

Acknowledgements

Dedicated to those who supported me in the last months.

Abstract

Over the last years, a rapid growth in the development of applica-

tions that are based on Convolutional Neural Networks is observed.

Despite of the large advances in processor units, the use of computer

vision tasks is still challenging in resource constrained platforms. This

thesis will present four toolkits, that accelerate the performance of

inference applications by targeting the processor units from the top

hardware vendors; Intel, Nvidia, Arm and Xilinx. In order to achieve

optimal execution, the toolkits exploit the hardware acceleration that

processors provide, as well as special processor units and platforms,

which are specially developed for deep learning inference tasks. The

most well-known models for each task are described, alongside with

the frameworks that the toolkits support and are used for model rep-

resentation. Last but not least, real-world performance results are

collected for different batches of images, in order to achieve a perfor-

mance landscape of the existing tools.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Context . 3

1.3 Objectives and Contributions . 5

2 Background 8

2.1 Convolutional Neural Networks 8

2.1.1 Introduction to Neural Networks 8

2.1.2 Introduction to Convolutional Neural Networks 10

2.1.3 A brief history of Convolutional Neural Networks 12

2.1.4 The Convolutional Layer 15

2.1.5 Other Essential Building Blocks 17

2.2 Hardware Accelerated Data Processing 20

2.2.1 Hardware Acceleration through the years 20

2.2.2 Data Processing with Hardware Acceleration 22

2.3 Deep Learning Frameworks and Model Representations 24

2.3.1 Caffe . 25

2.3.2 Tensorflow . 26

2.3.3 ONNX . 28

iii

CONTENTS

3 Acceleration tools 30

3.1 OpenVino by Intel . 30

3.1.1 Introduction to OpenVino 30

3.1.2 Deploy an app using OpenVino 32

3.2 TensorRT by Nvidia . 35

3.2.1 Introduction to TensorRT 35

3.2.2 Deploy an app using TensorRT 36

3.3 NN SDK by ARM . 39

3.3.1 Introduction to Neural Network SDK 39

3.3.2 Deploy an app using Arm’s Development Kit 40

3.4 Edge AI by Xilinx . 42

3.4.1 Introduction to Edge AI 42

3.4.2 Deploy an app using DNNDK 43

4 Benchmark Description 46

4.1 ConvNet Tasks and Models Description 46

4.1.1 Image Classification . 46

4.1.2 Object Detection . 53

4.1.3 Image Segmentation . 55

4.2 Technical Description . 58

5 Performance Analysis 61

5.1 Multi-thread in DPU . 61

5.2 Benchmarks Results . 63

5.2.1 Inference Time and Throughput for pre-trained models . . 63

5.2.2 Platforms’ Results and Discussion 66

6 Conclusions 79

iv

CONTENTS

A Inference Results 80

References 89

v

Chapter 1

Introduction

1.1 Motivation

Over the last years, a rapid growth in the development of applications that

are based on neural networks is observed. Even though the idea of neural net-

works, and the means to develop and use them for executing various tasks, has

been around for several years, their development was limited mainly for research

purposes for big labs. That phenomenon was due to the enormous computational

demands for their execution, and with the low computational power offered by

the resource contained platforms a few years ago, made it impossible to use them

efficiently. Therefore, the most important obstacle for developing and using an

application that is based on neural networks, was the cost of the hardware that

was needed to achieve such a task. Nowadays, the huge technological advances

have completely changed the landscape. Central Processor Units (CPUs) with

multi physical cores, advanced dedicated Graphic Processor Units (GPUs) with

gigabytes of VRAM, and the gigabytes of RAM, the capabilities that can be of-

fered by a single platform exceed the typical systems that were once used for

1

1.1 Motivation

deep learning inference applications. Moreover, the further need to accelerate the

execution of neural networks led to the development of special processor units.

These units have very low power consumption and increased performance for

the targeting task. However, the execution of applications that based on neural

networks remains a challenging task, despite of the huge resources that can be

offered by a single system.

The overwhelming majority of build-in inference applications that use neu-

ral networks are based on convolutional neural networks (CNNs). Applications

for image classification, object detection, image semantic segmentation, super -

resolution, face recognition and detection, speech recognition, human pose esti-

mation, text detection etc, are developed on a large scale by many programmers,

for different purposes and needs. Yet, these kind of applications require a sig-

nificant amount of resources that a system can offer in order to execute them

efficiently. Furthermore, the applications may have a large set of data to process

simultaneously. Thus, despite of the large computational power and big sets of

memory that a platform can offer, major questions are left unanswered. How can

we develop an application that can take advantage of the hardware acceleration

that a system is providing? Are there any other processor units that can exe-

cute efficiently a deep learning inference application? What is the performance of

deep learning inference applications, which can be achieved in resource contained

platforms? In this thesis, i will try to answer these questions by providing a clear

image of the existing tools and the associated processor units that can acceler-

ate the execution of deep learning inference applications, by providing a detailed

performance analysis and the capabilities that they can offer.

2

1.2 Context

1.2 Context

The performance of the applications that are based on the execution of a

convolutional neural network remains a major challenge, despite of the huge

technological advancements in resource constrained platforms. Thus, four ma-

jor hardware manufacturers took advantage of that challenge, and develop their

own tools, in order to maximize the performance of deep learning inference ap-

plications in their respective platforms and chipsets. Moreover, Intel and Xilinx

introduce specialised accelerators that can further accelerate the performance.

Prior to the presentation of the aforementioned tools, one of the objectives

of this thesis is to give a background of the neural networks and especially the

class of convolutional neural networks. It is well known that this class is a hot

topic and many applications that are developed, are importing a plethora of CNN

models. While the idea of neural networks is not new, recently frameworks such

as TensorFlow and Caffe, allow the construction and the execution of a model,

and they make these procedures a simple case for any programmer.

On the other hand, executing a convolutional neural network in a general pur-

pose processor unit is not a simple task. The performance of these applications is

based on the quality of the source code of the programmer, and in the most cases

this code does not include hardware acceleration, like platform specific commands

and functions. Hardware acceleration is a key factor in order to achieve higher

performance and to develop more efficient applications. At the same time, many

developers use only general purpose processors, ignoring the fact that many com-

panies also construct platforms and processors that are primarily for applications

that integrate AI and deep learning algorithms.

The toolkits that are going to be presented by this thesis contain libraries

3

1.2 Context

with optimized functions that can exploit every asset of the target hardware.

Thus, they can be used to accelerate the execution of any convolutional neural

network model. Moreover, with the advent of hardware accelerators, such as

vision processor units and deep learning processor units, the execution of an

inference application becomes a much easier procedure.

The first tool is OpenVino and was developed by Intel. OpenVino exploits

Intel’s hardware, like CPUs and the GPUs that are integrated into them, in order

to maximize the performance of deep learning inference. This toolkit includes

a set of libraries that can speed up the functions that the developers use for

computer vision and deep learning inference applications. Aside from the general

processor units, Intel developed a special integrated circuit, that is called Neural

Compute Stick that works alongside with OpenVino and offers great advantages

in overall performance.

The dedicated GPUs with the gigabytes of Video RAM, that Nvidia has de-

veloped all over the years, are well known for their high performance that can

provide, when they have to process big sets of data. For that reason, it makes

them the perfect unit for executing deep learning inference applications. How-

ever, Nvidia developed TensorRT, a platform that can furthermore improve the

the performance of deep learning inference applications.

A large amount of edge systems, that are widely used by research teams and

by many companies for their products, are based on processor units constructed

by Arm. The power efficient CPUs and GPUs that they develop are perfect

for executing deep learning inference applications in low-power devices. This

balance between executing efficiently deep learning inference applications and

keep the power consumption as low as possible is a huge advantage for FPGAs,

embedded platforms and mobile devices. For that reason, Arm developed the

Neural Network Software Development Kit, a set of software and tools that are

4

1.3 Objectives and Contributions

capable of executing efficiently deep learning inference applications from the most

known frameworks to any Cortex-A CPUs and Mali GPUs.

The last tool that i am going to examine in this thesis is DNNDK from Xilinx.

DNNDK is part of the Edge AI Platform that provides a set of comprehensive

tools and models, for efficient deep learning inference developing. The develop-

ment kit can be used on specific Xilinx Zynq Ultrascale+ Boards. This approach

is based on an image that Xilinx provides, in which a special Deep-learning pro-

cessor Unit is designed for efficient execution of any application that based on

deep neural networks. This unit takes full advantage of the Xilinx architecture,

in order to achieve the optimal trade-off between latency, power and cost.

1.3 Objectives and Contributions

The primary objective of this thesis is to present a performance landscape of

the aforementioned acceleration tools in constrained resource platforms that are

widely used for developing various tasks. In order to achieve something like that,

applications that are based on image classification, object detection and image

segmentation have been developed. These tasks can use a large variety of pre-

trained models, and provide a great flexibility by exploring neural networks that

are both too deep with many parameters, and others that are not. By providing a

full performance analysis of acceleration tools in resource constrained platforms,

there is a strong motive to analyse the impact of these tools in the efficiency of

deep learning inference applications.

Aside from the performance landscape, a complete description of how a de-

veloper can utilize the acceleration tools in his benefit is provided. These toolkits

include libraries, pre optimized kernels, optimizers and often many more elements.

5

1.3 Objectives and Contributions

All these components cooperate with each other, in order to maximize the per-

formance of a deep learning inference application. In addition, a description of

the popular machine learning frameworks that the toolkits support is provided.

Nowadays, the data that an application may have to process each time can

exceed the usual small numbers that many benchmarks usually provide. For that

reason, i include in the performance analysis the results that can be achieved

by processing batches of images simultaneously. Thus, the potential benefits

of this approach are shown, based on the aforementioned results. In addition,

each platform behaves differently by processing big sets of data in deep learning

inference applications.

In order to achieve the goal of the detailed performance analysis, parameters

that will help to understand how efficiently each neural network model executes

with the help of the acceleration tools are extracted. The inference time of each

CNN model is a major parameter is measured, and a detailed discussion in chap-

ter 5 is provided based on the exported results. The number of gigabytes of

RAM, that each platform has, is growing over the years, however a deep learning

inference program still needs a significant percentage of this resource. Also, the

tests provide useful information of how the batch size can affect both inference

time and memory consumption, and which tasks cannot be completed due to

low RAM in the system. From inference time i can extract throughput, which

describes how much images can be processed per second.

Each platform executes the pre-trained models in different precisions like sin-

gle point floating point (FP32), half-precision (FP16) or INT8. How the precision

of the model can affect the aforementioned exported parameters? This is a ques-

tion that can be discussed by the provided metrics. In addition, these metrics are

affected by another factor, which is power consumption. But the main question

for each processor unit is how efficiently can execute these tasks according to

6

1.3 Objectives and Contributions

power consumption.

7

Chapter 2

Background

2.1 Convolutional Neural Networks

2.1.1 Introduction to Neural Networks

One of the biggest areas of research in Artificial Intelligence is machine learn-

ing. In machine learning, computer systems utilize algorithms and statistical

models in order to perform specific tasks without using instructions like normal

algorithms do. Instead of instructions, they rely on extracting features from pat-

terns, such as speech and images, in order to perform their tasks. For that reason,

each model that was built by machine learning algorithms, is based on a training

data set. This training data set determines in which tasks this model can be used

on, while the number of the training data determines how accurate the model can

be. In this thesis, i deal with a subset of machine learning, the neural networks,

and notably with the convolutional neural networks.

Artificial neural networks are computing systems that are inspired by the bio-

logical neural networks of brain. Each neuron of biological neural network can be

8

2.1 Convolutional Neural Networks

mapped with a node of the artificial neural network. Each of these nodes are con-

nected with other nodes of the same network, and they form multiple layers. This

structure resembles the structure of the actual neurons in brain, so the flow of the

data and the communication between the nodes in a artificial neural network can

be imagined in the same way as the biological. At the beginning, the main idea of

neural networks was to approach and solve real world problems in the same way

that a human brain can do. With time, this idea was partially abandoned, and

the research was moved on how efficiently can artificial neural networks perform

on specific tasks. The most well known task, that is also evaluated in this thesis,

is image classification. Other tasks can be speech recognition, medical diagnosis,

computer vision, machine translation or even playing video games.

Each neural network is divided into multiple layers, and each layer includes

multiple nodes-neurons. The neurons of different layers are connected with each

other, but not with the neurons of the same layer. That means, that the output

of a node, is the input to a node of a subsequent layer or generally to a layer

that is located in a different level in the structure. The output signals that are

transmitting over the layers, are usually real numbers, and they are computed

by a nonlinear function of the sum of the nodes’ inputs. This function can be

differed from layer to layer, so the neurons in each layer perform different kind of

transformations in their inputs. Within the structure of a neural network, each

signal is transmitted from an input layer to an output, after traversing multiple

layers. These layers can have either a recurrent format, where a signal traverses

the same node multiple times, or a straight format, where each signal traverse

each layer one time.

As i described before, each neuron is communicating with another neuron

of a different layer through a connection. Like every communication system

that is transmitting and receiving a signal, the behaviour of a neural network

9

2.1 Convolutional Neural Networks

is determined by the strength of this connection. This kind of strength in neural

networks is called weight. The weights are adjusted during the training phase of

the model by a specified learning rule, in order to get to a point where the model

can perform the desired task correctly. These weights are playing a major role

in the performance of a neural network, and their total number is critical for the

resources that are consumed by an application.

2.1.2 Introduction to Convolutional Neural Networks

The most widely used subset of neural networks is convolutional neural net-

works (CNNs or ConvNets). CNNs are usually applied to applications for ana-

lyzing visual imagery. Some examples of these applications are image and video

recognition, recommendation systems, image classification, medical image analy-

sis, natural language processing etc.

An overwhelming proportion of CNN models that are developed, including

the models that this thesis is going to use for the performance analysis, are based

on supervising learning. Supervising learning is a type of machine learning task

where learning of a function is based on mapping the input to an output based

on example pairs. Each example is a pair consisting of an input vector, usually

the input values of an image that are represented by pixels, and a desired output

value. The inference function is produced during the training phase, where the

initial algorithm tries to map the training data set to the specified labels. When

the training phase is over, this inference function can be used by the inference

applications for mapping new images in the specified classes.

Even though the desired output values, or the specified output labels, can be

differ from network to network, CNN models have a restricted “visual field”. The

range of the visual field depends on the number and the variety of the specified

10

2.1 Convolutional Neural Networks

labels. If the model can perform exactly the specified task, that it was trained for,

then the neurons of the output layer indicate the labels that the input is mapped,

and the results can be further processed by the application. Each neuron of the

output layer is responding only to small region of the initial visual field, which can

also be referred as a receptive field. The receptive field of each neuron is partially

overlapped by other receptive fields, in order to cover the entire visual field of the

model. When a developer utilize a convolutional neural network model for his

application, the accuracy of the mapped label usually never reaches one hundred

percent. This happens because of the partially overlapped receptive fields.

