability 𝑝. In our setting, we set 𝑛 = 300 and 𝑝 = 0.03 (average node
distance = 2.83). The threshold values 𝑇 of the generated tasks were sampled
from 𝒩 (200, 102), and the utility 𝑢 of each task was 10 · 𝑇 .



42 Chapter 5. Probability Bounds for Overlapping Coalition Formation

As shown in Table 5.1, our methods consistently outperform EV. Even for
IPZY with 𝑐 = 0.5, the number of completed tasks is much larger compared
to that of EV, with a very small increase in bgs. The standard deviation of the
number of completed tasks is small for every method. Furthermore, when
𝑐 ≤ 0.8, proposers using 𝐼𝑃𝑍𝑌 or 𝐶𝐻2𝑆 have their required confidence sat-
isfied almost always. For 𝑐 = 0.9 however, the number of cf increases steeply:
for instance, for CH2S with 𝑐 = 0.8, only 1.33% = 42.7/3200 of the proposals
did not meet that requirement, while for CH2S with 𝑐 = 0.9 that percentage
increased to 33.33% = 1066.8/3200. Now, lack of confidence, caused by un-
certainty, is a major source of downturns in economic environments (Caldara
et al., 2016). Ideally, we would like to have a metric defining the quality of
a method, depending on the number completed tasks and confidence fails,
but it is not obvious which one that should be. Thus, 𝐻𝐹 can be deemed
unsuitable for this setting, since the number of 𝑐𝑓 for every value of 𝑐 is at
least 1022.4, and so are 𝐼𝑃𝑍𝑌 and 𝐶𝐻2𝑆 for 𝑐 = 0.9 —notwithstanding that
for 𝑐 = 0.9 more tasks were completed, since their completion came with
an abrupt increase in cf. However, for 𝑐 = 0.8 for both 𝐼𝑃𝑍𝑌 and 𝐶𝐻2𝑆
the highest confidence level that was experimentally shown to be satisfied
almost always. Then, for 𝐼𝑃𝑍𝑌 and 𝐶𝐻2𝑆, results presented in Table 5.3
suggest that the more demanding the agents are (with respect to their con-
fidence level), the better the ratio of the number of completed tasks to best
group size is. Overall, Tables 1 and 3 suggest that 𝐶𝐻2𝑆 perform slightly
better than 𝐼𝑃𝑍𝑌 .

Finally, we report that the average time for an entire round to be completed,
including coalitional evaluations for all 16 tasks and belief updates for all
agents—for some multiple times, since they can participate in multiple tasks—
was 2.7 sec for IPZY, 2.9 sec for CH2S and 1.8 sec for HF.

5.4.2 Facebook Snapshot Graph

The graph of the snapshot of Facebook we experimented on consists of 4039
connected nodes (agents). The threshold values 𝑇 of the generated tasks were
sampled from 𝒩 (2250, 402), and the utility 𝑢 of each task was 10 · 𝑇 .

As observed in Table 5.2, task completion was more challenging in this sparser
network (with an average node distance of 3.69). However, the ordering
of the methods, for 𝐼𝑃𝑍𝑌 and 𝐶𝐻2𝑆, based on the ratio of the number of
completed tasks to bgs, was virtually the same with that of the Erdős-Renyi
graph, as observed in Table 5.3. Moreover, we observe that proposers us-
ing 𝐻𝐹 completed more tasks compared to the other two methods, for every
value of 𝑐, with the value of 𝑐𝑓 not being tremendously larger. The values
in Table 5.3 corresponding to 𝐻𝐹 were greater compared to those of 𝐼𝑃𝑍𝑌
and 𝐶𝐻2𝑆 for any value of 𝑐, and monotonically increase with 𝑐, even ex-
ceeding 3 for 𝑐 = 0.9. Hence, our methods outperform the baseline in this
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TABLE 5.1: Results for the Erdős-Renyi graph with 300 agents.

#completed tasks (%) {std} bgs cf
EV 637.46 (19.92) {22.78} 35.16 -

IPZY, c = 0.5 876.70 (27.39) {18.50} 36.27 0.1
IPZY, c = 0.6 990.76 (30.96) {24.97} 36.87 0.2
IPZY, c = 0.7 1202.16 (37.56) {24.83} 38.13 1.6
IPZY, c = 0.8 1615.30 (50.47) {22.64} 41.30 14.9
IPZY, c = 0.9 2352.51 (73.52) {18.43} 52.95 692.9
CH2S, c = 0.5 1115.33 (34.85) {17.29} 37.60 1.1
CH2S, c = 0.6 1235.26 (38.60) {22.46} 38.40 2.6
CH2S, c = 0.7 1451.73 (45.36) {19.82} 39.94 6.9
CH2S, c = 0.8 1843.96 (57.62) {15.46} 43.52 42.7
CH2S, c = 0.9 2396.81 (74.91) {16.23} 54.85 1066.8

HF, c = 0.5 2316.83 (72.40) {21.63} 52.86 1022.4
HF, c = 0.6 2356.80 (73.65) {18.42} 54.95 1616.1
HF, c = 0.7 2368.80 (74.02) {11.66} 56.48 2213.9
HF, c = 0.8 2370.86 (74.09) {17.45} 57.46 2727.7
HF, c = 0.9 2372.03 (74.13) {18.29} 57.88 3095.6

TABLE 5.2: Results for the Facebook graph with 4039 agents.

#completed tasks (%) {std} bgs cf
EV 462.26 (14.45) {31.16} 396.12 -

IPZY, c = 0.5 562.76 (17.58) {29.62} 398.68 241.1
IPZY, c = 0.6 608.31 (19.01) {28.16} 399.97 295.7
IPZY, c = 0.7 676.30 (21.13) {25.99} 401.68 397.5
IPZY, c = 0.8 803.50 (25.11) {26.95} 404.45 525.4
IPZY, c = 0.9 1080.33 (33.76) {24.07} 412.39 742.5
CH2S, c = 0.5 648.60 (20.26) {26.29} 400.48 356.8
CH2S, c = 0.6 684.61 (21.40) {28.92} 401.27 411.8
CH2S, c = 0.7 747.10 (23.35) {27.92} 402.61 482.8
CH2S, c = 0.8 860.93 (26.90) {25.56} 405.19 565.4
CH2S, c = 0.9 1108.21 (34.63) {24.57} 412.69 799.1

HF, c = 0.5 1147.66 (35.86) {11.71} 408.35 772.4
HF, c = 0.6 1171.20 (36.60) {15.72} 410.17 852.4
HF, c = 0.7 1201.93 (37.56) {16.42} 412.46 946.1
HF, c = 0.8 1242.40 (38.82) {12.31} 415.42 1071.1
HF, c = 0.9 1285.46 (40.17) {11.92} 420.02 1272.0
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TABLE 5.3: # of completed tasks to best group size ratio.

Erdős-Renyi graph Facebook graph
EV 18.13 1.17

IPZY, c = 0.5 24.17 1.41
IPZY, c = 0.6 26.87 1.52
IPZY, c = 0.7 31.52 1.68
IPZY, c = 0.8 39.11 1.99
IPZY, c = 0.9 44.42 2.62
CH2S, c = 0.5 29.66 1.62
CH2S, c = 0.6 32.16 1.71
CH2S, c = 0.7 36.34 1.84
CH2S, c = 0.8 42.37 2.12
CH2S, c = 0.9 43.69 2.69

HF, c = 0.5 43.82 2.81
HF, c = 0.6 42.89 2.85
HF, c = 0.7 41.94 2.91
HF, c = 0.8 41.26 2.99
HF, c = 0.9 40.98 3.06

environment as well; and 𝐻𝐹 appears to be a winner.9

The difficulty in achieving the completion of tasks can be attested by the fact
that even when proposers used the EV method, about 6.5% = 207.2/3200
of them could not find a (sampled) group whose expected value exceeded
the task threshold value. In that case they selected the one with the highest
expected value. Thus, it is not surprising that for all our three methods, and
for every value of confidence level 𝑐, proposers frequently could not fulfill
their requirement for exceeding 𝑐. The fact that cf increases smoothly with
𝑐, as seen in Table 5.2, combined with the significant increase of the ratio of
completed tasks to best group size for 𝑐 = 0.9, observed in Table 5.3, lets us
conclude that the best value of 𝑐 in this setting would be 0.9. The average
time for the completion of an entire round was 26.5 sec for IPZY, 27.7 sec for
CH2S, and 21.3 sec for HF.

