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Abstract

Prediction of electrical grid load due to electric vehicle charging

New reports predict that the penetration levels of electric vehicles will surge
across Europe the following years, as zero emissions vehicles become the main-
stream item for consumers and vehicle manufacturers will introduce many new full
electric models. In certain parts of Europe, like Norway, more than 50% of new car
sales are electric. This will result in a heavy electrical power demand that should be
predicted.

Many prediction studies were made, mainly focused on the energy consumed
by the vehicle and the time it stayed parked in certain locations. The intention
is to examine the effect of the electricity price on these prediction models, hoping
that it will ease the grid of huge charging loads during peak hours. This is ac-
complished by using an artificial intelligence algorithm in order to calculate the
probability of charging a vehicle and then an optimization algorithm that allots the
charging power in time slots based on the electricity price of each slot.

Results are positive. Less cars are connected to charging stations; the charging
of these cars was deemed unnecessary by the algorithm because they had enough
energy to return to their home charging stations. The cars that eventually connected
required less energy, because again the algorithm charged them with the necessary
power only, which led to a load reduction. The optimization algorithm shifted the
load towards low-demand time slots, where electricity is cheaper. Furthermore,
when grid was on its peak hours, fully charged cars supported it by connecting on
it and providing energy (Vehicle-to-Grid (V2G)).
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1

Introduction

1.1 | Necessity of Electric Vehicles
Global Warming is the most serious threat the humanity faces (Xin-hua, 2008). It is safe
to assume that CO2 emissions play a key role in this new danger, and therefore humanity
must reduce its consumption (Chen Ya-lin, 2009).

A part of these emissions is from the exhausts of vehicles and the best way to re-
duce them is by driving less1 and by using public transport more. A not so aggressive
method is the Hybrid Electric Vehicle (HEV) and more importantly, the Plug-in Electric
Vehicle (PEV). It has zero CO2 emissions, it is more efficient than Internal Combus-
tion Engine (ICE) vehicle and has instant acceleration (Mehrdad Ehsani, 2009). The
fuels used for PEV more commonly are electrical energy from batteries and hydrogen
from fuel cells (Muhammad Sifatul Alam Chowdhury, 2016) and can be produced using
"green" methods, such as wind turbines and solar panels. It can become the technology
that can drive humanity to the future.

1.2 | ChargingMethods

1.2.1 | Charging Stations
In order to satisfy the charging needs of PEV, charging stations were constructed. They
are convenient like gasoline stations and can be integrated easily on existing gaso-
line stations or highway rest areas (Taoyong Li, 2018). As already mentioned, charg-
ing stations can be fueled by renewable energy resources like wind turbines or photo-

1For more information see: http://www.deq.idaho.gov/pollution-prevention/
p2-for-local-govts/how-to-implement-p2/

1

http://www.deq.idaho.gov/pollution-prevention/p2-for-local-govts/how-to-implement-p2/
http://www.deq.idaho.gov/pollution-prevention/p2-for-local-govts/how-to-implement-p2/


Chapter 1. Introduction 1.3. Motivation

voltaic panels and store the energy into batteries. There are three levels of charging.
Level-1 charging at 6KW (120V, 15− 20A), also known as AC-Charging, Level-2 charg-
ing at 6KW (240V, 32A), also known as AC-Charging and Level-3 charging at 30KW
(480V, upto300A), known as DC-Charging or supercharging.

For this thesis the level-2 AC charging is mostly used and when the algorithm thinks
it is necessary, the Level-3 DC-Charging is used.

1.2.2 | Wireless Charging
A new trend in technology is the Wireless power transfer and and application of this
technology is in vehicle charging. This method enables cars to charge while stationary
(like in traffic lights) or while in motion (inside tunnels). The two most widely used
methods of wireless charging for vehicles are inductive power transfer (Kesler, 2018)
and capacitive power transfer (Chunhua Liu, 2017). A nice advantage of this technology
is that it can lower the battery capacity of vehicles (Lalit Patnaik, 2018; Seungmin Jeong,
2019). Still, this is a quite new technology and not the preferred one for vehicle charging
yet.

1.3 | Motivation
The forecasting of the vehicular charging load on a system can help the energy providers
plan the energy production so it meets the needs for charging, and predict as well the
future growth on this specific demand. Failure to predict this load can cause severe
problems on the grid and the energy production facilities, as the power generation en-
gines will struggle to answer to this huge load (C.H. Dharmakeerthi and Saha, 2011;
Daijiafan Mao, 2017; Xuesong Zhou and Gao, 2017). Therefore, it is vital to analyze the
effect of Plug-in Electric Vehicle (PEV) charging when planning the distribution network
and the energy generation facilities that support it.

2
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1.4 | Aims andObjectives
� Validate the hypothesis that the electricity price will greatly affect the driver’s

decision to charge the car

� Decrease the grid load even more by not providing unnecessary charging to the
vehicles

� Support the grid with vehicle battery energy in case the grid experiences heavy
loads

� Help the driver reduce the charging costs of the vehicle

1.5 | Document Structure
In Chapters 2 and 3, the various tools that were important for writing the thesis are
described and there is a short analysis of the algorithm that this work is based one. In
Chapter 3 a detailed description of all the steps the proposed algorithm contains and the
data that used as input is presented. In Chapter 5 the results of the thesis’ algorithm are
presented and in Chapter 6 the conclusions that are derives from the previous Chapter.

3



2

Background

The coding for the needs of this thesis was done exclusively in Matlab and every func-
tion or algorithm needed was either constructed by the author or taken from Matlab
libraries.

2.1 | Dynamics of Vehicles

Figure 2.1: Forces that influence vehicle motion.

Vehicle Dynamics is a part of automotive engineering, based on classical mechan-
ics. It analyzes the dynamic behaviour of the vehicle, on a given solid surface. Many

4
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aspects of the vehicle can affect its dynamics, like the drivetrain, suspension, tires and
aerodynamics.

