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Abstract 

LINCA, is a distributed master-less IoT system. It is designed and deployed to 
offer security and high availability services to any IoT organization that wishes 
to register and provide their services and devices to a wider range of users. 
Each registered organization in LINCA is realized as a Service Oriented (SOA) 
Architecture in the cloud as composition of microservices that run in the cloud 
and can interact with other cloud systems, also registered to the LINCA 
network. In turn, IoT devices can connect to any LINCA node and a node need 
no be aware of devices connected to any other node. All organizations in LINCA 
ecosystem adopt JSON for the description of their devices and provide a search 
mechanism to search for devices that are connected to any registered cloud 
and meet the criteria set by their users, such as device ID, device location, 
device type etc. LINCA follows a 3-tier architecture model where each tier 
serves functionality for different types of users. The main types of users are 
System Administrators, Infrastructure Owners and Customers. System 
Administrators have the right to control and modify their individual cloud system 
and the users connected to their system. Infrastructure Owners have the 
permission to install and connect devices of different or similar types in their 
cloud system. Customers have the right to create subscriptions to devices that 
are connected to their cloud systems or to devices that are connected to other 
registered clouds in LINCA, for example to retrieve device measurements. This 
3-tier architecture is expandable, by allowing more IoT organizations to 
connect. LINCA is evaluated using a large number of real and synthetic devices 
producing massive amounts of data (i.e. sensor measurements). Experimental 
results show that the system can respond under heavy workloads in real time. 
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1. Introduction 
 
 

1.1. Motivation 

Nowadays, there are numerous IoT organizations taking advantage of 

IoT devices, which can be used to monitor extreme weather conditions or to 

control the operations of a house, hospital or even an entire infrastructure such 

as a city, factory etc. However, various issues may arise regarding the way IoT 

organizations manage their devices when operating independently or in the 

context of a unified system. In detail, organizations can install and utilize their 

own IoT devices within certain borders, thereby limiting the use of services 

offered only to clients registered to the same infrastructure.  Furthermore, data 

collected by each organization’s IoT devices are stored locally so that the users 

of another cloud cannot have a unified view of similar data.  For accessing of 

data in different infrastructures users must register again to each independent 

infrastructure. This increases the risk of data loss, not only in case of internal 

system failure within the organization, but also in case of heavy traffic where 

the centralized system fails to respond to every request. 

The development of a distributed system is necessary, where different 

IoT organizations may connect and interact with each other. Registration is 

mandatory for an organization to join such a system, as the organization will be 

able to offer its users even more IoT devices, belonging to the other registered 

organizations. Another important aspect of this unified system is that registered 

organizations will be deemed equal and offered the same privileges of high data 

availability, thus ensuring that their collected data will never be lost. As for 

security issues, there will be no single master in charge of security, so each 

registered organization will be responsible for the security of their own devices 

and services. 

The present study intends to build an integrated distributed system with 

the aforementioned features, relying on and extending iXen, an existing 

implementation of a cloud-based architecture, in order to facilitate 

communication and collaboration between individual IoT systems, and satisfy 

the requirements of a wide range of users. 

1.2. Solution 

One approach to solve the aforementioned issues involves the use of 

the LINCA System, which is presented through this thesis. LINCA is an 

implementation of a distributed IoT system in the cloud, which allows inter-

connection and interaction of individual registered organizations thus forming 

an eco-system which provide users connected to any infrastructure with a 

unified view of data and services provided by multiple organization given that 

the user has the necessary authorization (i.e. users must be authorized to 

access data in a foreign infrastructure).. LINCA is responsible for the data 

management of registered systems, making them searchable by multiple users 

among different organizations. Also, LINCA manages the collected data of each 
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registered organization in a way that ensures high availability. On the other 

hand, LINCA assigns the responsibility of individual system security to each 

organization. LINCA functions are available through web-based graphical 

interfaces. LINCA can manage numerous IoT organizations, as well as the 

available types of their connected sensors, which are scattered geographically, 

serving multiple demands of various users.  

Data from sensors’ measurements is sent to the corresponding 

organization. Users’ interest in these measurements is expressed through 

queries to the organizations managing the data. Therefore, data will be 

accessible by users, as long as they are subscribed to the respective sensors 

and they are granted the necessary authorization by the administration of each 

specific infrastructure. Infrastructure owners can install devices to their 

organization, allowing users of either their own organization or of other 

registered organizations to subscribe, subject to payment. In other words, 

organizations’ sensors registered in LINCA will attract the interest of customers, 

who will need to pay subscription fees to be able to monitor the measurements 

of those sensors. 

1.3.  Contribution 

The work builds -upon previous work for iXen [1] system is leveraging 
principles of Service Oriented Architecture and modern standards of context 
information management. iXen is an experimental cloud-based configuration of 
Restful micro-services. Its intention is to tackle the limitations of existing IoT 
architectures. Also, one of iXen’s main priorities is the protection of its services 
from unauthorized services or user with the OAuth2 mechanism. This research 
extends iXen and implement a distributed system that connects multiple IoT 
architectures in a way that offers high availability services, security and an 
integrated search mechanism. 

Each organization in LINCA is represented by a cloud system that is 
developed in the FIWARE environment. The main characteristics of the 
approach implemented within the scope of the present thesis are summarized 
below: 

• The design specifications of each registered system are implemented 
using well-known open source web technologies such as PHP, HTML, 
JavaScript, as well as cloud-based services provided by the public 
platform FIWARE, which runs on OpenStack. 

• Each registered cloud system in LINCA is developed based on the 
principles of Service Oriented Architecture (SOA). Each cloud system 
function acts as a stand-alone service that communicates with others 
through RESTful interfaces. Service Oriented Architecture simplifies 
and facilitates the extension of each cloud system, as each separate 
service can be upgraded or replaced without affecting the operation of 
the entire architecture. Similarly, new service functionality can be easily 
added. 
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• The architecture of a registered cloud system is based on the “secure 
by design” approach, ensuring that system services are protected in the 
cloud. This way the services’ REST interfaces are only accessible by 
the system itself and authorized users. 

• The individual systems of LINCA can support sensors that transmit data 
through different low-level protocols, such as Bluetooth, Zigbee and 
WiFi, with the assistance of gateways, which transmit data to the cloud 
using a high-level IP protocol such as http, https or UDP, MQTT and 
Coap. The connection of each registered cloud system with its sensor 
interface is achieved through FIWARE's IDAS Back-End Device 
Management Service. 

• In each of LINCA’s cloud systems, data is available in JSON format 
making data processing independent of device type and communication 
protocol. 

• The project includes a complete design of the system in UML, detailing 
its specifications. 

• Each cloud system in LINCA can easily integrate a business model by 
assigning its registered users, as well as users registered to other cloud 
systems, with appropriate roles and specific permissions. 

• A key tool used for the implementation of LINCA's architecture is 
Apache Cassandra Database, which is responsible for data 
management and enables search by users connected to LINCA’s 
clouds. Furthermore, Cassandra provides security and high data 
availability to LINCA’s registered organizations. 

To be able to support the previously mentioned features, LINCA relies on a 
business model where the three main user categories of the infrastructure can 
each gain value while contributing to the expansion and maximum utilization of 
the system. The three-layer architecture model adopted by LINCA is depicted 
in Figure 1, as described in the rest of this section.  

• Layer 1 refers to the IoT infrastructure level, where Infrastructure 
Owners can select the cloud systems on which they will install their IoT 
devices. The devices of each Infrastructure Owner are connected 
directly or through gateways to each LINCA cloud system. Infrastructure 
Owners have the right to register sensors in one of LINCA’s registered 
cloud systems. The goal of Infrastructure Owners is to attract as many 
customers as possible from various LINCA cloud systems to whom they 
will sell data management services. 
 

• Layer 2 is essentially the core of the distributed system, comprising of 
numerous IoT cloud systems designed according to the architecture of 
iXen. Each LINCA cloud representing an IoT cloud system is controlled 
by its own System Administrator, who is in charge of adding and 
managing the registered users of the particular cloud system along with 
their assigned roles and permissions. Furthermore, the administrator of 
an individual LINCA cloud system also monitors the operation and 
functionality of the system, while also being responsible of assigning 
permissions to users registered to others LINCA cloud systems who 
want to gain access to the devices or services of that particular cloud. 
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Finally, System Administrators have the responsibility of registering 
their systems to LINCA in order to make them discoverable from users 
that wish to subscribe. 
 

• Layer 3 includes the Customers of each cloud system within LINCA. 
They have the rights to subscribe to one or more of the existing cloud 
systems and register to their corresponding sensor devices so as to 
collect data regarding the measurements of those IoT systems. 
Moreover, they can use the system of the cloud they have subscribed 
to in order to request access to the sensors of other LINCA cloud 
systems. 

 

Figure 1 – Three-layer architecture of LINCA
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1.4. Structure 

Chapter 2 provides the knowledge background required for 

understanding this work and presents the software tools that are used for the 

completion of this thesis.  

Chapter 3 enumerates the requirements for the presented system 

design and outlines functional and non-functional specifications through UML 

diagrams, while also providing the architecture diagram of a LINCA cloud 

system.  

Chapter 4 describes the services of a LINCA cloud system and explains 

how different LINCA cloud systems interact with each other according to the 

requirements of Chapter 3.  

Chapter 5 analyzes the performance of the system using real sensor 

data in order to examine system performance in cases of high data volume and 

computational load.  

Finally, Chapter 6 summarizes the conclusions and Chapter 7 offers 

recommendations for future work. 
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2. Background 
 
 

2.1 Service Oriented Architecture  

A service-oriented architecture (SOA) [2] is a computer software design 

enabling the provision of services among application modules over a 

network. Services built according to the SOA architecture can exchange data 

without human interaction or code alterations. 

A significant feature of a service in SOA is its independence of the 

technical characteristics of other interacting services. This transparent 

exchange is accomplished through the implementation of a firmly defined 

interface, which goes through the required actions to allow inter-service data 

streams. 

Service-oriented architecture (SOA) is based on a number of principles 

briefly discussed below: 

 

• Loose Coupling, meaning minimum interdependency among services, 

so as to ensure seamless operation even in case of service functionality 

modifications. 

 

• Service Abstraction, which refers to services’ ability to conceal the logic 

behind their functionality from other services or applications. In other 

words, a service only provides the necessary details about what it does 

and not the way it does it. 

 

• Service Reusability, which demands that logic or functionality is broken 

down into separate services for maximum reuse. A code written for a 

particular service should be able to work with multiple application types, 

without having to rebuild it for each individual application 

implementation. 

 

• Service Autonomy, implying that services have complete knowledge 

and control over the functionality they implement. 

 

• Service Composability refers to the “divide and conquer” approach 

applied by services, which tend to tackle problems by breaking them 

down into smaller, more manageable tasks, each implementing an 

individual business functionality. 