5.5 Conclusions

We presented, for the first time in the literature, three methods that derive
probability bounds for effective overlapping coalition formation, where the
agents have incomplete information of the value of the resources that the
other agents can invest. We also proved an improvement of the Paley-Zyg-

9The values of the ratios in Table 5.3 for the Facebook graph are much smaller than those
for the Erdős-Renyi graph, since the number of the agents of a coalition is much greater
compared to that in the Erdős-Renyi graph. In both graphs, however, proposers sampled
groups in the way mentioned in the previous section.
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mund inequality, and presented a protocol for overlapping coalition forma-
tion. Each of the proposed methods exploits a different probability inequality
(improvement of the Paley-Zygmund’s inequality, two-sided Chebyshev’s
inequality, and Hoeffding’s inequality). This setting extends straightforwardly
to environments with multiple (rather than one) resource types. All three
allow agents to demand confidence levels; and significantly outperformed
the baseline (which picked coalitions based solely on their expected resource
quantity) in terms of the number of tasks completed, and the ratio of this
quantity to the size of the group the proposers selected.
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Chapter 6

Overlapping Coalition Formation
via Probabilistic Topic Modeling

This chapter presents the second work that was conducted in the context
of this thesis. The main contribution is the development of a completely
novel approach in multi-agent learning for (overlapping) coalition forma-
tion, which is based on Probabilistic Topic Modeling, and, especially, online
Latent Dirichlet Allocation. Furthermore, our contributions include the de-
velopment of a concise representation scheme for cooperative games with
overlapping coalitions which extends the much celebrated Marginal Contri-
bution networks (MC-nets) scheme.

In many realistic environments (such as the one presented in the context of
the previous chapter) agents are able to invest only a portion of their divisible
resource in cooperating with others, and thus form overlapping coalitions.
Therefore, an individual can participate in a number of coalitions simultane-
ously (Chalkiadakis et al., 2010). Additionally, as real-world environments
exhibit a high level of uncertainty, it is more natural than not to assume that
agents do not have complete knowledge of the utility that can be yielded by
every possible team of agents (Suijs et al., 1999; Chalkiadakis and Boutilier,
2004; Kraus, Shehory, and Taase, 2003; Ieong and Shoham, 2008). More-
over, coalitional value is often determined by an underlying structure de-
fined given relations among the members of the coalition (Ieong and Shoham,
2005). These relations reflect the synergies among the coalition members. It
is natural to posit that agents do not know the exact synergies at work in
their coalitions. Against this background, in our system the coalitional value
depends on the amount of resources the agents invest, and, crucially, the
explicit relations among coalition members. As such, we build on the idea
of Marginal Contribution nets (MC-nets) (Ieong and Shoham, 2005) and intro-
duce Relational Rules (RR), a representation scheme for cooperative games
with overlapping coalitions. The RR scheme allows for the concise represen-
tation of the synergies-dependent coalition value.

Now, an agent can make an observation of the utility that can be earned by
the resource offerings of the members of a coalition, but it is a much more
complex task to determine her relations with subsets of agents of that coali-
tion. Probabilistic topic modeling (PTM) (Blei, 2012) (presented in Chapter
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4) consists a common approach in performing document analysis, and, in
particular, in extracting the hidden thematic structure, in the form of top-
ics (distributions over the words of a vocabulary), of the analyzed docu-
ments. In our approach, we exploit online Latent Dirichlet Allocation (online
LDA) (Hoffman, Bach, and Blei, 2010), which can handle documents that ar-
rive in streams, enabling the continuous evolution of the topics.

Our method for decentralized overlapping coalition formation employs on-
line LDA to allow agents to learn how well they can cooperate with oth-
ers. In our setting, agents repeatedly form overlapping coalitions, as the game
takes place over a number of iterations. Therefore, we utilize a simple, yet
appropriate, protocol, under which in each iteration an agent is (randomly)
selected in order to propose (potentially) overlapping coalitions. Agents that
use our method take decisions on which coalitions to offer some amount of
their resource to, and which portion of that resource to each coalition, by ex-
ploiting the topics of the model that they have learned via employing online
LDA: By interpreting formed coalitions as documents, represented given an
appropriate vocabulary, agents are able to use online LDA to update beliefs
regarding the hidden collaboration structure, and thus implicitly learn the
most rewarding synergies with others (synergies described by RRs). Fur-
thermore, agents are able to gain knowledge regarding the coalitions that are
costly, and should thus be avoided. As a result, agents can, over time, pick
partners with which to cooperate effectively.

To the best of our knowledge, this is the first time that Probabilistic Topic
Modeling is employed for multi-agent learning (Tuyls and Weiss, 2012). In
order to evaluate the performance of our method, we have developed a Q-
learning (Watkins and Dayan, 1992) style algorithm, which we use as a base-
line. Our algorithm vastly outperforms the baseline, implying a high degree
of accuracy in the beliefs of the agents, and a high quality of agent decisions.

6.1 Relational Rules

In the real world agents often do not have complete knowledge of how well
they can cooperate with others. An agent cannot be sure of the utility that
will be earned by the formation of a coalition, since she has incomplete infor-
mation regarding the efficiency with which its members can work together.
Thus, agents have to form coalitions under what we term structural uncer-
tainty. This notion describes the uncertainty agents face regarding the value
of synergies among them.

Such synergies are, in a non-overlapping setting, concisely described by Marginal
Contribution networks (MC-nets). In MC-nets, coalitional games are repre-
sented by a set of rules of the form :

𝑃𝑎𝑡𝑡𝑒𝑟𝑛→ 𝑣𝑎𝑙𝑢𝑒
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where 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 is a conjunction of literals (representing the participation or
absence of agents), and applies to coalition 𝐶 if 𝐶 satisfies 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, with
𝑣𝑎𝑙𝑢𝑒 ∈ R being added to the coalitional value of 𝐶.

We now extend MC-nets to overlapping environments. We introduce Rela-
tional Rules (RR), with the following form:

{𝑖, 𝑗, . . . , 𝑘} → 𝜋𝑖,𝐶 + 𝜋𝑗,𝐶 + . . . + 𝜋𝑘,𝐶

|{𝑖, 𝑗, . . . , 𝑘}|
· 𝑣𝑎𝑙𝑢𝑒

where 𝑣𝑎𝑙𝑢𝑒 ∈ R; 𝐶 ⊆ 𝑁 (with 𝑁 = {1, . . . , 𝑛} being the set of agents) is a
coalition such that {𝑖, 𝑗, . . . , 𝑘} ⊆ 𝐶; 𝜋𝑖,𝐶 is the portion of her resource that 𝑖
has invested in coalition 𝐶: i.e., 𝜋𝑖,𝐶 = 𝑟𝑖,𝐶/𝑟𝑖, where 𝑟𝑖 is the total resource
quantity (continuous or discrete) that 𝑖 holds and 𝑟𝑖,𝐶 is the amount she has
invested in 𝐶. Therefore, 𝜋𝑖,𝐶 > 0, since 𝑖 ∈ 𝐶 (𝑟𝑖,𝐶 = 0 essentially means that
𝑖 /∈ 𝐶), and 𝜋𝑖,𝐶 ≤ 1, since the maximum resource offering of 𝑖 to 𝐶 is 𝑟𝑖.

