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Abstract

In recent years, data stream processing is becoming extremely popular because of the
Big  Data  era  and  the  increasing  number  of  microservices  and  IoT  devices  being  used,
therefore,  the development,  deployment and management of  distributed services  are  more
important  than  ever.  Data  gets  stored  and  analyzed  in  order  to  provide  predictive  and
actionable results via frameworks, such as Apache Storm that allows distributed real-time
computation of tons of data coming in extremely fast, from various sources. Non-functional
requirements often demand a highly-available, high-throughput, fault-tolerant and massively
scalable solution. In this context,  Apache Kafka is used as a publish-subscribe messaging
system that will serve as a broker between various data sources. In our implementation, all
services  above can reach their  highest  utility when deployed in containers.  This  way,  the
implementation takes advantage of the virtualization features of cloud computing. We ran
several experiments based on a simulated (but realistic) use case scenario for detecting un-
authorized system accesses (anomalies) in real time. The project runs a distributed cluster of
Apache Storm worker nodes (implemented as separate containers) that process incoming data,
and  uses  decision  tree  classifiers  to  detect  anomalies  based  on  a  given  dataset.  The
experimental  results  demonstrates  that  Amanda  application  responds  to  the  increasing
resource demands of the application leading to significantly faster response times while more
workers  are deployed distributed compared to a non-distributed implementation where all
service requests are handled by the maximum statically pre-allocated resources.
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1. Introduction

1.1 Overview

We present a framework for real time anomaly detection using docker
containers to deploy the distinct processes.  What we focused on, is creating
an application that supports stream data processing, not in a single server
environment,  but  in  the Cloud.  For the deployment of  our application,  a
flexible implementation which is based on Docker containers. This means that
our application is based on lightweight virtualization that can run anywhere
distributively, and not necessarily on a single server. 

It is a scalable, fault-tolerant application for handling data in real-time
and  at  a  massive  scale.  The  proposed  application uses  existing  big  data
processing frameworks, Apache Kafka, and Apache Storm in conjunction with
machine learning techniques and tools. The approach we suggest consists of a
system for real-time  data  processing and analysis of the network-flow  data.
For our application we used KDD Cup 1999 Data set1. This dataset was used
in  the  Third  International  Knowledge  Discovery  and  Data  Mining  Tools
Competition,  which  was  held  in  conjunction  with  KDD-99  The  Third
International  Conference  on  Knowledge  Discovery  and  Data  Mining.  The
competition  task  was  to  build  a  network  intrusion  detector,  a  predictive
model capable of distinguishing between “bad” connections, called intrusions
or attacks, and “good” normal connections. This database contains a standard
set  of  data  to  be  audited,  which  includes  a  wide  variety  of  intrusions
simulated  in  a  military  network  environment. Furthermore,  the  network
anomaly  patterns  were  identified  and  evaluated  using  machine  learning
techniques.  We present results on anomaly detection with a testing set of
network traffic data evaluated with multiple workers of Storm.

Application  containerization  works  with  distributed  applications,  as
each container operates independently of others and uses minimal resources
from  the  host.  Each  microservice  communicates  with  others  through
application  programming  interfaces  with  the  container  virtualization  layer
able  to  scale  up  microservices  to  meet  rising  demand  for  an  application
component and distribute the load. This setup also encourages flexibility. 

1 KDD Cup 1999 Data http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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1.2 Motivation

The primary motivation towards advocating a distributed approach is
the overall traffic of the Internet data that has noted a significant increase the
past years. This has led to a direct increase in the amount of network traffic
that the individual sub-networks of the Internet are expected to handle. The
detection of unexpected behavior in data describing network traffic. A cluster
based solution provides scalability and fault-tolerance in addition to providing
scope for parallelization of computations that result in a direct increase in
system throughput, responsiveness and performance. The security solutions
that can be built for the Advanced Metering Infrastructure built usually fall
into two categories: 

1. Detection:  This  class  of  solutions  focuses  on  the  detection  of
potential threats to the system, merely reporting the current state
of the system to the person in charge of the network, usually the
System or Network Administrator.

2. Prevention: This class of solutions encompasses both the detection
of  potential  threats  and  real-time  preventive  action  taken  in
accordance to these threats. 

Our application runs under the first category of solutions to detect
anomalous activity in the network that is potentially malicious and it takes
no preventive action. However, our system is designed in a modular fashion
keeping  in  mind future  requirements  and can  be  easily  extended  to  take
preventive action, including things like making the application run online or
changing firewall configurations on a real time basis to blacklist connections
belonging to certain IP addresses that are thought to belong to the attacking
entities.  The  containerized  environment  is  expected  to  provide  the
independence  of  the  distinct  processes  running  and the portability  of  our
application.  Application  scalability  is  also  a  significant  factor  that  leads
Docker containers to make most of the application.

