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Abstract

Docker Swarm is an open-source container orchestration platform na-
tively managing a cluster of Docker engines. Docker Swarm utilizes the
same command line from Docker to create a cluster of Docker engines (re-
ferred to as a swarm), deploy application services to a swarm, scale up or
down containers running inside swarm nodes, and manage swarm behavior
in general. Yet for all its advantages, Docker Swarm currently lacks the
necessary tools for supporting automatic scaling of resources inside each
swarm, resulting in a rather static environment incapable of adapting to
the requirements of an online application. Unlike other competing tehc-
nologies, such as Kubernetes or Amazon EC2, which support auto-scaling
in a containerized environment, to the best of our knowledge, no such
solutions exist for Docker Swarm. This is exactly the problem our work
is dealing with. Building upon Docker Swarm, we proposed Elixir, an au-
tonomous agent that runs on top of Docker Swarm (i.e. the infrastructure
provider side) and is capable of managing multiple and different online
applications for each provider, monitoring the running worker nodes (Vir-
tual Machines) required by each application, and automatically scaling up
or down the used resources (CPU, Disk, etc.) on demand when necessary.
The decisions for scaling are determined by the infrastructure provider
and are based on resources metrics measured in real time such as CPU,
or memory usages (or a combination of the above), during monitoring.
Elixir contributes to achieving fault tolerance and high availability for a
Docker Swarm system managing multiple applications rather than a sin-
gle application. Elixir’s node scaling approach is horizontal meaning that
rather than reconfiguring the worker nodes of each application with larger
or smaller characteristics (as would be in the case of vertical scaling), it
will add/delete worker nodes with the same characteristics to the appli-
cation’s swarm. We run several experiments based on a simulated, but
realistic use case scenario. The experimental results demonstrate that
the implementation of Elixir in a system managing an application, has a
significant impact on the availability and response time of an application
charged constantly with an increasing workload.
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1 Introduction

One of the many advantages that came along with the introduction of cloud com-
puting is the idea of virtualization. Virtualization software made applications
easier and faster to deploy by providing an abstraction layer that decouples the
physical hardware from the environment that runs on top of it and by support-
ing features like isolation and resource customization. In the early days of cloud
computing, application providers would have to allocate a great amount of either
physical or virtual resources, in order to make sure that their infrastructures
have the resources to support possible increased demands of the application us-
age at all times. However, service provision proved to be very costly for both
clients and providers, since the client would have to pay for a fixed amount of
resources and the provider would have to allocate a maximum amount of re-
sources regardeless of application needs, instead of using them more beneficially
with an adaptive business plan in mind. ’The market demands are never static,
as they shift based on people’s needs at that time, all while resources flow in
and out of availability.’ 1 In order for a business to stay competitive in these
circumstances, it must be able to change compute resource provision decisions
fast. That situation led the need for a more adaptive approach and to the idea
of resource scalability.

Scalability is defined as the ability of a computer infrastructure to handle a
growing amount of work for systems, networks, or processes in a graceful man-
ner, with the least possible down time or (even better) no down time at all,
in order to maximize the availability of running applications and the usage of
the their computing resources at all times. Based on the steps that a scaling
method follows, it can be further distinguished in two individual categories, re-
ferred to as vertical scaling and horizontal scaling. Vertical scaling is defined as
the addition of more resources (Disk, Memory, CPU cores) to already existing
worker nodes, by reconfiguring the size of these nodes with new (higher) resource
limits. On the other hand, horizontal scaling refers to adding more resources
to the system, by adding new worker nodes to the system instead. Vertical
and horizontal down-scaling are the opposites of the two previously mentioned
methods. A scalable Web application should be capable of serving an increasing
or decreasing number of user requests (HTTP requests) with little or no down
time depending the scaling method performed by the system. Scalablity often
appears as an infrastructure problem, where the lack of compute resources can
potentially lead to performance degradation of the system, in case of an increas-
ing workload.

Auto-scaling, is a natural evolution of the above idea and refers to mechanisms
capable of adapting to the resources depmands of running applications in real
time. A problem inherent to auto-scaling relates to the monitoring for resources
(per application) in real time and to taking independently (i.e. without human

1https://www.touchsupport.com/what-is-scalability-and-why-does-it-matter-to-your-business/

https://www.touchsupport.com/what-is-scalability-and-why-does-it-matter-to-your-business/
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intervention) decision on when to scale resources up or down. There are already
some tools in existence that support auto-scaling, for example Kubernetes POD
Auto-scalers2 automatically scales the number of PODS in a given cluster of
worker nodes. The work in [2] shows how to support auto-scaling in a native
Kubernetes environment. The work shows how a cluster of worker nodes can be
adapted to the workload with the addition or deletion of new worker nodes (not
just PODS). Similar approaches have been adopted by major cloud providers
such as Amazon EC2 and Google GKE. Kubernetes is a mechanism for orches-
trating containerized applications, Applications are deployed as PODS with
each POD being a Docker environment. However, Kubernetes replaces some
of the higher-level technologies that have emerged around Docker, such Docker
Swarm, an orchestrator born out of Docker. ’It’s still possible to use Docker
Swarm instead of Kubernetes, but Docker Inc. has chosen to make Kubernetes
part of the Docker Community and Docker Enterprise editions going forward.’3.
The direct result of this situation, is that a promising technology such as Docker
Swarm has been left devalued and unexploited.

1.1 Motivation

In Andre Bondi’s work we learn about the term ”load scalability”[1]. He sug-
gests that a system has load scalability, if it is capable of functioning without
any drastic changes in its performance, nor any delays, nor counterproductive
resource usage at any size of workload, while optimizing its resource consump-
tion. According to A.Bondi some of the factors that can have a negative effect
over load scalability include ”the scheduling of a shared resource”, as well as
”inadequate exploitation of parallelism”. These statements suggest to us, that a
well functioning scalable system depends greatly on its load balancer (or sched-
uler) in order to achieve balance in distributing the load among the worker nodes
of the system.

In the following, we perform an exemplary test on a simple swarm implemen-
tation illustrated at Fig.1. This swarm has 1 manager online and no workers.
Our goal is to showcase a scenario, where a static environment (in this case the
swarm with 1 manager) becomes in need of scalability. A swarm manager al-
ways acts both as a manager and worker at the same time. Inside this manager
node runs a containerized Web application. This application finds the shortest
path for given edge to every other edge in a predefined graph with the use of Di-
jkstra’s algorithm, a simple yet CPU stressing application. This single node has
1 CPU, 20GB Disk and 2GB RAM as available resources, is a small flavor, and
has ubuntu 18.04 as its base image. We perform this test for 500 concurrent
users with the help of the Apache Bench load testing tool. Fig.2 illustrates the
swarm’s response time while the system serves an increasing number of requests.
Fig.3 illustrates the manager’s CPU usage also while the requests are being per-
formed. During this experiment, we notice that the response times increase

2https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
3https://www.touchsupport.com/what-is-scalability-and-why-does-it-matter-to-your-business/

https://www.touchsupport.com/what-is-scalability-and-why-does-it-matter-to-your-business/
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Figure 1: A simple swarm example, with 1 manager.

drastically for more than 50,0000 requests. We conclude that this significant
rise in the swarm’s response time occurs while the manager’s CPU usage almost
reaches 60%. So it is safe to assume, that in case we used a higher number of
concurrent users, the manager’s CPU usage would eventually overload, making
the whole system non responsive at the end. This potential problem could be
avoided by making the swarm scalable.

