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Abstract

We provide a general description of a time-local master equation for a system coupled to a non-
Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at
discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by
considering a harmonic oscillator coupled to both non-Markovian and Markovian baths. Our
findings provide us with a theory for the exact calculation of spectral properties of time-local non-
Markovian Liouvillian operators, and might shed light on the nature and existence of the steady state
in non-Markovian dynamics.

1. Introduction

A general description of open quantum system dynamics has proven to be a challenging problem in quantum
statistical mechanics [1]. Most of our knowledge is based on the description of system-bath interaction, where
the memory effect of the bath plays a key role. When a quantum system is in contact with a memory-less
(Markovian) bath, the information flows unidirectionally from the system to the bath. However, if the bath has
memory (non-Markovian), the situation can change dramatically. As a matter of fact, there are several
definitions of non-Markovianity in the literature [2-5]. For example, backflow of information can be used to
quantify non-Markovianity, which motivates the BLP measure proposed by Breuer et al[2, 4]. Another
definition is based on properties of the dynamical map, $(#, 0), which is the propagator of the density matrix of
the system, ps(t). Following [3], a dynamical map is Markovian when it is a trace preserving divisible map such
that ®(t,, 0) = &(t,, 1) (1, 0) where B(1,, 1) is completely positive for any ;, £, > 0. A dynamical map
satisfying this property is referred to as CP-divisible. In terms of this definition, to have non-Markovian
dynamics, there must be some time #; such that d(t,, 1) is not completely positive, which motivates the RHP
measure of non-Markovianity proposed by Rivas et al [ 3]. By exploiting further properties of the dynamical map,
one can formulate a geometrical characterization of non-Markovianity, which motivates the measure Ay,
defined in [6]. Interestingly, a map can be non-Markovian in the sense of the RHP measure, while it is
Markovian according to the Ny, measure. This occurs because a map can be P-divisible but not necessarily CP-
divisible [6].

Recently, the dynamics of systems coupled to non-Markovian reservoirs have been the focus of active
theoretical research [2—10]. This is partially driven by recent developments on quantum technologies which
allow one to manipulate quantum systems with unprecedented precision and control. For instance, structured
reservoirs appear naturally in the study of a driven qubit coupled to a damped detector [11]. Also, one can use
superconducting qubits to simulate structured reservoirs that are relevant for the study of exciton transport in
photosynthetic complexes [12] and Zeno effect of a single superconducting qubit coupled to an array of
transmission line resonators [13]. By using the reaction coordinate mapping, it is possible to explore
nonequilibrium thermodynamics in the non-Markovian regime [10]. In addition, non-Markovian behavior has
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been explored in the context of photonic systems with structured reservoirs [ 14] that even allow one to inhibit
spontaneous emission of an atom embedded in a photonic crystal [15]. In some situations where the reservoir is
structured or under the effect of an external drive, the open-system approach is inadequate to describe the
dynamics of the system and it is suitable to study the combined dynamics of the system and the environment as
in [16]. Besides the theoretical investigations, there are experimental realizations of non-Markovian dynamics in
all-optical setups [17], trapped ions [18, 19], and optomechanical systems [20], to mention but a few.

In the case of a system coupled to a bath, one can carry out a microscopic derivation of the master equation
for the reduced density matrix of the system using the open-systems approach [1, 21, 22]. After performing the
Born, Markov, and secular approximations, the resulting master equation has a Lindblad form with positive
rates and the corresponding dynamical map is CP-divisible [3—-5]. However, as it is discussed in [2-5], this is not
the only framework to obtain Markovian dynamics. Furthermore, in the case of a Lindblad-type master
equation, the rates can be time-dependent, but as long as they are positive at all times, the corresponding master
equation leads to a CP-divisible map [2—5]. In this work we restrict ourselves to master equations in the Lindblad
form [22-24], which can be written formally in terms of a Liouvillian operator (LO) that is local in time [2-5]. In
the case of time-independent rates, the eigenvalues of the LO are known as the Liouvillian spectrum. The
imaginary and real parts of the Liouvillian spectrum are related to coherent and incoherent processes,
respectively. In addition, the kernel of the LO determines the steady state of the system. If the LO is time-
independent or it has an adiabatic dependence on time, one can diagonalize it to obtain its spectrum. However,
this is not the case for non-adiabatic time dependence. Time dependent LOs appear when the system is driven
externally or due to time-dependent damping rates. For along time, the theoretical understanding of time
dependent LOs has been an open problem [16, 25-27]. These kind of LOs lead to time-local (time-
convolutionless) master equations, which can be non-Markovian when the damping rates become negative at
certain times [28, 29]. This type of master equations appear naturally in the context of pure-dephasing channels
[30,31]. A recent work [32] has shown that for a Markovian master equation with time-periodic LO, one can use
Floquet theory [33—36] to obtain the asymptotic steady state.

In this article we use the Floquet theory to generalize the definition of the Liouvillian spectrum to non-
Markovian dynamics. The latter is generated through a time-periodic LO in Lindblad form, such that the system
d[)jt(t) = Zﬁ(t)ﬁs(t), where £(t + T) = L(t).In our work, we focusona
definition of Markovianity based on CP-divisibility [3]. By using this definition, a dynamical map is Markovian
when it is CP-divisible. The non-Markovianity is guaranteed by periodic damping rates which are negative in
certain time intervals. Although in general the dynamics is not P-divisible, the Floquet theorem ensures that
there exists a dynamical map d(t;0) =P (t)exp(th), where P(t + T) = P(¢) [33, 34]. In this case, it is direct
to prove that the dynamical map is divisible at discrete times, d(mT; 0) = [S(T; 0)]" with integer m. In
addition, if the map is completely positive, it is also CP-divisible at stroboscopic times, which we term as Floquet
stroboscopic divisibility. Importantly, the eigenvalues of the matrix $(T; 0) allow us to fully characterize the

dynamics is ruled by the equation

spectral properties of the non-Markovian LO. We illustrate this theory by considering a quantum harmonic
oscillator coupled to two dephasing baths: one is non-Markovian and another is Markovian. This leads to
constant and time-periodic dephasing rates, from the Markovian and non-Markovian baths, respectively. We
observe that the dynamics undergoes a transition from Markovian to non-Markovian behavior as the coupling
to the non-Markovian bath is increased. Our findings might shed light on the nature and existence of the steady
state in non-Markovian dynamics.

