
Technical University of Crete, Greece

School of Electrical and Computer Engineering

ARCHIMUSIC3D: Real-Time Graphical

System for Reciprocal Transformations

between Music and Refined Urban

Architectural Design

Fotios Giariskanis

Thesis Committee

Associate Professor Katerina Mania (ECE)

Associate Professor Georgios Karistinos (ECE)

Associate Professor Panagiotis Parthenios (ARCH)

Chania, November 2018

http://www.tuc.gr
http://www.ece.tuc.gr

Fotios Giariskanis
ii

November 2018

Abstract

An urban designer needs advanced analytical tools in order to understand the inner-

relations and functions that describe conterporary cities. Many of the recently digitally-

crafted architectural design tools for urban environments fail to address the need for a

more holistic design approach that captures virtual and physical, immaterial and material

including aspects of an urban design which are aesthetic as well as functional. There is

a significant potential in combining the fields of composition in music and architecture

through the use of information technology. Merging the two fields has the potential

to release new, innovative tools for urban designers by uncovering aspects of an urban

design not apparent based on the standard, vision-based digital design tools, introducing

the additional modality of sound and music. This thesis describes an innovative tool

developed at the Technical University of Crete, through which an urban designer can work

on the music transcription of a specific urban environment applying music compositional

rules and filters in order to identify discordant entities, highlight imbalanced parts and

make design corrections.

This thesis presents Archimusic3D, a platform implemented in the Unity development

engine that offers sonification of an Urban Virtual Environment (UVE), simulating a

real-world cityscape and offering visual interpretation and interactive modification of its

soundscape. The system presented in this thesis offers: First of all, the ability to view

and convert an urban street to music (ready to play) based on a specific grammar of

converting architectural elements to musical elements, secondly, the ability to transform

this music in order to harmonize it based on musical rules and finally, the prospect of

converting back the aesthetically and harmonically ”corrected” musical piece to a newly

refined street or urban design.

The presented platform comprises of three scenes, which compile the three main parts

of the system’s interface; e.g., the 3D scene, the Digital Audio Workstation (DAW) scene

and the TouchOSC mobile controller. While interacting with the 3D scene, the user is

able to navigate a 3D street in order to observe the 3D graphical depiction of an urban

environment. The second scene is the implementation of a Digital Audio Workstation

(DAW) program, in which the user is able to see the musical footprint of the street printed

as a MIDI (Musical Instrument Digital Interface) file in order to listen to it and process it.

Processing is conducted via a third tool representing a TouchOSC mobile controller, which

is a virtual mobile console containing faders, potentiometers and buttons. When the users

converts the 3D scene to a musical footprint, they submit the reciprocal transformations

which may be applied to the musical part and then, they are able to navigate a newly

refined street.

Based on a grammar provided by the Digital Media Lab of the School of Architec-

ture, Technical University of Crete which connects musical with architectural elements,

the result is the musical footprint of a street. The basic rules for this translation are:

the height of an element is translated to the pitch of a note, the length of the element

is translated to the duration of the note, and the depth of the element is translated to

the volume of the note. The piano is associated with a window, the flute with a tree,

the xylophone with a balcony, the bass with a door, the cello with a building and the

violin with a larger scale building. The purpose of this thesis is to develop a tool which

utilizes this translation method between music and architecture for compositional exper-

iments on urban design in order to assist designers in 1) identifying urban dissonances,

2) refining their design using musical rules and 3) presenting the output both visually

and acoustically.

Acknowledgements

First of all, i would like to thank my Supervisor, Associate Professor Katerina Mania

for her advice, support and supervision throughout this whole process but also for trusting

me and giving me the opportunity to undertake a project that involving imagination and

creativity.

Next I would like to thank, Assistant Professor Panagiotis Parthenios for his invaluable

knowledge in the historical context of this project. I would like to thank them for their

guidance and support throughout this work and beyond that.

Also, i would like to thank my family and my close friends for their infinite support

and patience.

Fotios Giariskanis
vi

November 2018

Contents

1 Introduction 1

1.1 Brief Description . 1

1.2 Methodology . 4

1.3 Purpose of the Thesis . 6

1.4 Structure of the Thesis . 8

2 Background 9

2.1 Introduction . 9

2.2 Historical Context . 9

2.3 Composition . 12

2.3.1 Counterpoint . 13

2.3.2 Digital Audio Workstation (DAW) 14

2.4 Protocols . 15

2.4.1 Open Sound Control Protocol (OSC) 15

2.4.2 Musical Instrument Digital Information Protocol (MIDI) 16

2.5 Software . 17

2.5.1 Unity . 17

2.5.2 TouchOsc . 18

2.5.3 UniOsc . 18

3 Requirements Analysis 21

3.1 Introduction . 21

3.1.1 General Requirements . 22

3.2 Use Case Scenarios . 23

3.2.1 Urban Street View . 24

Fotios Giariskanis
vii

November 2018

CONTENTS

3.2.2 Digital Audio Workstation View 24

3.2.3 Traslation . 26

3.3 Manual of the System . 27

3.3.1 Manual of the DAW interface . 28

3.3.2 Manual of the TouchOSC . 39

4 Implementation 49

4.1 Introduction . 49

4.2 Flow diagram . 49

4.3 Building Information Model (BIM) . 51

4.3.1 REVIT . 52

4.4 Grammar . 54

4.5 Components . 56

4.5.1 Transform . 56

4.5.2 AudioSource . 57

4.5.3 Scripts . 58

4.6 TouchOsc Controller . 74

5 Conclusion 81

5.1 Demo . 81

5.2 Summary . 85

5.3 Evaluation . 86

5.3.1 Advantages . 86

5.3.2 Disadvantages . 87

5.4 Future Work . 87

References 92

Fotios Giariskanis
viii

November 2018

List of Figures

1.1 Archimusic3D . 3

1.2 Methodology . 5

2.1 Philips Pavilion/Metastaseis B, Iannis Xenakis (1953-1958). 11

2.2 Monastery Sainte Marie de la Tourette (1956-1957) 11

2.3 Composition in Design . 12

2.4 Composition in Music . 13

2.5 Digital Audio Workstation . 14

2.6 OSC protocol . 15

2.7 MIDI protocol . 16

2.8 Unity platform for 3D interactive applications 17

2.9 TouchOSC . 18

2.10 UniOSC . 19

3.1 Street View . 24

3.2 Daw Program View . 24

3.3 Six storey building is converted to A note 26

3.4 Balcony of fourth floor is converted to F note 27

3.5 Part of the Digital Audio Workstation View 28

3.6 Play Button . 28

3.7 Pause Button . 29

3.8 Stop Button . 29

3.9 Mute Button . 29

3.10 New Balcony Button . 30

3.11 New Window Button . 30

Fotios Giariskanis
ix

November 2018

LIST OF FIGURES

3.12 New Door Button . 32

3.13 New Tree Button . 33

3.14 New Larger Scale Building Button . 34

3.15 New One-storey Building Button . 35

3.16 New Two-storey Building Button . 36

3.17 New Three-storey Building Button . 36

3.18 New Four-storey Building Button . 37

3.19 New Five-storey Building Button . 38

3.20 New six-storey Building Button . 39

3.21 TouchOsc Archimusic3D Layout . 40

3.22 Position / Time TouchOsc Fader . 41

3.23 Duration / Length TouchOsc Fader . 42

3.24 Note / Height TouchOsc Fader . 43

3.25 Volume / Depth TouchOsc Fader . 44

3.26 Delete Note Button . 45

3.27 Generate Note Button . 45

3.28 Bar / Camera Position TouchOsc Fader 46

3.29 Bpm / Bar Speed TouchOsc Potentiometer 47

3.30 Camera’s Height TouchOsc Fader . 48

4.1 Flow Diagram . 50

4.2 Building Information Model . 51

4.3 Autodesk Revit . 52

4.4 3D Objects from Revit . 53

4.5 3D Objects in REVIT . 54

4.6 Translation concept . 55

4.7 Translation example . 56

4.8 Tranform Component . 57

4.9 Audiosource Component . 58

4.10 Script Component . 59

4.11 Position / Time Script . 60

4.12 Length / Duration Script . 61

4.13 Height / Pitch Script . 62

Fotios Giariskanis
x

November 2018

LIST OF FIGURES

4.14 Depth / Volume Script . 64

4.15 Delete Script . 65

4.16 Generate Script . 66

4.17 Mute Left Script . 67

4.18 Mute Right Script . 68

4.19 Music Script . 69

4.20 Mouse Manager Script . 70

4.21 Bar Position Script . 71

4.22 Bar Speed Script . 72

4.23 Camera’s height Script . 73

4.24 Archimusic3D Template TouchOSC Editor 74

4.25 position x /time fader . 75

4.26 duration / length fader . 76

4.27 note / height fader . 77

4.28 volume / depth fader . 77

4.29 delete note button . 78

4.30 generate note button . 78

4.31 bar / camera position fader . 79

4.32 bpm / bar speed potentiometer . 79

4.33 camera’s height fader . 80

5.1 Demo - before the Transformations . 83

5.2 Demo - after the Transformations . 84

Fotios Giariskanis
xi

November 2018

LIST OF FIGURES

Fotios Giariskanis
xii

November 2018

Chapter 1

Introduction

1.1 Brief Description

Contemporary cities are live mechanisms, eco-systems, which perform under certain rules

often not visible to the human eye at first sight of their architectural design. An urban

designer needs advanced analytical tools in order to understand the inner-relations and

functions that describe these eco-systems [1]. Many of the recently digitally-crafted

architectural design tools for urban environments fail to address the need for a more

holistic design approach that captures virtual and physical, immaterial and material

including aspects of an urban design which are aesthetic as well as functional. There is

a significant potential in combining the fields of composition in music and architecture

through the use of information technology. Merging the two fields has the potential

to release new, innovative tools for urban designers by uncovering aspects of an urban

design not apparent based on the standard, vision-based digital design tools, introducing

an additional modality of sound and music [2]. This thesis describes an innovative tool

developed at the Technical University of Crete, through which an urban designer can work

on the music transcription of a specific urban environment applying music compositional

rules and filters in order to identify discordant entities, highlight imbalanced parts and

make design corrections.

Acoustic data encoded from the built environment provides a valuable platform on

which discordant entities can be more easily identified and also imbalanced parts get

highlighted. The cognitive process of analyzing today’s chaotic urban eco-system has

been augmented with a new dimension of understanding but also intervening through

Fotios Giariskanis
1

November 2018

1. INTRODUCTION

its musical footprint [2]. The purpose of this thesis is a platform, implemented in the

Unity development engine that offers sonification of an urban virtual environment (UVE),

simulating a real-world cityscape and offering visual interpretation and interactive mod-

ification of its soundscape. The system presented in this thesis offers: First of all, the

ability to view and convert an urban street to music (ready to play) based on a specific

grammar of converting architectural elements to musical elements, secondly, the ability

to transform this music in order to ’harmonize’ it based on musical rules and finally, the

prospect of converting back the aesthetically and harmonically ’corrected’ musical piece

to a newly refined street or urban design.

The presented platform comprises of three scenes, which compile the three main parts

of the system’s interface; e.g., the 3D scene, the Digital Audio Workstation (DAW) scene

and the TouchOsc mobile controller (Figure 1.1) upper and lower part respectively).

While interacting with the 3D scene, the user is able to navigate a 3D street in order to

observe the 3D graphical depiction of an urban environment. The second scene is the

implementation of a Digital Audio Workstation (DAW) program, in which the user is

able to see the musical footprint of the street printed as a MIDI (Musical Instrument

Digital Interface) file in order to listen to it and process it. Processing is conducted via

a third tool representing a TouchOsc mobile controller, which is a virtual mobile console

containing faders, potentiometers and buttons. When the users converts the 3D scene to

a musical footprint, they submit the reciprocal transformations which may be applied to

the musical part and then, they are able to navigate a newly refined street. At first look,

music and architecture seem unrelated, but they share features, which relate to both

architectural and musical composition. The first step is to match the parameters and

architectural elements of the urban eco-system to those of its musical footprint. Based on

a grammar [2] provided by the Digital Media Lab of the School of Architecture, Technical

University of Crete which connects musical with architectural elements, the result is the

musical footprint of a street.