1.3 Problem Definition

Our problem derives from a number of applications that run and take
as an input big loads of data and in most cases, in real time. We were called
to  face a number of independent issues at various granularities:

• handle incoming real-time data
• detect deviations from “normal” data, intruders
• deploy a multi-node Storm cluster with working topology 
• containerize each distinct process 
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The main task of Amanda application is to provide efficient handling of real-
time data taking full advantage of containerization.

1.4 Solution

Our  solution  to  the  problem  is  dedicated  to  the  orchestration  of
platforms such as Apache Storm and Apache Kafka deployed on Docker. We
built  a  dockerized  application  we  called  Amanda  that  deploys  Storm's
orchestration  of  big  data  processing  in  real  time.  Containerization's  main
feature, scalability, is a factor we need to take full advantage of, in order to
achieve a better performance of the application, in terms of the response time
of  the application.  What is  expected to prove is  the ability to make the
application scalable after using a containerized environment to deploy it on. 

1.5 Contribution

The utilization of Docker, including the images and volumes, targeting
to  scalability,  reallocation  of  computing  resources  of  the  system  and
monitoring the load of the real-time input in the system. The algorithm that
runs  inside  the  Storm workers  is  a  trained  model  that  came  out  of  the
machine learning training. 

2. Background

2.1 Cloud

Cloud  computing  supports  the  on-demand  availability  of  computer
system resources,  including data storage and computing power, without  the
active management  of the user.  It relies on sharing of resources to achieve
coherence and economies of  scale.  Large clouds,  predominant today,  often
have functions distributed over multiple locations from central servers. Clouds
may also be limited to a single organization (enterprise clouds), be available
to  many  organizations  (public  cloud),  or  a  combination  of  both  (hybrid
cloud). The availability of  high-capacity networks,  low-cost computers  and
storage devices as well as the widespread adoption of hardware virtualization,
service-oriented architecture, and autonomic and utility computing has led to
growth in cloud  computing[1].  Cloud computing exhibits the following key
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characteristics:
Device  and  location  independence give  users  the  ability to  access

systems using a web browser regardless of their location or what device they
use. As infrastructure is typically provided by a third-party and accessed via
the Internet, users can connect to it from anywhere.

Maintenance of cloud computing applications is easier, because they do
not need to be installed on each user's computer and can be accessed from
different places.

Agility for organizations may be improved, as cloud computing may
increase  users' flexibility  with  re-provisioning,  adding,  or  expanding
technological infrastructure resources.

Cost reductions are claimed by cloud providers. A public-cloud delivery
model  converts  capital  expenditures  to  operational  expenditure.  This
purportedly lowers barriers to entry, as infrastructure is typically provided by
a third party and need not be purchased for one-time or infrequent intensive
computing tasks. Pricing on a utility computing basis is "fine-grained", with
usage-based billing options.

Multitenancy enables sharing of resources and costs across a large pool
of users thus allowing for: centralization of infrastructure in locations with
lower costs, peak-load capacity increases (users need not engineer and pay for
the  resources  and  equipment  to  meet  their  highest  possible  load-levels)
utilisation and efficiency improvements for systems that are often only 10–
20% utilised.

Monitoring the system performance by IT experts  from the service
provider,  and consistent  and loosely  coupled  architectures  are  constructed
using web services as the system interface.

Productivity may be increased when multiple users can work on the
same data simultaneously, rather than waiting for it to be saved and emailed.

Reliability improves with the use of multiple redundant sites,  which
makes  well-designed  cloud  computing  suitable  for  business  continuity  and
damage recovery.

Scalability and elasticity via on-demand provisioning of resources on a
self-service basis in near real-time, without users having to engineer for peak
loads. This gives the ability to scale up when the usage need increases or
down if resources are not being used.

Security can  improve  due  to  centralization  of  data  and increased
security-focused resources, but concerns can persist about loss of control over
certain  sensitive  data,  and  the  lack  of  security  for  stored  kernels.  The
complexity of security is of course greatly increased when data is distributed
over a wider area or over a greater number of devices, as well as in multi-
tenant systems shared by unrelated users. In addition, user access to security
audit logs may be difficult or impossible. Private cloud installations are in
part motivated by users' desire to retain control over the infrastructure and
avoid losing control of information security.
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2.2 Virtualization

Virtualization refers to the creation of  a virtual resource such as a
server, desktop, operating system, file, storage or network  and it has been a
part of the IT landscape for decades now. Today it can be applied to a wide
range of  system layers,  including  the operating system-level  virtualization,
hardware-level virtualization  and  server  virtualization.  The  main  goal  of
virtualization is to manage workloads by radically transforming traditional
computing to make it more scalable. 

The most common form of virtualization is the operating system-level
virtualization. In operating system-level virtualization, it is possible to run
multiple  operating  systems  on  a  single  piece  of  hardware.  Virtualization
technology  involves  separating  the  physical  hardware  and  software  by
emulating hardware using software. When a different OS is operating on top
of the primary OS by means of virtualization, it is referred to as a virtual
machine.

