
KOSTALIA ELISAVET ELLI
STREAM DATA PROCESSING

IN THE CLOUD
FOR REAL-TIME ANOMALY DETECTION

Technical University of Crete
Department of Electrical and Computer Engineering

STREAM DATA PROCESSING IN THE CLOUD
FOR REAL-TIME ANOMALY DETECTION

ELISAVET ELLI KOSTALIA
SUPERVISOR: EVRIPIDES G.M. PETRAKIS

COMMITTEE:
EVRIPIDES G.M. PETRAKIS

VASSILIS SAMOLADAS
GEORGIOS CHALKIADAKIS

A thesis submitted in partial fulfilment of the requirements
for the diploma of Electrical & Computer Engineer

Chania, June 2019

Abstract

In recent years, data stream processing is becoming extremely popular because of the
Big Data era and the increasing number of microservices and IoT devices being used,
therefore, the development, deployment and management of distributed services are more
important than ever. Data gets stored and analyzed in order to provide predictive and
actionable results via frameworks, such as Apache Storm that allows distributed real-time
computation of tons of data coming in extremely fast, from various sources. Non-functional
requirements often demand a highly-available, high-throughput, fault-tolerant and massively
scalable solution. In this context, Apache Kafka is used as a publish-subscribe messaging
system that will serve as a broker between various data sources. In our implementation, all
services above can reach their highest utility when deployed in containers. This way, the
implementation takes advantage of the virtualization features of cloud computing. We ran
several experiments based on a simulated (but realistic) use case scenario for detecting un-
authorized system accesses (anomalies) in real time. The project runs a distributed cluster of
Apache Storm worker nodes (implemented as separate containers) that process incoming data,
and uses decision tree classifiers to detect anomalies based on a given dataset. The
experimental results demonstrates that Amanda application responds to the increasing
resource demands of the application leading to significantly faster response times while more
workers are deployed distributed compared to a non-distributed implementation where all
service requests are handled by the maximum statically pre-allocated resources.

Acknowledgements

I wish to express my gratitude to my supervisor, Prof. Euripides Petrakis, for his
continuous guidance, suggestions and encouragement along the way. Special thanks to Spyros
Argyropoulos for his support and his valuable advices. I would also like to thank Prof. Vassilis
Samoladas and Prof. Georgios Chalkiadakis for serving on my thesis committee. I would not
have been able to complete this without some amazing people in my life: my family, especially
my parents, for the support and the motivation and, of course, all my friends, thank you for
the memorable moments we lived together during our studies, the never-ending patience and
the encouragement. All of you contributed to this, each one on his own way. I Thank you all.

Contents

1 Introduction..11
1.1 Overview..11
1.2 Motivation..12
1.3 Problem Definition...12
1.4 Solution..13
1.5 Contribution...13

2 Background...13
2.1 Cloud..13
2.2 Virtualization...15
2.3 Containers... .15

2.3.1 Docker..16
2.3.1.1 Docker client and server...17
2.3.1.2 Docker Images..17
2.3.1.3 Registries...17
2.3.1.4 Containers..17

2.4 Data Processing Platforms...18
2.4.1 Spark..18
2.4.2 Storm...18
2.4.3 Flink..20

2.5 Machine Learning...21
2.5.1 Anomaly Detection..22

2.6 Apache Kafka...22

3 Amanda Application...24
3.1 Architecture...24
3.2 Application...25
3.3 Supervised Learning ..27

3.3.1 Dataset Selection..27
3.3.2 Offline pre-process..28

3.3.2.1 Classifier Selection...28
3.3.2.2 Training the model...28

3.4 Performance Evaluation...29

4 Conclusion and Future work...33
4.1 Conclusion..33
4.2 Future Work...34

 References..35

11

1. Introduction

1.1 Overview

We present a framework for real time anomaly detection using docker
containers to deploy the distinct processes. What we focused on, is creating
an application that supports stream data processing, not in a single server
environment, but in the Cloud. For the deployment of our application, a
flexible implementation which is based on Docker containers. This means that
our application is based on lightweight virtualization that can run anywhere
distributively, and not necessarily on a single server.

It is a scalable, fault-tolerant application for handling data in real-time
and at a massive scale. The proposed application uses existing big data
processing frameworks, Apache Kafka, and Apache Storm in conjunction with
machine learning techniques and tools. The approach we suggest consists of a
system for real-time data processing and analysis of the network-flow data.
For our application we used KDD Cup 1999 Data set1. This dataset was used
in the Third International Knowledge Discovery and Data Mining Tools
Competition, which was held in conjunction with KDD-99 The Third
International Conference on Knowledge Discovery and Data Mining. The
competition task was to build a network intrusion detector, a predictive
model capable of distinguishing between “bad” connections, called intrusions
or attacks, and “good” normal connections. This database contains a standard
set of data to be audited, which includes a wide variety of intrusions
simulated in a military network environment. Furthermore, the network
anomaly patterns were identified and evaluated using machine learning
techniques. We present results on anomaly detection with a testing set of
network traffic data evaluated with multiple workers of Storm.

