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1 Introduction

Nowadays, the energy and fuel consumption reduction is of high importance. The cur-

rent trend towards increased mobility and transportation growth in the more developed

countries runs counter to the purposes of controlling the greenhouse effect, local pollution

and the exploitation of fuel resources. The fact that mobility is increasing and millions

of new drivers start using private cars as a main mode of transportation every year, leads

on an increase in the demand for primary energy, and the more fossil energy is used, the

more the local emissions (unburnt hydrocarbons, carbon monoxide (CO), NOx, particulate

matter, sulfur oxide (SOx) and volatile organic compounds (VOCs)) and the correspond-

ing greenhouse gases emissions are increased, so fuel consumption is a crucial issue and

it is carried out intensive research in order to be found an optimal solution. Research

related to the idea of controlling a vehicle for improving its fuel economy has a long track.

Some early studies were conducted to determine the optimal cruising velocity of a vehicle

based on its internal operating characteristics (Gilbert, 1976; Chang and Morlok, 2005).

In a study, the optimal values of acceleration for starting up and cruising speed over hilly

terrains or flat roads were determined for fuel efficient driving (Hooker, 1988). Another

available method for improving fuel economy is eco-driving and eco-routing. Ecological

(eco)-driving is a way of maneuvering a vehicle with a human driver that is intended to

minimize fuel consumption while coping with varying and uncertain road traffic by trading

off the most efficient driving point of the vehicle whenever necessary. Aside from various

physical factors, driving style has a great influence on vehicle emissions and energy con-

sumption (Van Mierlo et al., 2004). Driving style has the capacity to significantly improve

the driving efficiency of a vehicle. At presence, eco-driving systems can be divided into

two categories: one focuses on the entire transportation system and tries to reduce the

overall fuel consumption by route optimization and traffic management and the other fo-
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cuses on a single vehicle and reduces the fuel consumption by optimize the driving style of

the driver and control the power management system of the vehicle. Several studies have

indicated that eco-driving can improve fuel economy by 15-25% (CIECA, 2009; Hellström

et al., 2009; Kamal et al., 2011; Cheng et al., 2013; Casavola et al., 2010; Kundu et al.,

2013; Dhaou, 2011), and approximately 12-33% of fuel can be saved through eco-routing

(Dhaou, 2011; Streets, 2009). Therefore, eco-driving and eco-routing are effective ways to

improve fuel economy in both the short-term and long-term. To evaluate eco-driving and

eco-routing algorithms, an appropriate fuel consumption model that can predict instan-

taneous fuel consumption second by second is needed. To identify the fuel consumption

models that are best suited for eco-driving and eco-routing, a review of state-of-the-art

fuel consumption models is necessary. Faris et al. performed a comprehensive review of

state-of-the-art fuel consumption and emission models, such as the VT-Micro model (Ahn

et al., 2002), power-based fuel consumption model (Post et al., 1984), and POLY model

(Teng et al., 2002), and classified these models into five broad categories: (1) modeling

based on the scale of the input variables, (2) modeling based on a formulation approach,

(3) modeling based on the type of explanatory variables, (4) modeling based on state

variable values and (5) modeling based on the number of dimensions (Faris et al., 2011).

This master thesis is composed of 6 chapters. Chapter 2 starts with a brief review of

the methodologies and mathematical tools that are used in this thesis. In Chapter 3, we

present the description and the formulation of the problem. Afterwards, we approximate

the fuel consumption function with a quadratic function via Taylor expansion, in order

to solve it analytically, using Hamiltonian analysis as in the optimal control methodology

described in Chapter 2. Then we show the results of the 5 scenarios defined at the begin-

ning of the chapter and and also the results of an equivalent modified problem numerical

solution as it is shown in section 4.2. Chapter 2.4, consists of a detailed description of a fea-

sible direction algorithm (Papageorgiou and Marinaki, 1995) for the discrete-time optimal

control problems which is used in order to solve the energy-based fuel consumption model

minimisation problem numerically. However, because the energy-based fuel consumption

model is a non-smooth function, we use a smooth model of the fuel consumption model as

described in Section 2.6. Chapter 5 contains the results of the comparison of the analytic

and numerical solutions of the previous chapters, in terms of the acceleration, the posi-

tion, the speed trajectories and the optimal fuel consumption and also the results solving

the problem described in Chapter 3 but instead of using the fuel consumption model as

cost function, we use the function f(v, a) = 1
2a

2, which is widely used in bibliography
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as an eco-driving cost criterion. Finally, in Chapter 6, we present some results of the

comparison between the results obtained from the maximisation of the cost function and

the corresponding minimisation results of the problem.
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2 Theoretical Background

The objective of this work is the minimisation of the fuel consumption for vehicle trajecto-

ries as it is described in Chapter 3. This is achieved by the use of optimal control theory,

firstly analytically and then numerically. In order to solve the problem analytically, we

need to approximate the cost function through Taylor series. As far as the numerical

solution is concerned, we use a feasible direction algorithm proposed by Papageorgiou and

Marinaki (1995). Through the optimal control methodology, we obtain the optimal tra-

jectories of speed, position and acceleration, which then used to calculate the minimum

fuel consumption. The fuel consumption model used for the estimation of the vehicle’s

fuel consumption rate, is the energy-related model proposed in Post et al. (1984). The

methodologies and the mathematical tools are described in the following sections.

2.1 Taylor’s Theorem

Taylor’s theorem is a central tool for finding accurate numerical approximations of func-

tions, and as such plays an important role in many areas of applied and computational

mathematics. The strategy used to prove Taylor’s theorem is to reduce it to the one-

variable case by probing a function of many variables along lines of the form I(t) = x0 +th

emanating from a point x0 and heading in the direction h (Marsden and Tromba, 1996).

2.1.1 Taylor’s Theorem for Many Variables

If f : Rn → R is differentiable at x0 and we define

4



R1(x0,h) = f(x0 + h)− f(x0)− [Df(x0)](h),

so that

f(x0 + h) = f(x0) + [Df(x0)](h) +R1(x0,h),

then by definition of differentiability,

|R1(x0,h)|
‖h‖ → 0 as h→ 0;

that is, R1(x0,h) vanishes to first order at x0. In summary, we have:

Theorem 1 (First-Order Taylor Formula). Let f : U ⊂ Rn → R be differentiable at

x0 ∈ U . Then

f(x0 + h) = f(x0) +
n∑
i=1

hi
∂f

∂xi
(x0) +R1(x0,h),

where R1(x0,h)/‖h‖ → 0 as h→ 0 in Rn.

the second-order version is as follows:

Theorem 2 (Second-order Taylor Formula). Let f : U ⊂ Rn → R have continuous partial

derivatives of second order. Then we may write

f(x0 + h) = f(x0) +
n∑
i=1

hi
∂f

∂xi
(x0) + 1

2

n∑
i,j=1

hihj
∂2f

∂xi∂xj
(x0) +R2(x0,h),

where R2(x0,h)/‖h‖2 → 0 as h→ 0 and the second sum is over all i’s and j’s between 1

and n (so there are n2 terms).

Notice that this result can be written in matrix form as
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f(x0 + h) = f(x0) +
[
∂f

∂x1
, . . . ,

∂f

∂xn

] 
h1
...

hn



+ 1
2[h1, . . . , hn]



∂2f

∂x1∂x1

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x2∂x2
. . .

∂2f

∂x2∂xn...
∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂xn∂xn





h1

h2
...

hn


+R2(x0,h),

where the derivatives of f are evaluated at x0.

2.2 The Theory of Continuous-Time Optimal Control

Many management science applications involve the control of dynamic systems, i.e., sys-

tems that evolve over time. They are called continuous-time systems or discrete-time

systems depending on whether time varies continuously or discretely. Optimal control

theory is a branch of mathematics developed to find optimal ways to control a dynamic

system.

In an optimal control problem for a dynamic system, the task is finding an admissible

control trajectory u : [ta, tb] → Ω ⊆ Rm generating the corresponding state trajectory

x : [ta, tb]→ Rn such that the cost functional J(u) is minimized.

2.2.1 Optimal Control Problem

Consider the minimisation of the cost function

J [u (t)] =
∫ T

t0
Φ (x (t) ,u (t) , t) dt (1)

subject to a system of n first-order ordinary differential equations

ẋ = f (x (t) ,u (t) , t) (2)
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satisfying the boundary condition given by

x(t0) = x0 (3)

ψ(x(T ), T ) = 0 (4)

Here x ∈ Rn represents the state, x0 ∈ Rn is a specified initial point, u ∈ Rm is the control,

t ∈ R is a general time index, t0 ∈ R is the initial time which is assumed to be fixed, T ∈ R

the terminal time which may be fixed or varying, Φ(x(t),u(t), t) : Rn×Rm×R→ R is the

full time performance index, f(x(t),u(t), t) : Rn × Rm × R → Rn is the system dynamics

and ψ(x(T ), T ) : Rn×R→ Rp≤n a terminal time constraint. The control u is constrained

by the following inequalities by component:

|ui| ≤ ui0 = constant, i = 1, 2, . . . ,m

Theorem 3 (Necessary Conditions for Optimality). Let the pre-Hamiltonian H̄ be defined

such that

H̄(x,λ,u, t) = Φ(x,u, t) + λT f(x,u, t) (5)

where λ is a costate adjoint to f . Then, the Pontryagin’s principle provides the following

1st order necessary conditions for optimality:

ẋ = ∂H̄(x,λ,u, t)
∂λ

(6)

λ̇ = ∂H̄(x,λ,u, t)
∂x (7)

u = arg min
ū
H̄(x,λ,u, t) (8)

Substituting (8) into (5), (6), and (7) results in a standard Hamiltonian system for state

and costate only:

H(x,λ, t) = H̄(x,λ, arg min
ū
H̄(x,λ,u, t), t) (9)

ẋ = ∂H(x,λ, t)
∂λ

(10)

λ̇ = ∂H (x,λ, t)
∂x (11)

Evaluating the optimal trajectory corresponds to solving this system of ordinary differ-

ential equations (ODEs) satisfying the given boundary conditions. The initial state x0
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and the terminal state xf are given explicitly and the initial costate λ0 and the terminal

costate λf should be determined. We need to solve this system of ODEs with the same

number of split boundary conditions. Hence the optimal control problem is reduced to a

TPBVP of the Hamiltonian system.