2. Floquet stroboscopic divisibility

To make a direct connection between the dynamics of an open quantum system and Floquet theory, we consider

d[:;t(t) = 2(t)ﬁ5(t) with time periodic LO 2@ +T) = Zi(t). Here,

Ps(t) denotes the reduced density matrix of the system. One can define a propagator &(#; 0), or dynamical map,

atime-local [23, 24, 32] master equation

such that ps(¢) = d(t; 0) Ps(0). According to the definition of Markovianity that we consider in this work, a
dynamical map is Markovian when (1, 0) = B(ty, 1) D(#, 0), where d(ty, 1) completely positive (CP) for any
time t, t, > 0. In this case, the map is referred to as CP-divisible [3]. Furthermore, a map is P-divisible if

d(ty, 1)is positive for any time t1, £, > 0[3-5]. As we discussed in the introduction, a map can be P-divisible but
not necessarily CP-divisible [6]. In our case, due to the periodic nature of the LO, the dynamical map satisfies the
condition ®(IT; 0) = [(T; 0)] with integer I. If we take ] = m + nin the previous identity, one can show that
the map is divisible at stroboscopic times, i.e., d[(m + n)T; 0] = d(mT; 0)D(nT; 0).1f $(T; 0)is not only
positive, but completely positive [3-5], then from the previous identities it follows that the map is also CP-
divisible at stroboscopic times, which we term as Floquet stroboscopic divisibility.
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Our aim now is to interpret the dynamics in terms of Floquet theory [33, 34]. Given a basis for the system
Hilbert space, the master equation turns out to be just a system of coupled ordinary differential equations with
periodic coefficients. For example, if one represents the density matrix pg(t) as a vector, the matrix
representation of the Liouvillian will be a time-periodic matrix. This allows us to apply the Floquet theorem for
ordinary differential equations with periodic coefficients [33, 34]. The Floquet theorem ensures that there exists
adynamical map &(t; 0)—or fundamental matrix—with the form ®(#; 0) = P(¢) exp(Z:F t), where
P(r+ T) = P(¢)[33,34]. The eigenvalues \, = elT of the matrix Ci)(T; 0) and the complex eigenvalues
L, € C of Ly are called the characteristic multipliers and the Floquet exponents (Floquet-Liouville spectrum),
respectively. Furthermore, the Floquet theorem provides us with a suggestive form ®(IT; 0) = exp (Lg IT) of
the dynamical map at stroboscopic times t = [T, which resembles the dynamical map in the case of a time-
independent LO.

In a similar way that for time-independent LOs, the imaginary part of the spectrum governs the coherent
dynamics, and the real part is responsible for incoherent/dissipative processes. So far we have discussed spectral
properties of the dynamical map, but the Floquet theorem gives us more information. For example, the solution
of the master equation can be written as pg(t) = 3_,, cuele’p, (1), where p, (t + T) = p,(¢) and
d(T) p,(T) = elTp (T). One should also take into account that the Floquet exponents are not uniquely
defined because one can always add a complex phase 27ni/ T with integer # such that one gets the same
characteristic multiplier, i.e, elet2mi/DT — eLaT [33 34]. The kernel of the operator Ly is a solution of the
equation d(T) p,(T) = p,(T) and determines the steady state. In the case of a Lindblad-type master equation
with time-dependent decay rates that are always positive, the dynamical map is CP-divisible [3—5] and the
dynamics are Markovian. For positive time-periodic decay rates, the Floquet theorem ensures the existence of a
periodic steady state as it is shown in [32]. In contrast, in the non-Markovian case, the existence of a steady state
is highly nontrivial as it is discussed in [5].

Floquet stroboscopic divisibility is a direct consequence of the Floquet theorem because at stroboscopic times,
the dynamical map is CP-divisible. But this alone is not enough to ensure the existence of a steady state, because
we still need to prove that the dynamical map is a contractive map at stroboscopic times. With this aim, we need
to resort in spectral properties of the dynamical map. The Floquet theorem establishes that stable solutions are
possible when the Lyapunov exponents, i.e., the real part of the Floquet exponents, are smaller than or equal to
zero [33, 34]. That implies the stability constraint | det @)(T; 0)| < 1, which can be derived from the general

formula det $(¢; 0) = exp { fo ' TI‘[Z:(T)] dT} see [33, 34]. The absolute value of the determinant of the

dynamical map can be reinterpreted as the volume of the accessible states at a given time, which motivates the
geometrical characterization of non-Markovianity [6]. Within this framework, if a dynamical map is P-divisible
then the rate of change of the volume of available states is smaller than zero [37, 38].

We are interested in the case where the time average of all the rates in one period is positive or zero, in order
to satisfy the stability constraint. We also note that the previous statement does not restrict the rates to be positive
atall times. In contrast to [37, 38], we need to define the rate of change of the volume of available states in a
discrete way, due to the stroboscopic nature of the evolution. In our case, the dynamical map is stroboscopically
contractive if the finite differences A, = %(| detd[(m + 1)T] | — | det d(mT) |) satisfy the condition

- W(Idet@(ﬂl “ <o 0

A
Interestingly enough, A, goes to zero either when m goes to infinity and the determinant is smaller than one, or
when the determinant is equal to one for any #1. In the former case, this implies that the system reaches a periodic
asymptotic state. The latter means that the system is purified stroboscopically. In contrast to the results presented
in[6,37,38], A,,is ameasure of how the volume of accessible states is contracted stroboscopically. In the
following, we will apply the general theory presented so far to a simple example: a harmonic oscillator couples to
both Markovian and non-Markovian baths, see figure 1(a). This is one example of the general theory, but there
are other possible examples such as phase- and amplitude-damped qubits [39]. Based on our example, we will
discuss the transition from Markovian to non-Markovian dynamics by tuning the coupling strength between the
system and the non-Markovian bath.

3. Example: non-Markovian dynamics of a harmonic oscillator in a dephasing
environment

Our aim in this section is to substantiate the general discussion presented above using a particular example. To
study the interplay between Markovian dynamics, we couple the system to both Markovian and non-Markovian
baths, which also allows us to ensure the existence of a steady state. In fact, from equation (1), we can see that if
| det ®(T)| < 1, the volume of accessible states stroboscopically and the system reaches a periodic steady state.
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Figure 1. (a) Schematic representation of a harmonic oscillator (S) of frequency winteracting with a Markovian (M) and non-
Markovian bath (MM B). (b) Sketch of the environment used for the microscopic derivation of the master equation.

In the example discussed in this section, the LO contains time-periodic rates. This can be achieved by
engineering the non-Markovian bath, as we show in appendix B, where we propose an implementation of in
circuit QED of the system discussed in this section.