The presented platform named Archimusic3D (Figure 1.1) developed in the Unity

platform features a design tool that provides the visualization of the 3D urban environ-

ment of an urban street and the visualization of its musical footprint ready for reciprocal

transformations between architectural and musical elements and vice versa, based on

the designer’s intuition, aesthetics as well as specified musicology rules. For example, in

relation to a building’s window, the architectural axes of the window are converted into

Fotios Giariskanis
2

November 2018

1.1 Brief Description

Figure 1.1: Archimusic3D

the musical axes of the piano. For instance, the height of the window is converted to

the pitch which the piano plays, the length of the window is converted to the duration

that the piano is playing this pitch and the depth of the window is converted to the

volume that the piano is playing this pitch. The piano is associated with a window, the

flute with a tree, the xylophone with a balcony, the bass with a door, the cello with a

building and the violin with a larger scale building. While users interact with the second

scene representing an implementation of a Digital Audio Workstation (DAW) program,

Fotios Giariskanis
3

November 2018

1. INTRODUCTION

the user can play and stop the sounds of the musical footprint, select and modify the

musical parameters such as the time, the volume and the pitch of any instrument’s note.

At the same time that the user selects and modifies a note, the transformations of the

musical parameters of this note are translated, in real-time, to transformations of the

architectural parameters of the corresponding 3D object. Furthermore, the user has the

ability to add a new note played by any music instrument and by extension a new 3D

object.

1.2 Methodology

The methodology analyzed in this thesis expands the hearing experience of the urban

environment by marking its basic spatial elements and transforming them to sounds.

Using the philosophy behind Xenakis UPIC [3] system as a starting point, we have

developed a translation method according to which geometrical data is translated to

sounds. Street facades, the fundamental imprint of our urban environment, are first

broken down to their main semantic elements. These elements have properties, such as

position and size in a 3D (XYZ) system, which are transcribed into sonic data: length

in the X-axis is mapped to note appearance in time and note duration (tempo), height

in the Y-axis is mapped to note value (pitch) and depth in the Z-axis is mapped to

volume (Figure 1.2). Different elements correspond to different timbre and voids to

pauses (silence). As mentioned before, the piano is associated with a window, the flute

with a tree, the xylophone with a balcony, the bass with a door, the cello with a building

and the violin with a larger scale building.

The objects, such as buildings, which make up an urban street, are converted to

notes played by musical instruments, such as the piano, which make up a music song

and conversely. Any given path of an urban setup can be marked in order to create

its soundscape with sounds produced by selected musical instruments. A simulation of

an urban environment is created including urban elements fundamental for ”reading”.

Building blocks are provided by the system and external elements can be included.

The application supports five types of architectural elements utilized to build a UVE

and consequently for generating sound. These elements are ”Buildings”, ”Larger Scale

Buildings”, ”Windows”, ”Balconies”, ”Doors” and ”Trees”. One can use these elements

Fotios Giariskanis
4

November 2018

1.2 Methodology

Figure 1.2: Methodology

to build complex urban environments including architectural elements which can be trans-

formed to a sound. In this thesis, we have made the decision to associate the piano with

the window, the flute with the tree, the xylophone with the balcony, the bass with the

door, the cello with the building and the violin with the larger scale building. These

elements are 3D shapes and as such have the following properties: height, length and

depth. As a basic unit for mapping, height to note value is the ”FLOOR” on which the

object is located. The floor is considered to be 3 m high. The first floor is mapped to C,

the second to D, the third to E, and so on. As for the length, 1 m is mapped to 1 sec

note duration. For example, if we have a building that is 10 m high and 15 m long, it

would be translated to the F note with a duration of 15 secs. Respectively, a building or

a balcony that is protruding will sound more intense and one that is recessed will have a

lower volume, thus mapping the perception that it is further away [2].

The notes take values from the C-major scale which is the most common key signature

in the Western music. In order to map architecture to music, the user specifies paths

(lines) in the scene that he or she wants to hear. The sound imprint of the selected

objects in the Virtual Environment (VE) is created by scanning the path in which they

are located. As the scanning progresses, the notes and sound parameters that represent

the path’s architectural objects are written as MIDI messages in a simulation of a MIDI

file. Every type of architectural object is mapped to a channel in the MIDI file and is

played by a different music instrument. Then, the file is opened in an MIDI editor for

modifying and the architectural impact of the scanned path is visible in real time.

Fotios Giariskanis
5

November 2018

1. INTRODUCTION

The Archimusic3D platform also supports the reverse translation: music to architec-

ture. This is achieved using the channel information of the music score and the time to

spatial relationship that exists between notes and 3D objects. Based on the channel or

instrument information, buildings, openings, and other architecture elements are created

and based on the note value, duration and volume, the height, length, and depth are set.

The algorithm can be explained as follows: first, find the type of instrument that the

notes belong to in order to find the architectural group and then scan the MIDI file from

left to right to match the beginning and the ending of the sound path.

1.3 Purpose of the Thesis

Since in most cases the current image of our cities is not the result of a single, coherent,

decision making process, there is an opportunity with the proposed methodology to

apply meaning to chaos: in other words, to design. By highlighting the strong inner

values and relationships between the prime particles (atoms, bits and notes) of an eco-

system and by eliminating the alien interferences, this platform provides valuable tools

to assist designers in preserving the eco-systems viability and originality. Furthermore,

this eco-systemic methodology has the potential to reveal key patterns, not visible to the

human eye, which can then be further analyzed and re-used in attempts to create new

eco-systems from scratch.

The research has shown that there is significant potential in trying to apply composi-

tional techniques from the field of music to the field of urban design with the use of infor-

mation technology. The purpose of this thesis is an innovative design tool which exploits

music’s compositional rules for the design of refined urban environments. This platform

supoorts a more holistic design approach based on the generation and the processing of

the musical footprint of an ”chaotic” urban environment, in order to ’harmonize’ it based

on musicology rules.

The proposed method needs to be tested in specific case studies (take certain streets

from different cities and translate them into sounds) in order to calibrate the system and

validate the method. These case studies can be followed by a series of surveys in order

to get feedback from citizens on issues such as harmony, beauty and tense, as well as on

which version of the facade they prefer. Having the ability to edit the acoustic imprint of

an urban environment and experiment with different music composition rules and filters

Fotios Giariskanis
6

November 2018

1.3 Purpose of the Thesis

provides urban designers an extended, augmented, cognition level for tuning the result

and eliminate discordant elements. The result of this processing is a new elegant song

and at the same time a new refined 3D urban street. Furthermore, famous music songs

can be converted into 3D neighbourhoods.

Fotios Giariskanis
7

November 2018

1. INTRODUCTION

1.4 Structure of the Thesis

Chapter 1 introduces a brief description of Archimusic3D platform’s purpose and func-

tionality.

Chapter 2 analyzes the historical context in relation to architectural design, theory of

music and their combination (Archimusic3D). It focuses on the concept of composition

in both music and architecture. It analyzes the technical tools, libraries and protocols

employed in this thesis such as the Digital Audio Workstation, the Open Sound Control

Protocol (OSC), the Musical Instrument Digital Information Protocol (MIDI), the Unity

engine and libraries employed for the programmability of 3D interactive applications,

the TouschOSC modular OSC and MIDI control surface for iOS and Android and the

UniOSC tool.

Chapter 3 presents the user requirements’ gathering and use cases illustrating the

possible interactions between the user and the platform. The three main interface scenes

of the platform are described, namely the 3D scene, the Digital Audio Workstation View

and the TouchOSC mobile controller View. A summary of the grammar for converting

architectural elements to sound is offered.

Chapter 4 describes in detail the technical implementation of the Archimusic3D plat-

form presented in this thesis. This chapter presents the final design of the platform’s

User Interface and the technical methodology which allowed the required functionality

to be incorporated in the system employing the protocols and technical tools described

in Chapter 2.

Chapter 5 offers a summary of Archimusic3D. It also provides an expert’s evaluation

of the system as well suggestions for future improvements.

Fotios Giariskanis
8

November 2018

Chapter 2

Background

2.1 Introduction

In order to understand in depth the ways in which architecture and music can be con-

nected and combined, both as sciences and as arts, someone should first study each of

these two, regarding terminology, rules, and the technical tools used for architecture and

musical composition. It also essential to the study the attempts and the approaches

that have been adopted by both artists and scientists, in order to connect music with

architecture.

2.2 Historical Context

Spatial mental knowledge processing is a research area quite favourable by many theo-

reticians, urban planners and architects who are interested in finding ways to effectively

represent the ”reading” of the city. Whether it is called spatial images (Lynch), spatial

schemata (Lee), mental maps (Gould and White), spatial mental models (Tversky) or

cognitive collages (Tversky) the hunt for a successful vocabulary for the city’s form has

been more frequently based on empiricism. With the shift in the 60s and 70s by Kevin

Lynch and Christopher Alexander towards a more human articulation of the city, a pos-

teriori studies took the lead and researchers where prompted to base their findings on

induction rather than deduction. Kevin Lynch introduced the concept of place legibility,

which refers to the coherence of a place through its distinctive characteristic parts. Lynch

Fotios Giariskanis
9

November 2018

2. BACKGROUND

proposed five types of elements which are essential in order to configure a city’s image-

ability an other concept by Lynch: paths (linear elements on which the observer usually

moves), edges (used to separate one area from another), districts (main components of

the city with common characteristics), nodes (strategically placed points where people

meet or use in order to commute) and landmarks (similar to nodes but highly detectable,

they help people to navigate and orient themselves in the city) [4].

There are common music patterns of translated neighbourhood facades between signif-

icantly different neighbourhoods of different cities, which suggest a deeper inner relation

not so much in a quantitative level as in a more conceptual, qualitative, perhaps even

emotional level of spatial perception. Compared urban sections share common character-

istics in terms of tonality, rhythm or pauses revealing types of urban soundscapes which

function independently from their geometrical values or the typical architectural vocab-

ulary. Emerged similarities urge for further research in order to investigate whether the

seemingly divergent parts of a city or separate cities share tangible common qualities

which are able to affect the values that determine the livability of a contemporary urban

environment [1].

Markos Novak [5] invents the term archimusic, in order to describe the art and science

that results from the conflation of architecture to music, and is to visualization as knowl-

edge is to information. In the context of cyberspace and artificial nature, Novak makes

a distinction between the archimusic within information and the archimusic of informa-

tion: Archimusic within information is architecture and music combined and extended

to exist within virtual worlds, but still investigating the preoccupations of our familiar

worlds. Archimusic of information is the architecture and music that is directly implicit

in the artificial nature of cyberspace. Novak’s notion that architecture and music are

freed from their limitations to matter and sound, respectively, is in reference to Iannis

Xenakis’ view of music ”inside-time” and music ”outside-time,” as presented in his book

Formalized Music [6]. The dual proficiency of Xenakis in the fields of music and architec-

ture, as well as his collaboration with Le Corbusier, led to explorations and innovations

in composing in space and time. Famous examples include the Philips Pavilion for Expo

1958 in Brussels (Figure 2.1) [7] and the design and construction of the monastery Sainte

Marie de la Tourette (Figure 2.2) [8] as explained below (Figure 2.2).

The Philips Pavilion, by Xenakis and Le Corbusier, consisted of nine hyperbolic

paraboloids instead of flat surfaces and the music was spatialized. Thus, the concept

Fotios Giariskanis
10

November 2018

2.2 Historical Context

Figure 2.1: Philips Pavilion/Metastaseis B, Iannis Xenakis (1953-1958).

Figure 2.2: Monastery Sainte Marie de la Tourette (1956-1957)

of virtual and real space emerged. As basis for the design of the pavilion, Xenakis used

his work Metastasis, which was based on the designs and mathematical proportions given

by Le Corbusier’s Modulor, in order to compose the micro- and macrostructure of the

Fotios Giariskanis
11

November 2018

2. BACKGROUND

piece in time. The overall structure and the control of elements, such as the massive

glissandi, resulted in the idea of the hyperbolic paraboloids used in the pavilion. In the

monastery of La Tourette, Xenakis’ detailed work on rhythm proved crucial in designing

the undulating panes of the facade. This was achieved by interpreting them in terms of

the density of the inner structure of the panes, thus, achieving a contrapuntal texture.

Despite the fact that we often think of architecture as material and music as immaterial,

we should reconsider the relationship of these two sister arts through a more holistic

approach, liberating them from the strict blinders that Western civilization has endowed

us. The challenge is to embrace the concept that architecture can lie beyond buildings

and music beyond sound.

2.3 Composition

The word composition comes from the Latin componere, meaning ”put together” and its

meaning remains close to this. Writing classes are often called composition classes and

Figure 2.3: Composition in Design

writing music is also called composition. This can also describe things besides writing that

are ”put together (Figure 2.3).” Someone could say an abstract painting has an interesting

composition. Any mixture of ingredients can be called a composition. Geologists study

Fotios Giariskanis
12

November 2018

2.3 Composition

the composition of the earth: what it’s made of and how it formed. In the visual arts,

composition is the placement or arrangement of visual elements or ’ingredients’ in a work

of art, as distinct from the subject. It can also be thought of as the organization of the

elements of art. Musical composition can refer to an original piece of music, either a

song or an instrumental music piece, the structure of a musical piece, or the process of

creating or writing a new song or piece of music. The word ”song” is widely misused by

people in the popular music industry to describe any musical composition, whether sung

or played only by instruments [9].