 

•  Service Interoperability, meaning that they apply common standards 

enabling different subscribers to use them. 
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2.1.1 RESTful Web Services 

Web services based on REST1 Architecture are known as RESTful web 

services, which rely on HTTP protocols to enable communication between 

client and server applications. The REST architecture handles each content as 

a resource. Furthermore, a RESTful web service is usually defined by a Uniform 

Resource Identifier (URI) and performs resource representation using HTTP2 

Methods and JSON format. 

The main HTTP methods are GET, POST, PUT and DELETE, referring 

to the operations of reading, creating, updating and deleting respectively. A 

RESTful architecture provides a common data model for these four operations, 

which defines the input to the POST and PUT methods, as well as the output 

for the GET method, while the HTTP status code indicates operation success 

or failure.  

A RESTful architecture also involves self-descriptive messages, with 

resources being independent from their representation to allow access to their 

content in diverse formats, like JSON3, XML4 and others. 

Finally, it performs stateful interactions via hyperlinks. As all interactions 

with resources are stateless, each HTTP request includes all required 

information regarding its execution to ensure that previous communication 

states do not have to be stored.  

 

2.2  FIWARE Platform for Application Development in Cloud 

FIWARE5 is an open-source middleware platform based on OpenStack6, 

supporting cloud-based development and distribution of service-oriented 

applications. This well-structured platform allows both intra-platform and inter-

platform service assembly. The FIWARE platform provides simple but robust 

APIs facilitating application development, while their specifications are public 

and free of charge.  

 

2.2.1  FIWARE Services  

FIWARE Generic Enablers (GE) provide simple general-purpose 

platform functions available through REST APIs, which can be used as modules 

of more complex applications.  

The following services were used in the context of this thesis: 

 

• Identity Management (IdM) – Keyrock 

 

Identity management is a security and business principle allowing specific 

individuals to access particular resources under properly defined conditions, 

regarding the time and reason of access. 
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The FIWARE Keyrock7 Generic Enabler provides an out-of-the-box 

configuration of the common characteristics of an Identity Management 

System, enabling other modules to use standard authentication mechanisms 

 in order to accept or reject requests based on industry standard protocols. 

These characteristics include user access to networks, services and 

applications, secure and private authentication from users to devices networks 

and services, authorization, trust and user profile management and privacy-

guaranteeing access to personal data. 

The Identity Manager is the fundamental module connecting IdM systems at 

connectivity-level and application level and authorizing third-party services to 

access personal data stored in a secure environment. 

• PEP Proxy – Wilma 

 

A PEP Proxy is an endpoint placed in front of a secured resource at a 

common public location, serving as a protector controlling access to resources. 

Users or other actors have to provide adequate information to the PEP 

Proxy for their request to pass through the PEP proxy and reach the actual 

location of the secured resource, which is unknown to the outside user and 

could be found in a private network behind the PEP proxy or on an entirely 

different machine. 

FIWARE Wilma8 is a simple PEP proxy built to work with the 

FIWARE Keyrock Generic Enabler. When a user attempts to obtain access to 

the resource behind the PEP proxy, the PEP will send the user's attributes to 

the Policy Decision Point (PDP), from which it will receive a security decision to 

enforce (Permit or Deny). Authorized users will barely notice any disruption of 

access, as the received response is identical to the one they would receive 

upon direct access to the secured service, whereas unauthorized users receive 

a 401 Unauthorized response. 

 

• Authorization PDP – AuthZForce 

 

For more complicated access control scenarios, an extra mediation 

microservice is necessary to assess each Permit/Deny policy decision by 

examining the data provided by the requesting service according to the full set 

of access control rules. 

FIWARE AuthZForce9 is an advanced access control Generic Enabler 

offering such an interpretive Policy Decision Point (PDP) according to 

the XACML standard and providing an API to get authorization decisions based 

on authorization policies and requests from PEPs.  

Rulesets can be updated making security policy maintenance flexible and 

adaptive to business needs. Additionally, highly extensible language is used to 

describe the access policy and meet any access control scenario.
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• Publish/Subscribe Context Broker – Orion Context Broker 

 

The Orion Context Broker10 is an implementation of the Publish/Subscribe 

Context Broker GE, providing an NGSI interface through which clients can  

query and update context information, receive notifications upon context 

information alterations and register context provider applications. 

 

• FIWARE Cygnus 

 

Cygnus11 is a connector persisting context data originating from Orion 

Context Broker into other third-party databases and storage systems, like 

MySQL, MongoDB, DynamoDB and CKAN, to generate a historical view of the 

context. It accepts NGSI dataflows and stores them in its predefined database. 

Cygnus can store raw and aggregate data, independent of user database.  

 

• FIWARE Comet 

 

The FIWARE Comet12 stores and retrieves historical raw and aggregated 

context data registered in an Orion Context Broker instance. 

All communications between the Comet and the Orion Context Broker (or 

any other third party) use standardized NGSI interfaces. 

 

2.2.2  Related Technologies to FIWARE 

 

• Authorization Protocol – OAuth2 

 

OAuth13 is an open-standard authorization protocol offering secure 

designated access capability to applications, by disallowing the exchange of 

password data and demanding the use of authorization tokens, the so-called 

“OAuth2 tokens”, to verify an identity between service consumers and 

providers. Therefore, it allows end users to approve the interaction between 

applications on their behalf without having to disclose their credentials. 

Additionally, the OAuth2 mechanism is specifically designed to work with 

HTTP protocol and allows the assignment of OAuth2 access tokens to third 

parties that have already been identified by an authorization service, such as 

Keyrock IdM. 

• MongoDB Databases 

 

MongoDB14 is an open-source non-relational database management 

system (DBMS) using a document-oriented database model that supports 

various forms of data and is suitable for big data applications and other 

processing jobs involving data that do not fit well in a traditional relational
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model. Instead tables and rows, the MongoDB architecture comprises of 

collections and documents. 

 

• Information Model – NGSIv2 

 

FIWARE-NGSIv215 manages the whole lifecycle of context information, 

involving updates, queries, registrations, and subscriptions. The NGSIv2 API 

comprises of a simple information model based on context entities and a 

RESTful interface for context data exchange through queries, subscriptions and 

updates. 

The key elements of a NGSI information model are: 

 

Entity is any physical or logical object (sensor, user etc.). Each entity is 

characterized by an entity id and a type e.g. "Sensor". 

Attributes are elements of entities and have a name, a type, and a 

value. 

Name (of an attribute) describes the type of property that represents the 

value of the attribute of the entity.  

Type (of an attribute) refers to the data type of the value of the attribute 

(e.g. Float, Int, String). An attribute can have from one-to-n metadata.  

Metadata is a part of an attribute describing the property of the attribute 

value. Metadata variables, like name, type and value, follow the same rules 

followed by the corresponding attribute variables. 

 

JSON objects are used for entity representation, applying the syntax rules 

set by the NGSI standard. 

 

• Extensible Access Control Markup Language (XACML) 

 

eXtensible Access Control Markup Language16 (XACML) is a vendor-

independent declarative access control policy language, a processing model 

and an architecture specifying how to assess access requests according to 

policy-defined rules and enabling common access control terminology and 

interoperability. XACML policies are split into a hierarchy of three levels, 

PolicySet, Policy and Rule. 

The PolicySet is a collection of Policy elements containing one or 

more Rule elements. Each Rule within a Policy is evaluated as to whether it 

should grant access to a resource - the overall Policy result is defined by the 

overall result of all Rule elements processed in turn. Separate Policy results 

are then evaluated against each other using combining algorithms define 

which Policy wins in case of conflict. A Rule element consists of a Target and 

a Condition. 

 

 

 

. 
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• Internet of Things (IoT) – Cloud Computing 

 

Two pioneering technologies, Internet of Things (IoT) and cloud computing, 

have seen tremendous expansion in recent years [3] , due to the increasing use 

of smart devices and sensors in many fields, such as healthcare and assisted 

living, industrial systems and environmental monitoring. Smart devices and 

sensors operating as Internet-connected data collectors, together with large 

(mostly cloud) platforms where data is stored for permanent storage and 

analysis, provide a beneficial environment for modern businesses to broaden 

their client base. 

The concept of marrying the Internet of Things with cloud computing has 

also provided new opportunities for real-time data accumulation and analysis. 

Being simple, scalable and affordable, cloud computing has become one of the 

most preferred platforms for IoT data storage, processing and analysis, with 

companies selecting to deploy their applications and systems on the cloud to 

minimize infrastructure, maintenance and operating costs. 

2.3  IoT Platform 

IoT platforms are the core of IoT architecture, connecting the real and 

virtual world and enabling communication between entities. 

An IoT platform includes the following components: 

 

• Connectivity and Normalization 

The layer of connectivity incorporates various protocols and data formats into 

a single "software" interface, guaranteeing device interactivity and proper data 

reading. A common format and storage location for all data facilitates the 

management, analysis and monitoring of IoT devices. 

• Device Management 

The device management unit makes sure that the connected entities function 
properly and that installed software and applications are running correctly with 
updated versions. Actions performed in this layer include device disposition, 
remote configuration, management of software and firmware updates and 
troubleshooting. With thousands of devices composing an IoT-supported 
system, automation and batch tasks are required to minimize manual labor and 
related costs. 

• Database 
 

Data storage is another key feature of an IoT platform, while device data 
management has made database requirements more complex and demanding, 
in terms of: 

Volume, as the amount of data to be stored can be enormous.  
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Variety, with diverse devices and types of sensors employing different data 
formats.  

Velocity, often making data flow analysis necessary for instant decision 
making.  

Veracity, or accuracy, since sensors sometimes generate vague and 
imprecise data.  
To meet these requirements, an IoT platform is often combined with a cloud-
based database, distributed across numerous sensor nodes, with scalability for 
big data and capability of storing both structured and unstructured data (SQL 
and NoSQL respectively). 

 

• Processing and Action Management 

This IoT platform component involves accumulating data from the connectivity 

and normalization module and storing it in the database. Event-triggering rules 

are used in this stage to enable "smart" actions depending on the sensor data. 

An example of such rule in the case of a smart home could be: "If GPS-based 

indications show that the distance between a person’s smartphone and their 

home is greater than 5 meters, then all home lights should be turned off."  

• Analytics 

IoT implementations often demand complex analytics to benefit from data 

streams registered in an IoT platform. For instance, in a smart home, analytics 

could assist in finding which combination of lights and heating is mostly 

preferred by the owner during the day and night hours depending on weather 

conditions. 

• Data Visualization 

Data visualization is vital since it enables pattern and trend identification. Line 

or pie charts and 2D or 3D models available in administrative toolkits are used 

to this end. 

• External Interfaces 

In business and corporate implementations, it is significant and beneficial to 
integrate IoT with existing management tools, ERP systems, and the IT 
ecosystem in general. Embedded application programming interfaces (APIs), 
software development kits (SDKs) and gateways are the fundamental 
mechanisms enabling integration of third-party systems and applications. 
Therefore, well-defined external interfaces are essential in minimizing related 
integration efforts and costs. 