We begin by considering a time-local master equation for a harmonic oscillator coupled to two dephasing
reservoirs, as shown in figure 1(a). A natural way to derive the master equatlon is to consider the sketch of
figure 1(b) where we identify a super-system Hss = Hs + Hyugs + Hs_ NM 5 composed of a harmonic

oscillator Hs = w coupled to a non-Markovian bath Hyvz = Zklzl Wi bk by with N; modes, via the coupling
Hamiltonian Hg_ g = ﬁZkNL 18k (l;kT + by). Inaddition, the super-system is coupled to a Markovian bath
Hup = Z;El v 6; ¢ with N, modes via the interaction Hamiltonian Hgs_ y5 = ﬁZlN:Zl 771(sz + ¢). The
Hamiltonian of the total system is given by H = Hss + Aug + Hss_ ymp. We note that the operator i = a'a

is defined in terms of bosonic operators @ and @ of the harmonic oscillator. Correspondingly, Z;k' , Ek and EZT, b
are bosonic operators of the non-Markovian and Markovian baths, respectively.
The master equation obtained from an exact microscopic derivation, see appendix A, reads

dA y A
%(t) = —i[Hs(t), ps(®)] + v(&)D(#) ps (1), @

where D(O)(-) = O;() OIT — % { OZT Oy, (-)}. We use units such that 2 = 1 and the coherent evolution is

governed by the Hamiltonian Hs(t) = wh — g ()72, where i = d%4. Note that Hg(t) is different from the
original Hamiltonian of the system Hg = wii, because it contains a Lamb shift g ()72 term that appears due to
the interaction with the bath. From equation (2), one can identify the structure of the Lindblad-type LO

LB = —i[Hs(), ()] + v (£)D(A)(-) [23, 24, 32]. This master equation is motivated by previous works on
phase damping [40] and dynamics of cavities coupled to moving mirrors [41]. The total dephasing rate is given
by (see appendix A.2)

() N g
L2 =9+ Y =5 sin(wit) coth(Bwy /2), 3)
2 k=1 Wk
where s the inverse temperature of the non-Markovian bath. The constant component -y, comes from the
coupling to the Markovian bath. Besides its dephasing effect, the non-Markovian bath also influences the

coherent dynamics of the system via the nonlinear driving strength g (t) = Nl gk (1 — cos wyt). Without
loss of generality, we consider a zero-temperature bath throughout the paper.

In order to have a time-periodic dephasing rate () and driving g(#), we consider a non-Markovian bath
whose spectral density has peaks at frequencies wy = k°$2, where s is a positive integer, and {2 = 27t/T. For the
purposes of this work, the bath frequencies are chosen as wy, = k{2 (s = 1) with coupling strengths g, = he /2,
where z > 0. Interestingly, these requirements are almost natural in circuit QED setups. In [42], for example, it
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is presented a microscopic description of a multimode resonator coupled to an artificial atom. In this
implementation, the frequencies of the higher resonator modes are multiples of the fundamental frequency.
Also, to avoid divergences of the Lamb-shift term, one has to introduce high-frequency cuttof by considering
that higher modes will tend to decouple from the atom [42, 43]. We note that our results are valid for any value of
s,and we take s = 1 case for simplicity. Also, our results are valid for any number N; of modes of the non-
Markovian bath, even in the case of infinite numbers of modes, N; — oo. Notice that our numerical
calculations throughout the paper have been carried out for a finite number of modes in the non-Markovian
bath. In the case of a non-Markovian bath with infinite number of modes N; — o0, the strength of bath-
induced nonlinearity is

o o2
g) = Z g—k(l — coswyt)
k=1 “k
h? 4
= E{Re [log(1 — e #"%)] — log(1 — coshz + sinhz)} 4)
and the dephasing rate reads
2
v (t) & .
— =7 *+ — sin wy t
2 0 ,; Wik
h? .
=% — ﬁlm [log(1 — e *Hi%)]. ©)

3.1. Dynamics of the non-Markovian bath and stroboscopic divisibility
As we have an exact solution for the density matrix of the total system, we can explicitly calculate observables of
the non-Markovian bath when v, = 0 (in the absence of the Markovian bath).

For example, for an initial state ps(0) = [W(0)) (¥ (0)| = X, ,.cm ¢.¥|m) (n|, the mean photon number
Ni(t) = (b b (1)) for the kth mode reads

2
N (t) = 2(§) (1 — coswyt)d  m?|cy. 6)

Wk m

Similarly, the expectation values of the quadratures X; = %(b,j + by)and B = %(b,j — by) of the modes
evolve as

(X (1)) = V2 5 (coswyt — D> mlcyl?
Wik m

(Be()) = 23 sinwit 3 mle, P %
w,

k m

The physical intuition behind this solution is that the non-Markovian bath is out of equilibrium due to the
coupling between the system and the bath and its time evolution is affected by the number of photons in the
system. This is a total opposite to a Markovian dynamics, where the bath is not influenced by the system.

Figure 2(a) depicts a mechanical analog of the non-Markovian bath we are considering in the manuscript, which
is referred to as pendulum waves [44]. One can prepare the ensemble of oscillators in a given configuration and
after some time T'it will be back to the initial configuration. Similarly, figure 2(b) shows the dynamics of the bath
with N; = 60 modes. To study dynamics, we initialize the system in a cat state |[U(0)) = C(ay)(|avo) + |—vp))
with || = 2, where C(ay) is a normalization factor. In this case, the period T = 27/€2 is determined by the
fundamental frequency {2 and one can see that the dynamics of mean photon number of the modes Ny(#) is
reversed attime t = T/2, exactly as in the mechanical pendulum waves. This periodic motion of the non-
Markovian bath is intimately related to the time-periodic rates, which allows us to define stroboscopic
divisibility.

As we can see from the previous discussion, our choice for the frequencies of the bath (w; = k*Q2) has
dramatic consequences for the time evolution of the system. In particular, from the expressions for the
dephasing rate 7(f) and the bath-induced nonlinearity g(f), we find that these functions turn out to be periodic
with period T = 27/£2. Besides this, the integral of the dephasing rate over one period isy, > 0. An immediate
consequence of this is that at times when the rates are positive, there is dephasing of the harmonic oscillator.
Although the average of the rates in one period is positive, the rates can also be negative in certain intervals of
time, where the coherences are built up again in the system. The latter is a signature of non-Markovianity [3-5].
In appendix B, we propose an implementation of the system in circuit QED.

