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ABSTRACT 
The occurrence of perturbations in traffic flow may lead to 

the formation of stop-and-go waves traveling upstream, or to 
traffic jams. Therefore, traffic flow stability analysis is 
considered to be one of the fundamental problems in traffic 
flow theory, and a lot of effort has been spent to analyze the 
formation and evolution of such traffic flow instabilities. 
Recent advances in the field of Vehicle Automation and 
Communication Systems (VACS), such as Adaptive Cruise 
Control (ACC) systems, are a potential remedy to reduce the 
magnitude or even to eradicate the formation of such traffic 
flow instabilities. To this end, this work aims to perform a 
nonlinear stability analysis of a second-order macroscopic 
traffic flow model, recently developed by the authors, to 
simulate the flow of ACC-equipped vehicles and identify the 
ways that ACC systems influence the stability of traffic flow, in 
relation with large traffic disturbances around the equilibrium 
state. Numerical simulations are additionally conducted, to 
verify the derived stability condition. 
 
Keywords: Nonlinear stability analysis, macroscopic traffic 
flow modeling, Adaptive Cruise Control. 
 
1. INTRODUCTION 

The frequent occurence of perturbations in traffic flow, such 
as sudden deceleration of vehicles, or the non-uniformity of the 
flow entering a highway from an on-ramp, may, under 
circumstances, lead to stop-and-go waves traveling upstream, 
or traffic jams, resulting in considerable time-delays, increased 
fuel consumption and air pollution, as well as a serious under-
utilization of the available infrastructure. Consequently, traffic 
flow stability analysis is considered to be one of the 
fundamental tools in traffic flow theory, and scientists have 
been particularly interested in understanding the formation and 
evolution of such traffic flow instabilities since the early days 
of traffic engineering. In general, there are two main modeling 

approaches taken to predict traffic flow instabilities, the 
microscopic and macroscopic. The microscopic approach 
describes traffic flow behaviors at a high level of detail by 
capturing the behavior of each individual vehicle [1-4], while 
the macroscopic approach represents traffic in lesser detail by 
using aggregated variables, such as flow, density and mean 
speed [5-8]. 

Recent developments in the fields of Intelligent 
Transportation Systems (ITS) and Vehicle Automation and 
Communication Systems (VACS), such as Adaptive Cruise 
Control (ACC) systems, besides their contribution to safety and 
convenience of the passengers, are believed to be a potential 
remedy to the aforementioned traffic flow problems by 
reducing the effects of traffic flow instabilities with the 
appropriate selection of their operation parameters. This 
advanced feature, in conjunction with the expected extensive 
use of such systems in the near future, can provide additional 
tools for the mitigation of the rapidly growing problem of 
traffic congestion. 

In principle, the ACC systems, which are already 
commercially available in the passenger car market, allow 
vehicles to follow their preceding vehicle automatically, by 
controlling the throttle and the brake activations. More 
specifically, using a forward-looking range sensor, the ACC 
systems are able to estimate the time gap to the vehicle 
immediately in front of them -referred to as the leader-, the 
speed difference, as well as the speed of the equipped vehicle. 
Hence, in cases that the leader drives at lower speed, the ACC-
equipped vehicle slows down to realize a desired time-gap, 
while, on the other hand, in cases that the leader either 
accelerates or is out of the range of the ACC vehicle’s sensors, 
the equipped vehicle accelerates towards and maintains a pre-
set desired speed. ACC systems have been focused on 
increasing driving comfort and safety, by relieving the driver 
from continuous speed and time-gap adjustments; however, for 
particular selection of their operation parameters, they may 
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have negative consequences on the traffic flow performance 
and stability.  Hence, research is focused on the development of 
effective (theoretical and numerical simulation) models for 
traffic flow including ACC-equipped vehicles, to provide tools 
for the evaluation of their effects on the traffic flow stability 
and efficiency. However, a significant query regarding the 
applicability of such tools is whether they are capable of 
reproducing the mechanisms leading to stop-and-go waves and 
traffic jams with the appearance of perturbations in traffic flow. 
If this is true, then those tools can be used for identifying the 
crucial parameters of ACC systems that result in a stable or 
unstable response to disturbances.  

Many different approaches have been reported relying on 
microscopic traffic flow representation, either using 
microscopic simulation for the vehicle behavior in the presence 
of ACC systems, or using analytic approaches for the 
derivation of linear or nonlinear methods for predicting the 
growth of traffic flow instabilities; we refer for example to [9-
18]. Οn the other hand, the corresponding literature pertaining 
to macroscopic or gas-kinetic traffic flow models is relatively 
limited [19-23]. It is worth mentioning here that the stability 
analysis using macroscopic models is referred as flow stability, 
while the string stability of a platoon of vehicles is obtained 
from microscopic approaches [20, 24]. However, concerning 
the models applicability, macroscopic traffic flow models call 
for much less computational demand than their microscopic 
counterparts and require simpler calibration and validation 
effort; hence, the development of such models for the 
simulation of ACC traffic will be of major significance in the 
future. 