For this thesis, a simple two-axle vehicle model is used, as shown in figure 2.1. This
model analyzes all forces acting on vehicle (Tractive Force, Aerodynamic Drag, Rolling
Resistance and Grading Resistance).

The deriving equations of motion are further analyzed in Chapter 4.1.2.

2.2 | Fuzzy Engines
A process to mimic the complex decision making and the logic of human thought needed
in order to quantify the probability of charging the vehicle. Fuzzy Logic is the perfect
tool for this study; it is a flexible and easy to implement machine learning technique and
is highly suitable for uncertain or approximate reasoning.

A fuzzy interference machine will look at all the data (inputs), it will fuzzify them
(convert crisp numbers into fuzzy sets) and then it will compare them with a set of rules
and decide which is the best action to follow. At last, it will de-fuzzify the output into
a crisp value, in this study the probability of charging the vehicle. An example of such
system is shown in figure 2.2, which the exact same fuzzy machine created for this study.

Figure 2.2: Flowchart of a fuzzy engine.

Fuzzy logic is widely used for commercial and practical purposes, because it helps
you to deal with the uncertainty in engineering. Even automotive companies use it in
their products, like Nissan which implemented it for Anti-lock brakes.

5
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2.3 | Optimization Algorithms
Optimization algorithms are processes that are executed iteratively and compare vari-
ous solutions until an optimum solution is found. These solutions are subject to various
limitations or criteria. There are many types of minimization algorithms, like linear and
non-linear or large-scale and medium-scale.

For this study, I need a minimization, which has the form:

Given f : A→ < search x0 ∈ A such that f (x0) ≤ f (x) for all x ∈ A

A detailed analysis of the minimization algorithm used follows in Chapter 4.3.

6



3

RelatedWork

There is a lot of work done on short-term load forecasting because it is a very important
process during the planning and operation of electrical utilities.

3.1 | Load forecasting with historical data
Most of the methods used for this type of load forecasting are statistical techniques,
including Multiple Linear Regression, Stochastic Time Series, General Exponential Smoothing,
State Space Method and Knowledge-Based Approach, as described in (I. Moghram, 1989).

An example is the method used in (Kejun Qian, 2011), where the authors used time-
series data of electric vehicle charging loads. They modeled a stochastic nature for PEV by
assuming that the time the vehicle starts charging is a variable, based on the electricity
tariff. They also created a probability distribution for the distance travelled by the vehicle
till the stop by using historical data (traffic patterns), in order to calculate the initial State
of Charge (SOC) of the vehicle. The battery type of the vehicle would determine the
load characteristics in the end. They calculate the final load by multiplying the traffic
characteristics with the charging characteristics of the battery type for each car, for each
hour.

Another example is the study (Sungwoo Bae, 2012). For this paper, the authors are
interested in a specific charging location. They use a fluid dynamic model to predict the
arrival of vehicles at the specific location and then, with the help of queuing theory, the
charging load is calculated. Again, all the data are statistical (for example, the vehicles
arrive at the entrance of the charging station at a rate of 3 vehicles per minute).

7
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3.2 | Load forecasting with real-world driving data
The authors of these studies preferred to use real-world driving data for their algorithms,
because it provides a more realistic scenario of driving habits; the driver will not change
the routes he prefers to follow just because he changed a vehicle.

A first method is described at (Soheil Shahidinejad, 2012). The authors study the
profile of the charging load that a power system will receive due to charging the batter-
ies of electric and plug-in hybrid electric vehicles. For their study, they used real world
data recorded for the duration of a year and include information about the location, speed
and other parameters of a big fleet of conventional vehicles. They proposed the use of
a fuzzy Inference System that uses the State of Charge (SOC) of the battery and the es-
timated parking duration of the vehicle, which are the two main influential factors for
the charging decision making process according to them. A backward vehicular simu-
lation is used to calculate the SOC of the vehicles. After the probability of charging is
calculated through the fuzzy inference system for each hour, they multiply the number
of electric cars with the probability of charging for this specific hour and multiply again
with 1.6KW, which is the rate of Level-1 (AC) charging. By doing this for every hour of
the day, they acquire the final result.

This inspired the authors of (Nima Ghiasnezhad Omran, 2014) to progress the algo-
rithm one step more and add the input Distance to Home (DTH) in the fuzzy inference
system. They base that on the fact that drivers will prefer to charge their vehicles at
home due to cheaper electricity and longer down-times for the vehicles at home for ex-
ample. This makes their algorithm location based. Again, a mathematical model is used
to process real world driving cycles and a fuzzy engine calculates the probability of charg-
ing. They focus their study on two shopping malls, and use the same technique as in
Chapter 3.1 to calculate the charging load of these locations during the period that the
malls are open (08:00 to 23:00 and 09:00 to 24:00).

8



4

MyApproach

Based on the studies of the Chapter 3, I created and propose my own algorithm for
forecasting the Charging Load of Plug-In Electric Vehicle.

Drivers will prefer to charge their Plug-in Electric Vehicle (PEV) at home, due to
various reasons like cheaper electricity price and long parking duration during night,
for example. Despite that, some charging will happen to off-home locations, like the
drivers’ workplace or at a shopping center. Drivers will decide to charge their vehicles at
a location based on information provided by car (like the battery’s State of Charge) and
their previous experiences and instinct. The intention of this thesis is to try to predict
the Grid Load due to PEV charging at various parking locations.

To imitate the drivers’ reasoning behind charging their vehicles at an off-home loca-
tion, a fuzzy interference engine is used. For the location-based vehicular load predic-
tion system of (Nima Ghiasnezhad Omran, 2014), the vehicle’s State of Charge (SOC),
Parking Duration (PD) and Distance to Home (DTH) were used as inputs to the fuzzy
engine. Unlike this, the Electricity Price (EP) is implemented as well as an input in
the fuzzy engine of the method used in this thesis. The price that the drivers will pay
after they charge their vehicles will have a huge contribution on whether or not they
will plug in their vehicles to the chargers. Two fuzzy interference systems are created,
one simple Grid-to-Vehicle (G2V) system and one Vehicle-to-Grid (V2G) system in order to
take into account the ability of the vehicles to provide energy back to the grid if needed,
or when the electricity price is high for example, so drivers can earn some money. An
optimization is also used to minimize the cost of the energy received or given to the
grid during the parking event.