Application containerization works with distributed applications, as
each container operates independently of others and uses minimal resources
from the host. Each microservice communicates with others through
application programming interfaces with the container virtualization layer
able to scale up microservices to meet rising demand for an application
component and distribute the load. This setup also encourages flexibility.

1 KDD Cup 1999 Data http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

12

1.2 Motivation

The primary motivation towards advocating a distributed approach is
the overall traffic of the Internet data that has noted a significant increase the
past years. This has led to a direct increase in the amount of network traffic
that the individual sub-networks of the Internet are expected to handle. The
detection of unexpected behavior in data describing network traffic. A cluster
based solution provides scalability and fault-tolerance in addition to providing
scope for parallelization of computations that result in a direct increase in
system throughput, responsiveness and performance. The security solutions
that can be built for the Advanced Metering Infrastructure built usually fall
into two categories:

1. Detection: This class of solutions focuses on the detection of
potential threats to the system, merely reporting the current state
of the system to the person in charge of the network, usually the
System or Network Administrator.

2. Prevention: This class of solutions encompasses both the detection
of potential threats and real-time preventive action taken in
accordance to these threats.

Our application runs under the first category of solutions to detect
anomalous activity in the network that is potentially malicious and it takes
no preventive action. However, our system is designed in a modular fashion
keeping in mind future requirements and can be easily extended to take
preventive action, including things like making the application run online or
changing firewall configurations on a real time basis to blacklist connections
belonging to certain IP addresses that are thought to belong to the attacking
entities. The containerized environment is expected to provide the
independence of the distinct processes running and the portability of our
application. Application scalability is also a significant factor that leads
Docker containers to make most of the application.

1.3 Problem Definition

Our problem derives from a number of applications that run and take
as an input big loads of data and in most cases, in real time. We were called
to face a number of independent issues at various granularities:

• handle incoming real-time data
• detect deviations from “normal” data, intruders
• deploy a multi-node Storm cluster with working topology
• containerize each distinct process

13

The main task of Amanda application is to provide efficient handling of real-
time data taking full advantage of containerization.

1.4 Solution

Our solution to the problem is dedicated to the orchestration of
platforms such as Apache Storm and Apache Kafka deployed on Docker. We
built a dockerized application we called Amanda that deploys Storm's
orchestration of big data processing in real time. Containerization's main
feature, scalability, is a factor we need to take full advantage of, in order to
achieve a better performance of the application, in terms of the response time
of the application. What is expected to prove is the ability to make the
application scalable after using a containerized environment to deploy it on.

1.5 Contribution

The utilization of Docker, including the images and volumes, targeting
to scalability, reallocation of computing resources of the system and
monitoring the load of the real-time input in the system. The algorithm that
runs inside the Storm workers is a trained model that came out of the
machine learning training.

2. Background

2.1 Cloud

Cloud computing supports the on-demand availability of computer
system resources, including data storage and computing power, without the
active management of the user. It relies on sharing of resources to achieve
coherence and economies of scale. Large clouds, predominant today, often
have functions distributed over multiple locations from central servers. Clouds
may also be limited to a single organization (enterprise clouds), be available
to many organizations (public cloud), or a combination of both (hybrid
cloud). The availability of high-capacity networks, low-cost computers and
storage devices as well as the widespread adoption of hardware virtualization,
service-oriented architecture, and autonomic and utility computing has led to
growth in cloud computing[1]. Cloud computing exhibits the following key

14

characteristics:
Device and location independence give users the ability to access

systems using a web browser regardless of their location or what device they
use. As infrastructure is typically provided by a third-party and accessed via
the Internet, users can connect to it from anywhere.

Maintenance of cloud computing applications is easier, because they do
not need to be installed on each user's computer and can be accessed from
different places.

Agility for organizations may be improved, as cloud computing may
increase users' flexibility with re-provisioning, adding, or expanding
technological infrastructure resources.

Cost reductions are claimed by cloud providers. A public-cloud delivery
model converts capital expenditures to operational expenditure. This
purportedly lowers barriers to entry, as infrastructure is typically provided by
a third party and need not be purchased for one-time or infrequent intensive
computing tasks. Pricing on a utility computing basis is "fine-grained", with
usage-based billing options.

Multitenancy enables sharing of resources and costs across a large pool
of users thus allowing for: centralization of infrastructure in locations with
lower costs, peak-load capacity increases (users need not engineer and pay for
the resources and equipment to meet their highest possible load-levels)
utilisation and efficiency improvements for systems that are often only 10–
20% utilised.

Monitoring the system performance by IT experts from the service
provider, and consistent and loosely coupled architectures are constructed
using web services as the system interface.

Productivity may be increased when multiple users can work on the
same data simultaneously, rather than waiting for it to be saved and emailed.

Reliability improves with the use of multiple redundant sites, which
makes well-designed cloud computing suitable for business continuity and
damage recovery.

Scalability and elasticity via on-demand provisioning of resources on a
self-service basis in near real-time, without users having to engineer for peak
loads. This gives the ability to scale up when the usage need increases or
down if resources are not being used.