Towards this direction, this work attempts to perform a 
nonlinear stability analysis of a second-order macroscopic 
traffic flow model, which was recently developed by the 
authors to simulate the flow of ACC-equipped vehicles [25], 
and identify the ways that ACC systems influence the stability 
of traffic flow, in relation with large traffic flow disturbances 
around an equilibrium state; the proposed model has been 
developed on the grounds of the gas-kinetic-based traffic flow 
(GKT) model, by proper adaptations to take into account the 
effect of ACC (or CACC) vehicles. Numerical simulations are 
also performed to support the findings of the analytic 
procedure. 

 
2. THE GKT MODEL FOR ACC SYSTEMS  

In this section we recall the recently developed second-
order macroscopic traffic flow model incorporating the 
behavior of ACC-equipped vehicles. The model has been 
developed based on the gas-kinetic traffic flow concept, which 
was first established in the ‘60s by Prigogine and Andrews 
[26]. During the last years, the concept has attracted increasing 
interest, by applying it to develop continuum macroscopic 
traffic flow models, as the GKT one [27-29], used also to 
derive variants for cooperative and ACC traffic flow [23, 30]. 
In particular, the aggregated traffic flow variables are obtained 
from microscopic level with explicit consideration of vehicle-
driver dynamics, bridging in this way the gap between the 

microscopic behavior of individuals and the macroscopic traffic 
flow dynamics. The new macroscopic traffic flow equations are 
derived from the gas-kinetic ones by means of the so-called 
method of moments [23, 28, 31-34]. It is worth mentioning that 
the arising partial differential equations in the GKT model and 
its variants, in contrast to other macroscopic traffic flow 
models, incorporate a non-local interaction term instead of a 
diffusion or viscosity one, which has beneficial properties 
concerning the rapidity and the robustness of numerical 
integration methods. Therefore, the GKT model provides the 
means for robust applications in cases of extended freeway 
networks that can be simulated in reasonable computational 
times [25, 35]. Moreover, the non-local GKT model is capable 
of simulating the hysteretic phase transitions to congested 
traffic with high traffic flow, the so-called “synchronized 
traffic”, which is the most common form of congested states, 
typically occurring behind on-ramps, gradients, or other 
bottlenecks of busy highways [36, 37]. 

In the remainder of this section, we recast the GKT model, 
which was extended to incorporate the behavior of ACC 
vehicles. Let ݔ)ߩ,  denote the traffic density (number of (ݐ
vehicles per unit length) as a function in space, ݔ, and time, ݔ)ݑ ;ݐ,  the average speed of vehicles; while the traffic flow rate (ݐ
(number of vehicles per unit of time) is given as ߩ)ݍ, (ݑ ,ݔ)ߩ = ,ݔ)ݑ(ݐ  The modified GKT model in conservation law .(ݐ
form is written as [25] 

  ߲௧(ߩ) + ߲௫(ݑߩ) = 0 , (1) 
  ߲௧(ݑߩ) + ߲௫(ݑߩଶ + (ߩߠ ߩ = ൬ ௘ܸ∗ − ߬ݑ ൰ ሾ1 − ሿ(ߩ)ܨ݌ + ݌ ௔ܸ௖௖  (2) 

  
where Equation (1) reflects the conservation of vehicles. In the 
momentum dynamics Equation (2), the modeling of ACC 
vehicles has been integrated in the terms of ݌ ௔ܸ௖௖ and ሾ1 ݌ ሿ and will be explained subsequently, while for(ߩ)ܨ݌− = 0 the 
manual driving is modeled, as the original GKT model 
describes. The pressure-like term ߠ is a density-dependent 
fraction (ߩ)ܣ of the squared velocity, ߠ =  :is given by the Fermi function as (ߩ)ܣ ଶ, whereݑ(ߩ)ܣ 

(ߩ)ܣ   = ଴ܣ + ܣߜ ൤1 + ℎ݊ܽݐ ൬ߩ − ߩߜ௖௥ߩ ൰൨ (3) 

  
in which ߩ௖௥ is the critical density, reflecting the boundary for 
the transition from the free flow to congested traffic and ߩߜ is 
the width of the transition region. Typical range of values for 
the constants ܣ ,ߩߜ଴, and ܣߜ are given in Table 1, along with 
other typical used model parameters for the GKT model, taking 
into account [23-25, 28, 29, 35].  