A rule applies to coalition 𝐶 if and only if {𝑖, 𝑗, . . . , 𝑘} ⊆ 𝐶, and in that case
utility 𝜋𝑖,𝐶+𝜋𝑗,𝐶+...+𝜋𝑘,𝐶

|{𝑖,𝑗,...,𝑘}| · 𝑣𝑎𝑙𝑢𝑒 is added to the coalitional value of 𝐶. Note
that it is not required that an agent’s 𝑟𝑖 has to be communicated to 𝐶’s other
members, since a rule is applied by the environment. For non-overlapping
games, RRs reduce to MC-nets rules without negative literals, as it then holds
that 𝜋𝑖,𝐶+𝜋𝑗,𝐶+...+𝜋𝑘,𝐶

|{𝑖,𝑗,...,𝑘}| = 1.

Example 6.1.1. Assume that 𝑁 = {1, 2, 3, 4}, 𝑟1 = 10, 𝑟2 = 8, 𝑟3 = 8, 𝑟4 = 6 and
the Relational Rules of the game are:

{1, 2, 3} → 𝜋1,𝐶 + 𝜋2,𝐶 + 𝜋3,𝐶

3
· 100 (6.1)

{2, 3} → 𝜋2,𝐶 + 𝜋3,𝐶

2
· 80 (6.2)

{3, 4} → 𝜋3,𝐶 + 𝜋4,𝐶

2
· (−100) (6.3)

Furthermore, let coalitions 𝐶1 = {1, 2, 3} and 𝐶2 = {2, 3, 4} form, with 𝑟1,𝐶1 = 10,
𝑟2,𝐶1 = 6, 𝑟3,𝐶1 = 4, and 𝑟2,𝐶2 = 2, 𝑟3,𝐶2 = 4, 𝑟4,𝐶2 = 6. Therefore, 𝜋1,𝐶1 =
10/10 = 1, 𝜋2,𝐶1 = 6/8 = 0.75, 𝜋3,𝐶1 = 4/8 = 0.5, and 𝜋2,𝐶2 = 2/8 = 0.25,
𝜋3,𝐶2 = 4/8 = 0.5, 𝜋4,𝐶2 = 6/6 = 1.

The value 𝑢𝐶1 of coalition 𝐶1 will be determined by rules (6.1) and (6.2), since
rule (6.3) does not apply as {3, 4} * 𝐶1. Applying rule (6.1) to 𝐶1 will result
in value 𝜋1,𝐶1

+𝜋2,𝐶1
+𝜋3,𝐶1

3
· 100 = (1 + 0.75 + 0.5)/3 · 100 = 75 and applying

rule (6.2) to 𝐶1 will result in value 𝜋2,𝐶1
+𝜋3,𝐶1

2
· 80 = (0.75 + 0.5)/2 · 80 = 50.

Thus, 𝑢𝐶1 = 75 + 50 = 125. Following that reasoning, the value of coalition 𝐶2 is
determined by applying rules (6.2) and (6.3), which result to utilities 30 and −75
respectively, and thus 𝑢𝐶2 = 30− 75 = −45.
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In our setting, the value of a coalition is determined through RRs, but agents
do not know the RRs in effect, and hence cannot determine the value of a coali-
tion with certainty. Thus, agents do not know how well they can do with
others, and cannot determine their relations just by an observation of a coali-
tional value. However, in following section we show how PTMs can be ex-
ploited so that agents implicitly learn the underlying RR-described collabo-
ration structure.

6.2 Learning by Interpreting Coalitions as Docu-
ments

In cooperative games , overlapping or not, it is natural for agents to take
decisions regarding the formation of coalitions, and to update their beliefs
based on subsequent observations. Naturally, an agent receives information
only about the coalitions that have been formed and she is a member of. The
decision-making process of the agents is addressed by our method, which
is presented in the next section. In this section, we present how agents can
employ online LDA in order to effectively learn the underlying collaboration
structure. We let each agent maintain and train her own online LDA model.
Thus, there are 𝑛 such models in the system.

For each partial coalition 𝐶 ⊆ 𝑁 , 𝑖 ∈ 𝐶, 𝑖 observes the earned utility 𝑢𝐶 . The
contribution 𝑟𝑖,𝐶 and the utility 𝑢𝑖,𝐶 , earned by 𝑖 from participating in 𝐶, are
known to each other agent 𝑗 ∈ 𝐶 ∖ 𝑖. However, in order to supply that infor-
mation to her online LDA model, an agent must maintain a vocabulary. We
define the vocabulary of an agent to include 𝑛− 1 words, one for each other
agent, indicating their contribution, plus two words for the utility, one rep-
resenting gain and the other representing loss, since the value earned from
a partial coalition can be either positive or negative. Therefore, the vocabu-
lary of an agent consists of 𝑛 + 1 words.1 Assuming a game that proceeds in
rounds, in round 𝑡 agent 𝑖 interprets the coalitional configuration regarding
𝐶, 𝑖 ∈ 𝐶, as a document by “writing” in the document the word that indi-
cates the contribution of agent 𝑗 ∈ 𝐶 ∖ 𝑖 𝑟𝑗,𝐶 times—where 𝑟𝑗,𝐶 ∈ N+ is the
contribution of 𝑗 to 𝐶. The restriction of the resource contributions of agents
to positive (𝑟𝑗,𝐶 = 0 ⇒ 𝑗 /∈ 𝐶) natural numbers is thus necessary when LDA
is used, since a word can only appear in a document a discrete number of
times. Therefore, the number of documents that an agent passes in an itera-
tion (round) to her online LDA is equal to the number of coalitions that she
is member of. (Naturally, if an agent takes part in a coalition with the same
configuration in a future iteration, then the same document will be formed
and passed to her model.) Therefore, agent 𝑖 “writes” in the document, that
corresponds to 𝐶, either the word that indicates gain or the one that indi-
cates loss as many times as the absolute value of the utility earned by the

1An obvious extension is to let an agent include a word for her own contribution in the
vocabulary. Naturally, this would affect the agent’s decision-making process.
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coalition is.2 Since words are discrete data, 𝑢𝐶 cannot be real-valued; so, we
let the actual value earned by 𝐶 be ⌊𝑢𝐶⌋, instead of the 𝑢𝐶 computed by the
application of the RRs related to 𝐶.

Example 6.2.1. Let agent 1’s vocabulary include the words “ag2”, “ag3”, “gain”
and “loss”, corresponding respectively to agents’ 2 and 3 contribution and the posi-
tive and negative utility. Therefore, agent 1 forms, for coalition 𝐶 = {1, 2, 3} where
𝑟2,𝐶 = 1, 𝑟3,𝐶 = 2 and 𝑢𝐶 = −4, the document:

w = (“ag2”, “ag3”, “ag3”, “loss”, “loss”, “loss”, “loss”)

Since LDA is a bag-of-words model, the order of the words in the document
does not matter. The batch of documents the online LDA model of agent 𝑖
is supplied with at iteration 𝑡, consists of the interpreted-as-documents coali-
tions 𝑖 has joined at 𝑡.

The intuition behind the notion of a topic is that the words that appear in it
with high probability are very likely to appear together in a document that
exhibits this topic with high probability. The probability with which the word
corresponding to an agent’s contribution appears in a topic is correlated with
the amount of her contribution. Therefore, the meaning of a topic identified
by agent 𝑖, is that 𝑖 has observed in many documents certain agents who con-
tributed a lot, and some that contributed less; and this configuration results
to gain or loss with the corresponding probabilities.