5
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Figure 2. Drawing of a pendulum wave device and dynamics of the mean photon number of a non-Markovian bath. (a) Depicts a
device to demonstrate pendulum waves. In this mechanical device, the system comes back to its initial configuration after one time
period T. (b) Quantum evolution of the mean photon number Ni(t) = (b; bi(t)) of N, = 60 modes of the non-Markovian bath we
consider in the manuscript (the density plot depicts log N). Similarly to the pendulum waves, at a time T, the whole system comes
back to its initial configuration. For the coupling g, = he~#/2 to the modes of the bath we used z = 0.1 and i = 1.02. For
convenience, we consider a zero temperature bath at the initial time with N;(0) = 0 and we prepare the resonator in a cat state

[(0)) = C(ap)(law) + |—c)) with |ag| = 2, where C(cy) is a normalization factor. The frequency of the resonator is w, = 10 €.

4. Properties of the dynamical map

The advantage of our exact solution for the master equation (2) is that the resulting dynamical map is valid for
any strength of the coupling to the non-Markovian bath and for arbitrary spectral densities. For our choice of the
bath frequencies, the Liouvillian is periodic and | det d(T) | < 1.Based on the discussion of equation (1), one
can see that the system is divisible at stroboscopic times t; = IT, where [ a positive integer. The physical
interpretation of this is that the information trade-off between the system and the environment (Markovian plus
non-Markovian baths) is unbalanced and the volume of accessible states [37, 38] is reduced stroboscopically.
The information that goes away from the system when the rate is positive, is partially recovered if the rate
becomes negative. A singular case of our results arises when the determinant of the dynamical map is one, i.e.,
the time average of the dephasing rate in one period is zero. In this situation, although one has non-Markovian
dynamics, the system is purified stroboscopically and the discrete evolution is unitary.

In our example, the dynamical map &(T') is diagonal and its eigenvalues are the characteristic multipliers

A = e 1En—E) TeiG(D)(m=n) o=y T (m—n)?, (8)

where E,, = nw, G(¢) is the integral of the function g(¢), and G(T) = T, % (see appendix A.2). From
equation (8) one can extract the Floquet-Liouville spectrum (Floquet exponents), because L, ,,)T = log Ay,
(we use the notation & = (m, n)). This information is of utmost importance because the real part of the Floquet
exponents, i.e., the Lyapunov exponents, dictates the time to reach the steady state. In our case, this time scales as
1/7. The imaginary part of the Floquet—Liouville spectrum influences the coherent evolution of the system.

The characteristic multipliers can be depicted in the unit disk as shown in figure 3. In the Markovian regime,
where the rates are positive, we observe the clustering of the characteristic multipliers as depicted in figure 3(a).
In the non-Markovian regime, the dephasing rate becomes negative in certain intervals [3-5, 7, 8]. In this
regime, we depict the characteristic multipliers in figures 3(b) and (c). In contrast to figure 3(a), in the strong
coupling regime h?/€Q) > ~, the non-Markovian bath induces a nonlinearity proportional to G(T), which is
reflected in the repulsion of the eigenvalues as depicted in figure 3(c).

5. Non-Markovianity measure and dynamics of a Schrodinger cat state

We have discussed so far spectral properties of the dynamical map. In this section, our aim is to present a
quantification of non-Markovianity and its dynamical consequences. In the literature there are several measures
of non-Markovianity [3-5, 7, 8]. In our manuscript, we illustrate the general theory by considering an example.
For convenience, we chose phase damping of an oscillator. This leads to a master equation that has a single
channel with decay rate y(¢). Asitis discussed in [4], in this case, the dynamical map is completely positive if the
average of the decay rate is positive, i.e., fo ' ~v(T)dT > 0.In this case, however, although the average of the rates
is positive, in intervals where the rates are negative, the map is not CP-divisible [4].

6
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Re)\(mﬁn) Re)\(m,n) Re)‘(m,n)

Figure 3. Spectral properties of the dynamical map. We depict the characteristic multipliers A, ,,, in the Markovian regime (a)

h = 0.05 Q2 and in the non-Markovian regime for (b) h = 0.1 Q and (c) h = 1.0 Q2. We truncated the Hilbert space of the resonator
upto 1, = 14 photons. We assume a coupling g, = he=#/2with z = 0.1 between the system and the modes of the non-Markovian
bath. We also consider a frequency w = 10 €2 of the resonator and the dephasing rate due to the Markovian bath is o = 0.005 §2. We
consider a non-Markovian bath with N; = 60 modes, but our results remain valid in the thermodynamic limit.

log det ®(t)/d

Figure 4. Logarithm of the volume of accessible states | det ot 0) | and non-Markovianity measure N f The panels (a)—(c) depict the
log| det &(t; 0)|/d asa function of time for the same parameters as in figures 3(a)—(c), respectively. (d) Depicts the decay rate measure
N Z as a function of the coupling 4 to the non-Markovian bath. One can see clearly the transition from Markovian (N : = 0) tonon-
Markovian (N T > 0) dynamics. The inset depicts N Z for higher values of . Here d = (n, + 1)?,andn, = 14 is the truncation for
the resonator Hilbert space. All the parameters are the same as in figures 3.

On the other hand, our definition of Floquet stroboscopic divisibility is based on the stroboscopic dynamics

and it does not give us information about the non-Markovian behavior between two discrete times nT and

(n + 1)T.In fact, as one can see from figures 4(a)—(c), the volume of available states monotonically decreases at
stroboscopic times. As a next step, we would like to quantify the non-Markovian behavior at intermediate times
nT < t < (n + 1)T. One of the advantages of the example we are discussing in our manuscript is that the
master equation (2) has a single Lindblad operator 7 and in this case, all the different considered criteria for non-
Markovianity coincide [4]. Therefore, we decided to use one based on properties of the Liouvillian [45], which is
referred to as decay rate measure [3]. In our particular example, this measure is defined as N/ f = - jt‘ b v(T)dr.

The integration is carried out in the time interval [t,, t,]—within one period T, where the dephasing rate
becomes negative. This measure is intimately related to the behavior shown in figures 4(a)—(c), which depict the
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Figure 5. Stroboscopic dynamics of the Wigner function attimes ty = 0,¢; = T, t, = 2T,and t; = 3T. The panels (al)—(a4) show
the evolution in the Markovian and (b1)—(b4), (c1)—(c4) in the non-Markovian regimes, respectively. All the parameters are the same
asin figure 3.

logarithm of the volume of available states, log| det d(t; 0) |. In figure 4(a) one can observe that in the Markovian
case, the function log| det ®(#; 0)| decreases monotonically because the dephasing rate is positive at all times. In
contrast, in the non-Markovian case shown in figures 4(b) and (c), the function log| det d(t; 0) | can increase at
certain intervals of time. In fact, the slope of the curves depicted in figures 4(a)—(c) is proportional to — (¢). In
the intervals where the slope becomes positive and the logarithm of the volume of available states increases, the
rates are negative, which is a signature of non-Markovian behavior. We depict the non-Markovianity measure in
figure 4(d). There one can appreciate the transition between the Markovian and non-Markovian regimes as a
function of the coupling to the non-Markovian bath.