2.3.1 Counterpoint

In music, counterpoint is the relationship between voices that are harmonically interde-

pendent (polyphony) yet independent in rhythm and contour (Figure 2.4) [10]. It has

Figure 2.4: Composition in Music

been most commonly identified in the European classical tradition, strongly developing

during the Renaissance and in much of the common practice period, especially in the

Baroque. The term originates from the Latin punctus contra punctum meaning ”point

against point”. Counterpoint has been used to designate a voice or even an entire com-

position. Counterpoint focuses on melodic interaction only secondarily on the harmonies

produced by that interaction. In the words of John Rahn: It is hard to write a beautiful

Fotios Giariskanis
13

November 2018

2. BACKGROUND

song. It is harder to write several individually beautiful songs that, when sung simulta-

neously, sound as a more beautiful polyphonic whole. The internal structures that create

each of the voices separately must contribute to the emergent structure of the polyphony,

which in turn must reinforce and comment on the structures of the individual voices. The

way that is accomplished in detail is ’counterpoint’. Counterpoint theory has been given

a mathematical foundation in the work initiated by Guerino Mazzola. In particular, his

model gives a structural (and not psychological) foundation of forbidden parallels of fifths

and the dissonant fourth. The model has also been extended to microtonal contexts by

Octavio Agustin [11].

2.3.2 Digital Audio Workstation (DAW)

The Digital Audio Workstation is the the modern descendant of the counterpoint. A

Figure 2.5: Digital Audio Workstation

Digital Audio Workstation (DAW)(Figure 2.5) [12] is an electronic device or application

Fotios Giariskanis
14

November 2018

2.4 Protocols

software used for recording, editing and producing audio files. DAWs come in a wide

variety of configurations from a single software program on a laptop, to an integrated

stand-alone unit, all the way to a highly complex configuration of numerous components

controlled by a central computer. Regardless of configuration, modern DAWs have a

central interface that allows the user to alter and mix multiple recordings and tracks

into a final produced piece. DAWs are used for the production and recording of music,

songs, speech, radio, television, soundtracks, podcasts, sound effects and nearly any other

situation where complex recorded audio is needed [13].

2.4 Protocols

In this thesis, the following protocols were implemented to create a platform which is

simulating a DAW program.

2.4.1 Open Sound Control Protocol (OSC)

Open Sound Control (OSC) (Figure 2.6) [14] is a protocol for networking sound synthe-

sizers, computers and other multimedia devices for purposes such as musical performance

or show control.

Figure 2.6: OSC protocol

OSC’s advantages include interoperability, accuracy, flexibility and enhanced organi-

zation and documentation. In this thesis, the OSC protocol is implemented to provide to

the user the ability to make transformations on either music’s or the architecture’s param-

eters [15]. The platform should provide, to the user, the ability to apply transformations

on musical features of the notes (such as the time, duration, pitch, volume) and to apply

Fotios Giariskanis
15

November 2018

2. BACKGROUND

transformations on architectural features of the corresponding objects (such as the posi-

tion, length, height, depth). In this thesis, for the implementation of the OSC protocol,

the TouchOsc mobile application representing the transformations’ controller and the

UniOSC Unity’s asset for connecting the TouchOsc mobile application with Unity, are

combined.

2.4.2 Musical Instrument Digital Information Protocol (MIDI)

Musical Instrument Digital Interface(MIDI)(Figure 2.7) [16] is a technical standard

that describes a communications protocol, digital interface, and electrical connectors that

connect a wide variety of electronic musical instruments, computers, and related audio

devices. MIDI carries event messages that specify notation, pitch, velocity, vibrato,

Figure 2.7: MIDI protocol

panning, and clock signals which set tempo. For example, a MIDI keyboard or other

controller might trigger a sound module to generate sound produced by a keyboard

amplifier. MIDI data can be transferred via MIDI cable, or recorded to a sequencer to be

edited or played back. A file format that stores and exchanges the data is also defined.

Advantages of MIDI include small file size, ease of modification and manipulation and

a wide choice of electronic instruments and synthesizer or digitally-sampled sounds [17].

In this thesis, the MIDI protocol is implemented to provide the visualization of a musical

Fotios Giariskanis
16

November 2018

2.5 Software

song. In this thesis, when referring to the visualization of a musical song we mean the

actual visualization of the notes which are played by different musical instruments which

make up the musical footprint. This musical footprint results from translating an urban

street or area to a musical piece based on the translation grammar specified in the system.

2.5 Software

In this thesis, in order to implement the Archimusic3D platform and the protocols men-

tioned earlier, the below programming platforms and libraries are combined.

2.5.1 Unity

Unity(Figure 2.8) is a cross-platform environment for the development and programma-

bility of interactive 3D graphics applications developed by Unity Technologies. Unity

Figure 2.8: Unity platform for 3D interactive applications

offers users the ability to create interactive applications in both 2D and 3D. The platform

offers a primary scripting API in Csharp which is the primary programming language

used for the engine. It also offers visual tools for easy tasks such as importing geometry

based on drag and drop functionality, mainly meant for non-technical users [18]. In this

thesis, the technical implementation of the Archimusic3D platform is based on the ad-

vanced libraries offered by the Unity engine, employed through Csharp. When referring

to the Archimusic3d implementation, we mean the actual implementation and visual-

ization of the two out of the three distinct parts of the user interface, e.g., the Street

View and DAW View and their fuctionality (scripts, buttons, audiosources, tranform) as

analyzed in Section 3.2.

Fotios Giariskanis
17

November 2018

2. BACKGROUND

2.5.2 TouchOsc

TouchOSC(Figure 2.9) is a modular OSC and MIDI control surface for iOS and Android.

Figure 2.9: TouchOSC

It supports sending and receiving messages according to the Open Sound Control and

MIDI protocols [19]. In this thesis, the designer uses the TouchOSC mobile application

in order to apply transformations on either the music’s or the architecture’s parameters.

The TouchOSC mobile app is the third distinct part of the Archimusic3D platform. It

provides to the user, the ability to apply transformations to the musical features of the

notes (such as the time, duration, pitch, volume) and to the architectural features of

the corresponding objects (such as the position, length, height, depth). In this thesis,

for the implementation of the OSC protocol in Unity, the TouchOsc mobile application

representing the transformations’ controller and the UniOSC Unity’s asset (for connecting

the TouchOsc mobile application with Unity) are combined.

2.5.3 UniOsc

UniOSC (Figure 2.10) is a tool to easily create Unity applications which can be controlled

by hardware and software that use the OSC protocol for communication. Someone can

use UniOSC to either send or receive OSC messages to or from other devices that are

connected via Wi-Fi or create own GUI-app for controlling another Unity application

via OSC. However, it is strongly recommended using a third party software such as

TouchOSC for creating the GUI part [20]. In this thesis, the UniOsc is used to transport

data from the TouchOsc mobile application (data from TouchOsc’s faders, potentiometers

and buttons) to Unity (for using the data from UniOsc tranformations’ scripts).

Fotios Giariskanis
18

November 2018

2.5 Software

Figure 2.10: UniOSC

Fotios Giariskanis
19

November 2018

2. BACKGROUND

Fotios Giariskanis
20

November 2018

Chapter 3

Requirements Analysis

3.1 Introduction

Contemporary cities are live mechanisms, eco-systems, which perform under certain rules

often not visible to the human eye at first sight. An urban designer needs advanced

analytical tools in order to understand the inner-relations that describe these eco-systems.

Even many of the recently crafted digital design tools for urban environments fail to

address the need for a more holistic design approach that captures virtual and physical,

immaterial and material including aspects of an urban design which are aesthetic as well

as functional. There is a significant potential in combining the fields of composition

in music and architecture through the use of information technology. Merging the two

fields has the intense potential to release new, innovative tools for urban designers by

uncovering aspects of an urban design not apparent based on the standard, vision-based

digital design tools, introducing an additional modality of sound and music. This thesis

describes an innovative tool developed at the Technical University of Crete, through which

an urban designer can work on the music transcription of a specific urban environment

applying music compositional rules and filters in order to identify discordant entities,

highlight imbalanced parts and make design corrections.

The presented conceptual design tool connects music and architecture, based on the

notion of ’composition’ common to both fields, in order to result to refined urban envi-

ronments such as a new refined 3D urban street. The music can play a significant role as

a creative modality in order to produce desired and effective architectural designs. The

creativity of the musicians can help to produce refined streets and by extension build

Fotios Giariskanis
21

November 2018

3. REQUIREMENTS ANALYSIS

refined cities. The user of the platform should have the concurrent ability to view the

visualization of an urban street as well as listen to the sound of the city which comprises

of architectural elements converted to music. It is significant to accurately define the

functional elements of a complex user interface which connects vision and sound to be

interactively manipulated. In addition, it has to be determined how these functions will

be included in separate but connected user interfaces, how the user interacts with them

and, finally, which musical or architectural form the final scenes or soundscapes will have.

We refer to the completed system as Archimusic3D.

3.1.1 General Requirements

The requested functionality of the proposed system is mentioned below:

1. An urban street should contain specific objects (such as Buildings, Balconies,

Doors, Trees), whose features are variable (such as height, length and depth). The user

should be available to navigate the visualization of this 3D urban environment in order to

observe it, therefore, a user interface window visualizing 3D scenes offering 3D navigation

should be included.

2. Specific architectural elements such as the ones mentioned above should convert

into notes which are played by specific musical instruments (such as the piano, flute, bass,

guitar). These notes have also variable features (such as pitch, duration and volume),

whose values are computed by the translation to music of the architectural features of

the corresponded objects. The user should be available to view the visualization of the

urban environment’s musical footprint containing notes played from a variety of musical

instruments. The conversion follows grammar rules described in Section 3.2.3.

3. Several different urban streets can be generated including exactly the same archi-

tectural elements, depending on the position of these elements on the street. Similarly,

several different songs can be generated with exactly the same notes, played by specific

musical instruments, depending on the time interval for which these notes are playing.

Hence, the user should listen to the musical footprint of each urban environment in order

to observe the differentiation of the the acoustic output of each urban street converted to

a musical footprint. In order to satisfy this requirement, a window representing a Digital

Audio Workstation (DAW) program should be included.

Fotios Giariskanis
22

November 2018

3.2 Use Case Scenarios

4. The user should have the ability to transform the features of the existing notes

(for example to change the pitch, duration, volume,time that a note is playing) and the

ability to add new notes played by any selected musical instrument. The transformations

of the resulting existing notes should be translated in real-time to transformations of

the architectural features (height, length, depth, position of the corresponded objects)

signifying transformations of the 3d architectural elements of the urban street. In order

to satisfy this requirement, a user interface representing a TouchOsc mobile controller

(Figure 3.21), which is a virtual mobile console containing faders, potentiometers and

buttons, should be included.

3.2 Use Case Scenarios

In order to satisfy the required specifications, it was decided to employ the Unity pro-

gramming environment for interactive 3D applications, featuring a split screen design

tool. The user interface provides at the half upper screen the visualization of the 3D

urban environment of an urban street (Street View) and at the half bottom screen the

visualization of its musical footprint, ready for musical transformations (DAW Program

View). In order to use the platform, the designer runs on the build of the Archimusic3D

Unity’s project, having also available a smartphone, on which the TouchOSC application

is installed. The user can listen to the sounds that make up the musical footprint of the

visualized urban street, while at the same time viewing the 3D urban street in order to

observe the refined architectural objects as transformed based on musical conversions.

Summarizing, the presented platform comprises of three scenes, which compile the

three main parts of the system’s interface; e.g., the 3D scene, the Digital Audio Work-

station (DAW) scene and the TouchOsc mobile controller (Figure 1.1, upper and lower

part respectively). While interacting with the 3D scene, the user is able to navigate a

3D street in order to observe the 3D graphical depiction of an urban environment. The

second scene is the implementation of a Digital Audio Workstation (DAW) program, in

which the user is able to see the musical footprint of the street printed as a MIDI file

(Musical Instrument Digital Interface) in order to listen to it and process it via a third

tool representing a TouchOsc mobile controller, which is a virtual mobile console contains

faders, potentiometers and buttons. When users convert the 3D scene to a musical foot-

Fotios Giariskanis
23

November 2018

3. REQUIREMENTS ANALYSIS

print, they submit the reciprocal transformations which may be applied to the musical

part and then, they are able to navigate a newly refined street.

3.2.1 Urban Street View

Figure 3.1: Street View

Interacting with the interface shown at Figure 3.1, the user has the ability to navigate

the 3D urban street, in order to obverse it. The user can change the Camera’s Components

such as the position, height and rotation via the TouchOsc controller.