2.4  Distributed Systems 

A distributed system can be simply defined as a group of computers 

operating together and appearing as a single entity to the end-user [4].
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The computers composing a distributed system can be either in physical 

proximity, interconnected through a local area network (LAN), or geographically 

sparse and connected via a wide area network (WAN). A distributed system 

can consist of diverse architecture components like mainframes, servers, 

workstations, personal computers, minicomputers and so on. Moreover, 

regardless of their types, these machines operate simultaneously and have a 

shared state, ensuring that upon failure of a single component, the entire 

system’s uptime will not be significantly affected. 

Distributed Systems (DS) have numerous advantages, include the 

following: 

 

• Node interconnection facilitates data exchange and sharing between DS 

nodes. 

• Scalability enables easy node insertion to the distributed system. 

• Seamless operation implies that failure of a single node cannot cause 

failure of the entire distributed system, instead communication among all 

other nodes is maintained. 

• Multiple sharing of resources across various nodes is possible. 

 

2.5 Distributed Databases 

A distributed database comprises of two or more files stored in different 

servers located either on the same network or on entirely different networks [5]. 

Database components are stored in multiple physical locations and processing 

is disseminated among multiple database nodes. Distributed Databases have 

the following characteristics: 

 

▪ Databases are logically interrelated and usually compose a single logical 

database. 

▪ Data is physically stored across multiple nodes. Data in each node is 

managed by a Database Management System (DBMS) independent of 

the other nodes. 

▪ Node processors are connected through a network and do not dispose 

of multiprocessor configuration. 

▪ A distributed database is not a loosely connected file system. 

▪ A distributed database includes transaction processing, yet does not 

constitute a transaction processing system. 

 

2.5.1 Apache Cassandra 
 

Apache Cassandra17 is a NoSQL, wide column store18, peer-to-peer 

distributed database running on a server cluster, designed to manage large 

amounts of data and support high user traffic, i.e. thousands of concurrent 

users or operations per second. Unlike other master-slave databases, in 

Cassandra, all nodes in its cluster have an identical role and communicate with
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 each other equally, while there is no single point of failure19 guaranteeing 

increased fault tolerance. Consequently, in case of cluster node failure, other 

nodes take over to complete the task. An additional advantage of this database 

is the possibility to add (or remove) a server to (or from) the cluster at any time 

without requiring downtime. Moreover, high data write speed allows real-time 

processing of big data. 

As mentioned before, Cassandra is a wide column store NoSQL 

database. This means that it uses tables, rows, and columns, where the names 

and format of each column can vary from row to row on the same table. The 

components of Cassandra’s data model are keyspaces and column families, 

also known as tables and columns. A graphic representation of this data model 

is depicted in Figure 2. 

 

 
 

Figure 2 – a graphic representation of a Cassandra Data Model 

 

A keyspace20 is a container for a list of one or more tables, like a 

database in a relational database. These tables contained within a keyspace, 

are also known as column families and comprise of a collection of rows. In 

Cassandra, a row is the smallest unit of the table that stores data. It consists of 

a primary (or partition key), identifying a row in a column family (table), and a 

number of columns associated with it. In turn, A column is Cassandra’s basic 

data structure with two values, namely key or column name and column value. 

Column key is similar to the concept of a column name in relational databases 

and uniquely identifies a column in a row, while a column value stores one value 

or a collection of values. A column family is similar to the concept of a column 

value in a relational database. Figure 3 shows a column family with its rows of 

data with the corresponding columns and partition keys. 
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Figure 3 – Column family view 

 

The basic infrastructure component of this database is the node server 

responsible for storing data. A collection of Cassandra server nodes constitutes 

a cluster of nodes, known as the Cassandra ring. Interaction between cluster 

nodes is based on a peer-to-peer communication protocol called Gossip 

Protocol21 which propagates information about data and node health. 

Communication between two nodes involves the provision of information about 

each node’s status, as well as about the latest status of any node with which it 

had previously communicated. This process allows for failure detection. On the 

other hand, during start up, a cluster node, the so-called “seed node”, uses this 

protocol to facilitate all other nodes of the Cassandra ring in identifying each 

other.  

As already mentioned, a table within a keyspace consists of various rows 

referenced by partition keys. The partitioner22 is a hash function calculating the 

hash value of a particular partition key. This value is known as token. The 

hashing algorithm data mapping to physical cluster nodes, meaning that every 

range of values (token range) generated from the partition keys through the 

hashing algorithm23 is assigned to the corresponding cluster node. Then, the 

created token will decide which node will receive the first replica of data that the 

token refers to, while the total number of replicas across the cluster depends 

on the replication factor24. If the replication factor is greater than one, then the 

placement of the subsequent replicas is determined by the replication strategy. 

There are two main replication strategies used by Cassandra, the Simple 

Strategy25, placing subsequent replicas on the next node in a clockwise routine, 

and the Network Topology Strategy26 ensuring that replicas are not stored on 

the same rack, i.e. a unit that contains multiple servers all stacked one on top 

of another. In addition, Cassandra uses snitches27 to discover the overall 

network overall topology. A snitch determines which datacenters and racks 

nodes belong to. With this process, Cassandra stores data replicas on multiple 

ring nodes to guarantee reliability and fault tolerance. Figure 4 below shows the 

division of a 0 to 100 token range evenly amongst a four-node cluster.  Node 1 

is responsible for partition key hash values 0-24, Node 2 is responsible for 
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partition key hash values 25-49, Node 3 is responsible for partition key hash 

values 50-74  and Node 4 is responsible for partition key hash values 75-99. 

 

 

Figure 4 – Nodes of Cassandra rings with their corresponding token range 

 

The client reads or writes requests that can be sent to any node in the 

cluster. Cassandra is a master-less database, so the client can connect to any 

cluster node at any given moment. When a client connects to a node with a 

request, the particular node serves as the controller for the specific client 

operation and acts as a proxy between the client and the nodes owning the 

requested data. The controller decides which nodes in the ring should get the 

request based on cluster configuration. 

Depending on the partition key and replication strategy, the controller 

forwards and replicates data to the respective nodes, which process the request 

individually. During a node-level write operation, every node initially writes data 

into the commit log and then writes them into the memtable, which is a write 

back cache located in the memory. The commit log, located in the disk, is used 

for restoring the data in case of node failure resulting to data loss in the 

memtable. Whenever the memtable is at full capacity levels, the data it held is 

written to the disk’s SSTable (Sorted String Table), which is an ordered 

immutable key value map, providing an efficient way of storing large sorted data 

segments in a file. Moreover, after data in the memtable are flushed to an 

SSTable, their corresponding data in the commit log are purged.  

Likewise, during a node-level read operation, the client can choose to 

connect to any node of the cluster ring. The chosen node is called the controller 

and is responsible for returning the requested data. A partition key is necessary 

for every read operation and is used by the controller to locate the node where 

the first replica is located. 
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Consequently, for every read request, Cassandra reads data from all 

corresponding SSTables and scans the memtable for any data fragments, 

which are then merged and returned to the controller. Internally, the SSTables 

are using a Bloom Filter to check whether the requested partition key is stored 

in an SSTable. Cassandra uses Bloom Filters to check if any of the SSTables 

contains the requested partition key, without having to actually read their 

contents, hence evading expensive I/O operation. Once a read is completed 

from all contributing nodes, the controller compares the retrieved data. If the 

replica has an older version of the data, the controller returns the latest version 

to the client by issuing a read repair command with the older version of the data.  

Also, a new node can join the Cassandra Cluster without affecting the 

function of the other cluster nodes. The auto-bootstrap function in Apache 

Cassandra is responsible to redistribute the data in Cassandra’s cluster when 

a new node is joining the cluster. Initially, the node that will join the Cassandra 

cluster is defined as an empty node without data. When this new node starts 

the auto-bootstrap process, it must contact the cluster seed nodes in order to 

learn information about the other cluster nodes and the configurations they 

follow. After it contacts the seed nodes, it informs the Cassandra Cluster that is 

ready to join the cluster. Immediately, through the consistent hashing algorithm, 

the node calculates the portion of cluster’s data for which will be responsible. 

In this way the cluster sends to the new node the corresponding portion of data 

.When the new node receives all the data for which it will be responsible, it 

informs the cluster that is a part of it and is  ready for usage . 

2.6 Docker 

Docker28 is a containerization platform that packages applications and 

all their dependencies together in the form of a docker container to guarantee 

interoperability, i.e. seamless operation in any environment.  

As Figure 5 demonstrates, every application runs on separate containers 

and has its own dependencies and libraries, ensuring independence of the 

other applications and providing developers with the necessary security to build 

applications that will not interfere with one another. 

 

 

Figure 5 – Docker 
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The basic features of Docker are listed below: 

 

▪ Dockerfile29 is a textual instruction document with all the commands that 

a user can call on the command line to assemble an image.  

▪ Docker Images30 are the building components of a Docker Container, 

stored in the Docker Registry, which is either a local user repository or a 

public repository, like a Docker Hub, permitting multiple users to 

collaborate in building an application. 

▪ Docker Container31 is a running instance of a Docker Image holding the 

entire package needed to run the application. As a standardized unit, it 

can be created on the fly for application or environment deployment. 

▪ Docker Machine32 is a tool enabling a provider to install Docker Engine 

(Docker’s Software) on virtual hosts and manage them easily with 

docker-machine commands. It allows the creation of Docker hosts on 

various environments, such as a Windows box or local Mac, a business 

network, a data center, or even cloud providers like Microsoft Azure and 

Amazon AWS. Docker-machine commands can help start, inspect, stop, 

and restart a managed host, upgrade the Docker client and daemon, and 

configure a Docker client to talk to the provider’s host. 
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3 LINCA System Requirements and Design 
 

3.1  Use Case 

LINCA System is consisted of three levels. Each of those levels serves 

a different functionality for different types of users. The basic types of users in 

the system are administrators, infrastructure owners and customers. The 

administrators have the rights to manage their cloud systems that are registered 

in LINCA and the users of them, while the infrastructure owners have the 

permissions to install and connect their own devices of the same or different 

type at the cloud system on which they are registered. The Customers that are 

connected to their registered cloud system, have the right to subscribe to 

sensors that are connected to their  cloud system but also to sensors that are 

located to other remote registered cloud systems of LINCA where they are 

authorized, in order to receive updates of the sensor’s measurements.  

3.2   Functional and Non-Functional System Requirements 

System requirements are defined by separating them into functional and 
non-functional. 

3.2.1 Functional System Requirements 

Functional requirements are defined as the processes that must be met 

by the system and they are directly related to its implementation. To consider 

the system as fully functional, all the requirements of each type of user must be 

met. Below, the requirements of each user group is presented separately. 

• Customers 
 

1. Sign up - The user in order to sign up to a cloud system, he/she fills 

in his/her details, such as name, email, password. In addition, he/she 

selects the customer option as his/her type of user. When he/she 

completes the necessary information, the administrator of this cloud 

system registers him/her to the cloud system as customers and 

assigns them their respective roles with their corresponding 

permissions. 