Moreover, the momentum Equation (2) includes a traffic 
relaxation term to maintain the concentration of velocity in 
equilibrium state, with ௘ܸ∗(ߩ, ,ݑ ,ఈߩ  ఈ) being the dynamicݑ
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equilibrium speed that depends both on the local (ߩ,  and the (ݑ
non-local traffic state (ߩఈ,   ఈ), determined asݑ

  ௘ܸ∗(ߩ, ,ݑ ,ఈߩ (ఈݑ ௠௔௫ݑ = ቈ1 − ߠ + (௠௔௫ߩ)ܣఈ2ߠ ൬ ఈܶ1ߩ − ఈߩ ⁄௠௔௫ߩ ൰ଶ  ቉ . (4)(ݑߜ)ܤ

  
According to Equation (4), the dynamic equilibrium speed is 
computed as the maximum desired speed, denoted as ݑ௠௔௫, 
minus a braking non-local term in response to necessary 
deceleration maneuvers in traffic flow downstream, at the  
interaction location ݔఈ = ݔ + 1)ߛ ௠௔௫ߩ + ܶ ∙ ⁄ݑ ), with ܶ being 
the desired time-gap, ߩ௠௔௫ the maximum density and ߛ a scale 
parameter. Finally, the Boltzmann (interaction) factor ܤ that 
contains the standard normal distribution and the Gaussian 
error function, is given as 

(ݑߜ)ܤ   = 2 ቈݑߜ ݁ିఋ௨మ ଶ⁄√2ߨ + (1 + (ଶݑߜ න ݁ି௬మ ଶ⁄√2ߨఋ௨
ିஶ ቉ݕ݀ . (5) 

  
This term describes the dependence of the braking interaction 
on the dimensionless velocity difference ݑߜ, with ݑߜ = ௨ି௨ೌඥఏାఏഀ, 
taking into account the velocity and variance at the actual 
position ݔ and the anticipation location ݔఈ. 

The major difference compared to other macroscopic traffic 
flow models is the additional property of the GKT model to 
take into consideration the nonlocal interaction term in the 
equilibrium velocity (Equation (4)). This nonlocality has 
smoothing attributes similar to those of a diffusion or viscosity 
term, but its effect is more realistic as it is forwardly directed, 
which means that vehicles react on density or velocity gradients 
in front of them [28]. Moreover, in contrast to other 
macroscopic traffic flow models, the steady-state (equilibrium) 
speed-density relation of GKT model, ܸ௘(ߩ), is not explicitly 
given, but results from the steady-state condition on 
homogeneous roads as 

  ܸ௘(ߩ) = ௠௔௫ݑ෤ଶ2ݑ ቌ−1 + ඨ1 + ෤ଶݑ௠௔௫ଶݑ4 ቍ (6) 

  
where the following abbreviation was used 

෤ݑ   = 1ܶ ൬1ߩ − ௠௔௫൰ߩ1 ඨܣ(ߩ௠௔௫)(ߩ)޿  . 
 

(7) 

  
Subsequently, the developed modified model for the 

macroscopic simulation of ACC traffic was incorporated as a 
source term to the momentum equation of the GKT model, 
which controls the speed dynamics, contributing to the 
relaxation term in the GKT model equations and also taking 

explicitly into account the important for ACC systems time-gap 
parameter; this is done through the terms ݌ ௔ܸ௖௖ and ሾ1 ݌ ሿ in Equation (2), where by setting(ߩ)ܨ݌− = 1 the ACC 
approach is obtained, while for ݌ = 0 the GKT model 
equations for manual driving are modeled, as the original GKT 
model describes. A properly defined Fermi function (ߩ)ܨ is 
used for the smooth transition between the two source terms 
corresponding to manual and ACC traffic, as it will be later 
explained. 

  
Parameters Units Typical values 
Desired free speed, ݑ௠௔௫ km/h [110,130] 
Maximum density, ߩ௠௔௫ veh/km [140,160] 
Critical density, ߩ௖௥ veh/km [0.25, 0.4]  ௠௔௫ߩ
Desired time gap, ܶ s [1, 2] 
Anticipation factor, [2 ,1]  ߛ 
Relaxation time, ߬ s [20, 40] 
Variance pre-factor for free 
traffic, ܣ଴ 

 0.008 

Pre-factor ܣ2.5  ܣߜ଴ 
Transition width ߩߜ veh/km [0.05, 0.1]  ௠௔௫ߩ

Tab. 1: Typical range of the parameters used for the GKT 
model  

 
Next, it is essential to highlight the necessary control 

objectives that the ACC systems should follow, and which are 
adopted by the proposed approach, according to [38]: 

 Speed control mode: to keep the vehicle velocity close 
to the maximum velocity pre-set by the user, in cases 
that the range of sensor systems (such as radar or lidar) 
do not detect leading vehicles, or leading vehicles are 
detected but their velocities are higher than the pre-set 
maximum velocity. 

 Gap control mode: to retain vehicle velocity equal to 
the velocity of the leading vehicle in order to maintain 
the specified desired gap, in cases that the leading 
vehicle is identified by the sensor systems and its 
velocity is lower than the user-set maximum one. 