A virtual machine is nothing but a data file on a physical computer
that can be moved and copied to another computer, just like a normal data
file.  The  computers  in  the  virtual  environment  use  two  types  of  file
structures: one defining the hardware and the other defining the hard drive.
The virtualization software, or the hypervisor, offers caching technology that
can be used to cache changes to the virtual hardware or the virtual hard disk
for writing at a later time. This technology enables a user to discard the
changes done to the operating system, allowing it  to  boot from a known
state[2].

2.3 Containers

Unlike  hypervisor  virtualization,  where  one  or  more  independent
machines  run  virtually  on  physical  hardware  via  an  intermediation  layer,
containers run in user space on top of an operating system’s kernel. As a
result,  container  virtualization  is  often  called  operating  system-level
virtualization.  Container  technology  allows  multiple  isolated  user  space
instances to run on a single host. Containers have been deployed in a variety
of use cases.  They are popular for hyperscale deployments of multi-tenant
services,  for  lightweight  sandboxing,  and,  despite  concerns  about  their
security, as process isolation environments. Indeed, one of the more common
examples of a container is a chroot jail, which creates an isolated directory
environment  for  running  processes.  Attackers,  if  they  breach  the  running
process  in  the jail,  then find themselves trapped in  this  environment and
unable to further compromise a host[3]. 

Containers  are  generally  considered  a lean  technology because  they
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require  limited  overhead.  Unlike  traditional  virtualization  or
paravirtualization technologies, they do not require an emulation layer or a
hypervisor layer to run and instead use the operating system’s normal system
call interface. This reduces the overhead required to run containers and can
allow a greater density of containers to run on a host. Despite their history
containers haven’t achieved large-scale adoption. A large part of this can be
laid at the feet of their complexity: containers can be complex, hard to set up,
and difficult to manage and automate. Docker aims to change that.

Proponents of containerization point to gains in efficiency for memory,
CPU  and  storage  compared  to  traditional  virtualization  and  physical
application hosting. Without the overhead required by VMs, it is possible to
support many more application containers on the same infrastructure. 

Portability is another benefit. As long as the operating system is the
same across systems, an application container can run on any system and in
any  cloud  without  requiring  code  changes.  There  are  no  guest  operating
system  environment  variables  or  library  dependencies  to  manage.
Reproducibility is another advantage to containerizing applications, which is
one reason why container adoption often coincides with the use of a DevOps
methodology[4].

2.3.1 Docker

Docker  is  an open-source  engine that  automates the deployment of
applications into containers. Docker adds an application deployment engine
on top of  a virtualized container execution environment. It  is  designed to
provide a lightweight and fast environment in which to run a code as well as
an efficient workflow to get that code from e.g a laptop to a test environment
and then into production. Docker relies on a copy-on-write model so that
making changes to an application is also incredibly fast: only what the user
needs to change gets changed. The user can then create containers running
applications.  Most  Docker  containers  take  less  than  a  second  to  launch.
Removing the overhead of the hypervisor also means containers are highly
performant so that more of them can be packed into hosts making the best
possible use of compute resources. With Docker, Developers care about their
applications running inside containers, and Operations cares about managing
the containers. Docker is  designed to enhance consistency by ensuring the
environment in which developers write code matches the environments into
which your applications are deployed. 

Docker aims to reduce the cycle time between code being written and
code being tested, deployed, and used. It aims to make applications portable,
easy  to  build,  and  easy  to  collaborate  on.  Docker  also  encourages
serviceoriented and microservices architectures. Docker recommends that each
container run a single application or process.  This promotes a distributed
application model where an application or service is represented by a series of
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inter-connected containers. This makes it easy to distribute, scale, debug and
introspect your applications. The core components that compose Docker are
the Docker  client  and  server,  also  called  the  Docker  Engine,  the  Docker
Images, the Registries and the Docker Containers

2.3.1.1 Docker client and server

Docker is  a client-server application. The Docker client talks to the
Docker server or daemon, which, in turn, does all the work. Sometimes the
Docker  daemon  is  referred  to  as  Docker  Engine.  Docker  ships  with  a
command line client binary, docker, as well as a full RESTful API to interact
with the daemon. Docker daemon and client can run on the same host or
connect a local Docker client to a remote daemon running on another host.

2.3.1.2 Docker Images

Images are the building blocks of the Docker world. Containers are
launched from images.  Images are the "build" part  of  Docker’s  life  cycle.
They are a layered format, using Union file systems, that are built step-by-
step using a series of instructions. Images are considered to be the "source
code" for containers. They are highly portable and can be shared, stored, and
updated.