Figure 2: System’s response with 1 node and Cc = 500

In this thesis, we design and implement a solution to handle gracefully all the
increasing workload automatically and turn the idea of auto-scaling in Docker
Swarm into a realistic option for users.
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Figure 3: Manager’s CPU usage with 1 node and Cc = 500
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1.2 Problem Definition

Docker Swarm offers the advantage of scaling up or down services fast and easily,
in the form of scaling containers running these services, with the use of a spe-
cific command in the Docker CLI by the provider of a Web application (Docker
client). As of yet, however, there is no official automatic mechanism that can
deal with this problem without any human interference. And even if there was
one, scaling up or down the containers deployed for a service, would contribute
absolutely nothing to the overall performance of the system. Containers are, by
definition, processes that have access to the entirety of a server’s resources, and
each time they are deployed, they will use as much percentage of these resources
(CPU or Disk) as they need to, in order to carry out their task, in this case keep
a Web application up and running for the public. There are ways that can help
the user limit the containers’ access to specific CPU cores of the server, how-
ever these methods are rather complicated and counterproductive, if we hope
to keep the system simple, and the virtual machines used as workers, lightweight.

The only reliable way to actually deal with the increasing or decreasing in-
coming workload in the system, would be to scale up or down the system’s
available resources, by implementing either some form of vertical or horizontal
scaling in the worker nodes of the system. Even though, Docker Swarm sup-
ports adding more worker nodes to a swarm cluster dynamically, there is still no
official mechanism that could complete this task automatically, and it is a very
difficult task, consisting of many different steps, that requires a lot of effort,time
and work to be carried out by the provider of infrastructure.

These are the problems that our work is dealing with, the problems of automatic
service scalabily, automatic infrastructure scalability, and system monitoring on
a virtualized cloud environment managed by Docker Swarm.

1.3 Solution

In this work we design and implement an autonomous agent, capable of moni-
toring multiple swarms for a single infrastructure provider, all running different
Web applications, and also capable of automatically provisioning or deleting the
extra worker nodes in these swarm clusters, based on the CPU or Disk usage
metrics received during monitoring. In Fig.9 we see an example of how the Elixir
agent is implemented into the system, as a middle layer between the OS and the
Docker Swarm environment. In continuation of our previous example scenario
with the simple swarm, let us see how would the situation proceed when Elixir
is implemented into the system:

• Elixir gets notified that the CPU usage of the manager is too high on the
particular swarm.

• Elixir initializes the procedures required for the creation of a new worker
node.
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• The new worker node is created by OpenStack, and has the Docker Engine,
as well as the Zabbix agent installed in its OS, all done automatically by
Elixir.

• Elixir scales up the containers running the application service and updates
the load balancer.

• Elixir waits 1 minute and then continues its routine health checks until a
new system threat arises on each of the swarms managed by it.

1.4 Contributions

Elixir is an agent operating a layer above the common Docker Swarm orches-
trator installed on a Linux server. Therefore, all its contributions are comple-
menting the already existing operations of Docker Swarm. The experimental
results demonstrated that Elixir responds to the increasing (or decreasing) re-
source demands of each application leading to significantly faster response times
compared to a non-auto scaled implementation. The contributions of Elixir can
be listed as follows:

• Provide an official mechanism that can scale up and down services running
on Linux servers (worker nodes) automatically, without the need of a
human overseer to type the proper command each time on the Docker
CLI.

• Provide an official mechanism that can scale up and down automatically
worker nodes themselves (horizontal autoscaling resources), when it is re-
quired for the system to continue functioning properly, therefore providing
high availability for the running Web applications.

• Add to the system the capability of monitoring the online Linux servers
running these applications, and understand whether there is an internal
error in the server or not, based on the received system diagnostic metrics,
again without the need for human interference.

• Provide an official mechanism that can manage multiple applications at
once for each provider.

• Increase safety and security for the system running these Web applications,
with the use of a reverse proxy server node above all other worker nodes.
This will ensure that the I.P. addresses of the worker nodes remain hidden
from public view, and lay the ground for future versions of the system
to be even safer from attacks, withe the use. This reverse proxy server
node will also serve as a scheduler to properly manage the workload of the
system, as well as a database center to gather all the necessary metrics
concerning CPU usage, Disk usage, and availability of the worker nodes.
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2 Background

In this chapter, we provide some valuable information about the knowledge
background required for understanding our work, and the software tools that
we deployed for the completion of this thesis. Section 2.1 describes briefly some
basic concepts concerning virtualization, and how it can be distinguished into
hardware virtualization and operating system virtualization, while sections 2.2
and 2.3 dive deeper into these concepts by describing OpenStack and Docker as
tools for achieving hardware and operating system virtualization respectively.
The next section (section 2.4) is about OpenFlow, a tool that we did not directly
deploy into Elixir, but whose contributions as a SDN (Software Defined Net-
work) tool, proved to be very beneficial for our work. Section 2.5 provides a few
basic information about what an autonomous agent really is, and section 2.6 de-
scribes the monitoring tool Zabbix, and how it is implemented within our work.
Finally, section 2.7 offers a few key information about the relational database
MySQL, which we use to store all the metrics we receive, while monitoring our
worker nodes, and section 2.8 describes the NGINX server, who serves both as
a reverse proxy server, as well as a scheduler for our system.

2.1 Virtualization

”Virtualization provides a number of benefits. It enables a flexible allocation
of physical resources to virtualized applications where the mapping of virtual
to physical resources as well as the amount of resources to each application can
be varied dynamically to adjust to changing application workloads. Further-
more, virtualization enables multi-tenancy, which allows multiple instances of
virtualized applications (“tenants”) to share a physical server. Multi-tenancy
allows data centers to consolidate and pack applications into a smaller set of
servers and reduce operating costs. Virtualization also simplifies replication and
scaling of applications. There are two types of server virtualization technologies
that are common in data center environments—hardware-level virtualization
and operating system level virtualization.”[3]45

2.1.1 Hardware Virtualization

”Hardware virtualization involves virtualizing the hardware on a server and cre-
ating virtual machines that provide the abstraction of a physical machine. Hard-
ware virtualization involves running a hypervisor, also referred to as a virtual
machine monitor (VMM), either on the bare metal server (Type-I Hypervisor)
or above the existing OS of the server (Type-II Hypervisor). The hypervisor
emulates virtual hardware such as the CPU, memory, I/O, and network devices
for each virtual machine. Each VM then runs an independent operating system
and applications on top of that OS. The hypervisor is also responsible for mul-
tiplexing the underlying physical resources across the resident VMs.”[3]

4https://blog.netapp.com/blogs/containers-vs-vms/
5https://www.vgyan.in/type-1-and-type-2-hypervisor/

https://blog.netapp.com/blogs/containers-vs-vms/
https://www.vgyan.in/type-1-and-type-2-hypervisor/
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Figure 4: A virtualized system and a containerized system

Figure 5: Structures of Type-I and Type-II hypervisors

”Modern hypervisors support multiple strategies for resource allocation and
sharing of physical resources. Physical resources may be strictly partitioned
(dedicated) to each VM, or shared in a besteffort manner. The hypervisor is
also responsible for isolation. Isolation among VMs is provided by trapping
privileged hardware access by guest operating systems and performing those
operations in the hypervisor on behalf of the guest OS. Examples of hardware
virtualization platforms include VMware ESXi, Linux KVM and VirtualBox.”[3]

2.1.2 Operating System Virtualization

”Operating system virtualization involves virtualizing the OS kernel rather than
the physical hardware. OS-level virtual machines are referred to as containers.
Each container encapsulates a group of processes that are isolated from other
containers or processes in the system. The OS kernel is responsible for im-
plementing the container abstraction. It allocates CPU shares, memory and
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network I/O to each container and can also provide file system isolation.”[3]

”Similar to hardware virtualization, different allocation strategies may be sup-
ported such as dedicated, shared and best effort. Containers provide lightweight
virtualization since they do not run their own OS kernels, but instead rely on
the underlying kernel for OS services. In some cases, the underlying OS kernel
may emulate a different OS kernel version to processes within a container, a
feature often used to support backward OS compatibility or emulating different
OS APIs.”[3]

2.2 OpenStack

OpenStack is a cloud platform which began as a joint project between NASA and
Rackspace. It was originally intended to be an open source alternative that has
compatibility with the Amazon Elastic Compute Cloud (EC2) cloud offering.
Today, OpenStack consists an important player in the cloud platform industry,
as it continues to grow and gain adoption both in its open source community
and the enterprise market. OpenStack has a very modular design, and each one
of its modules controls a different resource that can be virtualized for the end
user. Depending on the project, however, maybe not all modules are necessary
each time, in order to use OpenStack’s services successfully. OpenStack’s key
components consist of:

• Dashboard: A Web interface component provided with OpenStack.