Security can improve due to centralization of data and increased
security-focused resources, but concerns can persist about loss of control over
certain sensitive data, and the lack of security for stored kernels. The
complexity of security is of course greatly increased when data is distributed
over a wider area or over a greater number of devices, as well as in multi-
tenant systems shared by unrelated users. In addition, user access to security
audit logs may be difficult or impossible. Private cloud installations are in
part motivated by users' desire to retain control over the infrastructure and
avoid losing control of information security.

15

2.2 Virtualization

Virtualization refers to the creation of a virtual resource such as a
server, desktop, operating system, file, storage or network and it has been a
part of the IT landscape for decades now. Today it can be applied to a wide
range of system layers, including the operating system-level virtualization,
hardware-level virtualization and server virtualization. The main goal of
virtualization is to manage workloads by radically transforming traditional
computing to make it more scalable.

The most common form of virtualization is the operating system-level
virtualization. In operating system-level virtualization, it is possible to run
multiple operating systems on a single piece of hardware. Virtualization
technology involves separating the physical hardware and software by
emulating hardware using software. When a different OS is operating on top
of the primary OS by means of virtualization, it is referred to as a virtual
machine.

A virtual machine is nothing but a data file on a physical computer
that can be moved and copied to another computer, just like a normal data
file. The computers in the virtual environment use two types of file
structures: one defining the hardware and the other defining the hard drive.
The virtualization software, or the hypervisor, offers caching technology that
can be used to cache changes to the virtual hardware or the virtual hard disk
for writing at a later time. This technology enables a user to discard the
changes done to the operating system, allowing it to boot from a known
state[2].

2.3 Containers

Unlike hypervisor virtualization, where one or more independent
machines run virtually on physical hardware via an intermediation layer,
containers run in user space on top of an operating system’s kernel. As a
result, container virtualization is often called operating system-level
virtualization. Container technology allows multiple isolated user space
instances to run on a single host. Containers have been deployed in a variety
of use cases. They are popular for hyperscale deployments of multi-tenant
services, for lightweight sandboxing, and, despite concerns about their
security, as process isolation environments. Indeed, one of the more common
examples of a container is a chroot jail, which creates an isolated directory
environment for running processes. Attackers, if they breach the running
process in the jail, then find themselves trapped in this environment and
unable to further compromise a host[3].

Containers are generally considered a lean technology because they

16

require limited overhead. Unlike traditional virtualization or
paravirtualization technologies, they do not require an emulation layer or a
hypervisor layer to run and instead use the operating system’s normal system
call interface. This reduces the overhead required to run containers and can
allow a greater density of containers to run on a host. Despite their history
containers haven’t achieved large-scale adoption. A large part of this can be
laid at the feet of their complexity: containers can be complex, hard to set up,
and difficult to manage and automate. Docker aims to change that.

Proponents of containerization point to gains in efficiency for memory,
CPU and storage compared to traditional virtualization and physical
application hosting. Without the overhead required by VMs, it is possible to
support many more application containers on the same infrastructure.

Portability is another benefit. As long as the operating system is the
same across systems, an application container can run on any system and in
any cloud without requiring code changes. There are no guest operating
system environment variables or library dependencies to manage.
Reproducibility is another advantage to containerizing applications, which is
one reason why container adoption often coincides with the use of a DevOps
methodology[4].

2.3.1 Docker

Docker is an open-source engine that automates the deployment of
applications into containers. Docker adds an application deployment engine
on top of a virtualized container execution environment. It is designed to
provide a lightweight and fast environment in which to run a code as well as
an efficient workflow to get that code from e.g a laptop to a test environment
and then into production. Docker relies on a copy-on-write model so that
making changes to an application is also incredibly fast: only what the user
needs to change gets changed. The user can then create containers running
applications. Most Docker containers take less than a second to launch.
Removing the overhead of the hypervisor also means containers are highly
performant so that more of them can be packed into hosts making the best
possible use of compute resources. With Docker, Developers care about their
applications running inside containers, and Operations cares about managing
the containers. Docker is designed to enhance consistency by ensuring the
environment in which developers write code matches the environments into
which your applications are deployed.

Docker aims to reduce the cycle time between code being written and
code being tested, deployed, and used. It aims to make applications portable,
easy to build, and easy to collaborate on. Docker also encourages
serviceoriented and microservices architectures. Docker recommends that each
container run a single application or process. This promotes a distributed
application model where an application or service is represented by a series of

17

inter-connected containers. This makes it easy to distribute, scale, debug and
introspect your applications. The core components that compose Docker are
the Docker client and server, also called the Docker Engine, the Docker
Images, the Registries and the Docker Containers

2.3.1.1 Docker client and server

Docker is a client-server application. The Docker client talks to the
Docker server or daemon, which, in turn, does all the work. Sometimes the
Docker daemon is referred to as Docker Engine. Docker ships with a
command line client binary, docker, as well as a full RESTful API to interact
with the daemon. Docker daemon and client can run on the same host or
connect a local Docker client to a remote daemon running on another host.

2.3.1.2 Docker Images

Images are the building blocks of the Docker world. Containers are
launched from images. Images are the "build" part of Docker’s life cycle.
They are a layered format, using Union file systems, that are built step-by-
step using a series of instructions. Images are considered to be the "source
code" for containers. They are highly portable and can be shared, stored, and
updated.

