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Abstract 

In the past decades, subsurface non-aqueous phase liquid (NAPL) contamination has been recognized as one of the most widespread 
and challenging environmental problems. Thus, researchers have focused their efforts on developing and testing the efficiency of 
remediation methodologies, able to address the unique nature of these contaminants. Recently, in-situ flooding techniques for the 
accelerated removal of NAPLs trapped in the subsurface have been proposed, where additives are injected together with water 
upgradient of the NAPL-contaminated area in order to alter the physio-chemical properties of the contaminants, such as interfacial 
tension, and enhance their solubilities. In this work, the efficiency of ethanol enhanced NAPL remediation is addressed. To this 
end, a non-linear, multi-objective optimization strategy is developed by combining a multiphase flow simulation model with 
evolutionary algorithms. Two conflicting optimization objectives are considered: minimizing operation cost and maximizing 
remediation efficiency, while preventing uncontrolled NAPL mobilization. More specifically, the first objective involves the 
operation cost of the procedure, which is directly proportional to the pumping rate, duration and ethanol volume used. The second 
represents the environmental considerations of the problem that, in this work, are described by the maximization of free product 
removal and the prevention of DNAPL vertical spreading.  
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1. Introduction 

The accidental release of organic contaminants in the form of non-aqueous phase liquids (NAPLs) is a widespread 
and challenging environmental problem that poses a serious threat to groundwater reserves worldwide and 
compromising future opportunities for economic development of local communities.  

Since the late 1980’s considerable efforts have been directed towards developing new technologies for the 
remediation of NAPL-contaminated groundwater. Among the more promising technologies that have been emerged 
is in-situ cosolvent flushing which involves the injection of chemical to enhance the solubility of the NAPL and 
possibly instigate its mobility as a separate phase by reducing the interfacial tension [1]. 

Successful remediation of the contaminated sites is of paramount importance to ensure the protection of 
groundwater resources and human health but it can prove to be a costly and time consuming task. To this end, 
researchers have directed their efforts on developing tools that can improve the time-efficiency and cost-effectiveness 
of groundwater remediation strategies [2]. Such tools include algorithms that couple groundwater contaminant 
transport simulation models with optimization techniques. While many models focused on optimizing pump and treat 
designs, very few attempted to optimize surfactant flushing [3,4], and none to the best of our knowledge has attempted 
to optimize cosolvent flushing, which is the focus of this work.  

In this work, a non-linear, multi-objective optimization strategy is proposed that seeks the optimal pumping rates 
and pumping pattern of cosolvent flushing experiments conducted in a 2D experimental porous media tank. Two 
conflicting objectives were combined: the first is associated with the economical aspect of the problem, in this case 
the pumping wells installation and operation cost as well as the flushing chemical (ethanol) cost, and the second 
involves the environmental considerations represented by the maximization of NAPL recovery and the minimization 
of the required cleanup time. More specifically, the first objective involves the operation cost of the procedure, which 
is directly proportional to the pumping rate, duration and ethanol volume used. The second objective is described by 
the maximization of free product removal and the prevention of DNAPL vertical spreading, which was formulated in 
the form of a penalty in the objective function. The above problem was solved using an evolutionary computation 
algorithm, namely Particle Swarm Optimization (PSO). 

2. Methodology 

2.1. Multiphase modeling 

For the purpose of modeling the ethanol enhanced flushing process, a three-dimensional, multiphase, finite-
difference numerical model (UTCHEM) was used. UTCHEM was originally developed by Pope and Nelson [5] to 
simulate the enhanced recovery of oil using surfactant and polymer processes and is one a very few models are capable 
of modeling cosolvent flushing. The UTCHEM code was modified by Roeder and Falta [6], to model unstable 
conditions which may occur during cosolvent flushing of NAPLs. A modified version of the multiphase flow simulator 
UTCHEM-9.0 was used in this modeling study, equipped with the interfacial tension calculation method developed 
by Li and Fu [7] and implemented by Liang and Falta [8]. This method enables UTCHEM to accurately simulate the 
process of ethanol concentration-dependent interfacial tension lowering.  