CNNs are a special version of multilayer perceptrons. These type of networks

are referred as fully connected networks, where each node in one layer is connected

to all the nodes of the previous layer. This means that the output values of all

nodes are transferred to the next layer. One side effect of this fully communication

is that these networks are prone to data overfitting. This problem can be solved

by the regularization process. By adding information in input data, usually the

weight between the two neurons, or by assembling more complex patterns, the

overfitting problem can be prevented.

Figure 2.1: Receptive Field in CNN

The full connection between the neu-

rons of subsequent layers does not de-

scribe accurately the way that these

neurons are connected and transmitting

signals in a convolutional neural net-

work. In fact, the neurons of Con-

vNets are receiving inputs only from

a restricted area of the previous layer.

This input area is the aforementioned

receptive field. So, the receptive field of each neuron in a layer in ConvNets is a

11

2.1 Convolutional Neural Networks

subarea of the outputs of the previous layer, contrary to what happens in fully

connected networks where the receptive field in subsequent layers is every element

of the whole output area.

Another major element in ConvNets are weight vectors. Even though i men-

tioned before how we can adjust them and the significance of their role, the real

value of this parameter is much greater. They are used as filters and in fact they

represent particular features of the input image that it is being observed. The

weight vectors along with biases that are applied, are usually real numbers which

also determine the function that will apply to the input vector of each neuron

in order to prevent overfitting. Last but not least, many neurons can share the

same weight vectors and biases. This handy characteristic has as a result that

the amount of the main memory that a program consumes for its execution is

significantly reduced.

2.1.3 A brief history of Convolutional Neural Networks

An overwhelming proportion of computer vision systems nowadays are pri-

marily powered by ConvNets, so the history of Convolutional neural networks is

quite inseparable with the history of Computer Vision. Furthermore, ConvNets

and CV are not new scientific fields, like many think, but they have a deeply

connected history of many decades.

All started when Hubel and Wiesel are identified the meaning of receptive

field in the late 1950s. In their work [1], they showed that each neuron on the

visual cortexes in the cats and monkeys is responded only to a small region of

the visual field. This was discovered accidentally, when after many failed tries, as

they were slipping new slides into the projector, they noticed a sudden activity

in one neuron. After many experiments and research, they concluded that what

12

2.1 Convolutional Neural Networks

got the neuron to be fired was the movement of the line created by the shadow of

the sharp edge of the glass slide. The restricted region of each neuron was called

receptive field, and neighboring neurons have overlapping and similar receptive

fields. Also in their paper, they identified two types of visual cells in the brain,

• simple cells; whose output is maximized by straight edges having particular

orientation within their receptive field, and

• complex cells; whose output is insensitive to the exact position of the edges

in the fields, which fields are much larger than a normal receptive field.

In the end, they proved that visual processing starts with simpler structures,

pretty likely when a new ConvNet model starts its training in our days.

The next highlight in the history was the invention of the first digital scanner[2].

Even though, a digital scanner does not have a direct relation with the ConvNets,

the background of this project had played a major role. Russel Kirsch and his

group had invented a device, that could transform an image into an array of num-

bers. With this transformation, the binary language machines could understand

and display any image. So, the arrays of pixels that programmers use briefly in

order to represent images in their applications came from this invention.

Many years have passed when the origin of the convolutional neural network

architecture was proposed. In 1980, Kunihiko Fukushima, inspired by the work

of Hubel and Wiesel, built a network of simple and complex cells that could

recognize patterns independently by the position shifts. The first artificial neural

network, which was consisted by multiple layers in a hierarchically structure,

was a fact. Its name was neocognitron[3], which introduced the first two basic

types of layers for ConvNets, the convolutional and the downsampling layers. In

the time being, downsampling layers implemented functions that performed only

average pooling. An alternate way to perform downsampling was introduced by

13

2.1 Convolutional Neural Networks

J. Weng. In this way, it was proposed to implement functions that perform max

pooling[4] instead of average. A few years later, the first modern convolutional

neural network model was released by LeCun. This model was LeNet-5 [5] and it

was trained for recognizing handwritten numbers on checks, while another version

of this model was used for reading zip codes. This was the beginning of one of the

most well known datasets that developers are using even in our days, the MNIST

Dataset[6].

Even though the first convolutional neural network was proposed in 1980,

the continuous development of ConvNets, by implementing more convolutional

layers and by discovering new types of layers, required faster implementations.

This was achieved by using graphic processor units. In 2004, K. S. Oh and K.

Jung shown that a simple neural network can be greatly accelerated on GPUs[7],

and specifically they proved that the implementation of a neural network on a

GPU can be 20 times faster than a similar implementation on CPU. One year

after, another paper[8] showed how valuable is for machine learning to implement

convolutional neural networks on general purpose GPUs. After that, many re-

searchers are based on this paper and they implement their neural networks on

GPU. The most notable moment was in 2010, when Dan Ciresan and his group

proved that even deep neural networks can be trained on GPUs by using su-

pervised training, in a much faster scale. Their network outperformed all other

approaches that was based on MNIST dataset[9]. One year later, they extended

their approach to ConvNets[10].

Another popular dataset in the time being was ImageNet[11], a dataset that

was used for benchmarks in many categories like object classification and object

detection. Based on this dataset, a well-known competition is held, the ImageNet

Large Scale Visual Recognition Competition. At the beginning, all models that

was developed for this competition had an error rate that varied around 26%.

14

2.1 Convolutional Neural Networks

Then, in 2012 happened the most breathtaking moment in the modern history of

convolutional neural networks. A team from University of Toronto entered the

competition with a GPU based convolutional neural network model, that was

inspired by LeCun’s Lenet-5, and it achieved an error rate of 16.4%. The name

of this network was AlexNet, and it inspired many developers to implement their

own neural networks by using the ImageNet dataset and the ConvNets approach.

As a result, the error rate nowadays has dropped to a few percent, and the

overwhelming proportion of the models that are developed for computer vision

tasks are based on convolutional neural networks.

2.1.4 The Convolutional Layer

Figure 2.2: Structure of a CNN

A convolutional neural network is

consisted by multiple layers. These lay-

ers are divided into three different types;

the input layer, the output layer and as

well as multiple hidden layers. An ex-

ample of this hierarchy is shown in fig-

ure 2.2. An application can access only

to the input layer, in order to feed the

input data to the neural network, and

the output layer, in order to get the re-

sults of either the inference or training. These results, of course can be processed

furthermore by the developers in order to develop exactly the task that they wish.

In previous years, these hidden layers were limited only to the initial convo-

lutional and downsampling layers. Nowadays, the modern convolutional neural

networks are consisted by a variety of hidden layers, that each of them is im-

15

2.1 Convolutional Neural Networks

plemented to perform different tasks. Also, new types of layers are developed

in a high rate, so the ConvNet models perform accurately the wishes of their

developers. The following two subsections present the basic and the most essen-

tial building blocks that the structure of a convolutional neural network model is

consisted of.

First of all, each image is represented by three parameters; Height, Width

and the number of Channels. The number of channels is referred to the color

model that the neural network is trained for. In this thesis, the images that i am

going to use for the performance analysis are based on the basic RGB model -

Red, Green, Blue -, so the number of the channels are always three. Models that

are based on Grayscale, HSV, CMYK or other formats exist, but they are less

common.

As its name indicates itself, the main building block of this type of network is

the convolutional layers. Each convolutional layer has two main attributes; the

input tensor, which has the form of a multidimensional vector, and the weight

vectors. The shape of the vector is affected by the number of images, image’s

width and height and the number of channels. That means that the vector can be

2D, 3D or even 4D, depending on the task that the model was trained and is used

for. Equivalent behaviour is existed in weight vectors as well. However, the width

and the height are hyper-parameters, while the total number of the weight vectors

that are used for each channel may be more than one. The task of a convolutional

layer is always to extract features from an input image. These features are passed

on the next layers for further processing. Convolution preserves the relationship

between pixels by learning image features using sub-arrays of the input data. The

sets of data that take part in this mathematical operation are the input tensor

of the neuron and the weight vectors, which have smaller dimensions. During

this operation, each cell of the weight vector is convolved across with the height

16

2.1 Convolutional Neural Networks

and width of the input tensor, and the result of these convolution is producing a

2D map, which shows the features that are included in the input tensor. That is

why, the weight vectors are mentioned by many developers as filters. Because of

these filters, a convolution layer can perform operations like edge detection, blur

and sharpen.

In figure 2.3 there is example of three 4x4 input vectors of a neuron, and the

corresponding three 3x3 weight vectors. Each pair of input and weight vector

corresponds to one channel. In convolution, we overlay each weight vector on

the top left of the input vector and we perform element-wise multiplication. We

sum up the results of the multiplications, and then we sum up the outputs which

resulted by the previous procedure for each channel. We apply a potential bias

and we get one element of the 2x2 output vector. These procedure is repeated,

by moving the filter to the right with a certain stride value, which in my example

is one. Moving on, it hops down with the same stride value to the beginning of

the image and the procedure is repeated all over again until the whole image is

traversed and each element of the output vector is computed. By extending this

example, across the multiple neurons of a convolutional layer and by increasing

the number or the width and the height of the vectors, the execution of this type

of layer is a tough process for any processor unit.

2.1.5 Other Essential Building Blocks

Besides convolutional layers, a convolutional neural network model contains

more types of layers that are essential for their construction. In these section,

i will present three more layer types which are used by developers in multiple

building blocks. Certainly other types of layers are existed or custom layers

are implemented, but these are the mandatory elements that a ConvNet should

17

2.1 Convolutional Neural Networks

Figure 2.3: Convolution with 3 Channels

contain.

As shown in the previous section, a convolutional layer is a combination of

multiplications and sums between different types of arrays. Because of these

operations, a cell in the output array can have a negative value, as it seems in

figure. Since, the real world data would want our convolutional neural network

to learn, the negative values in the cells of the output array would lead to the

opposite effect. The solution to prevent this problem is to utilize a Rectified

Linear Unit(ReLU), after a convolutional layer. ReLU’s purpose is to introduce

non-linearity in a convolutional neural network by removing all negative values of

the output arrays that a convolutional layer produce. This layer applies the non-

saturating function f (x) = max (0, x). By using this function, all negative values

are setted to zero, where all positive values remain unchanged. Instead of ReLU, a

developer can utilize other non-linear functions such as tanh, f (x) = tanh (x), or

sigmoid, σ (x) = (1 + e−x)
−1

, however ReLU is preferred due to its performance

is way better than the other two, without significant penalty to generalization

18

2.1 Convolutional Neural Networks

accuracy.

One of the two initial layers that were used for the construction

Figure 2.4: Max and Average Pooling

of neocognitron was the downsampling

layer. Nowadays this layer is most

known as pooling layer, but the main

task remains unchanged. This kind of

layer is used periodically between suc-

cessive convolutional layers, to down-

sample an image, when the number of

parameters are way too many. Other

advantages of this type of layer are the

reduction of the main memory that the

neural network consumes but as well as the amount of the computations in the

network. Nevertheless, the most important is that these advantages can be

achieved without losing important information of the input image. There are

two ways of pooling that are used commonly in our days; max pooling and av-

erage pooling. Max pooling is preferred because it performs better in practice

compare to average pooling that was often used until recently. Pooling layers

partition the input image into a set of non-overlapping rectangles and for each

sub-region that was created, they output the average or the max of the elements

that belong to the sub-region. One example of how a pooling layer operates is

shown in figure 2.4 .

Until now, the input image has been converted into a suitable form, in order

to be transmitted and to be processed from neurons throughout the network. Al-

though in order to get the prediction results from the network, an additional layer

is commonly used at the end of the structure. The name of this layer is Softmax

and within this layer special functions and characteristics are implemented. The

19

2.2 Hardware Accelerated Data Processing

first of them is called flatten, and commonly it is also implemented in a separate

layer because of its particularity. This function collapses the spatial dimensions

of the input image into the channel dimension. For example if the shape of a

vector is 3D, flatten layer collapses it into an 1D array with the same size as

the initial. The second characteristic of Softmax layer is the fully-connectedness.

Because each neuron of this layer is connected to all the neurons of the previous

layer, it is possible to learn the non-linear combinations of the high-level features

that are represented by the outputs of the last connected layer, that in the most

cases is a convolutional layer. Finally, in order to classify an image in the output

labels, each neuron perform a Softmax technique. This softmax technique is a

function that computes the probability of each output neuron, and it shows the

probability distribution across the specified labels. The function that computes

the probability in each neuron is pr (xi) =
exi∑K
j=1 e

xi

.

2.2 Hardware Accelerated Data Processing

2.2.1 Hardware Acceleration through the years

Hardware acceleration is not a new concept for increasing the performance of

data processing, on the contrary it has a long history of many decades. Hardware

acceleration is used to perform functions more efficiently than is possible in a

software on a general-purpose CPU. Instead, it takes advantage of the different

processors that a system provide by executing some functions of a process more

efficiently in the separate units. Processor units in our days can be a graphic

processor unit(GPU), a digital signal processor(DSP) or even a processor that is

specialized for computer vision tasks.

20

2.2 Hardware Accelerated Data Processing

The first processor units could not execute any floating point operations. In

order to perform such operations, special processor units were designed that could

work as a coprocessor and expand the capabilities of the system, which in this case

was the ability of a system to perform floating point operations. Even though,

after a while these external units were integrated to the main central processors

units, the concept of a coprocessor would stuck around for many years to come.

When the first computers were available, they were equipped with one single-

core, stand-alone central processor unit. The limitations to its capabilities and

performance, specially in multimedia applications such as audio, images, video,

animation etc, led to the development of the very first coprocessor that was widely

used alongside with the CPU, and its name was digital signal processor (DSP).

The first stand-alone, complete DSPs were presented in 1980 with NEC µPD7720

and AT&T DSP1, and three years after Texas Instruments produced TMS32010,

which was proved an even bigger success. With these new three processors the

era of DSPs started, but the most important is that the coprocessors have become

an integral part of the structure of any system.

Within digital signal processor architecture, some of the most general princi-

ples of computer architecture were first established, that are used till now from

the most processor units. First of all, instruction sets that optimize operations

like multiply-accumulate was introduced with DSPs. These operations are used

extensively in all kinds of matrix operations like convolution for filtering, dot

product etc. These type of operations are the key process for the execution of

a ConvNet. Where a general purpose CPU would need multiple instructions in

order to execute a single MAC operation, DSPs would handle them with only

one instruction. For that reason, DSPs were commonly used to deploy the very

first artificial neural networks that were developed. Also, DSPs introduced some

fundamental instructions in order to increase the data parallelism within a single

21

2.2 Hardware Accelerated Data Processing

processor, like VLIW, SIMD and superscalar architecture. In order to efficiently

execute multiple data at the same time, it was needed to use special memory

architectures that could fetch multiple data or instructions at the same time. So,

various approaches were developed in order to achieve this task, like Harvard

Architecture.