2.3 The Theory of Discrete-Time Optimal Control

2.3.1 Problem Formulation

We consider a discrete-time dynamic process described by the following set of difference

equations organized in vector form

x(k + 1) = f[x(k),u(k), k], k = 0, . . . ,K − 1 (12)

where x ∈ Rn, u ∈ Rm are the system state and control variable respectively, and f ∈ Rn

is a twice continuous differentiable vector function. Moreover, ·(k) denotes the value of

the corresponding variable at time t = kT , where T is the sample time interval, k is the

discrete time index, and K (or K · T ) is the fixed time horizon. The system has a known

initial state

x(0) = x0. (13)

The problem consists in minimizing the discrete-time cost function

J = θ[x(K)] +
K−1∑
k=0

Φ[x(k),u(k), k] (14)

subject to (12),(13), and the set of inequality constraints

h[x(k),u(k), k] ≤ 0, k = 0, . . . ,K − 1 (15)

where θ,Φ,h ∈ Rq are twice continuous differentiable functions. The final state may be

free or may be required to satisfy a final condition

g[x(K)] = 0 (16)

where g ∈ Rl, l ≤ n, is a twice continuous differentiable vector function.
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Although expressing a dynamic physical procedure, the above formulated problem is,

from a mathematical point of view, a static optimization problem due to the discrete-time

nature of the involved process. To see this, define the vectors

X = [x(1)Tx(2)T . . .x(K)T ]T , U = [u(1)Tu(2)T . . .u(K)T ]T .

The discrete-time optimal control problem may then be expressed as follows:

Minimize Φ(X,U)

subject to

F(X,U = 0), H(x,U) ≤ 0

where Φ expresses the discrete-time cost function (14), H the inequality constraints (15)

for all k ∈ [0,K − 1], and F the state equations (12) for all k ∈ [0,K − 1] and the

terminal condition (16). In the following we will assume that the functions F,H satisfy

the Kuhn-Tucker qualification condition (Fletcher, 2013).

2.3.2 Optimality Conditions

To derive necessary conditions of optimality we use the Langragian Function (see e.g.

Papageorgiou et al. (1991); Fletcher (2013)) for this problem

L(x(k),u(k),λ(k),µ(k),v, k) = Φ(X,U) + ΛTF(X,U) + MTH(X,U) =

= θ[x(K)] +
K−1∑
k=0

Φ[x(k),u(k), k] +
K−1∑
k=0
{λ(k + 1)T [f[x(k),u(k), k]−

− x(k + 1)] + µ(k)Th[x(k),u, k]}+ vTg[x(K)]

(17)

where λ(k+ 1) ∈ Rn and µ(k) ∈ Rq, k = 0, . . . ,K − 1, are Lagrange and Kuhn-Tucker

multipliers respectively, for the corresponding equality conditions and

Λ = [λ(1)T . . .λ(K)TvT ], M = [µ(0)T . . .µ(K − 1)T ]T

The multipliers v ∈ Rl are assigned to the final condition (16). Applying the necessary

conditions of optimality, i.e.

dL/dX = 0, dL/dU = 0, dL/dΛ = 0,H(X,U) ≤ 0,HTM = 0,M ≥ 0
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we derive the necessary conditions of optimality for the discrete-time optimal control prob-

lem. These conditions are traditionally expressed in terms of the discrete-time Hamilto-

nian Function that is defined as follows

H[x(k),u,λ(k + 1), k] = Φ[x(k),u(k), k] + λ(k + 1)T f[x(k),u(k), k]. (18)

We also define the extended discrete-time Hamiltonian

H̃[x(k),u,λ(k + 1),µ(k), k] = Φ[x(k),u(k), k] + λ(k + 1)T f[x(k),u(k), k]+

+ µ(k)Th[x(k),u(k), k].
(19)

We then have the following necessary conditions of optimality for the discrete-time optimal

control problem:

There exist multipliers v and λ(k + 1),µ(k), k = 0, . . . ,K − 1, such that the following

equations are satisfied for k = 0, . . . ,K − 1 (notation: xy = dx/dy):

x(k + 1) = H̃λ(k+1) = f[x(k),u(k), k] (20)

λ(k) = H̃x(k) = Φx(k) + fTx(k)λ(k + 1) + hTx(k)µ(k) (21)

H̃u(k) = Φu(k) + fTu(k)λ(k + 1) + hTu(k)µ(k) = 0 (22)

µ(k)Th[x(k),u(k), k] = 0 (23)

µ ≥ 0 (24)

h[x(k),u(k), k] ≤ 0. (25)

Moreover, the following boundary and transversality conditions must be satisfied

x(0) = x0 (26)

g[x(K)] = 0 (27)

λ(K) = θx(K) + gTx(K)v. (28)

For a better understanding of these conditions we provide the following remarks:

• the conditions (20) and (21) are the state and costate difference equations

respectively. Together they are referred to as the system of canonical difference

equations of the problem.
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• The conditions (22)-(25) are generally sufficient to provide u(k), µ(k) in terms of

x(k), λ(k), although this may be difficult analytically for complex problems. There-

fore (22)-(25) may be referred to as coupling conditions. The coupling conditions

obviously require that the extended Hamiltonian H̃ at any time k have a stationary

point at the corresponding control input u(k) subject to the constraints (15).

• The boundary and transversality conditions (26)-(28) include a total of 2n+ 1 equa-

tions. Together with the canonical difference equations and the coupling conditions

they define a discrete-time Two-Point-Boundary-Value-Problem (TPBVP),

that requires 2n boundary values for its solution. The resting l boundary conditions

are needed for the specification of the multipliers v.

• The solution of the TPBVP may be found analytically for simple problems. More

complex optimal control problems require the employment of numerical solution

algorithms. One particular numerical algorithm will be presented in section 2.4.

2.4 Feasible Direction Algorithm

The analytic solution of optimal control problems by use of the necessary conditions of

optimality derived from Section 2.3 is only possible for simple problems, e.g. problems

with very low dimension or problems with special structure (e.g. Linear-Quadratic Opti-

mization). In all other cases, numerical solution algorithms are required for calculation of

the optimal trajectory u(k),x(k + 1), k = 0, . . . ,K − 1. This chapter presents a particu-

lar feasible direction algorithm that has demonstrated efficiency in a number of different

applications, particularly in the case of simple inequality constraints and free final state.

2.4.1 Reduced Gradient

We first consider the simpler optimal control problem of minimizing (14) subject to (12),

(13), i.e., for the time being, we consider a free final state and no inequality constraints.

In this case the necessary conditions (20)-(28) are simplified as follows:

• (20), (26) remain as they are
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• The third term of the r.h.s of (21), (22) may be dropped, i.e. we have

λ(k) = Hx(k) = Φx(k) + fTx(k)λ(k + 1) (29)

Hu(k) = Φu(k) + fTu(k)λ(k + 1) = 0 (30)

• (23), (24), (25), (27) may be dropped.

• (28) is simplified as follows

λ(K) = θx(K). (31)

For a given control trajectory u(k), k = 0, . . . ,K − 1, we may solve (12) with initial

condition (13) to obtain x(k), k = 1, . . . ,K. Substituting the control trajectory u(k) and

the corresponding x(k) in (14), we obtain the corresponding value of the cost criterion,

which therefore may be considered to depend only on u(k)(not on x(k)). In other words

the control variables u(k) may be considered as the independent optimization variables,

the state variables x(k) being derivable from them via (12), (13). Thus setting x(k) =

x(u(k)), we define J̄ [u(k)] = J [x(u(k)),u(k)]. We call dJ̄/du(k) = J̄u(k) the reduced

gradient of the cost function J w.r.t. the state equality constraints (12). It can be shown

(Papageorgiou et al., 1991) that the reduced gradient J̄u(k) of the cost function (14) w.r.t.

(13) may be calculated according to the following procedure:

• Calculation of x(k), k = 1, . . . ,K, via forward integration of (12) with initial state

(13).