9



Chapter 4. My Approach

The flowcharts in Figures 4.1 and 4.2 showcase the algorithm I created for the Short-
Term Load Forecasting of Plug-in Electric Vehicles. Real-world drive-cycles and vehicle
specifications were used to compute the inputs of the fuzzy decision making unit and
other statistical information for each parking event. The result is the average Probability
of Charging (POC) for 24 hours at a specific location for a vehicle with given character-
istics. This, combined with local parking characteristics and the optimization in price,
results in the wanted local charging demand. The algorithm is further analyzed in the
following sections.

Figure 4.1: First part of the algorithm.

Figure 4.2: Second part of the algorithm.

10



Chapter 4. My Approach 4.1. Data &Data Processing

4.1 | Data &Data Processing

4.1.1 | Input Data
For the needs of this study, real-world driving data from the city of Winnipeg1 (Ashtari A.,
2010; Shahidinejad, 2010) were used. This set includes data from 76 different drivers
with diverse demographic characteristics (age, gender, driving habits etc.). The time
and date of each event, coordinates of the car, car speed as well as notifications for
events (home/work/shop parking) were recorded for different days around the year
for each driver. An example with some rows of one of the tables is shown in table 4.1

Table 4.1: Driver data example

Trip Date Time 12h Latitude Longitude Speed
Limit

Speed Place Duration

1 14/9/2019 8:45:07 AM 0.0001 0.0013 80 49.28 Travel -
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
1 14/9/2019 10:45:07 AM 0.0071 0.0068 60 0 Shop 79
1 14/9/2019 12:04:08 AM 0.0071 0.0068 60 0.37 Travel -
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
5 18/9/2019 8:45:07 PM 0.0 0.0 50 0 Home 592

In order to validate the study more, two more variations of the data were created.
For the first variation, it was considered that some of the drivers may forget to plug-in
their vehicles on the chargers the moment they arrive home, and as such, leave their
homes without full batteries (SOC<85%). All other data variables remained the same.

For the second instance, random alterations to the speed of the vehicle (± 20%) were
made, to take into consideration some more quick or more slow drivers. Again all other
data from the sets remained the same. As a result, the algorithm was simulated for 228
different driver data sets.

The data were accessed row by row by the algorithm. The Speed of the vehicle was
the input to a set of equations described in Section 4.1.2, and the Place was checked in
each iteration in order to see if there is a parking event. Each event contributes to the
final 24-hour POC regardless of the driver or the date; only the time of the event is
important.

1More information: https://mspace.lib.umanitoba.ca/handle/1993/3997

11

https://mspace.lib.umanitoba.ca/handle/1993/3997


Chapter 4. My Approach 4.1. Data &Data Processing

4.1.2 | Vehicle Dynamic Equations
For the purpose of calculating the SOC of the battery in each trip and based on Newton’s
second law of motion, the following model of equations was developed (Mehrdad Ehsani,
2009).

FTR = mv ∗ a + Fad + Froll + Fg (4.1)

Fad =
1
2
∗ ad ∗ A f ∗ Cd(v− vw) (4.2)

Froll = 0.001(1 +
v

100
) ∗mv ∗ cos θ (4.3)

Fg = mv ∗ g ∗ sin θ (4.4)

where FTR, Fad, Froll and Fg are the Tractive Force, Aerodynamic Drag, Rolling Resis-
tance and Grading Resistance respectively (all in N). A f is the vehicle frontal area (m2),
ad is the air density (ad = 1, 225 kg

m3 ), Cd is the vehicle drag coefficient and vw is the wind
velocity ( m

s ). mv is the vehicle mass (kg), a is the vehicle acceleration ( m
s2 ) and v is the

vehicle speed (m/s). θ is the road grade. θ and vw are set to 0 for this study.
The instantaneous mechanical power (Watt) is given by

P = FTR ∗ v (4.5)

which is converted to mechanical energy (Joules)

Em =
∫ tend

t0

P ∗ dt, P > 0 (4.6)

and Regenerative Braking Energy (Joules)

Ereg =
∫ tend

t0

P ∗ dt, P < 0 (4.7)

In order to calculate the total required electrical energy from the battery, Em and Ereg are
used, as shown below

Ee =
Em

nT ∗ nM
− Ereg ∗ nG ∗ nreg + EHC (4.8)

where Ee is the total electrical energy from the battery (J) and nT, nM, nG, nreg are the
efficiencies of transmission, motor, generator, regenerative braking system respectively.
EHC is the amount of energy consumed by the vehicle’s air-condition for heating and
cooling purposes.
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Finally, the State of Charge (SOC) (%) is calculated with the help of a simplified
expression (Fazal U. Syed, 2006).

SOC = SOC0 −
100

3600 ∗ Cb ∗Vb
∗ Ee (4.9)

where Cb is the battery capacity (Ah), Vb is the nominal terminal voltage of the battery
(V) and SOC0 is the SOC at the beginning of the trip.

4.2 | Fuzzy Engine
In order to create a fuzzy logic system, a linguistic approach must be used as described
in (L.A.Zadeh, 1975; Mamdani, 1977). The 4 inputs SOC, DTH, PD and EP are treated
as linguistic variables and are fuzzified into fuzzy membership functions. Then all ap-
plicable rules from the rule table are executed and the respective output functions are
computed. To get the output value of the fuzzy engine, the output functions are de-
fuzzified.

For this study analysis, two fuzzy models were created; one that only the grid can
transfer energy to the vehicle (G2V) and another that takes into account the ability to
transfer energy from the vehicle’s battery to the grid (V2G). Both are Mamdani-type
fuzzy models (Mamdani, 1977). A detailed analysis of the fuzzy engines inputs, rule
table and output follows.