2.3.1.3 Registries

Docker stores the images in registries. There are two types of registries:
public  and  private.  Docker,  Inc.,  operates  the  public  registry  for  images,
called the Docker Hub. A user creates an account on the Docker Hub and
uses it to share and store images. Docker Hub also contains, at last count,
over 10,000 images that other people have built and shared. Images can also
be stored privately on Docker Hub. These images might include source code
or other proprietary information that is stored securely or shared with other
members of  a team or organization. A user can also run his  own private
registry.  This  allows  to  store  images  behind  a  firewall,  which  may  be  a
requirement for some organizations.

2.3.1.4   Containers

Docker  helps  a  user  build  and  deploy  containers  inside  of  which
applications  and services  are packed.  As  mentioned before,  containers  are
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launched from images and can contain one or more running processes. One
can think about images as the building or packing aspect of Docker and the
containers as the running or execution aspect of Docker. A Docker container
consists of an image format,  a set of standard operations and an execution
environment.
  Docker  doesn’t  care  about  the  contents  of  the  container  when
performing actions. Each container is loaded the same as any other container
whether it is a web server, a database, or an application server. Docker also
doesn’t care where containers are shipped from: they can be built on a laptop,
upload to  a  registry,  then  download to  a  physical  or  virtual  server,  test,
deploy  to  a  cluster  of  a  dozen   hosts,  and  run.  It  can  build  local,  self-
contained  test  environments  or  replicate  complex  application  stacks  for
production or development purposes. The possible use cases are endless.

2.4 Data Procesing Platforms

2.4.1 Spark

Apache Spark alongside with Hadoop and Storm is one of the most
popular  frameworks for  large scale  data prosessing under the wing of  the
Apache  Software  Foundation.  Spark  is  a  general-purpose  distributed  data
processing engine that is suitable for use in a wide range of circumstances.
Programming languages supported by Spark include:  Java, Python,  Scala,
and R. Application developers and data scientists incorporate Spark into their
applications to rapidly query, analyze,  and transform data at scale.  Tasks
most frequently associated with Spark include batch jobs across large data
sets, processing of streaming data from sensors, IoT, or financial systems, and
machine learning tasks[6]. Basically Spark is a framework which provides a
number  of  interconnected  platforms,  systems  and  standards  for  Big  Data
projects.

Spark has proven very popular and is used by many large companies 
for huge, multi-petabyte data storage and analysis. This has partly been 
because of its speed. Last year, Spark set a world record by completing a 
benchmark test involving sorting 100 terabytes of data in 23 minutes - the 
previous world record of 71 minutes being held by Hadoop[7].

2.4.2 Storm

Apache  Storm  is  a  free  and  open  source  distributed  realtime
computation  system.  Storm makes  it  easy  to  reliably  process  unbounded
streams of data, doing for realtime processing what Hadoop did for batch
processing. Storm is simple, can be used with any programming language,
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and is a lot of fun to use!
Storm has many use cases: realtime analytics, online machine learning,

continuous computation, distributed RPC, ETL, and more. Storm is fast: a
benchmark clocked it at over a million tuples processed per second per node.
It is scalable, fault-tolerant, guarantees your data will be processed, and is
easy to set up and operate. Storm integrates with the queueing and database
technologies you already use. A Storm topology consumes streams of data
and processes those streams in arbitrarily complex ways, repartitioning the
streams between each stage of the computation however needed. 

Apache storm is  an open-source distributed real-time computational
system for processing data streams. Similar to what Hadoop used to do for
batch processing, Apache Storm does for unbounded streams of data in a
reliable manner. Able to process over a million jobs in fraction of a second on
a  node  Integrated  with  Hadoop  to  harness  higher  throughputs  Easy  to
implement and can be integrated with any programming language.

Apart from other projects of Apache such as Hadoop and Spark, Storm
is one of the star performers in the field of data analysis. Companies can get
benefitted as this technology facilitates multiple applications at once. 

There are two types of nodes in Storm cluster:
The master node of Storm runs a daemon called ‘Nimbus’, which is

similar  to  the ‘Job  Tracker’  of  Hadoop cluster.  Nimbus is  responsible  for
distributing  codes,  assigning  tasks  to  machines  and  monitoring  their
performance.

Similar to the master node, the worker node also runs a daemon called
‘Supervisor’ which is able to run one or more worker processes on its node.
The Nimbus node is responsible for assigning the work load to the supervisor
nodes, and starts and stops the worker processes when required. Every worker
process  runs a specific  set  of  topology which consists  of  worker  processes
working around machines. Since Apache Storm does not have the abilities to
manage its cluster state, it depends on Apache Zookeeper for this purpose.
Zookeeper facilitates communication between Nimbus and Supervisors with
the help of message acknowledgements, processing status, etc. 

There are basically four components/abstractions which are responsible
for performing the tasks:

Storm topology can be described as a network made of spout and bolts.
It can be compared to the Map and Reduce jobs of Hadoop. Spouts are the
data stream source tasks and Bolts are the accrual processing tasks. Every
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node in the network consists of processing logic’s and links to demonstrate
the ways in which data will pass and the processes will be executed. Each
time  a  topology  is  submitted  to  the  storm cluster,  Nimbus  consults  the
supervisor nodes about the worker nodes. An example of a Storm's topology
is presented in figure 2.1.