2.3.1.3 Registries

Docker stores the images in registries. There are two types of registries:
public and private. Docker, Inc., operates the public registry for images,
called the Docker Hub. A user creates an account on the Docker Hub and
uses it to share and store images. Docker Hub also contains, at last count,
over 10,000 images that other people have built and shared. Images can also
be stored privately on Docker Hub. These images might include source code
or other proprietary information that is stored securely or shared with other
members of a team or organization. A user can also run his own private
registry. This allows to store images behind a firewall, which may be a
requirement for some organizations.

2.3.1.4 Containers

Docker helps a user build and deploy containers inside of which
applications and services are packed. As mentioned before, containers are

18

launched from images and can contain one or more running processes. One
can think about images as the building or packing aspect of Docker and the
containers as the running or execution aspect of Docker. A Docker container
consists of an image format, a set of standard operations and an execution
environment.
 Docker doesn’t care about the contents of the container when
performing actions. Each container is loaded the same as any other container
whether it is a web server, a database, or an application server. Docker also
doesn’t care where containers are shipped from: they can be built on a laptop,
upload to a registry, then download to a physical or virtual server, test,
deploy to a cluster of a dozen hosts, and run. It can build local, self-
contained test environments or replicate complex application stacks for
production or development purposes. The possible use cases are endless.

2.4 Data Procesing Platforms

2.4.1 Spark

Apache Spark alongside with Hadoop and Storm is one of the most
popular frameworks for large scale data prosessing under the wing of the
Apache Software Foundation. Spark is a general-purpose distributed data
processing engine that is suitable for use in a wide range of circumstances.
Programming languages supported by Spark include: Java, Python, Scala,
and R. Application developers and data scientists incorporate Spark into their
applications to rapidly query, analyze, and transform data at scale. Tasks
most frequently associated with Spark include batch jobs across large data
sets, processing of streaming data from sensors, IoT, or financial systems, and
machine learning tasks[6]. Basically Spark is a framework which provides a
number of interconnected platforms, systems and standards for Big Data
projects.

Spark has proven very popular and is used by many large companies
for huge, multi-petabyte data storage and analysis. This has partly been
because of its speed. Last year, Spark set a world record by completing a
benchmark test involving sorting 100 terabytes of data in 23 minutes - the
previous world record of 71 minutes being held by Hadoop[7].

2.4.2 Storm

Apache Storm is a free and open source distributed realtime
computation system. Storm makes it easy to reliably process unbounded
streams of data, doing for realtime processing what Hadoop did for batch
processing. Storm is simple, can be used with any programming language,

19

and is a lot of fun to use!
Storm has many use cases: realtime analytics, online machine learning,

continuous computation, distributed RPC, ETL, and more. Storm is fast: a
benchmark clocked it at over a million tuples processed per second per node.
It is scalable, fault-tolerant, guarantees your data will be processed, and is
easy to set up and operate. Storm integrates with the queueing and database
technologies you already use. A Storm topology consumes streams of data
and processes those streams in arbitrarily complex ways, repartitioning the
streams between each stage of the computation however needed.

Apache storm is an open-source distributed real-time computational
system for processing data streams. Similar to what Hadoop used to do for
batch processing, Apache Storm does for unbounded streams of data in a
reliable manner. Able to process over a million jobs in fraction of a second on
a node Integrated with Hadoop to harness higher throughputs Easy to
implement and can be integrated with any programming language.

Apart from other projects of Apache such as Hadoop and Spark, Storm
is one of the star performers in the field of data analysis. Companies can get
benefitted as this technology facilitates multiple applications at once.

There are two types of nodes in Storm cluster:
The master node of Storm runs a daemon called ‘Nimbus’, which is

similar to the ‘Job Tracker’ of Hadoop cluster. Nimbus is responsible for
distributing codes, assigning tasks to machines and monitoring their
performance.

Similar to the master node, the worker node also runs a daemon called
‘Supervisor’ which is able to run one or more worker processes on its node.
The Nimbus node is responsible for assigning the work load to the supervisor
nodes, and starts and stops the worker processes when required. Every worker
process runs a specific set of topology which consists of worker processes
working around machines. Since Apache Storm does not have the abilities to
manage its cluster state, it depends on Apache Zookeeper for this purpose.
Zookeeper facilitates communication between Nimbus and Supervisors with
the help of message acknowledgements, processing status, etc.

There are basically four components/abstractions which are responsible
for performing the tasks:

Storm topology can be described as a network made of spout and bolts.
It can be compared to the Map and Reduce jobs of Hadoop. Spouts are the
data stream source tasks and Bolts are the accrual processing tasks. Every

20

node in the network consists of processing logic’s and links to demonstrate
the ways in which data will pass and the processes will be executed. Each
time a topology is submitted to the storm cluster, Nimbus consults the
supervisor nodes about the worker nodes. An example of a Storm's topology
is presented in figure 2.1.

Stream is one of the basic abstractions of the storm architecture is
stream which is an unbounded pipeline of tuples. A tuple can be defined as
the fundamental component in the Storm cluster containing a named list of
the values or elements.