Thus, the topic in Fig. 6.1(a) implies that if 𝑖 joins a coalition with the agents
that appear in the topic with high probability, then that coalition would be
profitable. On the other hand, the topic in Fig. 6.1(b) implies that forming
a coalition with the agents that appear in it with high probability would re-
sult in loss. Note that learning a topic’s profitability corresponds to acquiring
information on the RRs associated with that topic. However, these RRs are
not explicitly learned; what is learned is the underlying collaboration struc-
ture (which might, in the general case, be generated by means other than
RRs). It is natural to expect that agents that appear with high probability
in a topic which has been associated with loss, like the one in Fig. 6.1(b),
will not appear (as a group) with high probability in a topic that has been
associated with gain, like the one in Fig. 6.1(a). Such occurrence would re-
flect that an agent’s beliefs indicate that cooperation with a group of agents
is (paradoxically) both beneficial and harmful. Furthermore, online LDA di-
minishes the problem caused by an agent’s lack of knowledge of the resource
quantity that others hold, since topic updates are based on observations of
words. Therefore, if an agent possesses a small resource quantity, the word
that corresponds to her contribution will probably be observed fewer times
than those of the other agents, and it will thus affect the formation of the
topics analogously.

2The number of times the word for utility is written may require scaling in cases where
its domain ranges from very low to values with a much higher order of magnitude.
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(A) A “profitable” learned topic.

(B) A “non-profitable” learned topic.

FIGURE 6.1: Typical topics, as formed by a randomly selected
agent at the end of a random iteration in an experiment, where
an agent’s vocabulary consists of 51 words (𝑛 = 50). The two
last words in a topic indicate the probability of gain and loss
respectively, while the rest correspond to agents’ contribution.
In (a), the “profitable” learned topic, the word for loss appears
with near-zero probability; in (b), the “non-profitable” topic,

the word for gain has near-zero probability.
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6.3 Taking Formation Decisions in Repeated OCF
Games

In this section we present our method, which is used for agent decision-
making. It consists of two algorithms; one used by the proposer of an iter-
ation in order to propose coalitions (and offer them some resource amount),
and another which is used by the proposed agents in order to respond to the
received proposals, i.e., accept (and offer some resource quantity) or reject.
We term it OVERPRO, since it has been developed for OVERlapping coali-
tion formation via PRObabilistic topic modeling (employing online LDA).
OVERPRO is used assuming a simple formation protocol, but this can be re-
placed by any protocol of one’s choosing.

6.3.1 A Repeated OCF Protocol

We now proceed to present this protocol. The protocol of our game operates
in 𝐼 iterations (rounds). At the beginning of an iteration one agent is ran-
domly selected, from the set of agents 𝑁 = {1, . . . , 𝑛}, as the proposer, and
is thus given the ability to propose a number of partial coalitions, offering an
integer quantity of her resource to each of them. Therefore, proposer 𝑖 ∈ 𝑁 is
asked to pass a list of tuples of the form ⟨𝐶, 𝑟𝑖,𝐶⟩, where 𝐶 ⊆ 𝑁 and 𝑟𝑖,𝐶 ∈ N+

denotes the amount of resource that 𝑖 offers to coalition 𝐶. By limiting the of-
fers of 𝑖 to discrete quantities we disallow the proposal of an infinite number
of coalitions. Then, every agent 𝑗 ∈ 𝑁 ∖ 𝑖 is a responder and gets informed of
the proposals in which she is involved—i.e., of the proposals ⟨𝐶, 𝑟𝑖,𝐶⟩ : 𝑗 ∈ 𝐶,
and decides on the quantity 𝑟𝑗,𝐶 ∈ N to invest in 𝐶, where 𝑟𝑗,𝐶 = 0 essentially
means that 𝑗 has declined participation in 𝐶. The total resource that 𝑗 offers
to coalitions cannot exceed 𝑟𝑗 (the same holds for the proposer). An agent
makes her decisions without communication with any other agent. A (par-
tial) coalition 𝐶 forms if and only if all involved agents accept to participate
in it.

The resources of the agents are replenished at the end of each iteration, and
hence there is no need for strategic planning, on the part of the agents, which
would have necessitated had the resources not be renewed. Moreover, at
the end of each round all coalitions are dissolved. The utility 𝑢𝑖,𝐶 that 𝑖 ∈
𝐶 earns from coalition 𝐶 is proportional to her 𝑟𝑖,𝐶 contribution, i.e., 𝑢𝑖,𝐶 =
𝑢𝐶 · 𝑟𝑖,𝐶/

∑︀
𝑗∈𝐶 𝑟𝑗,𝐶 , where 𝑢𝐶 is the total utility earned by the coalition. An

agent receives contributions and utility information only about her formed
coalitions.
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6.3.2 The OVERPRO Method

We now present OVERPRO, our novel method that exploits probabilistic topic
modeling for decision-making and which can be easily adjusted to other pro-
tocols. The main idea behind OVERPRO is that an agent, by updating her on-
line LDA model throughout the game, forms topics which indicate how well
she can cooperate with others. Thus, by considering as “profitable” (“non-
profitable”) the topics in which the probability of the word that represents
gain (loss) is higher than the probability of the one that represents loss (gain),
the agent can identify coalitions that will potentially result in gain (loss)—
positive utility (negative utility). However, it might be that not all of the top-
ics are significant, since some of them might not be well formed (especially at
the early iterations of the game). An agent should not make decisions based
on non-significant topics, since they may provide inaccurate information and
lead to harmful actions, or the prevention of making beneficial ones. Thus,
a topic (out of the 𝐾 topics of the agent’s model) will be either significant
or non-significant. We define a topic to be significant if the absolute value of
the difference between the probability of the word representing gain and the
probability of the word representing loss is greater than 𝜖. Agent 𝑖’s signifi-
cant topics are denoted as 𝑆𝑇 𝑖:

𝑆𝑇 𝑖 ← {𝑘 : |𝛽𝑖
𝑘,′𝑔𝑎𝑖𝑛′ − 𝛽𝑖

𝑘,′𝑙𝑜𝑠𝑠′ | > 𝜖}

where 𝛽𝑖
𝑘 is the 𝑘𝑡ℎ (out of the 𝐾) topic of agent 𝑖. We further define Good (prof-

itable) topics as the ones in which the probability of the word representing
gain is greater than that of the word representing loss, and are significant. Bad
topics are analogously defined. Naturally, we use the following notation, for
the Good and Bad topics of agent 𝑖:

𝐺𝑜𝑜𝑑𝑖 ← {𝑘 : 𝛽𝑖
𝑘,′𝑔𝑎𝑖𝑛′ > 𝛽𝑖

𝑘,′𝑙𝑜𝑠𝑠′ ∧ 𝑘 ∈ 𝑆𝑇 𝑖}
𝐵𝑎𝑑𝑖 ← {𝑘 : 𝛽𝑖

𝑘,′𝑔𝑎𝑖𝑛′ < 𝛽𝑖
𝑘,′𝑙𝑜𝑠𝑠′ ∧ 𝑘 ∈ 𝑆𝑇 𝑖}

Moreover, it must be noted that every word in a topic appears with posi-
tive (no matter how small) probability, due to the initial randomization of 𝜆
which is the (variational) hyperparameter of the topics. (The probability of
an event with Dirichlet prior cannot be zero, otherwise there would not be
a corresponding parameter in the Dirichlet.) However, as an agent learns,
some of them tend to zero. But still, How much probability should an agent
appear with in a topic in order to be considered significant? For example, in
Fig. 6.1(a) not all agents appear in the profitable topic with similar probability
values. We define the significant agents of topic 𝑘 of agent 𝑖, denoted as 𝑆𝐴𝑖

𝑘,
as those whose corresponding words in topic 𝑘 have probability higher than
the mean value 𝜇 of the probabilities of the words corresponding to agents,
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plus the standard deviation 𝜎 of those. Formally, the set 𝑆𝐴𝑖
𝑘 of significant

agents of topic 𝑘 as identified by agent 𝑖, is defined as follows:

𝑆𝐴𝑖
𝑘 ← {𝑗 : 𝛽𝑖

𝑘,𝑗 > 𝜇(𝛽𝑖
𝑘,𝑁∖𝑖) + 𝜎(𝛽𝑖

𝑘,𝑁∖𝑖) ∧ 𝑗 ∈ 𝑁 ∖ 𝑖}

The proposer 𝑖 at iteration 𝑡 has to make proposals of the form ⟨𝐶, 𝑟𝑖,𝐶⟩ ,
𝐶 ⊆ 𝑁 . Therefore, 𝑖 must not only decide on which coalitions to propose
to, but on how much of her resource 𝑟𝑖 to invest to each of them also. The
approach of OVERPRO is to propose the coalitions that are indicated by the
profitable topics. The resource quantity offered to a coalition is proportional
to the quality of the topic as modelled by 𝑖, where the quality of topic 𝑘 is
defined as the difference between the probabilities of the words indicating
gain and loss—i.e., 𝑞𝑢𝑎𝑙𝑖𝑘 = 𝛽𝑖

𝑘,′𝑔𝑎𝑖𝑛′ − 𝑏𝑒𝑡𝑎𝑖𝑘,′𝑙𝑜𝑠𝑠′ . Furthermore, the quan-
tity 𝑟𝑖,𝐶 offered to 𝐶 must be integer-valued. Thus, 𝑟𝑖,𝐶 has to be rounded
appropriately—i.e., the finally offered value will be either ⌊𝑟𝑖, 𝐶⌋ or ⌊𝑟𝑖,𝐶⌋+1,
since the total offered quantity must not exceed the resource of 𝑖. Picking just
the most profitable topic, and thus proposing a single coalition, is highly
risky, since the rejection by one responder is sufficient to not allow its forma-
tion. Furthermore, it is highly likely that at the early iterations of a game the
beliefs of the agents, represented by topics, are not accurate. Thus, agents
propose multiple (overlapping) coalitions.

A notorious problem in learning is the exploitation-vs-exploration (Sutton
and Barto, 1998) one: an agent must choose to either exploit her best-so-far
action, or explore different options. We deal with this issue by allowing agent
𝑖 to do both at the same time, since 𝑟𝑖 is divisible. Specifically, at iteration 𝑡
proposer 𝑖 dedicates 𝑧𝑡 ∈ (0, 1) of 𝑟𝑖 in exploring and 1−𝑧𝑡 in exploiting. Then,
an agent performs exploration by proposing ⌊𝑟𝑖 · 𝑧𝑡⌋ coalitions, offering to
each the minimum possible resource quantity (= 1). Alg. 7 below depicts the
proposer’s decision-making (with Alg. 8 describing her exploration process).

In each iteration, responders receive the proposals in which they are involved,
and decide, for each proposal in turn whether to accept it (invest to it some
positive resource quantity) or reject it (offering nothing). OVERPRO employs
a parameter 𝑐 ∈ (0, 1), so that an agent rejects a proposed coalition 𝐶 if she
identifies a non-profitable (bad) topic in which at least (𝑐 ·100)% of the agents
in 𝐶 are significant. The intuition behind the employment of parameter 𝑐 is
that it suffices to observe a certain percentage of agents of a proposed coali-
tion in a “non-profitable” topic in order to reject it. Parameter 𝑐 can have
different values at different rounds, so we refer to its value at iteration 𝑡 as 𝑐𝑡.

If a coalition is not rejected, then it is checked whether there is a profitable
(good) topic in which at least ((1−𝑐𝑡)·100)% of the agents in 𝐶 are significant.
In that case the resource invested in 𝐶 is proportional to its quality, otherwise
a minimum quantity is offered. The intuition is that an agent can classify a
coalition 𝐶 in three categories: It can be the case that 𝐶 is bad, as indicated
by the topics, and thus nothing should be offered. Topics may provide no
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Algorithm 7: OVERPRO-propose (by proposer 𝑖)
1 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒← ⌊𝑟𝑖 · 𝑧𝑡⌋
2 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡← 𝑟𝑖 − 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒
3 𝑆𝑇 𝑖 ← {𝑘 : |𝛽𝑖

𝑘,′𝑔𝑎𝑖𝑛′ − 𝛽𝑖
𝑘,′𝑙𝑜𝑠𝑠′ | > 𝜖}

4 𝐺𝑜𝑜𝑑𝑖 ← {𝑘 : 𝛽𝑖
𝑘,′𝑔𝑎𝑖𝑛′ > 𝛽𝑖

𝑘,′𝑙𝑜𝑠𝑠′ ∧ 𝑘 ∈ 𝑆𝑇 𝑖}
5 ∀𝑘 ∈ 𝐺𝑜𝑜𝑑𝑖 𝑞𝑢𝑎𝑙𝑖𝑘 ← 𝛽𝑖

𝑘,′𝑔𝑎𝑖𝑛′ − 𝛽𝑖
𝑘,′𝑙𝑜𝑠𝑠′ ,

𝑆𝐴𝑖
𝑘 ← {𝑗 : 𝛽𝑖

𝑘,𝑗 > 𝜇(𝛽𝑖
𝑘,𝑁∖𝑖) + 𝜎(𝛽𝑖

𝑘,𝑁∖𝑖) ∧ 𝑗 ∈ 𝑁 ∖ 𝑖}
6 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠← ∅
7 for 𝑘 ∈ 𝐺𝑜𝑜𝑑𝑖 do
8 𝐶 ← 𝑆𝐴𝑖

𝑘 ∪ 𝑖
9 𝑟𝑖,𝐶 ← 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡 · 𝑞𝑢𝑎𝑙𝑖𝑘/

∑︀
𝑞𝑢𝑎𝑙𝑖

10 round 𝑟𝑖,𝐶 appropriately-do not exceed 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡
11 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠.𝑎𝑑𝑑(⟨𝐶, 𝑟𝑖,𝐶⟩)
12 return 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ∪ 𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒)

Algorithm 8: explore
1 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠← ∅
2 for {1, . . . , 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒} do
3 𝑠𝑖𝑧𝑒← random({1, . . . , 𝑛− 1})
4 𝐶 ← (randomly choose 𝑠𝑖𝑧𝑒 agents from 𝑁 ∖ 𝑖) ∪ 𝑖
5 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠.𝑎𝑑𝑑(⟨𝐶, 1⟩)
6 return 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠

Algorithm 9: OVERPRO-respond (by responder 𝑖)
1 𝑆𝑇 𝑖 ← {𝑘 : |𝛽𝑖

𝑘,′𝑔𝑎𝑖𝑛′ − 𝛽𝑖
𝑘,′𝑙𝑜𝑠𝑠′ | > 𝜖}

2 𝐺𝑜𝑜𝑑𝑖 ← {𝑘 : 𝛽𝑖
𝑘,′𝑔𝑎𝑖𝑛′ > 𝛽𝑖

𝑘,′𝑙𝑜𝑠𝑠′ ∧ 𝑘 ∈ 𝑆𝑇 𝑖}
3 𝐵𝑎𝑑𝑖 ← {𝑘 : 𝛽𝑖

𝑘,′𝑔𝑎𝑖𝑛′ < 𝛽𝑖
𝑘,′𝑙𝑜𝑠𝑠′ ∧ 𝑘 ∈ 𝑆𝑇 𝑖}

4 ∀𝑘 ∈ 𝑆𝑇 𝑖 𝑆𝐴𝑖
𝑘 ← {𝑗 : 𝛽𝑖

𝑘,𝑗 > 𝜇(𝛽𝑖
𝑘,𝑁∖𝑖) + 𝜎(𝛽𝑖

𝑘,𝑁∖𝑖) ∧ 𝑗 ∈ 𝑁 ∖ 𝑖}
5 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠← ∅ ; 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑← ∅
6 for 𝐶 ∈ 𝐶𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 do
7 for 𝑘 ∈ 𝐵𝑎𝑑𝑖 do
8 if |𝑆𝐴𝑖

𝑘 ∩ 𝐶| > 𝑐𝑡 · |𝐶| then
9 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠.𝑎𝑑𝑑(⟨𝐶, 0⟩); 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑.𝑎𝑑𝑑(𝐶)

10 for 𝐶 ′ ∈ 𝐶𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ∖𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 do
11 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠.𝑎𝑑𝑑(⟨𝐶 ′, 1⟩)
12 𝑟𝑖 ← 𝑟𝑖 − 1

13 ∀𝑘 ∈ 𝐺𝑜𝑜𝑑𝑖 𝑞𝑢𝑎𝑙𝑖𝑘 ← 𝛽𝑖
𝑘,′𝑔𝑎𝑖𝑛′ − 𝛽𝑖

𝑘,′𝑙𝑜𝑠𝑠′

14 Assign to each coalition 𝐶 ′ that has not been rejected the quality of the
(good) topic with the highest one among those (if any) which satisfy
|𝑆𝐴𝑘 ∩𝐶 ′| > (1− 𝑐𝑡) · |𝐶 ′|; distribute the remaining 𝑟𝑖 proportionally to these
qualities; update 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 since resource offerings have increased

15 return 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠



6.4. Q-Learning for Overlapping Coalition Formation 57

particular information regarding 𝐶 and thus a minimum quantity can be of-
fered, so that experience from participation is gained. If the case is that 𝐶 is
indicated as beneficial, then an additional investment should be offered, with
the exact offering depending on how beneficial 𝐶 is compared to the other
good ones. The entire response-formation process is shown at Alg. 9.