4.2.1 | Inputs
4 inputs were created, which are the same for both fuzzy engines. The values assigned
to each input (for example Medium, High) were based on my instinct and logical as-
sumptions. For example, SOC is medium around 35% and 65%. For the EP, by looking
at electricity prices of different days, I assumed that after 75− 80 euro/MWh the price
is high and downwards till 40 euro/MWh, the price looks like average.

13
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4.2.1.1 | State of Charge
State of Charge (SOC) is the equivalent of a fuel gauge for the battery pack of a PEV,
and the driver is always aware of its value. To protect the health of the battery and
prolong the battery’s life, the effective range is between 15% and 85%. The linguistic
terms used to describe the battery’s range are Low, Medium and High and because of
the restriction above, a value of 1 is assigned to the areas outside the working range
(above 85% or below 85%). The membership functions of SOC are shown in figure 4.3

Figure 4.3: Membership function of SOC.
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4.2.1.2 | Distance to Home
As already mentioned above, the preferable charging location for the PEV will be each
driver’s home. And part of the driver’s decision to charge or not the PEV is if the
remaining SOC is enough to drive the vehicle back at home. This is quantified in the
Distance to Home (DTH) input of the fuzzy engine, as it isn’t difficult for any driver to
have an estimation of the distance to home. The DTH variable includes an uncertainty
too, because the drivers cannot know the future trips, the traffic and other factors that
can affect the actual distance that will be covered till they arrive back at their homes.
DTH is subjected to the battery capacity too, since a car with bigger battery capacity can
cover bigger distance before the battery is depleted. Thus, DTH will have a normalized
form, based on each car’s electric range.

DTH is also used as a guide to the minimum energy required from charging; after
the car disconnects from the charger, it should have gained at least the power that corre-
sponds to the DTH. The Electricity Price and the option to give power to the grid affect
how much more energy will be stored in the PEV battery.

Again, DTH will be described by 3 membership functions labeled Short, Average
and Long as in figure 4.4.

Figure 4.4: Membership function of DTH(normalized).
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4.2.1.3 | Parking Duration
Drivers are unable to know exactly the amount of time they will spent at a parking
location. Therefore, Parking Duration (PD) is an estimation of the time spent there. To
describe PD, three linguistic terms will be used, named Short, Average and Long, as
shown in figure 4.5. All 3 represent a period of time; for example, Long is any PD above
3,5 hours (again based on my intuition and personal habits). And this is an easier way
to represent the PD because drivers know if it will be a short stop or a longer one.

Figure 4.5: Membership function of PD.

4.2.1.4 | Electricity Price
Electricity Price (EP) is a variable drivers will be aware of at the parking location as
soon as they arrive at the charging stations. The view of a high or low price can affect
the decision quite a lot. For example, a high price will make a driver very reluctant to
connect his car to the charging station unless SOC is not enough to reach home and the
car must be charged. On the other hand, if SOC is more than enough to reach home
and there is an option to give power to the grid, a high electricity price makes it very
appealing to the driver to connect the car.

EP depends on the the season, demand, type of fuel used to produce electricity
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(diesel, coal, gas, renewable resource) and can be fixed or vary with time. This is deter-
mined by the electricity provider and can have different time steps. Shopping centres
can affect the price too, in order to make it more tempting for drivers to park, charge
their cars and eventually, spent more time (and money?) in the shops. For this study, a
variable EP with a step of 30 minutes is used.

Three linguistic terms describe EP as Low, Average and High, as shown in figure 4.6.
These terms can be easily affected by season or time of the day. For example, a price con-
sidered “High” during spring may be considered as “Average” or even “Low” during
summer season because of the higher energy demand due to cooling (air condition de-
mand).

Figure 4.6: Membership function of EP.

4.2.2 | Rule Tables &Defuzzification
For the two different fuzzy engines two different sets of rules were constructed; the
first one is about a simple charging algorithm, without the ability to give power to the
grid (Grid-to-Vehicle (G2V)). The second fuzzy engine will make it possible for a car to
return power to the grid (Vehicle-to-Grid (V2G)). They both have the same inputs and
output and only the rules table changes. Changes occur on occasions where electricity
price is “Average” or “High” and there is enough energy on the battery to return to
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home for charging. While when there is no V2G option the drivers wouldn’t plug in
their vehicles, it is highly possible to connect them and have some profit when they can
sell energy to the grid.

For the first fuzzy engine, there were created 59 rules and for the second 73, as shown
in tables 4.2 and 4.3. Both of the rule sets use the fuzzy “AND”, which is implemented
with the “min” method and before the defuzzification, the output is described by using
seven linguistic terms, as in figure 4.7. For the defuzzification the algorithm which finds
the center-of-weight of the area under the curve is used.

All rules are designed based on what an average driver would decide to do, given
the 4 inputs of SOC, DTH, PD, EP. The further from home the driver is and the lower the
SOC, the bigger the chance to charge the vehicle. PD and EP will increase or decrease
the chance too; the higher the electricity price, the lower the chance. But in extreme
cases (if DTH is”Long” and SOC is “Low” for example), the driver wouldn’t care about
the duration of the parking or the electricity price at that moment. This is taken into
consideration too and in such cases, PD and EP have little to no impact on the final
result. Of course, for the second scenario with the V2G option, the driver would be
more tempted to connect the car when the price is high in many occasions, so he could
earn some money. Again, all the rules are based on my personal experiences.