At the end of the 90s, systems stopped integrating DSPs. This is due to

the fact that the newer central processor units started to integrate most of DSP

instructions, and they could perform most of the supported operations by them-

selves almost as efficient as DSPs could. Also, the appearance of dedicated GPUs

allowed to exploit techniques like SIMD in the best possible way. Special pro-

cessor units are developed nowadays in order to perform very specific operations,

like vision algorithms, deep learning functions etc.

2.2.2 Data Processing with Hardware Acceleration

The integration of some instructions that first used to DSPs into CPUs, was

a smart move way back in the beginning of the new century. By expanding the

capabilities of one processor unit, it has reduced the cost of one complete system

and also has made the programmers to feel complacent, because any program can

now run efficient into the new CPUs. But is it enough to expand the capabilities

of a CPU by simply adding new instructions? The answer to this question came

some years later, when the first multi-cores CPUs were introduced. By integrat-

ing multiple physical cores into the same silicon, the performance of a CPU is

greatly accelerated, as different processes can be executed at the same time. Such

CPUs are available by Intel and AMD. Their x86 architecture has based on clever

pipelining and vectorization and also in the development of cache memories for

fetching multiple data faster in order to run multiple tasks simultaneously and

22

2.2 Hardware Accelerated Data Processing

efficiently. Other architectures also exists for different purposes. The most typ-

ical is the reduced instruction set, also known as RISC, that ARM uses for the

development of their CPUs. These processors can be found primarily in mobile

devices where the low consumption of power is critical.

Nowadays, a system can possess a graphic processor unit that works alongside

with the CPU. The principle of the GPU is SIMD architecture, where multiple

data can be processed with one single instruction. Aside from the data parallelism

that this unit provides, GPUs can act also like a multi-core system, where many

tasks can run at the same time. So, GPUs offer a very big advantage, they

provide large-scale parallel data processing alongside with task parallelism. Due

to the fact that GPUs achieve a large-scale of data parallelism, they mentioned

as throughput oriented units. They sacrifice their latency by having slower clock

speed, in order to achieve higher throughput on every cycle clock. However, in

order to achieve such a high throughput, large sets of data must be fetched by

the memory on every cycle clock. Dedicated GPUs, have their memory sets that

it is called video RAM (VRAM), and the buses that connect the processor units

with VRAM have extremely large bandwidth. This feature provides an important

advantage over CPUs for deep learning inference tasks.

Aside from CPUs and GPUs, a system can contain more processing units in

order to perform specific tasks. The most typical examples are the aforementioned

vision processing unit and digital signal processor, tensor processor unit, neural

processor unit, physics processor unit etc. The main difference between the first

two units and those that are mentioned, is the flexibility that these units can

provide. CPUs and GPUs are often referred as general purpose units, due to

the fact that a variety of different applications can be run on them. Meanwhile,

most of the other units are designed to perform very specific functions, for very

specific tasks. However, the way that these tasks are executed are way more

23

2.3 Deep Learning Frameworks and Model Representations

efficient than if these functions were executed by general purpose units. These

units belong to a special category that it is named ASIC, Application-Specific

Integrated Circuits. The chips that are developed by this approach are highly

customized and they can deliver the best performance amongst all the other

approaches. On the other hand, the cost for the development of these chips is

very high, while their flexibility is poor.

The final approach in order to accelerate data processing in our days is FP-

GAs, acronym that refers to Field Programmable Gate Arrays. These boards

provide higher memory bandwidth than CPUs and as well as much lower power

consumption compared to the aforementioned general purpose processing units.

They have more flexibility than the circuits that are based on ASIC approach,

due to the fact that they are programmable, and they can be altered after their

development. They provide high efficiency, however they are a costly option. One

big disadvantage of this approach is that FPGAs may struggle in executing float-

ing point operations. Due to the fact that the models of ConvNets are trained in

single precision float point arithmetic (FP32), in this thesis i will present a way

of how we can overcome this side-effect.

2.3 Deep Learning Frameworks and Model Rep-

resentations

While a number of deep learning frameworks exist in our days, such as Caffe,

Tensorflow, ONNX , pyTorch, Keras, Deep Learning for Java, MXNet etc, most

of them are not supported by the acceleration tools. In this section, i am going

to introduce Caffe and Tensorflow, two frameworks that are the most well-known

and are usually used for the development of a neural network model. Finally,

24

2.3 Deep Learning Frameworks and Model Representations

i am going to represent ONNX, an open format for representing deep learning

models, that are trained from the above mentioned frameworks.

2.3.1 Caffe

Caffe framework [12] is an open source deep learning framework that was

originally created in 2013, by Yangqing Jia during his PhD at University of Cali-

fornia. Caffe supports a variant of layers of deep learning architectures, but most

of them are directed to tasks like image classification, object detection and image

segmentation. That’s why many convolutional neural networks are developed in

this framework, while the development of other types of artificial networks like

recurrent is not recommended. Caffe is written in C++, with a python interface.

According to Caffe’s description, this framework can process over sixty million

images per day with a single NVIDIA K40 GPU. That is about 1 millisecond per

image for inference, and with more recent versions of libraries as well as newer

hardware, this performance can be overcome. Moreover, models and optimization

are defined as plaintext schemas instead of code, where the type of layers and

their characteristics are defined. After a model is trained, two files are generated;

the .caffemodel file contains all the weights that are adjusted during the training

phase of the model, and the .prototxt file that contains the multi-layer structure

of the model.

Caffe is used for academic research projects, startup prototypes and even

large-scale industrial applications in vision, speech and multimedia. In Caffe’s

github[13] repository exists a custom distribution in order to improve perfor-

mance when running on CPU, and at the same time a different custom distribu-

tion improves the performance on Intel and AMD GPUs and CPUs by using an

OpenCL backend. Finally, an experimental Windows Setup is provided within

25

2.3 Deep Learning Frameworks and Model Representations

this repository. A distributed deep learning framework named CaffeOnSpark[14]

was created by Yahoo!, by integrating caffe on Apache Spark. Because of the

lack of development potential of recurrent neural networks, Facebook released in

2017 the successor of the Caffe framework; Caffe2[15]. Although, it was merged

into PyTorch[16] at the end of Match 2018.

Despite of the low use of Caffe for developing new ConvNet models in our days,

all hardware vendors support this framework from their corresponding accelera-

tion tools. Thus, the numerous pre-trained models that are designed during the

previous years, can be used by the accelerated applications in order to maximize

the inference performance.

2.3.2 Tensorflow

Created by Google for research and production, Tensorflow[17] is the most

well-known framework for developing applications that based on neural networks.

It was released in 2015 and it is an open-source library under the github repos-

itory. Tensorflow is used for numerical computation and large-scale machine

learning, it uses Python to provide a friendly front-end API application develop-

ment, meanwhile it is executing these kind of applications in high-performance

C++.

Developers can create with Tensorflow dataflow graphs. Each graph describes

a multi-layer structure of how data moves through the nodes. The data, that pass

through a node, are subject to mathematical operations that are described by the

type of the node such as pooling, convolutional, ReLU etc. These operations are

applied sequentially to the input data. While the nodes represent mathematical

operations, each edge of the graph represents a multidimensional array or ten-

sor. A big advantage of the use of graph is that it can run on multiple CPUs or

26

2.3 Deep Learning Frameworks and Model Representations

GPUs and as well as on mobile devices by executing the same code. In order to

achieve high performance, all mathematical operations are written in C++ bina-

ries, because C++ is more hardware friendly and accelerated operations can be

achieved. Python is used to fill the gap between C++ binaries and the developer,

and also high-level programming abstractions are provided by this programming

language to hook them together. After a model is trained under the Tensorflow

framework, it can be exported as a .pb graph, and then it can be deployed by

any inference application. Because many models are developed and trained by

using Tensorflow as its main framework, all manufactures designed their tools to

support this framework, without the need of conversion to other framework.

Some new approaches that are currently developed by Google, are Tensorflow

in Javascript[18] and Tensorflow Lite[19]. Tensorflow Javascript was created in

order to allow a developer to import a pre-trained model to a browser for inference.

This can be achieved by converting the existing model to Tensorflow.js format,

either from Keras or Tensorflow. Besides that, using Javascript and some high-

level layers API, a developer can also define and train neural network models

entirely in the browser. On the other hand, Tensorflow Lite was developed in

order to achieve low latency and a small binary size in machine learning inference

in mobile, embedded and IoT devices. The common characteristic of all these

mentioned devices is the low-power consumption, which is usually achieved by

using an CPU that comes from ARM. For that reason, the toolkit, provided by

ARM, fully supports Tensorflow Lite. In order to deploy a model in Tensorflow

Lite, the initial Tensorflow model must be converted from the file format .pb to

the the file format .tflite, which indicates the Lite version of the framework.

27

2.3 Deep Learning Frameworks and Model Representations

2.3.3 ONNX

A developer has a variety of frameworks available in order to develop the

right model for his desiring task. For example, one of key features in choosing

the right framework is whether a developer makes use of static graphs, that are

implementing in Tensorflow and Caffe, or dynamic graphs, that are implementing

in frameworks like Pytorch. In order to avoid the confusion of choosing the

right framework, in September 2017, Facebook and Microsoft introduced a new

representation format for deep learning models, that was called Open Neural

Network Exchange (ONNX)[20]. The main objective of this new representation

was to easily move between frameworks, by using as a middle step, this new

format. The idea behind this project was to allow a developer to train his new

model in a framework like Pytorch, and to deploy it in another framework like

Tensorflow. ONNX format is a serialized representation of the model in a protobuf

file. In order to achieve this chain of converting models from a specific format to

another, tools have been developed in order to export the model from the initial

framework to the ONNX representative format, and then to import it to the new

framework that the developer wish. By using the flexibility that ONNX offers, a

developer can choose the framework that it is best suited depending on the stage

of the development. Other frameworks are optimized for faster training, other

for inference in mobile devices and other for complicate network architectures.

ONNX offers the chance to use the same model in different situations.

The other goal of ONNX was to create a format that would allow hardware

vendors to improve the performance of artificial neural networks, by targeting

only one representation. With the large plethora of frameworks that are existed

and are often used by developers, it was an impossible task for hardware manu-

facturers to create tools that can target all frameworks in order to optimize the

28

2.3 Deep Learning Frameworks and Model Representations

execution of their layers. The solution was offered by the flexibility of ONNX, be-

cause the tools that are created can now target only one format, and so multiple

frameworks are accelerated simultaneously. Intel and Nvidia for example, does

not provide support in their acceleration tools for frameworks like PyTorch, but

by converting the model in ONNX, it is possible to take advantage of these tools

and achieve the maximum performance of deep learning inference applications.

29

Chapter 3

Acceleration tools

3.1 OpenVino by Intel

3.1.1 Introduction to OpenVino

In 2018, Intel announced the launch of OpenVino[21], or Open Visual Infer-

ence & Neural Network Optimization. The goal of this toolkit was the quick

development of computer vision algorithms for edge computing in cameras, IoT

devices etc. Most of the deep learning inference applications that OpenVino sup-

ports are based on Convolutional Neural Networks, and in order to maximize

their performance, the toolkit extends the workloads across Intel’s hardware.

This is feasible by exploiting the accelerators that the corresponding hardware

provides. In order to achieve such a task, within this toolkit Intel provides a

library of functions and pre optimized kernels, providing maximum performance

to inference applications. Moreover, it includes optimized calls for OpenCV, a

library of programming functions that are used for the development of computer

vision algorithms, and OpenVX, an API that was developed for cross platform

30

3.1 OpenVino by Intel

acceleration of computer vision applications. However, in this thesis the tasks

that will be developed will be based on the first approach, and not on OpenCV

or OpenVX.

According to a research from PassMark[22], the market share of the last gen-

erations of Intel CPUs, notably after the 6th generation, has ranged between

68.2% and 82.5%. This means that a large percentage of developers would have

as central processor unit, a chip that has been manufactured by Intel. Meanwhile,

due to the fact that CPUs are also general purpose processing units means that

they can be a universal option for computer vision tasks, like image classifica-

tion, object detection etc. OpenVino, takes advantage the flexibility of CPUs,

and provides to a wide range of developers the ability to accelerate the perfor-

mance of their inference application, by just integrating the optimized functions

that the toolkit contains. Meanwhile, the CPUs from 6th generation and after

contain powerful integrated graphic cards in their SoC, so by using OpenVino,

deep learning inference at the edge becomes an easier task.

In order to accelerate further the deep learning inference applications, spe-

cial integrated circuits were developed by Intel, that can be used alongside with

OpenVino. Arria 10 GX FPGAs deliver high performance deep learning infer-

ences at low power and latency. There are often used by autonomous vehicles,

robotics, IoT and data servers. Meanwhile, a very interesting integrated circuit

that is based on ASIC technology was developed by Intel. Intel’s Neural Compute

Stick[23] is a special vision processing unit (VPU) that enables visual intelligence

at a high compute per watt. It supports all typical computer vision tasks, but

also deep learning inferences and camera processing. It delivers high performance

of inference applications and can be used on systems that low power consumption

is a primary requirement.

31

3.1 OpenVino by Intel

3.1.2 Deploy an app using OpenVino

The deployment of a deep learning inference application that is based on

OpenVino toolkit is divided into two separate parts. The first part is the model

optimization, and it occurs before the deployment of the main application. The

exported files that are resulted by running the Model Optimizer, are used as

inputs in the inference application. So, there is a dependency relationship between

the two aforementioned procedures, due to the fact that the maximization of the

performance that OpenVino can achieve is feasible only by using the exported

files as the input model in the inference application. A complete workflow of

these procedures is shown in figure 3.1.

Figure 3.1: Workflow Procedure for OpenVino

Model Optimizer is a cross-platform command line tool, that converts a model

from the framework environment that is trained, to the deployment environment

of OpenVino. Furthermore, it performs static analysis, and as well as modifies a

model for optimal execution on end-point target devices. Model Optimizer con-

32

3.1 OpenVino by Intel

verts models that are trained in the most well-known frameworks, and specially

in Caffe, Tensorflow, ONNX, MXNet and Kaldi. Although, OpenVino does not

support every type of layer that can be implemented in a model by using the

aforementioned frameworks, it supports a large variety of them and almost every

pre-trained model can be converted to the optimized form. However, if a layer

is not supported by the toolkit yet, Intel provides the ability to pass the model

through the optimizer by implementing custom plugins for the unsupported layer.

By using the Model Optimizer in a model that was developed by one of the sup-

ported frameworks, two new files are produced that constitute the Intermediate

Representation of the model. This pair of files are

• .xml; which describes the structure and the layers of the network and,

• .bin; which contains the weights vectors and biases binary data.