 

2. Login - The user enters his/her login details such as email and 

password, on the login page in order to log in to his/her cloud system. 

Immediately, an authentication process is performed by the cloud 

system. If the user is authenticated successfully then he/she can 

access the cloud system.  

 

3. Search for available clouds / Subscribe to available clouds - The 

graphical interface shows the cloud systems that are registered in the 

LINCA and that are available to receive subscriptions requests from 

users that belong to other clouds. When requesting subscription to 
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these cloud systems, the corresponding administrator decides 

whether to accept the user’s subscription request. If that administrator 

decides to accept it, he/she will assign to the user who made the 

request the respective roles with their corresponding permissions, in 

order to have access to resources of his/her cloud system. 

 

4. Search for Sensors / Subscribe to Sensors - The graphical 

interface shows to the user the available cloud systems that are 

registered in the LINCA. Then, the user selects the cloud systems 

he/she wants to know about their connected sensors, along with the 

corresponding sensors’ measurements that the sensors wish to 

perform. When the user fills in the necessary information, an 

identification process is performed by the cloud system that user is 

connected and an authorization process is performed by the cloud 

systems that he/she wishes to know about their sensors. After the 

successful identification and authorization of user, this user is able to 

select the sensors that resulted from the search and create a new 

subscription to them. Furthermore, when the user selects the sensors 

that they wish to create a subscription of, the user’s sensor 

subscription list in Cassandra database is updated with the 

corresponding sensor’s information.  

 

5. View sensors’ subscriptions - Through a graphical interface, a user 

can view the sensors that they have a subscription to, along with the 

cloud systems to which they belong, the owner of them, and the date 

of subscription. This list is located on the distributed database of 

Cassandra. All of these will be done after the user is successfully 

authenticated and authorized by the cloud system in which he/she is 

connected. 

 

6. View Sensor Current Measurement - A user, through the graphical 

interface, can monitor their sensors’ current measurements that they 

subscribed to. This will be done after a user authorization and 

authentication check has been performed. The identification process 

is performed by the cloud system that the user is connected to, and 

an authorized process by the cloud he/she wishes to know about the 

sensors current measurements. After the successful identification and 

authorization of the user, they can monitor the current measurement 

of that sensor of that sensor. 

 

7. View Sensor Statistical Measurements - A user, through the 

graphical interface, can monitor the average, minimum and maximum 

of the measurements recorded by the sensors that they have 

subscribed to. Again, this will be done after a user authentication and 

authorization check has been performed. The identification process is 

performed by the cloud system that is connected, and an authorization 
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process by the cloud he/she wishes to know about the sensors 

statistical measurements. After the successful identification and 

authorization of user, he/she can monitor the statistical measurement 

of the selected sensor. 

 

• Infrastructure Owners 
 

1. Sign up - The user in order to sign up to a cloud system, he/she 

fills in his/her details, such as name, email, password. In addition, 

he/she selects the Infrastructure Owner option as his/her type of 

user. When he/she completes the necessary information, the 

administrator of this cloud system registers him/her to the cloud 

system as customers and assigns them their respective roles with 

their corresponding permissions. 

 

2. Login - The user enters his/her login details such as email and 

password, on the login page in order to log in to his/her cloud 

system. Immediately, an authentication process is performed by the 

cloud system. If the user is authenticated successfully then he/she 

can access the cloud system. 

 

3. Insertion of Sensor - The infrastructure owner has the right to 

insert new sensors into the cloud system that he/she is connected. 

Specifically, through the graphical interface, the infrastructure 

owner selects the type of sensor that he/she will register and then 

defines the sensor’s name, identity, and measurements. When the 

user fills in the necessary information, an identification and 

authorization process is performed by the cloud system that user is 

connected. After the successful identification and authorization 

process of user, he/she can connect his/her sensors to the cloud 

system with the help of IoT Agent Service. IoT Agent Service is 

responsible to receive data from the connected cloud’s sensors and 

to forward them to Publish/Subscribe Service. The information of 

the cloud’s sensors is also stored in the distributed Cassandra 

database, in order to be discoverable by authorized users who 

belong to other cloud systems of LINCA. The physical device sends 

its data to the cloud system’s gateway that it is connected. The 

gateway forwards the data it receives to the Sensor Interface 

Service (IoT Agent) of this cloud system. There, the service 

analyzes the data and detects which sensor it is referring to. Then 

Sensor Interface Service updates the corresponding sensor entity 

in the Publish/Subscribe Service with the current measurements it 

received. 

 

4. Edit registered sensors - The infrastructure owner can edit a 

connected sensor by updating its entity in Publish/Subscribe 
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Service. Also, he/she must update the sensor’s information that is 

stored Cassandra database. 

 

5. Deletion of registered sensors – The infrastructure owner can 

delete a connected sensor by deleting the corresponding sensor 

entity in Publish/Subscribe Service. Also, he/she must delete the 

corresponding sensor information in Cassandra database. 

 

6. View registered sensors - Through a graphical interface, an 

Infrastructure Owner can view the sensors that registered on his/her 

cloud system, along with the date of registration. This will be done 

after the user is authenticated and authorized by the his/her cloud. 

 

• Administrators 
 

1. Login - The user enters his/her login details such as email and 

password, on the login page in order to log in to his/her cloud 

system. Immediately, an authentication process is performed by the 

cloud system. If the user is authenticated successfully then he/she 

can access the cloud system. 

 

2. Insertion of Cloud System- The administrator has the permission 

to insert his/her cloud system to LINCA. Specifically, through the 

graphical interface, the administrator types the information of 

his/her cloud system, such as name, IP-address, owner and 

location. When the administrator fills in the necessary information, 

an identification and authorization process is performed by his/her 

cloud system. After the successful identification and authorization 

process of user the cloud’s information is stored in the distributed 

Cassandra database, in order to be discoverable by authorized 

users who belong to other cloud systems of LINCA.  

 

3. Creation of cloud users - The administrator can create a new user 

profile within his/her cloud system User Identification and 

Authorization Service and classify them into one of the available 

user categories, such as customers and infrastructure owners. 

 

4. Edit cloud users – If it is necessary, the administrator may edit 

user’s profile information that are stored in the User Identification 

and Authorization Service of his/her cloud system.  

 

5. Deletion of cloud users - If it is necessary, the administrator can 

delete a user from his/her cloud system by deleting the 

corresponding user’s profile from the User Identification and 

Authorization Service of his/her cloud system. By deleting a user 

should simultaneously delete the information entities associated 

with him/her in the cloud system. In case a customer user is deleted, 
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his/her subscription to the sensors must be deleted too. In case an 

infrastructure owner is deleted, the information related to his/her 

registered sensors to the cloud system should be deleted at the 

same time. 

 

6. System Monitoring - The administrator has the ability, through a 

graphical interface, to monitor at any time which users and sensors 

are on his/her cloud system. Also, the administrator can monitor at 

the same time the workload of virtual machines run by the cloud 

system services. 

 

3.2.2  Non-functional System Requirements  

The fulfillment of these requirements is not necessary for an application 

to perform its essential functionality. However, their degree of fulfillment also 
affects the quality of the finished product, especially if it is a commercial 
application. These requirements include: 

• Performance - Refers to the response speed of the system under 
high workload conditions. 
 

• Security - It concerns the security of users, such as their secure 

access to the system and the protection of their identity and personal 

data. At the same time, it also concerns the protection of the united 

system, by preventing access to services and data through the 

network from unauthorized sources (services or users). The 

infrastructure of the system is developed in order to ensure by the 

level of architecture, how all requests between its services are 

properly authorized, excluding unauthorized users and services from 

accessing system resources online. 

 

• Usability - Specifies how easy the system is to use. This category 

includes features such as graphical interfaces and everything else 

designed to improve the application experience. 
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3.3 Class Diagram 
 

 

 

Figure 6- LINCA Class Diagram 
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In order to understand the functions of each cloud system of LINCA as 

well as the correlations of individuals services, a detailed description of the 

classes that make up each cloud system, is  illustrated above in Figure 6.  

 

 

Figure 7 – Correlations between classes of LINCA’s cloud system 

 

Each class consists of a header, the attributes and the methods for 

managing the attributes of this class. 

• Class User - This class is the generalization of cloud system users. It must 

be noted that it contains the components that make up each user's profile 

in the cloud system, such as username, email and password. Once the user 

has been authenticated by the cloud system, thus successfully login into it, 

the user continues as an infrastructure owner or a customer, focusing on its 

corresponding usage scenarios. 

 

• Class Customer - The customer is a subclass of the user class. Users of 

this class focus their attention on the sensors that are registered by the 

corresponding infrastructure owners. Also, they can search for available 

cloud systems of LINCA, in order to subscribe to them and get access to 

their services and devices. In addition, they are able to search for available 

sensors that are connected to their subscribed cloud systems and subscribe 

to those sensors that they are interested in. If they subscribe to a sensor, 

they can monitor its current and statistics measurement. 

 

• Class Infrastructure Owner - The infrastructure owner is also a subclass 

of the user class. A user of this class has the ability to insert / edit / delete 

sensors in his/her cloud system. One instance of this class is associated 

with one instance of cloud class.  

 

• Class Administrator - The system administrator has the ability to register 

his/her cloud to LINCA system. Also, they can enter / edit / delete users that 

are subscribed and registered to his/her cloud system. In addition, 

administrator has the permission for monitoring of users, sensors, service 
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workloads of his/her cloud system. The Administrator class is a subclass of 

the user class. 

 

• Class Role - An instance of role class is associated with an instance of 

permission class. Hence, a user of the cloud system is assigned a role with 

the corresponding permissions. This way the user inherits the 

corresponding role’s permissions as well. The system automatically assigns 

a role to a user when they create an account in the cloud system in order to 

gain access to various cloud system services. The methods used by this 

class are about creating and assigning roles to a cloud user. 

 

• Class Permission - The purpose of the Permission class is to describe the 

request that the holder has the right to execute. The request made by the 

user or service consists of an HTTP action such as GET, PUT, POST, 

PATCH, DELETE , in a resource located at the requested service such as 

http://cloudB/serviceD/resourceX. This class empowers users, such as 

infrastructure owners or customers, to access system services. The 

methods in this class relate to creating a permission and assigning it to a 

role. 

 

• Class Access Control Rules - After permissions are assigned to a role, 

the access control rule class defines the right of the owner of that role to 

execute a request. An instance of the Access Control Rule class is 

associated with an instance of role class. It is responsible for permitting or 

denying access requests, based on the policy that constitutes the instance 

of the role. An access control rule follows the XACML standard (eXtensible 

Access Control Markup Language), where it is stored and maintained in the 

AuthZForce service. 

 

• Class Sensor Subscriptions - Customer of each cloud system can 

subscribe to a subset of sensors that are connected to cloud systems of 

LINCA. An instance of the Sensor Subscription class concerns only one 

customer and contains information on his/her subscriptions to sensors. 