Now let us explore the dynamical consequences of non-Markovian behavior. From the master equation (2)
one can see that the non-Markovian bath introduces a time-dependent nonlinearity proportional to g (¢)72,
which influences the coherent evolution of the harmonic oscillator. To study dynamics, let us suppose that the
harmonic oscillator is initialized in a cat state |¥(0)) = C () (| + |—ay)) with |ag| = 2, where C(ap)isa
normalization factor. The initial density matrix is given by ps(0) = |¥(0)) (¥(0)|. To visualize the nonlinearity
due to the coupling to the bath, we calculate the Wigner function W (Q, P) = % Tr[ll D' (@) pg ()D ()] of the

resonator, where D (a) and IT are displacement and parity operators, respectively [46]. By using the canonical
coordinates Q and P one can define v = %(Q + 1P). The stroboscopic dynamics of the Wigner function is
depicted in figures 5(al)—(a4) in the Markovian case, and in figures 5(b1)—(b4) and (c1)—(c4) in the non-
Markovian regime. When the system is strongly coupled to the non-Markovian bath, the Wigner function
reveals signatures of the nonlinearity, as the system is not anymore in a cat state. However, after three periods of
the evolution, the system is partially refocused to its initial state. The latter may be interpreted as a Poincaré
recurrence since we are considering a finite number of modes in the non-Markovian bath.

6. Conclusions and outlook

We have investigated the Liouvillian spectrum of a non-Markovian master equation which islocal in time and
has a periodic LO. Based on Floquet theory, we have shown that even though the dynamics is non-Markovian,
the dynamical map is CP-divisible at stroboscopic times. In addition, we have proven that spectral properties of
the LO determine the contraction of the volume of accessible states at stroboscopic times, which ensures the
existence of a periodic steady state. To substantiate our theory, we present a time-local master equation derived
microscopically for an environment composed of a non-Markovian and a Markovian bath. We show that in this
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example, the volume of the accessible states [6] is stroboscopically reduced, because | det @(T) | < 1.Possible
directions in the future include the theoretical investigation of environments that exhibit phase transitions [47],
dissipative phase transitions [48] and a time-nonlocal master equations [49].
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Appendix A. Microscopic derivation of the master equation

In order to guide the reader through the microscopic derivation of the master equation (2), we have divided this
section in two subsections containing the steps of the derivation and its consequences. In section appendix A.1
we define the notation used in the derivation. In particular, we define the super-system which is composed by a
harmonic oscillator coupled to a non-Markovian bath. The super-system is weakly coupled to a Markovian bath,
which enables us to obtain a Lindblad-type master equation for the super-system reduced density matrix. In
section appendix A.2, we trace out the degrees of freedom of the non-Markovian bath and give the explicit form
the influence functional. Once we have full knowledge of the reduced density matrix of the harmonic oscillator,
one can obtain the master equation, as we describe at the end of the subsection.

A.1. Derivation of the master equation for a super-system consisting of a harmonic oscillator plus non-
Markovian bath

In this subsection we focus on the microscopic derivation of the master equation (2) in the manuscript. Our
derivation is based on the figure 1 of the manuscript. There we assume that the system is coupled to an
environment which consist of two baths. One of them is Markovian and the other one is non-Markovian. A
natural way to derive the master equation is to consider a super-system (Fs) composed of the resonator (Hs)
coupled to a non-Markovian bath (Hj\¢z) with N} modes via the coupling Hamiltonian Hg_ y;\¢3. In addition,
the super-system is coupled to a Markovian bath Hj; with N, modes via the interaction Hamiltonian Hgs_ yp-
With the notation that we introduced in the figure 1(b) in the main text, we use the following Hamiltonians in
the microscopic derivation

H= I:ISS + I:IMB + I:ISS—MB- (A.1)

As we discussed in the main text, there exists information flow back and forth between S and NM B, due to the
nature of the non-Markovian bath. This is possible because the system bath interaction Hg_ a\ is not treated
by perturbation theory. As a direct consequence of this, our treatment is valid for all the values of the coupling
between the system and the non-Markovian bath. Notice that Hgs_ 45 is the interaction between the super-
system and the Markovian bath, that we consider to be in Born approximation with weak coupling, and we apply
perturbation theory there. In the following, we work in a frame where both S and NM B are diagonal. In so
doing, we further transform all the Hamiltonian of the total system H into a polaron frame and we represent it
by using the superscript p. The polaron transformation is defined as

V = exp {ﬁz &(I;,j - I;k)}. (A2)
kK Wk

A1

In this new frame, we have VI;k vl= bAk — %ﬁ, VAV~ = A,and we define A” = VAV ', where
Wk

Y IS TS D
H" = Hgs + Hys + Hss— s

N ng N PN N, ) N, )
=wofl — Y AP+ > wbp b + Y wdl e + A n(@ + &). (A.3)
k=1%k k=1 I=1 I=1
AP AD AP
HSS HMB HSS—MB

To derive a master equation for the reduced density matrix p%¢(t) of the super-system SS, we assume that
the super-system is weakly coupled to the Markovian bath. We use then Born—Markov approximation [21] to
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derive the master equation. As the direct consequence, the Markovian master equation for the system we
consider (see figure 1 in the manuscript) is given by

dpl.(t .
’)Sd—i()z —ilALs, L))

- fo dre st Trys ([Hs_ s (®), [Ads_ st — 7 Bis() ® physlefst,  (A4)

where we have assumed that the density matrix 57 (t) of the total system, i.e., super-system plus Markovian bath,
. = = A X . . . N _fus .
satisfies p? (t) ~ pgs(t) ® p/{;[ - Here pgs(t) is a density matrix of the super-system and p}\’/l 5 =€ Wi /Zypis

. . . B . . .
athermal density matrix of the Markovian bath. Zy3 = Tre™ w15 is the partition function and T is the
temperature of the Markovian bath. Note that 5” (t) denotes the density matrix in the interaction picture and in
the polaron frame. Here, we use tilde sign to represent an operator is in its respective interaction picture. For
instance