The Intermediate Representation can be used by any program for load, read

and inferred with the help of the Inference Engine that Intel provides within the

libraries of OpenVino. Aside from the parser that model optimizer provides in

order to check if a model is valid, the conversion procedure discards all layers that

are completely useless during inference, but are useful during the training phase of

the model and they can’t removed from the beginning. One other ability that the

Model Optimizer offers is that it can produce the Intermediate Representation of

a model in a precision depending on the processor unit that we want to deploy the

application. If a CPU is selected then the precision must be FP32, while for Intel

Movidius Myriad VPU (Neural Compute Stick), the Intermediate Representation

must be in FP16 precision.

The second part of the process is the development of the deep learning infer-

ence application. In order to maximize the performance, an inference application

must implement the libraries that are provided through OpenVino and use the

33

3.1 OpenVino by Intel

Figure 3.2: Workflow of the application

optimized Intermediate Representation of the model, that occured by Model Op-

timizer. A workflow of the process and how the inference application can be built

is shown in figure 3.2. As shown in the figure, the workflow is divided into the

below steps;

• The first step of the process is the load of the plugins that are implemented

by OpenVino in order to manage the available devices for the inference

process, as well as the network model in its Intermediate Representation

form is read by the Inference Application.

• Then, the inference application must request the input’s and output’s layer

information for the model that will be referred. This step provides infor-

mation about the dimensions of the input and output and as well as the

number of channels, in order to feed the data in the right form and also to

check that the output layer provides the results that are expected from the

model specifications. In this step, some other information can be configured

for these two layers such as the precision of the input and output data, the

34

3.2 TensorRT by Nvidia

batch size, a pre-process for the colour format or the layer setup. In the

latter two options, the Layer Setup is usually NCHW, - Number of images

- Channels - Height-Width- and the pre-process converts an image from an

initial colour format like RGB to models supported format, which is BGR.

The default options for these choices are FP32 for precision, NCHW format

and no pre-process.

• In the third step, the executable neural network is created by providing the

converted model and the target processor unit in the appropriate function

that OpenVino provides. Furthermore, an inference request must be created

by using the executable neural network.

• Last but not least, the developer must prepare the input data, processed to

fit the specifications that the model has and he configured during the second

stage. Then the inference can start by calling the appropriate function and

the produced results can be further processed achieving the desired task.

3.2 TensorRT by Nvidia

3.2.1 Introduction to TensorRT

Over the last years, GPUs are always used in order to accelerate the execution

of deep learning inference applications. They exploit the data parallelism through

SIMD architecture, and they offer increased throughput compared to other gen-

eral purpose processor units. However, the utilization of a GPU in the execution

of a neural network is not optimal and there is room for big improvements in

order to take full advantage of the capabilities of these processor units. Nvidia

has based on this approach and introduced TensorRT[24; 25], a platform for

35

3.2 TensorRT by Nvidia

high-performance deep learning inference that provides the tools for an optimal

development of an application.

TensorRT includes a deep learning inference optimizer and runtime that de-

livers low-latency and high-throughput for deep learning inference applications.

According to NVIDIA, applications that are developed based on TensorRT for

inference, can perform almost 40 times faster than if these applications were im-

plemented on CPU-only platforms. The main reason behind this speedup is the

optimization of a neural network model by inserting it in a chain of procedures,

before the inference execution takes place. TensorRT is built in CUDA, which is

Nvidia’s parallel programming model for its GPUs. By exploiting the libraries,

development tools and technologies that CUDA offers for deep learning infer-

ence, the development of such high-performance tasks is feasible. TensorRT can

be used by any GPU that was produced by Nvidia and support CUDA.

Beside GPUs, Nvidia produces a family of boards for the development of

Artificial Intelligence Applications. This is the Jetson Family, and the most

known model is Jetson TX2[26]. Especially this board is recognized as the fastest

and the most power efficient embedded device for AI computing. This includes

the deep learning inference applications, where the performance in relation to

power consumption is almost optimal. These embedded platforms feature an

integrated Nvidia GPU, so the development of inference applications by using

TensorRT is feasible.

3.2.2 Deploy an app using TensorRT

Contrary to the two-part process that the developer should follow in Intel’s

toolkit, the development of a deep learning inference application in TensorRT is

much simpler and is limited only in the utilization of functions that this toolkit

36

3.2 TensorRT by Nvidia

offers. The workflow that a developer could follow in order to develop an appli-

cation using TensorRT is shown in the figure 3.3. Although the frameworks that

TensorRT supports are limited to Caffe, Tensorflow and ONNX, a large variety

of layers can be supported for the different structure of each model. However, if

a layer is not supported by TensorRT, the tool provides the ability to create the

unsupported layer and integrate it within the application in order to execute the

pre-trained model successfully.

Figure 3.3: Application Workflow with TensorRT

The aforementioned figure shows that an application that is based on Ten-

sorRT is also divided into stages, and most of them are similar to OpenVino

steps;

• The first stage of the process includes the loading of the libraries that

TensorRT implements for the inference process, and as well as the pre-

trained model that the developer wishes to accelerate its execution.

• In the next stage, the creation of the engine that will accelerate the exe-

cution of the convolutional neural network takes place. The first step is to

37

3.2 TensorRT by Nvidia

check whether the structure of the model is valid and fully-supported by

TensorRT or not. If it is valid, then the parser populates a network object

in TensorRT. In the second part of this stage, the optimized engine for the

target platform is created through a builder, using the network object in

TensorRT. The builder is a function, part of the TensorRT library, that

creates the engine and the developer can provide critical information about

the inference procedure. He can set the precision, the batch size of the

inference and the maximum GBs of workspace that the target platform can

use.

• After the building of the engine, the inference can be performed. As it hap-

pens with OpenVino, the first task of this stage is the preparation of the

data. Image resizing, converting the colour format to BGR or other pro-

cedures must take place in order to feed the data to the network matching

the specifications of the pre-trained model.

• After the preparation of the input data, the inference can be performed.

By using CUDA, the developer must create the buffers that feed the data

into the network and take the results from the output layer. These buffers

must be equal to the dimensions of the input and output layer, otherwise

an error might be happen. By executing the appropriate function providing

by TensorRT, the inference takes place and the results are exported by the

output buffer. Then, the results are at the developer’s discretion on how to

exploit them.

38

3.3 NN SDK by ARM

3.3 NN SDK by ARM

3.3.1 Introduction to Neural Network SDK

A large amount of mobile devices, embedded platforms and as well as FPGAs

have as a central processor unit, a processor that it is constructed by ARM. Due

to their reduced instruction set compare to the x86 architecture of Intel, these

CPUs are perfect for devices that low power consumption is an essential condition.

However, these processors nowadays are very powerful and can execute complex

functions and algorithms efficiently. That includes deep learning inference appli-

cations. For that reason, Arm introduced the Neural Network SDK[27; 28] (NN

SDK), a set of software and tools that enables machine learning workloads on the

power-efficient devices.

In order to exploit the capabilities of Arm’s NN SDK, a certain library must

be built into the target platform, the Arm’s Compute Library[29]. Compute

Library contains a comprehensive collection set of functions for the Cortex-A

family of CPUs and for the Mali family of GPUs. Both of processor units were

designed by Arm, so by using the low-level optimized functions that the Compute

Library provides, the acceleration of algorithms and applications is a feasible task.

Although, Arm NN SDK can be used on any system that contains a Cortex-A

CPU or a Mali GPU, it can also be used on Cortex-M microcontrollers but with

very limited capabilities. The latest version of this tool provides support for

Tensorflow and Tensorflow Lite, Caffe and ONNX pre-trained models. However,

the supported layers for these frameworks are fewer than the other two tools

mentioned, and a big disadvantage is the lack of implementation potential of

custom unsupported layers.

Figure 3.4 shows a simple scheme of how a system “communicates” by using

39

3.3 NN SDK by ARM

Figure 3.4: ARM Communication System

ARM NN SDK for deep learning inference application. An inference application,

that utilizes models from the aforementioned supported frameworks, implements

the NN SDK in order to enable the execution of inference tasks across Arm’s hard-

ware. The functions from NN SDK API, that enable the execution of a model,

utilize the optimized functions that Compute Library provides for the targeted

processor unit. Thus, the execution and at the same time the acceleration of the

inference application using processor units from Arm is feasible.

3.3.2 Deploy an app using Arm’s Development Kit

The integration of NN SDK into an inference application is a simple and easy

task. The main stages of the inference application are very similar to the previous

two toolkits, so a workflow is needless to be given; In the first stage, the integra-

tion of all libraries that the application needs from the SDK is mandatory. Also,

a developer must import the model that has file extension of one aforementioned

40

3.3 NN SDK by ARM

supported frameworks. It is recommended that these files must be in a binary

format, because they are a lot smaller than the text format that NN SDK sup-

ports. The debugging of the model is impossible due to the fact that binary files

are not readable, but as long as a developer use pre-trained models, he usually

do not need this ability.

In the second stage, a parser is used in order to check if the model is valid and

full-supported by the tool. If this procedure succeeds, then the network is created

for the inference stage. A major difference between this tool and the previous two,

is that the developer cannot make any changes in the network as it could happen

in the previous two occasions. So, the batch size and any other parameters must

be strictly specified into the network structure before the creation of the imported

binary file.

The inference stage begins by taking the binding points of the input and

output layer, for feeding and getting the results respectively. Then the optimizer

is called which takes into account the two parameters, the target platform, CPU

or GPU, and the network that was built during the previous stage. Also, it is

very important to carefully prepare the input that will be fed into the network, as

many faults can occur, especially where none changes can be performed during the

network build phase. Finally, the inference can be performed by the application,

and the results are exported for further processing.

41

3.4 Edge AI by Xilinx

3.4 Edge AI by Xilinx

3.4.1 Introduction to Edge AI

In subsection 2.2.2 , i described that FPGAs are always used for accelerating

data processing by maintaining at the same time low power consumption. Due to

the fact that these platforms are programmable, they can customized to perform

deep learning inference applications applications. In order to facilitate the de-

velopment of these applications, Xilinx introduced Edge AI[30], a platform that

provides all the comprehensive tools that can enable and accelerate the execution

of ConvNet models. Figure 3.6 shows all the components consisting by Edge AI,

and the stages that are integrated inside the inference application. This approach

can be used on boards that are based on Zynq Ultrascale+, and more specifically

for ZCU102, ZCU104 and Ultra96.

In order to enable the deep learning inference on the aforementioned boards,

Xilinx has designed a special Deep-learning Processing unit, figure 3.5, in order

to support a wide range of edge AI applications with low latency in their exe-

cution. Inside the DPU, two engines are implemented in order to accelerate the

execution of operations. The first one is the Convolution Engine, that performs

convolution calculations, and the second one is the Misc Engine which perform

calculations such average or max pooling, ReLU. Furthermore, DPU integrates a

high performance scheduler, that performs smart instruction merging or splitting

and dynamically adjusts the FIFO depth in order to fit the network requirements.

This DPU can execute the most common layer types and operators and by using

hardware acceleration the capabilities of the underlying Xilinx FPGA architec-

ture are exploited. Also, the data are fetched by RAM with High Speed Data

tubes, in order to decrease the overall inference time. Finally, the CPU and DPU

42

3.4 Edge AI by Xilinx

are used simultaneously in order to execute different parts of the application.

Figure 3.5: DPU’s architecture [31]

3.4.2 Deploy an app using DNNDK

The execution of a pre-trained model in the integrated DPU requires a two-

step modification. None of these steps can be avoided, as the tools are essential

to check the validity of the pre-trained model, and as well for the conversion to

a special file format for their execution by the DPU. Moreover, a tensor-based

APIs are provided in order to enable easy inference application development. A

detailed description is given in this subsection for the hierarchical structure of

procedures that must be followed for the deployment of a deep learning inference

application.

It is clear that FPGAs struggles to perform floating point executions. All

neural networks are trained either to FP32, most common occasion, or to FP16,

so the exported pre-trained models have the same precision. Deep Neural Network

Development Kit[32] is a set of tools that helps the smooth execution of a pre-

trained model in Xilinx FPGAs. The first tool from the chain of procedures that

the model must undergo is Decent, or Deep Compression Tool. Decent is a tool

43

3.4 Edge AI by Xilinx

Figure 3.6: DNNDK deployment

that converts a pre-trained model with floating point precision into a model with

INT8 precision. This modification is critical in order to achieve the maximum

performance on AI inference applications. Even though by compressing the initial

model the computing complexity is reduced a lot, the impact of this procedure to

the accuracy is minimal. Thus, the new fixed-point network model requires less

bandwidth, providing faster speed and higher power efficiency.

The second tool is DNNC, or Deep Neural Network Compiler. As its name

indicates, DNNC is a compiler responsible for parsing a model that has a Sup-

ported Framework format and generates an Intermediate Representation. The

Intermediate Representation is going to be used in the following inference ap-

plication. DNNC is also responsible to perform sophisticated optimizations on

the model such as layer fusion, instruction scheduling and reuses on-chip mem-

ory for a more efficient execution by the DPU. Contrary to what happens in the

44

3.4 Edge AI by Xilinx

aforementioned parsers of the other toolkits, DNNC fails when a non-supported

layer is implemented into the model, but also indicates the layers that can’t be

processed by DPU due to floating point operations, like Softmax Layers. The lat-

ter layers must be implemented and executed on the CPU instead of DPU, but

these parts cannot be accelerated by this procedure. The model or the parts that

are successfully compiled by DNNC are converted to special .elf files, with high-

efficient instruction set and data flow, that are read by the special DPU kernel

for optimal execution. So the exported .elf file or files, depending on whether the

whole model was compiled or parts of it by DNNC, are imported by the inference

application to perform the wished task.

The development of a deep learning inference application looks pretty much

with the above mentioned cases. The procedure is divided into the typical three

stages of input data pre-processing in order to match the specifications of the

pre-trained models, the execution of the model for the inference and the post-

processing of the exported data. The utilization of N2Cube, a lightweight set

of tensor-based APIs, is necessary to achieve the second stage of the procedure.

This library is part of DNNDK core library, and implements the functionality of

DPU loader and encapsulates the system call to invoke the DPU drive. So task

scheduling, monitoring, profiling and resources management is achieved for the

DPU by using N2Cube in the source code of the application. Finally the Perfor-

mance profiler enables the monitoring in-depth of the efficiency and utilization of

the developed AI inference application.