3.2.2 Digital Audio Workstation View

Figure 3.2: Daw Program View

By interacting with the interface shown at Figure 3.2, the user is able to view the

street’s resulting musical footprint, in order to listen, obverse and modify it. The user can

play and stop the sounds of the musical footprint, mute a speaker (Left / Right), select

and modify the musical parameters (such as the time, duration,the volume and the pitch

Fotios Giariskanis
24

November 2018

3.2 Use Case Scenarios

that the note is played) of any note played by any instrument via the TouchOsc controller.

As the user selects and modifies a note, concurrently, the resulting transformations of

the musical parameters of any note are translated, in real-time, to transformations of the

architectural parameters of the corresponding 3D object (such as the position, length,

depth and the height of that object). Furthermore, the user has the ability to add a

new note by any musical instrument and by extension, add a new 3D object representing

a specific architectural feature. The buttons as shown in Figure 3.2 are going to be

explained in detail below. The magenta bars included in the grey part of the interface

represent the buildings differentiated by their height represented by the varied height of

the bars. The small green lines appearing on the magenta bars represent the balconies of

the buildings. There are also brown spots at a low level of the magental bars representing

doors. The green bars signify the trees included in the scene. The pink squares represent

the larger scale buildings and the blue dots inside these squares represent the windows

of the larger scale buildings.

The user is able to interact with these elements of the grey area of the DAW interface

by selecting any bar and at the time of selection, the code connecting this interface with

the TouchOSC interface are enabled. If the user selects a magenta bar, then through the

TouchOSC interface, the position on the x-axis, the length, the volume of the correspond-

ing note and other changes included in the TouchOSC interface. For these buildings, the

user cannot change the height of the building. By changing, though, the position and

the scale-x of the building (length), we also change the exact time and the duration the

note is being played. The user can also select the green bars signifying trees and then,

based on the TouchOSC interface, we can change the position, length and the scale of

the tree on the y-axis. Concurrently, we change the music’s parameters which correspond

to the position (time when the note is being played), the length (duration of music to

be played) and the scale y-axis (pitch). The volume signifies how far away the object is

moved from the street. In relation to the pink larger-scale buildings, when we select the

pink area, we can alter the same parameters as mentioned above for the green bars (trees)

including the height of the building. When selecting the blue dots inside the pink squares

signifying the windows of larger-scale buildings, then through the TouscOSC controller

we can change position x-axis, length and volume as previously. The only difference is

when changing the position on the y-axis of the windows this signifies the pitch. Because

the trees and buildings lie on the ground, pitch is signified by scale.

Fotios Giariskanis
25

November 2018

3. REQUIREMENTS ANALYSIS

3.2.3 Traslation

At first look, music and architecture seem unrelated, but they share features. The first

step is to match the various parameters and variables of the urban eco-system to those

of its musical footprint. The Digital Media Lab from the School of Architecture, Tech-

nical University of Crete, has developed a translation method [2] between music and

architecture for compositional experiments on urban design. According to this method,

different urban and architectural elements that define streetscapes are converted into

musical notes based on their geometrical properties (x-y-z position, size, etc). The ar-

chitectural objects (such as buildings) which make up an urban street are converted to

notes played by musical instruments (such as the piano), which make up a music song,

and conversely. Any given path of an urban setup can be marked in order to create

its soundscape with sounds produced by selected musical instruments. A simulation of

an urban environment is created including urban elements fundamental for ”reading”.

Building blocks are provided by the system and external elements can be included.

Figure 3.3: Six storey building is converted to A note

The application supports five types of architectural elements utilized to build an urban

3D environment and consequently for generating sound. These elements are ”Buildings”,

”Larger Scale Buildings”, ”Windows”, ”Balconies”, ”Doors” and ”Trees”. One can use

these elements to build complex urban environments which can be transformed to a

sound. In this thesis, we have made the decision to associate the piano with the window,

the flute with the tree, the xylophone with the balcony, the bass with the door, the cello

with the building and the violin with the larger scale building. These elements are 3D

shapes and as such have the following properties: height, length and depth. As a basic

Fotios Giariskanis
26

November 2018

3.3 Manual of the System

Figure 3.4: Balcony of fourth floor is converted to F note

unit for mapping, height to note value is the ”FLOOR” on which the object is located.

The basic rules for this translation are: the height of an element is translated to the pitch

of a note, the length of the element is translated to the duration of the note, and the

depth of the element is translated to the volume of the note. The floor is considered to

be 3 m high. The first floor is mapped to C, the second to D, the third to E, and so on.

As for the length, 1 m is mapped to 1 s note duration. For example, if we have a building

that is 10 m high and 15 m long, it would be translated to the F note with a duration of

15 secs. Respectively, a building or a balcony that is protruding will sound more intense

and one that is recessed will have a lower volume, thus, mapping the perception that it

is further away. In Figure 3.3 a six-storey building is converted to the A note played by

a cello and in figure 3.4 a balcony of the fourth floor is converted to the F note played by

a xylophone. When we refer to a ’play-bar’ we mean the white cube shown in Figure 3.4

which traverses the notes of the musical footprint of an urban scene to be concurrently

played.

3.3 Manual of the System

The way in which the user interacts with the platform and uses it is distinguished in two

parts. For the first part the user is able to use the mouse to select an object such as

a note or a button. For the second part the user has the ability through the TouchOsc

Controller to intervene on the platform’s Components as explained in Section 3.3.2.

Fotios Giariskanis
27

November 2018

3. REQUIREMENTS ANALYSIS

3.3.1 Manual of the DAW interface

By interacting with the interface representing the simulation of a DAW program, the

user is able to transform a note and press a button using a left mouse click (Figure 3.5).

Figure 3.5: Part of the Digital Audio Workstation View

• Play Button

Figure 3.6 shows the play button. When this button is pressed, the play-bar starts

moving and the music begins to play. When referring to ’music’ we mean the actual

musical footprint which results from translating an urban street to a musical piece

based on the translation grammar specified in the system, as explained in 3.2.3.

Figure 3.6: Play Button

• Pause Button

Figure 3.7 shows the pause button. When this button is pressed, the play-bar stops

to move and the music stops. When referring to ’music’ we mean the actual musical

footprint which results from translating an urban street to a musical piece based

on the translation grammar specified in the system.

• Stop Button

The Figure 3.8 shows the stop button. When this button is pushed the play-bar

moves to the start of the musical footprint and the music stops. When referring

to ’music’ we mean the actual musical footprint which results from translating an

Fotios Giariskanis
28

November 2018

3.3 Manual of the System

Figure 3.7: Pause Button

urban street to a musical piece based on the translation grammar specified in the

system.

Figure 3.8: Stop Button

• Mute Button

The Figure 3.9 shows the mute left / right speaker button. With this button the

user can mute the sounds of any speaker. This button can be enabled or disabled.

Figure 3.9: Mute Button

• Balcony Button

The Figure 3.10 shows the ”generate a new balcony” button. This button can be

enabled or disabled. This button receives information from the TouchOSC con-

troller. When this button is pressed, the ”generate note” button (Figure 3.27) of

the TouchOsc controller is enabled. After this action, when the ”generate note”

button of the TouchOSC controller is pressed, a new balcony of the fourth floor is

generated and is converted to the F note played by an xylophone as defined by the

grammar, as shown in Figure 3.10.

Fotios Giariskanis
29

November 2018

3. REQUIREMENTS ANALYSIS

Figure 3.10: New Balcony Button

• Window Button

The Figure 3.11 shows the ”generate a new window” button. This button can be

Figure 3.11: New Window Button

enabled or disabled. This button receives information from the TouchOSC con-

troller. When this button is pressed, the ”generate note” button(Figure 3.27) of

the TouchOsc controller is enabled. After this action, when the ”generate note”

button of the TouchOSC controller is pressedd, a new window is generated and is

converted to the F (note) played by a piano. The fact that the F note is played is

Fotios Giariskanis
30

November 2018

3.3 Manual of the System

due to the fact that geometry generation occurs at a specific height which translates

to the F note. Now, when moving the F note then the window is being moved to the

desired location which corresponds to a different note. The architectural elements’

movement is being controlled by movement of the notes and not direct movement

of the geometry in the 3D scene interface.

Fotios Giariskanis
31

November 2018

3. REQUIREMENTS ANALYSIS

• Door Button

The Figure 3.12 shows the ”generate a new door” button. This button can be en-

abled or disabled. This button receives information from the TouchOSC controller.

When this button is pressed, the ”generate note” button (Figure 3.27) of the Tou-

chOsc controller is enabled. After this action, when the ”generate note” button

of the TouchOSC controller is pressed, a new door of the door is generated and is

converted to the C note played by a bass. The generation of the door geometry

is placing the door below the windows and balconies, this is why the C note is

generated. For the door to be moved, the C note is being selected in the DAW

interface and by moving the note, the door is simultaneously moved in the desired

position.

Figure 3.12: New Door Button

• Tree Button

The Figure 3.13 shows the ”generate a new tree” button. This button can be

enabled or disabled This button receives information from the TouchOSC controller.

Figure 3.13 shows the ”generate a new tree” button. When this button is pressed,

the ”generate note” button (Figure 3.27) of TouchOsc controller is enabled. After

this action, when the ”generate note” button of the TouchOSC controller is pressed,

a new tree is generated and is converted to the G played by a flute as defined by

the geometrical placement of the tree. The G note represents the highest point of

Fotios Giariskanis
32

November 2018

3.3 Manual of the System

the tree. It is shown as a bar in Figure 3.13, because, as defined by the system,

trees, buildings and larger-scale buildings have as a base the ground plane and their

height is signified by their length (scale on the y-axis). For the other objects (such

as doors, balconies, etc), we take as their note equivalent their x-axis position in

space.

Figure 3.13: New Tree Button

Fotios Giariskanis
33

November 2018

3. REQUIREMENTS ANALYSIS

• Larger Building Button

The Figure 3.14 shows the ”generate a new larger scale building” button. This

button can be enabled or disabled. This button receives information from the

TouchOSC controller. When this button is pressed, the ”generate note” button

(Figure 3.27) of the TouchOSC controller is enabled. After this action, when the

”generate note” button of TouchOSC controller is pressed, a new larger building is

generated and is converted to the F note played by a violin. Similarly with trees,as

defined by the system, trees, buildings and larger-scale buildings have as a base the

ground plane and their height is signified by their length (scale on the y-axis). For

the other objects (such as doors, balconies, etc), we take as their note equivalent

their x-axis position in space.

Figure 3.14: New Larger Scale Building Button

• Button 1

The Figure 3.15 shows the ”generate a new one-storey building” button.

This button can be enabled or disabled. This button receives information from the

TouchOSC controller. When this button is pressed, the ”generate note” button of

the TouchOSC controller is enabled. After this action, when the ”generate note”

button (Figure 3.27) of TouchOSC controller is pressed, a new one-storey building

is generated and is converted to the C played by a cello. As defined by the system,

buildings of any height and larger-scale buildings have as a base the ground plane

and their height is signified by their length (scale on the y-axis). For the other

Fotios Giariskanis
34

November 2018

3.3 Manual of the System

Figure 3.15: New One-storey Building Button

objects (such as doors, balconies, etc), we take as their note equivalent their x-axis

position in space.

• Button 2

The Figure 3.16 shows the ”generate a new two-storey building” button. This

button can be enabled or disabled. This button receives information from the

TouchOSC controller. When this button is pressed, the ”generate note” button

(Figure 3.27) of the TouchOSC controller is enabled. After this action, when the

”generate note” button of the TouchOSC controller is pressed, a new two-storey

building is generated and is converted to the D note played by a cello. The same

applies as previously for buildings of any height.

Fotios Giariskanis
35

November 2018

3. REQUIREMENTS ANALYSIS

Figure 3.16: New Two-storey Building Button

• Button 3

The Figure 3.17 shows the ”generate a new three-storey building” button. This

Figure 3.17: New Three-storey Building Button

button can be enabled or disabled. This button receives information from Tou-

chOSC controller. When this button is pressed, the ”generate note” button of the

TouchOSC controller is enabled. After this action, when the ”generate note” but-

ton (Figure 3.27) of TouchOSC controller is pressed, a new three-storey building

is generated and is converted to E note played from a cello. The same applies as

previously for buildings of any height.

Fotios Giariskanis
36

November 2018

3.3 Manual of the System

• Button 4

The Figure 3.18 shows the ”generate a new four-storey building” button. This

button can be enabled or disabled. This button receives information from the

TouchOSC controller. When this button is pressed, the ”generate note” button(

Figure 3.27) of the TouchOSC controller is enabled. After this action, when the

”generate note” button of TouchOSC controller is pressed, a new four-storey build-

ing is generated and is converted to the F note played by a cello. The same applies

as previously for buildings of any height.