Stream is  one of the basic abstractions of  the storm architecture is
stream which is an unbounded pipeline of tuples. A tuple can be defined as
the fundamental component in the Storm cluster containing a named list of
the values or elements.

Spout is the entry point or the source of streams in the topology. It is
responsible for getting in touch with the actual data source, receiving data
continuously, transforming those data into actual stream of tuples and finally
sending them to the bolts to be processed.

Bolt keep the logic required for processing. These are responsible for
emitting the streams for processing by other bolts and saving or sending the
data  for  storage.  These  are  capable  of  running  functions,  filtering  tuples,
aggregating and joining streams, linking with database, etc[8].

2.1 Apache Storm's Topology

2.4.3 Flink

Apache Flink is a distributed data processing platform for use in big
data  applications,  primarily  involving  analysis  of  data  stored  in  Hadoop
clusters. Supporting a combination of in-memory and disk-based processing,
Flink handles both batch and stream processing jobs, with data streaming the
default  implementation and batch jobs  running as special-case  versions  of
streaming  applications.  Apache  Flink  is  a  framework  and  distributed
processing  engine  for  stateful  computations  over  unbounded and bounded
data  streams.  Flink  has  been  designed  to  run  in  all  common  cluster
environments, perform computations at in-memory speed and at any scale.
Any kind of data is produced as a stream of events. Credit card transactions,
sensor  measurements,  machine  logs,  or  user  interactions  on  a  website  or
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mobile application, all of these data are generated as a stream. Data can be
processed as unbounded or bounded streams.

Unbounded  streams have  a  start  but  no  defined  end.  They  do not
terminate and provide data as it is generated. Unbounded streams must be
continuously processed, i.e., events must be promptly handled after they have
been ingested. It is not possible to wait for all input data to arrive because
the  input  is  unbounded  and  will  not  be  complete  at  any  point  in  time.
Processing  unbounded  data  often  requires  that  events  are  ingested  in  a
specific order, such as the order in which events occurred, to be able to reason
about result completeness.

Bounded streams have a defined start and end. Bounded streams can
be  processed  by  ingesting  all  data  before  performing  any  computations.
Ordered  ingestion  is  not  required  to  process  bounded  streams  because  a
bounded data set can always be sorted. Processing of bounded streams is also
known as batch processing.

Apache Flink excels at processing unbounded and bounded data sets.
Precise control of time and state enable Flink’s runtime to run any kind of
application on unbounded streams. Bounded streams are internally processed
by algorithms and data structures that are specifically designed for fixed sized
data sets, yielding excellent performance. 

The core Flink runtime supports a pipelined streaming architecture; it
also offers a built-in method to support iterative data processing for machine
learning and other analytics applications. Dedicated APIs and libraries are
provided for  development of  machine learning programs,  as  well  as  string
handling,  graph  processing  and  other  uses.  Another  API  is  focused  on
Hadoop application integration.

2.5 Machine Learning

“Machine learning is based on algorithms that can learn from data 
without relying on rules-based programming.”

McKinsey & Co. 

Machine Learning is an application of artificial intelligence (AI) that
gives systems the ability to perform tasks after automatically learning from
data without relying on rule-based programming. It focuses on learning and
improving from data, and then make determinations or predictions on future
data.

Learning methods are categorized as supervised or unsupervised. The
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first  one  describes  learning  algorithms that  apply  what  has  been  already
learnt, to new data, using labeled examples in order to predict future events.
Contrary, unsupervised learning is used when the data being used are neither
classified nor labeled. Unsupervised machine learning studies how systems can
form a function to describe a structure from unlabeled data. The system
doesn’t figure out the right output, but it explores the data and can draw
inferences from datasets to describe hidden structures from unlabeled data.
There is reinforcement learning, as well, which is about taking suitable action
to  maximize  reward  in  a  particular  situation.  It  is  employed  by  various
software components to find the best possible behavior or path it should take
in a specific situation.

2.5.1 Anomaly Detection

“Observation which deviates so much from other observations as to 
arouse suspicion it was generated by a different mechanism” 

  Hawkins(1980) 

Anomaly detection describes the identification of rare items, events or
observations  which  raise  suspicions  by  differing  significantly  from  the
majority of the data[9]. Typically, anomalous data can be connected to some
kind of problem or rare event and it has many applications in business, from
intrusion detection (identifying strange patterns in network traffic that may
could signal a hack) to system health monitoring, and from fraud detection in
credit card transactions to fault detection in operating environments. Density-
based,  Clustering-based  and  Support  Vector  Machine-based  anomaly
detection are some popular machine learning-based techniques for anomaly
detection. 