45

Chapter 4

Benchmark Description

4.1 ConvNet Tasks and Models Description

4.1.1 Image Classification

The first application of the performance analysis is based on Image Classifi-

cation. Image classification is referred to a process that can classify an image to

a class of predefined objects, according to its visual content and features. Even

though, image classification seems quite trivial as a concept, for the develop-

ment of computer vision applications in our days still remains a very challenging

task. For that reason, an annual competition has held for evaluating algorithms

for image classification, the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)[33]. ILSVRC has also an another motivation, to measure the progress

of computer vision models. Many models that are used for this task came from

implementations that took part in this competition in the previous years. The

task, that is developed for this thesis, is based on a typical ImageNet challenge,

where the goal is to classify a variety of images into 1000 categories.

46

4.1 ConvNet Tasks and Models Description

• AlexNet

Alexnet[34] competed in ILSVRC in 2012, and its participation was a game

changer for the future of computer vision models. It achieved a top-5 error of

15.3%, which was almost 11% percentage points lower than the runner up model

achieved. From that year, the models that achieved the lowest top-5 error are

based on convolutional neural networks. AlexNet is mainly consisted by 11x11,

5x5 and 3x3 convolutional layers, and ReLU activations that are attached after

every convolution. It also consists multiple max pooling layers and a single fully-

connected layer. 91.23% of total 726.79M multiply-accumulate operations are

happened in the convolutional layers. The total size of the pre-trained model

is 232.57MB, it contains 60.97M parameters and can achieve 57% accuracy on

ImageNet dataset. The image resolution that it is used by this model for this

task is 227x227 pixels.

• SqueezeNet1.1

By using almost 50x fewer parameters than AlexNet, and in particular 1.24M,

Squeezenet1.1 is a small ConvNet model that can achieve the same accuracy of

57% in ImageNet dataset. This version of Squeezenet is an improved successor

to the initial model that it was presented by the paper[35] in 2016. The total size

of the pre-trained model is only 4.72MB and the image resolution is the same as

AlexNet, 227x227 px. Meanwhile, the total multiply-accumulate operations for

this model are 387.75M, almost the half that needed for AlexNet to process a

single image.

47

4.1 ConvNet Tasks and Models Description

• GoogleNet/Inception

GoogleNet or Inception-V1[36] was the winner of ILSVRC competition in

2014. As its name indicates, it was developed by Google and achieved a top-

5 error rate of 6.67%. This was a tremendous improvement compared to the

AlexNet model that was competed two years earlier. This was the first time

that a ConvNet model could challenge the human level performance in image

classification. GoogleNet has an accuracy of 68.7%, and the images that are

used by this model have resolution 224x224 px. GoogleNet performs convolution

with three different sized filters, 1x1 , 3x3 and 5x5. Additionally max pooling is

used in order to downsample the image. GoogleNet has reduced the number of

parameters by a factor of 8.71x compared to AlexNet, while the pre-trained model

is 51.05MB. Furthermore, the total number of multiply-accumulate operations are

1.59G, a number that far exceeds the already mentioned models.

Inspired by Inception-V1, three newer versions have been developed, in order

to improve the already existing model. In this thesis, i will also use for the

performance analysis the final version; Inception-V4[37] which was introduced

in 2016. Inception-V4 achieved a top-5 error rate of 3.8%, an improvement of

almost 3% from the initial GoogleNet model, meanwhile the accuracy is reaching

at 83.3% in ImageNet dataset. The resolution of the images that are used by this

model for this task is 299x299 px. However, in order to achieve the mentioned

improvements, Inception-V4 performs 12.27G MAC operations, meanwhile the

number of parameters is 42.62M. The size of the pre-trained model is 162.87MB.

• VGGNet

48

4.1 ConvNet Tasks and Models Description

The runner-up of the ILSVR competition in 2014 in classification task was

VGGNet[38], losing only by the first version of Inception model. VGGNet was

developed by the Visual Geometry Group from University of Oxford. That year,

was the first time that two models obtained error rate under 10%. Despite of

not winning that year’s competition, VGGNet is the most prefered choice in the

community for extracting features from images. The reason behind this preference

is that VGGNet models consist a limited number of convolutional layers with 3x3

filters, and generally its structure is much simpler than other known models. The

most known versions of VGGNet are VGG-16, which took part in competition,

and VGG-19. Both of them will be used for the performance evaluation.

VGG-16 is consisted by 16 layers that are mainly divided into convolutional

layers, max pooling layers and fully connected layers. VGG-16 process images

with resolution 224x224 px, reaching an accuracy of 70.5% on ImagetNet dataset

and 8.8% in top-5 error rate. Despite of its simple structure and the limited

number of layers that was used for its construction, VGG-16 performs 15.47G

multiply-accumulate operations and at the same time the number of parameters

is reached 138.36M. Almost 99,21% of MAC operations take place in convolutional

layers. These characteristics of this model can be a bit challenging to handle even

from the accelerated applications that were developed for this thesis. Meanwhile

the size of the pretrained model is 527.79 MB.

The other most known model by the VGGNet family is VGG-19. VGG-19 has

similar characteristics with VGG-16, but as the name indicates, it is consisted

by 19 layers. The very first model that it was created by the VG group, was

consisted by only 11 layers. In order to improve its accuracy, they started to add

more convolutional layers. When they developed VGG-19, they observed that this

model was starting converging with VGG-16, and there was not improvement in

accuracy. So they stopped adding more layers. This pre-trained model is slightly

49

4.1 ConvNet Tasks and Models Description

bigger than its predecessor, 548.05MB. Also, VGG-19 performs 19.63G MAC

operations, and has 143.67M parameters. That means, the applications that are

based on this pre-trained model, have slightly lower performance than apps that

based on VGG-16.

• ResNet

ResNet, or Residual Neural Network[39], was the model that won ILSVR

competition in 2015. It achieved an extremely low top-5 error rate of 3.57% in

image classification and it was the first model that managed to win the human

level performance in ImageNet dataset. The model that took place in competition

was consisted by 152 layers, but there are more variants of this network. The

other known ResNet models are those with 50 and 101 layers. In this thesis, all

three of them will be used for the performance analysis.

All of the three models accept images that have resolution 224x224 px. The

model with the fewer number of layers is ResNet-50. This pre-trained model

has size of 97.72 MB, while the number of parameters is 25.56M. The accuracy

that can be achieved by this model in ImageNet dataset is about 75.5%, which

is much better than AlexNet and Squeezenet, and slightly better than VGG-16.

ResNet-50 performs only 3.87G multiply-accumulate operations, a number that

is a significant smaller than the previous networks or from the other models of

this family.

The other most known model from this family is ResNet-101. ResNet-101 has

very similar structure to ResNet-50, but with the difference, as its name indicates,

in the number of layers, which is 101. The size of the pre-trained model that i am

going to use for the analysis is 170.39MB. Meanwhile the number of parameters is

50

4.1 ConvNet Tasks and Models Description

44.55M, almost 20 million more than ResNet-50. The number of MAC operations

is 7.59G, and over 90% of them takes place at convolutional layers, as it happens

with the almost every model that based on convolutional neural networks. The

accuracy that can be achieved by this model in Imagenet dataset is about 76.4%,

which is a bad trade off compare to the lower performance that this model has

due to the high number of MAC operations and parameters.

The final model and at the same time the most known by this family of

networks is ResNet-152. This model consists 152 layers, and it can achieve the

best accuracy compared to the other two models from this family, which is slightly

over than 77%. The number of its parameters is 60.19M, while the total number of

multiply-accumulate operations is 11.3G. The total size of the pre-trained ResNet-

152 model is 230.26MB. As it seems, ResNet-152 has the poorest performance

among the models of the Resnet family. Despite of the poor performance that the

ResNet models provide compared to other models, many developers are willing

to make that “sacrifice”, in order to take advantage of the very good accuracy

that these models provide for the image classification task.

• DenseNet

DenseNet or Densely Connected Convolutional Networks[40] was first men-

tioned in Computer Vision and Pattern Recognition conference in 2017, where

the authors won the best paper award. Despite of not taking part in ILSVR

competition, DenseNet networks are commonly used by many developers. These

types of networks are so deep, as it happens with the ResNet models, but they

require fewer parameters. In this thesis, three different types of DenseNet mod-

els will be used which are DenseNet-121, DenseNet-161 and DenseNet-169. The

51

4.1 ConvNet Tasks and Models Description

input dimensions of the images are 224x224 pixels.

DenseNet-121 consists 121 layers, and it is the narrowest of all the three other

networks. It is mainly consisted by 1x1 or 3x3 convolutions alongside with ReLU

activation and Batch Normalization. DenseNet-121 requires 7.98M parameters

and the total number of multiply-accumulate operations is 3.08G. Despite of the

fact that this model has more layers than the corresponding narrowest ResNet

model, its performance seems to be better, while the accuracy for ImageNet

dataset is 75%, slightly worse than ResNet-50. The total size of the pre-trained

model is 30.81MB.

The model of this family that can achieve the best accuracy, which is 77.8%,

is DenseNet-161. In order to achieve the improvement of 2.8% compared to

DenseNet-121, forty more layers was need, while the number of parameters has

been increased by a factor of 3.6x. The total size of the pre-trained model is

110.32MB. In addition, because of the more parameters and as well as of the

forty more layers, 8.52G MAC operations is needed in order to classify an image.

This is a significant trade-off in order to achieve the mentioned improvement.

The final model of the DenseNet family is DenseNet-169. DenseNet-169 has

similar structure with the corresponding models of this family. Despite of the

eight more layers than the latter model, DenseNet-169 has 14.15M parameters

and requires 3.72G multiply-accumulate operations. These two features has as

a result the accuracy to drop from 77.8% that the DenseNet-161 has to 76.4%,

but the performance of the model is significantly improved. The most important

about DenseNet-169 is that it can achieve a similar accuracy as ResNet-101, but

the MAC operations that are required and as well as the number of parameters

have been greatly reduced. Despite the large number of layers, DenseNet mod-

els are usually preferred, because they provide such a good accuracy in image

classification task and at the same time their performance is better compared to

52

4.1 ConvNet Tasks and Models Description

ResNet models.

4.1.2 Object Detection

The second task that was developed for the performance analysis is Object

Detection. In computer vision and image processing, object detection refers to

the process that deals with detecting instances of semantic objects. These objects

belong to certain classes, that were defined at the training phase of the model and

they also depended by the training dataset. Alongside with image classification,

Object Detection is one of the most well-known and challenging tasks for the

developers, while a large number of applications and models are developed for

this specific task. In this thesis, we will try two different approaches, Single Shot

Detection or SSD, and You Only Look Once or YOLO.

• Single Shot Detection

Single Shot Detection was first proposed by the paper[41] in 2015. By us-

ing SSD, it takes one single shot to detect multiple objects within an image.

There are two models that was developed by using this approach. SSD300, which

uses images with resolution 300x300 pixels, and SSD512, which uses images with

resolution 512x512. Both of them will be used for the Object Detection task.

Both models, were trained under VOC0712 dataset[42] (Visual Object Classes),

which came from an annual challenge for object detection that was ended in 2012.

In this dataset there are 20 different classes like person, bird, cat, dog, aeroplane,

bicycle, television, sofa etc. The main goal of SSD models is to classify the ob-

jects of an image in one of those 20 categories. For that reason, object detection

53

4.1 ConvNet Tasks and Models Description

and image classification have a lot in common. SSD300 and SSD512 are based

on VGG-16 in order to extract the feature maps, a model that was mentioned

and used for image classification. So, in order to extract these features, convo-

lutions with 3x3 filters are used. Moreover, after the extraction of the features,

SSD continues to use 3x3 convolution filters for each cell to make predictions.

SSD300 requires over 31.37G multiply-accumulate operations to perform object

detection task, while an overwhelming amount of these operations are required

by convolutions. Also SSD300 has more than 26.28M parameters and the size of

the pre-trained model is 100.28MB. The accuracy in object detection is measured

as the mean average precision (mAP), which is 75.8.

SSD512 is another type of Single Shot Detection, which take bigger images as

an input, compared to SSD300. As a result, this model has an improved mean

average precision by 2.7 units. Due to this model makes more predictions in order

to classify the objects in the right class, it requires over 90.21G MAC operations

in order to perform its task. So the trade-off between an improved mAP by

taking bigger pictures, is the low performance compared to SSD300. Meanwhile,

the parameters of SSD512 is slightly over 27.19M, and the size of the pre-trained

model is 103.73MB.

• You Only Look Once

The second approach that i am going to use for the object detection task, is

YOLO[43]. Most of the models that are developed for object detection, don’t

look at the complete image, but they look only to parts where there is a high

probability of containing one or more objects. On the other hand, YOLO divides

the image into smaller regions, and predicts the bounding boxes and probabilities

54

4.1 ConvNet Tasks and Models Description

for each region. The bounding boxes are weighted with the probabilities, and

when a class probability is above a predefined threshold value, the bounding box

is selected and used to locate the object within the image. In this thesis, i will use

Yolo V3[44], which is the the newest version of this approach and it was trained

under the COCO dataset.

COCO dataset[45] is very similar to VOC0712, but it contains eighty different

classes. COCO dataset is mainly used for object detection and as well as for

image segmentation. Some of the images that provides have 4 or 5 objects, so an

accurate mAP can be provided by running images from this dataset. The images,

that were taken by this dataset, have been resized to 416x416 pixels. Meanwhile,

in this version of YOLO some improvements have been made in order to increase

the accuracy compared to the previous two versions.

The mean average precision of YOLO v3 in COCO dataset, is 55.3. This

number may seem smaller than the corresponding mAP that was presented in

SSD, but the use of a different dataset is a major factor. A typical example

is that SSD300 and SSD512 have mAP 43.1 and 48.5, when these models are

trained using COCO dataset. Not much is known for YoloV3, only that its

structure includes 106 layers of fully convolutional underlying architecture.

4.1.3 Image Segmentation

The third and final task, that was developed for the performance analysis of

the acceleration tools is based on image segmentation. Image segmentation is a

process of partitioning a digital image into multiple segments. The goal of this

analysis, is to simplify the representation of an image and convert it to something

more meaningful and easier to analyze. In contrast to image classification, the

applications that are developed for image segmentation have as a goal to get a

55

4.1 ConvNet Tasks and Models Description

pixel-level understanding, which means that each pixel of the image has to be

classified in one class, accordingly to the classes of the dataset that was used to

train the model. Image segmentation is mainly used for medical imaging and

traffic system controls. Due to the pixel analysis that it is required by this task,

image segmentation is one of the most challenging tasks in computer vision, and

even the hardware that it is used nowadays has difficulties executing applications

that based on this task. For the analysis, two different kind of models are used,

which are voc-fcn8 and Dilation. Each model has been trained to a completely

different dataset, as will be shown below.

• VOC-fcn8

Voc-fcn8 is a model that was first described in the paper [46], by Jonathan

Long in 2015. As its name indicates, this model was trained under VOC0712

dataset, which classes were quoted in the section where i described SSD. Voc-

fcn8 has two other variants, voc-fcn16 and voc-fcn32, but according to authors

fcn8 achieves the best results in the specific dataset. For that reason, fcn8 pre-

trained model will be used in order to perform the image segmentation task.