Figure 3.18: New Four-storey Building Button

Fotios Giariskanis
37

November 2018

3. REQUIREMENTS ANALYSIS

• Button 5

The Figure 3.19 shows the ”generate a new five-storey building” button. This

button can be enabled or disabled. This button receives information from the

TouchOSC controller. When this button is pressed, the ”generate note” button

(Figure 3.27) of the TouchOSC controller is enabled. After this action, when the

”generate note” button of TouchOSC controller is pressed, a new five-storey build-

ing is generated and is converted to the G note played by a cello. The same applies

as previously for buildings of any height.

Figure 3.19: New Five-storey Building Button

Fotios Giariskanis
38

November 2018

3.3 Manual of the System

• Button 6

The Figure 3.20 shows the ”generate a new six-storey building” button. This button

Figure 3.20: New six-storey Building Button

can be enabled or disabled. This button receives information from the TouchOSC

controller. When this button is pressed, the ”generate note” button(Figure 3.27)

of the TouchOsc controller is enabled. After this action, when the ”generate note”

button of the TouchOSC controller is pushed, a new six-storey building is generated

and is converted to the A note played by a cello.

3.3.2 Manual of the TouchOSC

The TouchOSC mobile controller which runs on an Android mobile device and commu-

nicates with the main system running on a desktop PC, is used for transformations of

musical features of notes and architectural features of objects. The TouchOSC mobile

application is connected to the main platform via the UniOSC asset. Archimusic3D’s

TouchOSC template provides two buttons, six faders and two potentionmeters which are

employed to apply transformations on musical and architectural components as analyzed

below.

Fotios Giariskanis
39

November 2018

3. REQUIREMENTS ANALYSIS

Figure 3.21: TouchOsc Archimusic3D Layout

• time / position x fader

The ”time / position x” fader, as shown in Figure 3.21 in grey colour, of the

Archimusic3D TouchOSC’s mobile template, is the fader which specifies the exact

timining on which the selected note is played and the position X of the corre-

sponding selected object receives concurrently. Figure 3.22 shows an example of

what happens. Initially, the user selects through a left mouse click a note (shown in

green) by interacting with the DAW scene as shown on the right side of Figure 3.22.

Subsequently, the user moves the grey slider of the TouchOSC controller on the left

side of Figure 3.22. By initially selecting a note, the user is basically also selecting

the architectural element of the 3D scene which this particular note represents.

In this case, this is a balcony. By moving the slider of the TouchOSC controller,

the balcony moves on the X axis as shown in the central scene of Figure 3.22 and

simultaneously, the note representing the balcony moves in relation to when it is

played. As we can see in Figure 3.22, the note initially (before interacting with the

TouchOSC controller) is played at around timing 2 (as shown in green colour in

the DAW interface). After interacting with the TouchOSC controller, the note is

played around timing 10.

Fotios Giariskanis
40

November 2018

3.3 Manual of the System

Figure 3.22: Position / Time TouchOsc Fader

• duration / length fader

The ”duration / length” fader, as shown in Figure 3.21 in purple colour, of the

Archimusic3D TouchOSC’s mobile template, is the fader representing the exact

duration of the selected note’s sound and the length of the corresponding selected

object receives concurrently. Figure 3.23 shows an example of what happens. Ini-

tially, the user selects through a left mouse click a note (shown in green) by interact-

ing with the DAW scene as shown on the right side of Figure 3.23. Subsequently,

the user moves the purple slider of the TouchOSC controller on the left side of

Figure 3.23. By initially selecting a note, the user is basically also selecting the

architectural element of the 3D scene which this particular note represents. In

this case, this is a balcony. By moving the slider of the TouchOSC controller, the

balcony’s length is enlarged as shown in the central scene of Figure 3.23 and simul-

taneously, the note representing the balcony’s length in relation to the pitch of the

Fotios Giariskanis
41

November 2018

3. REQUIREMENTS ANALYSIS

Figure 3.23: Duration / Length TouchOsc Fader

note is played. As we can see in Figure 3.23, the note initially (before interacting

with the TouchOSC controller) is started to be played at around timing 2 and it

is finished to be played at around timing 4 (as shown in green colour in the DAW

interface), of duration 2. After interacting with the TouchOSC controller, the note

is started to be played at around timing 2 and it is finished to be played at around

timing 10, now of duration 8.

• note / height fader

The ”note / height” fader, as shown in Figure 3.21 in yellow colour, of the Archimu-

sic3D TouchOSC’s mobile template, is the fader representing the exact pitch of the

selected note’s sound and the height of the corresponding selected object receives

concurrently. The Figure 3.24 shows an example of what happens. Initially, the

user selects through a left mouse click a note (shown in green) by interacting with

the DAW scene as shown on the right side of Figure 3.24. Subsequently, the user

moves the yellow slider of the TouchOSC controller on the left side of Figure 3.24.

By initially selecting a note, the user is basically also selecting the architectural

element of the 3D scene which this particular note represents. In this case, this is

a balcony. By moving the slider of the TouchOSC controller, the balcony’s height

as shown in the central scene of Figure 3.24 is elevated and simultaneously, the

note representing the balcony’s height in relation to how much time the note is

Fotios Giariskanis
42

November 2018

3.3 Manual of the System

Figure 3.24: Note / Height TouchOsc Fader

played. As we can see in Figure 3.24, the note initially (before interacting with the

TouchOSC controller) is a C note (as shown in green colour in the DAW interface)

played by an instrument. After interacting with the TouchOSC controller, the note

is a B note played by an instrument.

• volume / depth fader

The ”volume / depth” fader, as shown in Figure 3.21 in orange colour, of the

Archimusic3D TouchOSC’s mobile template, is the fader representing the exact

volume of the selected note’s sound and the depth of the corresponding selected

object(how far away from street is placed the object) receives concurrently. The

Figure 3.25 shows an example of what happens. Initially, the user selects through a

left mouse click a note (shown in green) by interacting with the DAW scene as shown

on the right side of Figure 3.25. Subsequently, the user moves the orange slider of

the TouchOSC controller on the left side of Figure 3.25. By initially selecting a

note, the user is basically also selecting the architectural element of the 3D scene

which this particular note represents. In this case, this is a balcony. By moving

the slider of the TouchOSC controller, the balcony moves further away from the

Fotios Giariskanis
43

November 2018

3. REQUIREMENTS ANALYSIS

street as shown in the central scene of Figure 3.25 and simultaneously the note’s

(sound) volume is reduced. As we can see in Figure 3.25, the note initially (before

interacting with the TouchOSC controller) is played at volume 1. After interacting

with the TouchOSC controller, the note is played at volume 0.

Figure 3.25: Volume / Depth TouchOsc Fader

Fotios Giariskanis
44

November 2018

3.3 Manual of the System

• delete note button

This is the ”delete note” button (Figure 3.26), as shown in Figure 3.21 in red colour,

of the Archimusic3D TouchOSC’s mobile template. The user selects a note through

a left mouse click and after the ”delete note” button is pressed. When the ”delete

note” button is pressed the selected note and the corresponding object are deleted.

Figure 3.26: Delete Note Button

• generate note button

If a new object button is pressed (such as new ”Balcony” button, Figure 3.10), the

”generate note” button, of Archimusic3D TouchOSC’s mobile template, is enabled.

This is the enabled ”generate note” button (Figure 3.27), as shown in Figure 3.21 in

green colour, of the Archimusic3D TouchOSC’s mobile template. The user selects

a note through a left mouse click and afterwards, the ”generate note” button is

pressed. When the ”generate note” button is pressed a new note (on the DAW

view) and a corresponding object (on street view) are generated whose type are in

relation to the type of the new ”object” button.

Figure 3.27: Generate Note Button

Fotios Giariskanis
45

November 2018

3. REQUIREMENTS ANALYSIS

• bar / camera position fader

The ”bar / camera position” fader, of Archimusic3D TouchOSC’s mobile template,

is the fader from which the exact position X of the play-bar (on DAW View) and

the exact position x of the the camera (on street view) are concurrently received.

The Figure 3.28 shows an example of what happens. Initially, the user selects

through a left mouse click a note (shown in green) by interacting with the DAW

scene as shown on the right side of Figure 3.28. Subsequently, the user moves the

blue slider of the TouchOSC controller on the left side of Figure 3.28. By moving

the slider of the TouchOSC controller, the play-bar (on DAW view) moves on the

X axis as shown in the central scene of Figure 3.28 and simultaneously, the camera

(on street view) moves in relation to the position that the slider is placed. As we

can see in Figure 3.28, the play-bar initially (before interacting with the TouchOSC

controller) is placed at around timing 1 (as shown as a white colour cube in the

DAW interface). After interacting with the TouchOSC controller, the play-bar is

moved at around timing 60. In addition as we can see in Figure 3.28, the camera

initially (before interacting with the TouchOSC controller) is placed at around the

start of the street. After interacting with the TouchOSC controller, the camera is

moved at around the middle of the street. We note that the play-bar is the white

square shown on the DAW view of Figure 3.28.

Figure 3.28: Bar / Camera Position TouchOsc Fader

Fotios Giariskanis
46

November 2018

3.3 Manual of the System

• bpm / bar speed potentiometer

The ”bpm / bar speed” potentiometer, of Archimusic3D TouchOSC’s mobile tem-

plate, is the brown potentiometer (as shown the left side of the Figure 3.29) from

which the exact speed of the play-bar (on DAW View) and the exact speed of the

camera (on street view) are concurrently received. The Figure 3.29 shows an ex-

ample of what happens. The play-bar’s speed, initially, (before interacting with

the TouchOSC controller) is 60 (as shown on the right side of Figure 3.29). After

interacting with the TouchOSC controller, the play-bar’s speed is 120.

Figure 3.29: Bpm / Bar Speed TouchOsc Potentiometer

• camera’s height fader

The ”camera’s height” fader, of Archimusic3D TouchOSC’s mobile template, is the

blue fader (as shown on the left side of the Figure 3.30) from which the exact height

of the camera (on street view) are concurrently received. The Figure 3.30 shows

an example of what happens. The camera initially (before interacting with the

TouchOSC controller) is placed (as shown the right side of Figure 3.29) over the

street. After interacting with the TouchOSC controller, the camera is placed at a

higher position.

Fotios Giariskanis
47

November 2018

3. REQUIREMENTS ANALYSIS

Figure 3.30: Camera’s Height TouchOsc Fader

Fotios Giariskanis
48

November 2018

Chapter 4

Implementation

4.1 Introduction

The implementation of this thesis is divided into two stages.

The first stage focuses on the study of the theoretical framework across disciplines

and the approaches that have been adopted by artists and scientists in order to connect

music and architecture, both as a scientific and artistic endeavor.

The purpose of the first stage was to be familiarized with the terms and the technical

tools employed in both architecture and in music. The background work conducted

has led to the conception of the idea and the design of Archimusic3D as well as the

requirements it should cover. It was also essential to investigate potential issues to be

handled so that the most effective implementation of the original concept is produced.

The second phase concerns the solution of technical and user interface issues and the

technical processing of individual pieces of the system which implement specific functions

and in combination form the final desired platform.

4.2 Flow diagram

Figure 4.1 illustrates the flow diagram of the platform signifying data flow in the platform

and according to which the user acts. The main scene consists of the projection of a 3D

urban street and the projection of its musical footprint.

Fotios Giariskanis
49

November 2018

4. IMPLEMENTATION

Figure 4.1: Flow Diagram

The user has the ability to start or stop playing the street’s musical footprint or to

mute the musical footprint of any of the two sides each directed to different channels (

left-right) through the buttons which are provided in the scene and can be selected with

the mouse, as explained in Chapter 3.

In addition, the user can select, with the mouse, any note played by any musical

instrument and concurrently any architectural element belonging to a specific type of

object that the street contains. The user can modify the object’s musical and architectural

parameters accordingly, delete the selected note or generate a new note associated with

the type of object the user has chosen.

When a note is selected, its UniOSC scripts are enabled (which are the transforma-

tions’ scripts of an note / object), which are the scripts that allow the selected note to

connect and listen to the ports of the TouchOsc mobile application, which provide to

the user the platform’s controller. When the UniOSC scripts of a note are enabled, the

user can convert its musical and architectural parameters by modifying the faders’ values

which are provided as part of the TouchOsc mobile application.

The transformations that are applied by the user via the TouchOSC are sent as digital

data to the UniOSC components. The UniOSC implements the appropriate transforma-

Fotios Giariskanis
50

November 2018

4.3 Building Information Model (BIM)

tions of the musical axes of the musical footprint and at the same time of the architectural

axes of the 3D urban street, after the checking the type of the musical instrument of the

selected note.