O(t) = expli(Hs + AL ) 1O exp[—i(ALs + Hps)tl. (A.5)
When we expand equation (A.4), we arrive at a simpler form:
dpbs)
—o = il s (o)
- f dr (L (e sy — fpl(t)e T helASsT] C(—7)
0
+ [he HsmhelsTpl (1) — e smhellsTpl (1) A]C (1)), (A.6)
where
&P, AP _ AP AP ap
C(t) = (B ()B (0)) = Toyps[B (t)B" (0)pfzl, and (A7)
Xp AP N2 AP
B (t) = eltlust| N (& + &) |emiHust, (A.8)
=1

1

Note that the expectation value of £, = pyo.
1

(EZT + §) satisfies (X v = Tr(% ﬁ)/{’/lB) = 0. After some

algebraic manipulations, we obtain

B 1B

Ct) = fo . dw[cos(wt)coth(zkwT ) _ isin(wt)]](w). (A.9)

Following the same procedure as in [40], by taking the real part of C(¢), we can write down our Markovian master
equation as

dpss(t .
L‘;‘i( L s, ps(0) + 2%[;%/353&);% - %{ﬁz, ﬁSS(t)}], (A.10)
where
00 00 . w
Y = f; dr Re[C(T)] = L/(‘) dTL/; dw cos(wt)coth( T )](w)
*© w
N fo dm{s(w)mth( 2ks T )] () A1)

We note that we dropped the superscript p in the above master equation. We did this because we transformed
the master equation from the polaron frame into the original frame by performing the inverse polaron
transformation defined in equation (A.2).

A.2. Derivation of the final form of the master equation for the resonator
In the interaction picture, the master equation (A.10) has exact solution [40] for the super-system density matrix

Dss() = D~ cucibe 0 =) (m| @ Prpgs(0)- (A.12)
n,m

We have assumed that at the initial time, one has a factorized state of the super-system
Ps5(0) = ps(0) @ Prpyp(0). Atthe initial time, the system is prepared in the state p5(0) = 3=, , cn cXn) (m|.

We consider a non-Markovian bath which is in a thermal state py(5(0) = e AHvms / Zywmi- Here
Zywmp = Tre PHuvs is the partition function and 3is the inverse temperature.
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In the Schrédinger picture, we have pog(t) = e~ iflsst 535 (t) eiflsst_ In order to obtain the density matrix of
the system (resonator), we need to trace out the degrees of freedom of the non-Markovian bath

Ps(t) = Trymsl Pss ()]
=" ke 0! M Ty le s ) (m] @ Prgg(0)ess].

n,m
— Z CnCmef'ynt(nfm)le—i(nfm)wotln> <m| Elm(t): (A13)
n,m
where
(m) (n)
E(t) = tr(PNMB(O)eLH te-ifl D, (A.14)
is the influence functional, and
A p Do s
H" = Hymp + n Yy g (b + by). (A.15)

Here, we note that n is the eigenvalue of 71 in the Fock state basis of the resonator. From these expressions one can
see that the effect of the bath on the system is to create pure dephasing [30, 31]. A related problem was discussed
in the context on phase damping [40] and dynamics of cavities coupled to moving mirrors [41]. Now, the entire
problem reduces to finding the influence functional F,,,,,(f) analytically following a similar method asin [31].
One can show that the influence functional is given by

E,,(t) = GO0 —m?) =Ty (n—m)?, (A.16)
where
N, 2
G(t) = Z(ﬁ) [wit — sin(wH)], and (A17)
k=1\ %k
N, 2
O Z(g") - cos(wkt)]coth(ﬁ ") (A.18)
k=1\ Wk

By using the results obtained previously, we arrive at the exact solution for the resonator reduced density
matrix

ﬁs(t) — TWMB[ﬁSS(t)] — Z Cnc;qkefi(nfm)wtef%t(n7m)zeiG(t)(nfm)zefF(t)(n7m)2|n) <1’I’l| (A.19)

n,m

When we take the time derivative of the exact solution for ps (), we obtain

dp R
%(” — i[As(0), ps(D] + v(t)[ﬁﬁs(t)ﬁ - s + ﬁs(t)ﬁz)]
= —i[Hs(1), ps(D)] + () DA ps(t). (A.20)
Here,

Hy(t) = wi — g(t)i?, (A.21)

N g2
gt) =G) =Y 1 — cos(wet)], (A22)

k=1 Wk
Y(t) = 29, + 21°(t) = 27, + 22 & sm(wkt)coth(ﬂ ") (A.23)

k=1 Wk

Based on this microscopic derivation, we have shown that the dephasing rate y () = 2, + 2I°(#) can, in
average, become non-zero when y, > 0.

Appendix B. Circuit QED implementation of the non-Markovian bath

Circuit quantum electrodynamics (QED) has emerged as a promising platform to engineer strongly-correlated
states of quantum matter, where ‘particles’ arise from excitations of low-temperature electrical circuits [50]. In
this section we provide a circuit design that implements the Hamiltonian of the super system

N N,
A n PN . At ~
Hss = wod'a + > wiby by + a'a > g (b + by). (B.1)
k=1 k=1
Herew, = wis the frequency of the resonator in the main text. To avoid nonlinear coupling between too many
pairs of resonators, we apply the decomposition in eigenmodes bk Z Vi mbm, where V} ,,, are the elements
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Figure B1. Circuit diagram for implementing the system-bath Hamiltonian discussed in the main text.

ofa N times N square matrix. In terms of the new bosonic modes we obtain

N—
Hss = wyd'a + Zwmb b + Z]m(b by + hc) + ga Ta(bl + by), (B.2)

m=1 m=1

L N . . L .
where the coupling § = » 1, Vini is related to the eigenmode decomposition discussed above. To substantiate

2 2t
the structure of the mode decomposition, we assume periodic boundary conditions b; = by, ; for the bosonic
modes. This can be achieved by introducing a capacitive coupling between the nodes 1 and N in figure B1. In

this case, the coefficients appearing in the mode decomposition read V., = ﬁeik’".
1

The latter equation is much less demanding as nonlinear coupling between only one pair of resonators is
required. The circuit diagram for implementing the latter is shown in figure B1. As will be shown below, each LC
circuit forms a resonator with the frequency @,, ~ 1/4/L,,C,,. These LC circuits may as well be replaced with
transmission lines which can be fabricated with higher precision [51]. However, the calculation for the latter is
more troublesome, so we restrict ourself to the LC circuits instead for simplicity without compensating the
physics. Nonlinear coupling comes from the use of the Josephson junctions with an external magnetic
driving field.