FCN models have its root in VGG-16 model, as it was used to initialize all

the models from this family. Aside from all the characteristics that was inherited

by VGG-16, fcn8 uses deconvolution in order to upsample and get the output

size larger. This must be done in order to get the original size of the picture in

order to calculate the pixelwise output and classify an object to its class. Despite

of the fact that deconvolution performs the opposite task in from convolution,

it requires only 0.0032% multiply-accumulate operations of the total 181.55G,

that it is required of the whole model. Of course, a tremendous portion of these

56

4.1 ConvNet Tasks and Models Description

operations are required by convolution layers, and specifically the 99.68%. The

size of the pre-trained model is 513.04MB and it has 134.49M parameters. The

mean accuracy of classifying an object to the right class for fcn8 in VOC0712

dataset is 75.9%.

• Dilation

The second model, that is used for the image segmentation task, is Dilation.

Dilation was introduced by the paper [47] in 2016. Unlike from all the previous

models that was mentioned, the dataset that this version of Dilation uses is

named Cityscapes. Cityscape Dataset[48] is mainly used for image segmentation,

and contains high pixel-level annotations of thousand frames that came from real

recorded sequences in street scenes from over 50 different cities. This dataset

is often used for applications like traffic system controls or tasks that focus on

semantic understanding of urban street scenes, and contains 30 different classes.

For this task, Dilation uses images with resolution 1396x1396, so it is un-

doubtedly the most challenging model that this thesis uses. Dilation model is

based on VGG-16, but the last two pooling layers are removed, and they are re-

placed by multiple ”dilated” convolutions, a custom convolution type. The filters

that are used for the convolution are 3x3 and 1x1. There are not formal results

for the accuracy that this model can achieve by using the CityScape dataset, but

benchmarks results [49] mention that Dilation can outperform fcn8 in PASCAL

VOC dataset. The number of multiply-accumulate operations that this model

requires is 2.65T, an extremely big number compared to all previous models,

while over 99% of these operations take place on convolution. The total number

of parameters, that this model has, is 134.46M, while the size of the pre-trained

57

4.2 Technical Description

model is 512.6 MB.

4.2 Technical Description

The models that are used for the performance landscape in the following

chapter, were implemented in either Caffe or Tensorflow frameworks. ONNX was

not used due to the fact that all of the aforementioned models were available

in repository hostings like GitHub, so it was not needed any conversion from

an unsupported framework to ONNX. Each tool that was used for the inference

acceleration was implemented in two different platforms, except Edge AI from

Xilinx, which was implemented only on ZCU102. All the platforms that were

used for the performance analysis are listed on table 4.1, and as well as which

toolkit was implemented in each platform and which processor is targeted.

System Processor Unit Toolkit Target
PC CPU OpenVino Intel I7-6700
PC VPU OpenVino Neural Compute Stick 2

TegraTX2 GPU TensorRT Nvidia Pascal GPU
PC GPU TensorRT GTX1060 6GB

System On Chip CPU ARMNN SDK ARM Cortex A-53
System On Chip CPU ARMNN SDK ARM Cortex A-57

ZCU102 DPU DNNDK Xilinx DPU

Table 4.1: List of Processor Units

The benchmarks were resulted by the execution of the neural network models

that were described in the previous sub-section. However, the execution of some

pre-trained models was not possible, due to the fact that some layers were not

supported by the tools. The models that were excluded for each toolkit and the

reason that this happened is described in the following list;

• A core element of the models that created for the Image Segmentation task

is the utilization of Deconvolution layer, in order to restore the image in its

58

4.2 Technical Description

original dimensions for depiction. Unfortunately, this type of layer is not

supported by Arm’s toolkit yet, so both of the models that are used for

Image Segmentation were excluded for this task.

• Another layer that it is not supported by both Arm NN SDK and Xilinx

DNNDK is Normalization. Models that are trained by using this type

of layer, like SSD300 and SSD500 are also excluded by the corresponding

platforms. Furthermore, DNNC does not support the Crop layer, which is

implemented in the FCN8 model in Image Segmentation.

• Yolov3 is a special model that originally was created by using DarkNet

framework for its training. Although the conversion from this framework to

Caffe or Tensorflow is feasible, some layers are not supported by the parsers

of the toolkits. Thus, the utilization of custom plugins is mandatory in

order to use this model for the Object Detection task. The toolkits from

Nvidia and Intel provide the ability to create custom plugins, on the other

hand the other two do not provide this flexibility.

• As it was described in sub-section 3.4.2 , the quantization of a model in INT8

precision is an essential procedure in order to use ZCU102 for inference.

However, Decent tool does not support the structure of every model. In

addition, the conversion of input data from the initial range [0,255] into

the range [0,1] that is needed for DenseNet models and Googlenet-v4 is a

questionable procedure for Xilinx.

• Last but not least, the quantization process requires a lot of resources for

models like Dilation, so the conversion of this models in INT8 was not

possible at the moment.

One of the main features of each platform is the precision of the models that

is required in order to execute the networks successfully. CPUs from Intel and

59

4.2 Technical Description

Arm use models in FP32 precision, while the Intel’s Neural Compute Stick 2

requires models in FP16 precision. The graphic processor unit from Nvidia can

support both precisions, but as the company advises the use of FP16 precision will

negatively affect the performance of inference execution, so this case is avoided.

On the other hand, Tegra TX2 fully supports both precisions, so it was possible to

accelerate the performance on both occasions. Finally, it was already mentioned

that the execution of a neural network in Zynq Ultrascale+ evaluation boards

requires the conversion of the model into INT8 precision, due to the special DPU

that designed.

All images that were used for the inference, were selected randomly from the

corresponding datasets that were used to train the models. Also, all images were

already resized in the appropriate dimensions that each model requires before

they are used as inputs. Another option is to implement OpenCV functions into

the application that provide easy modifications in both the image dimensions and

the range of input pixels from the image, like the ranges [0,255] and [0,1] that are

used by the aforementioned models.

By running each model the following parameters are exported; the total time

that the application needs for inference execution and as well as the number of

images that the platform can process each second by implementing the corre-

sponding toolkit. The inference time was exported by providing in the inference

application different batch sizes of images each time. So, the behaviour of the

processor unit could be described for multiple data processing. Furthermore, the

throughput is calculated for each model in order to show how many images can

be inferred each second for each platform. This parameter can be exported by

converting inference time into throughput. This metric can show in which batch

size each platform can process the most images per second, and as well as which

is the upper limit in performance of processor units.

60

Chapter 5

Performance Analysis

5.1 Multi-thread in DPU

Before i present the Benchmark Results, it is necessary to show an interesting

feature that Xilinx provides for their Deep-Learning Processor Unit. During the

inference stage, a developer can set the number of threads that can work in

parallel to further accelerate the execution of the task.

Multithreading in widely used in order to provide concurrent execution of

multiple tasks. This can happen either by providing multiple processes or by

splitting the data of a process in order to execute them concurrently in batches

rather than in a sequential order. The latter approach can be used in the inference

application for the DPU, where the developer can set the number of images that

can be processed concurrently in order to reduce the inference time, by creating

more threads.

In figure 5.1, i provide the speed-up factor that can be achieved by using mul-

tithreading. In the specific example, i illustrate by using as a basis for comparison

the single thread, the acceleration that can be achieved by creating two, four and

61

5.1 Multi-thread in DPU

eight threads. So, the optimal number of threads can be found where the over-

all best performance can be achieved. The speed-up factor for each number of

thread is calculated as the average speed-ups obtained by all pre-trained models.

The inference times for each pre-trained model, which were used to export the

speed-up factors for the aforementioned total numbers of threads, are shown in

the tables A.1, A.2, A.3, A.4 in Appendix.

Figure 5.1: Speed-up of Multithreading in DPU

As it seems only when the app has only one image to process, it is better a

single thread to be implemented. This happens because the overhead for creating

more threads slows down the execution. In all other occasions multithreading is

recommended to accelerate the process. By extending the previous approach,

when the total number of threads coincides with the total number of images,

then the optimal speed up can be achieved. Overall though, in almost every case

the best speed-up can be achieved by creating four threads, as it seems in the

aforementioned figure. The creation of eight threads or more does not accelerate

further the execution of the task, unless when the total images are eight where the

62

5.2 Benchmarks Results

speed-up factor is slightly better. Beyond this situation, it worsens slightly the

execution time of the inference task compared to the utilization of four threads

in all other batch sizes.

For the performance analysis in the next section, the execution times which

will be presented along with the other processor units in their respective plat-

forms, come from the implementation of four threads within the inference appli-

cation deployed in ZCU102.

5.2 Benchmarks Results

5.2.1 Inference Time and Throughput for pre-trained mod-

els

As it was described in section 4.2, inference time was measured by running

multiple times the deep learning inference applications, which were created for

each platform by using the corresponding toolkit to enable and accelerate the

performance of the process. In this section i will discuss about the performance

in Image Classification task for three different occasions; when batch size equals

to 1 in table 5.1, to 16 in table 5.2, and to 128 in table 5.3. Other instances

were run for different batch sizes and the results are imprinted in Appendix A.

Furthermore, the performance of Object Detection task is shown in table 5.4,

while the table 5.5 shows the results for Image Segmentation.

All the aforementioned tables present the time that a platform with its proces-

sor unit needs to perform the three tasks by using a variety of pre-trained models.

In 4.1, i explain some very essential features for each model that was imported

into the tasks. Two key characteristics are the number of the parameters of a

63

5.2 Benchmarks Results

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 18.315 24.899 2.777 11.427 7.402 141 195 -

InceptionV1 16.107 23.646 3.706 9.833 5.866 213.5 375 11
InceptionV4 94.694 141.978 22.335 83.924 41.413 1170 2078.5 -

SqueezeNet1.1 3.125 10.207 2.146 3.375 2.323 77.5 106 -
DenseNet121 26.998 50.197 13.372 29.736 20.207 339 667 -
DenseNet161 66.532 139.383 22.579 66.029 45.458 773 1455.5 -
DenseNet169 32.083 64.803 17.65 36.927 26.653 425 821 -

ResNet50 33.81 56.976 5.772 21.506 11.955 807.5 1008.5 21.5
ResNet101 63.186 102.302 9.619 38.2 20.919 1441 1890.5 35
ResNet152 92.968 152.952 13.982 55.153 30.18 2028.5 2662.5 48

VGG16 142.578 177.892 10.828 65.881 38.026 1029.5 1595.5 54.5
VGG19 145.241 215.961 12.704 79.324 45.655 1344 2026.5 62.5

Table 5.1: Inference Time(ms) with Batch Size = 1

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 126.438 356.977 8.92 61.263 38.876 808.5 1577 -

InceptionV1 169.422 335.938 19.62 122.849 68.715 - - 53
InceptionV4 1091.498 2214.96 147.014 1007.323 492.6 - - -

SqueezeNet1.1 51.428 129.56 6.71 39.562 23.774 - - -
DenseNet121 573.375 761.404 67.166 391.211 265.155 5301.5 11197.5 -
DenseNet161 1279.151 2180.98 156.526 940.54 638.501 11605 23419.5 -
DenseNet169 646.134 995.164 85.45 474.205 355.512 6787 13770.5 -

ResNet50 326.91 869.416 42.071 275.136 145.897 4913 9341 113.5
ResNet101 655.317 1594.85 76.581 502.514 265.505 8686.5 17337.5 193.5
ResNet152 946.292 2389.41 104.043 735.167 385.735 12574 24980 270

VGG16 1323.49 2795.25 105.554 825.091 452.953 10390.5 19100 343.5
VGG19 1629.35 3403.53 134.693 1039.403 572.843 12410 21620 389

Table 5.2: Inference Time(ms) with Batch Size = 16

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 589.305 2842.91 53.475 411.777 239.832 6096.5 12329 -

InceptionV1 1248.01 2670.26 132.038 954.438 532.395 - - 412.5
InceptionV4 8358.763 17678.8 953.909 7930.395 3877.763 - - -

SqueezeNet1.1 408.659 1020.75 40.178 310.393 183.963 - - -
DenseNet121 4602.264 6071.11 436.177 2923.055 2110.083 47842.5 96441 -
DenseNet161 10086.689 17420.9 1039.479 7448.316 5092.563 101125.5 OutOfMemory -
DenseNet169 5338.663 7935.63 555.271 3755.263 2656.821 59102.5 118648.5 -

ResNet50 2407.34 6941.904 271.85 2120.495 1132.359 39122 75424.5 853.5
ResNet101 4823.6 12753.5 478.864 3910.52 2072.454 67986 136776.5 1484
ResNet152 7321.046 19085.8 744.937 5724.997 3032.654 97528.5 OutOfMemory 2087

VGG16 9760.43 22329.2 798.636 6912.875 3784.857 OutOfMemory OutOfMemory 2553.5
VGG19 12626.8 27192.9 982.612 8551.72 4727.338 OutOfMemory OutOfMemory 2814.5

Table 5.3: Inference Time(ms) with Batch Size = 128

pre-trained model and the total number of multiply-accumulate operations that a

processor unit must perform for a successful execution of the process. The larger

these numbers are for a pre-trained model, the more time a processor unit will

need to perform its task. This claim can be confirmed by the mentioned tables. In

addition, of course the increase in the number of images that are imported in the

application and processed during the inference stage, leads to an increase in the

64

5.2 Benchmarks Results

execution time. In some cases, the inference time is doubled each time the num-

ber of images is doubled, while the above claim is not true for specific models like

AlexNet and ResNet, and for processor units like the GPU. This behaviour can

mainly be observed from the throughput tables below for each targeted processor

unit, which each value of this metric indicates how many pictures are inferred by

the application each second.

The results from inference time and throughput will be analysed in detail in

the following section, where they will be used to indicate how well a processor

unit can perform the specific tasks. Generally though, the number of images

that can be processed each second increases when batch size equals to 16 or 128,

compared to applications that have batch size equals to 1. Some platforms have

an upper limit on how many images can be processed each second, but this limit

depends on the pre-trained model that is used. Meanwhile, some models with

many parameters and many MAC operations, such as VGG16 and VGG19, have

a slight improvement.

Same behaviour is also observed in the other two tasks that were developed.

Especially in Image Segmentation, where occasions with batch sizes greater than

one are run, the improvement in throughput is minimal and inference time is

roughly doubled, every time the number of images is doubled in each test.