Spout is the entry point or the source of streams in the topology. It is
responsible for getting in touch with the actual data source, receiving data
continuously, transforming those data into actual stream of tuples and finally
sending them to the bolts to be processed.

Bolt keep the logic required for processing. These are responsible for
emitting the streams for processing by other bolts and saving or sending the
data for storage. These are capable of running functions, filtering tuples,
aggregating and joining streams, linking with database, etc[8].

2.1 Apache Storm's Topology

2.4.3 Flink

Apache Flink is a distributed data processing platform for use in big
data applications, primarily involving analysis of data stored in Hadoop
clusters. Supporting a combination of in-memory and disk-based processing,
Flink handles both batch and stream processing jobs, with data streaming the
default implementation and batch jobs running as special-case versions of
streaming applications. Apache Flink is a framework and distributed
processing engine for stateful computations over unbounded and bounded
data streams. Flink has been designed to run in all common cluster
environments, perform computations at in-memory speed and at any scale.
Any kind of data is produced as a stream of events. Credit card transactions,
sensor measurements, machine logs, or user interactions on a website or

21

mobile application, all of these data are generated as a stream. Data can be
processed as unbounded or bounded streams.

Unbounded streams have a start but no defined end. They do not
terminate and provide data as it is generated. Unbounded streams must be
continuously processed, i.e., events must be promptly handled after they have
been ingested. It is not possible to wait for all input data to arrive because
the input is unbounded and will not be complete at any point in time.
Processing unbounded data often requires that events are ingested in a
specific order, such as the order in which events occurred, to be able to reason
about result completeness.

Bounded streams have a defined start and end. Bounded streams can
be processed by ingesting all data before performing any computations.
Ordered ingestion is not required to process bounded streams because a
bounded data set can always be sorted. Processing of bounded streams is also
known as batch processing.

Apache Flink excels at processing unbounded and bounded data sets.
Precise control of time and state enable Flink’s runtime to run any kind of
application on unbounded streams. Bounded streams are internally processed
by algorithms and data structures that are specifically designed for fixed sized
data sets, yielding excellent performance.

The core Flink runtime supports a pipelined streaming architecture; it
also offers a built-in method to support iterative data processing for machine
learning and other analytics applications. Dedicated APIs and libraries are
provided for development of machine learning programs, as well as string
handling, graph processing and other uses. Another API is focused on
Hadoop application integration.

2.5 Machine Learning

“Machine learning is based on algorithms that can learn from data
without relying on rules-based programming.”

McKinsey & Co.

Machine Learning is an application of artificial intelligence (AI) that
gives systems the ability to perform tasks after automatically learning from
data without relying on rule-based programming. It focuses on learning and
improving from data, and then make determinations or predictions on future
data.

Learning methods are categorized as supervised or unsupervised. The

22

first one describes learning algorithms that apply what has been already
learnt, to new data, using labeled examples in order to predict future events.
Contrary, unsupervised learning is used when the data being used are neither
classified nor labeled. Unsupervised machine learning studies how systems can
form a function to describe a structure from unlabeled data. The system
doesn’t figure out the right output, but it explores the data and can draw
inferences from datasets to describe hidden structures from unlabeled data.
There is reinforcement learning, as well, which is about taking suitable action
to maximize reward in a particular situation. It is employed by various
software components to find the best possible behavior or path it should take
in a specific situation.

2.5.1 Anomaly Detection

“Observation which deviates so much from other observations as to
arouse suspicion it was generated by a different mechanism” 

  Hawkins(1980)

Anomaly detection describes the identification of rare items, events or
observations which raise suspicions by differing significantly from the
majority of the data[9]. Typically, anomalous data can be connected to some
kind of problem or rare event and it has many applications in business, from
intrusion detection (identifying strange patterns in network traffic that may
could signal a hack) to system health monitoring, and from fraud detection in
credit card transactions to fault detection in operating environments. Density-
based, Clustering-based and Support Vector Machine-based anomaly
detection are some popular machine learning-based techniques for anomaly
detection.

2.6 Apache Kafka

Apache Kafka is a distributed event streaming platform capable of
handling a big number of events. Initially it was conceived as a messaging
queue and it quickly evolved from messaging queue to a full-fledged event
streaming platform.

23

2.2 Apache Kafka messaging system

Kafka uses topics for its utility. A topic is a category or feed name to which
records are published. Topics in Kafka are always multi-subscriber; that is, a topic
can have zero, one, or many consumers that subscribe to the data written to it.
For each topic, the Kafka cluster maintains a partitioned log that can be described
as a queue:

2.3 Kafka's topic instance

Messaging traditionally has two models: queuing and publish-subscribe. In a
queue, a pool of consumers may read from a server and each record goes to
one of them; in publish-subscribe the record is broadcast to all consumers.
Each of these two models has a strength and a weakness. The strength of
queuing is that it allows you to divide up the processing of data over multiple
consumer instances, which lets you scale your processing. Unfortunately,
queues aren't multi-subscriber—once one process reads the data it's gone.
Publish-subscribe allows you broadcast data to multiple processes, but has no
way of scaling processing since every message goes to every subscriber. In this
project, Kafka's queuing service is being employed.