• Calculation of λ(k), k = 1, . . . ,K, via backward integration of (29) with final con-

dition (31)

• Calculation of the reduced gradient (sometimes denoted g(k) below) from

g(k) = J̄u(k) = Hu(k) = Φu(k) + fTu(k)λ(k + 1) (32)

Thus, if a control trajectory is changed by δu(k), a linear approximation of the corre-

sponding change of the cost function is provided by

δJ = δJ̄ =
K−1∑
k=0

HT
u(k)δu(k). (33)

If the reduced gradient vanishes, i.e. J̄u(k) = 0 for all k ∈ [0,K − 1], then all necessary

conditions of optimality are satisfied, as may be immediately verified.
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2.4.2 Basic Algorithmic Structure

The feasible direction algorithm for the discrete-time optimal control problems is based

on a corresponding iterative algorithm for static optimization problems, see Papageorgiou

et al. (1991), Fletcher (2013). The algorithm attempts calculation of a local minimum of

J̄(u(k)) in the mK-dimensional space of the control variables UT = [u(0)T . . .u(K−1)T ].

The algorithm starts with an initial guess trajectory u(0)(k) (upper indices in parenthesis

indicate iteration number). At each iteration l, the algorithm modifies the current iterate

u(l)(k) so as to decrease the value of the cost function. The equality constraints (12), (13)

are satisfied at each iteration. This section presents the basic algorithmic structure whilst

subsequent sections provide more information on particular algorithmic steps.

The algorithmic steps are as follows:

a) Guess an initial trajectory u(0)(k), 0 ≤ k ≤ K − 1; calculate x(0)(k) from (12), (13)

and λ(0)(k) from (29), (31); calculate from (32) the reduced gradient g(0)(k) = H(0)
u(k);

set the iteration index l = 0.

b) Specify a search direction (descent direction) s(l)(k), k = 0, . . . ,K − 1.

c) Specify a scalar step α(l) > 0 by solving the following one-dimensional minimisation

problem (Line Optimization)

min
α>0

J̄ [u(l)(k) + αs(l)(k)]. (34)

Set

u(l+1)(k) = u(l)(k) + α(l)s(l)(k), k ∈ [0,K − 1] (35)

and calculate the corresponding x(l+1)(k) from (12), λ(l+1)(k) from (29) and g(l+1)(k)

from (32).

d) If a convergence test is satisfied, stop.

e) Start a new iteration l := l + 1; go to (b).

At each iteration, a descent direction is specified first, within step (b). Step (c) specifies a

line minimum on the search direction which becomes the new iterate for the next iteration.

The algorithm may be shown to converge under mild assumptions to a local minimum.
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The computation time has been empirically observed to increase roughly proportionally

with the problem dimension.

In order to guarantee a reduction of the cost function at each iteration, the search direction

in (b) must always be a descent direction. This means that for a small change δu(l)(k) =

αs(l)(k), α > 0, we must have according to (33)

δJ (l) =
K−1∑
k=0

H
(l)T
u(k)δu

(l)(k) < 0. (36)

With the general notation

(χ, ψ) =
K−1∑
k=0

χ(k)Tψ(k) (37)

we may express the descent condition (36) by

(s(l),g(l)) < 0. (38)

2.4.3 Specification of a Search Direction

Steepest Descent

The simplest but unfortunately the least efficient method of specification of a search

direction is steepest descent

s(l)(k) = −gl(k), k ∈ [0,K − 1] (39)

that obviously satisfies the descent condition (38), unless gl(k) = 0 ∀k ∈ [0,K − 1], in

which case a local minimum has been found. Steepest descent typically leads to a quick

approach of the minimum, if the initial guess u(0)(k) was chosen far from the minimum.

However, in a vicinity of the minimum the method is known to be not very efficient.

Quasi-Newton Methods

Quasi-Newton methods require more complex calculations for the specification of a search

direction but are typically far more efficient that steepest descent. There are two main

Quasi-Newton methods, namely DFP and BFGS.
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The search direction calculation according to DFP is as follows

s(0)(k) = −g(0)(k), k ∈ [0,K − 1] (40)

and for l > 0 (omitting the time index k for convenience; each of the formulas below to

be executed for all k ∈ [0,K − 1])

δ(l−1) = u(l) − u(l−1) (41)

y(l−1) = g(l) − g(l−1) (42)

z(l−1) = y(l−1) +
l−2∑
j=0

[(v(j),y(l−1))v(j) − (w(j),y(l−1))w(j)] (43)

v(l−1) = (δ(l−1),y(l−1))−1/2δ(l−1) (44)

w(l−1) = (z(l−1),y(l−1))−1/2z(l−1) (45)

s(l) = −g(l) −
l−1∑
j=0

[(v(j),g(l))v(j) − (w(j),g(l))w(j)]. (46)

Because of the sums in (43), (46), the vectors v(j)(k),w(j)(k) for all previous iterations

j = 0, . . . , l−1 must be stored. This means that the storage requirements of the method in-

crease steadily during application. This increase may be limited however through periodic

restart.

The BFGS method also starts with (40). For l ≥ 1 and for δ(l−1),y(l−1),v(l−1),w(l−1) as in

(41), (42), (44), (45) the specification of a search direction follows the following formulas

z(l−1) = y(l−1) +
l−2∑
j=0

[(v(j),y(l−1))v(j) − (w(j),y(l−1))w(j) + (b(j),y(l−1))b(j)] (47)

b(l−1) = (δ(l−1),y(l−1))−1/2(y(l−1), z(l−1))1/2v(l−1) −w(l−1) (48)

s(l) = −g(l) −
l−1∑
j=0

[(v(j),g(l))v(j) − (w(j),g(l))w(j) + (b(j),g(l))b(j)]. (49)

These formulas inicate that the computational effort per iteration for BFGS is higher that

for DFP. Moreover BFGS requires storage of three vectors v(j)(k),w(j)(k),b(j)(k) from

all previous iterations j = 1, . . . , l − 1.

Both BFGS and DFP may be shown to produce descent directions of search. For exact

line search, BFGS and DFP produce identical results, but for inexact line search they may

show different efficiency. All Quasi-Newton methods may be shown to terminate in at

most mK iterations for quadratic cost functions and exact line search (Fletcher, 2013).
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Conjugate Gradient Methods

Conjugate gradient methods approximate the simplicity of steepest descent and the effi-

ciency of Quasi-Newton methods. There are two main conjugate gradient methods, namely

Fletcher-Reeves (FR) and Polak-Ribiere (PR).

The FR method starts with (40) and continues, for l ≥ 1, with

s(l)(k) = −g(l)(k) + β(l)s(l−1)(k), k ∈ [0,K − 1] (50)

with

β(l) = (g(l),g(l))
(g(l−1),g(l−1))

(51)

The PR method starts with (40) and continues for l ≥ 1 with (50) where β(l) is provided

by

β(l) = ((g(l) − g(l−1)),g(l))
(g(l−1),g(l−1))

(52)

Both FR and PR produce descent directions if the line search is exact, as can be easily

shown. All conjugate gradient methods may be shown to terminate in mK iterations for

quadratic cost functions and exact line search (Fletcher, 2013).

RPROP (Resilient backPROPagation) Method

RPROP does not require the line-search routine used in the algorithm described in section

3.2, since it calculates the necessary changes of the control variables at each iteration based

only on the sign of the gradient components gi(k). When the RPROP method is used

(slightly modified by Kotsialos and Papageorgiou (2004) as compared to its original form

Riedmiller and Braun (1993)), steps b) and c) of the algorithm described in section 2.4.2

are replaced by the following calculation:

ul+1(k) = sat
(
u(l)(k) + ∆u(l)(k)

)
(53)

where the control variable increments ∆u(l)(k) are calculated based on the sign of the

gradient g(l)
i (k) and the increment ∆(l−1)

i (k) of the previous iteration, as shown in the
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following equation

∆u(l)
i (k) =


−sign(g(l)

i (k))η+|∆u(l−1)(k)
i | if g(l−1)(k)g(l)

i (k)
i > 0

−sign(g(l)
i (k))η−|∆u(l−1)(k)

i | else
(54)

where 0 < η− < 1 < η+. Thus, if no change of the sign of gi(k) between iterations (l− 1)

and (l), the corresponding increment ∆u(l)
i (k) is increased as compared to ∆u(l−1)

i (k) by

a factor η+ (typically η+ = 1.2). If a sign change of g(
ik) occured, then the algorithm has

stepped over a minimum in the corresponding direction, hence, the new increment ∆u(l)
i (k)

is opposite in sign and reduced in size (typically η− = 0.5) as compared to ∆u(l−1)
i (k).

The algorithm starts with ∆u(0)
i (k) = ∆i; the calculated ∆u(l)

i (k) at each iteration may

be restricted to lie in a prespecified interval [∆min,∆max].

The RPROP method preserves feasibility of the overall algorithm but cannot guarantee a

decrease of the objective function value at each iteration.

A Robust Convergent backProp (ARCprop) Method

As noted above, RPROP cannot cope with interactions between dimensions, and can

consequently fail to converge. This section proposes a variant of RPROP that backtracks

along all dimensions if a particular step does not achieve a sufficient decrease in error, and

offers a proof of convergence of the new algorithm.