• Keystone: Keystone functions as common authentication procedure across
the cloud OS and can integrate easily with other authentication services
such as LDAP. Keystone has to authority to grant the users access to
the vast services and applications of OpenStack. Its authentication meth-
ods include standard credentials (username and password) or token-based
logins.

• Glance: The component that manages the images. Once we’re authenti-
cated,there are a few resources that need to be available for an instance to
launch. In order for the created server to be fully operational and useful,
it requires an operating system, which it chooses from a registry of pre-
installed disk images, ready to boot from. Glance serves as this registry
within an OpenStack deployment.

• Neutron: Neutron is the components that manages the network in an
OpenStack implementation. After the authentication of Keystone, and the
provision of a disk image by Glance, the next step is to gain access to a
virtual network and receive a functional IP address. Openstack uses Open
vSwitch as an orchestration tool for the underlying virtualized network.

• Nova: Once there’s an image, network, key pair, and security group
available, an instance can be launched by Nova. Nova checks for the
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availability of resources, and organises the spawning of the instance on a
Virtual Machine.

• Cinder: It is the block storage management component. These storages
are called volumes and can be created and attached to instances.

• Swift: It is the object storage management component. Object storage
is a simple content-only storage system. Files are stored without the
metadata that a block filesystem has. These are simply containers and
files. The files are simply content. Swift has two layers as part of its
deployment: the proxy and the storage engine.

• Ceilometer: It collects resource measurements and is capable of moni-
toring the cluster, originally used as a metering system for billing users.

• Heat: It is the orchestration component of OpenStack, which enables
launching multiple instances that are intended to work together. Heat is,
however, also compatible with AWS Cloud Formation templates and im-
plements extra features in addition to the AWS CloudFormation template
language.

2.3 Docker

Docker on a very basic level resolves the issue of an application working on
some platform and not working on some different platform. In cases where the
client tries to run multiple and different applications in the same server, most
of the modules required for these applications don’t work properly together.
Each application has different dependencies, which most of the time prove to be
conflicted. The same problem can arise in situations where the developer wishes
to update one of these applications, causing many maintenance problem for the
rest of the applications running on the server. Docker opts to resolve this issue
of deployment, for it is a tool designed to make it easier to deploy and running
applications with the use of containers.

2.3.1 Docker Advantages

• Portability: An application inside a docker container can run on any
system and server, as long as it has installed Docker.

• Composability: Most modern Web applications are the combination
of several different software components such as a server, a database, etc.
Docker makes it easy to compose some of these elements either into a single
container or multiple containers that can be maintained independetly.

• Isolation: With Docker every application works in isolation in its own
container both from other applications running on the same system and
from the underlying system as well.
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• Orchestration and Scaling: Docker containers are lightweight solu-
tions, and as such they are very easy to create multiple of them on a
single server or scale them up easily across a cluster of servers.

2.3.2 Docker Shortcomings

• Not Virtual Machines: Containers are not the alternative of Virtual
Machines. Even though containers provide a degree of isolation, they can
not achieve the isolation levels of Virtual Machines, since each Virtual
Machine runs in ts own instance of an OS. Containers are very similar to
processes however.

• Stateless: If the provider kills the container running a Web application,
and the starts it again, this appliction will not have stored any its previous
information.

• Not Microservices: Containers can be used in the creation of microser-
vices, but that does not make them microservices themselves. Each mi-
croservice application should follow the official microservice design.

2.3.3 Containers

Containers allow a developer to package an application with all of the parts it
needs, such as libraries and other dependencies, and ship it all out as if it was
one package. In order to create a container capable of running an application,
first of all, we need a to create the proper Dockerfile, that will describe the
necessary steps to create a docker image out of the code for an application
(the code can be Java, Python, PHP, etc.). Docker images contain all the
applications dependencies and requirement and docker containers are basically
runtime instances of these docker images. In case the client wants to install his
custom image on his online server and create a public Web application with this
image’s container, he first has to upload this image into DockerHub, an online
repository where public images are stored in order to be used later.

2.3.4 Docker Swarm

A swarm is a collection of nodes, with the Docker engine installed, joined into
a a single cluster. After the join, the provider can use the same Docker CLI
that he used for controlling the services running in containers, but this time
the commands will run at the from the manager of the swarm. The nodes in a
swarm can be either physical or virtual, and they are distinguished into man-
agers and workers. A physical node is a an electronic device operating as a
server with finite resources, unless somebody adds a more advanced physical
module, such as a CPU. A virtual node is a Virtual Machine running on top of
a regular operating system and created by a hypervisor through virtualization
of the infrastructure. Swarm managers are responsible for deploying a service
in a swarm. During service deployment, containers are created and distributed
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among the nodes (manager and workers) of the swam. The are 2 distrbution
strategies and these are ’global’ and ’replicated’. We can define distribution
stategies with the –mode flag on the Docker CLI. During the ’global’ mode, the
manager places one task on each node that meets some predefined service place-
ment constraints and resource requirements.6 If the mode is not specified, then
the system gets the ’replicated’ mode by default. During the ’replicated’ mode,
the manager will automatically try to deploy the containers equally among all of
the nodes. Swarm managers are the only machines in a swarm that can execute
your commands, scale up or down services, and authorize other machines to join
the swarm as workers. Workers are just there to provide computing resources
to the system and do not have any authority. However managers can and will
act as worker nodes as well every time, thus sharing the total workload.

2.3.5 Docker-Machine

Docker Machine is a tool that allows a provider to install Docker Engine (the
Docker software) on virtual hosts, and manage these easily hosts with docker-
machine commands. These Docker hosts can be either local Mac or Windows
box, or on the providers company network, or data center, or on cloud providers
like Azure, AWS, Digital Ocean and OpenStack. The Docker hosts themselves
can be sometimes referred to as, managed “machines”.

2.3.6 Docker SDK

Docker provides an API for interacting with the Docker daemon (called the
Docker Engine API), as well as SDKs for Go and Python. The SDKs allow the
provider to build and scale Docker applications and solutions quickly, without
the use of the Docker CLI. Although the Docker SDK is not a common choice
for developers to work with, mostly because of its lack , if studied in depth
and used properly it can prove itself a valuable tool for controlling both Docker
containerized applications and Docker Swarm node applications automatically.

2.4 OpenFlow

”Traditionally, networking hardwares from different vendors often have special
configuration and management systems, which limits the interacting between
routers and switches from different manufacturers. OpenFlow is a feasible so-
lution this problem, by being an open programmable network protocol for con-
figuring and managing network switches from various vendors. It enables us
to offload the control plane of all the switches to a central controller and lets
a central software define the behavior of the network. Thus network adminis-
trators can use OpenFlow software to manage and control traffic flow among
different branded switching equipments.”7. Initially a derivative technology of

6https://docs.docker.com/engine/swarm/
7http://www.fiber-optic-transceiver-module.com/openvswitch-vs-openflow-what-are-they-whats-their-relationship.

html

https://docs.docker.com/engine/swarm/
http://www.fiber-optic-transceiver-module.com/openvswitch-vs-openflow-what-are-they-whats-their-relationship.html
http://www.fiber-optic-transceiver-module.com/openvswitch-vs-openflow-what-are-they-whats-their-relationship.html
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OpenFlow, OpenVSwitch (open source virtual switch) started as a network-
ing tool, with some of OpenFlows capabilities, most commonly used in SDN
applications and especially in OpenStack. However, it evolved with the latest
versions of OpenStack, and is now capable of providing the exact same services
as OpenFlow, such as interconnection of virtual devices in the same host or
between different hosts, which has been proven very helpful for our work.