24

3. Amanda Application

3.1 Architecture

This chapter describes the architecture of Amanda, identifies its basic
components and provides an in depth analysis of its functionality. This
architecture is mandated by the use of Apache Storm as a distributed
processing framework and it consists of a number of slave nodes (workers), a
master node and a Zookeeper node along with an Apache Kafka component
used as a queue for the input data. Apache Storm abstracts away the
complexities of talking to different machines on a network allowing developers
to focus on application functionality and leave most of the complexities of
message passing, ensuring fault tolerance and distribution up to the
framework. Our choice of Apache Storm as a distributing processing
framework was motivated by its emphasis on real-time application support.
Most other distributed processing frameworks like Apache Hadoop and
Apache Spark do a terrific job in supporting applications that require batch
processing, but provide no support for stream-based applications that need to
work on data in real-time.

Topology is the top-level abstraction that you submit to Storm clusters
for execution and includes the spouts and the bolts. It is a graph of stream
processes where each node is a spout or bolt. Links between nodes inside the
topology describe how tuples should be passed around. Each node in the
topology of a Storm cluster executes in parallel. Our topology is implemented
with the parallelism factor of 2. A topology runs forever, or until it is killed.
Additionally, Storm automatically reassigns any failed tasks and guarantees
that there will be no data loss, even if machines go down and messages are
dropped. On our application we have used two bolts, each one for a different
type of intrusion: Dos Bolt (Denial of Service Bolt) and Brute Force SSH
Bolt.

25

3.1 Storm's topology

3.2 Application

The basic workflow of our system in terms of storm components is as
outlined below. The incoming packet stream corresponds to an abstraction of
the incoming packets, manifesting itself in code in the form of a Java stream
created using the CSV file outputted during the pre-processing stage. In order
to simulate a real-time system that has incoming data round the clock, we
read the data stream in tuples, waiting for a few milliseconds after each read
in order to make sure the previous tuple was processed. The CSV Spout
functions as a buffer converting the incoming Java data stream into tuples
that can be understood by the Storm subsystem. It is written entirely in
Java, the code for which can be found in the Appendix. The tuples are then
sent ahead to the two bolts, with each tuple replicated 2 times, one for each
bolt. Each bolt corresponds to a processing entity that performs the
classification task in addition to the tasks of loading the persisted classifier
into main memory and converting each tuple into a data format compatible
with the interface of the classifier.

26

3.2 Amanda's architecture

27

Every Bolt is a logical abstraction representing one of the two
classifiers built during training. Each Bolt serves to identify attack instances
of a particular input class, with the classes being restricted to the two types
of attacks in the dataset.

The system consists of one master node (known as Nimbus in storm
terminology), a number of slave nodes (ideally 2 or multiples of 2, for each
classifier) and one Zookeeper node, which is responsible for maintaining the
state of the system and interfacing between the master node and the slaves.
The topology and the input Spout are both written using the Java
programming language. This choice was dictated by Storm’s built in support
for Java. The Bolts are written using the Python programming language.

Apache Storm does the logical to physical mapping at runtime. It does
this via the topology construct built into storm. A machine in a Storm cluster
may run one or more than one worker processes for one or more topologies.
Each worker process runs executors for a specific topology. Maven is
commonly used for building Storm topologies, and it requires a pom.xml file
that defines various configuration details and the project dependencies.

3.3 Supervised Learning

3.3.1 Dataset Selection

For our application we used a very popular dataset, NSL-KDD
dataset. Data consists of around 5 million tuples with 41 characteristic each
that are all labeled. This dataset satisfies the above features:

1. Realistic network traffic
2. Labeled dataset
3. Total interaction capture
4. Complete capture
5. Diverse intrusion scenarios

The dataset also provides a satisfying in size testing set for each
intrusion scenario. Our project was adjusted to detect two different types of
anomalous behaviour it has been trained upon: Denial-of-service (DoS) and
Brute force running an SSH server (Brute Force SSH) attacks:

Denial Of Service: In computing, a denial-of-service (DoS) attack is an
attempt to make a machine or network resource unavailable to its
intended users.
Brute Force SSH: Brute force which is also known as brute force
cracking, is a trial and error method used by application programs to
decode encrypted data such as passwords through exhaustive effort
(using brute force) rather than employing intellectual strategies. Brute

28

force SSH refers to the process of using such an attack to break into
systems running an SSH server.

The availability of a world-class labelled intrusion detection dataset steered us
in the direction of using supervised machine learning as opposed to
unsupervised approaches.

3.3.2 Offline pre-process

3.3.2.1 Classifier Selection

Selecting a suitable classifier is important. Often the hardest
part of solving a machine learning problem, choosing the right
estimator makes use of the following information for the given problem
at hand are the dataset size, whether the dataset is labeled or not, the
type of prediction or target classes and the type of data (text,
multimedia etc). From the point of view of our implementation we
considered to use models that use decision trees as classifiers. The
advantage of using decision trees is that they are easy to interpret and
explain. Decision trees handle feature interactions and they are non-
parametric.