When a customer chooses to add a new sensor to his/her existing 

subscriptions list, a unique identifier of the sensor and the date of 

registration on that sensor, is recorded in a subscription instance. A 

customer can monitor his/her subscribed sensors through its subscription 

list. 

 

• Class Cloud - This class is the generalization of cloud systems that are 

registered in LINCA system. When the administrator of each cloud system 

is registering its cloud system to LINCA must provide the attributes that  

defines it, such as the cloud ID , cloud name , cloud location, cloud city and 

cloud ip-address. Each cloud system may include as many sensors 

instances their infrastructure owner wishes. 
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• Class Sensor - This class is the generalization of different sensor models 

that are connected to LINCA’s cloud systems. When the infrastructure 

owner of each cloud system is registering a sensor to his/her cloud system, 

must provide the attributes that  defines it , such as  the unique sensor ID 

and the sensor model. Also, the location and the owner of the sensor   are 

automatically recorded by the cloud system. That depends on which cloud 

system the infrastructure owner logged in (e.g. If the infrastructure owner 

entered the cloud system that is located to Chania then the sensor’s location 

will be Chania).  The cloud system may include as many sensors instances 

the infrastructure owner wishes.  

 

• Class Proximity Beacon - An instance of this class represents sensors of 

the "Estimote" company, namely "Proximity Beacon" sensors. These 

sensors can measure the temperature, the ambient light and the 

atmospheric pressure. There respective units of measurement is Celsius, 

Lux and Pa. 

 

• Class Historic Data - For a sensor that is connected to a cloud system of 

LINCA, a history of data on changes in its attribute values is maintained. An 

instance of this class corresponds to only one sensor and contains raw and 

aggregated time series data for its measurements. The  Cygnus service is 

responsible for this operation. Instance of Historical Data Class is used by 

the Comet service to extract statistics values, such as average, maximum, 

minimum, for measurements of each registered sensor. Class methods 

relate to the retrieval and storage of raw and aggregated data in different 

sensor instances. 

 

3.4 Use Case Diagram 

The functional requirements of customers, infrastructure owners and 

administrators that are described Section 3.2.1 are presented below in the form 

of Use Case Diagrams. 

Customer through graphical interfaces can browse the available cloud 

systems that are registered in LINCA and can subscribe to the cloud systems 

that he/she wishes to access their services and devices. Also, customer user 

through a search engine can query for sensors that are connected to cloud 

systems in which he/she is subscribed. In addition, customer can browse a list 

with his/her subscribed sensors in order to view sensors’ current and statistics 

values. Customer’s functional requirements as explained in more detailed in 

Section 3.2.1 are illustrated in Figure 8. 
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Figure 8 – Customer Use Case Diagram 

 

 

Accordingly, an Infrastructure Owner through graphical interfaces can 

register sensors to his/her cloud systems. Also, they can browse a list with 

his/her registered sensors in order to edit or delete them. Infrastructure owners’ 

functional requirements as explained in more detailed in in section 3.2.1 are 

illustrated in Figure 9. 

 

 

 

Figure 9 – Infrastructure Owner Use Case Diagram 

 

 

Lastly, an administrator of cloud system is responsible to register his/her 

cloud system in LINCA. Also, an administrator of a cloud system is able to insert 
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/ edit / delete user to his/her cloud system. In addition, they have the ability to 

monitor the workload of virtual machines run by his/her cloud system services 

and the ability to monitor connected users’ behavior. System Administrators' 

functional requirements as explained in more detailed in Section 3.2.1 are 

shown in Figure 10. 

 

 

 

Figure 10 – Administrator Use Case Diagram 
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3.5 Sequence Diagram 

This section shows the sequence diagrams for each type of user. The 
sequence diagrams below aim to present the most important system’s functions 
for these categories of users.  

As local services we define the services that are located to the cloud 
system in which the user is connected and makes requests and as remote 
services we define the services that are located to a remote cloud system of 
LINCA in which the user is interested to access its services. 

The main idea of the distributed system is to exploit the features of 
Cassandras (e.g. replication, master-less, scalable). Each LINCA’s cloud 
system has a node of the Cassandras cluster. A cloud system can become 
known in the LINCA system by registering to Cassandra. Automatically it 
becomes discoverable by other cloud system of the distributed system. 

All requests made by users through the graphical interfaces to protected 
services must pass through a common stage. This stage involves user 
authentication by the local Keyrock. Once the user has been identified by this 
local service, they can proceed to the next stage, the user authorization. 

 

• Registration of cloud system in LINCA 

System Administrator of each cloud system is responsible to register 
his/her cloud system to LINCA system in order to be discoverable from users 
that wish to subscribe to his/her cloud system. Administrator of each cloud 
system through the local Web Application can type the information of his/her 
cloud system, such as name of system, location, ip address and description ( a 
text that describes the cloud system) . Web Application forwards the admin’s 
request to the local Application Logic in order to route it to the appropriate 
services. Then the local Application Logic is responsible to add the OAuth2 
token of Administrator to his/her initial request and forward it to the local PEP 
Proxy of Register Cloud Service. Local PEP proxy of Register Cloud Service 
checks the OAuth2 token in local Keyrock in order to identify who is making this 
request. After, the local Keyrock returns the user’s information of this OAuth2 
token to local PEP Proxy Register Cloud Service. Immediately, local PEP Proxy 
of Register Cloud Service checks in the local AuthZForce Service if the 
identified user has the permissions to access the local Register Cloud Service.  
After the successful authentication and authorization of the admin user, his/her 
initial request is forwarded to the protected service, Register Cloud Service. 
This service is responsible to insert the information of admin’s cloud system to 
the local node of Cassandra’s cluster.   
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The above procedure is represented as a sequence diagram in Figure 
11. The blue dashed lines indicate that the corresponding services are located 
to local cloud system. The red boxes represent the services that are responsible 
for the authentication and authorization of the requested user. 

 
Figure 11 – Registration of cloud system in LINCA Sequence Diagram 

 

[ EdgeDetails ] - Admin via Web Application is typing the information of 

his/her cloud who wants to register in LINCA.  

[ RegisterEdge ] - Web Application forwards the request to Application 

Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to the 

initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -   PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 

[ CheckUserXACML ] - PEP proxy checks user’s permissions in 

AuthZForce. 

[ QueryRegisteredEdges ] - If AuthZForce returns “Permit” then PEP proxy 

forwards the initial user’s request to the protected service , the Register 
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Cloud Service. If AuthZForce returns “Denied” then the PEP proxy will not 

forward the initial request. 

[ RegisterEdge ] – Register Cloud Service process the request and imports 

the cloud system’s information in Cassandra DB . 

[ return OK ] - In the end, Cassandra DB returns if the insertion was success. 

 

• Querying for Available Cloud Systems in LINCA 

A customer has the ability to search for available cloud systems that are 
registered in LINCA in order to subscribed to them. Each cloud system is 
registered to LINCA by the corresponding administrator as shown in the 
previous paragraph. Customer through the local Web Application makes a 
query request to find the available LINCA’s cloud systems. Web Application 
forwards the customer’s request to the local Application Logic in order to route 
it to the appropriate services. Then the local Application Logic add the OAuth2 
token of Customer to his/her initial request and forward it to the local PEP Proxy 
of Query Available Clouds Service. Local PEP proxy of Query Available Clouds 
Service checks the OAuth2 token in local Keyrock in order to identify who is 
making this request. After, the local Keyrock returns the user’s information of 
this OAuth2 token to local PEP Proxy Query Available Clouds Service. 
Immediately, local PEP Proxy of Query Available Clouds Service checks in the 
local AuthZForce Service if the identified user has the permissions to access 
the local Query Available Clouds Service.  After the successful authentication 
and authorization of the customer user, his/her initial request is forwarded to 
the protected service, the Query Available Clouds Service. This service is 
responsible to query for available LINCA’s cloud systems in the local node of 
Cassandra’s cluster. This node is responsible for communicating with other 
Cassandra’s nodes in order to retrieve the data for the user's request. Using 
Cassandras does not require direct access to foreign systems since it is done 
directly by Cassandra. 
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 The above procedure is represented as a sequence diagram in Figure 
12. The blue dashed lines indicate that the corresponding services are located 
to local cloud system. The red boxes represent the services that are responsible 
for the authentication and authorization of the requested user. 

 
Figure 12 – Querying for LINCA’s available Cloud Systems Sequence  Diagram 

 

[ SearchEdges ] - User via Web Application wants to search for the Available 

Clouds systems in LINCA .  

[ QueryEdges ] - Web Application forwards the request to Application Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to the 

initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 

[ CheckUserXACML ] - PEP proxy checks user’s permissions in 

AuthZForce. 

[ QueryRegisteredEdges ] - If AuthZForce returns “Permit” then PEP proxy 

forwards the initial user’s request to the protected service , the Query 

Available Clouds Service. If AuthZForce returns “Denied” then the PEP 

proxy will not forward the initial request. 

[ QueryEdges ] - Query Available Clouds Service process the request and 

starts querying for available cloud systems in Cassandra DB. 

[ getAvailEdges ] - In the end, Cassandra DB returns the available cloud 

systems. 
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• Subscribe to LINCA’s cloud systems 

A customer as shown in previous paragraph he/she can query for 

available clouds that are registered in LINCA. After this process, user can 

choose the cloud systems that wishes to access their services and devices. 

Customer through the local Web Application makes a subscription request to 

the LINCA’s cloud system that is interested. Web Application forwards the 

customer’s request to the local Application Logic in order to route it to the 

appropriate services. Then the local Application Logic add the OAuth2 token of 

Customer to his/her initial request and forward it to the local PEP Proxy of Query 

Available Clouds Service. Local PEP proxy of Query Available Clouds Service 

checks the OAuth2 token in local Keyrock in order to identify who is making this 

request. After, the local Keyrock returns the user’s information of this OAuth2 

token to local PEP Proxy Query Available Clouds Service. Immediately, local 

PEP Proxy of Query Available Clouds Service forward the user’s subscription 

request to the cloud system administrator that the customer has chosen to 

subscribe with. This cloud system administrator must permit or deny the user’s 

subscription request. If this cloud system administrator accepts the subscription 

request, then he/she creates a role for the requested user in the Keyrock 

Service which is located to his/her cloud system. In the end, the Keyrock 

Service creates a XACML file with the permissions of the requested users in 

AuthZForce which is also located to the chosen cloud system. 

The above procedure is represented as a sequence diagram in Figure 

13. The blue dashed lines indicate the corresponding services are located to 

local cloud system. The green dashed lines indicate the corresponding services 

that are located to the remote cloud system(the system that user is requested 

to subscribe).The red boxes represent the services that are responsible for the 

authentication and registration of the requested user. 

 

 

Figure 13 – Subscribe to LINCA’s cloud system Sequence  Diagram 
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[ chooseOneEdge ] - User via Web Application chooses the cloud system 

he/she  wishes to subscribe for.  