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16)
SSD300 184.396 610.547 21.119 118.17 117.644
SSD512 559.325 1383.74 43.394 279.074 278.846

YOLOV3 204.253 596.23 36.854 277 266.603

Table 5.4: Inference Time(ms) for Object Detection

65

5.2 Benchmarks Results

Batch Size = 1 I7 6700 GTX1060 6GB TX2(FP32) TX2(FP16)
FCN8 1117.67 91.292 609.016 633.601

Dilation 14377.2 1289.647 10738.42 10534.961
Batch Size = 2

FCN8 2284.22 178.436 1402.453 1314.215
Dilation 28421.8 2605.868 20887.409 20660.691

Batch Size = 4
FCN8 4093.35 349.991 2855.754 2832.96

Dilation 58071.5 OutOfMemory OutOfMemory OutOfMemory
Batch Size = 8

FCN8 7791.61 660.071 5584.956 5791.882
Dilation 206525 OutOfMemory OutOfMemory OutOfMemory

Table 5.5: Inference Time(ms) for Image Segmentation

5.2.2 Platforms’ Results and Discussion

• Intel

Even though I7-6700 is a general purpose processor unit, it delivers high

performance in execution of deep learning inference applications. The inference

times, that it can achieve when batch size equals to 1, are very low and prove that

OpenVino can exploit every asset of a CPU. As batch size is increasing, the CPU

has a distributed behaviour, due to the pre-trained models. Models like AlexNet

and InceptionV1 can be accelerated significantly as batch size is increasing. On

the other hand for DenseNet models and Squeezenet the best performance can

be achieved when the inference task has to process one image at a time. For all

other models, a significant improvement can be achieved when batch size equals

to 16, but beyond this value there is not a big progress in performance.

Furthermore, it turned out that Image Segmentation is a very challenging

task, as in both models the processor unit can’t process more than one image

66

5.2 Benchmarks Results

each second. But both Dilation and FCN8 are based on VGG16, and thus an

improvement is observed by increasing the batch size. However, when batch size

is equal to or greater than 4, a throughput greater than 1 is achieved in FCN8.

This sample shows that an increased batch size can often accelerate the procedure

in a CPU. Finally, an object detection task can be performed with the SSD300,

SSD512 and YoloV3 pre-trained models in just a few hundred milliseconds.

Figure 5.2: Throughput for I7-6700

Intel Movidius Neural Compute Stick 2 delivers high performance in deep

learning inference applications by minimizing the power consumption, as it just

67

5.2 Benchmarks Results

Figure 5.3: Throughput for Neural Compute Stick 2

plugs in a USB3 port of any system with Windows, Ubuntu and CentOS. A

big advantage of the Visual Processor Unit, that is contained by the embedded

system, is that supports pre-trained models in FP16 precision contrary to Intel’s

CPU. The NCS2 can’t operate any tasks without OpenVino, so the utilization of

the toolkit is necessary.

When batch size is equal to one, NCS2 achieves very similar results compared

to I7-6700, as it is only few milliseconds slower that the CPU. However, by using

batches of 16 or 128 images, the execution does not significantly accelerate fur-

68

5.2 Benchmarks Results

ther. This can be seen from the throughput graph for NCS2. Only pre-trained

models with few MAC operations and parameters can be accelerated, and the

improvement is limited to a few more images per second. That means, that the

inference task for NCS2 is almost optimal from the beginning. The inference time

for the image classification task for the AlexNet model when batch size equals to

one is 24,899 ms and the respective time when batch size equals to 16 is 356,977

ms. Other example is ResNet50 where the corresponding metrics are 56,976 ms

and 869,416. Both of these examples have as common that the inference time,

when batch size equals to 16, is approximately sixteen times greater than when

batch size equals one. This example enhances the approach that the inference

execution is almost optimal from processing just one image at a time.

A disadvantage of NCS2 is that it could not run the Image Segmentation

task, as both of the pre-trained models could not run in the embedded system. In

addition, NCS2 cannot perform that well the object detection task, as it happened

with Image Classification when batch size equals to 1. This can be seen from

table 5.4, where NCS2 needs almost three times more time in order to perform

successfully a object detection task for each model.

• Nvidia

Graphic processor units can deliver high throughput when they have to process

multiple data at the same time. Thus, an application that is based on processing

multiple data can be accelerated to a great extend by using the specific processor

unit. This claim can be seen in the throughput graph for the GTX1060 6GB,

where regardless of the pre-trained model the GPU can process more images per

second as the number of batch size increases. In tables where inference times

69

5.2 Benchmarks Results

are presented, in the initial test where batch size equals to 1, graphic processor

unit can perform image classification task for each pre-trained model in just a

few milliseconds. But as the batch size increases, the gap, between this GPU and

the other SoC, that are presented in this analysis, keeps increasing and the GPU

can accelerate many times the execution of an inference application compared to

the other processor units. However, the side-effect of this acceleration is the high

power consumption that a GPU has.

Figure 5.4: Throughput for GTX1060 6GB

On the other hand, the cost of a such high throughput is the big memory con-

70

5.2 Benchmarks Results

sumption for tasks like Image Segmentation. By running the Image Segmentation

task for the Dilation model, the process was killed due to the system did not pro-

vide enough memory for the execution. This has to do with the Video RAM that

a graphic processor unit contains, and not with the simple, RAM which a system

provides. Also, the aforementioned model along with FCN8 cannot be further

accelerated by inferring more images at the same, as the throughput does not

increase. However, object detection task is greatly accelerated compared with

the other processor units, as it can perform any pre-trained model in few dozens

milliseconds.

Contrary to the GPU, Tegra TX2 can perform deep learning inference appli-

cation with pre-trained model in both floating point precisions, FP32 and FP16.

So, by using FP16 pre-trained models, applications that are developed using Ten-

sorRT can have way better performance without losing the quality of the exported

data compared to FP32. Tegra TX2 does not have a Video RAM, due to the fact

it possesses an integrated graphic card and not a dedicated. However, it provides

8GB RAM that the GPU shares with CPU. So, it is natural that Tegra TX2

cannot provide the same throughput as a GPU can. Furthermore, it has a signif-

icantly lower power consumption, as it is recognized as the most power efficient

embedded AI computing device.

All the features that were described in the above paragraph can be confirmed

from the given tables for inference time and throughput. Processing one image

at a time is slower than a GPU as it was expected, but faster than Intel’s CPU

due to the use of the integrated GPU. Throughput can be increased by providing

more data for simultaneous processing, but this acceleration depends on the pre-

trained model. For models like AlexNet or SqueezeNet, which have few MAC

operations and parameters, throughput can be greatly accelerated. On the other

hand, for models like VGG16 and DensenNet161 throughput does not increase

71

5.2 Benchmarks Results

Figure 5.5: Throughput for FP32 in TegraTX2

significantly. Furthermore, the performance of the pre-trained models, that were

used for the object detection task, is few times slower for the corresponding

models in GPU. Similar behaviour is imprinted in the models that were used for

Image Segmentation. Also, by increasing the batch size, the performance does

not improve, because as it seems from the table 5.5 as images are doubled, the

inference time is also doubled.

In Tegra TX2, i can show how important it is to use pre-trained models in

FP16 precision compared to FP32 precision. By using FP16 precision, accuracy

72

5.2 Benchmarks Results

Figure 5.6: Throughput for FP16 in TegraTX2

may be slightly reduced, but the advantages to memory consumption and execu-

tion time are huge. In tables that inference times are imprinted, it is proved that

the use of a FP16 pre-trained model can cut almost in half the inference time,

which is a tremendous improvement. However, this approach is working only for

pre-trained models that are used for a image classification task. In tasks like ob-

ject detection, table 5.4, and image segmentation, table 5.5, where the pre-trained

models have more complex structures, the utilization of FP16 or FP32 precision

does not play any significant role, as the inference times of the corresponding

73

5.2 Benchmarks Results

procedures converge.

• Arm

Figure 5.7: Throughput for Cortex A-53

With a reduced instruction set, compared to the x86 architecture that Intel

use for their CPUs, the deployment of a deep learning inference application on

Arm’s CPUs is quite challenging. Arm NN SDK enables this feature and achieves

74

5.2 Benchmarks Results

a performance that is imprinted by the inference time tables. The performance

of both Cortex A-53 and Cortex A-57 is poor compared to other processor units,

but both of these processors are mainly used for devices that low power consump-

tion is essential. Thus, the inference times that can be achieved by NN SDK is

reasonable to be high. Furthermore, by increasing the batch size from 16 to 128

in both processors, the application needs four times more time to perform its

task, presenting a linear behaviour after a specific batch size.

Figure 5.8: Throughput for Cortex A-57

The above approach can be also confirmed by the graphs that imprint through-

75

5.2 Benchmarks Results

put, where the increase in batch size does not improve the mentioned metric.

On the other hand, throughput is significantly improved when using batch sizes

greater than one. This improvement for the ARM Cortex A-57 can be almost

up to three times for models like AlexNet and ResNet, and two times for VGG

pre-trained models. For Cortex-A53, these factors are slightly reduced compared

to the previous CPU. This happens because Cortex-A53 was designed in order

to provide maximum power efficiency, while Cortex-A57 was designed to provide

maximum compute performance. Often they are used as a pair in a big.LITTLE

configuration. That explains how the latter model can perform a deep learning

inference application twice as good as Cortex-A53 when then batch size is equal

to or greater than 16.

• Xilinx

Even though a limited number of the available pre-trained models could suc-

cessfully run by using DNNDK on ZCU102, an analysis can be provided for the

performance. A major difference between this toolkit and the others is the con-

version of the pre-trained model by using a quantization procedure from floating

point into INT8. As it is described by Xilinx, this process sacrifices the accuracy

to a very small degree that a model provides, in order to achieve maximum per-

formance. Thus, a direct comparison between the DPU and the other processor

units cannot be made, but only in accordance with the preceding procedure.

The ability of creating manually the threads that will be executed from DPU

was described in section 5.1. In this point i will refer only to an application

that utilize four threads, but an easy correlation can be made for the other

occasions. FPGAs can provide high throughput with high compute power similar

76

5.2 Benchmarks Results

Figure 5.9: Throughput for ZCU102

to GPUs. In addition, they are way more power-efficient. The first characteristic

is imprinted in throughput and inference time tables. The conversion of a model

into INT8 precision and the execution of it in DPU can achieve a low inference

time of dozens milliseconds. A significant improvement is observed when the

application processes batches of 16 images, and this is imprinted better by making

a comparison between the throughput in graph 5.9. By increasing the batch size

from 1 to 16, throughput scales by a factor slightly over than 3. However, by

further increasing the batch size, throughput does not improve at all, and the

77

5.2 Benchmarks Results

inference time has a more linear behaviour.

78

Chapter 6

Conclusions

This thesis discusses the latest achievements in acceleration of inference ap-

plications that use CNN models, which are developed for resource constrained

platforms. First, the background of CNNs and the means for hardware acceler-

ated data processing are presented. Furthermore, the acceleration toolkits are

presented by the most well-known hardware vendors; Intel, Nvidia, Arm and

Xilinx, and how these can be integrated within an application. In addition, a

description of the supported frameworks is given along with the most preferred

pre-trained models. Last but not least, real-world results are obtained by run-

ning a variety of pre-trained models for multiple tasks. These results are used

for the performance landscape of both the given toolkits, as well as the different

processor units and platforms that integrate the aforementioned tools. In order

to accelerate the performance of inference applications, the exploitation of the

capabilities that a processor unit offers through the toolkits is not sufficient. The

pre-trained models have to go through an optimization process before their uti-

lization by the applications. The optimizers check the validity of the pre-trained

models and perform configurations in order to convert them into an optimized

form for the toolkits and processor units.

79

Appendix A

Inference Results

InferenceTime(ms) 1 2 4 8 16 32 64 128
VGG16 52 102 200 399 794.5 1583.5 3166.5 6333.5
VGG19 60 116.5 231.5 459 916 1829 3651 7306.6

ResNet50 21 39 76.5 148 295 588 1175 2347.5
ResNet101 33.5 65 127.5 252.5 503.5 1005.5 2007 4014
ResNet152 47 90.5 180 356 713.5 1416 2836 5669

InceptionV1 10.5 20 39.5 78.5 150.5 300.5 601 1194

Table A.1: Inference Time with Num of Threads = 1

InferenceTime(ms) 1 2 4 8 16 32 64 128
VGG16 53 58,5 114 223 441,5 879 1749,5 3493.5
VGG19 61 67 128.5 254 502 1000.5 2001.5 3999

ResNet50 20.5 21.5 41 78.5 155.5 308 613.5 1224
ResNet101 34 35.5 68 132.5 266 523 1044 2087
ResNet152 47.5 49 94.5 186 370 737.5 1467 2936.5

InceptionV1 10.5 11 20.5 40 78.5 155 308 613

Table A.2: Inference Time with Num of Threads = 2

80

InferenceTime(ms) 1 2 4 8 16 32 64 128
VGG16 54.5 60.5 99 187.5 343.5 645 1257.5 2553.5
VGG19 62.5 68.5 107.5 206 389 737.5 1398 2814.5

ResNet50 21.5 23 31 58 113.5 217 424.5 853.5
ResNet101 35 37 51.5 99.5 193.5 388 740.5 1484
ResNet152 48 50 72 137.5 270 542 1060 2087

InceptionV1 11 11 14 29.5 53 108 203 412.5

Table A.3: Inference Time with Num of Threads = 4

InferenceTime(ms) 1 2 4 8 16 32 64 128
VGG16 59 64 99.5 178 350 671.5 1295.5 2576
VGG19 66 70 115.5 199.5 388.5 757 1464 2865

ResNet50 24.5 26 35 60.5 116.5 224 445.5 906.5
ResNet101 37 40 54.5 101 195 387.5 766 1530
ResNet152 50 55.5 75.5 141.5 272.5 537.5 1086.5 2158

InceptionV1 11.5 12.5 16.5 29 52 111 219.5 434.5

Table A.4: Inference Time with Num of Threads = 8

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 46.352 46.804 3.323 14.432 9.565 190 364.5 -

InceptionV1 23.761 44.366 5.011 17.662 10.37 - - 11
InceptionV4 166.256 279.653 27.727 137.994 68.197 - - -

SqueezeNet1.1 6.325 18.391 2.35 5.962 3.839 - - -
DenseNet121 61.555 97.694 16.541 54.013 37.027 673.5 1293 -
DenseNet161 144.509 274.934 31.829 127.752 86.521 1460.1 2794.5 -
DenseNet169 66.26 126.989 22.045 67.726 48.527 808 1606.5 -

ResNet50 57.74 111.586 8.187 37.71 20.64 1073.5 1564 23
ResNet101 109.155 202.011 14.615 70.619 38.287 1923 2868.5 37
ResNet152 162.05 301.716 22.411 103.598 55.718 2700.5 4036.5 50

VGG16 273.431 353.048 18.056 129.46 65.357 1420.5 2599 60.5
VGG19 313.24 428.488 21.445 154.974 80.502 1743.5 3085.5 68.5

Table A.5: Inference Time with Batch Size = 2

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 55.679 90.916 3.9 20.689 12.834 270.5 529.5 -