Following the standard circuit quantization procedure [52], we first write down the circuit’s Lagrangian as

X (12 1 ,) E oy by — &1 + (1)
L= mz_:o(gcm(ﬁm - f@bm) + mZ::l Ecm,erl(d)m — Ou) T COS(T)
Py — ¢1

)

+ E cos( (B.3)

where C,,,, C,,, ,,.1 are capacitance, L, are inductance, &, = /2 /2e is the flux quantum, E;is the Josephson
energy, ®,(t) = 7 + ¢,(¢)isafluxbiasand ¢,, = — f V., dt is a flux variable, with V,,, being a voltage at the
corresponding position. We choose the flux bias field ¢(¢) to be an oscillating field with the frequency w,, which
can be implemented using an external AC magnetic field [53, 54]. The drive frequency will be chosen to eliminate
undesired terms in the cosine expansion using the rotating wave approximation (RWA).

The Hamiltonian can be obtained by using the Legendre transformation

v 4 9 G (o — ¢ + 6O )
Hss = Z [f + I + Z +1 D91 — Z ((2 ))' ( (11)0 : )
= m n=0

Z( 1)7(% d)l) ’ (B.4)

—o @m! o0

where g,, = /C o 3£/ 8¢' is a conjugate momentum of ¢, , Cn = Cum-1+ Cpms1 + Cpisan effective
capac1tance Here we have assumed that C,, /C,, < 1. We then quantized ¢, and q,,, by deﬁmng ladder

e
operators bm, b,, according to ¢,, = (L,,/4C,, )1/4(b +b )and 4, = i(Cp /AL 4(— b +b ) It follows
that
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N 52 &2 N 2t 2
m m ~
Yo E = 2 Gnbaba
m=0 2 m ZLm m=0 "
N-1 N—1
C A 21 2
%ﬂqmqm-ﬂ ~ Z ]m(bmberl + h-C-))
m=1 Cm m=1
where @, = 1/«/Lm C,and J, = 71/®m®m+1Cm,m+1/2C~‘m. Here we have assumed that J,, < &, and hence
2t 27
the rotating term, b,,b,, . ; + h.c., canbe ignored with RWA.

When working in the low excitation regime justified by a weak driving ¢, (t) < &y, the expansion of the
cosine function term can be kept up to the fourth order ( = 0, 1, 2). The quadratic term (n = 1) will simply
renormalize the frequency of the resonators. This lefts us with only the fourth-order terms

@[3(% — 3’0y (1) + 3(dy — BB (1) + 2(dy — 62, (1) + B, (D)1
0
3E; ~2n
_’_471%% G,0,®) + ...
sE(Len et
—— — | a@"?*+ a*+ 24a'a)(b, + b)o,t) + ... (B.5)

40} | 64C, G
We then choose the coherent drive with the frequency w, = @y, i.e. ¢, () = Q(l;e*iwlt + h.c.) where bis
promoted to a c-number. RWA can be applied for a weak driving 2 < &,,. The only non-rotating term in

equation (B.5) that survives after the RWA is then d4%d (51. + b)) as desired. As we discussed before, by
engineering the energies &@,, and couplings /,,,, one can obtain a linear dispersion for the frequencies wy and the
desired couplings gj.

ORCID iDs

Thi Ha Kyaw ® https://orcid.org/0000-0002-3557-2709
Jirawat Tangpanitanon ® https://orcid.org/0000-0003-0435-0422

References

[1] Weiss U 2012 Quantum Dissipative Systems 4th edn (Singapore: World Scientific)
[2] Breuer HP 2012 J. Phys. B: At. Mol. Opt. Phys. 45 154001
[3] Rivas A, Huelga S Fand Plenio M B 2014 Rep. Prog. Phys. 77 094001
[4] Breuer H P, Laine E M, Piilo ] and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[5] deVegaland Alonso D 2017 Rev. Mod. Phys. 89 015001
[6] Lorenzo S, Plastina F and Paternostro M 2013 Phys. Rev. A 88 020102
[7] WolfM M, Eisert J, Cubitt T S and Cirac J 1 2008 Phys. Rev. Lett. 101 150402
[8] Rivas A, Huelga S Fand Plenio M B 2010 Phys. Rev. Lett. 105 050403
[9] Tan],Kyaw T Hand Yeo Y 2010 Phys. Rev. A81 062119
[10] StrasbergP, Schaller G, Lambert N and Brandes T 2016 New J. Phys. 18 073007
[11] GoordenM C, Thorwart M and Grifoni M 2005 Eur. Phys. J. B 45 405-17
[12] Mostame S, Rebentrost P, Eisfeld A, Kerman A J, Tsomokos D I and Aspuru-Guzik A 2012 New J. Phys. 14 105013
[13] TongQJ,AnJH, Kwek L C, Luo H G and Oh CH 2014 Phys. Rev. A89 060101
[14] Lambropoulos P, Nikolopoulos G M, Nielsen T R and Bay S 2000 Rep. Prog. Phys. 63 455
[15] Angelakis D, Knight P and Paspalakis E 2004 Contemp. Phys. 45 303-18
[16] Restrepo S, Cerrillo J, Bastidas V M, Angelakis D G and Brandes T 2016 Phys. Rev. Lett. 117 250401
[17] LiuBH, LiL, Huang Y F, Li CF, Guo G C, Laine E M, Breuer H P and Piilo ] 2011 Nat. Phys. 7 931
[18] Schindler P, Miiller M, Nigg D, Barreiro ] T, Martinez E A, Hennrich M, Monz T, Diehl S, Zoller P and Blatt R 2013 Nat. Phys. 9 361
[19] Wittemer M, Clos G, Breuer H P, Warring U and Schaetz T 2018 Phys. Rev. A 97 020102
[20] Groblacher S, Trubarov A, Prigge N, Cole G D, Aspelmeyer M and Eisert ] 2015 Nat. Commun. 6 7606
[21] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[22] Gardiner Cand Zoller P 2004 Quantum Noise (Berlin: Springer)
[23] Lindblad G 1976 Commun. Math. Phys. 48 119-30
[24] GoriniV, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821-5
[25] Davies E B and Spohn H 1978 J. Stat. Phys. 19 511-23
[26] LendiK 1986 Phys. Rev. A33 3358—62
[27] DaiCM, ShiZ Cand YiX X 2016 Phys. Rev. A93 032121
[28] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A87 010103
[29] Fleming Cand HuB 2012 Ann. Phys., NY 327 1238-76
[30] Palma G M, Suominen K A and Ekert AK 1996 Proc. R. Soc. A 452 56784
[31] Reina] H, Quiroga L and Johnson N F 2002 Phys. Rev. A 65 032326
[32] Hartmann M, Poletti D, Ivanchenko M, Denisov S and Hinggi P 2017 New J. Phys. 19 083011