[ subToEdge ] - Web Application forwards the request to Application Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to the 

initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately, Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 

 [ AssignOrgRoles ] - Admin of the chosen cloud system processes the 

request. If he/she accepts the request, then creates a role in his/her Keyrock 

for the user who makes the request. 

[ CreateUserXACML ] - In the end, Keyrock creates a XACML file with the 

permissions in AuthZForce. 

• Insertion of Sensor in LINCA’s cloud system 

Infrastructure owner is responsible to register sensors to his/her cloud 
system and make them discoverable to users that are connected to different 
cloud systems of LINCA. The Infrastructure Owner through the local Web 
Application makes an insert request to register a sensor to his/her cloud 
system. Web Application forwards the infrastructure owner’s request to the local 
Application Logic in order to route it to the appropriate services. Then the local 
Application Logic add the OAuth2 token of Infrastructure Owner to his/her initial 
request and forward it to the local PEP Proxy of Register Sensors Service. 
Local PEP proxy of Register Sensors Service checks the OAuth2 token in local 
Keyrock in order to identify who is making this request. After, the local Keyrock 
returns the user’s information of this OAuth2 token to local PEP Proxy Register 
Sensors. Immediately, local PEP Proxy of Register Sensors checks in the local 
AuthZForce Service if the identified user has the permissions to access the 
local Register Sensors Service.  After the successful authentication and 
authorization of the customer user, his/her initial request is forwarded to the 
protected service, the Register Sensors Service. This service is responsible to 
insert the sensor’s information in the local node of Cassandra’s cluster in order 
to be discoverable from subscribed users that are registered in a remote cloud 
system of LINCA. Also, the Register Sensors Service forwards the sensor’s 
details to local IoT Agent in order to receive data from this sensor. In addition, 
for this sensor, the IoT Agent creates in the local Publish/Subscribe Service a 
sensor entity. 

The above procedure is represented as a sequence diagram in Figure 

14. The blue dashed lines indicate the corresponding services are located to 

local cloud system. The red boxes represent the services that are responsible 

for the authentication and authorization of the requested user. 
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Figure 14 – Insertion of sensor in LINCA’s cloud system Sequence  Diagram 

 

[ SensorDetails ] - Infrastructure Owner via Web Application is typing the 

information of  sensor that wants to register to his/her cloud system.  

[ RegisterSensor] - Web Application forwards the request to Application 

Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to the 

initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information. 

[ CheckUserXACML ] - PEP proxy checks user’s permissions in 

AuthZForce. 

[ RegisterSensorOfEdge ] - If AuthZForce returns “Permit” then PEP proxy 

forwards the initial user’s request to the protected service , the Register 

Sensors Service. If AuthZForce returns “Denied” then the PEP proxy will not 

forward the initial request. 

[ translateSensor ] - Register Sensors Service processes the request and 

forwards it to IoT Agent . 

[ InsertSensor ] - IoT Agent  is responsible to create a sensor entity to 

Publish/Subscribe Storage where there are other sensors entities. In this 

way when IoT Agent receives data from the registered sensors, it will 
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forward to Publish/Subscribe Service to update the corresponding sensor 

entity. 

[ InsertSensor ] - Also Register Sensors Service insert the information of the 

registered sensor to the local node of Cassandra’s cluster, so it can be 

reached by subscribed users that are registered to remote cloud systems of 

LINCA. 

• User Authentication-Authorization in LINCA’s cloud systems 

The authentication and authorization process of a user is performed in 
two levels, locally and distributed.  

In the first case, the authentication and authorization process is 
performed locally by a single cloud system of LINCA.  

This local authentication and authorization process happens when an 
administrator of cloud system tries to register his/her system to LINCA, when 
an infrastructure owner tries to register sensors to his/her cloud system and 
when a customer is querying  / subscribing sensors that are connected to 
his/her cloud system. Also, this process performed when a customer wants to 
retrieve current and historical measurements of a subscribed sensor that is 
connected to his/her cloud system of LINCA. 

The user through the local Web Application makes a request to a service 
in his/her cloud system. Local Web Application forwards the user’s request to 
the local Application Logic in order to route it to the appropriate services. Then 
the local Application Logic add the OAuth2 token of user to his/her initial request 
and forward it to the local PEP Proxy who protects the local service that the 
user wants to access. This local PEP proxy checks the OAuth2 token in the 
local Keyrock in order to identify who is making this request. After, the local 
Keyrock returns the user’s information of this OAuth2 token to local PEP Proxy. 
Immediately, local PEP Proxy checks in the local AuthZForce Service if the 
identified user has the permissions to access the protected service. After the 
successful authentication and authorization of the user, his/her initial request is 
forwarded to the protected service. The local authentication and authorization 
of user is represented as a sequence diagram in Figure 15a. The blue dashed 
lines indicate the corresponding services are located to local cloud system.The 
red boxes represent the services that are responsible for the authentication and 
authorization of the requested user. 
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Figure 15a – Local Authentication-Authorization process of User Sequence Diagram 

 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to 

user’s initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 

[ CheckUserXACML ] - PEP proxy checks for user’s permissions in 

AuthZForce. 

In the second case, the authentication and authorization process is 

performed distributed by the local cloud system in which the user is connected 

and the remote  cloud system of LINCA in which user want to access its 

services and devices. As explained in Figure 13 ,when user  subscribe to a 

remote cloud system of LINCA, his/her permissions to this cloud is stored as a 

XACML file in the AuthZForce Service of this remote cloud system.  

This distributed authentication and authorization process happens when a 

customer is connected to his/her cloud system and he/she tries to 

query/subscribe to sensors that are connected to a remote cloud system to 

LINCA. Also, this process performed when a customer wants to retrieve current 

and historical measurements of a subscribed sensor that is connected to a 

remote cloud system of LINCA. 

The user through the local Web Application is requesting to access sensors 

that is connected to a remote cloud system of LINCA. The local Web Application 

forwards the user’s request to the local Application Logic in order to route it to 

the appropriate services. Then the local Application Logic add the OAuth2 token 

of user to his/her initial request and forward it to the local PEP Proxy. This local 
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PEP proxy checks the OAuth2 token in the local Keyrock in order to identify 

who is making this request. After, the local Keyrock returns the user’s 

information of this OAuth2 token to local PEP Proxy. In this way, the local 

Keyrock guarantees that the requested user is registered to its system and is 

valid user. Immediately, local PEP Proxy checks in the remote AuthZForce 

Service if the identified user has the permissions to access the sensors that are 

connected to this remote cloud system. After the successful authentication and 

authorization of the user, he/she can query and subscribe the corresponding 

remote sensors through the local Query Sensor Service. This service is 

responsible to route request to the local node of Cassandra in order to retrieve 

the requested sensors. The distributed authentication and authorization 

process of user is represented as a sequence diagram in Figure 15b. The blue 

dashed lines indicate the corresponding services are located to local cloud 

system. The green dashed lines indicate the corresponding services are 

located to a remote cloud system. The red boxes represent the services that 

are responsible for the authentication and authorization of the requested user. 

 

 

Figure 15b – Distributed Authentication-Authorization process of User Sequence Diagram 

 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to 

user’s initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 
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[ CheckUserXACML ] - PEP proxy checks for user’s permissions in 

AuthZForce of the requested remote cloud system. 

• Querying sensors in LINCA’s cloud systems 

 A customer has the ability to search for sensors that are connected to 
his/her cloud system and in others remote cloud systems of LINCA. Customer 
through the local Web Application makes a query request to find the sensors in 
the desired LINCA’s cloud system. 

 Web Application forwards the customer’s request to the local 
Application Logic in order to route it to the appropriate services. Then the local 
Application Logic add the OAuth2 token of Customer to his/her initial request 
and forward it to the local PEP Proxy of Query Sensors Service. The local PEP 
proxy of Query Sensors Service checks the OAuth2 token in the local Keyrock 
in order to identify who is making this request. After, the local Keyrock returns 
the user’s information of this OAuth2 token to local PEP Proxy Query Sensors 
Service. If the identified user requested sensors that are connected to a remote 
cloud system, the local PEP proxy Query Sensors checks for user’s 
permissions in AuthZForce Service of the remote cloud system. Else if the user 
requested sensors that are connected to his/her cloud system, the local PEP 
proxy Query Sensors checks for user’s permissions in AuthZForce Service of 
user’s cloud system.  After the successful authentication and authorization of 
the customer user, his/her initial request is forwarded to the protected service, 
the local Query Sensor Service. This service is responsible to query in the local 
node of Cassandra’s cluster for sensors that are connected to different cloud 
systems of LINCA. 

The above process is represented as a sequence diagram in Figure 16. 
The blue dashed lines indicate the corresponding services are located to local 
cloud system. The green dashed lines indicate the corresponding services that 
are located to the remote cloud system(the system that user is requested to 
find its sensors).  The red boxes represent the services that are responsible for 
the authentication and authorization of the requested user. 
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Figure 16 – Querying sensors in LINCA’s cloud systems Sequence  Diagram 

 

 

[ SearchSensors ] - User via Web Application chooses the attributes and 

the cloud systems of sensor who wants to search.  

[ QueryEdges ] - Web Application forwards the request to Application 

Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to 

the initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if 

user exist with the corresponding OAuth2 token. If user, exist then 

Keyrock returns to PEP proxy the user’s information. 

[ CheckUserXACML ] - If user requested sensors that are connected to 

a remote cloud system then PEP proxy checks for user’s permissions in 

AuthZForce of the remote cloud. Else PEP proxy checks for  user’s 

permissions in AuthZForce of local cloud system. 

[ QueryRegisteredEdges ] - If AuthZForce returns “Permit” then PEP 

proxy forwards the initial user’s request to the protected service , the 

Query Sensor Service of current cloud. If AuthZForce returns “Denied” 

then the PEP proxy will not forward the initial request. 

[ QuerySensors] - After the success authentication and authorization of 

the user, Query Sensor Service starts querying for requested sensors  in 

local node of Cassandra DB . 
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[ getAvailSensors ]  - In the end, Cassandra DB returns the requested 

sensor. 

 

• Subscribe to Sensors in LINCA’s cloud systems 

A customer as shown in previous paragraph he/she can query for 

sensors that are connected to different cloud systems of LINCA. After this 

process, user can choose the sensors that wishes to subscribe. 