Figure 4.7: Output of fuzzy engine.
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Table 4.2: Rules of the Grid-to-Vehicle Fuzzy Engine.

if SOC
is

AND DTH
is

AND PD
is

AND EP
is

then Probability o f Charging
is

Low Short - High Very Low
Low Short Short Average Very Low
Low Short Short Low Low
Low Short Average Average Low
Low Short Average Low Medium Low
Low Short Long Average Low
Low Short Long Low Medium Low
Low Average Short High Very Low
Low Average Short Average Medium Low
Low Average Short Low Medium
Low Average Average High Low
Low Average Average Average Medium High
Low Average Average Low High
Low Average Long High Medium Low
Low Average Long Average High
Low Average Long Low Very High
Low Long - High Medium Low
Low Long Short Average Medium Low
Low Long Short Low Medium
Low Long Average Average Medium High
Low Long Average Low High
Low Long Long Average High
Low Long Long Low Very High

Medium Short Short Average Very Low
Medium Short Short Low Very Low
Medium Short Average Average Low
Medium Short Average Low Low
Medium Short Long Average Low
Medium Short Long Low Medium Low
Medium Short - High Very Low
Medium Average Short - Low
Medium Average Average High Low
Medium Average Average Average Medium Low
Medium Average Average Low Medium Low
Medium Average Long High Low
Medium Average Long Average Medium
Medium Average Long Low Medium
Medium Long Short Average Medium
Medium Long Short Low Medium
Medium Long Average Average Medium High
Medium Long Average Low High
Medium Long Long Average Very High
Medium Long Long Low Very High
Medium Long - High Medium Low

High Short - - Very Low
High Average Short Average Very Low
High Average Short Low Low
High Average Average Average Low
High Average Average Low Medium Low
High Average Long Average Medium Low
High Average Long Low Medium
High Average - High Very Low
High Long Short Average Medium
High Long Short Low Medium
High Long Average Average Medium
High Long Average Low High
High Long Long Average High
High Long Long Low Very High
High Long - High Medium Low
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Table 4.3: Rules of the Vehicle-to-Grid Fuzzy Engine.

if SOC
is

AND DTH
is

AND PD
is

AND EP
is

then Probability o f Charging
is

Low Short Short Low Very Low
Low Short Short Average Very Low
Low Short Short High Low
Low Short Average Low Low
Low Short Average Average Low
Low Short Average High Medium Low
Low Short Long Low Very Low
Low Short Long Average Medium Low
Low Short Long High Medium Low
Low Average Short Low High
Low Average Short Average Medium High
Low Average Short High Medium Low
Low Average Average Low High
Low Average Average Average Medium
Low Average Average High Medium Low
Low Average Long Low Very High
Low Average Long Average High
Low Average Long High Medium High
Low Long Short Low High
Low Long Short Average Medium High
Low Long Short High Medium
Low Long Average Low Very High
Low Long Average Average High
Low Long Average High Medium High
Low Long Long - Very High

Medium Short Short Average Low
Medium Short Short High Medium Low
Medium Short Average Average Medium Low
Medium Short Average High Medium
Medium Short Long Average Medium
Medium Short Long High High
Medium Short - Low Very Low
Medium Average Short - Medium Low
Medium Average Average Low Medium High
Medium Average Average Average Medium
Medium Average Average High Medium High
Medium Average Long Low High
Medium Average Long Average Medium High
Medium Average Long High Very High
Medium Long Short Low Medium High
Medium Long Short Average Medium
Medium Long Short High Medium High
Medium Long Average Low High
Medium Long Average Average Medium High
Medium Long Average High High
Medium Long Long Low Very High
Medium Long Long Average High
Medium Long Long High Very High

High Short Short Average Medium
High Short Short High Medium High
High Short Average Average Medium
High Short Average High High
High Short Long Average Medium High
High Short Long High Very High
High Short - Low Very Low
High Average Short Low Medium Low

(continued. . . )

20



Chapter 4. My Approach 4.3. Optimization Algorithm

if SOC
is

AND DTH
is

AND PD
is

AND EP
is

then Probability o f Charging
is

High Average Short Average Low
High Average Short High Low
High Average Average Low Medium Low
High Average Average Average Low
High Average Average High Medium Low
High Average Long Low Medium High
High Average Long Average High
High Average Long High Medium High
High Long Short Low Medium High
High Long Short Average Medium
High Long Short High Medium Low
High Long Average Low Very High
High Long Average Average High
High Long Average High Medium
High Long Long Low Very High
High Long Long Average High
High Long Long High Medium High

4.3 | Optimization Algorithm
A very important feature of this study is the optimization on the price of the energy.
The algorithm responsible for the charging of the batteries will not just supply them
with the maximum available energy. Instead, the algorithm will first check the target
SOC of the vehicle (which is enough energy to take the vehicle back to home) and,
given the amount of time the car will stay parked as well as the electricity price for this
period, it will schedule the amount of energy given to the vehicle so that at time slots
with cheap electrical energy, the vehicle will be charged the most. If there is an option to
give energy back to the grid, the algorithm will check the time slots where the electrical
energy is expensive and schedule the vehicle to give energy then and charge up earlier
or later, when the price is again low.

The optimization algorithm will also check if the amount of time the vehicle will
stay parked is enough for it to charge the batteries till the target SOC with AC charging
(6KW AC charging). If it isn’t, fast charging will be used (30KW charger DC charging).

The function used for the development of the optimization algorithm is “fmincon”
from MATLAB libraries. SOC, PD, DTH, EP as well as vehicle battery capacity, parking
hour, charging mode (AC or DC charging) and the functions that will be minimized are
given as inputs and the output is the charging load of the grid per hour, due to a specific
PEV charging event.
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The function to be minimized is:

f un =
T

∑
t=1

EP(T) ∗ CH(T) ∗ D(T)

where T is the number of different time slots during which the car will stay parked,
CH(T) is the Electrical Power that the car will receive from the charging station during
the T time slot (if it has a negative value, it means that the vehicle returned energy to
the grid), EP is the Price of the Electricity for the time slot T and D(T) is the amount of
time the car stays parked during the time slot T (1 ≤ D(T) ≤ 30 minutes = 0.5 hours)

Furthermore, the minimization is subject to some linear inequality constraints, of the
form:

A ∗ x ≤ b

where A is the amount of time the car stays parked during the time slot T (hours), x is
the Electrical Power that the car will receive from the charger (Watt) and b is Battery
Capacity (Wh). Three constraints are needed in order to meet the battery specifications
and energy targets:

i. First of all, the energy received by the charger should not charge the battery more
than the nominal capacity (85%).

∆t(T) ∗ CH(T) ≤ 85%− SOC%

For this instance, b is:

b1 = BatteryCapacity ∗ 85− SOC
100

ii. Secondly, the battery must not fall lower than 15% of its nominal capacity, in order
to secure the longetivity of the battery.