The training of LDA, and thus consequently that of online LDA also, takes
polynomial time (Blei, Ng, and Jordan, 2003), as a result of the variational in-
ference. Furthermore, as it can be observed in Alg. 7, the number of computa-
tion steps of OVERPRO-propose is polynomial in the number of topics. From
Alg. 9, we can see that the running time of OVERPRO-respond is polynomial
in the number of coalitions to respond to. Therefore, the number of compu-
tation steps that are involved in OVERPRO is polynomial. In the exploration
phase any algorithm of one’s choosing can be used, as it is independent to
OVERPRO. Despite that the one presented in Alg. 8 runs in pseudopolynomial
time, as it depends in the quantity of an agent which is a numeric value, it is
natural to assume that agents’ resource quantities are not large values, and
thus this does not cause any problems in practice.

6.4 Q-Learning for Overlapping Coalition Forma-
tion

To the best of our knowledge, this is the first work on (decentralized) multi-
agent learning for overlapping coalition formation under uncertainty, and thus
there is no algorithm to use as a means for comparison. To meet this need,
we have developed a Q-learning-style (Watkins and Dayan, 1992; Claus and
Boutilier, 1998) algorithm as a baseline. An agent that uses our Q-learning
algorithm employs two distinct kinds of Q-values. The first one, which is
denoted as 𝑄𝑎, maintains agent-level values; while the second, which is de-
noted as 𝑄𝑠, maintains coalition size-level values. Employing two different
sets of Q-values is necessary since the alternative of maintaining a Q-value
for every possible coalition requires exponential space in the number of the
agents (rendering the problem practically intractable in large settings). Agent
𝑖 maintains for each agent 𝑗 ∈ 𝐶∖𝑖 a 𝑄𝑖

𝑎,𝑗 value, and for each 𝑚 ∈ {1, . . . , 𝑛−1}
a 𝑄𝑖

𝑠,𝑚 value; keeping a 𝑄𝑖
𝑠,𝑚 value for 𝑚 = 𝑛 is redundant since the decision-

maker always includes herself in a coalition. Furthermore, a learning rate
𝛿𝑡 ∈ (0, 1) is employed (Sutton and Barto, 1998), as is common in Q-learning,
where 𝑡 is the game iteration. After 𝐶, 𝑖 ∈ 𝐶, is formed, agent 𝑖 updates her
Q-values as follows:

𝑄𝑖
𝑎,𝑗 ← 𝑄𝑖

𝑎,𝑗 + 𝛿𝑡 ((𝑢𝐶/𝑟−𝑖,𝐶)−𝑄𝑖
𝑎,𝑗) ∀𝑗 ∈ 𝐶 ∖ 𝑖

𝑄𝑖
𝑠,𝑚 ← 𝑄𝑖

𝑠,𝑚 + 𝛿𝑡 ((𝑢𝐶/𝑟−𝑖,𝐶)−𝑄𝑖
𝑠,𝑚) where 𝑚 = |𝐶| − 1



58 Chapter 6. Overlapping Coalition Formation via Probabilistic Topic
Modeling

where 𝑟−𝑖,𝐶 is total resource investment in 𝐶 excluding that of 𝑖. Thus, Q-
values correspond to efficiency indices, i.e. the ratio of utility 𝑢𝐶 to the total
resource quantity invested in 𝐶.

A proposer employing our Q-learning algorithm iteratively selects some quan-
tity of her resource to offer to a coalition, until it is depleted. Then, the size of
the coalition to propose (excluding herself) is selected using the softmax func-
tion (Sutton and Barto, 1998) over the 𝑄𝑖

𝑠 values, and afterwards the agents
to include in the coalition are selected using the softmax function over the 𝑄𝑖

𝑎

values. The approach to the exploitation-vs-exploration problem is exactly
the same as in OVERPRO, and thus the 𝑧𝑡 parameter is also employed here, as
well. Alg. 10 depicts the proposer’s decision-making process.

Algorithm 10: Q-learning-propose (by proposer 𝑖)
1 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒← ⌊𝑟𝑖 · 𝑧𝑡⌋
2 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡← 𝑟𝑖 − 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒
3 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠← ∅
4 while 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡 > 0 do
5 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ← random({1, . . . , 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡})
6 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡← 𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑖𝑡− 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

7 𝑠𝑖𝑧𝑒← select coalition size with probability 𝑒𝑄
𝑖
𝑠,𝑚/

∑︀
𝑚′ 𝑒

𝑄𝑖
𝑠,𝑚′ , where

𝑚 ∈ {1, . . . , 𝑛− 1}
8 𝐶 ← (select 𝑠𝑖𝑧𝑒 agents with probability 𝑒𝑄

𝑖
𝑎,𝑗/

∑︀
𝑗′ 𝑒

𝑄𝑖
𝑎,𝑗′ , where 𝑗 ∈ 𝑁 ∖ 𝑖)

∪ 𝑖
9 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠.𝑎𝑑𝑑(⟨𝐶, 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦⟩)

10 return 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ∪ 𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑎𝑚𝑜𝑢𝑛𝑡_𝑒𝑥𝑝𝑙𝑜𝑟𝑒)

Agent 𝑖 accepts participation in a proposed coalition 𝐶 with certainty if
∑︀

𝑗∈𝐶∖𝑖 𝑄
𝑖
𝑎,𝑗

is positive, or else the proposal is accepted with probability ℎ𝑡 ∈ (0, 1). A
minimum quantity is initially offered to every accepted coalition, and the
remaining quantity is distributed to the coalitions that are accepted with cer-
tainty, proportionally to the sum of their Q-values. The exact way agents use
Q-values to respond is shown in Alg. 11.