 Transitions between the two aforementioned control 
modes are important to be smooth, so as to eliminate 
inconvenience to the passengers, on account of sudden 
changes of velocity or abrupt maneuvers. 

We define time/space-headway as the time/space interval 
between the front bumpers of consecutive vehicles, while 
time/space-gap as the time/space interval between the rear 
bumper of the leading vehicle and the front bumper of the 
following one [24]. The most popular ACC policy is the 
Constant Time-Headway (CTH) one, adopted in the proposed 
modeling, where the inter-vehicle spacing is a linear function of 
the vehicle’s speed [39]; consequently, the developed model is 
based on the following assumptions in order to implement the 
aforementioned objectives: 

I. In cases where the density is less than a threshold ߩ௔௖௖ 
(which is lower than or equal to the critical 
density ߩ௖௥), there is limited or no influence of the 
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additional term to the GKT model. For density values 
around ߩ௔௖௖, a smooth but fast transition between the 
manual case and the ACC model is established, using 
the following Fermi function: 

(ߩ)ܨ   = 12 ൤1 + ℎ݊ܽݐ ൬ߩ − ߩ߂௔௖௖ߩ ൰൨ (8) 

  
II. In cases where the gap control mode is activated, the 

desired constant time gap ܶ∗ is imposed through its 
corresponding influence on a desired density  ߩ∗, given 
as [25]: 

∗ߩ   = 11 ⁄௠௔௫ߩ +  (9) ∗ݑ∗ܶ

  
The denominator in equation above reflects the desired 

space headway, with 1 ⁄௠௔௫ߩ  being the vehicle’s length and ݑ∗ =  being the speed of the leading vehicle, computed at (∗ݔ)ݑ
the “interaction” position [25]: 

  
∗ݔ             = ݔ 1)∗ߛ + ⁄௠௔௫ߩ + ܶ∗ ∙ ∗ߛ  ,(ݑ  ∈  ሾ1, 2ሿ. (10) 

  
In addition, using a relaxation time ߬∗, the desired speed relaxes 
to the speed of the leading vehicle ݑ∗. Accordingly, the 
corresponding source term of Equation (2) that reflects the 
behavior of ACC-equipped vehicles can be expressed as [25] 

  ௔ܸ௖௖(ߩ, ,ݑ ,∗ߩ (∗ݑ = 12 ൤1 + ℎ݊ܽݐ ൬ߩ − ߩ߂௔௖௖ߩ ൰൨ ൬ݑ∗ߩ∗ − ∗߬ݑߩ ൰ 

(ߩ)ܨ = ቀఘ∗௨∗ିఘ௨ఛ∗ ቁ 

(11) 

 
In [ISO 15622, 2010], it is recommended that for ACC systems 
the indicated values should be ܶ∗ ∈  ሾ0.8, 2.2ሿ ݏ, while ߬∗ is in 
the order of 1 s. 

 
3. NONLINEAR STABILITY ANALYSIS FOR ACC 
SYSTEMS 

The stability analysis method is a well-established 
technique for studying the ability of traffic flow models to 
describe the effects of traffic flow perturbations, such as 
accidents and other related phenomena, to traffic flow 
instability; its applicability is of essential importance, regarding 
the improvement of traffic flow capacity and efficiency as well 
as to ensure safe driving. Inherently, this approach concerns the 
study of solutions of a dynamical system in relation with small 
or higher introduced perturbations in the initial conditions. 
Indeed, in traffic flow theory, the response of drivers to a 
sudden stimulus, or to sudden spontaneous acceleration and 
deceleration, may result in the formation of disturbances that, in 
congested states, will eventually grow and will give rise to 
“phantom traffic jams” propagating upstream, against the traffic 

flow. Hence, it is of significance to define the conditions under 
which the traffic state in case of macroscopic ones remain 
stable under a properly introduced perturbation [24].  

Within the vast literature on macroscopic traffic flow 
modeling, both linear and nonlinear stability methods have 
been applied in order to derive stability criteria [3, 5, 7, 8, 19, 
22-24, 30-32, 40-43]. At this point, it is important to highlight 
the difference between small and large perturbations in the 
stability analysis of traffic systems. Although there is a large 
body of research that deals with linearized methods to 
investigate traffic flow stability criteria by assuming that the 
perturbations are small, such approximate linearized stability 
methods neglect higher-order terms and are only applicable 
when the magnitude of perturbations is fairly small. Thus, since 
the linear stability method, recently developed by the authors 
for the proposed macroscopic model [44], is only valid for 
small disturbances, the nonlinear technique is followed in this 
work, as it allows to more accurately examine the global 
stability conditions under which a large perturbation travels 
against the traffic flow. 