InceptionV1 47.154 86.424 7.481 32.97 18.769 - - 14
InceptionV4 293.518 555.558 44.703 262.625 130.128 - - -

SqueezeNet1.1 11.956 34.47 3.267 10.654 6.76 - - -
DenseNet121 124.794 192.632 22.794 101.401 69.722 1298.5 2603.5 -
DenseNet161 292.713 547.973 50.422 245.371 163.897 2857 5607 -
DenseNet169 148.282 250.689 31.417 124.107 89.56 1651.5 3233 -

ResNet50 115.996 219.59 12.794 73.07 39.022 1621 2672.5 31
ResNet101 195.894 401.19 22.966 134.953 71.589 2862 4921.5 51.5
ResNet152 281.361 600.415 33.443 196.542 104.316 4078 7012.5 72

VGG16 431.44 702.173 31.425 228.165 119.667 2592.5 4756 99
VGG19 524.828 852.969 36.239 281.031 148.356 3532 5558 107.5

Table A.6: Inference Time with Batch Size = 4

81

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 83.105 180.525 5.988 36.995 23.04 441 878 -

InceptionV1 84.212 170.116 11.553 62.855 35.704 - - 29.5
InceptionV4 574.724 1108.93 80.427 513.245 251.397 - - -

SqueezeNet1.1 25.581 66.606 4.125 20.323 12.435 - - -
DenseNet121 271.3 381.785 36.02 196.681 134.998 2659 5441 -
DenseNet161 610.545 1090.98 85.455 475.673 320.366 5712 11501 -
DenseNet169 301.174 498.589 47.568 239.123 171.494 3327 6715.5 -

ResNet50 176.869 436.923 22.988 142.589 76.051 2541 4762.5 58
ResNet101 342.566 799.323 41.901 260.385 137.073 4657.5 9069.5 99.5
ResNet152 639.2 1196.08 61.508 379.767 198.977 6733.5 12984 137.5

VGG16 732.122 1399.67 54.108 415.463 234.934 5076.5 9292.5 187.5
VGG19 892.211 1703.92 69.797 527.602 292.732 6586.5 10813.5 206

Table A.7: Inference Time with Batch Size = 8

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 192.353 710.561 15.576 108.739 64.871 1532.5 3032 -

InceptionV1 331.861 670.594 31.634 241.666 135.35 - - 108
InceptionV4 2134.261 4423.78 273.569 1996.351 975.686 - - -

SqueezeNet1.1 113.185 257.705 11.652 78.245 46.337 - - -
DenseNet121 1173.398 1520.31 119.707 776.241 526.636 11228 22780.5 -
DenseNet161 2483.62 4357.54 289.131 1890.146 1274.374 23493 48106.5 -
DenseNet169 1338.134 1985.15 159.594 943.903 666.03 13926 28094 -

ResNet50 618.774 1737.267 77.99 539.929 287.174 9572 18469.5 217
ResNet101 1239.278 3186.88 129.903 992.275 521.747 16827 33834 388
ResNet152 1861.96 4776.46 182.558 1452.57 763.207 24272.5 49043 542

VGG16 2491.54 5584.07 202.768 1699.193 892.454 20534.5 OutOfMemory 645
VGG19 3162.66 6801.52 254.879 2114.848 1136.036 23121 OutOfMemory 737.5

Table A.8: Inference Time with Batch Size = 32

InferenceTime(ms) I7 6700 Neural Stick 2 GTX1060 6GB TX2(FP32) TX2(FP16) Cortex A57 Cortex A53 ZCU102
Alexnet 337.74 1415.87 29.226 216.866 120.905 3051.5 5846 -

InceptionV1 627.873 1336.84 69.317 480.218 267.303 - - 203
InceptionV4 4246.603 8842.5 505.978 3972.599 1944.661 - - -

SqueezeNet1.1 209.764 512.399 20.78 155.592 92.173 - - -
DenseNet121 2312.027 3037.5 229.768 1465.088 1054.037 22805 44836 -
DenseNet161 4966.137 8709.34 545.66 3763.22 2535.478 49798 97312.5 -
DenseNet169 2657.288 3969.91 296.797 1882.349 1330.254 28478 57285 -

ResNet50 1228.037 3471.639 147.684 1070.364 567.887 19214.5 37529.5 424.5
ResNet101 2471.588 6369.17 240.279 1970.356 1039.603 33489 67944.5 740.5
ResNet152 3634.223 9548.59 366.854 2885.364 1516.289 48076.5 97690 1060

VGG16 4926.2 11166.2 394.147 3472.175 1825.857 OutOfMemory OutOfMemory 1257.5
VGG19 6346.03 13597.5 493.119 4282.261 2302.197 OutOfMemory OutOfMemory 1398

Table A.9: Inference Time with Batch Size = 64

82

References

[1] D.H. Hubel, T.N. Wiesel, “Receptive fields of single neurones in the cat’s

striate cortex,” The Journal of physiology, vol. 148, pp. 574–591, 1959. 12

[2] “The first digital image.” www.nist.gov/node/774341. 13

[3] K. Fukushima, “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position,” Biological

Cybernetics, vol. 4, pp. 193–202, 1980. 13

[4] J.Weng,N.Ahuja,TS.Huang, “Learning recognition and segmentation of 3-d

objects from 2-d images,” pp. 121–128, 1993. 14

[5] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998. 14

[6] Y. LeCun,C. Cortes,C.J.C. Burges, “The mnist dataset of handwritten dig-

its.” yann.lecun.com/exdb/mnist/. 14

[7] KS Oh,K. Jung, “Gpu implementation of neural networks,” Pattern Recog-

nition, vol. 37, pp. 1311–1314, 2004. 14

[8] D. Steinkraus, P. Simard, I. Buck, “Using gpus for machine learning algo-

rithms.” Eighth International Conference on Document Analysis and Recog-

nition (ICDAR’05), 2005. 14

83

REFERENCES

[9] D. Ciresan;U. Meier,L. Gambardella,J. Schmidhuber, “Deep big simple neu-

ral nets for handwritten digit recognition.” arXiv preprint arXiv:1003.0358,

2010. 14

[10] D. Ciresan,U. Meier,J. Masci,L. Gambardella,J. Schmidhuber, “Flexible,

high performance convolutional neural networks for image classification,”

pp. 1237–1242, 2011. 14

[11] A. Krizhevsky, I. Sutskever, G.E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Neural Information Processing Sys-

tems, vol. 25, 2012. 14

[12] Caffe, “caffe.berkeleyvision.org.” 25

[13] Caffe. github.com/BVLC/caffe. 25

[14] G. Motroc, “Yahoo enters artificial intelligence race with caffeon-

spark.” https://jaxenter.com/yahoo-enters-artificial-intelligence-race-with-

caffeonspark-124324.html. 26

[15] “Caffe2 open source brings cross platform machine learning tools

to developers.” https://caffe2.ai/blog/2017/04/18/caffe2-open-source-

announcement.html. 26

[16] PyTorch. github.com/pytorch/pytorch. 26

[17] Tensorflow. github.com/tensorflow/tensorflow. 26

[18] “Introducing tensorflow.js: Machine learning in javascript.”

https://medium.com/tensorflow/introducing-tensorflow-js-machine-

learning-in-javascript-bf3eab376db. 27

[19] Tensorflow Lite. tensorflow.org/lite/guide. 27

84

REFERENCES

[20] ONNX. github.com/onnx/onnx. 28

[21] OpenVino. software.intel.com/en-us/openvino-toolkit. 30

[22] PassMark Software. https://www.cpubenchmark.net/high end cpus.html.

31

[23] Neural Compute Stick 2. software.intel.com/en-us/neural-compute-stick. 31

[24] Nvidia TensorRT. developer.nvidia.com/tensorrt. 35

[25] P. Wojciechowski, P. Mukherjee,S. Sharma , “How to speed up deep learning

inference using tensorrt.” https://devblogs.nvidia.com/speed-up-inference-

tensorrt/. 35

[26] Jetson TX2. developer.nvidia.com/embedded/jetson-tx2. 36

[27] ARMNN. github.com/ARM-software/armnn. 39

[28] ARMNN. developer.arm.com/ip-products/processors/machine-

learning/arm-nn. 39

[29] Compute Library. developer.arm.com/ip-products/processors/machine-

learning/compute-library. 39

[30] EdgeAI. xilinx.com/products/design-tools/ai-inference/edge-ai-

platform.html. 42

[31] Xilinx, “ug1327-dnndk-user-guide,” vol. 1.5, p. 33, 2019. 43

[32] DNNDK. https://www.xilinx.com/products/design-tools/ai-inference/edge-

ai-platform.html. 43

[33] “Imagenet large scale visual recognition challenge.” image-

net.org/challenges/LSVRC/. 46

85

REFERENCES

[34] AlexNet. en.wikipedia.org/wiki/AlexNet. 47

[35] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡0.5mb

model size.” arXiv preprint arXiv:1602.07360, 2016. 47

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, A. Rabinovich, “Going deeper with convolutions.” arXiv

preprint arXiv:1409.4842, 2014. 48

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, “Inception-v4, inception-resnet

and the impact of residual connections on learning.” arXiv preprint

arXiv:1602.07261, 2016. 48

[38] K. Simonyan, A. Zisserman, “Very deep convolution networks for large-scale

image recognition.” arXiv preprint arXiv:1409.1556, 2014. 49

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep residual learn-

ing for image recognition.” arXiv preprint arXiv:1512.03385, 2015. 50

[40] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Wein-

berger, “Densely connected convolutional networks.” arXiv preprint

arXiv:1608.06993, 2016. 51

[41] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, Alexander C. Berg, “Ssd: Single shot multibox de-

tector.” arXiv preprint arXiv:1512.02325, 2015. 53

[42] VOC2012. host.robots.ox.ac.uk/pascal/VOC/voc2012/. 53

[43] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You only look

once:unified, real-time object detection.” arXiv preprint arXiv:1506.02640,

2015. 54

86

REFERENCES

[44] YoloV3. https://pjreddie.com/darknet/yolo/. 55

[45] COCO Dataset. http://cocodataset.org. 55

[46] Jonathan Long, Evan Shelhamer, Trevor Darrell, “Fully convolutional net-

works for semantic segmentation.” IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. 56

[47] Fisher Yu, Vladlen Koltun, “Multi-scale context aggregation by dilated con-

volutions.” arXiv preprint arXiv:1511.07122, 2016. 57

[48] “Cityscapes.” https://www.cityscapes-dataset.com/. 57

[49] Sik-Ho Tsang, “Review: Dilatednet — dilated convolution (semantic seg-

mentation).” https://towardsdatascience.com/review-dilated-convolution-

semantic-segmentation-9d5a5bd768f5. 57

[50] “Artificial neural network.” en.wikipedia.org/wiki/Artificial neural net-

work.

[51] “Convolutional neural network.” en.wikipedia.org/wiki/Convolutional neu-

ral network.

[52] R. Demush, “A brief history of computer vision (and convolutional

neural networks).” hackernoon.com/a-brief-history-of-computer-vision-and-

convolutional-neural-networks-8fe8aacc79f3.

[53] S. Saha, “A comprehensive guide to convolutional neural networks.”

towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way-3bd2b1164a53.

[54] V. Zhou, “An introduction to convolutional neural networks.”

victorzhou.com/blog/intro-to-cnns-part-1.

87

REFERENCES

[55] R. Prabhu, “Understanding of convolutional neural network.”

medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-

network-cnn-deep-learning-99760835f148.

[56] “Digital signal processor.” en.wikipedia.org/wiki/Digital signal processor.

[57] A. Shimoni, “A gentle introduction to hardware accelerated data process-

ing.” hackernoon.com/a-gentle-introduction-to-hardware-accelerated-data-

processing-81ac79c2105.

[58] Caffe. en.wikipedia.org/wiki/Caffe (software).

[59] ONNX. ai.facebook.com/tools/onnx/.

[60] ONNX. en.wikipedia.org/wiki/Open Neural Network Exchange.

[61] Intel OpenVino Guide. docs.openvinotoolkit.org/latest/ docs IE DG Intro-

duction.html.

[62] B. Raj, “A simple guide to the versions of the inception network.”

https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-

inception-network-7fc52b863202.

[63] S.-H. Tsang, “Review: Vggnet — 1st runner-up (image classification), win-

ner (localization) in ilsvrc 2014.” https://medium.com/coinmonks/paper-

review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-

d02355543a11.

[64] Sik-Ho Tsang, “Review: Resnet — winner of ilsvrc 2015 (image classifi-

cation, localization, detection).” https://towardsdatascience.com/review-

resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-

e39402bfa5d8.

88

REFERENCES

[65] Sik-Ho Tsang, “Review: Ssd — single shot detector (object de-

tection).” https://towardsdatascience.com/review-ssd-single-shot-detector-

object-detection-851a94607d11.

[66] Ayoosh Kathuria, “What’s new in yolo v3?.”

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b.

[67] Sik-Ho Tsang, “Review: Fcn — fully convolutional network (seman-

tic segmentation).” https://towardsdatascience.com/review-fcn-semantic-

segmentation-eb8c9b50d2d1.

89

	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Objectives and Contributions

	2 Background
	2.1 Convolutional Neural Networks
	2.1.1 Introduction to Neural Networks
	2.1.2 Introduction to Convolutional Neural Networks
	2.1.3 A brief history of Convolutional Neural Networks
	2.1.4 The Convolutional Layer
	2.1.5 Other Essential Building Blocks

	2.2 Hardware Accelerated Data Processing
	2.2.1 Hardware Acceleration through the years
	2.2.2 Data Processing with Hardware Acceleration

	2.3 Deep Learning Frameworks and Model Representations
	2.3.1 Caffe
	2.3.2 Tensorflow
	2.3.3 ONNX

	3 Acceleration tools
	3.1 OpenVino by Intel
	3.1.1 Introduction to OpenVino
	3.1.2 Deploy an app using OpenVino

	3.2 TensorRT by Nvidia
	3.2.1 Introduction to TensorRT
	3.2.2 Deploy an app using TensorRT

	3.3 NN SDK by ARM
	3.3.1 Introduction to Neural Network SDK
	3.3.2 Deploy an app using Arm's Development Kit

	3.4 Edge AI by Xilinx
	3.4.1 Introduction to Edge AI
	3.4.2 Deploy an app using DNNDK

	4 Benchmark Description
	4.1 ConvNet Tasks and Models Description
	4.1.1 Image Classification
	4.1.2 Object Detection
	4.1.3 Image Segmentation

	4.2 Technical Description

	5 Performance Analysis
	5.1 Multi-thread in DPU
	5.2 Benchmarks Results
	5.2.1 Inference Time and Throughput for pre-trained models
	5.2.2 Platforms' Results and Discussion

	6 Conclusions
	A Inference Results
	References