 Customer through the local Web Application makes a subscription 
request for the sensors that wishes to subscribe. Web Application forwards the 
customer’s request to the local Application Logic in order to route it to the 
appropriate services. Then the local Application Logic add the OAuth2 token of 
Customer to his/her initial request and forward it to the local PEP Proxy of Query 
Sensors Service. The local PEP proxy of Query Sensors Service checks the 
OAuth2 token in the local Keyrock in order to identify who is making this 
request. After, the local Keyrock returns the user’s information of this OAuth2 
token to local PEP Proxy Query Sensors. If the identified user requested to 
subscribe to sensors that are connected to a remote cloud system, the local 
PEP proxy Query Sensors checks for user’s permissions in AuthZForce Service 
of the remote cloud system. Else if the user requested to subscribed to sensors 
that are connected to his/her cloud system, the local PEP proxy Query Sensors 
checks for user’s permissions in AuthZForce Service of user’s cloud system.  
After the successful authentication and authorization of the customer user, 
his/her initial request is forwarded to the protected service, the local Query 
Sensor Service. If the requested sensors are connected to a remote cloud 
system, then the Query Sensor Service is responsible to subscribe the local 
Orion Context Broker to the remote Orion Context Broker for the requested 
sensors. In this way when the remote Orion Context Broker receives updates 
for the subscribed sensors, it will forward them to the local Orion Context 
Broker. Also Query Sensor Service is responsible to update user’s subscription 
list  in the local node of Cassandra’s cluster. 

The above process is represented as a sequence diagram in Figure 17. 
The blue dashed lines indicate the corresponding services are located to local 
cloud system. The green dashed lines indicate the corresponding services that 
are located to the remote cloud system(the system that user is requested to 
find its sensors).  The red boxes represent the services that are responsible for 
the authentication and authorization of the requested user. 
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Figure 17 – Subscribe to sensors of LINCA’s cloud systems Sequence  Diagram 

 

[ chooseSensors ] -  User via Web Application after the process of searching 

, he/she chooses the sensors who wants to subscribe for.  

[ SubSensors ] - Web Application forwards the request to Application Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to the 

initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 

[ CheckUserXACML ] - If user requested to subscribe to sensors that are 

connected to a remote cloud system then PEP proxy checks for user’s 

permissions in AuthZForce of the remote cloud. Else PEP proxy checks for  

user’s permissions in AuthZForce of local cloud system. 

[ SubscribeSensors ] - If AuthZForce returns “Permit” then PEP proxy 

forwards the initial user’s request to the protected service , the Query 

Sensor Service . If AuthZForce returns “Denied” then the PEP proxy will not 

forward the initial request. 

[ SubBrokersSensors ] -  If the requested sensors are connected to a remote 

cloud system, then the Query Sensor Service is responsible to subscribe 

the local Orion Context Broker to the remote Orion Context Broker for the 

requested sensors. 

 [ UpdateUserSubscriptions ] . In the end, a request is routed to the local 

node of Cassandra DB to update the user’s subscriptions list. 



LINCA SYSTEM REQUIREMENTS AND DESIGN 48 

 

 

• Retrieve Statistic/Current Value of a Sensor in LINCA’s cloud 
system 

A customer as shown in previous paragraph he/she can subscribe to 

sensors that are connected to different cloud systems of LINCA. After this 

process, user can retrieve statistic and current value of  the his/her subscribed. 

Customer through the local Web Application makes a request for the the 
sensor that wishes to retrieve its current value or a statistic value. Web 
Application forwards the customer’s request to the local Application Logic in 
order to route it to the appropriate services. Then the local Application Logic 
add the OAuth2 token of Customer to his/her initial request and forward it to the 
local PEP Proxy of Comet Service. The local PEP proxy of Comet Service 
checks the OAuth2 token in the local Keyrock in order to identify who is making 
this request. After, the local Keyrock returns the user’s information of this 
OAuth2 token to local PEP Proxy Comet Service. If the identified user 
requested to retrieve statistic/current value of   sensor that is connected to a 
remote cloud system, the local PEP proxy Comet checks for user’s permissions 
in AuthZForce Service of the remote cloud system. Else if the identified user 
requested to retrieve statistic/current value of  sensor that is connected to 
his/her cloud system, the local PEP proxy Comet checks for user’s permissions 
in AuthZForce Service of user’s cloud system.  After the successful 
authentication and authorization of the customer user, his/her initial request is 
forwarded to the protected service, the local Comet Service. Comet processes 
the request and starts querying in History DB for the current/statistic value of 
the chosen sensor. 

The above process is represented as a sequence diagram in Figure 18. 
The blue dashed lines indicate the corresponding services are located to local 
cloud system. The green dashed lines indicate the corresponding services that 
are located to the remote cloud system (the system that user is requested to 
find its sensors).  The red boxes represent the services that are responsible for 
the authentication and authorization of the requested user 
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Figure 18 – Retrieve Current/Statistic Value of sensor in LINCA’s cloud system Sequence  Diagram 

 

[ chooseSensors ] - User via Web Application chooses from subscribed 

sensors list , the sensors  who wants to retrieve current value/statistics.  

[ queryValueSensors ] - Web Application forwards the request to Application 

Logic. 

[ HTTPrequest_OAuth2 ] - Application Logic adds User OAuth2 token to the 

initial request and then forwards it to PEP Proxy.  

[ checkOAUth2  , queryUser , getUserInfo] -  PEP proxy checks User 

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user 

exist with the corresponding OAuth2 token. If user, exist then Keyrock 

returns to PEP proxy the user’s information, 

[ CheckUserXACML ] - PEP proxy checks for user’s permissions in 

AuthZForce. 

[ queryStatisticsOfSensors ] - If AuthZForce returns “Permit” then PEP proxy 

forwards the initial user’s request to the protected service , Comet . If 
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AuthZForce returns “Denied” then the PEP proxy will not forward the initial 

request. 

 [ queryEntities ] - Comet processes the request and starts querying in 

History DB for current /statistic value of the chosen sensor. 

[ getStatisticsValueOfSen ] – History DB returns the requested information 

to user. 

 

3.6 Architecture Diagram 

LINCA is a unified master-less distributed system. The term “master-

less” means that all its clouds which it is consisted of are equal and similar. 

These clouds consist of several components which implement front-end and 

back-end services. Each cloud of LINCA is based on SOA architecture 

principles as explained above in section 2.1. This extends the micro-services 

of every cloud system to loosely coupled micro-services which can be 

developed, deployed and maintained independently. As a result, in the case of 

an error in one micro-service the whole cloud system does not necessarily stop 

its functionality.  

In addition, LINCA’s clouds can communicate with one another in order 

to satisfy the requirements of the different categories of users as described in 

section 3.2. This communication is achieved through RESTful communication 

over an HTTP protocol as described in section 2.1.1. 

In order to describe the architecture of the LINCA system, all is needed 

is to describe one of the clouds that are contained in the system due to the 

equal and similar characteristics they all have. Initially, the main services of the 

abstract LINCA’s cloud-level architecture will be given in section 3.6.1 . Once a 

general idea of what the LINCA’s cloud-level abstract architecture main 

services is given, a more detailed analysis of the LINCA architecture will be 

presented in section 3.6.2. 

 

 

3.6.1 LINCA’s Abstract Cloud-Level Architecture Diagram 

The Figure 19 shows an abstract view of the architecture of an cloud that 
is contained in LINCA system.  
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Figure 19 – LINCA’s Abstract Cloud-Level Architecture Diagram 

 

This cloud is consisted of the following main services : 

1. User Services – This service is responsible for the graphical interface 

of different type of users. 

 

2. Application Logic – This service includes the code for orchestrating 

individual services, so that the cloud system can implement the 

specified functionality 

 

3. IoT Services – At this type of service the IoT devices are connected. 

They send their measurements to each other through gateways. Also, 

this service is responsible for registering the IoT devices to its cloud 

system and querying for the IoT devices that are in every LINCA’s cloud 

system. 

 

4. Database Services – These services are consisted of different types 

of databases that each one of them is connected with other services of 

the cloud system in order to provide storage functionalities.  

 

5. Cloud Management Services - These services are used by the 

administrator, if they wish to register their cloud system to LINCA. Also, 

these services are used by the Customer users for querying for 

available LINCA’s cloud systems that are registered to it by the 

corresponding administrators.  
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6. Sensor Data Management Services – These services are responsible 

for storing data to the Database Services that are received from the 

Publish/Subscribed Service. Also, they can retrieve history data from 

the Database Services.  

 

7. Publish/Subscribe Service – This type of service acts as the context 

broker for IoT devices entities. These entities are stored in the Database 

Services in the form of  JSON. Also, with the assistance of this type of 

service, users can subscribe to IoT devices that are located in LINCA’s 

cloud systems in order to receive their measurements 

 

8. Security Services - The purpose of these services is to prohibit users 

and services from using system functions 

 

The arrows in Figure 19 represent the RESTful inter-communication of 

these services over the HTTP protocol. To illustrate this in figure 19, the red 

arrows represent the connection of security service with the rest of the services. 

 

3.6.2 LINCA’s Cloud-Level Architecture Diagram 

 

Figure 20 – LINCA’s Cloud-Level Architecture Diagram 
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The Figure 20 illustrates an even more detailed view of cloud 

architecture. The arrows represent the RESTful inter-communication of the 

above cloud system services over HTTP protocol. For a better explanation of 

this, each cloud’s function is represented with a different color, as described 

below : 

• Red – Identification and Authorization of User for logging into the 

system.   

[ Application Logic , User Identification – Authorization , User DB ] 

 

• Blue – Assigning roles and permissions to a user.  

[ Application Logic , User Identification – Authorization , User DB , 

Authorization Policy Decision Point ] 

 

• Light Green – Connecting different types of sensors to the system.      

[ Things, Gateway, Sensors Interface Service , Policy Enforcement 

Point Proxy 5, Publish/Subscribe Service , Publish/Subscribe 

Storage] 

 

• Pink – Querying Available Clouds in LINCA system.  

[ Application Logic, Policy Enforcement Point Proxy 6, Query 

Available Clouds Service  , Directory DB ] 

 

• Purple – Querying Sensors in LINCA system.  

[ Application Logic, Policy Enforcement Point Proxy 1, Query Sensor 

Service  , Directory DB ] 

  

• Gray – Registering Sensors to its cloud system and in LINCA system. 

[ Application Logic, Register Sensor Service , Policy Enforcement 

Point Proxy 2 , Publish/Subscribe Service, Directory DB ] 

 

• Dark Green – Registering cloud system in LINCA system. 

[ Application Logic, Register Cloud Service , Policy Enforcement 

Point Proxy 7 , Directory DB] 

 

• Yellow – Storing sensor data and measurements. 

[ Data Storage Service , Policy Enforcement Point Proxy 4 , 

Publish/Subscribe Service ] 

 

• Orange – Retrieving history data from sensors. 

[ Data Storage Service , Policy Enforcement Point Proxy 3 , History 

Service ] 

 

• Black Dashed – Communication between user and system through 

web interfaces.  

[ Web-Application , Application Logic ] 
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•  Purple dashed / Orange Dashed / Gray Dashed / Pink Dashed / Dark 

Green Dashed – Checking user permissions in Query / History / 

Register service  respectively. 