In this work, a nonlinear stability criterion is derived, using 
a wavefront expansion method under large perturbations, which 
enables to investigate the shock wave propagation properties of 
the developed ACC model [19, 22, 32, 45]. In principle, 
considering a perturbation that starts at a specific location ݔ଴ in 
the stationary and spatially homogeneous (i.e. time- and space-
independent) traffic state, (ߩ଴,  ଴), of the traffic system, theݑ
wavefront is the propagation curve of such perturbation along 
the homogenous (equilibrium) traffic flow. If the magnitude of 
the initial perturbation is not growing during its propagation, 
the traffic flow is nonlinearly stable. Conversely, if the 
amplitude of the perturbation is increased as it propagates 
against the traffic flow, traffic will become unstable, resulting 
in the formation of a shock wave or bottleneck on the highway. 

Let us start with finding the unstable traffic regions through 
the wavefront expansion method of the proposed model, as 
described in the remainder of this section, taking primarily into 
account only the case of ACC-equipped vehicles (assuming that 
the flow is congested (thus the value of (ߩ)ܨ → 1  in Equation 
(11)) and only the ACC-term is activated in the source term of 
Equation (2)). Therefore, Equations (1) and (2) are simplified in 
the following form: 

  ߲௧(ߩ) + (ߩ)௫߲ݑ + (ݑ)௫߲ߩ = 0 ,  (12) 
  ߲௧(ݑ) + (ݑ)௫߲ݑ + ߩ1 ቀ ఘ߲(ܲ)߲௫(ߩ) + ߲௨(ܲ)߲௫(ݑ)ቁ ߩ1 = ൬ݑ∗ߩ∗ − ∗߬ݑߩ ൰  (13) 

  
where the abbreviations for partial derivatives are defined as:  

  ߲௧(ߩ) = ݐ߲ߩ߲ , ߲௧(ݑ) = ݐݑ߲߲    , ߲௫(ߩ) = ݔ߲ߩ߲ , (14) 
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߲௫(ݑ) = (ܲ)ఘ߲ ,  ݔ߲ݑ߲ = (ܲ)௨߲ , ߩ߲߲ܲ = . ݑ߲߲ܲ
  

To derive traffic flow propagation stability, we first need to 
expand the macroscopic traffic flow variables, such as density ݔ)ߩ, ,ݔ)ݑ and average speed (ݐ  as well as the time and space ,(ݐ
partial derivatives of density and average speed downstream the 
wavefront in a power series of 

ߦ   = ݔ −  (15) , (ݐ)ܺ
  

where ܺ(ݐ) is the location of the wavefront at time instant ݐ. 
Inherently, the wavefront complies with the characteristic 
velocity ݑ௖, which will be derived later, at the equilibrium 
states, i.e.  

  ሶܺ (ݐ) = ݐ݀ܺ݀ = ଴ݑ +  ௖ . (16)ݑ

  
Thus, using Equation (15), the aforementioned traffic flow 
variables are expanded in a power series of ߦ as 

,ݔ)ߩ   (ݐ = ଴ߩ + ((ݐ)ߩ)௫߲ߦ + 12 ((ݐ)ߩ)ଶ߲௫௫ߦ + ⋯ (17) 

,ݔ)ݑ   (ݐ = ଴ݑ + ((ݐ)ݑ)௫߲ߦ + 12 ((ݐ)ݑ)ଶ߲௫௫ߦ + ⋯ (18) 

  ߲௧(ߩ) = − ሶܺ ൯(ݐ)ߩ௫൫߲(ݐ) + +(ݐ)ሶ௫ߩߦ ߦ ቀ− ሶܺ ൯ቁ(ݐ)ߩ௫௫൫߲(ݐ) + 12 (ݐ)ሶ௫௫ߩଶߦ + ⋯ 

(19) 

  ߲௧(ݑ) = − ሶܺ ൯(ݐ)ݑ௫൫߲(ݐ) + ሶݑߦ ௫(ݐ)+ ߦ ቀ− ሶܺ ൯ቁ(ݐ)ݑ௫௫൫߲(ݐ) + 12 ሶݑଶߦ ௫௫(ݐ) + ⋯ 

(20) 

  ߲௫(ߩ) = ߲௫൫(ݐ)ߩ൯ + ൯(ݐ)ߩ௫௫൫߲ߦ + 12 +൯(ݐ)ߩଶ߲௫௫௫൫ߦ ⋯ 
(21) 

  ߲௫(ݑ) = ߲௫൫(ݐ)ݑ൯ + ൯(ݐ)ݑ௫௫൫߲ߦ + ଵଶ ଶߦ ௫߲௫௫൫(ݐ)ݑ൯ +⋯ , 
(22) 

  
where 

(ݐ)ሶ௫ߩ   = ݀(߲௫((ݐ)ߩ))݀ݐ ሶݑ ,  ௫(ݐ) = ݀(߲௫((ݐ)ݑ))݀ݐ  ,
(ݐ)ሶ௫௫ߩ (23) = ݀(߲௫௫((ݐ)ߩ))݀ݐ ሶݑ ,  ௫௫(ݐ) = ݀(߲௫௫((ݐ)ݑ))݀ݐ ,