2.6 Apache Kafka

Apache Kafka is a distributed event streaming platform capable of 
handling a big number of events. Initially it  was conceived as a messaging 
queue and it quickly evolved from messaging queue to a full-fledged event 
streaming platform.
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2.2 Apache Kafka messaging system

Kafka uses topics for its utility. A topic is a category or feed name to which
records are published. Topics in Kafka are always multi-subscriber; that is, a topic
can have zero, one, or many consumers that subscribe to the data written to it.
For each topic, the Kafka cluster maintains a partitioned log that can be described
as a queue:

2.3 Kafka's topic instance 

Messaging traditionally has two models: queuing and publish-subscribe. In a
queue, a pool of consumers may read from a server and each record goes to
one of them; in publish-subscribe the record is broadcast to all consumers.
Each of these two models has a strength and a weakness. The strength of
queuing is that it allows you to divide up the processing of data over multiple
consumer  instances,  which  lets  you  scale  your  processing.  Unfortunately,
queues aren't  multi-subscriber—once one process  reads the data it's  gone.
Publish-subscribe allows you broadcast data to multiple processes, but has no
way of scaling processing since every message goes to every subscriber. In this
project, Kafka's queuing service is being employed. 
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3. Amanda Application

3.1 Architecture

This chapter describes the architecture of Amanda, identifies its basic
components  and  provides  an  in  depth  analysis  of  its  functionality.  This
architecture  is  mandated  by  the use  of  Apache  Storm  as  a  distributed
processing framework and it consists of a number of slave nodes (workers), a
master node and a Zookeeper node along with an Apache Kafka component
used  as  a  queue  for  the  input  data.  Apache  Storm  abstracts  away  the
complexities of talking to different machines on a network allowing developers
to focus on application functionality and leave most of the complexities of
message  passing,  ensuring  fault  tolerance  and  distribution  up  to  the
framework.  Our  choice  of  Apache  Storm  as  a  distributing  processing
framework was motivated by its emphasis on real-time application support.
Most  other  distributed  processing  frameworks  like  Apache  Hadoop  and
Apache Spark do a terrific job in supporting applications that require batch
processing, but provide no support for stream-based applications that need to
work on data in real-time. 

Topology is the top-level abstraction that you submit to Storm clusters
for execution and includes the spouts and the bolts.  It is a graph of stream
processes where each node is a spout or bolt. Links between nodes inside the
topology  describe how tuples  should be passed around.  Each node in  the
topology of a Storm cluster executes in parallel. Our topology is implemented
with the parallelism factor of 2. A topology runs forever, or until it is killed.
Additionally,  Storm automatically reassigns any failed tasks  and guarantees
that there will be no data loss, even if machines go down and messages are
dropped. On our application we have used two bolts, each one for a different
type of intrusion: Dos Bolt (Denial of Service Bolt) and Brute Force SSH
Bolt.
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3.1 Storm's topology

3.2 Application

The basic workflow of our system in terms of storm components is as
outlined below. The incoming packet stream corresponds to an abstraction of
the incoming packets, manifesting itself in code in the form of a Java stream
created using the CSV file outputted during the pre-processing stage. In order
to simulate a real-time system that has incoming data round the clock, we
read the data stream in tuples, waiting for a few milliseconds after each read
in order to make sure the previous tuple was processed.  The CSV Spout
functions as a buffer converting the incoming Java data stream into tuples
that can be understood by the Storm subsystem. It is  written entirely in
Java, the code for which can be found in the Appendix. The tuples are then
sent ahead to the two bolts, with each tuple replicated 2 times, one for each
bolt.  Each  bolt  corresponds  to  a  processing  entity  that  performs  the
classification task in addition to the tasks of loading the persisted classifier
into main memory and converting each tuple into a data format compatible
with the interface of the classifier.
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3.2 Amanda's architecture
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Every  Bolt  is  a  logical  abstraction  representing  one  of  the  two
classifiers built during training. Each Bolt serves to identify attack instances
of a particular input class, with the classes being restricted to the two types
of attacks in the dataset. 

The system consists of one master node (known as Nimbus in storm
terminology), a number of slave nodes (ideally 2 or multiples of 2, for each
classifier) and one Zookeeper node, which is responsible for maintaining the
state of the system and interfacing between the master node and the slaves.
The  topology  and  the  input  Spout  are  both  written  using  the  Java
programming language. This choice was dictated by Storm’s built in support
for Java. The Bolts are written using the Python programming language. 

Apache Storm does the logical to physical mapping at runtime. It does
this via the topology construct built into storm. A machine in a Storm cluster
may run one or more than one worker processes for one or more topologies.
Each  worker  process  runs  executors  for  a  specific  topology.  Maven  is
commonly used for building Storm topologies, and it requires a pom.xml file
that defines various configuration details and the project dependencies. 