4.3 Building Information Model (BIM)

In order to create the musical footprint of an urban street, the urban street’s design

and geometry should be available in a form that contains information about each of

the architectural axes of the objects, such as, for instance, the height and the length,

that make up the buildings as well as information about the natural landscape which

contains this street. The selected format of the 3D graphical objects, is the Building

Information Model (BIM)(Figure 4.2) [21]. Building Information Modelling (BIM) is a

Figure 4.2: Building Information Model

process involving the generation and management of digital representations of physical

Fotios Giariskanis
51

November 2018

4. IMPLEMENTATION

and functional characteristics of places. Building information models (BIMs) are files

(often but not always in proprietary formats and containing proprietary data) which can

be extracted, exchanged or networked to support decision-making regarding a building

or other built asset.

Current BIM software is used by individuals, businesses and government agencies

who plan, design, construct, operate and maintain diverse physical infrastructures, such

as water, refuse, electricity, gas, communication utilities, roads, railways, bridges, ports

and tunnels [22].

In this thesis, the BIM is used to distinguish each of the objects that make up the

3D urban environment (such as a balcony, a building or a tree) and to cover the need for

information on the architectural parameters of these objects.

4.3.1 REVIT

In order to adopt the Building information Modeling (BIM), there is a need to employ

software that provides the possibility of creating such objects. The software that is chosen

for create these objects is REVIT(Figure 4.3) [23].

Figure 4.3: Autodesk Revit

Revit BIM software includes features for architectural design and structural engi-

neering as well as construction. REVIT supports a multidiscipline, collaborative design

process. The REVIT software is specifically built for Building Information Modeling

(BIM), empowering design and construction professionals to bring ideas from concept to

construction with a coordinated and consistent model-based approach. It includes the

Fotios Giariskanis
52

November 2018

4.3 Building Information Model (BIM)

Figure 4.4: 3D Objects from Revit

functionality of all of the REVIT disciplines (architecture and structure) in one unified

interface.

There exist several different types of objects in REVIT which were employed in this

thesis such as a tree, balcony, window, door, one-storey building, two-storey building,

three-storey building, four-storey building, five-storey building, six-storey building, larger

scale building.

These objects have been integrated into the Unity platform for use as the types of

objects that a user can add to the 3D virtual urban street to be created.

Fotios Giariskanis
53

November 2018

4. IMPLEMENTATION

Figure 4.5: 3D Objects in REVIT

4.4 Grammar

Any given urban street can be marked in order to create its soundscape with sounds

produced by selected musical instruments. A simulation of an urban environment is

created including urban elements fundamental for ”reading”.

These are buildings, doors, windows and trees. Building blocks are provided by the

system and external elements can be included. Once the environment is assembled, the

user can choose an urban path to translate to sound. The path is then scanned from the

starting to the ending edge and the sound representation of the elements on that path is

saved in an Musical Instrument Digital Interface (MIDI) file.

The system utilizes the MIDI protocol to communicate between the graphical rep-

resentation of the urban environment (a facade of the street is transcribed to its music

transcription) and the acoustic output. The acoustic output, modified according to se-

lected music composition rules and filters, follows the reverse process to be translated

back to a new, refined urban environment. The result is a more balanced, tuned, built

environment without reluctant pieces. Each 3D object is converted to a note played by

several musical instruments.

Fotios Giariskanis
54

November 2018

4.4 Grammar

The notes are MIDI messages and are expressed through note number for different

octaves. There are 128 note values (11 octaves) mapped to the Western music scale.

As a base octave, we chose the third octave because the lower octaves of low frequency

prohibit perceptible sound differentiation between distinct elements.

Figure 4.6: Translation concept

The platform supports six types of architectural elements utilized to build a urban

3D graphics environment and consequently for generating sound. These elements are

”Buildings”, ”Larger Scale Buildings”, ”Windows”, ”Balconies”, ”Doors” and ”Trees”.

The user can use these elements to build complex urban environments which can be

transformed to a sound.In this thesis, we have the decision to associate the piano with the

window, the flute with the tree, the xylophone with the balcony, the bass with the door,

the cello with the building and the violin with the larger scale building. These elements

are 3D shapes and as such have the following properties: height, length, and depth.

The properties take values from the set of real numbers. As shown on Figures 4.7, 4.6,

each element’s height is translated to note value (pitch), the element’s length to note

duration (time), and the element’s depth (position in Z axis) to volume. As a basic unit

for mapping, height on which the element is located) to note value.

For example, the height of a balcony is considered to be 3 meters (m). The note,

created by the musical transcription of this balcony, is mapped to C. As for the length,

1 m is mapped to 1 s note duration. For example, if we have a building that is 12 m

Fotios Giariskanis
55

November 2018

4. IMPLEMENTATION

Figure 4.7: Translation example

high and 15 m long, it would be translated to the F note with a duration of 15 secs.

Respectively, a tree or a balcony that is protruding will sound more intense and one that

is recessed will have a lower volume, thus, mapping the perception that it is further away.

4.5 Components

Each of these objects form an object in Unity which has certain features called compo-

nents. Components such as ’Transform’, ’Mesh Renderer’, ’Scripts’ and so on may be

different for each object. The components of an object run only if they are activated.

Depending on transformations applied by the user to the musical axes of a particular

note, the corresponding architectural axis of a particular object is simultaneously trans-

formed. In order to be able to implement the requested transformations, access to the

values of these components is necessary. We detail below the components incorporated

in the objects as well as notes that make up the 3D urban street and its musical imprint.

4.5.1 Transform

Every object in a Scene has a Transform (Unity component which is attached on every

object signifying geometrical properties based on the object’s position (Figure 4.8). It’s

Fotios Giariskanis
56

November 2018

4.5 Components

used to store and manipulate the position, rotation and scale of the object. Every Trans-

form can have a parent, which allows the user to apply position, rotation and scale [24].

Figure 4.8: Tranform Component

4.5.2 AudioSource

An AudioSource (Figure 4.9) is attached to a gameobject (which is a 3D or 2D object

in Unity) for playing back sounds in a 3D environment [25]. In order to hear sounds

in the platform, we also need to have an AudioListener (which is a Unity component)

to detect any sound. The AudioListener in this project is attached to the ”play-bar”

object.The AudioListener enables the sounds attached to the AudioSource, so that they

can be listened.

Whether sounds are played in 3D or 2D is determined by the AudioImporter settings.

The user can play a single audio clip using Play, Pause and Stop. The user can also

adjust its volume while playing using the volume property.

Fotios Giariskanis
57

November 2018

4. IMPLEMENTATION

Figure 4.9: Audiosource Component

4.5.3 Scripts

The behaviour of gameobjects (which are 3D or 2D object in Unity) is controlled by the

components that are attached to them. Unity allows the user to modify the components

using scripts written in Csharp (Figure 4.10). These allow the user to trigger game

events, modify component properties over time and respond to user input in any way the

user likes [26].

In this thesis, the following scripts are separated into those that are enabled on awake

(when the system is started) and remain enabled throughout the use of the platform used

and those that are enabled only when the user has selected the object that contains them

as components.

Fotios Giariskanis
58

November 2018

4.5 Components

Figure 4.10: Script Component

• Position / Time

This script (Figure 4.11) is a UniOSC script, as it receives real-time information

from the TouchOsc’s ”time / position x” fader (Figure 3.22), which is installed on

the user’s mobile device and it’s activated when the user selects one of the objects

that contain it as a component.

ncluded as a component of the selected note (which is a Unity object), checking

the type of the selected instrument which plays this particular note (piano, flute,

bass, xylophone, violin, cello) and the side of the street this note belongs to (either

left or right speaker) signifying an architectural element of the actual 3D urban

street (either left or right side of the street respectively) for which a note is being

played. In this script the information obtained from a TouchOSC fader (value 0-1)

is translated into the determination of the position in the x axis of the 3D object

and the determination of the time at which the sound will be heard during the music

song. In Figure 4.11 (below) we see the Unity value received by interacting with the

TouchOSC component, in this case as shown the /fader2 signifies the time/position

x bar on the TouchOSC.

Each architectural element is represented by a different instrument as expalined in

Chapter 3.

Fotios Giariskanis
59

November 2018

4. IMPLEMENTATION

Figure 4.11: Position / Time Script

• Length / Duration Script

This script (Figure 4.12) is a UniOSC script, as it receives real-time information

from the TouchOSC’s ”duration / length” fader(Figure 3.23), which is installed on

the user’s mobile device and it’s activated when the user selects one of the objects

that contain it as a component.

This script is included as a component of the selected note (which is a Unity object),

Fotios Giariskanis
60

November 2018

4.5 Components

Figure 4.12: Length / Duration Script

checking the type of the selected instrument which plays this particular note (piano,

flute, bass, xylophone, violin, cello) and the side of the street this note belongs to

(either left or right speaker) signifying an architectural element of the actual 3D

urban street (either left or right side of the street respectively) for which a note

is being played. In this script, the information obtained from a TouchOSC fader

(value 0-1) is translated into the determination of the scale in the X axis of the

3D object and the determination of the duration of the sound that will be heard

when this note is playing. In Figure 4.12 (below) we see the Unity value received

by interacting with the TouchOSC component, in this case as shown the /fader1

signifies the duration/length bar on the TouchOSC.

Fotios Giariskanis
61

November 2018

4. IMPLEMENTATION

• Height / Pitch

This script(Figure 4.13) is a UniOSC script, as it receives real-time information

from the TouchOsc’s ”note / height” fader(Figure 3.24) , which is installed on the

user’s mobile device, and it’s activated when the user selects one of the objects

that contain it as a component. This script is included as a component of the

Figure 4.13: Height / Pitch Script

selected note (which is a Unity object), checking the type of the selected instrument

Fotios Giariskanis
62

November 2018

4.5 Components

which plays this particular note (piano, flute, bass, xylophone, violin, cello) and

the side of the street this note belongs to (either left or right speaker) signifying an

architectural element of the actual 3D urban street (either left or right side of the

street respectively) for which a note is being played. In this script, the information

obtained from a TouchOSC fader (value 0-1) is translated into the determination

of the position in the y axis of the 3D object (if the type of the object is either a

Window, Door or Balcony) or the scale in the y axis of the 3D object (if the type

of the object is either a Tree or Larger Scale Building) and the determination of

the pitch which will be heard, when this note is playing. For the buildings signified

as magenta bars in the DAW interface, we cannot use this script because they have

a default assignment for height. In Figure 4.13 (below) we see the Unity value

received by interacting with the TouchOSC component, in this case as shown the

/fader3 signifies the note/height bar on the TouchOSC.

• Depth / Volume

This script is included as a component of the selected note (which is a Unity object),

checking the type of the selected instrument which plays this particular note (piano,

flute, bass, xylophone, violin, cello) and the side of the street this note belongs to

(either left or right speaker) signifying an architectural element of the actual 3D

urban street (either left or right side of the street respectively) for which a note is

being played. This script (Figure 4.14) is a UniOSC script, as it receives real-time

information from the TouchOsc’s ”volume / depth” fader(Figure 3.25), which is

installed on the user’s mobile device and it’s activated when the user selects one of

the objects that contain it as a component. In this script, the information obtained

from a TouchOSC fader (value 0-1) is translated into the determination of the

position in the z axis of the 3D object (depth of the object means how far away the

object is from the street) and the determination of the volume that the note will

be heard, when this note is playing. In Figure 4.14 (below) we see the Unity value

received by interacting with the TouchOSC component, in this case as shown the

/rotary2 signifies the volume/depth bar on the TouchOSC.

Fotios Giariskanis
63

November 2018

4. IMPLEMENTATION

Figure 4.14: Depth / Volume Script

• Delete Script

This script(Figure 4.15) is a UniOSC script, as it receives real-time information

from the TouchOSC’s ”delete note” button (Figure 3.26), which is installed on the

user’s mobile device and it’s activated when the user selects one of the objects that

Fotios Giariskanis
64

November 2018

4.5 Components

contain it as a component.

Figure 4.15: Delete Script

In this script, the information obtained from a TouchOSC button (value 0-1) is

translated into the decision to delete or not the selected note and the corresponding

object. A deleted note and the corresponding object cannot be restored. Figure

4.15 (below) shows the Unity value received by interacting with the TouchOSC

component, in this case as shown the /push6/z signifies the delete button on the

TouchOSC.