∆t(T) ∗ CH(T) ≥ 15%− SOC%⇒ −∆t(T) ∗ CH(T) ≤ −(15%− SOC%)

and

A ∗ x ≤ b⇒ −A ∗ x ≥ −b

−b2 = BatteryCapacity ∗ SOC− 15
100
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iii. Last, the car should leave the charging station with energy greater or equal to the
target energy (which is the energy needed to return at home location). Again, the
constraint looks like:

∆t(T) ∗ CH(T) ≥ target%− SOC%⇒

−∆t(T) ∗ CH(T) ≤ −(target%− SOC%)

and

A ∗ x ≤ b⇒ −A ∗ x ≥ −b

−b3 = −TargetBatteryEnergy + CurrentBatteryEnergy

A is an M× N matrix, where M is the number of inequalities, and N is the number
of variables. For the first two inequalities, 2 lower triangular N × N matrices will be
needed (A1 and A2), because both of the constraints must be true for every different
time slot T. Then one more line is needed (A3) for the third constraint. N depends
on the PD of the vehicle. It is the number of 30 minute intervals (last interval can be
1 ≤ t ≤ 30). The value of A are the minutes of each interval divided by an hour, so it
can have the values 0 < A ≤ 0.5.

A1 will look like:

A1 =


A1 0 0 · · · 0
A1 A2 0 · · · 0
A1 A2 A3 · · · 0
· · · · · · · · · · · · · · ·
A1 A2 A3 · · · AN


A2 will be the same as A1, but with a minus in front of each value:

A2 =


−A1 0 0 · · · 0
−A1 −A2 0 · · · 0
−A1 −A2 −A3 · · · 0
· · · · · · · · · · · · · · ·
−A1 −A2 −A3 · · · −AN


Finally, A3 will look like:
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A3 =
[
−A1 −A2 −A3 · · · −AN

]
As a result, the final form of matrix A will be:

A =



A1 0 0 · · · 0
A1 A2 0 · · · 0
A1 A2 A3 · · · 0
· · · · · · · · · · · · · · ·
A1 A2 A3 · · · AN

−A1 0 0 · · · 0
−A1 −A2 0 · · · 0
−A1 −A2 −A3 · · · 0
· · · · · · · · · · · · · · ·
−A1 −A2 −A3 · · · −AN

−A1 −A2 −A3 · · · −AN


From the form of A, we can count the M dimension, which will be:

M = N + N + 1

b is an M-element vector related to the A matrix. As a result, the M = N + N + 1.
Below is the full mathematical expression of both A and b.



A1 0 0 · · · 0
A1 A2 0 · · · 0
A1 A2 A3 · · · 0
· · · · · · · · · · · · · · ·
A1 A2 A3 · · · AN

−A1 0 0 · · · 0
−A1 −A2 0 · · · 0
−A1 −A2 −A3 · · · 0
· · · · · · · · · · · · · · ·
−A1 −A2 −A3 · · · −AN

−A1 −A2 −A3 · · · −AN



×


x1

x2

x3

· · ·
xN

 ≤



b1

b1

b1

· · ·
b1

−b2

−b2

−b2

· · ·
−b2

−b3


For this study I didn’t use any linear equality constraints, as I considered the use of

them unnecessary.
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Finally, the minimization algorithm uses bounds. The upper bound is set to 6000
and represents the maximum available energy from the charger (Watt), and the lower
bound is set to 0. If the charger decides to use Fast-Charging, the upper bound is set to
30000 Watt, and if there is an option to return power to the grid, the lower bound is set
to −6000 Watt.

An example of how fmincon will work is presented in the figure below.

Figure 4.8: Results for 8 cars

Table 4.4: Cars for fmincon example

Car (kg) SOC
(m2)

Target
Distance

Parking
Duration

Hour Fast
Charg-

ing

V2G

car1 30 0.4 129 27 0 0
car2 30 0.4 75 8 1 0
car3 30 0.4 236 36 0 1
car4 50 0.58 187 16 0 1
car5 30 - 129 27 0 -
car6 50 - 187 16 0 -
car7 30 - 75 8 1 -
car8 30 - 236 36 0 -
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Figure 4.9: car 1

Figure 4.10: car 2

Figure 4.11: car 3

Figure 4.12: car 4

The cars 1 and 2 work with G2V algorithm, 3 and 4 with V2G algorithm and 5
to 8 with the base algorithm (they receive max power from the charger till battery
is full or till end of parking duration. The charging load of cars 1 to 4 is calculated
from Figures 4.9, 4.10, 4.11, 4.12. Each value is about the power given to the car each
half-hour the car is parked. For example, for car 3, the car after charge will have
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5.9998− 5.0768− 5.1225 + 5.9999 + 5.9998 + 5.9999 + 5.9999 + 5.9999 = 25, 79992 KW.
Because this value is for 30 minute intervals, the energy received will be 12, 89995 KWh
which divided by the battery capacity will add 25,7% SOC to the battery. The car went
in with 30% SOC and the target was 40%. Because the battery must not fall below 15%,
the usable SOC was 15%. So, the new SOC for the car will be 40,7% which meets the
target constraint.

Car 1 will stop charging when it meets the target SOC while car 5 will continue to
give 6kW till the end of the parking. Car 2 will use fast charging with G2V algorithm
and car 7 the same with the base algorithm. Cars 3 and 4 both use the V2G algorithm,
but fmincon decides not to sell power to the grid for car 4. Cars 8 and 6 have the same
inputs as 3 and 4, but use the base algorithm.

This example, not only shows how fmincon will work for different events, but it
shows also that a car that connects to the charger at 13:00 will charge the next hours. So,
the load for each hour isn’t just the summary of the loads of cars charging that hour, but
it is the summary of the loads of cars that still charge till that hour.
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5

Simulation & Results

In this section all the parameters used for completing the simulations and the results of
both new algorithms as well as the results of the algorithm discussed in Section 3 are
analyzed.