2.5 Autonomous Agent

An autonomous agent is defined as a program or programmed device which
can act without any human supervision or interference, most commonly in a
remote location (e.g. on a remote server). ”An autonomous agent can be
seen as a system capable of interacting independently and effectively with its
environment via its own sensors and actuators in order to accomplish some given
or self-generated task(s).”[4]

Figure 6: A simple autonomous agent structure as described in ”Concepts and
Autonomous Agents”[4]

”The term ’autonomous agent’ is, as most terms in AI, ambiguously used. What
one researcher would consider an autonomous agent, another refers to as a
simulation program.”[4]

2.6 Zabbix

Zabbix is an enterprise-class open source distributed monitoring solution, ini-
tially created by Alexei Vladishev, and currently maintained by Zabbix SIA.
As a monitoring software, it keeps track of multiple parameters on clusters of
servers, perfoming health checks and integrity checks. Zabbix supports a flexi-
ble notification mechanism that enables e-mail based alerts for users in case of
disaster events, as well as excellent reporting and data visualization features,
from the gathered and stored metrics. All of its reports and graphs are easily
accessible via a web-based frontend interface, from any location.8

• Data Gathering: Zabbix items can perform calculations through arith-
metic expressions, and create virtual data, whose values are periodically
recalculated. The results are stored on the database of the Zabbix server,

8https://www.zabbix.com/server_monitoring

https://www.zabbix.com/server_monitoring
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Figure 7: zabbix’s workflow

and from there they are used to generate graphs, raise alarms, or send no-
tifications to users. It is also possible to create custom agent checks. Any
user can expand Zabbix agent’s functionality by creating customs scripts
in Perl or Python.

• Problem Prediction: There are predictive functions available as tool in
Zabbix, that will process the incoming data in order to find trends and
construct predictions of possible future system behavior. History data
can also be analysed in order to gain some useful insight about future
situations. We do not utilise these features in our current work, since
they were unnecessary for our goal, however, they can prove very useful for
future versions of Elixir, should we want to extend its capabilities. Zabbix
also provides ”hysteris” a very important function for Zabbix triggers,
since it helps avoid data corruption (because of metrics fluctuating values),
by putting the triggers on problem state only when the upper limit is
reached and to normal state when the metrics are below the threshold
value.

• Configurable Alerting: Zabbix offers the ability to send custom mes-
sages to notify the users depends on the information that each user is
interested in. The notification may have such fields as date and time,host
name, item value, trigger value, escalation history, etc. Each item gathers
information about a specific resource from the server it is installed and a
trigger will check whether the metric received from the item is within the
permissible limits. The Fig.7 presents a simple workflow of Zabbix, which
illustrates clearly the connection between items, triggers and actions.

• Zabbix Web Frontend: It contains real time graphing features, that
enable custom or automatic graph generation from the data stored in the
database of the Zabbix server. It also has the Global Dashboard, which
provides many details about the monitored hosts.

• Distributed Monitoring: Zabbix supports a method of monitoring re-
mote servers through Zabbix proxies, that will gather the necessary data
and later forward their metrics to the Zabbix server. This can prove an
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efficient way to simplify the monitoring of a worker node and improve the
performance of the central Zabbix server.

• Security and Authentication: It supports multiple authentication meth-
ods such as HTTP basic authentication and LDAP authentication, as well
as encryption between Zabbix separate components, like Zabbix servers
and agents, in order to secure communications. The encryption can be
either Cerficiate-based or pre-shared key-based encryption.

2.6.1 Zabbix Server

The Zabbix server constitutes the central component in the entirety of Zabbix
software, that calculates triggers, generates graphs, sends notifications to users,
and to which Zabbix agents or proxies report all their gathered information.
The server contains a relational database in which all the statistical and oper-
ational information is stored, and can perform check on the network of servers,
in order to know whether a monitored host is responsive or not.

”The functioning of a basic Zabbix server is broken into three distinct com-
ponents, the Zabbix server, the Web frontend and the database storage. All of
the configuration information for Zabbix is stored in the database, which both
the server and the Web frontend interact with. For example, when you create a
new item using the Web frontend (or API) it is added to the items table in the
database. Then, about once a minute Zabbix server will query the items table
for a list of the items which are active that is then stored in a cache within the
Zabbix server. This is why it can take up to two minutes for any changes made
in Zabbix frontend to show up in the latest data section.”9

2.6.2 Zabbix Agent

A Zabbix agent should be installed on the monitoring target, in order to gather
information about local resources (CPU, Disk, etc.) and applications success-
fully, all while offering some basic processing of these data. The agent later
reports these metrics to the Zabbix server for additional processing. Zabbix
agents are written in C language and are very efficient tools, mainly because of
their use of native system calls. After installing the Zabbix agent on a server,
the agent’s configuration file must be updated, in order to include such infor-
mation as the type of checks it performs (Active or Passive), as well as the IP
of the Zabbix server.

Zabbix Agent Characteristics:

• Small footprint and low resource: The Zabbix agent can be run
on multiple nodes with limited resources. With the installation of the
Zabbin agent, also come a configuration file, which declares who is the

9https://www.zabbix.com/documentation/4.2/manual/concepts/server

https://www.zabbix.com/documentation/4.2/manual/concepts/server
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central Zabbix server of this agent, as well as what kind of monitoring is
the agent supposed to be doing.

• Polling - Passive checks: Zabbix servers requests periodically a value
from the Zabbix agent, and the Zabbix agent will return the value after
processing the request.

• Trapping - Active checks: The Zabbix agent requests from the Zabbix
server a list of active checks that need to be performed and sends the
results periodically.

2.6.3 Zabbix API

Zabbix has its own API, that provides access to almost all of Zabbix’s available
functions. The existence of such API, however, lays the ground for great cus-
tomisation and further expansion of Zabbix’s available services and functions.
Some of the advantages of the Zabbix API can be listed as follows:

• Easy Integration with Third Party Software: The Zabbix API can
be integrated easily with any third party software that is capable of making
and receiving external calls, as opposed to other monitoring software tools
such as JIRA, or Bugzilla. This third party software can also prove an
important step towards creating custom based IT solutons.

• Data Retrieval: Zabbix stores in its database a plethora of information
about the servers or systems it monitors, and not using this data efficiently
would consist a great waste. With the help of the Zabbix API, however,
users can use these information for deducting complex conclusions about
the system’s behavior, that otherwise would not be possible to obtain.

• Mobile Applications: Monitoring a modern IT environment requires
constant attention, if the provider wants to remain competitive in his
business. This is where mobile devices and implementations can be useful,
and Zabbix API makes such implementations possible.

2.7 MySQL

MySQL is a relational database management system (RDBMS), used for storing
and managing huge volume of data. This is called relational database because
all the data is stored into different tables and relations are established using
primary keys or other keys known as foreign Keys. A RDBMS is a software
that:

• Enables the client to implement a database with tables, columns and in-
dexes.

• Guarantees the referential integrity between rows of various tables.

• Updates the indexes automatically.

• Interprets an SQL query and combines information from various tables.
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2.8 NGINX

2.8.1 Reverse Proxy Server

A forward proxy server works as an intermediate between client and server,
hiding every time the identity of the client and offering him ”anonymity”. The
clients traffic will be routed by the proxy and the proxy will make the requests
to the server, so responds return to the proxy server and the proxy server for-
wards them back to the client.