• Generate Script

This script (Figure 4.16) is a UniOSC script, as it receives real-time information

from the TouchOSC’s ”generate note” button (Figure 3.27), which is installed on

the user’s mobile device and it’s activated when the user selects one of the ob-

jects that contain it as a component. The selected buttons of the DAW interfaces

generate the appropriate geometry as explained in Chapter 3. When a button in

the DAW interface is pressed generating geometry, then the script is enabled and

subsequently, when a TouchOSC button is pressed, the information obtained from

a button (value 0-1) belonging on the TouchOSC interface is translated into the

decision to generate or not a new note of the type which the selected button is

representing. In this thesis, we have the decision to associate the piano with the

Fotios Giariskanis
65

November 2018

4. IMPLEMENTATION

Figure 4.16: Generate Script

window, the flute with the tree, the xylophone with the balcony, the bass with the

door, the cello with the building and the violin with the larger scale building. Each

specific note is associated with the generation of a specific architectural object. The

selected instrument which plays the particular note associated with the geometry

generated (piano, flute, bass, xylophone, violin, cello) and the side of the street this

note belongs to (either left or right speaker) signifying an architectural element of

the actual 3D urban street (either left or right side of the street respectively) for

which a note is being played. Figure 4.16 (below) shows the Unity value received

by interacting with the TouchOSC component, in this case as shown the /push7/z

signifies the generate note button on the TouchOSC.

• Mute Left

This script (Figure 4.17), which is included as a component in the selected Mute

button of the DAW interface, mutes the Audiosources of notes which are placed on

Fotios Giariskanis
66

November 2018

4.5 Components

the left speaker. This script is enabled or disabled when that ”Mute” Left button

(Figure 3.9) is pressed by the user.

Figure 4.17: Mute Left Script

Fotios Giariskanis
67

November 2018

4. IMPLEMENTATION

• Mute Right Script

This script (Figure 4.18), which is included as a component in the selected Mute

button of the DAW interface, mutes the Audiosources of notes which are placed

on the right speaker. This script is enabled or disabled when that ”Mute” Right

button (Figure 3.9) is pressed by the user.

Figure 4.18: Mute Right Script

Fotios Giariskanis
68

November 2018

4.5 Components

• Music Script

This script(Figure 4.19), which is included as a component of any existing note,

transforms the AudioSource’s values of the note (pitch, time, duration, volume,

stereo pan left / right) based on the architectural axes (height, position x, length,

depth, side of the street left / right) of the corresponding architectural object.

The result of this processing is a new sound based on the original Audio that the

Audiosource contains.

Figure 4.19: Music Script

Fotios Giariskanis
69

November 2018

4. IMPLEMENTATION

• Mouse Manager Script

Figure 4.20: Mouse Manager Script

This script(Figure 4.20), which is included as a component in the Mouse Manager

Unity object (not apparent in the interface) performs the following action. When

the user clicks on on any note or on any button, it enables all UniOSC scripts as-

sociated with a note which is connected with an architectural object. If a different

element of the interface is pressed, then the scripts associated with the previous

selection are disabled. This script is enabled on awake and remain enabled through-

out the platform used. The UniOSC scipts receive real-time user input from the

TouchOSC interface. In Unity, as shown in Figure 4.20 below, the script changes the

selected object from none to a note or a ’generate’ button, enabling the appropriate

scripts.

Fotios Giariskanis
70

November 2018

4.5 Components

• Bar Position Script

Figure 4.21: Bar Position Script

This script (Figure 4.21) is a UniOSC script associated with the play-bar, as it

receives real-time information from the TouchOSC, which is installed on the user’s

mobile device and it is enabled on awake (start of the system) and remain enabled

when the platform is used. In this script, the information obtained from a Tou-

chOSC fader (value 0-1) is translated into the position in the x axis of the camera

and the time at which the play-bar is placed, based on user’s input. Figure 4.21

(below) shows the Unity value received by interacting with the TouchOSC com-

ponent, in this case as shown the fader5 signifies the bar/camera position on the

TouchOSC.

Fotios Giariskanis
71

November 2018

4. IMPLEMENTATION

• Bar Speed Script

Figure 4.22: Bar Speed Script

This script(Figure 4.22) is a UniOSC script, as it receives real-time information

from the TouchOSC, which is installed on the user’s mobile device. It is enabled on

awake and remain enabled when the platform is used. In this script, the information

obtained from a TouchOSC rotary (value 0-1) is translated into the speed that the

play-bar moves and concurrently, the camera moves too. As a result, the bpm

rate changes (beats per minute) and the camera follows simultaneously the changes

occurring at the play-bar. When the bpm rate increases, the camera movement

follows simultaneously becoming faster. Figure 4.22 (below) shows the Unity value

received by interacting with the TouchOSC component, in this case as shown the

rotary3 signifies the bpm/bar speed on the TouchOSC.

Fotios Giariskanis
72

November 2018

4.5 Components

• Camera’s height Script

Figure 4.23: Camera’s height Script

This script (Figure 4.23) is a UniOSC script, as it receives real-time information

from the TouchOsc, which is installed on the user’s mobile device. It is enabled on

awake and remain enabled when the platform is used. In this script, the information

obtained from a TouchOSC fader (value 0-1) is translated into the height that the

camera is placed when the walkthrough of the urban street is visualized in real-

time. Figure 4.23 (below) shows the Unity value received by interacting with the

TouchOSC component, in this case as shown the fader9 signifies the camera’s height

on the TouchOSC.

Fotios Giariskanis
73

November 2018

4. IMPLEMENTATION

4.6 TouchOsc Controller

TouchOsc (Figure 4.24) is connected to the Archimusic3D platform (Unity’s project),

via UniOSC Unity’s Asset (Figure 2.10). In order to control the UniOSC scripts, the

template that appeared in the Figure 4.24 was created on the TouchOSC editor which a

tool that enables the creation of the TouchOSC interface. This template consists of an

active page and contains two buttons, six faders and two potentiometers.

Figure 4.24: Archimusic3D Template TouchOSC Editor

Fotios Giariskanis
74

November 2018

4.6 TouchOsc Controller

• position x / time fader

Shown on the left side of the Figure 4.25 the grey fader from which the enabled

UniOSC Position / Time script of the selected note (as described above) receives

values from 0 to 1. Shown on the right side of the Figure 4.25 the Unity’s Position /

Time script (in Csharp) receives data from the TouchOSC’s time/position x fader,

via UniOSC Unity’s asset. Fader 2 represents the time/position x fader of the

TouchOSC.

Figure 4.25: position x /time fader

Fotios Giariskanis
75

November 2018

4. IMPLEMENTATION

• duration / length fader

Shown on the left side of the Figure 4.26, the purple fader from which the enabled

UniOSC Length / Duration script of the selected note receives values from 0 to

1. Shown on the right side of the Figure 4.26 the Unity’s Length / Duration

script (in CSharp) which receives data from the TouchOsc’s duration / length fader,

via UniOSC Unity’s asset. Fader 1 represents the duration / length fader of the

TouchOSC.

Figure 4.26: duration / length fader

• note / height fader

Shown on the left side of the Figure 4.27, the yellow fader from which the enabled

UniOSC Height / Pitch script of the selected note receives values from 0 to 1.

Shown on the right side of the Figure 4.27 the Unity’s Height / Pitch script (in

Csharp) receiving data from a TouchOsc’s note / height fader, via UniOsc Unity’s

asset. Fader 3 represents the note / height fader of the TouchOSC.

Fotios Giariskanis
76

November 2018

4.6 TouchOsc Controller

Figure 4.27: note / height fader

• volume / depth fader

Shown the left side of the Figure 4.28 the orange fader from which the enabled

UniOsc Depth / Volume script of the selected note receives values from 0 to 1.

Shown on the right side of the Figure 4.28 the Unity’s Depth / Volume script (in

Csharp) receiving data from the TouchOsc’s volume / depth fader, via UniOsc

Unity’s asset. Fader3 represents the volume / depth fader of the TouchOSC.

Figure 4.28: volume / depth fader

Fotios Giariskanis
77

November 2018

4. IMPLEMENTATION

• delete note button

Shown on the left side of the Figure 4.29 the red button that receives information

from the enabled UniOSC Delete script of the selected note receiving values from 0

to 1. Shown on the right side of Figure 4.29 the Unity’s Delete script (in Csharp)

receives data from the TouchOsc’s delete button, via UniOsc Unity’s asset. Push6/z

represents the delete fader of the TouchOSC.

Figure 4.29: delete note button

• generate note button

Shown on the left side of the Figure 4.30 the green button that receives information

from the enabled UniOsc Generate script of the selected button values from 0 to

1. Shown on the right side of the Figure 4.30 the Unity’s Generate script (in

Csharp) receiving data from a TouchOsc’s generate button, via UniOsc Unity’s

asset. Push7/z represents the generate note fader of the TouchOSC.

Figure 4.30: generate note button

• bar / camera position fader

Shown on the left side of the Figure 4.32 the blue fader from which the enabled

UniOsc Bar Position script receives values from 0 to 1. Shown on the right side

of the Figure 4.32 the Unity’s Bar Position script (in Csharp) receiving data from

Fotios Giariskanis
78

November 2018

4.6 TouchOsc Controller

the TouchOsc’s bar / camera position fader, via UniOsc Unity’s asset. Fader5

represents the bar / camera position fader of the TouchOSC.

Figure 4.31: bar / camera position fader

• bpm / bar speed potentiometer

Shown on the left side of the Figure 4.32 the brown potentionmeter from which the

enabled UniOsc Bar Speed script receives values from 0 to 1. Shown on the right

side of the Figure 4.32 the Unity’s Bar Speed script (in Csharp) receiving data from

the TouchOsc’s bpm / bar speed potentiometer, via UniOsc Unity’s asset. Rotary3

represents the bar / camera position fader of the TouchOSC.

Figure 4.32: bpm / bar speed potentiometer

• camera’s height fader

Shown on the left side of the Figure 4.33 the blue fader from which the enabled

Camera’s height script receives values from 0 to 1. Shown on the right side of the

Figure 4.33 the Unity’s Camera’s height script (in Csharp) receiving data from the

TouchOsc’s camera’s height fader, via UniOsc Unity’s asset. Fader9 represents the

bar / camera position fader of the TouchOSC.

Fotios Giariskanis
79

November 2018

4. IMPLEMENTATION

Figure 4.33: camera’s height fader

Fotios Giariskanis
80

November 2018

Chapter 5

Conclusion

5.1 Demo

In order to test the platform, in terms of functionality and efficiency, the urban street that

appeared in the Figure 5.1 was created. The music that emerged from the translation of

this street can be characterised as demonstrating disharmony. This is because the musical

outcome did not demonstrate any melodic element and did not sound as a musical piece,

being unstable and without tempo. In the attempt to harmonize this music, musical rules

were used such as Gestalt laws. These laws are musical techniques which indicate which

notes need to be played consecutively, often including repetition of notes in specified

intervals, so that the musical piece sounds melodically continuous. The result can be

characterized as more harmonic music which was then translated to a more refined urban

street as shown in the Figure 5.2. We can claim that we have a more refined street

because certain elements such as trees were added (added notes of different volume) and

the gaps between the buildings were minimized because ’silence’ moments were removed

in an effort to have a continuous music piece by making the width of the buildings larger.

Also, because in the initial scene there were balconies on every floor, there was musical

confusion because various notes were played at the same time (balconies signifying notes).

By removing balconies, there were individual notes played for each building based on

the existent number of balconies and, therefore, not many notes played together, thus,

creating a melody.

Another effort, that we made, was to translate a famous music song to an urban street

but this failed because to do this it is necessary for the designer to use more than the

Fotios Giariskanis
81

November 2018

5. CONCLUSION

seven notes (semitones and more octaves) played by the musical instruments, that are

now available in the platform.

Fotios Giariskanis
82

November 2018

5.1 Demo

Figure 5.1: Demo - before the Transformations

Fotios Giariskanis
83

November 2018

5. CONCLUSION

Figure 5.2: Demo - after the Transformations

Fotios Giariskanis
84

November 2018

5.2 Summary

5.2 Summary

This thesis demonstrated that there is a significant potential in combining the fields of

composition in music and architecture through the use of information technology. Merg-

ing the two fields has the potential to release new, innovative tools for urban designers by

uncovering aspects of an urban design not apparent based on the standard, vision-based

digital design tools, introducing an additional modality of sound and music. This the-

sis describes an innovative tool developed at the Technical University of Crete, through

which an urban designer can work on the music transcription of a specific urban envi-

ronment applying music compositional rules and filters in order to identify discordant

entities, highlight imbalanced parts and make design corrections.

The first step was to match the various parameters and variables of the urban eco-

system to those of its musical footprint. The Digital Media Lab from the School of

Architecture, Technical University of Crete, provided a translation method between mu-

sical and architectural elements for compositional experiments assisting and refining ur-

ban design. Street facades, the fundamental imprint of our urban environment, are first

broken down to their main semantic elements. These elements have properties, such as

position and size in a 3D (XYZ) system, which are transcribed into sonic data: length

in the X-axis is mapped to note appearance in time and note duration (tempo), height

in the Y-axis is mapped to note value (pitch) and depth in the Z-axis is mapped to vol-

ume. Different elements correspond to different timbre and voids to pauses (silence). In

this thesis, we have made the decision to associate the piano with the window, the flute

with the tree, the xylophone with the balcony, the bass with the door, the cello with

the building and the violin with the larger scale building. Acoustic data encoded from

the built environment provides a valuable platform on which discordant entities can be

more easily identified and also imbalanced parts get highlighted. The cognitive process

of analyzing today’s chaotic urban eco-system has been augmented with a new dimension

of understanding but also intervening through its musical footprint.