௫߲((ݐ)ߩ) = ฬ௑(௧),௧ݔ߲ߩ߲ , ߲௫((ݐ)ݑ) = ฬ௑(௧),௧ݔ߲ݑ߲ ,
௫߲௫((ݐ)ߩ) = ߲ଶݔ߲ߩଶቤ௑(௧),௧ , ߲௫௫((ݐ)ݑ) = ߲ଶݔ߲ݑଶቤ௑(௧),௧ ,

߲௫௫௫((ݐ)ߩ) = ߲ଷݔ߲ߩଷቤ௑(௧),௧, ߲௫௫௫((ݐ)ݑ) = ߲ଷݔ߲ݑଷቤ௑(௧),௧ . 
  

Similarly, expanding the derivatives of traffic pressure in 
relation with the local density and speed, as well as the desired 
density ߩ∗and speed ݑ∗ of the preceding vehicle, we obtain  

  ఘ߲(ܲ) = ఘ߲( ଴ܲ) + )ߦ ఘ߲ఘ( ଴ܲ)߲௫൫(ݐ)ߩ൯+ ఘ߲௨( ଴ܲ)߲௫((ݐ)ݑ)) + ⋯ (24) 

  ߲௨(ܲ) = ߲௨( ଴ܲ) + )௨ఘ߲)ߦ ଴ܲ)߲௫൫(ݐ)ߩ൯+ ߲௨௨( ଴ܲ)߲௫((ݐ)ݑ)) + ⋯ 
(25) 

∗ߩ   = ଴ߩ + ൯(ݐ)ߩ௫൫߲ߦ + ݀∗ ቀ߲௫൫(ݐ)ߩ൯ + ߦ ௫߲௫൫(ݐ)ߩ൯ቁ+ ⋯ 
(26) 

∗ݑ   = ଴ݑ + ߦ ௫߲൫(ݐ)ݑ൯ + ݀∗ ቀ ௫߲൫(ݐ)ݑ൯ + ߦ ௫߲௫൫(ݐ)ݑ൯ቁ +⋯ , 

(27) 

  
where ݀∗ = ∗ݔ − ଴ܲ ,ݔ = ,଴ߩ)ܲ  ଴), andݑ

  

ఘ߲( ଴ܲ) = ฬ௑(௧),௧ߩ߲߲ܲ , ఘ߲ఘ( ଴ܲ) = ߲ଶ߲ܲߩଶቤ௑(௧),௧ ,
(28) ߲௨( ଴ܲ) = ฬ௑(௧),௧ݑ߲߲ܲ , ߲௨௨( ଴ܲ) = ߲ଶ߲ܲݑଶቤ௑(௧),௧,

ఘ߲௨( ଴ܲ) = ߲ଶ߲ܲݑ߲ߩቤ௑(௧),௧ , ߲௨ఘ( ଴ܲ) = ߲ଶ߲ܲݑ߲ߩቤ௑(௧),௧.
Thereafter, we substitute Equations (17)-(28) into the 

system of Equations (12) and (13) and we produce two sets of 
equations, one for the original position (ߦ଴) (for ߦ = 0) and one 
for the perturbed position (ߦଵ), taking also into account 
Equation (16). Thus, for the conservation Equation (12), we 
obtain the following expressions:  

૙ࣈ   ∶ −߲௫(ߩ)ݑ௖ + (ݑ)଴߲௫ߩ = 0 , (29) 
૚ࣈ   ∶ ሶ௫ߩ − ߲௫௫(ߩ)ݑ௖ + 2 ௫߲(ߩ) ௫߲(ݑ) + ଴ߩ ௫߲௫(ݑ) = 0 . (30) 
  

Similarly, the momentum dynamics Equation (13) results in: 
૙ࣈ   ∶ (ݑ)௖߲௫ݑ− + ଴ߩ1 ቀ ఘ߲( ଴ܲ)߲௫(ߩ) + ߲௨( ଴ܲ)߲௫(ݑ)ቁ ଴ߩ1= 1߬∗ ݀∗൫ߩ଴߲௫(ݑ) +  ൯ , (31)(ߩ)଴߲௫ݑ
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૚ࣈ   ∶ ሶݑ  ௫ − ௖ݑ ௫߲௫(ݑ) + ൫߲௫(ݑ)൯ଶ − ௖ݑ ߲௫(ߩ)ߩ଴ ௫߲(ݑ) ଴ߩ1 +  ఘ߲( ଴ܲ)߲௫௫(ߩ) + ଴ߩ1   ఘ߲ఘ( ଴ܲ)൫߲௫(ߩ)൯ଶ
+ ଴ߩ1 ఘ߲௨( ଴ܲ)߲௫(ߩ)߲௫(ݑ) ଴ߩ1 +  ߲௨( ଴ܲ)߲௫௫(ݑ) + ଴ߩ1 ߲௨ఘ( ଴ܲ) ௫߲(ߩ) ௫߲(ݑ) = 1߬∗ ൭݀∗ ௫߲௫(ݑ) + ଴ߩ2 ݀∗ ௫߲(ߩ) ௫߲(ݑ) + ଴ߩ1 ଴ݑ∗݀ ௫߲௫(ߩ)൱ . 