3.3.2.2 Training the model

The use of machine learning entails ‘learning’ with experience.
In Supervised learning, this translates to building a model of the
classification function from the data and their associated labels. We
have used a model that advocates the use of two separate classifiers for
identifying each type of attack to take advantage of the parallel
processing techniques inherent in the use of a distributed system, and
storm in particular. Each decision tree classifier was trained using a
pre-defined ratio of normal packet data and attacking instances, the
attacking instances all corresponding to the same attack type.

During the offline process, a training set is inserted as an input
and after the application of the classifier it constructs a model
algorithm that will evaluate new, non-trained data, to confirm, or not,
the deviation of expected normal values in data. This persisted model
is then loaded into the files with the code that the workers run. As for
the testing, testing datasets can be used. A very efficient way of testing
is cross-validation, which samples the training test and then uses the

29

samples for the testing.
The process of deciding whether the results quantifying

hypothesized relationships between variables, are acceptable as
descriptions of the data, is known as validation. As there is never
enough data to train your model, removing a part of it for validation
poses a problem of underfitting. Reducing the training data risks to
miss important patterns in the data set, which in turn increases error.
What is required is a method that provides ample data for training the
model and also leaves ample data for validation and K-Fold cross
validation does that.

During the K Fold cross validation, the data is divided into k
subsets. Now the holdout method is repeated k times, such that each
time, one of the k subsets is used as the test set/ validation set and the
other k-1 subsets are put together to form a training set. The error
estimation is averaged over all k trials to get total effectiveness of our
model. As can be seen, every data point gets to be in a validation set
exactly once, and gets to be in a training set k-1 times. This
significantly reduces bias as we are using most of the data for fitting,
and also significantly reduces variance as most of the data is also being
used in validation set. Interchanging the training and test sets also
adds to the effectiveness of this method [10].

3.4 Performance Evaluation

As for the efficiency of the working application, the schema of the
performance of the running containers representing the workers of Storm
cluster of our application is following.

During the experimental process, we simulated the real-time data
system by making the input handling system “sleep” for 100ms after every
instance of tuples is inserted to the application as an input. This technique
can secure that the processing of the current input will execute only after the
previous set of tuples has been accepted in the system, in order to avoid the
case of batch data as an input. In order to monitor the performance of the
application, we call the Kafka producer component and pass as variables the
number of the requests that hit the input of the application along with the
time in milliseconds for the system to wait between producing each distinct
message. During the monitoring process, the number of workers has been
increasing, after killing the topology each time in order to rebuild the project
with the new topology submitted.

Analyzing the graph above, we examine the performance of the
distribution of workers on our Storm cluster which, on some points, is also a
container scaling issue. While using two workers with the parallelism factor equal

30

to 2 we can see the performance upturn, as the number of the requests/sec increase
while hitting the

Initially, the configuration of the application in the topology used two
workers to run on the Storm, which is translated in building a supervisor
container with two worker threads running.

Workers=2

The horizontal axis shows the requests (number of tuples) accessed,
while the horizontal axis represents the access rate for each request in request
per second. Starting with a relatively low number of requests, we can see the
improvement of the response time, while when increasing the requests, the
rate of this increase is lower because of the big load of the requests. The
number of served requests per second is then, still increasing, on a lower rate
though. This pattern is followed for each of the four different cases which
were examined.

Following, we reconfigured the number of deployed workers setting it to
four. After rebuilding the topology, the cluster still uses only one supervisor
container to run the tasks, as each supervisor is capable of deploying up to
four workers.

requests sec requests/sec
5000 7 714.29
10000 8 1250.00
20000 10 2000.00
50000 17 2941.18
100000 30 3333.33
200000 58 3448.28
300000 81 3703.70

0 100000 200000 300000 400000
0

500

1000

1500

2000

2500

3000

3500

4000

Workers=2

requests

re
q
u
e
s
ts
/s
e
c

31

workers=4

Changing the number of the workers to six, leads to starting another
one supervisor in order to run the extra two new workers to run. Of course
the topology has to be rebuilt. We now have two supervisor containers
running along with the nimbus container inside Storm's architecture. The
results of the requests hit on the Kafka component while six workers threads
are running is following.

workers=6

In the final stage of the performance monitoring, we adjusted the
number of workers to eight. The system is still using two containers who can
of course afford the eight workers.

workers=8

requests sec requests/sec
5000 4 1250.00
10000 6 1666.67
20000 9 2222.22
50000 17 2941.18
100000 32 3125.00
200000 60 3333.33
300000 76 3947.37

requests sec requests/sec
5000 3 1666.67
10000 5 2000.00
20000 8 2500.00
50000 16 3125.00
100000 28 3571.43
200000 57 3508.77
300000 74 4054.05

requests sec requests/sec
5000 3 1666.67
10000 4 2500.00
20000 11 2987.00
50000 14 3571.43
100000 30 3333.33
200000 52 3846.15
300000 73 4109.59

32

The performance of the two cases were each supervisor container uses
the maximum number of workers (workers=4 and workers=8) were analyzed
below.

We can see that the parallelism of the processes running in the threads
in docker containers is a significant factor that makes the deployment of 8
workers (two supervisor containers running in parallel) giving better response
time for the same number of requests.