A reverse proxy offers the opposite service, by hiding the IP of the server. A
Web application can have multiple servers behind his reverse proxy. This reverse
proxy server accepts requests from clients and forwards them to the backend
servers, meanwhile the client remains completely unaware of which server he
logged into or even which port he used (could be an unsafe port,different from
8080).

2.8.2 Load Balancing

A load balancer distributes incoming client requests among a group of servers,
in each case returning the response from the selected server to the appropriate
client. Load balancers are constitute a common deployment choice, every time
a Web application requires multiple servers in order to handle efficiently a huge
volume of incoming traffic. The same application should run in each one of
these servers, and the job of the load balancer is to distribute the requests in
such way,that will make the best of each server’s available capacity. Another
common word for ”load balancer” is ”scheduler”, even though in reality these
two modules work for different purposes, especially since in most implementa-
tions they are based on the same scheduling algorithm, that of round robin.

2.8.3 NGINX Reverse Proxy Server and Load Balancer

The open source NGINX software 10 can work both as reverse proxy as well as
a load balancer offering a plethora of useful features, including:

• Many load-balancing algorithms to choose from.

• Communication protocols such as HTTP/2 and WebSocket.

• Security strategies such as whitelists and blacklists.

• Scripting for advanced use cases, using Lua, Perl, and JavaScript (with the
nginScript dynamic module [Editor – Now called the NGINX JavaScript
dynamic module]).

10https://www.nginx.com/blog/docker-swarm-load-balancing-nginx-plus/

https://www.nginx.com/blog/docker-swarm-load-balancing-nginx-plus/
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An updated version of NGINX, titled NGINX Plus, features many more options,
such as more advanced authentication protocols, as opposed to free-to-use NG-
INX, although, it comes at great cost for the user. Possibly, one of its most key
advantages is the ability to run diagnostic checks on the nodes for which it acts
as a workload loadbalancer.

2.9 Related Applications

2.9.1 Kubernetes Horizontal Pod Autoscaler

”Kubernetes container orchestration and management system automates de-
ployment, scaling and management of containerized applications. Each applica-
tion can run in many copies in clusters of nodes (each node is typically deployed
as a VM). Each node can run more than one instance of the application. The
maximum number of nodes is specified in advance. Inside a node, an application
is deployed in clusters of containers referred to as “pods”; each pod is deployed
as a separate Docker environment running one or more containers. Kubernetes
resumes responsibility for scheduling and managing each application and its
replicas inside each cluster. Kubernetes can also be configured to balance the
traffic across clusters.”[2]

”The Horizontal Pod Autoscaler automatically scales the number of pods in
a replication controller, deployment or replica set based on observed CPU uti-
lization (or, with custom metrics support, on some other application-provided
metrics).”11 The Horizontal Pod Autoscaler is implemented as a control loop
(default value of period is 15 seconds), a layer above the previously mentioned
controllers. During each period, the metrics from the resource metrics API for
each pod targeted by the Horizontal Pod Autoscaler. The controller divides
the receive metrics value by the desired metrics value, and then multiplies the
outcome of this division with the current number of pod replicas. The outcome
of this multiplication is the desired number of pod replicas.

2.9.2 Amazon Elastic Compute Cloud

”Amazon Elastic Container Service (ECS)5 by Amazon Web Services (AWS)
allows management of Docker containers on a cluster of Amazon Elastic Com-
pute Cloud (Amazon EC2) instances (VMs). It can be used to launch and stop
containerized applications by making API calls, allows monitoring the state of
the cluster from a centralized service and integrates with many familiar AWS
features like Elastic Load Balancers, CloudTrail, CloudWatch etc. The cluster
setup is a single step process in which the number and flavor of EC2 instances
needed for the cluster is specified. The rest of the setup process, as well as
the management of those instances is handled by the ECS service. In terms of
autoscaling, ECS provides a mechanism which lets a user configure policies on
how scaling operations take place. A policy consists of a set of rules and a set of

11https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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actions. Rules typically refer to thresholds defined upon utilization metrics and
actions refer to scaling operations. An example policy would be the following:
If CPU utilization in all cluster nodes is above x%, create a new node with
y amount of computing resources and add it to the cluster. ECS, autoscaling
operations are driven my measurements of the actual computing resources con-
sumed. In addition to scaling, ECS can move applications (tasks) across the
cluster of nodes in order to achieve better utilization, meaning that ECS’s sched-
uler operates based on the actual run-time utilization of each application”[2]

2.9.3 Azure Kubernetes Service

”AKS (Azure Kubernetes Service) nodes run on Azure virtual machines. It al-
lows connection of storage to nodes and pods, upgrade cluster components, and
use GPUs. AKS supports Kubernetes clusters that run multiple node pools to
support mixed operating systems and Windows Server containers. Linux nodes
run a customized Ubuntu OS image, and Windows Server nodes run a cus-
tomized Windows Server 2019 OS image. As demand for resources change, the
number of cluster nodes or pods that run the clients services can automatically
scale up or down. The client can use both the horizontal pod autoscaler or the
cluster autoscaler. This approach to scaling lets the AKS cluster automatically
adjust to demands and only run the resources needed.”12

12https://docs.microsoft.com/bs-latn-ba/azure/aks/intro-kubernetes

https://docs.microsoft.com/bs-latn-ba/azure/aks/intro-kubernetes
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3 Architecture

Elixir is a an autonomous agent written in Python 2.7. It supports monitoring,
up-scaling, down-scaling and managing multiple swarms of nodes running dif-
ferent Web applications.

Fig.8, illustrates a typical Docker Swarm environment with multiple swarms,
each one running a different Web application, and all controlled by one provider.
Each node (manager or worker) can have from 1 to N containers inside, running
the same Web application. In this exemplary system there is one manager for
each swarm, there is no load balancer and no way of keeping track of the man-
agers and the workers resource usage.

Figure 8: Before Elixir’s implementation in the system

Docker Swarm does not provide real time monitoring of each swarm’s nodes. So
in cases of system overload, there is no way for the swarm to react and adapt to
the situation, and will probably end up failing. In order to deduce whether the
system is functioning properly or not, the infrastructure provider is expected to
use an external tool for monitoring. These external tools, however, tend to be
pay-to-use and difficult to operate alongside Docker Swarm’s software. But even
if the provider was able to add such a monitoring tool to his system’s imple-
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mentation, the only way for him to add extra worker nodes in case of resource
demand, would still be to do it manually through Docker CLI. These problems
can be resolved with the implementation of Elixir into the system.

Figure 9: The Elixir agent deployed in the system.