(32) 

  
Equation (29) yields to: 

  ߲௫(ߩ) = ௖ݑ(ݑ)଴߲௫ߩ . (33) 

  
Thus, substitution of Equation (33) into Equation (31) results in 

௖ଶݑ   − ൬ ଴ߩ1  ߲௨( ଴ܲ) − 1߬∗ ݀∗൰ ௖ݑ + 1߬∗ ଴ݑ∗݀ − ఘ߲( ଴ܲ)= 0 . (34) 

  
The solutions of the expression above are the characteristic 
velocities ݑ௖, given as 

±௖ݑ   = 12 ൬ ଴ߩ1  ߲௨( ଴ܲ) − 1߬∗ ݀∗൰  ± 

ඨ൬ ଴ߩ12  ߲௨( ଴ܲ) − 12߬∗ ݀∗൰ଶ + ఘ߲( ଴ܲ) − 1߬∗  ଴ . (35)ݑ∗݀

  
In practice, under free flow conditions, where traffic demand is 
low enough, the perturbations travel downstream with positive 
characteristic velocity ݑ௖ା; contrary, in cases where the traffic 
is congested, they propagate upstream, against the traffic flow, 
with characteristic velocity ݑ௖ି. However, according to [22], 
the positive characteristic velocity ݑ௖ା will decay to zero 
rapidly with time and does not play a particularly important 
role. Hence, in the remainder of the nonlinear stability method, 
we neglect the effect of the downstream moving branch of the 
perturbation and we concentrate on the upstream propagation 
with negative characteristic velocity ݑ௖ି. 

Next, we will eliminate the second-order partial derivatives ௫߲௫(ߩ) and ߲௫௫(ݑ) in Equations (30) and (32); this is feasible 
by multiplying Equations (30) and (32) with the terms ൛−ݑ௖ିൟ 

and ቄ ଵఘబ ൬ ଵఛ∗ ଴ݑ∗݀ − ఘ߲( ଴ܲ)൰ቅ, respectively, and using properly 
expression (34), whereby the resulting equations are added to 
one another. Consequently, after some algebra, we end up with 
the following reduced equation 

ሶݑ   ௫ + ߲ܽ௫(ݑ) + ൯ଶ(ݑ)൫߲௫ߚ = 0 , (36) 

  
where 

  ܽ = ߚ , 0 =ଶడഐ(௉బ)ାఘబడഐഐ(௉బ)ାଶ௨೎షడഐೠ(௉బ)ା൫ೠ೎ష൯మഐబ డೠೠ(௉బ)ିమ೏∗ೠబഓ∗ ିమ೏∗ೠ೎షഓ∗൫௨೎ష൯మାడഐ(௉బ)ି೏∗ೠబഓ∗  
(37) 

  
The solution of Equation (36) is given as 

  ߲௫((ݐ)ݑ) = ௫߲((0)ݑ)߲௫൫(0)ݑ൯ݐߚ + 1 , (38) 

  
where ߲௫((0)ݑ) is the initial condition for ߲௫((ݐ)ݑ). 

According to Equation (38), the trend of ߲௫((ݐ)ݑ) can be 
defined using the derivative: 

  ݀൫ ௫߲((ݐ)ݑ)൯݀ݐ = −൫߲௫((0)ݑ)൯ଶߚ൫ ௫߲൫(0)ݑ൯ݐߚ + 1൯ଶ . (39) 

  
From Equation (38), if the denominator becomes zero, then ௫߲൫(ݐ)ݑ൯ tends to infinity and traffic becomes nonlinearly 
unstable; more precisely, this can happen when ߲௫൫(0)ݑ൯ݐߚ +1 = 0 or when ݐ = − 1 (߲௫ߚ(0)ݑ)⁄ . As ݐ is always positive, for 
the satisfaction of the previous condition we should have ௫߲൫(0)ݑ൯ߚ < 0. Thus, for the unstable regions, the solution 
must satisfy the following two restrictions: ൛߲௫൫(0)ݑ൯ ߚ ݀݊ܽ 0> > 0ൟ or ൛߲௫൫(0)ݑ൯ > ߚ ݀݊ܽ 0 < 0ൟ. However, for 
most second-order models, ߚ > 0 [22, 32]; thus we expect that 
unstable regions emerge when ߲௫൫(0)ݑ൯ < 0. 