The basic idea of the algorithm proposed by Bailey (2015) is to take a series of downhill

steps from the initial set of weights, until a vanishing error gradient indicates arrival at

a local minimum. The algorithm terminates an iteration t if all |g(t)
i | ≤ δ � 1. If this

vanishing gradient condition is not met, then a step of size ∆(t)
i is made in the direction of

descent along each dimension i. If the step results in a sufficient decrease in global error,

then the search continuous from that new, improved location, according to

∆(t)
i :=


η+∆(t−1)

i if g(t)
i g(t−1)

i > 0

η−∆(t−1)
i if g(t)

i g(t−1)
i < 0

∆(t−1)
i otherwise

(55)

A sufficient decrease is taken to be greater than the target gradient threshold, δ, multiplied

by the shortest component step length, mini ∆(t)
i . If the error does not go down by at
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least that much, then the mean value theorem implies that some intermediate point must

have a gradient small enough to satisfy the vanishing gradient criterion. In that case, a

shorter step is initiated from the previous location; this assures convergence, as it prevents

the algorithm from pursuing either increases in error or vanishingly small improvements

in error, which could continue indefinitely.

The ARCprop algorithm is described by the following pseudo-code:

if maxi |g(t)
i | ≤ δ then return w(t)

if E(t) > E(t−1) − δmini ∆(t−1)
i then

if maxi ∆t−1
i ≤ ∆min then return w(t−1)

for each w
(t)
i do

w
(t)
i := w

(t−1)
i ; g(t)

i = g
(t−1)
i

∆(t)
i := max{η−∆t−1

i ,∆min}

else

for each w
(t)
i do

∆u(t)
i =


min{η+∆(t−1)

i ,∆max} if g
(t)
i g

(t−1)
i > 0

max{η−∆(t−1)
i ,∆min} if g

(t)
i g

(t−1)
i < 0

∆(t−1)
i otherwise

for each wi(t) do

w
(t+1)
i := w

(t)
i −∆(t)

i sign
(
g

(t)
i

)

2.4.4 Constant Control Bounds

The concept of the reduced gradient may be readily extended to cover the case of simple

but technically important inequality constraints of the form

umin(k) ≤ u(k) ≤ umax(k) , 0 ≤ k ≤ K − 1 (56)

where umin(k), umax(k) with umin(k) ≤ umax(k), are known lower and upper bounds

respectively. In this case the reduced gradient γ with respect to both the state equations
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and the active constraints has the components

γi(k) =


0 if ui(k) = umin,i(k) and si(k) < 0

0 if ui(k) = umax,i(k) and si(k) > 0

gi(k) else.

(57)

Equation (57) implies that activation of a control constraint fixes the value of the corre-

sponding control variable if the search direction tends to exceed the feasible control region.

Thus, control variables that satisfy the first two cases of (57), have no contribution to the

change of the cost function along the direction s(k), and as a consequence the correspond-

ing component of the reduced gradient is zero. Equation (57) may also be interpreted as a

projection of g(k) on the active inequality constraints, and for this reason the vector γ(k)

is sometimes called the projected gradient.

Suitable modifications are applied to the algorithm of section 2.4.2 so that:

• the constraints (56) are always satisfied during the iterations

• the line search operates taking into account only the control variables that are not

fixed at their upper or lower bounds.

2.5 ARRB Fuel Consumption Model

A family of four models for fuel consumption and emissions modeling was proposed by

Bowyer et al. (1985). This family provides specific models to cover a wide range of traffic

circumstances, from the performance of an individual vehicle driven in traffic to a model

for a total door-to-door trip. The Biggs-Akcelik models are:

• an instantaneous model, that indicates the rate of fuel usage or pollutant emission

of an individual vehicle continuously over time,

• an elemental model, that relates fuel usage or pollutant emission to traffic variables

such as deceleration, acceleration, idling and cruising, etc. over a short road distance

(e.g. the approach to an intersection),

• a running speed model, that gives emissions or fuel consumption for vehicles traveling
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over an extended length of road (e.g. representing a network link) and

• an average speed model, that indicates level of emissions or fuel consumption over an

entire journey.

The Australian Road Research Board (ARRB) instantaneous model (Energy-Related Model)

(Biggs and Akcelik, 1984; Biggs and Akçelik, 1985; Biggs and Akcelik, 1986; Bowyer et al.,

1985) is the basic (and most detailed) model. The other models are aggregations of this

model, and require less and less information but are also increasingly less accurate. The

elemental model is the next most detailed model, and is suitable for intersection or road

section analysis where the focus is on an entity in the road system (such as the intersection

or a traffic control device) rather than the individual vehicles negotiating that entity. The

running speed model is suitable for application in strategic networks, for it can be used

at the network link level. Regional ’sketch’ planning studies which do not include formal

(link-node) description of the transport network can make good use of the average speed

model.

The Energy-Related Model For Estimating Car Fuel Consumption

The Energy-Related fuel consumption model described below estimates instantaneous val-

ues of fuel consumption from second-by-second speed and grade information. The model is

an extended and modified version of the power model described by Post et al. (1984) and

it is described in detail in Akçelik and Biggs (1987) and Bowyer et al. (1985). Basically,

the model relates fuel consumption during a small increment, dt, to:

(a) the fuel to maintain engine operation,

(b) the energy consumed (work done) by the vehicle engine while traveling an increment

of distance, dx, during this time period, and

(c) the product of energy and acceleration during periods of positive acceleration.

Part (c) allows for the inefficient use of fuel during periods of high acceleration. Since

energy is dE = RTdx where RT is the total tractive force required to drive the vehicle

along distance dx, the fuel consumed in the time increment, dt, is expressed as

20



dF =


αdt+ β1RTdx+ (β2aRIdx)a>0 for RT > 0

αdt for RT ≤ 0
(58)

where

dF = increment of fuel consumed (ml) during travel along distance dx (m) and in time

dt (s),

α = constant idle fuel rate (ml/s), which applies during all modes of driving as an estimate

of fuel used to maintain engine operation),

β1 = an efficiency parameter which relates fuel consumed to the energy provided by the

engine, i.e. fuel consumption per unit of energy (ml/kJ),

β2 = an efficiency parameter which relates fuel consumed during positive acceleration to

the product of inertia energy and acceleration, i.e. fuel consumption per unit of

energy-acceleration (ml/(kJ · m/s2)),

a = instantaneous acceleration (dv/dt) in m/s2, which has a negative value for slowing

down, and

RT = total ”tractive” force required to drive the vehicle, which is the sum of drag force

(RD), inertia force (RI) and grade force (RG) in kN (kilonewtons):

RT = RD +RI +RG (59)

The resistive forces can be expressed as:

RD = b1 + b2v
2 (60)

RI = Ma/1000 (61)

RG = 9.81M(G/100)/1000 (62)

where

v = speed (dx/dt) in m/s,

G = percent grade which has a negative value for downhill grade,

M = vehicle mass in kg, including occupants and any other load, and
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b1, b2 = the vehicle parameters related mainly to rolling resistance and aerodynamic drag,

but each containing a component due to drag associated with the engine. The

parameters of drag function (60) are derived using steady-speed fuel consumption

data. However, if data collected during coast-down in neutral are also available, a

three-term function RD = b1 + b2v + b3v
2 can be derived where b1, b2 and b3 are

related to rolling, engine and aerodynamic drag, respectively.

The following parameter values derived for the Melbourne University test car (4.1-L Ford

Cortina station-wagon with automatic transmission (Biggs and Akcelik, 1986)) were used

for the analyses reported in this work:

M = 1680 kg

α = 0.666 ml/s

β1 = 0.0717 ml/kJ

β2 = 0.0344 ml/(kJ · m/s2)

b1 = 0.527 kN

b2 = 0.000948 kN(m/s)2

When the engine drag was allowed for separately, the three drag parameters found to be

b1 = 0.269, b2 = 0.0171 and b3 = 0.000672.

Fuel consumption per unit time (ml/s) can be expressed as:

ft(v, a) = dF/dt =


α+ β1RT v +

(
β2Ma2v

1000

)
a>0

for RT > 0

α for RT ≤ 0
(63)

where the total tractive force required is:

RT = b1 + b2v + b3v
2 + Ma

1000 + 9.81× 10−5MG.
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2.6 Smoothing Function

The ARRB fuel consumption model, presented in the previous section, is a non-smooth

function (see Figure 1 and Figure 2), which means that it is a continuous function with

a discontinuous first order derivative. A non-smooth model does not allow us to use

available efficient gradient-based optimisation methods. Hence, it would be useful to

have a nonlinear smooth model, expressed by means of functions that are differentiable

everywhere in their domain.

Maximum Function

We look for the smooth form of the following function in general

xmax → max{x1, · · · , xn} (64)

Our smoothing approach is based on the method proposed in Chen and Mangasarian

(1995), where the following smooth form of the plus function, i.e., x+ = max{0, x}, is

proposed:

x+ = max{0, x} ≈ x+ 1
as

log(1 + e−asx) for as >> 1 (65)

and it is easily verified in Jamshidnejad et al. (2015) that for αs >> 1 we have in general:

max
i=1,...,n

{xi} ≈
1
αs

log
n∑
i=1

eαsxi (66)

with αs a smoothing parameter.