5.1 | Simulation Parameters

5.1.1 | Vehicle Specifications
The vehicle chosen for this thesis is Tesla Model 3 Standard Range. It is a very common
electric vehicle with reasonable price and other manufacturers plan to construct vehicles
with quite similar specifications, which makes it a good choice. Table 5.1 contains the
PEV specifications and 5.2 the component efficiencies of the car

Table 5.1: Tesla Model 3 Standard Range Specifications.

Curb Mass
(kg)

Frontal Area
(m2)

Drag Coefficient Battery Capacity
(KWh)

Electric Range
(Km)

1645 2.22 0.23 50 354

Table 5.2: Efficiencies of Drivetrain Components.

Generator Motor Transmission Regenerative Braking

0.8 0.8 0.85 0.7
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The charging stations will use level-2 AC charging as default, with 6kW maximum
power output. The charging algorithm can change it to DC charging and 30kW if neces-
sary.

5.1.2 | Other Parameters
The power required for the heating or cooling of the vehicle is considered to be constant
and equal to PHC = 500W. Heating and cooling are a very small portion of energy
during a trip, and it will impact the results only a little, so it is safe to assume it constant.

Finally, for the 24 hour electricity price, the system marginal price in Figure 5.1 was
selected, from ADMIE1, of a typical day that has peaks and lows at different parts of the
day in order to showcase the abilities of the algorithm created.

Figure 5.1: The price of the electricity during the day.

1More information: http://www.admie.gr/en/operations-data/electricity-power-market-participation/
market-data/
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5.2 | Probability of Charging Simulation & Results
The flowchart in Figure 4.1 describes the method followed in order to calculate the Prob-
ability of Charging. I used the same method for both the algorithms I created (one with
grid-to-vehicle energy transfer and one with bidirectional energy transfer between the
vehicle and the grid) as well as for the algorithm I based my thesis on, in order to com-
pare the results later on.

As mentioned in the previous Section, three sets of Data were used. For the first and
the third, it was assumed that drivers will leave their homes with fully charged cars (SOC =

85%). For the second set, they will leave their homes with vehicles charged between 65%
and 85%. Homes will be the preferred location for charging the vehicles, and this is
made possible with the above assumptions. PEV are not allowed to fall lower than 15%
battery during the trips; the lower the battery is, the bigger the probability of charging
becomes. In cases the battery is too low and the DTH (it acts as the target distance of
the vehicle) is too long, the car is charged with probability 1 to avoid the battery being
depleted. Charging events can occur at work or at shopping centers, and visits there are
recorded during the Data Processing. Of course, charging at home locations is granted,
so the probability of charging at home is 1 and not calculated during the next stages.

When there is a Work or Shop event, the SOC calculated by the equations (4.1) - (4.9),
the DTH calculated by the latitude and longitude variables from the data set, the PD
from the Data and the EP by Figure 5.1 are given as inputs to both the fuzzy engines,
in order to get two probabilities of charging, one for each algorithm created. The same
probability is given to every hour or time slot that the car stays parked. This is repeated
for every parking event of the data set. Then, for each different hour of the day, the
probabilities of events that happened in each hour contribute to the average probability
for this specific hour.

In order to validate the thesis more, a scenario of the algorithm the thesis was based
on was computed, with the same data used for the two simulations above, but with dif-
ferent fuzzy engine. In Figure 5.2, the results of the base algorithm and of both proposed
ones (G2V and V2G) are presented. In both graphs (a) and (b), the probabilities follow
similar patterns.
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(a) Work Probability of Charging

(b) Shop Probability of Charging

Figure 5.2: Probabilities of Work & Shop Charging
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In graph (a), the G2V probability is almost always lower than the base algorithm
one, being higher only early in the morning where the electricity price is quite low.
The difference becomes smaller as the price drops (around 13:00) and bigger when the
price rises (after 7:00 and 18:00). Unlike that, the V2G probability is always higher than
the other two. It takes its lower values early in the morning and around 15:00, where
electricity price takes its lowest values and is highest around 11:00 and 20:00, where
electricity has its higher prices.

In graph (b), again the G2V probability is the lowest with V2G being the highest.
Shop probabilities follow more similar patterns than work probabilities.

Early during the day (till 9-10 in the morning), the probability of charging is higher
because the cars at work or shop charging stations did not charge their batteries at home
overnight. On the contrary, cars that arrive at work or shop charging stations later
during the day have their batteries charged, and so the probability of charging drops.

Figure 5.3: Cars participated in parking events

In Figure 5.3, the parked cars for home, work and shop events are presented. They
are the same for the 3 different algorithms, because the data used are the same. As
already mentioned, the heavy load is expected from cars parked at home, and in the
figure they are six times more than the cars parked at work or shop for every hour.
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5.3 | Charging Load Simulation & Results
In order to calculate the load on the grid due to electric vehicle charging, the number of
parked cars at the locations of interest, the average probability of charging for each loca-
tion and the local PEV penetration levels where used, as shown before in flowchart 4.2.
The result is the number of cars that will charge at the specific location each hour of the
day. For each car, DTH, SOC and PD are randomly selected from the event tables that
where created during the processing of the real-world driving data and the charging
load is computed.

The figures below present a comparison between Base Algorithm (the algorithm
this thesis is based on), G2V algorithm which is the first algorithm proposed in the
Sections above and V2G algorithm, the second algorithm proposed. Again, the results
for the "simple" algorithm were constructed according to the method that was proposed
in (Nima Ghiasnezhad Omran, 2014).

Figure 5.4 represent the results from charging at home locations. The cars that will
eventually charge for the three algorithms are the same. This happens because all ve-
hicles will connect at home chargers (probability of charging is 1). The two proposed
algorithms follow the fluctuations of price and seem to have a little bigger overall load
value than the base algorithm. The optimization function lowers the load during high
electricity price periods (08:00-12:00 and 17:00-21:00) and peaks around 06:00, 12:00,
23:00 where the electricity price has local minimum values.