In this section, we will explore a little more in depth, all the separate modules
that together form the system architecture that Elixir’s auto-scaling is emulat-
ing, more specifically the one illustrated in Fig.10. We can imagine Elixir as
some sort of middle layer between the OS of a computer and the Docker Swarm
environment, as illustrated in Fig.9. Elixir will share the system’s infrastruc-
ture and resources in order to function properly and achieve its goals, but it
will actually work as an orchestrator a level above the common Docker Swarm,
complementing in that way all the Docker Swarm’s shortcomings and extending
its capabilities. Elixir will also have complete access over all of the resources and
information managed by the Docker Swarm orchestrator (i.e. containers, ser-
vices, worker node status), and it will act as an automated mechanism managing
the entirety of the system, ”a manager to rule over all the other managers”.
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Figure 10: After Elixir’s implementation in the system
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3.1 Load Balancer

Perhaps the most significant action of Elixir, is the inclusion of a load balancer
node on the system it manages. This node will form a swarm of its own, where
it will deploy a containerized NGINX proxy server service by acting as its man-
ager (and one and only worker), meanwhile gaining access on the swarm ingress
network formed in the provider’s computer. The swarm ingress network is an
overlay network, which handles control and data traffic related to swarm ser-
vices. It is the default network assigned to swarms on creation, when the user
does not choose a custom user-defined network instead. The swarm ingress net-
work also supports communication between nodes of different swarms, as long
as these swarms are orchestrated on by the same Docker client. As we already
mentioned in chapter 2.8, an NGINX proxy server is actually a reverse proxy
server and is capable of hiding the IP addresses of the backend servers, guard-
ing them in that way from possible malicious attacks. An NGINX proxy can
also act as a load balancer for the system, distributing the incoming requests
based on a selected load balancing algorithm. For our work, we choose to imple-
ment the round robin scheduling algorithm. Elixir processes the configuration
file intended for the NGINX proxy server service, every time a node (manager
or worker) is to be added to the system, and then restarts the service, while
mounting the configuration file intended for that swarm. In listing 1 we present
an example of that NGINX configuration file. Elixir handles different NGINX
configuration files inside the load balancer node, one for each swarm it looks
after.

1 http {
2 s e r v e r {
3 l i s t e n 80 ;
4

5 l o c a t i o n / {
6 proxy pass http :// backend ;
7 }
8 }
9

10 upstream backend {
11 s e r v e r 1 9 2 . 1 6 8 . 1 1 1 . 2 0 1 : 8 0 ;
12 }
13 }

Listing 1: NGINX’s configuration file for load balancing

Besides working as a reverse proxy server, the load balancer node will also act
as the Zabbix server, keeping track of all the monitored hosts. This service
is also implemented as a containerized application, however this time it do not
require multiple services, one for each swarm. There will only be a single Zabbix
server, gathering the information of all nodes (managers or workers) created by
the provider, no matter which swarm they belong to or which application they
serve. All the gathered data will be stored on a containerized MySQL database,
to be processed later for future use.
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Figure 11: Load Balancer’s structure



3. ARCHITECTURE 30

3.2 Manager

Manager nodes are responsible for handling swarm management tasks such as
maintaining cluster state, scheduling services (assigning service containers to
workers), scaling services and etc. The manager basically aims to preserve a
consistent internal state of the swarm cluster and of all the services running
on it. ”To take advantage of swarm mode’s fault-tolerance features, Docker
recommends you implement an odd number of nodes according to your orga-
nization’s high-availability requirements. When you have multiple managers
you can recover from the failure of a manager node without downtime.” 13 For
testing purposes, however it is permitted to maintain a swarm with a single
manager, and even if the swarm manager fails, the services will continue to run,
but scaling of services and nodes will not be operational. Manager node are
capable of load balancing the swarm their are managing themselves, however
we override this feature with the addition of the load balancer node described
on the previous section. The reason for this action is our aim to create a tool
that would handle more than one swarms and would add security to the entire
system.

In our implementation, Elixir is not allowed to create any extra manager nodes,
but only workers. Therefore, it is up to the provider of the Web application to
choose how many manager nodes he is willing to have to online for managing
a single swarm cluster with as much fault-tolerance on the system as possi-
ble. Elixir’s task is to recognise how many manager nodes are currently online,
which of them are currently managing the same swarm, and make turn these
manager nodes into monitored hosts, by installing them the Zabbix agent in the
form of a containerized application. Elixir does not create a swarm cluster by
itself, it only extends the managing limitations on existing swarms, so the man-
ager nodes will already have the Docker Engine installed if they are to function
as managers properly. Later, Elixir will create separate NGINX configuration
files, one for each swarm, based on the number of manager nodes, and will pass
the manager node’s IP addresses and ports of application on these files, before
restarting the load balancing service.

3.3 Worker

A worker node will act, every time, as the Elixir commands through its swarm’s
manager node. A worker does not have any authority or special commands in
the swarm that it belongs to, it cannot increase the number of its containers
running for swarm services on its own, and it cannot start a service on the
swarm on its own. Every single action that the worker must take for the good
of the swarm, must be ordered through its swarm’s manager. ”You can create
a swarm of one manager node, but you cannot have a worker node without at

13https://docs.docker.com/v17.09/engine/swarm/how-swarm-mode-works/nodes/

#manager-nodes

https://docs.docker.com/v17.09/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
https://docs.docker.com/v17.09/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
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Figure 12: Manager’s structure

least one manager node.”14 After a worker node is created, Elixir installs to it
the Docker Engine and then the Zabbix agent, in the form of a containerized
application. Then, Elixir overrides the Zabbix agent’s configuration file in order
to assign a monitoring style (Active or Passive) and write the IP address of the
Zabbix server. After all these steps are completed, Elixir will write this worker
node’s IP address and port of application on the NGINX configuration file and
restart the load balancing service, so that the load balancing can proceed and
the worker node can commence work for its assigned service.

14https://docs.docker.com/v17.09/engine/swarm/how-swarm-mode-works/nodes/

#manager-nodes

https://docs.docker.com/v17.09/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
https://docs.docker.com/v17.09/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
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4 Elixir’s Implementation

In this section we will describe the necessary operations Elixir is offering, but
this we will be looking at the code. Fig.13 is a flowchart illustrating all the
steps Elixir has to take, while in operation, in order to manage the swarms of
the provider’s system and maintain a well balanced environment. Elixir begins
with creating the necessary triggers based on the threshold provided by the
provider. Elixir supports both Disk usage based triggers, as well as CPU usage
based trigger. The load balancer node is already online and its features are
ready (Docker Engine, Zabbix server), so there is no need to create it and install
them from scratch. After these initial steps, Elixir search for all the manager
nodes currntly online, divides them into groups accodring to which swarm they
manage, and stores the information of only 1 manager for each swarm, as the
main swarm’s main manager. Based on the number of main managers, it will
also create an equal number of NGIXN configuration files, in order to start
the load balancing services. Later, Elixir proceeds to perform periodical health
checks on the main manager of each swarm, keeping track of the its trigger
values. When the limits of these triggers are surpassed the appropriate reaction
by Elixir will follow (auto-scaling). Last but not least, Elixir will wait an entire
minute before revisiting the same swarm for health checking again. The triggers
are checking for average usage values in a time frame of 5 minutes, hence if Elixir
does not wait that full minute, its decision might be affected by the manager’s
average usage value, that will not have been able to adjust to the after scaling
system yet.
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Figure 13: Elixir’s logic flowchart
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In listing 2 we present an example of how the request for creating a trigger
should look like. Elixir uses these requests only once every time it is brought
online, in order to set up the proper triggers for CPU monitoring and/or Disk
monitoring according to the users thresholds of choice. Elixir will also delete
these triggers, if it is shut down by the user. The ”description” is the alert mes-
sage that the infrastructure provider will receive, in order to understand what
is the worker nodes problem, ”expression” is the macro expression which checks
whether the trigger is satisfied or not, and ”dependencies” is a parameter added
only if our custom trigger requires the values of an other trigger to function
properly. We are allowed to create more than one triggers every time with a
single trigger create request. All the requests are stored into json-rpc files.

1 {
2 ” j sonrpc ” : ” 2 .0 ” ,
3 ”method” : ” t r i g g e r . c r e a t e ” ,
4 ”params” : [
5 {
6 ” d e s c r i p t i o n ” : ” Proces sor load i s too low on {HOST.NAME

}” ,
7 ” exp r e s s i on ” : ”{Template OS Linux : system . cpu . u t i l [ , i d l e

] . avg (10m)}>80” ,
8 ” dependenc ies ” : [
9 {

10 ” t r i g g e r i d ” : ”17367”
11 }
12 ]
13 }
14 ]
15 }

Listing 2: Trigger create example

4.1 Find All Manager Nodes

This is an important part of Elixir, since it works as an agent a layer above
Docker Swarm, which means Elixir is responsible for managing containerized
applications already deployed on Docker Swarm by a provider, not deploying
them by itself. In order to achieve that level of control, Elixir must first find
all the managers enlisted on the provider’s computer. For that, Elixir is using
the equivalent of the Docker CLI command ”docker node ls”, from the available
commands of the Docker SDK, as presented in algorithm 1. The response of
this command for each node determines, whether this node is a manager or not
and to which swarm it belongs to.