UTCHEM accounts for effects of surfactants/cosolvents on interfacial tension, phase behavior, capillary trapping, 
and surfactant/cosolvent adsorption. Capillary pressures, relative permeabilities, dispersion and molecular diffusion 
as well as the partitioning of NAPL to the aqueous phase (under equilibrium and non-equilibrium assumptions) are 
some of the important components of the simulator that were utilized in this work. More details can be found in a 
previous study [9] that involved the model development and calibration of the ethanol flushing experiments, which is 
linked here to the multi-objective optimizer. A schematic representation of the 2D experimental tank used for the 
experiments is provided in Fig. 1.  
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Fig. 1. Model and 2D tank setup and TCE mobilization zone for penalty imposition  

2.2. Optimization problem formulation 

The objective of the proposed optimization algorithm is twofold: maximizing the remediation efficiency (NAPL 
product removal) while minimizing operation cost. The decision variables of the problem are the NAPL pumping 
rates, the amount of chemical (ethanol) needed for the remediation process and the remediation time. The first 
objective of the optimization problem is associated with the economical aspect of the NAPL recovery and flushing 
process. More specifically, the first objective involves the minimization of the installation and operation cost (that is 
directly proportional to the pumping rate, duration and ethanol volume). The second objective involves the 
environmental considerations of the problem that in this work are represented by the maximization of the volume of 
TCE recovered.  

In single objective optimization problems, the main focus is on the decision variable space while in a multi-
objective concept the interest switches on the objective space. Due to the contradiction of the objective functions it is 
not possible to find a single optimal solution for all of them simultaneously. The most common approach to overcome 
this problem is to combine the objectives into a single objective function assigning weights to each of them according 
to their relative importance (weighted aggregation). Based on the above, the optimization problem formulation has 
the following form: 
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Where: cfixed cost related to well installation, c1 is the unit cost of well operation, t is the remediation period duration, 
Qj the pumping rate of each well and m is the number of pumping wells, c2 is the unit cost per volume of ethanol, Dj 
the percentage of ethanol introduced into the aquifer at each well and Vi is the NAPL free phase volume recovered 
during the remediation period.  

The parameters w1 and w2 are weights that define the relative importance of the two terms of the objective function 
and w3 is a penalty term imposed whenever the current algorithm solution results in DNAPL vertical spreading below 
a certain depth. The penalty is imposed when the total NAPL mass below the line of 15 cm height (represented by the 
light blue rectangle in Fig. 1) exceeds 1% of the initial TCE mass injected, indicating TCE vertical spreading. The 
mass that was injected in the system was 14600 mg.   

As can been seen on Equation 1 the two objectives have different units of measurement. To compensate for 
differences in magnitude (e.g. cost in thousands of euros, volume in m3) between the two objectives, they were 
transformed to a common distance scale [4,10]. From the initial, randomly selected population in the PSO algorithm, 
the transformation functions were deducted. Both objective functions were first normalized and then transformed in 
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order to have the same distance from the origin to the optimum of the initial sample. The transformation function is 
given by: 
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Where: Fi is the objective function, i the standard deviation calculated by the initial PSO population. In this case 
the objective function transform to: 
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Where w is a weight between 0-1. In the case of w=0.5 the two objective are considered to have equal importance, 
as was the case selected here.  

A population of 25 particles was used and a maximum number of 200 iterations were defined as the stopping 
criteria, corresponding to 12500 calls to the simulation model. The initial population was created randomly in all 
cases.  Table 1 summarizes the basic parameters used in this optimization problem (costs, upper and lower bounds 
etc.). The fixed and ethanol costs were taken as market values for the experiments while the pumping and treatment 
and remediation time costs were taken from the literature [4]. It is assumed that only one recovery well (m=1) is 
present, located at the end of the tank.  

Table 1. Optimization parameters. 

Parameter Value 

Number of particles 25 

Number of iterations 200 

Lower and upper bounds for pumping: Qmin, Qmax 0 m3/d , 0.017 m3/d 

Lower and upper bounds for ethanol content (%)  0-100 

Lower and upper bounds for remediation time (t) 0 – 4 d 

Objective function weight: w  0.5  

Fixed cost ( fixed) 5000 € 

Pumping and treatment cost ( 1) 0.25 €/m3 

Ethanol cost ( 2) 18000 €/m3 

Remediation time cost ( 3) 240 €/d 

2.3. Particle Swarm Optimization algorithm 

The PSO algorithm was inspired by the behaviour of swarms of animals. In this method, each individual is 
considered as a particle in multidimensional space with a specific position and velocity. A record of each particle’s 
best position that has been achieved so far is kept [11]. The collection of particles is called a swarm, a term analogous 
to the population term in genetic algorithms and differential evolution algorithms. At each iteration, a particle moves 
to a new position in space by adding a velocity to its current position. The velocity term is a random combination of 
three components: i) the inertia component, causing the particle to continue moving in the direction it was moving in 
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the previous iteration, ii) the cognitive component, causing the particle to move towards the best position it has ever 
been in and iii) the social component, steering the particle towards the best position of any particle of the entire swarm 
or in its neighborhood [12]. The above process is summarized by the following equations:  
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Where: iv  is the velocity of the particle, 1 , 2  are two positive numbers (weights) that represent the particle’s 
own experience ( 1 ) and the experiences of the other particles of the swarm ( 2 ), rand1, rand2 are two uniformly 
distributed random numbers in the range of [0,1], ip and gp is the best previously recorded positions of the ith particle 
and of the entire swarm, respectively.  