3.3 Supervised Learning 

3.3.1 Dataset Selection

For  our  application  we  used  a  very  popular  dataset,  NSL-KDD
dataset. Data consists of around 5 million tuples with 41 characteristic each
that are all labeled. This dataset satisfies the above features:

1. Realistic network traffic
2. Labeled dataset
3. Total interaction capture
4. Complete capture
5. Diverse intrusion scenarios

The  dataset  also  provides  a  satisfying  in  size  testing  set  for  each
intrusion scenario. Our project was adjusted to detect two different types of
anomalous behaviour it has been trained upon: Denial-of-service (DoS) and
Brute force running an SSH server (Brute Force SSH) attacks:

Denial Of Service: In computing, a denial-of-service (DoS) attack is an
attempt  to  make  a  machine  or  network  resource  unavailable  to  its
intended users.
Brute  Force  SSH:  Brute  force  which  is  also known as  brute  force
cracking, is a trial and error method used by application programs to
decode encrypted data such  as  passwords  through exhaustive  effort
(using brute force) rather than employing intellectual strategies. Brute
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force SSH refers to the process of using such an attack to break into
systems running an SSH server.

The availability of a world-class labelled intrusion detection dataset steered us
in  the  direction  of  using  supervised  machine  learning  as  opposed  to
unsupervised approaches. 
 

3.3.2 Offline pre-process

3.3.2.1 Classifier Selection

Selecting a suitable  classifier  is  important.  Often the hardest
part  of  solving  a  machine  learning  problem,  choosing  the  right
estimator makes use of the following information for the given problem
at hand are the dataset size, whether the dataset is labeled or not, the
type  of  prediction  or  target  classes  and  the  type  of  data  (text,
multimedia etc).  From the point of  view of  our implementation we
considered  to  use models  that  use decision trees  as  classifiers.  The
advantage of using decision trees is that they are easy to interpret and
explain. Decision trees handle feature interactions and they are non-
parametric.

3.3.2.2 Training the model

The use of machine learning entails ‘learning’ with experience.
In  Supervised  learning,  this  translates  to  building  a  model  of  the
classification function from the data and their associated labels. We
have used a model that advocates the use of two separate classifiers for
identifying  each  type  of  attack  to  take  advantage  of  the  parallel
processing techniques inherent in the use of a distributed system, and
storm in particular. Each decision tree classifier was trained using a
pre-defined ratio of normal packet data and attacking instances, the
attacking instances all corresponding to the same attack type.

During the offline process, a training set is inserted as an input
and  after  the  application  of  the  classifier  it  constructs  a  model
algorithm that will evaluate new, non-trained data, to confirm, or not,
the deviation of expected normal values in data. This persisted model
is then loaded into the files with the code that the workers run. As for
the testing, testing datasets can be used. A very efficient way of testing
is cross-validation, which samples the training test and then uses the
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samples for the testing.
The  process  of  deciding  whether  the  results  quantifying

hypothesized  relationships  between  variables,  are  acceptable  as
descriptions  of  the  data,  is  known as  validation.  As  there  is  never
enough data to train your model, removing a part of it for validation
poses a problem of underfitting. Reducing the training data risks to
miss important patterns in the data set, which in turn increases error.
What is required is a method that provides ample data for training the
model  and  also  leaves  ample  data  for  validation  and  K-Fold  cross
validation does that. 

During the K Fold cross validation, the data is divided into k
subsets. Now the holdout method is repeated k times, such that each
time, one of the k subsets is used as the test set/ validation set and the
other k-1 subsets are put together to form a training set. The error
estimation is averaged over all k trials to get total effectiveness of our
model. As can be seen, every data point gets to be in a validation set
exactly  once,  and  gets  to  be  in  a  training  set  k-1  times.  This
significantly reduces bias as we are using most of the data for fitting,
and also significantly reduces variance as most of the data is also being
used in validation set.  Interchanging the training and test  sets also
adds to the effectiveness of this method [10].

3.4 Performance Evaluation

As for  the efficiency of  the working application,  the schema of  the
performance  of  the  running  containers  representing  the  workers  of  Storm
cluster of our application is following.

During  the  experimental  process,  we  simulated  the  real-time  data
system by making the input handling system “sleep” for 100ms after  every
instance of tuples is inserted to the application as an input. This technique
can secure that the processing of the current input will execute only after the
previous set of tuples has been accepted in the system, in order to avoid the
case of batch data as an input. In order to monitor the performance of the
application, we call the Kafka producer component and pass as variables the
number of the requests that hit the input of the application along with the
time in milliseconds for the system to wait between producing each distinct
message.  During the monitoring process,  the number of  workers  has been
increasing, after killing the topology each time in order to rebuild the project
with the new topology submitted.

Analyzing  the  graph  above, we  examine  the  performance  of  the
distribution of  workers  on our  Storm cluster  which,  on  some points,  is  also  a
container scaling issue. While using two workers with the parallelism factor equal
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to 2 we can see the performance upturn, as the number of the requests/sec increase
while hitting the 

Initially, the configuration of the application in the topology used two
workers to run on the Storm, which is translated in building a supervisor
container with two worker threads running. 