6.5 Experiments

We evaluated OVERPRO’s effectiveness and robustness in environments with
50 and 250 agents. Agent resource quantities were generated from {450, . . . , 550}
uniformly at random. The RRs were 400 for 𝑛 = 50, and 20k for 𝑛 = 250. Ev-
ery game ran for 𝐼 = 1000 iterations, and thus, agent 𝑖 can observe at most
𝑟𝑖· 1000 documents. The development is in Python 3 and Online LDA was
implemented as in (Hoffman, Bach, and Blei, 2010).3 The same exploration
rate 𝑧𝑡 was set for both OVERPRO and Q-learning, decreasing quadratically

3https://github.com/blei-lab/onlineldavb
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Algorithm 11: Q-learning-respond (by responder 𝑖)
1 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠← ∅; 𝐵𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 ← ∅
2 for 𝐶 in 𝐶𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 do
3 𝑞𝑢𝑎𝑙𝑖𝐶 ←

∑︀
𝑗∈𝐶∖𝑖𝑄

𝑖
𝑎,𝑗

4 if 𝑞𝑢𝑎𝑙𝑖𝐶 > 0 then
5 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠.𝑎𝑑𝑑(⟨𝐶, 1⟩)
6 𝑟𝑖 ← 𝑟𝑖 − 1
7 𝐵𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙.𝑎𝑑𝑑(𝐶)

8 else if random(0, 1) < ℎ𝑡 then
9 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠.𝑎𝑑𝑑(⟨𝐶, 1⟩)

10 𝑟𝑖 ← 𝑟𝑖 − 1

11 else
12 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠.𝑎𝑑𝑑(⟨𝐶, 0⟩)
13 Distribute the remaining resource 𝑟𝑖 to coalitions in 𝐵𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙

proportionally to their 𝑞𝑢𝑎𝑙 values; update 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 since resource
offerings have increased

14 return 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

from 1 to 0.01. Both 𝑐𝑡 and ℎ𝑡 decreased linearly from 1 to 0.35. The exact val-
ues of 𝑧𝑡, 𝑐𝑡, and ℎ𝑡 over time are presented in the Appendix. We tested both
OVERPRO, which requires 𝐾 (number of topics),4 𝜏0 and 𝜅 (that determine the
impact 𝜌 = (𝜏0 + 𝑡)−𝜅 of a batch of documents on the topics), and Q-learning,
which requires 𝛿𝑡, for a number of different parameters. Experiments were
conducted on three i3 3GHz PCs with 4GB of RAM and two cores each; on
average a game for 𝑛 = 50 took about 6,500 sec in total, and 95,000 sec for
𝑛 = 250.

In Table 6.1 we present for 𝑛 = 50 the average: social welfare earned in a
game (sw); number of coalitions that a proposer of an iteration proposes (pro-
posals); number of coalitions in which an agent participates in a round (par-
ticipation); and time it took to complete a game per iteration per agent.

As observed in Table 6.1, OVERPRO performs much better than Q-learning
in terms of social welfare. For the best set of parameters of OVERPRO, ⟨𝐾 =
10, 𝜏0 = 200, 𝜅 = 0.9⟩, the average social welfare earned in a game was about
the triple of that earned when Q-learning with the best value 𝛿𝑡 = 0.95𝑡 was
employed, since 1320.24/475.31 = 2.77. For Q-learning, the performance for
𝛿𝑡 = 0.995𝑡 was less than the half of the one for 𝛿𝑡 = 0.95𝑡, as 205.73/475.31 =
0.43. OVERPRO performed better when the number of topics 𝐾 maintained
by every agent was 10, rather than 15, for both pairs of ⟨𝜏0 = 200, 𝜅 = 0.9⟩
and ⟨𝜏0 = 100, 𝜅 = 0.7⟩. For both 10 and 15 topics, the social welfare was
better for ⟨𝜏0 = 200, 𝜅 = 0.9⟩ than for ⟨𝜏0 = 100, 𝜅 = 0.7⟩. Since 𝜏0 and 𝜅
determine the impact that a batch of documents has on the formation of the

4In some LDA implementations the value of 𝐾 is automatically derived Teh et al., 2006,
but we exploit the standard online LDA algorithm, which requires passing the value of 𝐾 as
parameter.
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TABLE 6.1: Results (averages over 100 runs) for 50 agents and
different values of ⟨𝐾, 𝜏0, 𝜅⟩ for OVERPRO and 𝛿𝑡 for Q-learning.
Proposals, participation and time (in sec) are per agent per iter-

ation (there is a unique proposer in an iteration).

𝑛 = 50 sw (·103) proposals participation time (sec)
⟨10, 200, 0.9⟩ 1320.24 111.28 49.68 0.3808
⟨10, 100, 0.7⟩ 1183.94 110.63 49.48 0.3479
⟨15, 200, 0.9⟩ 1237.42 113.13 49.73 0.4074
⟨15, 100, 0.7⟩ 982.40 112.20 49.39 0.3691
𝛿𝑡 = 0.95𝑡 475.31 113.81 47.86 0.0054
𝛿𝑡 = 0.9𝑡 286.08 113.80 37.81 0.0079
𝛿𝑡 = 0.995𝑡 205.73 113.81 27.35 0.0044

topics, 𝜌𝑡 = (𝜏0+𝑡)−𝜅 can be interpreted as a learning rate. Now, higher values
of 𝜏0 and 𝜅 result in smaller values of 𝜌𝑡. Therefore, it can be conjectured that
slower learning rates are preferred over faster ones.

The number of proposals made in an iteration is largely affected by the ex-
ploration phase. Since we have experimented with high values of explo-
ration rate (the average value of 𝑧𝑡 is 0.215), the number of proposals is al-
most the same for all values of ⟨𝐾, 𝜏0, 𝜅⟩ for OVERPRO. However, we notice
that a proposer employing OVERPRO with higher values of 𝜏0 and 𝜅 tends
to suggest a greater number of coalitions than one with smaller values of 𝜏0
and 𝜅 does, since for both 10 and 15 topics the number of proposals is greater
for ⟨𝜏0 = 200, 𝜅 = 0.9⟩ than for ⟨𝜏0 = 100, 𝜅 = 0.7⟩, as 111.28 > 110.63 and
113.13 > 112.20. Agents employing OVERPRO, in general tend to join more
coalitions than their Q-learning counterparts, as indicated by the values of
“participation” in Table 6.1, which are greater for the former. By the end
of a game an agent employing OVERPRO will have trained her online LDA
with more than 49k documents, since one coalition corresponds to one doc-
ument, an agent participates in at least 49.39 coalitions in a round

(︀
value for

⟨𝐾 = 10, 𝜏0 = 100, 𝜅 = 0.7⟩
)︀
, and 𝐼=1000.

Now, one cannot draw accurate conclusions regarding the real power of an
agent decision-making algorithm relying solely on social welfare. For in-
stance, if one makes many proposals, it is more likely that more agents will
join, and thus the social welfare will probably increase. Therefore, we define
efficiency as the ratio of social welfare (total utility) to total resource quantity
invested by all agents in every coalition in a round.5 This efficiency metric is
quite natural, since it takes the focus away from social welfare—and rational
agents aim to maximize their own utility, and not the social welfare.

It can be observed in Fig. 6.2(a) that OVERPRO vastly outperforms the Q-
learning algorithm in terms of efficiency. The efficiency of Q-learning hardly

5 One problem in plotting efficiency is that since the dynamics of the system are com-
plex (as a result of the form of the protocol and the number of the agents), there are multiple
fluctuations and overlaps that make the plots hard to make out. Thus, we employed curve
fitting with a polynomial function.
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increases throughout the game, whereas the performance of OVERPRO im-
proves steadily. We can thus conclude that as iterations go by, agents em-
ploying OVERPRO are more efficient in terms of earning utility (as a function
of resources invested). In the Appendix, we present the number of formed
coalitions for each set of experiments over time, and the (average) perplexity
of an agent’s online LDA model for OVERPRO.

Now, as depicted in Fig. 6.2(b), OVERPRO achieves even better efficiency for
𝑛 = 250 than for 𝑛 = 50, while its behaviour through time is very simi-
lar. Therefore, it exhibits robust performance against increases of 𝑛. Further-
more, we have observed through experimentation that the number of topics
𝐾 should increase sublinearly to 𝑛. Agents using Q-learning, for 𝑛 = 250,
were for most rounds unable to form coalitions, as they could not coordi-
nate their actions, and thus the corresponding efficiency could not be plotted.
This is a problem that Q-learning algorithms face when they are employed
in large-scale systems (Agogino and Tumer, 2005). However, agents using
OVERPRO overpass this problem. In fact, each agent had trained her online
LDA model with more than 18.5k documents (coalitions) in total, at the end
of the game. The decrease of the number of coalitions that an agent is mem-
ber of in a game with 𝑛 = 250 compared to 𝑛 = 50 is natural, since the proto-
col in effect demands that all of the proposed agents of a potential coalition
agree on its formation without allowing any further interaction. Neverthe-
less, even for 𝑛 = 250 agents using OVERPRO achieve to form of a fairly large
number of coalitions.