Furthermore, the second algorithm proposed supports the grid during peak hours
with very good amounts of energy. During 17:00-21:00 the power is peaking at 15MW/h.
At 18:00 there are around 6000 cars parked, and they all give to the grid a maximum of
6000Watt, so the grid can receive up to a maximum of 36MW.

The charging load at home locations for the two proposed algorithms is higher than
the base algorithm. This is justified because the new algorithms charge the vehicles at
off-home locations with a little more than enough power to get back home (unlike the
base algorithm which gives maximum available energy for the duration of the charg-
ing), and they fill up the batteries at home after.
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(a) Total cars charging at home

(b) Charging load at home

Figure 5.4: Results for charging at home
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Similar results appear in Figures 5.5, 5.6. This time, the vehicles that will eventually
connect to the charging stations for both work and shop events of the G2V algorithm
are between the half and three quarters of the vehicles that would park with the base
algorithm. This is justified from the Probability of Charging results. Considering that
the optimization algorithm chooses how much energy it will support the vehicles with,
the load is the one tenth of the base. On the contrary, the second proposed algorithm
decides to connect double the vehicles. But it will not charge the vehicles till the price is
low enough. The V2G algorithm will give energy from the parked vehicles to the grid
when the PEV have high SOC or the electricity price is high.

For example, at 18:00 at shop, there are around 400 cars connected and the grid
receives 2MW. So, each car would give about 5KW, or around 10% SOC. Between 13:00
and 15:00, the V2G algorithm will need about 4 times the load of the G2V algorithm, in
order to recharge vehicles that already gave energy back to the grid or they are planned
to give when the electricity price value rises again. The base algorithm will give the
maximum power available to every car, unless they are full. At 13:00 with 500 vehicles
that charge, the maximum load would be 3MW, so the value of 1MW is correct.
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(a) Total cars charging at work

(b) Charging load at work

Figure 5.5: Results for charging at work
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(a) Total cars charging at shop

(b) Charging load at shop

Figure 5.6: Results for charging at shop
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The last of the result figures represents the total load due to PEV charging. The
load from charging the vehicles at home is the dominant, as expected. But the proposed
algorithms of this thesis postpone heavy charging loads for periods where the grid load
is low, and as a result the electricity price too.

Figure 5.7: Total load
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The figures 5.8, 5.9, 5.10 below describe the behavior of the vehicles at home, work
and shop. The solid line represents the base algorithm, the dashed line represents the
G2V algorithm and the dotted line represents the V2G algorithm. The blue line repre-
sents the summary of the cars that charge each hour. The red line is the number of cars
disconnected this hour and the green is the number of the cars connected. The black
line represents the cars that keep charging from the previous hour, which are the total
cars of the previous hour minus the cars that disconnected this hour.

At home, the cars have the same behavior for all three algorithms, which is expected
because all cars charge at home regardless the algorithm. The slight differences exist
because cars are selected randomly for each hour, for all three algorithms. And so, there
is a high possibility that the selected cars don’t have the same Parking Duration and
disconnect at different hours for each algorithm. As expected, when the total number of
cars decreases, the number of disconnected cars is greater than the connected cars.

At work and shop, cars behave with the same principles. The only difference with
the home behavior is that the V2G algorithm’s cars are the most, so the dotted lines are
always on top. Then the solid line follows, of the base algorithm. And the one with the
smaller value is the line of the G2V algorithm.

Figure 5.8: Car behavior at home
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Figure 5.9: Car behavior at work

Figure 5.10: Car behavior at shop
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In order to see the effect of a smaller battery on the charging load, the same results
were tested with 20% of the vehicles having 50KW batteries and the other 80% having
25KW batteries.

Figure 5.11: Results for charging at home

Overall, the charging load is lower for all the 3 algorithms than in the previous re-
sults, while having similar forms and the spaces that the V2G algorithm supports the
grid with power are more narrow. The lower capacity of the batteries won’t allow them
to fully charge and then discharge on the grid as much as the batteries with double
capacity. This can be noticed in all four Figures
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(a) Charging load at work

(b) Charging load at shop

Figure 5.12: Results for charging at work and shop
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Figure 5.13: Total load
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6

Conclusions

Two new algorithms were created, based on algorithms of Section 3. As input, real
world driving data are used, which are then processed with a mathematical model
in order to get the State of Charge (SOC), Distance to Home (DTH), Parking Dura-
tion (PD) values. After, these 3 and Electricity Price (EP) become the inputs to two
different fuzzy engines and the output is the average probability of charging for ev-
ery hour of the day for 2 different algorithms. Then, with the help of an optimization
function, the grid load due to Plug-in Electric Vehicle (PEV) charging is calculated.

6.1 | Achieved Aims andObjectives
From the energy provider’s perspective, the main aim was to ease the grid more of
the huge load due to PEV charging. The proposed algorithms not only lowered the
load at off-home locations for the same amount of cars, but also they rearranged the
charging of the vehicles, so that they mostly charge during low peak hours and mostly at
home. We should not forget to mention that the second algorithm supports the grid with
power from the PEV batteries during peak load hours. And higher capacity batteries can
support the grid with bigger amounts of energy than smaller ones on the same vehicles
doing the same travels.

From the driver’s point of view, the charging of his car will cost less; the vehicle will
be charged with only the energy it needs to return home and won’t be fully charged
without reason at off-home locations. Furthermore, there is a possibility that the driver
earns some money during peak hours, if there is the option to sell power to the grid.
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6.2 | Critique and Limitations
The target distance of the car is what will give the algorithms an estimation of the energy
that the car should have after it disconnects from the charger. And the estimation of the
distance is limited to the ability of the driver to foretell all the future trips before the car
can reconnect to a charging station. Therefore, there is a small possibility that the car
will run out of electrical power.

Furthermore, the second algorithm proposed can discharge the PEV battery to the
grid. Since the battery life is connected to the full charge or discharge cycles, charging
and discharging a vehicle continuously can result in smaller battery life.

6.3 | FutureWork
I plan on publishing a paper based on the algorithms of this thesis :)
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