13


https://orcid.org/0000-0002-3557-2709
https://orcid.org/0000-0002-3557-2709
https://orcid.org/0000-0002-3557-2709
https://orcid.org/0000-0002-3557-2709
https://orcid.org/0000-0003-0435-0422
https://orcid.org/0000-0003-0435-0422
https://orcid.org/0000-0003-0435-0422
https://orcid.org/0000-0003-0435-0422
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevA.88.020102
https://doi.org/10.1103/PhysRevLett.101.150402
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevA.81.062119
https://doi.org/10.1088/1367-2630/18/7/073007
https://doi.org/10.1140/epjb/e2005-00192-5
https://doi.org/10.1140/epjb/e2005-00192-5
https://doi.org/10.1140/epjb/e2005-00192-5
https://doi.org/10.1088/1367-2630/14/10/105013
https://doi.org/10.1103/PhysRevA.89.060101
https://doi.org/10.1088/0034-4885/63/4/201
https://doi.org/10.1080/00107510410001676795
https://doi.org/10.1080/00107510410001676795
https://doi.org/10.1080/00107510410001676795
https://doi.org/10.1103/PhysRevLett.117.250401
https://doi.org/10.1038/nphys2085
https://doi.org/10.1038/nphys2630
https://doi.org/10.1103/PhysRevA.97.020102
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01011696
https://doi.org/10.1007/BF01011696
https://doi.org/10.1007/BF01011696
https://doi.org/10.1103/PhysRevA.33.3358
https://doi.org/10.1103/PhysRevA.33.3358
https://doi.org/10.1103/PhysRevA.33.3358
https://doi.org/10.1103/PhysRevA.93.032121
https://doi.org/10.1103/PhysRevA.87.010103
https://doi.org/10.1016/j.aop.2011.12.006
https://doi.org/10.1016/j.aop.2011.12.006
https://doi.org/10.1016/j.aop.2011.12.006
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1088/1367-2630/aa7ceb

I0OP Publishing New J. Phys. 20 (2018) 093004 V M Bastidas et al

[33] Floquet G 1883 Ann. Sci. laEcole Normale Supérieure 12 47-88

[34] Yakubovich V A and Starzhinskii VM 1975 Linear Differential Equations with Periodic Coefficients vol 2 (New York: Wiley)

[35] Grifoni M and Hinggi P 1998 Phys. Rep. 304 229-354

[36] Kohler S, Dittrich T and Hanggi P 1997 Phys. Rev. E 55 300—13

[37] Chruscifiski D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404

[38] Chrusciriski D, Macchiavello C and Maniscalco S 2017 Phys. Rev. Lett. 118 080404

[39] Addis C, Bylicka B, Chrusciniski D and Maniscalco S 2014 Phys. Rev. A 90 052103

[40] Walls D Fand Milburn G J 1985 Phys. Rev. A 31 2403-8

[41] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A56 4175-86

[42] Gely MF, Parra-Rodriguez A, Bothner D, Blanter Y M, Bosman SJ, Solano E and Steele G A 2017 Phys. Rev. B95 245115

[43] Filipp S, Goppl M, Fink J M, Baur M, Bianchetti R, Steffen L and Wallraff A 2011 Phys. Rev. A 83 063827

[44] BergRE 1991 Am. J. Phys. 59 1867

[45] HallM JW, Cresser ] D, Li L and Andersson E 2014 Phys. Rev. A 89 042120

[46] Benedict M G and Czirjak A 1995 J. Phys. A: Math. Gen. 28 4599

[47] Cosco F, Borrelli M, Mendoza-Arenas ] ], Plastina F, Jaksch D and Maniscalco S 2018 Phys. Rev. A 97 040101

[48] Kessler EM, Giedke G, Imamoglu A, Yelin S F, Lukin M D and Cirac J 12012 Phys. Rev. A86 012116

[49] Magazzui L, Denisov S and Hanggi P 2017 Phys. Rev. A 96 042103

[50] Houck A A, Tiireci H E and Koch J 2012 Nat. Phys. 8 292

[51] Underwood D L, Shanks W E, Koch J and Houck A A 2012 Phys. Rev. A 86 023837

[52] Devoret M H 1997 Quantum Fluctuations in Electrical Circuits Les Houches Session LXIII (Amsterdam: Elsevier)

[53] Wilson CM, Duty T, Sandberg M, Persson F, Shumeiko V and Delsing P 2010 Phys. Rev. Lett. 105 233907

[54] LuY, Chakram S, Leung N, Earnest N, Naik R K, Huang Z, Groszkowski P, Kapit E, Koch J and Schuster D12017 Phys. Rev. Lett. 119
150502

14


https://doi.org/10.24033/asens.220
https://doi.org/10.24033/asens.220
https://doi.org/10.24033/asens.220
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1103/PhysRevE.55.300
https://doi.org/10.1103/PhysRevE.55.300
https://doi.org/10.1103/PhysRevE.55.300
https://doi.org/10.1103/PhysRevLett.112.120404
https://doi.org/10.1103/PhysRevLett.118.080404
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevA.31.2403
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevB.95.245115
https://doi.org/10.1103/PhysRevA.83.063827
https://doi.org/10.1119/1.16608
https://doi.org/10.1119/1.16608
https://doi.org/10.1119/1.16608
https://doi.org/10.1103/PhysRevA.89.042120
https://doi.org/10.1088/0305-4470/28/16/017
https://doi.org/10.1103/PhysRevA.97.040101
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.96.042103
https://doi.org/10.1038/nphys2251
https://doi.org/10.1103/PhysRevA.86.023837
https://doi.org/10.1103/PhysRevLett.105.233907
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1103/PhysRevLett.119.150502

	1. Introduction
	2. Floquet stroboscopic divisibility
	3. Example: non-Markovian dynamics of a harmonic oscillator in a dephasing environment
	3.1. Dynamics of the non-Markovian bath and stroboscopic divisibility

	4. Properties of the dynamical map
	5. Non-Markovianity measure and dynamics of a Schrödinger cat state
	6. Conclusions and outlook
	Acknowledgments
	Appendix A.
	A.1. Derivation of the master equation for a super-system consisting of a harmonic oscillator plus non-Markovian bath
	A.2. Derivation of the final form of the master equation for the resonator

	Appendix B.
	References