So the ARRB fuel consumption model is transformed as we can see below

f(v, a) =


1
αs

(log(eαsα + eαsβ1RT v+β2Ma2v
1000 )) for a > 0

1
αs

(log(eαsα + eαsβ1RT v)) for a ≤ 0
(67)

assuming that each xi of (66) is expressed as follows:

x1 = α (68)

x2 =


β1RT v + β2Ma2v

1000 for a > 0

β1RT v for a ≤ 0
(69)
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For the choice of the parameter αs, we have tested different values in order to see the

behavior of the smoothed model. As expected, and can be verified from figure 2, the

smaller the value of the parameter αs is (see the case where αs = 1), the more the

smoothed model diverge from the original model, while as the value is increased it tends

to approach the fuel consumption model. From the values tested the more appropriate

choice of αs was this of the value 20, as it approaches the fuel consumption model quite

satisfactory. For lower values than the selected αs, as we already mentioned, the results

were not acceptable as the difference of the fuel consumption values was sensible and for

greater values, the difference between the results was insignificant or even the resulted

smoothed model had the same behavior as the original one.
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Figure 1: A 3D representation of ARRB Fuel Consumption Model, instantaneous fuel

consumption

Figure 2: A 2D representation (assuming that the value of speed is constant, v = 15 m/s)

of ARRB Fuel Consumption Model, instantaneous fuel consumption and the smoothed

model for different values of αs
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3 Description of the problem

We consider a single lane freeway and a single lane on-ramp, which leads to an acceleration

lane, as shown in Figure 3. We define a merge point (entrance to the highway) at the end

of the acceleration lane where vehicles will merge with the main flow of the highway.

Figure 3: The positions of the ”EGO” vehicle and its putative leader at the beginning and

the end of the merging procedure.1

The scenario chosen for the study, is the case where a vehicle coming from the on-ramp

appropriately adjusts its speed and enters the freeway. The vehicle whose motion is stud-

ied, is called ”EGO”, while the leader vehicle (green in Figure 3) is called ”Leader”.

The initial conditions of our scenario is that the vehicle ”EGO” is starting from a given

initial position x0 and should reach the end position at x = 0, as shown in Figure 3,

at time T. Also, we consider that it has an initial velocity v0 and aims a final velocity

ve at time T. This final speed of the vehicle is equal to the (given) speed of the leading

(”Leader”) vehicle. The leading vehicle is considered to perform linear uniform motion at

a constant speed, without this affecting our methodology, as the solution that will emerge

depends only on final velocity ve which is considered to be known and available for the

”EGO” vehicle. In fact, the knowledge of this final velocity is a complex problem that

1(Ntousakis et al., 2016) 26



requires specialized technological means (sensors, communications, etc.) and specialized

forecasting techniques in order the speed to be correctly predicted. The total time T is

defined as the sum of the time required in order the vehicle in front to reach the final

position (x = 0) plus the time of the distance of the leading’s vehicle front bumper from

the front bumper of the following vehicle (headway time).

For the needs of this thesis we will assume 5 scenarios to be tested, as we can see below.

The first scenario is the case where we have at the beginning negative and then positive

but continuously increasing acceleration case. Scenario 2 is a positive increasing acceler-

ation case, while scenario 3 is a positive and then negative decreasing acceleration case.

Scenario 4 and 5 are increasing and decreasing negative acceleration cases, respectively.

In the first scenario, the initial speed of the ”EGO” vehicle will be v0 = 54 km/h, the final

speed ve = 72 km/h and the distance to be covered is 0.30 km; in the second scenario

the initial and final speed are also v0 = 54 km/h and ve = 72 km/h, respectively, and the

distance that the vehicle has to cover is 0.32 km; in the third scenario, the initial and final

speed are v0 = 54 km/h and ve = 90 km/h and the distance is 0.37 km; and as far as the

fourth and fifth scenarios are concerned, the initial speed is v0 = 72 km/h, the final speed

ve = 54 km/h and the distances are 0.42 km and 0.44 km, respectively.

Scenario 1: v0 = 54 km/h, ve = 72 km/h, xe = 0.30 km.

Scenario 2: v0 = 54 km/h, ve = 72 km/h, xe = 0.32 km.

Scenario 3: v0 = 54 km/h, ve = 90 km/h, xe = 0.37 km.

Scenario 4: v0 = 72 km/h, ve = 54 km/h, xe = 0.42 km.

Scenario 5: v0 = 72 km/h, ve = 54 km/h, xe = 0.44 km.
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3.1 Taylor Approximation of the Fuel Consumption Model

We apply a quadratic approximation around a point (v = vk, a = ak) (Taylor expansion)

in a general fuel consumption function f(v, a)

q(v, a) = f(vk, ak)+∇f(vk, ak)t(v−vk, a−ak)+1/2(v−vka−ak)∇2f(vk, ak)(v−vk, a−ak) (70)

where v denotes the velocity, a the acceleration, ∇f(vk, ak) the gradient and ∇2f(vk, ak)

the Hessian of f at (v = vk, a = ak).

If we define

∇f(vk, ak) =
(
g1 g2

)t
(71)

∇2f(vk, ak) =

h11 h12

h21 h22

 (72)

then the approximation function becomes

q(v, a) = a2h22
2 + v2h11

2 + v

(
g1 + 1

2a (h12 + h21)− 1
2ak (h12 + h21)− h11vk

)
+ a

(
g2 − akh22 −

1
2 (h12 + h21) vk

)
+ 1

2
(
2f(vk, ak)− 2akg2 + ak

2h22 + ak (h12 + h21) vk + vk (−2g1 + h11vk)
) (73)

3.2 Optimal Control Methodology

Based on the above description of the problem, we proceed to the mathematical modeling

of the problem presented in Chapter 2. The system is described by the following state

variables:

ẋ = v (74)

v̇ = a (75)

where x is the position, v is the velocity and a is the acceleration (control variable - u).

The objective is to bring the system from the initial condition x0 = [x0, v0]T to the final

condition xe = [xe, ve]T by time T, by minimizing the criterion

J =
∫ T

0
q (v, a) dt (76)
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where, the function q(v, a) is the Taylor approximation of the ARRB fuel consumption

model which we described in section 2.5.

In order to find the solution of the optimal control problem, we first write its Hamiltonian

equation, based on (5)

H(v, a) = q (v, a) + λ1v + λ2a (77)

where λ1 and λ2 are the costate variables.

Therefore substituting (73) into (77) we have

H(v, a) =a2h22
2 + v2h11

2
+ 1

2
(
2fk − 2akg2 + a2

kh22 + ak (h12 + h21) vk + vk (−2g1 + h11vk)
)

+ v

(
g1 + 1

2a (h12 + h21)− 1
2ak (h12 + h21)− h11vk + λ1

)
+ a

(
g2 − akh22 −

1
2 (h12 + h21) vk + λ2

)
(78)

In order to minimize H with respect to the vector variable a, we find the optimal control

(8)

∂H

∂a
= 0⇒

⇒ g2 + 1
2 (2 (a− ak)h22 + h12 (v − vk) + h21 (v − vk)) + λ2 = 0

(79)

and solving (79) for a, we have

a0 = −(h12 + h21) v
2h22

+ −2g2 + 2akh22 + (h12 + h21) vk
2h22

− λ2
h22

(80)

Then, we find the optimal function (9) substituting a0 from (80) to (78)

H(v, a = a0) = fk −
g2

2
2h22

+
(
h11
2 −

h2
12

8h22
− h12h21

4h22
− h2

21
8h22

)
v2

− g1vk + g2h22vk
2h22

+ h11v
2
k

2 − h2
12v

2
k

8h22
− h12h21v

2
k

4h22

− h2
21v

2
k

8h22
+
(
ak −

g2
h22

+ h12vk
2h22

+ h21vk
2h22

)
λ2 −

λ2
2

2h22

+ v

(
g1 −

g2h12
2h22

− g2h21
2h22

− h11vk + h2
12vk

4h22
+ h12h21vk

2h22

+ h2
21vk

4h22
+ λ1 +

(
− h12

2h22
− h21

2h22

)
λ2

)

(81)
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From (10) and (11), the necessary conditions for optimality are:

ẋ = ∂H0
∂λ1

= v (82)

v̇ = ∂H0
∂λ2

= −(h12 + h21) v
2h22

+ −2g2 + 2akh22 + (h12 + h21) vk
2h22

− λ2
h22

(83)

λ̇1 = −∂H0
∂x

= 0 (84)

λ̇2 = −∂H0
∂v

=
(
−h11 + (h12 + h21)2

4h22

)
v

−
−2g2 (h12 + h21) + 4g1h22 +

(
(h12 + h21)2 − 4h11h22

)
vk

4h22
(85)

− λ1 + (h12 + h21)λ2
2h22

In order to solve the ODE system (82)-(85), the initial and final conditions of the problem

will be used: x(0) = x0, x(T ) = 0, v(0) = v0 and v(T ) = ve. The resulting state and

costate equations are described as follows

λ1(t) = (g1(4
√
h22 + 2

√
h11T − 2e

√
h11T√
h22 (2

√
h22 −

√
h11T ))

+ ak(h12 + h21)(−2
√
h22 −

√
h11T + e

√
h11T√
h22 (2

√
h22 −

√
h11T ))

− 2h11((−1 + e

√
h11T√
h22 )