During the implementation of the particle swarm optimization there are certain parameters that need to be taken 
into account in order to avoid the “explosion” of the swarm and to speed convergence. In the literature there are 
different methods to ensure this: i) the maximum velocity multiplier, ii) the constriction factor or iii) the inertia 
constant. In this work, the maximum velocity method in combination with the constriction factor are used. The 
maximum velocity is limited by a multiplier between 0 and 1: 

maxmax kxv                                                                                                                                           (7) 

Where: k is the multiplier and xmax is the variable’s upper bound. The constriction factor method [13] updates 
Equation 5 as follows: 
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In order to select the parameter values that would produce the best results for the multiplier for the maximum 
velocity (k), tests were made with different values and the one with the best results (k=0.4) was finally selected. The 
parameters 1 and 2 were assumed both equal to 2.05 (corresponding to a constriction factor of =0.729) as 
suggested by Clerk [13].  

3. Results 

The optimization algorithm gave the following values to the decision variables of the problem: Pumping rate: Q = 
0.017 m3/d (equal to the upper bound), % ethanol: D=82 % and remediation time: t = 0.6865 days or 16.5 hours. It 
was observed that the optimal ethanol content found by the algorithm is high (82%), a value that can cause the IFT to 
become zero and thus TCE to completely dissolve and mobilize. It is worth mentioning though that in the experimental 
setting the recovery well fully penetrates the tank, thus all mobilized TCE mass is finally recovered by the well. Thus, 
no penalty is imposed for high ethanol contents, providing the remediation time is adequate. It is observed that the 
algorithm tends to discard solutions with high remediation times that could have good recovery results, if combined 
with low pumping rates, because this will not be as cost effective as the current optimal solution. Finally, additional 
increase in ethanol content does not improve the solution as TCE is fully mobile and dissolved in lower than 100% 
ethanol contents, such as the optimal value produced by the optimization algorithm. 
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The PSO algorithm converged very fast, as seen in Fig. 2 that shows convergence for the first 100 iterations. In 
iteration 62, the algorithm converges to the optimal solution. Due to the low objective function values the differences 
between the values are not very clear in Fig. 2.  The final objective function value is -6.06655 (normalized) that has a 
cost of 5335€ (5000€ fixed cost plus 335€ for ethanol and time costs) and recovers almost all TCE mass injected 
(14431 mg out of 1460 mg that was injected, corresponding to 98.8% recovery). 

 

Fig. 2. PSO convergence 

4. Conclusions 

In this work, the efficiency of ethanol enhanced NAPL remediation is addressed by developing a non-linear, multi-
objective optimization strategy that combines a multiphase flow simulation model with particle swarm optimization 
algorithm. Two conflicting optimization objectives are considered: minimizing operation cost and maximizing 
remediation efficiency (NAPL product removal), while preventing uncontrolled NAPL mobilization. More 
specifically, the first objective involves the operation cost of the procedure, which is directly proportional to the 
pumping rate, duration and ethanol volume used. The second represents the environmental considerations of the 
problem that, in this work, are described by the maximization of free product removal and the prevention of DNAPL 
vertical spreading.  

The results show that the optimal ethanol content found by the algorithm is high (82%), a value that can cause the 
IFT to become zero and the TCE to completely dissolve and mobilize. It is worth mentioning though that, contrary to 
what one might expect in field conditions, in the experimental setting the recovery well fully penetrates the tank, thus 
all mobilized TCE mass is finally recovered. Thus, no penalty is imposed for high ethanol contents, if the remediation 
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time is adequate. It is also observed that the algorithm tends to discard solutions with high remediation times that 
could have good recovery results if combined with low pumping rates because this will not be as cost effective as the 
current optimal solution. Finally, additional increase in ethanol content does not improve the solution as TCE is fully 
mobile and dissolved in lower than 100% ethanol contents, such as the optimal solution found by the optimization 
algorithm. 
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