The following schema contains the four different graphs of the cases
mentioned above:

3.5 Application's performance

0 50000 100000150000200000250000300000350000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Workers=4

Workers=8

0 50000 100000 150000 200000 250000 300000 350000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Workers=2

Workers=4

Workers=6

Workers=8

33

A second stage of monitoring the performance of the application, based
on the response time of the system given a different number of requests as an
input was focused on a lower given number of requests to as an input to the
system.

The improvement on the performance of the application while
deploying an extra supervisor container, while receiving a lower number of
requests, is presented in the graph above. What can be occurred is the better
response time while using a double number of workers distributed in a double
number of supervisor containers.

4. Conclusion and Future work

4.1 Conclusion

In this thesis we introduced, implemented and tested a concept
architecture for deploying the Apache Storm cluster and the Apache Kafka
queue on Docker containers running machine learning classifiers for the
anomaly detection of real-time stream data input. Summarizing, the
contribution of this work was to prove the enhancing performance of the
system while deploying a relatively bigger number of workers that results to
reduction of resources usage. Therefore, scalability can prove feasible and
show better results on the response time of the system.

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

800

900

Workers=4

Workers=8

requests

re
q
u
e
s
t/s
e
c

34

4.2 Future Work

For future work, we can focus the research on scaling our application.
A promising concept will be to execute cluster-level operations such as scale
up or scale down without affecting the already deployed applications. A good
way to achieve this is the use of the components of Docker volumes which can
support the scalability, which is already supported in Docker, but without
having to rebuild the project and stop the running application. Docker
volumes are mainly used for backup purposes as the user is able to save the
data of the running container so it can be rebuilt later and continue its
process.

The application we built is deployed locally on a machine which runs
the Docker and its components offline. A significant contribution to the built
system suggests the online deployment of the application hosted on a server
that will be able to support an integrated online application to achieve the
distributed functionality of detecting anomalous behavior of data streams in
systems.

Our system is designed to monitor the functionality of running the
anomaly detection algorithm in a Storm cluster. Yet, it can be easily
extended, not only to track the not normal data behavior but also to take
preventive action after the anomaly detection utility, including things like
making the application run online or changing firewall configurations on a
real time basis to blacklist connections belonging to certain IP addresses that
are thought to belong to the attacking entities. Additionally, we can add
unsupervised learning methods to predict novel attacks such as with the use
of Neural Networks, not only the ones that our model is trained to.

By default Storm distributes workers for each topology across the cluster.
Additional features like the ability to change the isolation configuration
dynamically can be implemented in order to reduce query topologies to a single
worker per topology which is expected to perform better.

35

5. References

[1] "What is Cloud Computing?" Amazon Web Services, 2013-03-19, Retrieved 2013-
03-20.

[2] https://www.techopedia.com/definition/719/virtualization

[3] The Docker Book: Containerization Is the New Virtualization By James Turnbull

[4] https://searchitoperations.techtarget.com/definition/application-containerization-
app-containerization

[5] Oestreich, Ken (2010-11-15). “Converged Infrastructure”. CTO Forum.
Thectoforum.com. Archived from the original on 2012-01-13. Retrieved 2011-12-02.

[6] “Cloud Computing: Clash of the clouds”. The Economist. 2009-10-15. Retrieved
2009-11-03.

[7] https://www.bernardmarr.com/default.asp?contentID=1079

[8] https://intellipaat.com/blog/what-is-apache-storm/

[9] Zimek, Arthur; Schubert, Erich (2017), "Outlier Detection", Encyclopedia of
Database Systems, Springer New York

[10] https://towardsdatascience.com/cross-validation-in-machine-learning-
72924a69872f

“A Study of CrossValidation and Bootstrap for Accuracy Estimation and Model
Selection”, Ron Kohav, International Joint Conference on Articial Intelligence
(IJCAI), 1995

“Real-Time Network Anomaly Detection System Using Machine Learning” , Shuai
Zhao, Mayanka Chandrashekar, Yugyung Lee, Deep Medhi, 2015 11th International
Conference on the Design of Reliable Communication Networks (DRCN)

“An overview of anomaly detection techniques: Existing, solutions and latest
technological trends”, Animesh Patcha, Jung-Min Park, Bradley Department of
Electrical and Computer Engineering, Virginia Polytechnic Institute and State
University

Unsupervised Learning, Peter Dayan, Wilson, RA & Keil, F, editors. The MIT
Encyclopedia of the Cognitive Sciences

“A Survey on Unsupervised Machine Learning Algorithms for Automation,

36

Classification and Maintenance”, Memoona Khanum, Tahira Mahboob, Warda
Imtiaz, Humaraia Abdul Ghafoor, Rabeea Sehar, International Journal of Computer
Applications (0975 – 8887), Volume 119 – No.13, June 2015

https://storm.apache.org/
https://zookeeper.apache.org/
https://kafka.apache.org/
https://www.docker.com/
https://flink.apache.org/

https://www.docker.com/
https://kafka.apache.org/
https://zookeeper.apache.org/
https://storm.apache.org/