√
h22(v0 + ve − 2vk) + (1 + e

√
h11T√
h22 )

√
h11(Tvk + x0)))

/
(4(−1 + e

√
h11T√
h22 )

√
h22 − 2(1 + e

√
h11T√
h22 )

√
h11T )

(86)
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λ2(t) = (e
−
√
h11t√
h22 (−2e

√
h11(t+T )√
h22

√
h22(−4g2 + 4akh22 − (h12 + h21)(v0 + ve − 2vk))

− e
2
√
h11t√
h22 (h12 + h21 + 2

√
h11
√
h22)(

√
h22(v0 − ve) +

√
h11(Tv0 + x0))

− e
2
√
h11T√
h22 (−h12 − h21 + 2

√
h11
√
h22)(

√
h22(−v0 + ve) +

√
h11(Tv0 + x0))

+ e

√
h11(2t+T )√

h22 (h12 + h21 + 2
√
h11
√
h22)(

√
h22(v0 − ve) +

√
h11(Tve + x0))

+ e

√
h11T√
h22 (−h12 − h21 + 2

√
h11
√
h22)(

√
h22(−v0 + ve) +

√
h11(Tve + x0))

+ e

√
h11t√
h22 (−2g2(2

√
h22 +

√
h11T ) + 2ak(2h

3
2
22 +

√
h11h22T )− (h12 + h21)

(
√
h22(v0 + ve − 2vk)−

√
h11(Tvk + x0)))

+ e

√
h11(t+2T )√

h22 (g2(−4
√
h22 + 2

√
h11T ) + ak(4h

3
2
22 − 2

√
h11h22T )− (h12 + h21)

(
√
h22(v0 + ve − 2vk) +

√
h11(Tvk + x0)))))

/

(2(−1 + e

√
h11T√
h22 )(−2

√
h22 −

√
h11T + e

√
h11T√
h22 (2

√
h22 −

√
h11T )))

(87)

x(t) = (e
−
√
h11t√
h22 (2e

√
h11(t+T )√
h22

√
h11
√
h22(−Tve + t(v0 + ve) + x0)

+ e
2
√
h11T√
h22 (h22(v0 − ve)−

√
h11
√
h22(Tv0 + x0))

+ e
2
√
h11t√
h22 (h22(−v0 + ve)−

√
h11
√
h22(Tv0 + x0))

+ e

√
h11(2t+T )√

h22 (h22(v0 − ve) +
√
h11
√
h22(Tve + x0))

+ e

√
h11T√
h22 (h22(−v0 + ve)−

√
h11
√
h22(Tve + x0))

+ e

√
h11t√
h22 (h22(v0 − ve) + h11(t− T )x0 −

√
h11
√
h22(−Tv0 + t(v0 + ve) + x0))

− e
√
h11(t+2T )√

h22 (h22(v0 − ve) + h11(t− T )x0 +
√
h11
√
h22(−Tv0 + t(v0 + ve) + x0))))

/

((−1 + e

√
h11T√
h22 )

√
h11(2

√
h22 +

√
h11T + e

√
h11T√
h22 (−2

√
h22 +

√
h11T )))

(88)
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v(t) = (e
−
√
h11t√
h22 (−2e

√
h11(t+T )√
h22

√
h22(v0 + ve) + e

√
h11t√
h22 (

√
h22(v0 + ve)−

√
h11x0)

+ e

√
h11(t+2T )√

h22 (
√
h22(v0 + ve)−

√
h11x0) + e

2
√
h11T√
h22 (

√
h22(v0 − ve)

−
√
h11(Tv0 + x0)) + e

2
√
h11t√
h22 (

√
h22(v0 − ve) +

√
h11(Tv0 + x0))

− e
√
h11(2t+T )√

h22 (
√
h22(v0 − ve) +

√
h11(Tve + x0)) + e

√
h11T√
h22 (

√
h22(−v0 + ve)+√

h11(Tve + x0))))
/

((−1 + e

√
h11T√
h22 )(−2

√
h22 −

√
h11T + e

√
h11T√
h22 (2

√
h22 −

√
h11T )))

(89)

Finally, in order to find the optimal acceleration function, we calculate the derivative of

(89)

a(t) = (e
−
√
h11t√
h22
√
h11(e

2
√
h11T√
h22 (

√
h22(v0 + ve)−

√
h11(Tv0 + x0))

− e
2
√
h11t√
h22 (

√
h22(v0 − ve) +

√
h11(Tv0 + x0))

+ e

√
h11(2t+T )√

h22 (
√
h22(v0 − ve) +

√
h11(Tve + x0))

+ e

√
h11T√
h22 (

√
h22(−v0 + ve) +

√
h11(Tve + x0))))

/

((−1 + e

√
h11T√
h22 )

√
h22(2

√
h22 +

√
h11T + e

√
h11T√
h22 (−2

√
h22 +

√
h11T )))

(90)
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4 Results

4.1 Analytic Solution of Taylor Approximation

Having the results of the optimal states and control of the Taylor approximation problem,

we test the different scenarios described at the beginning of the chapter 3 in order to check

how the fuel consumption rate varies.

In the following figures, we present the position, speed, acceleration and fuel consumption

rate diagrams versus time. At the beginning we test Scenarios 1-3 where the initial speed

of the ”EGO” vehicle is smaller than the final speed and we change the distance that the

vehicle has to cover as it is shown in Figure 4 - Figure 6. In Figure 7 and Figure 8 we check

Scenarios 4-5 where the initial speed is greater than the final speed and the condition that

changes is also the distance.

The results that we derived from all scenarios are according to our expectations. In

Scenarios 1-3, where the final speed is greater than the initial speed the vehicle mostly

accelerates in order to reach the desired speed and position and only decelerates so that it

fulfills the terminal conditions. Also, Scenario 3 has the higher fuel consumption rate as it

has the greater acceleration and has to cover more kilometers to reach its destination. In

Scenario 3, we can notice as well that, during the last seconds, the fuel consumption rate

is stable and equal to the idle consumption α. This happens because at the last seconds

the total tractive force, RT , is smaller than zero. On the other hand, in Scenarios 4-5

the vehicle decelerates as the final initial speed is greater than the final speed and both

Scenarios have less fuel consumption than the Scenarios 1-3, and the fuel consumption

rate is decreasing.
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Figure 4: Graphical representation of the optimal solution, regarding the minimisation of

the approximated fuel consumption model for scenario 1.

Figure 5: Graphical representation of the optimal solution, regarding the minimisation of

the approximated fuel consumption model for scenario 2.
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Figure 6: Graphical representation of the optimal solution, regarding the minimisation of

the approximated fuel consumption model for scenario 3.

Figure 7: Graphical representation of the optimal solution, regarding the minimisation of

the approximated fuel consumption model for scenario 4.
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Figure 8: Graphical representation of the optimal solution, regarding the minimisation of

the approximated fuel consumption model for scenario 5.
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4.2 A Numerical Solution of the Fuel Consumption Model

In this section, we give a numerical solution of the reformulated problem into the Mayer

form, introducing an extra state variable, y, defined by the differential equation

ẏ = f(v, a)

where f(v, a) is the ARRB fuel consumption model, with initial condition y(0) = 0. The

formulation becomes as follows:



min
∫ T

0
f(v, a)dt

s.t.

ẋ = v

v̇ = a

x(0) = x0, x(T ) = 0

v(0) = v0, v(T ) = ve

=⇒



min y(T )dt

s.t.

ẋ = v

v̇ = a

ẏ = f(v, a)

x(0) = x0, x(T ) = 0

v(0) = v0, v(T ) = ve

y(0) = 0

Firstly, a piecewise-constant control profile parameterization over n steps is considered as

follows,

u(t) = ak, tk−1 ≤ t ≤ tk, k = 1, . . . , n,

with the time steps being equally spaced, and then a piecewise-linear parameterization is

applied for the control profile.

For the purposes of the problem, the number of stages n is set equal to 9, while the initial

control values are ak = 1 k = 1, . . . , n. For the integration of the differential equations,

we have used the MatLab function ode45 and for the optimization the function fmincon

using the interior-point algorithm.

Figure 5.4.1 describes the algorithmic procedure in a simple flow diagram form and in

Figures 10 - 14 and Figures 15 - 19 are shown the obtained results of the piecewise constant
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and piecewise linear cases respectively with the same initial conditions as those of the

analytic solution.

a0

ODE Solver

x(T ), v(T ), y(T )

Optimizer

stop

ak

Figure 9: Flow Chart
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4.2.1 Piecewise Constant Solution

Figure 10: Control and states diagrams for the Piecewise-Constant solution for Scenario

1

Figure 11: Control and states diagrams for the Piecewise-Constant solution for Scenario

2
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Figure 12: Control and states diagrams for the Piecewise-Constant solution for Scenario

3

Figure 13: Control and states diagrams for the Piecewise-Constant solution for Scenario

4
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Figure 14: Control and states diagrams for the Piecewise-Constant solution for Scenario

5

4.2.2 Piecewise Linear Interpolation Solution

Figure 15: Control and states diagrams for the Piecewise-Linear solution for Scenario 1
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Figure 16: Control and states diagrams for the Piecewise-Linear solution for Scenario 2

Figure 17: Control and states diagrams for the Piecewise-Linear solution for Scenario 3
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Figure 18: Control and states diagrams for the Piecewise-Linear solution for Scenario 4

Figure 19: Control and states diagrams for the Piecewise-Linear solution for Scenario 5
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4.3 Feasible Direction Algorithm

Tables 1 - 4 show the obtained results of different initial conditions of the problem (Sce-

narios 1-2, 4-5) for penalty terms p1 = 102 and p2 = 103, with different search direction

methods and ε = 10−5. As an initial guess, the trajectory u(k) = 0 m/s2, ∀k ∈ [0, 99] was

utilized. Figures 20-23 shows the decrease of cost function values in dependence of the

computing time during employment of the numerical algorithm with different direction

methods and the evolution of the control and states trajectories u(k), x1(k), x2(k). From

these results we may draw the following conclusions:

• All methods converge, despite the bad initial guess, to the optimal solution.