6.6 Conclusions

We have presented a novel approach towards multi-agent learning in coop-
erative game environments, where probabilistic topic modeling, and specif-
ically online LDA, is exploited. Furthermore, this is the first work to tackle
overlapping coalition formation under uncertainty, where the uncertainty is
on the relations entailing synergies among the agents. To this end, we pro-
posed Relational Rules (RRs), a representation scheme which extends MC-nets
to cooperative games with overlapping coalitions; and then showed how to
use online LDA to implicitly learn the agents’ synergies described by (un-
known) RRs. Our method, OVERPRO, decisively outperforms a Q-learning
algorithm we also developed.
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(A) 𝑛 = 50. Results are averages over 70 runs.

(B) 𝑛 = 250. Results are averages over 30 runs.

FIGURE 6.2: Efficiency defined as the ratio of social welfare (to-
tal utility) to total resource quantity invested by all agents in
every coalition in an iteration (round) for different values of
⟨𝐾, 𝜏0, 𝜅⟩ for OVERPRO and 𝛿𝑡 for Q-learning (for 𝑛 = 50).
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Chapter 7

Conclusions

This thesis provides the first approach in the literature for overlapping coali-
tion formation under uncertainty. We have presented and combined ap-
proaches that had never been taken under consideration before in the coali-
tion formation and cooperative game theory literature. In particular, the
main concepts we have exploited come from the fields of Probabilistic Com-
puting, and especially Probability Inequalities, and Probabilistic Topic Mod-
eling. Our experimental results demonstrate the effectiveness of our ap-
proach, and its potential for practical usage in real world environments. In
the following subsections, we provide a summary of our approaches and
contributions, and then discuss topics and extensions that could be studied
in future work.

7.1 Summary

In the first of our works, presented in section 5, we have exploited Probability
Bounds, given by Probability Inequalities, for Overlapping Coalition Forma-
tion. We considered a model where agents have uncertainty regarding the re-
source quantity that the others possess, and provided a way for modeling an
agent’s beliefs for the potential resource investment of the others. In this, con-
text we used Beta and Dirichlet conjugate priors, providing thus a Bayesian
approach for modeling the uncertainty of the agents. Thereafter, we provided
three methods, exploiting an improvement of the Paley-Zygmund inequalty,
the two-sided Chebyshev’s inequality, and the Hoeffding’s inequality. These
methods allow agents to demand certain confidence levels and take forma-
tion decisions by approximating the distributions derived by their beliefs, as
their exact computation is excessively time consuming, and taking advan-
tage of the derived bounds. In order to provide a means for the agents to
form coalitions, we have presented an overlapping coalition formation pro-
tocol, under which proposers make offers (promising a portion of the target
utility) to the rest of the agents towards task completion, which results in
acquiring utility.

We have conducted experimental evaluation of our methods by testing them
on both a random graph of 300 nodes (agents) and snapshot of Facebook
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consisting of 4039 nodes. We used as a baseline a method that takes de-
cisions based on expected resource contribution. Our methods consistently
outperformed the baseline, in terms of task completion, and exhibited similar
behaviour in the two graphs.

In our second work, we exploited Probabilistic Topic Modeling in order to de-
vise an effective method for agent decision-making in iterated overlapping
coalition formation environments, where agents have uncertainty regarding
the underlying collaboration structure. In particular, we took advantage of
online Latent Dirichlet Allocation and showed how an agent can learn prof-
itable coalitions by interpreting coalitions as documents. Furthermore, we
have proposed Relational Rules, a novel representation scheme for coopera-
tive games with overlapping coalitions which extends the well-known MC-
nets presentation.

We have also presented OVERPRO, a method that exploits beliefs as shaped
by online Latent Dirichlet Allocation, and compared it to a Q-learning style
algorithm that we devised, as well. OVERPRO exhibited vastly better perfor-
mance compared to the Q-learning algorithm. Therefore, we can conclude
that the underlying collaboration structure, described by Relational Rules, is
efficiently learned and exploited by OVERPRO.

7.2 Future Work

Here we outline our ongoing and future work. Both pillars of this thesis
allow for extensions that can possibly lead to even better results or new re-
search directions.

First, we consider testing our proposed methods for deriving probability
bounds on different coalition formation protocols so as to confirm their ro-
bustness. Additionally, we intend to conduct experiments where agent re-
sources will be depleted, instead or renewed, over time. Naturally, this would
necessitate long-term strategic planning. It is expected that such a setting
would have an impact on the way that agents derive bounds over uncer-
tainty.

Our work on overlapping coalition formation via probabilistic topic model-
ing essentially presents a brand-new approach to multi-agent learning in co-
operative games. Thus, it is desirable to formulate our proposed method so
that we employ it in non-cooperative environments. Moreover, we intend to
study how scaling the number of times that words are written in a document
affects the formation of the topics, and thus the effectiveness of our method.
Furthermore, we intend to explore alternative approaches for exploiting the
knowledge provided by the learned topics.

Finally, we are interested in intertwining probability bounds and probabilis-
tic topic modeling. Such a combination could lead to even more interesting
research directions and results. It is intriguing to study the way that such an
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approach in coalition formation settings would be related to concepts from
non-cooperative game theory.
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Appendix A

Appendix

In this appendix we present figures that were omitted in Chapter 6.

FIGURE A.1: Exploration rate 𝑧𝑡, and parameters 𝑐𝑡 and ℎ𝑡

that affect the responses of the agents.

In Figure A.1 we observe the exploration rate 𝑧𝑡 that was used by both OVERPRO
and Q-learning in all of the experiments. In the first iteration its value is 1 and
it finally reaches 0.01 by decreasing in a quadratic fashion. Both parameters
𝑐𝑡, used by OVERPRO, and ℎ𝑡, used by the Q-learning algorithm, are initially
valued at 1, and linearly decrease to 0.35. As stated in Chapter 6, 𝑐𝑡 and ℎ𝑡 are
equally valued since they affect the decisions of the responders in a similar
manner.

In Figures A.2 (A) and A.2 (B) we observe the number of coalitions that form
in each iteration, for 𝑛 = 50 and 𝑛 = 250, respectively. For 𝑛 = 50, we can see
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that number of formed coalitions in every iteration is almost the same for all
configurations of OVERPRO (four first labels) and Q-learning for 𝛿𝑡 = 0.95𝑡.
Furthermore, we observe that for Q-learning with 𝛿𝑡 = 0.995𝑡 the number of
formed coalitions is much lower than for any other setting until the 700𝑡ℎ it-
eration, where from there on Q-learning for 𝛿𝑡 = 0.9𝑡 is the setting for which
the least number of coalitions per iterations forms. For 𝑛 = 250, and for ev-
ery set of ⟨𝐾, 𝜏0, 𝜅⟩ of OVERPRO, the number of formed coalitions is virtually
the same. We can see that, in general, the rate of decrease of the number of
formed coalitions for 𝑛 = 250 is higher than the one for 𝑛 = 50.

In figures A.3(A) and A.3(B) we see the average values of perplexity of the
online LDA models of the agents over time, for 𝑛 = 50 and 𝑛 = 250, respec-
tively. Naturally, in either case, in the first iteration perplexity has a high
value, since the variables involved in the online LDA models have been ran-
domly initialized. For 𝑛 = 50, we see that the lowest perplexity is observed
for 𝑡𝑎𝑢0 = 200 and 𝜅 = 0.9, and there is virtually no difference for either
𝐾 = 10 or 𝐾 = 15. However, no significant difference is observed for differ-
ent values of ⟨𝐾, 𝜏0, 𝜅⟩ for 𝑛 = 250.
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(A) 𝑛 = 50

(B) 𝑛 = 250

FIGURE A.2: Number of formed coalitions per iteration.
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(A) 𝑛 = 50

(B) 𝑛 = 250

FIGURE A.3: Perplexity per iteration.
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