Workers=2

The horizontal axis shows the requests (number of tuples)  accessed,
while the horizontal axis represents the access rate for each request in request
per second. Starting with a relatively low number of requests, we can see the
improvement of the response time, while when increasing the requests, the
rate of this increase is lower because of the big load of the requests.  The
number of served requests per second is then, still increasing, on a lower rate
though. This pattern is followed for each of the four different cases which
were examined. 

Following, we reconfigured the number of deployed workers setting it to
four. After rebuilding the topology, the cluster still uses only one supervisor
container to run the tasks, as each supervisor is capable of deploying up to
four workers. 

requests sec requests/sec
5000 7 714.29
10000 8 1250.00
20000 10 2000.00
50000 17 2941.18
100000 30 3333.33
200000 58 3448.28
300000 81 3703.70
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workers=4

Changing the number of the workers to six, leads to starting another
one supervisor in order to run the extra two new workers to run. Of course
the  topology  has  to  be  rebuilt.  We  now  have  two  supervisor  containers
running along with the nimbus container  inside Storm's architecture.  The
results of the requests hit on the Kafka component while six workers threads
are running is following.

workers=6

In  the  final  stage  of  the  performance  monitoring,  we  adjusted  the
number of workers to eight. The system is still using two containers who can
of course afford the eight workers. 

workers=8

requests sec requests/sec
5000 4 1250.00
10000 6 1666.67
20000 9 2222.22
50000 17 2941.18
100000 32 3125.00
200000 60 3333.33
300000 76 3947.37

requests sec requests/sec
5000 3 1666.67
10000 5 2000.00
20000 8 2500.00
50000 16 3125.00
100000 28 3571.43
200000 57 3508.77
300000 74 4054.05

requests sec requests/sec
5000 3 1666.67
10000 4 2500.00
20000 11 2987.00
50000 14 3571.43
100000 30 3333.33
200000 52 3846.15
300000 73 4109.59
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The performance of the two cases were each supervisor container uses
the maximum number of workers (workers=4 and workers=8) were analyzed
below.

We can see that the parallelism of the processes running in the threads
in docker containers is a significant factor that makes the deployment of 8
workers (two supervisor containers running in parallel) giving better response
time for the same number of requests. 

The following schema contains the four different graphs of the cases
mentioned above:

3.5 Application's performance
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A second stage of monitoring the performance of the application, based
on the response time of the system given a different number of requests as an
input was focused on a lower given number of requests to as an input to the
system. 

The  improvement  on  the  performance  of  the  application  while
deploying  an extra supervisor container, while receiving a lower number of
requests, is presented in the graph above. What can be occurred is the better
response time while using a double number of workers distributed in a double
number of supervisor containers. 

4. Conclusion and Future work

4.1 Conclusion

In  this  thesis  we  introduced,  implemented  and  tested  a  concept
architecture for  deploying the Apache Storm cluster  and the Apache Kafka
queue  on  Docker  containers  running  machine  learning  classifiers  for  the
anomaly  detection  of  real-time  stream  data  input.  Summarizing,  the
contribution of this work  was to prove the enhancing  performance of the
system while deploying a relatively bigger number of workers that results to
reduction  of  resources  usage.  Therefore,  scalability  can  prove  feasible  and
show better results on the response time of the system. 
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4.2 Future Work

For future work, we can focus the research on scaling our application.
A promising concept will be to execute cluster-level operations such as scale
up or scale down without affecting the already deployed applications. A good
way to achieve this is the use of the components of Docker volumes which can
support the scalability, which is already supported in Docker, but without
having  to  rebuild  the  project  and  stop  the  running  application.  Docker
volumes are mainly used for backup purposes as the user is able to save the
data of  the running  container  so it  can  be  rebuilt  later  and continue  its
process.

The application we built is deployed locally on a machine which runs
the Docker and its components offline. A significant contribution to the built
system suggests the online deployment of the application hosted on a server
that will be able to support an integrated online application to achieve the
distributed functionality of detecting anomalous behavior of data streams in
systems.

Our system is designed to monitor the functionality of  running the
anomaly  detection  algorithm  in  a  Storm  cluster.  Yet,  it  can  be  easily
extended, not only to track the not normal data behavior but also to take
preventive action after the anomaly detection utility,  including things like
making the application run online or changing firewall configurations on a
real time basis to blacklist connections belonging to certain IP addresses that
are thought  to belong to the attacking entities.  Additionally, we can add
unsupervised learning methods to predict novel attacks such as with the use
of Neural Networks, not only the ones that our model is trained to.

By default Storm distributes workers for each topology across the cluster.
Additional  features  like  the  ability  to  change  the  isolation  configuration
dynamically can be implemented in order to reduce query topologies to a single
worker per topology which is expected to perform better. 
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