• For the chosen penalties and initial guess of the trajectory u(k), the conjugate gra-

dient methods are the most efficient.

• The PR method is most efficient in the majority of our scenarios, whilst FR and

DFP are approximately equally efficient. RPROP and ARCprop converge quite fast

and efficient despite the many iterations needed in order to reach the optimum.

• In all cases, the final conditions are reached with sufficient accuracy.
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p1 = 102 , p2 = 103

Iterations CPU-s x1(T ) x2(T ) cost

Steepest Descent 21 0.39 -0.000059 19.997863 41.4192

DFP 21 0.46 -0.000103 19.997874 41.4202

BFGS 15 0.08 -0.000102 19.997874 41.4201

Fletcher-Reeves 4 0.02 -0.000267 19.997890 41.4222

Polak-Ribierre 4 0.02 -0.000214 19.997883 41.4217

RPROP 534 1.50 -0.000327 19.978779 41.4184

ARCprop 25 0.03 -0.000327 19.978779 41.4186

Table 1: Comparison of search direction methods for Scenario 1

p1 = 102 , p2 = 103

Iterations CPU-s x1(T ) x2(T ) cost

Steepest Descent 11 0.64 -0.002979 19.998153 42.0145

DFP 4 0.01 -0.002812 19.998168 42.0142

BFGS 11 0.26 -0.002812 19.998168 42.0142

Fletcher-Reeves 4 0.03 -0.002812 19.998168 42.0146

Polak-Ribierre 3 0.02 -0.002772 19.998172 42.0150

RPROP 286 1.22 -0.002757 19.981542 42.0148

ARCprop 19 0.09 -0.002757 19.981542 42.0148

Table 2: Comparison of search direction methods for Scenario 2
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Figure 20: Objective function decrease in dependence of the computing time and evolution

of control and states, in dependence of the number of time steps for Scenario 1
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Figure 21: Objective function decrease in dependence of the computing time and evolution

of control and states, in dependence of the number of time steps for Scenario 2
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p1 = 102 , p2 = 103

Iterations CPU-s x1(T ) x2(T ) cost

Steepest Descent 5 0.02 -0.004217 14.999324 28.7669

DFP 20 0.14 -0.004201 14.999322 28.7514

BFGS 20 0.13 -0.004201 14.999322 28.7511

Fletcher-Reeves 3 0.05 -0.003998 14.999288 28.7682

Polak-Ribierre 3 0.05 -0.004051 14.999305 28.7689

RPROP 56 0.2 -0.003985 14.992897 28.7744

ARCprop 19 0.08 -0.003985 14.992897 28.7748

Table 3: Comparison of search direction methods for Scenario 4

p1 = 102 , p2 = 103

Iterations CPU-s x1(T ) x2(T ) cost

Steepest Descent 5 0.03 -0.004310 14.999300 30.8585

DFP 20 0.14 -0.004510 14.999328 30.8481

BFGS 20 0.13 -0.004510 14.999328 30.8484

Fletcher-Reeves 5 0.08 -0.004526 14.999329 30.8627

Polak-Ribierre 2 0.03 -0.004344 14.999312 30.8647

RPROP 52 0.2 -0.004436 14.993173 30.8770

ARCprop 33 0.12 -0.004436 14.993173 30.8770

Table 4: Comparison of search direction methods for Scenario 5
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Figure 22: Objective function decrease in dependence of the computing time and evolution

of control and states, in dependence of the number of time steps for Scenario 4
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Figure 23: Objective function decrease in dependence of the computing time and evolution

of control and states, in dependence of the number of time steps for Scenario 5
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4.4 Fuel Consumption Comparison for Different Time Step

and Same Time Horizon Cases

In this section we compare the fuel consumption value obtained from the search direction

methods for the same time horizon but different time steps for each of our scenarios. The

smaller we set the number of time steps, the less computational time is needed for the

algorithms to converge to the optimal solution but also the less accurate is the solution.

Thus, if the the percentage difference between the fuel consumption obtained from bigger

to smaller time steps is small (e.g. less than 1%), we can assume that we can use a

reasonably small number of time steps without losing accuracy in our optimal solution.

In Tables 5-9, we present the obtained fuel consumption of Scenarios 1-5 for time steps

50, 100, 200, 400, 800. Case 1 describes the optimal fuel consumption obtained with

the number of time steps, as we set it to the algorithm, while case 2 is the optimal fuel

consumption based on an equivalent optimal control trajectory of 800 time steps, of the

optimal control trajectory obtained from the algorithm.

Fuel Consumption (ml) Case 1 Case 2
Analytic
Solution

25s→ 50 steps 41.4037 41.5851
25s→ 100 steps 41.4201 41.5830
25s→ 200 steps 41.5377 41.5740
25s→ 400 steps 41.5453 41.5574
25s→ 800 steps 41.5323 41.5323 41.6435

Table 5: Fuel Consumption based on the ARRB fuel consumption model for the same

time horizon situation and different number of time steps for the scenario 1

51



Fuel Consumption (ml) Case 1 Case 2
Analytic
Solution

25s→ 50 steps 42.0037 42.1385
25s→ 100 steps 42.0142 42.1351
25s→ 200 steps 42.1015 42.1285
25s→ 400 steps 42.1062 42.1152
25s→ 800 steps 42.0889 42.0889 42.1290

Table 6: Fuel Consumption based on the ARRB fuel consumption model for the same

time horizon situation and different number of time steps for the scenario 2

Fuel Consumption (ml) Case 1 Case 2
Analytic
Solution

25s→ 50 steps 81.6817 82.4299
25s→ 100 steps 82.0533 82.4138
25s→ 200 steps 82.2409 82.3899
25s→ 400 steps 82.2942 82.3438
25s→ 800 steps 82.2519 82.2519 83.0453

Table 7: Fuel Consumption based on the ARRB fuel consumption model for the same

time horizon situation and different number of time steps for the scenario 3

Fuel Consumption (ml) Case 1 Case 2
Analytic
Solution

25s→ 50 steps 28.8017 28.7248
25s→ 100 steps 28.7511 28.7262
25s→ 200 steps 28.7409 28.7251
25s→ 400 steps 28.7413 28.7356
25s→ 800 steps 28.7240 28.7240 28.7926

Table 8: Fuel Consumption based on the ARRB fuel consumption model for the same

time horizon situation and different number of time steps for the scenario 4

Fuel Consumption (ml) Case 1 Case 2
Analytic
Solution

25s→ 50 steps 30.8984 30.8218
25s→ 100 steps 30.8484 30.8219
25s→ 200 steps 30.8391 30.8225
25s→ 400 steps 30.8232 30.8178
25s→ 800 steps 30.8195 30.8195 30.9054

Table 9: Fuel Consumption based on the ARRB fuel consumption model for the same

time horizon situation and different number of time steps for the scenario 5
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4.5 Fuel Consumption Comparison for the Same Time Step

and Different Time Horizon Cases

In this section we compare the fuel consumption value obtained from the search direction

methods for the same time step but different time horizon for each one of our scenarios. In

this case, we want to check if the approximation of the fuel consumption optimal problem

is getting better, as we have more time (therefore more options) to lead the initial states

to the final states. In Figures 24-38, we show the control and the states of Scenarios 1-5

for time steps 100, 200, 300 (KMAX in the figures) and multiplying time horizon two and

three times (T = 2 · T and T = 3 · T ) accordingly, in order to achieve the same time step

in each case.
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Figure 24: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 19s and

KMAX=100 for Scenario 1
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Figure 25: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 38s and

KMAX=200 for Scenario 1
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Figure 26: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 57s and

KMAX=300 for Scenario 1
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Figure 27: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 19s and

KMAX=100 for Scenario 2
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Figure 28: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 38s and

KMAX=200 for Scenario 2
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Figure 29: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 57s and

KMAX=300 for Scenario 2
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Figure 30: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 15.5s and

KMAX=100 for Scenario 3
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Figure 31: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 31s and

KMAX=200 for Scenario 3

Time Steps
0 100 200 300

A
cc

el
er

at
io

n
 (

km
/h

/s
)

-10

-5

0

5

10

Time Steps
0 100 200 300

P
o

si
ti

o
n

 (
km

)

-0.4

-0.2

0

0.2

Time Steps
0 100 200 300

S
p

ee
d

 (
km

/h
)