In this thesis, we present a complete digital tool named Archimusic3D which utilizes

the translation method between music and architecture for compositional experiments

in order to assist urban designers in 1) identifying urban dissonances, 2) refining their

design using musical rules and 3) presenting the output both visually and acoustically.

The presented platform comprises of three scenes, which compile the three main parts of

Fotios Giariskanis
85

November 2018

5. CONCLUSION

the system’s interface; e.g., the 3D scene, the Digital Audio Workstation (DAW) scene

and the TouchOsc mobile controller. While interacting with the 3D scene, the user is

able to navigate a 3D street in order to observe the 3D graphical depiction of an urban

environment. The second scene is the implementation of a Digital Audio Workstation

(DAW) program, in which the user is able to see the musical footprint of the street printed

as a MIDI (Musical Instrument Digital Interface) file in order to listen to it and process it.

Processing is conducted via a third tool representing a TouchOsc mobile controller, which

is a virtual mobile console containing faders, potentiometers and buttons. When the users

converts the 3D scene to a musical footprint, they submit the reciprocal transformations

which may be applied to the musical part and then, they are able to navigate a newly

refined street.

5.3 Evaluation

In order to understand whether Archimusic3D provides a reliable simulation of a DAW

program, an expert sound designer was invited named Mr. Kordolaimis Theodoros, cur-

rently an undergraduate student at the Department of Music Technology and Acoustics

Engineering of the Technological Educational Institute of Crete, to try the platform and

evaluate it.

5.3.1 Advantages

• Based on his evaluation, the Achimusic3D platform is a successful simulation of

a DAW program, in the sense that it provides most of the basic functions that a

professional DAW program provides such as play, pause, stop , mute left and right

speaker, bpm play-bar, MIDI protocol, OSC protocol. Furthermore, the designer

felt familiar with the graphical interface of the DAW interface, because it is similar

to the graphical interface of standard DAW programs. A new music piece could be

created in this platform.

• The selection of the TouchOSC mobile application as a processing console is marked

as successful, in the sense that it provides most of the basic functions, that a

professional sound processing console provides such as fast real-time response and

transformations precision.

Fotios Giariskanis
86

November 2018

5.4 Future Work

• Transformations on the notes function correctly, in the sense that when the musical

axes of a note are modified, this new note will sound as the actual note would sound,

if played by the musical instrument that produces it. For example, let’s assume

that a C, played by a piano, with duration 2 secs and volume 1 is converted to a

D with duration of 2 secs and volume 1. This new note, although it is the same C

note played by a piano with modified pitch, sounds exactly the same with the real

D played by the piano.

5.3.2 Disadvantages

• The notes are played even if the play-bar is over them although the system is in

stop or pause mode. The correct way is that the notes should be heard only when

the play-bar is over them and it is in motion. Furthermore, when a note stops to

play, a ”click” noise sound is heard.

• In relation to the mute button, is not visible whether this button is switched on or

off, which means that there is a need for an indication of the mute button’s status

(whether it is enabled or not) such as the existence of a Volume Unit (VU) meters

which are sound intensity indicators.

• When a note is being played at the same time the user modifies its pitch, the note

will remain the same as it was before its pitch was modified. The new note will be

heard during the next play of this note. Furthermore, the user cannot select more

than one note at a single transformation.

5.4 Future Work

Archimusic3D presented in this thesis is a prototype system and represents the simulation

of an urban street containing six different types of 3D objects and the simulation of its

musical footprint (which contains six different musical instruments), ready for reciprocal

transformations. Obviously, an urban street could contain additional objects such as

benches, traffic lights or bridges, adding on to the existing ones in our platform, e.g. trees,

buildings, balconies, doors, windows. Therefore, a significant additional capability to be

added as future work is the ability to import any architectural element (in .fbx format),

Fotios Giariskanis
87

November 2018

5. CONCLUSION

created in a graphics design software such as REVIT or created by a different designer

downloaded from the internet. Respectively, a musical piece can be composed and played

employing a variety of musical instruments instead of the six musical instruments included

in Archimusic3D to be utilyzed to translate architectural elements to music. Another

important addition capability would be the ability of the user to import any note played

by any musical instrument or voice (in .wav,.mp3 or .mp4 format), created by a composer

or designer in DAW software such as Ableton or downloaded from the internet. In

Archimusic3D presented in this thesis, only one octave without semitones (C, D, E, F,

G, A, B) is available for each of the six different musical instruments. In essence, there

is a need for a complete translation of all the elements which are included in an urban

environment into music and further utilization of the sound’s properties in architecture.

The term ”further utilization of sound’s properties” refers to the additions, in the DAW

program, of the whole range of musical tools such as, for instance, compressor, as well

as musical filters such as reverb. Forming a complete grammar of translation between

the whole range of architectural elements and the whole range of sound capabilities

would provide a complete framework for processing reciprocal transformations between

architecture and music.

An important addition to the platform is the capability of creating and saving new

Archimusic3D’s projects, as well as the capability of exporting the new refined urban

street in .fbx format commonly used by architectural design tools programs and the

final corresponding musical pieces in .wav, .mp3, .mp4 format, commonly used by media

players. Many of the aforementioned issues could be solved if instead of including the

simulation of the DAW program as implemented in Archimusic3D, the platform was

connected to an already existing professional DAW program such as Ableton or, even

better, if it was possible for the platform to be connected with any professional DAW

program.

Furthermore, the platform’s functionality can be extended to include different types

of scene data. The first would include the ability to import and convert a 2D image in

.jpg format to a music footprint automatically translating the architectural content of

the image to sounds. The second useful scene capability would be the creation of an

entire urban city consisting of a combination of urban streets and open spaces and a

corresponding long-duration musical footprint consisting of a combination of the corre-

sponding musical footprints of these urban streets in order to form the musical translation

Fotios Giariskanis
88

November 2018

5.4 Future Work

of an entire city. If this is implemented, the user could select desired paths through the

city for translation.

Fotios Giariskanis
89

November 2018

5. CONCLUSION

Fotios Giariskanis
90

November 2018

References

[1] Parthenios, P.: Adopting a cross disciplinary approach to propose a new design tool

for discovering urban design discordances. In: Proceedings of the 8th Study Day

of INU - Italian National Institute of Urban Planning - Policies for Italian cities.

Naples. (2014) 1, 10

[2] Parthenios, P., Mania, K., Chatzopoulou, N., Petrovski, S.: Reciprocal transforma-

tions between music and architecture as a real-time supporting mechanism in urban

design. In: International Journal of Architectural Computing. (2016) 1, 2, 5, 26

[3] Xenakis-Upic:. https://www.youtube.com/watch?v=7_Gu0qDAys0 4

[4] Lynch, K.: The image of the city. In: Cambridge, MA: The MIT Press. (1960) 10

[5] Novak, M.: The music of architecture: computation and composition. (2007) 10

[6] Xenakis, I.: Formalized music - thought and mathematics in composition. http:

//archimusic.info/archimusicrepository/formalized-music/ (1963) 10

[7] Philips-Pavilion:. https://www.researchgate.net/figure/

Philips-Pavilion-Metastaseis-B-Iannis-Xenakis-1953-1958_fig1_

308759695 (1958) 10

[8] Sainte-Marie:. https://www.flickr.com/photos/29727266@N02/6101167304

(1961) 10

[9] Composition-Wikipedia:. https://en.wikipedia.org/wiki/Composition_

(visual_arts) 13

Fotios Giariskanis
91

November 2018

https://www.youtube.com/watch?v=7_Gu0qDAys0
http://archimusic.info/archimusicrepository/formalized-music/
http://archimusic.info/archimusicrepository/formalized-music/
https://www.researchgate.net/figure/Philips-Pavilion-Metastaseis-B-Iannis-Xenakis-1953-1958_fig1_308759695
https://www.researchgate.net/figure/Philips-Pavilion-Metastaseis-B-Iannis-Xenakis-1953-1958_fig1_308759695
https://www.researchgate.net/figure/Philips-Pavilion-Metastaseis-B-Iannis-Xenakis-1953-1958_fig1_308759695
https://www.flickr.com/photos/29727266@N02/6101167304
https://en.wikipedia.org/wiki/Composition_(visual_arts)
https://en.wikipedia.org/wiki/Composition_(visual_arts)

REFERENCES

[10] Counterpoint:. https://music.stackexchange.com/questions/63368/

what-determines-if-counterpoint-is-good-or-bad 13

[11] Counterpoint-Wikipedia:. https://en.wikipedia.org/wiki/Counterpoint 14

[12] Ableton:. https://www.ableton.com/en/education/ 14

[13] DAW-Wikipedia:. https://en.wikipedia.org/wiki/Digital_audio_

workstation 15

[14] Osc-protocol:. http://www.alexshill.com/projects/osc.htm 15

[15] OSC-Wikipedia:. https://en.wikipedia.org/wiki/Open_Sound_Control 15

[16] Midi-protocol:. https://www.instructables.com/id/What-is-MIDI/ 16

[17] MIDI-Wikipedia:. https://en.wikipedia.org/wiki/MIDI 16

[18] Unity-Wikipedia:. https://en.wikipedia.org/wiki/Unity_(game_engine) 17

[19] TouchOsc:. https://hexler.net/software/touchosc 18

[20] UniOsc:. www.uniosc.monoflow.org/ 18

[21] BIM:. http://www.teetkm.gr/wp-content/uploads/2018/01/p1b.jpg 51

[22] BIM-Wikipedia:. https://en.wikipedia.org/wiki/Building_information_

modeling 52

[23] Revit:. https://www.autodesk.com/products/revit/overview 52

[24] Unity-Manual-Transform:. https://docs.unity3d.com/ScriptReference/

Transform.html 57

[25] Unity-Manual-Audiosource:. https://docs.unity3d.com/ScriptReference/

AudioSource.html 57

[26] Unity-Manual-Script:. https://docs.unity3d.com/Manual/

CreatingAndUsingScripts.html 58

Fotios Giariskanis
92

November 2018

https://music.stackexchange.com/questions/63368/what-determines-if-counterpoint-is-good-or-bad
https://music.stackexchange.com/questions/63368/what-determines-if-counterpoint-is-good-or-bad
https://en.wikipedia.org/wiki/Counterpoint
https://www.ableton.com/en/education/
https://en.wikipedia.org/wiki/Digital_audio_workstation
https://en.wikipedia.org/wiki/Digital_audio_workstation
http://www.alexshill.com/projects/osc.htm
https://en.wikipedia.org/wiki/Open_Sound_Control
https://www.instructables.com/id/What-is-MIDI/
https://en.wikipedia.org/wiki/MIDI
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://hexler.net/software/touchosc
www.uniosc.monoflow.org/
http://www.teetkm.gr/wp-content/uploads/2018/01/p1b.jpg
https://en.wikipedia.org/wiki/Building_information_modeling
https://en.wikipedia.org/wiki/Building_information_modeling
https://www.autodesk.com/products/revit/overview
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/AudioSource.html
https://docs.unity3d.com/ScriptReference/AudioSource.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html

	1 Introduction
	1.1 Brief Description
	1.2 Methodology
	1.3 Purpose of the Thesis
	1.4 Structure of the Thesis

	2 Background
	2.1 Introduction
	2.2 Historical Context
	2.3 Composition
	2.3.1 Counterpoint
	2.3.2 Digital Audio Workstation (DAW)

	2.4 Protocols
	2.4.1 Open Sound Control Protocol (OSC)
	2.4.2 Musical Instrument Digital Information Protocol (MIDI)

	2.5 Software
	2.5.1 Unity
	2.5.2 TouchOsc
	2.5.3 UniOsc

	3 Requirements Analysis
	3.1 Introduction
	3.1.1 General Requirements

	3.2 Use Case Scenarios
	3.2.1 Urban Street View
	3.2.2 Digital Audio Workstation View
	3.2.3 Traslation

	3.3 Manual of the System
	3.3.1 Manual of the DAW interface
	3.3.2 Manual of the TouchOSC

	4 Implementation
	4.1 Introduction
	4.2 Flow diagram
	4.3 Building Information Model (BIM)
	4.3.1 REVIT

	4.4 Grammar
	4.5 Components
	4.5.1 Transform
	4.5.2 AudioSource
	4.5.3 Scripts

	4.6 TouchOsc Controller

	5 Conclusion
	5.1 Demo
	5.2 Summary
	5.3 Evaluation
	5.3.1 Advantages
	5.3.2 Disadvantages

	5.4 Future Work

	References