In listing 3 we present an example of how the request to Zabbix should look
like, in order to create a host. First we define the method that we need to use
from the API and then we define the parameters for this method. Parameter
”host” is the name we want to assign to the monitored server, ”ip” is the server’s
IP, ”groupid” will add the created host on a specific group of servers, that we
define, where there will be specific triggers and monitoring rules. For our work,
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Algorithm 1 Finding All Manager Nodes Algorithm

1: procedure FindAllManagers
2: nodes← AllSystemNodes
3: for node in nodes do
4: response← node.cmd(NodeList)
5: if response contains ’Manager’ then return managerlist.add(node)

every single new host created is added to the ’Linux Servers’ group, since all
of our worker nodes will be Linux servers. The ”port” value must always be
10050, since this is the port that Zabbix uses.

1 {
2 ” j sonrpc ” : ” 2 .0 ” ,
3 ”method” : ” host . c r e a t e ” ,
4 ”params” : {
5 ” host ” : ”Linux s e r v e r ” ,
6 ” i n t e r f a c e s ” : [
7 {
8 ” type” : 1 ,
9 ”main” : 1 ,

10 ” use ip ” : 1 ,
11 ” ip ” : ” 1 92 . 1 6 8 . 3 . 1 ” ,
12 ”dns” : ”” ,
13 ” port ” : ”10050”
14 }
15 ] ,
16 ” groups ” : [
17 {
18 ” groupid ” : ”50”
19 }
20 ] ,
21 ” templates ” : [
22 {
23 ” template id ” : ”20045”
24 }
25 ]
26 }
27 }

Listing 3: Host create example

4.2 Add Node Logic

After the initial and mandatory steps of Elixir, it is time for the periodical health
checks performed on the swarm’s manager. The swarms must have already been
initialised and their manager nodes assigned, all by the provider. All the data
from the health checks are stored into the MySQL database of the Zabbix server.
Elixir gets notified that there is something wrong, only if any of the declared
triggers gets violated. When this moment comes, Zabbix server sends the trigger
descriptions of the violated triggers, to Elixir so it will know which action to
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perform (up-scale, down-scale or nothing). The actions performed, when up-
scaling has been triggered, are illustrated on algorithm 2. At first Elixir must
come up with a name for the new worker, which it does based on the number of
already existing worker nodes in the swarm and then orders the creation the new
worker through a mixture Docker-Machine and Docker SDK implementation.
Then, Elixir gets the join-token from the manager node, and with the help of
the Docker SDK gives this token to the worker node so it can join the swarm.
Lastly, Elixir turns the newly created worker node on a monitored host, with the
use of the Zabbix API host-create method,restarts the NGINX load balancer
service, after it writes the new IP on the NGINX configuration file, and then
scales the service up. Below, we present a flowchart diagram 14 with all the
basic information about Elixir’s add-node workflow.

Algorithm 2 Add Worker Node Algorithm

1: procedure AddWorker
2: worker.WorkerName← create.WorkerName()
3: docker.createworker(worker)
4: manager.swarm(GetJoinToken)
5: worker.join(GetJoinToken)
6: host.create(worker)
7: loadbalancer.add(worker.getIP())
8: loadbalancer.update()
9: manager.scaleUp(service)
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Figure 14: Add node logic flowchart
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4.3 Delete Node Logic

In case the trigger description indicated a problem for down-scaling, Elixir will
follow the necessary actions as they are illustrated on algorithm 3. At first Elixir
creates a list with all the worker nodes of the swarm, and the proceeds to pop the
last one created off the list. Elixir, then, removes this worker from the swarm,
after it puts it on Drain mode, and deletes the host from the Zabbix server,
after getting the workers IP address, once again with the use of Docker SDK
commands. Lastly, the IP of the worker node gets deleted from the NGINX
configuration file and the load balancing service gets rebooted. Only then, the
service of gets scaled down. Below, we present a flowchart diagram 15 with all
the information concerning Elixir’s basic delete-node workflow.

Algorithm 3 Delete Worker Node Algorithm

1: procedure DeleteWorker
2: list[]← manager.getWorkers()
3: if list is NotEmpty then return
4: worker← list.pop()
5: manager.swarm.remove(worker)
6: manager.service(ScaleDown)
7: host.delete(worker)
8: loadbalancer.remove(worker.getIP())
9: loadbalancer.update()

10: docker.delete(worker)
11: manager.scaleDown(service)

In listing 4 we present an example of how the request to Zabbix should
look like, in order to delete a host. After defining the method, the only other
parameter Zabbix requires is the monitored server’s host-id.

1 {
2 ” j sonrpc ” : ” 2 .0 ” ,
3 ”method” : ” host . d e l e t e ” ,
4 ”params” : [
5 ”13”
6 ] ,
7 ”auth” : ”038 e1d7b1735c6a5436ee9eae095879e ” ,
8 ” id ” : 1
9 }

Listing 4: Host delete example
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y

Figure 15: Delete node logic flowchart
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5 Performance Evaluation

The basic goal of the experimental procedure that we followed, is to prove
that our agent works correctly and that it has the desirable effect on the sys-
tem, which means achieving lower response time for a great concurrency number
through automatically scaling up the worker nodes in the system, and vice versa
for the respective case. In order to acquire the necessary results, we selected
to use a CPU intensive testing application. We expand on the subject of this
testing application and we analyse the results of our evaluation in the following
subsections.

5.0.1 Testing Application Deployment

As we already mentioned on the above paragraph, we choose to use a CPU
intensive application in order to carry out these tests with meaningful results.
That is why our application is as an input, an edge from a given graph, . The
graph is already created inside the Web applications code, since our goal is to
create a realistic scenario for stressing the system’s CPU usage, not create an
elaborate Web application. We developed this Web app on Flask, a microframe-
work for Python and later containerised it, created an image out of the running
container, uploaded the Docker image on DockerHub, and from there distribute
the Web app service among all swarm nodes with Elixir. The containerization
and distribution of this Web app would not be possible without creating the
proper docker-compose.yml file. Information about the correct structure of this
file, can be found on the internet, and will not be included in our thesis, since
they are not part of our research.

Every single added node will have the same characteristics as the manager in line
with the horizontal scaling policy. That means that every single node (manager
or worker) owns 1 CPU, 20GB Disk and 2GB RAM as available resources. The
nodes have small sized flavor, and use ’base ubuntu 18.04’ as their base image.
There reason, they use this image instead of earlier versions of ubuntu, is for ,
since the latest version Docker Engine might appear to be malfunctioning when
installed on earlier ubuntu releases.

Finally, we use Apache bench, a tool for benchmarking a Hypertext Trans-
fer Protocol (HTTP) Web server. This software tool will be used to stress
our application with multiple concurrent users, in order to creating a realistic
stressing (CPU intensive) scenario for the system and for Elixir. Then we will
measure the performance of system, based on the response time per a number
of requests. An argue can be made for not choosing Disk usage instead of the
CPU usage (that we chose) for the testing of our application, since 100% Disk
usage means that worker node can no longer perform any more additional tasks.
We actually consider both of these parameters to be of great importance for the
well being of every worker node and we strongly believe that in future works,
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Figure 16: The HTML layout of the testing Web application we created.

the decision to scale up or down should be made based on the metrics gathered
by both. However, the purpose of our evaluation process is to prove that Elixir
is capable of functioning properly against heavy workload and perform the nec-
essary auto-scaling on time, rather than studying which parameter would prove
to be better for auto-scaling or which would be the better threshold for making
the decision to scale up or down.