0

50

100 Analytic Solution
Smoothed Fun.

Figure 32: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 46.5s and

KMAX=300 for Scenario 3
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Figure 33: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 25s and

KMAX=100 for Scenario 4
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Figure 34: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 50s and

KMAX=200 for Scenario 4
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Figure 35: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 75s and

KMAX=300 for Scenario 4
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Figure 36: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 25s and

KMAX=100 for Scenario 5
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Figure 37: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 50s and

KMAX=200 for Scenario 5
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Figure 38: Controls and states of the analytic solution of the approximated fuel con-

sumption model and the smoothed fuel consumption model for the case of T = 75s and

KMAX=300 for Scenario 5
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5
Comparison Between Analytic

Solution of Fuel Consumption’s
Model Approximation and

Numerical Solutions

In this chapter, we compare the results from the analytic solution of the minimisation of

the fuel’s consumption function approximation and the minimisation of the ARRB fuel

consumption model using the numerical solutions of section 4.2 and chapter 2.4. Further-

more, as in bibliography is proposed, there is a positive correlation between acceleration

and fuel consumption. So it was rational to solve the described problem using as cost func-

tion the 1
2u

2 (e.g. Malikopoulos et al. (2016)) and compare the results with those of the

approximated and the smoothed fuel consumption model. This comparison would show

us if the minimisation of the square of the acceleration is a good approach for eco-driving

problems, compared to the minimisation of an approximated fuel consumption model.

Figures 39-43 show the control and the states of analytic solution of the Taylor approxima-

tion of the fuel consumption, the feasible direction algorithm (using the BFGS algorithm),

the piecewise-constant method and the function 1
2u

2 as cost function, versus time steps

and Tables 10-14 show the obtained optimal solution of each method. From the results,

we can notice that the control and state trajectories are almost identical in all scenarios,

apart from scenarios 4-5. In scenarios 4-5, the Feasible Direction Algorithm and the nu-

merical solution of section 4.2 choose a different optimal control trajectory (therefore the

speed trajectory is also different) due to the fact that the acceleration is negative. That

means that the term of the total ”tractive” force (RT ) in the fuel consumption model (see.

section 2.5) is also negative for a long period of time, so the fuel consumption value is

constant (equal to the idle fuel consumption α) and consequently the calculation of the

gradient in the numerical algorithms is equal to zero. As far as, the difference between

the values of the fuel consumption of each method, is concerned, the maximum percentage
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difference is less than 2%, while in most scenarios and cases is less than 1%.

Figure 39: Comparison of control and states of analytic Solution of 1
2u

2, smoothed function

of ARRB fuel consumption model, Analytic Solution of the approximated model and

piecewise constant method for Scenario 1

Results for x0 = −300 , v0 = 15, ve = 20
cost

Analytic Solution of 1
2u2 41.3356

Smoothed Function 41.4201
Taylor Approximation 41.7120
Piecewise Constant 41.6065

Table 10: Optimal fuel consumption of analytic solution of 1
2u

2, smoothed function, an-

alytic solution of the approximated model and piecewise constant method for Scenario

1
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Figure 40: Comparison of control and states of analytic Solution of 1
2u

2, smoothed function

of ARRB fuel consumption model, Analytic Solution of the approximated model and

piecewise constant method for Scenario 2

Results for x0 = −320 , v0 = 15, ve = 20
cost

Analytic Solution of 1
2u2 42.3915

Smoothed Function 42.0142
Taylor Approximation 42.1521
Piecewise Constant 42.1537

Table 11: Optimal fuel consumption of analytic solution of 1
2u

2, smoothed function, an-

alytic solution of the approximated model and piecewise constant method for Scenario

2
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Figure 41: Comparison of control and states of analytic Solution of 1
2u

2, smoothed function

of ARRB fuel consumption model, Analytic Solution of the approximated model and

piecewise constant method for Scenario 3

Results for x0 = −370 , v0 = 15, ve = 25
cost

Analytic Solution of 1
2u2 83.6274

Smoothed Function 82.0533
Taylor Approximation 82.9004
Piecewise Constant 82.7019

Table 12: Optimal fuel consumption of analytic solution of 1
2u

2, smoothed function, an-

alytic solution of the approximated model and piecewise constant method for Scenario

3
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Figure 42: Comparison of control and states of analytic Solution of 1
2u

2, smoothed function

of ARRB fuel consumption model, Analytic Solution of the approximated model and

piecewise constant method for Scenario 4

Results for x0 = −420 , v0 = 20, ve = 15
cost

Analytic Solution of 1
2u2 28.7724

Smoothed Function 28.7511
Taylor Approximation 28.7811
Piecewise Constant 28.7044

Table 13: Optimal fuel consumption of analytic solution of 1
2u

2, smoothed function, an-

alytic solution of the approximated model and piecewise constant method for Scenario

4
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Figure 43: Comparison of control and states of analytic Solution of 1
2u

2, smoothed function

of ARRB fuel consumption model, Analytic Solution of the approximated model and

piecewise constant method for Scenario 5

Results for x0 = −440 , v0 = 20, ve = 15
cost

Analytic Solution of 1
2u2 30.9743

Smoothed Function 30.8484
Taylor Approximation 30.8810
Piecewise Constant 30.7963

Table 14: Optimal fuel consumption of analytic solution of 1
2u

2, smoothed function, an-

alytic solution of the approximated model and piecewise constant method for Scenario

5
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6 Maximisation Problem

At this final chapter, we introduce the maximisation of the cost function for our problem

and then we compare the results with those of the minimisation problem. This results will

show us the fuel consumption value range and also the effectiveness of the fuel consumption

model approximation.

In order to take the maximum fuel consumption, we need to solve the following minimi-

sation problem

max(f(x))⇔ −min(−f(x)) (91)

subject to the state equations.

For the maximisation problem, we applied the constant control bound methodology (see

section 2.4.4) for the acceleration and also added a penalty term for negative speeds in

the objective function, in order to ensure that we will not have negative speed values.

1
2 min(0, v + ε)2 (92)

So, in figures 44-46 and tables 15-17, we will present the comparison between the max-

imisation and minimisation problem of the smoothed ARRB fuel consumption model, for

three of our scenarios, in respect to there control and states trajectories and their fuel

consumption values.
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Figure 44: Comparison between minimisation and maximisation problem of the smoothed

fuel consumption model for Scenario 1

Maximisation of
Smoothed Function

Minimisation of
Smoothed Function

Difference

Cost Function Value 132.9080 41.4201 220%

Table 15: Maximum and minimum fuel consumption values of the smoothed fuel con-

sumption model for scenario 1
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Figure 45: Comparison between minimisation and maximisation problem of the smoothed

fuel consumption model for Scenario 3

Maximisation of
Smoothed Function

Minimisation of
Smoothed Function

Difference

Cost Function Value 176.1853 82.0533 115%

Table 16: Maximum and minimum fuel consumption values of the smoothed fuel con-

sumption model for scenario 3
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Figure 46: Comparison between minimisation and maximisation problem of the smoothed

fuel consumption model for Scenario 4

Maximisation of
Smoothed Function

Minimisation of
Smoothed Function

Difference

Cost Function Value 139.2375 28.7511 384%

Table 17: Maximum and minimum fuel consumption values of the smoothed fuel con-

sumption model for scenario 4
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7 Conclusions

The objective of this master thesis was the minimisation of the fuel consumption of a

vehicle, by optimizing its trajectory (particularly its acceleration trajectory). In the first

part, the fuel consumption problem formulated into an optimal control problem and solved,

firstly, analytically (after an appropriate approximation) and then numerically. The results

obtained from both solutions were quite satisfactory and the percentage difference between

the two solutions was less than 3%. In the second part, the accuracy and the reliability of

the fuel consumption problem was verified. In order to achieve this, firstly, a comparison

of the results obtained from the cases where we set the same time horizon but different

number of time steps was carried out. This comparison showed that there was a small loss

of accuracy (less than 1%) from higher to smaller values of the number of time steps, which

means that reasonably smaller number of time steps could be used in order to achieve less

computational time of the fuel consumption problem. Secondly, the comparison of the

results obtained from the cases where the time horizon differed and the time step was the

same. From this comparison it would be shown, if the fuel consumption optimal problem

is getting better as the algorithm has more options (more time) to lead the initial states

to the final states. For limited time horizon, analytic solution and numerical solution gave

almost the same trajectories and fuel consumption values but as the time horizon was

increasing the fuel consumption values were close but the trajectories differed.

Afterwards the effectiveness of the fuel consumption model was validated. In this part,

the maximisation of the fuel consumption problem was solved and compared the obtained

results with those of the minimisation problem. Through these results, the value range

of the fuel consumption model can be shown and with the percentage difference of the

two solutions to be significantly large (more than 115%) it can be assumed that the fuel

consumption model is quite efficient.
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At the end, the fuel consumption problem was also solved by using as cost criterion

the function 1
2u

2 which is widely used in the bibliography for eco-driving problems and

compared the results with those of the analytic and numerical solutions. The obtained

results of trajectories and fuel consumption values was quite similar and the percentage

difference of the fuel consumption value was less than 1% for all the cases, which lead us

to the conclusion that using the function 1
2u

2 is a good approach for eco-driving problems.
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