 
4. NUMERICAL SIMULATION 

In this section, we investigate numerically the findings of 
the theoretical analysis, assuming the traffic flow inside a 
single-lane ring-road of circumference L=10 km; periodic 
boundary conditions were implemented at the boundaries of the 
discretized section. The second-order model is numerically 
approximated by an accurate and robust high-resolution finite 
volume relaxation scheme, where the nonlinear system of 
partial differential equations is first recast to a diagonalizable 
semi-linear system and is then discretized by a higher-order 
WENO scheme [25, 35]. 

We consider an initial perturbation of the average density, 
as it is depicted in Fig. 1, given as: 

ߩ   = ߩ̅ − ߩ߂ 12 ቂ1 + ℎ݊ܽݐ ቀݔ − ݔ߂ଵݔ ቁቃ+ ߩ߂ 12 ቂ1 + ℎ݊ܽݐ ቀݔ − ݔ߂ଶݔ ቁቃ, (40) 

  
where ̅ߩ = 45 ܸ݁ℎ/݇݉, ߩ߂ = ݔ߂ ,݉݇/ℎ݁ݒ 5 = ଵݔ ,݉ 400 =4000 ݉, and ݔଶ = 7000 ݉. The resulting velocity perturbation 
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is also presented in Fig. 1. The initial perturbation was selected 
in order to produce the condition ߲௫൫(0)ݑ൯ < 0. 
 

 

 
Fig. 1: The initial perturbation in ρ (top) and u (bottom), 

applied for the numerical example. 
 

 
 

Fig. 2: Density evolution for manually driven cars. 

 
 

Fig. 3: Velocity evolution for manually driven cars. 
 

The ring was discretized with ݊ݏݐ݌ = 400 grid points, 
while the model parameters used in the simulation of the GKT 
model were ݑ௠௔௫ = 110 ݇݉/ℎ, ߩ௠௔௫ = ௖௥ߩ ,݉݇/ℎ݁ݒ 160 ߬ ,௠௔௫ߩ0.27= = ଴ܣ ,ݏ 35 = ޿ߜ ,0.008 = ߩߜ ,0.02 ܶ ,௠௔௫ߩ0.05= = ߛ ,ݏ 1.8 = 1.2. Simulations are reported up to 
1200 s. First the manual flow was simulated (by setting ݌ = 0 
in Equation (2)).  

The simulation results for manual cars are presented in Figs. 
2 and 3 for density and velocity, respectively; a cascade of stop-
and-go waves emerges from the perturbation in the initial 
condition. 

 

 
Fig. 4: Density evolution for ACC traffic. 

 
The corresponding simulation results for ACC traffic (by 

setting ݌ = 1 in Equation (2)) are presented in Figs. 4 and 5, for 
density and velocity evolution, respectively. The same initial 
perturbation was used as for the flow with manual vehicles. The 
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time gap was set equal to ܶ∗ = ௔௖௖ߩ while ,ݏ 1 = ∗ߛ ,௖௥ߩ 0.9 =1 and ߬∗ =  As it can be observed, the original cascade of .ݏ 0.5
stop-and-go waves (produced in the manual traffic) has been 
eliminated; however, a series of growing instabilities emerges 
from the region where ߲௫൫(0)ݑ൯ < 0 in the initial condition. 
This observation is compatible with the findings of the 
theoretical investigation. 
 

 
 

Fig. 5: Velocity evolution for ACC traffic. 
 
 
5. CONCLUSIONS 

In this work the wavefront expansion method, with respect 
to large perturbations, was applied to analytically derive the 
stability region of a recently introduced second-order 
macroscopic traffic flow model that is able to model the 
dynamics of ACC traffic flows. The development of the 
proposed model was based on the GKT one, while the 
modeling of ACC traffic was incorporated by adding a proper 
source term to the momentum equation of the original model; 
this additional term was developed to satisfy the time/space-gap 
principle of ACC systems. From the nonlinear stability analysis 
performed in this work, the unstable regions for ACC traffic 
have been derived, assuming that all the cars are equipped with 
ACC and the flow is in the congested region (where ACC is 
always activated for all cars). As it was deduced from the 
analysis, an unstable region emerges when ߲௫൫(0)ݑ൯ < 0 
(assuming that the ߚ parameter in Equation (36) has a positive 
value). The theoretical findings are supported by the simulation 
results derived for a numerical test in a single-lane ring-road 
with a perturbation in the initial conditions of density and 
speed. The simulation results revealed that a series of growing 
instabilities emerges from the region in the initial conditions 
where the instability criterion is valid. 

On-going work includes the derivation of stability criteria 
for the case of ACC penetration rates lower than 1, and for the 

CACC case (which can be also covered by the proposed 
macroscopic model [25]). 
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