5.0.2 Experimental Procedure

Our first test is showcased in Fig.17 and in Fig.18, where we illustrate the
response time of the system and the CPU percentage of the manager node re-
spectively during the testing. As we have already mentioned, the chosen CPU
percentage threshold is an input for the agent and can be changed according
to the user’s desires. Having said that, for this particular test we choose to
use the 20% CPU usage mark as the threshold to trigger the up-scaling in our
system, in order to speed up the already time consuming process of automatic
up-scaling the system. With the Elixir agent online and managing our system,
we begin with a single node and workload of 400 concurrent users. This will
prove enough to push the CPU percentage levels of the manager node beyond
the 20% threshold and in that way will trigger Elixir’s up-scaling procedure. It
is important to note that Elixir’s monitoring protocols are checking for average
CPU levels in a time frame of 5 minutes, so that it can avoid any possible spikes
that can occur by mistake during Zabbix’s monitoring of the manager node
or during the manager node’s operation in general. The dashed lines indicate
when the workload of the system is increased to more concurrent users, each
color stands for a different concurrency. The red dashed lines indicate the exact
moment on the system, when the up-scaling (add node logic) was triggered. The
red dots in Fig.17 indicate the moment when the new nodes were created. It is
important to notice the drastic drop in response time right after the creation of
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the new node. This is the moment where the NGINX service of the loadbalancer
reboots, in order to include the IP of the newly created worker node, for the
rest of the testing process, with the result of causing a momentary downtime. It
is also of equal importance to remember, that monitoring the CPU usage of the
manager node is enough, since it will give the same CPU usage as of any other
worker node, because of the load balancing algorithm we implemented (round
robin)

In Fig.17, we observe that the response time of the system keeps on rising,
because the continuous workload of 400 concurrent users leaves little time for
the system to balance itself. However, after the addition of next worker node
in the system, we can see that levels of CPU usage as well as the total response
time of system experience a very small drop, before stabilizing at about 55%
and 4000 miliseconds respectively. This is a logical outcome, since we will now
have 2 nodes working on for the system (1 manager, 1 worker), but we have
also increased significantly the number of concurrent users in order to push
the system for another up-scale. After the creation of the second worker and
the reboot of the NGINX load balancing service, we lower the workload to 600
concurrent users, a small enough number to not cause any further up-scaling,
but not small enough to trigger an accident down-scale. During this period, we
find the system stabiling its response time at about 2000 miliseconds and the
manager’s CPU usage at about 25%.

Figure 17: System’s response during the auto-scaling test.

In Fig.19, we explore another realistic scenario where the level of concurrent
users decreases gradually, every time after a new node has been deleted from
the system, setting up in that way a chance to test our work in an environ-
ment once again with a more dynamic workflow. For this test, we choose to
use a threshold of 15% CPU usage as the down-scale trigger limit. In Fig.20 we
present the managers CPU usage during the same test, and how it fluctuates
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Figure 18: Manager node CPU usage percentage during the auto-scaling test.

up and down again during the auto-scaling process.

From these experiments, we observe that the both response time of the sys-
tem and the CPU usage of the manager keeps on dropping, because of the
enforcement of a workload of 400 concurrent users, after a much higher initial
workload of 800 concurrent users that scaled the system into 3 nodes (1 man-
ager, 2 workers) in the first place. We notice the levels of CPU usage and total
response time of system stabilizing at about 13% and 2500 miliseconds respec-
tively, right before the down-scaling trigger is enabled. This time the red dots on
the response time Fig.19 indicate the moment when the extra worker is deleted.
After the deletion of that worker, the reboot of the NGINX load balancing ser-
vice causes, once a again a drop at the response time since the system will be
temporarily down. We proceed with deceasing the number of concurrent users
to 200, causing yet another down-scaling. After of the last worker node in the
system is deleted, and the only working node is a manager, we reboot the load
balancer and this time, enforce the small workload of 50 concurrent users, just
to keep the system busy and the Elixir functioning. Even though the manager’s
CPU usage in 20 is stabilizing below the appropriate limit (about 11%) and
there should be a call for down-scaling, Elixir will never delete a manager node,
because that would destroy the swarm and bring the Web application offline.
During this period, we find the system stabiling its response time at about 1400
miliseconds.

Finally, we have included 2 diagrams 21 and 22 with the response time results,
while testing the system with 3 nodes (1 manager, 2 worker nodes) and 1 node
(1 manager), but this time we turn off the Elixir agent. The purpose of these
tests is to showcase that the produced results during the previous tests were
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Figure 19: System’s response during the down-scaling test.

Figure 20: Manager node CPU usage percentage during the down-scaling test.

correct, in the aspect of response time with respect number of worker nodes
and concurrent users number. In Fig.21, we can easily see the response time
of the system with 3 nodes, stabilizing at about 2000 miliseconds, that is the
same value around which the response time of the system with 3 nodes under
Elixir’s operation stabilizes as well, excactly after the last auto-scaling process
is completed. This is a very reassuring outcome for the performance of Elixir,
especially since in both tests at this point the number of concurrent users was
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600. In Fig.22, we notice that the response time of the system with 1 node,
is stabilizing at about 1500 miliseconds, which is a bit higher from the average
response time value of the system with 1 node, while Elixir is online, and with
50 concurrent users, but still similar enough to reassure us about the correct
function of Elixir.

Figure 21: System’s respone with 3 nodes and without the Elixir agent.

Figure 22: System’s response with 1 node and without the Elixir agent.
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6 Conclusions

For this thesis, we introduced and implemented a concept autonomous agent,
named Elixir, capable of scaling automatically nodes and services orchestrated
by Docker Swarm. Elixir’s functionality emulates a realistic system architecture,
which supports horizontal auto-scaling. Elixir’s implementation is based on
many different software tools such as Zabbix for distributed monitoring, or
NGINX for load balancing. We then tested Elixir through a series of CPU
stressing scenarios, where Elixir proved to be capable enough to adapt on a
dynamic workload and adjust the system’s allocated resources beneficially. So
the conclusions about Elixir’s contributions can be summarised as follows:

• Elixir provides an official mechanism that can scale up and down services
running on Linux servers (worker nodes) and worker nodes automatically,
without any need for human supervision.

• Elixir provides a monitoring support for any worker or manager node in
the swarm and act accordingly, when there is an internal error in the same.

• Elixir is an agent that can manage multiple applications at once for each
provider, while increasing the system’s safety at the same time, with the
inclusion of a reverse proxy server.
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7 Future Work

The following are important issues for future work:

• Find a way to reduce (or even better eliminate) the downtime of the
system, caused by NGINX’s load balancing service reboot.

• Improve Elixir’s speed in order to make it a competitive option against
Kubernetes and Amazon EC2. Elixir, for example, gathers data only
about managers and stores them in a list, while it does not keep track of
any workers. Any time Elixir needs information about worker nodes, it
has to obtain it through a command in the manager of the swarm, which
costs time. Perhaps, it would prove more beneficial for Elixir, not store
this information on a list of workers, when creating the worker. Another
upgrade that could help with Elixir’s speed, could be to use parallelization,
in order to speed up the up-scaling and down-scaling procedures.

• Extend Elixir’s capabilities by adding machine learning in order to gain
insight as to what would be the best threshold value for triggering the
auto-scaling, just like Dr. Sotiriadis suggests in his work.[5]

• Last but not least, define through testing and research, which is the best
possible number of manager nodes, managing 1 swarm cluster. In the
Docker Documentation there is still no certain answer, only that in reality
the number of swarm managers must not be below 3.
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