[ Policy Enforcement Point Proxy 1 / 2 / 3  , User Identification – 

Authorization , User DB , Authorization Policy Decision Point ] 

 

➢ Database Service 

This type of service consists of all the different types of database that exist 

in a single LINCA’s cloud system. Each of these databases is connected to 

services in order to store the provided data. History DB is used to store sensor 

data from Sensor Data Storage Service and provide the stored data to the 

History Service. In addition, User DB is used to store the user’s profile 

information which is provided from User Identification Service. Furthermore, 

Directory DB is used to maintain the sensors information that exist in the overall 

LINCA system but also it is used to store all the cloud systems’ information that 

is registered in the LINCA system. The Publish/Subscribe Storage is used to 

store the sensor entities of its own cloud system. Below, a more detailed 

description about these databases is shown: 

▪ History DB - This is a non-relational database that contains raw and 

aggregated historical data measurements for all the sensors connected in 

the system. Sensor Data Storage Service undertakes to receive data 

streams from the sensors’ measurements. The data it receives is stored 

as raw and aggregated in History DB in order to maintain history of 

sensors’ measurements. Also, the History Service provides REST 

methods for retrieving information from the History DB. 

 

▪ User DB – This is a relational database used by User Identification and 

Authorization Service to store user’s profile information. In more detail, 

when a user is sign up to an cloud system the information that provided 

such as name, surname, email, password, user category , are stored in 

User DB. With this information User identification and Authorization 

Service is able to identify a user that tries to log in its cloud system. 

 

▪ Directory DB – Directory DB is a non-relational distributed database. 

Each registered cloud system in LINCA consists a node of this distributed 

database in order to make insert and query request. It is used by Register 

Sensor Service to store sensor’s information that they are connected to its 

cloud system. Also, is used  by Register Cloud Service  to store 

information about its clouds systems. In this way , all information about 

sensors and clouds that exist in LINCA system is stored in this distributed 

database in order to be discoverable from authorized users that are 

connected to a remote LINCA’s cloud system. In addition, Query Sensor 

Service and Query Available Clouds Service provide REST methods for 
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retrieving information sensors and clouds of LINCA that are maintained in 

Directory DB. Furthermore, this database is used to store a list of the 

user’s subscribed sensors, as a result when infrastructure owner delete a 

sensor from its cloud and it is existing to user’s subscribed sensor list, to 

be removed.  

 

▪ Publish/Subscribe Storage – This is a non-relational database that uses 

the Publish and Subscribe Service to store the  information of the entities  

it manages. Each entity that is  managed by this service is  represented 

by one JSON object. This object follows the syntax rules set by NGSI 

standard as described in Section 2.2.2 .  

 

➢ Security Service 

The purpose of the security service is to prohibit unauthorized users and 

services from using the system functions. In Figure 20, it is noted that each 

service has its own Policy Enforcement Point Proxy server. These proxy 

servers in collaboration with the User Identification-Authorization Service and 

the Authorization Policy Decision Point service are responsible for the system’s 

security. The intercommunication of these services is analyzed below: 

• User Identification-Authorization Service 

When registering with the system, the user defines the features that make 

up their personal profile such as name, email, password.  

Therefore, the user in order to log in to the system, they must first enter 

their email and password at the login page. Then, the login request is routed to 

the User Identification-Authorization Service via its RESTful interface. As long 

as the information provided is valid, the service creates an OAuth2 token that 

encrypts the user’s identity. Afterwards, the user is logged in. The User 

Identification-Authorization Service is then able to confirm who the user is and 

what their roles-permissions are. This is achieved through a REST request that 

contains the user’s OAuth2 token. All the user’s profile information is stored in 

the User DB as described in Section 3.6.2. 

 

• Authorization Policy Decision Point Service (Authorization PDP) 

This service is responsible for approving or rejecting access requests 

made by the users to the cloud system services. A decision, either permit or 

deny, can be made based on the Access Control Rules (XACML), which results 

from the applicable access policies that the roles within the User Identification 

-Authorization Service are recommended.  A Policy Rule is created by the 

user’s role that exists within the User Identification -Authorization service. The 

access control rules are created in the Authorization Policy Decision Point 

Service and they follow the XACML standards as explained in Section 2.2.2. 

This is achieved, through the RESTful communication with the User 

Identification-Authorization Service.  
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• Policy Enforcement Point Proxy Server (PEP Proxy Server) 

A PEP Proxy server is a server that acts as an intermediary for the user’s 

requests and the resources that the user wants to access with it. Each service 

that has resources that are unlikely to be accessible by unauthorized services 

or users, has a local PEP Proxy server that undertakes to receive and to forward 

request to it.  

The PEP Proxy Server demands the received  HTTP request header to 

contain one of the following  tokens: 

 

• OAuth2 token -  A valid OAuth2 token was created by the User 

Authentication and Authorization service upon logging in and 

corresponds to a user. 

 

• Master Key - A secret code that is specified when initializing the 

Policy Enforcement Proxy Server. Each different Policy Enforcement 

Point Server has its own unique master code. 

If the above tokens are not contained in the HTTP request header, then 

the request is rejected. 

As it is presented in Figure 20, any services that are not eligible to 

publish its REST interface, such as the Publish/Subscribe Service, Sensor Data 

Storage Service, History Service, Query Sensor Service, Query Available 

Clouds Service, Sensor Interface Service, Register Sensor Service, Register 

Cloud Service, work with a PEP Proxy Server.  

In total, seven different PEP Proxy Servers are used in the architecture 

as shown on Figure 20. Each one runs on its own docker container. By using 

the OAuth2 mechanism as described in Section 2.2.2, the user’s authorization 

can be dynamically configured depending on its user’s category as explained 

in Section 3.1. According to the above, the user’s access requests must bear 

in their header the OAuth2 token, that they received upon logging in. 

The PEP Proxy Servers 1, 2,3, 6  and 7, as shown in Figure 20, because 

they act as an intermediary for the user’s request and the services that they 

provide protection, they need the user's unique OAuth2 token in the header of 

their HTTP request in order to authorize and authenticate the user through their 

collaboration with User Identification - Authorization Service and Authorization 

Decision Point.  

On PEP Proxy Servers 4 and 5, as shown in Figure 20, because they 

act as intermediary for their protected services and the services that they want 

gain access,  the service requests header contains the Master key code of the 

PEP Proxy Server. Hence, only the corresponding PEP Proxy is responsible 

for the security of their protected services because there is no reason to identify 

or configure authorization of different ranks of users.  

In conclusion, when a user is signed up to a LINCA’s cloud system, their 

profile information and permissions are stored and maintained in the 

Identification-Authorization Service and the Authorization PDP Service, 
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respectively. When the user routes a login request to the cloud system that they 

signed up before, Identification-Authorization Service checks if the requested 

user belongs to its cloud system. If the identification is successful, an OAuth2 

token, which defines the identity of this user in the cloud system,  is returned in 

order to make an access request to the services of the cloud system without 

exposing their personal information. Then, when the logged in user routes an 

access request to an cloud’s service they must provide in the request’s header 

their OAuth2 token that they received when they logged in. The PEP proxy that 

“protects” the service which the user requested access to, must receive first the 

user’s request in order to check who the user is and what permission it has, 

with the help of the Identification-Authorization Service and the Authorization 

PDP Service. More specifically, the PEP proxy extracts the OAuth2 token from 

the user’s request  and asks the Identification-Authorization Service who the 

user is and what their roles are. After the Identification-Authorization Service 

identifies the user, it returns to the PEP proxy the user’s profile information and 

roles. Next, the PEP Proxy based on the information that it received from the 

Identification-Authorization Service, asks the Authorization PDP if this user has 

the permission to access the service that the PEP proxy protects. If the 

Authorization PDP returns “Permit”  then the PEP Proxy forwards the user’s 

initial request to its protected service. Otherwise, if the Authorization PDP return 

is “Denied”, the PEP proxy will not forward the request to its protected service. 

The above process is represented as workflow in Section 3.5.1 and as an 

abstract view in Figure 21 below: 

 

 
Figure 21 – PEP Proxy Server Function using OAuth2 token 
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 If a user log in to a LINCA’s cloud system and wants to access a service 

that is located in a remote cloud system of LINCA, it follows procedure that it 

will be describe in Section 4.2. 

 

 

➢ Publish/Subscribe Service 

 

The Publish/Subscribe Service acts as a mediator for the "Sensor" entities. 

These entities are stored in the Publish-Subscribe Storage database in form of  

JSON as described in Section 2.1 .  

The JSON representation of the "Sensor" entity contains information about 

its features: 

 

• Unique sensor identifier (consisting of its name and unique code). 

• Device’s model. 

• Sensor’s owner. 

• Name of the city in which it is located. 

• Measuring characteristics (e.g. Temperature, humidity, pressure). 

• Unit of measurement (e.g. Celsius, Pa, LUX). 

 

➢ Sensor Data Management Service 

This service is responsible for storing data to Database Service  that are 

received from Publish/Subscribe Service. Also, they can retrieve history data 

from Database Service too. It consists of two micro-services as follows: 

• Sensor Data Storage Service  

This service is responsible for collecting data that are derived from the 

sensor measurements. These measurements are administered by the 

Publish/Subscribe Service. The aim of this service is to maintain a history 

record of the measurements of each sensor  in the History DB. By using the 

subscription feature of the Publish/Subscribe Service , the Sensor Data Storage 

Service is subscribed to all its sensor entities. Each new sensor measurement 

that results, triggers one update event from Publish Subscribe Service  to the 

endpoint of the Data Storage Service. As a result, the service receives data 

from all measurements of each particular sensor. The service is able to store 

the received data to a wide range of different types of databases like MongoDB, 

MySQL etc. The data received by this service through the subscription feature, 

is stored in History DB  with two different tactics : 

• Raw – The data is stored as raw in the measurement’s history of each 

particular sensor. 

 

• Aggregated – This data is statistical values deriving from the 

combination of the new arrival data , with the existing historical sensor 

data. The statistical values are :  
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▪ Maximum value between all samples of a sensor 

measurements in the last day/month/year. 

▪ Minimum value between all samples of a sensor measurements 

in the last day/month/year. 

▪ The sum of all samples for a sensor’s measurements in the last 

day/month/year. 

 

• Sensor Data Storage Service  

This service is the RESTful interface of the system's historical database. 

It is connected to the History DB and provides REST methods for retrieving 

raw and aggregated historical data of the system’s sensor measurements.  

 

➢ IoT Service 

This is the service where the IoT devices are connected to and they send 

their measurements through gateways. Furthermore, this service is responsible 

for registering that the IoT devices to its cloud system and querying for the IoT 

devices that are in every LINCA’s cloud system. This type of service consists 

of the following micro-services : 

• Query Sensor Service 

The purpose of this service is to provide the users a search engine to find 

sensors that are connected in their subscribed cloud systems. This service is 

responsible for translating a user’s demand and searching for the requested 

sensors in the Directory DB. If the user searches for sensors that are only 

connected to their cloud system, the identification and authorization process 

that is described above is done before the search in the Directory DB. But, if 

the user searches for sensors that are located in  other LINCA’s cloud systems 

the identification and authorization of the user follows the process that will be 

explained in Section 4.2.  

• Register Sensor Service 

This service is connected to the Directory DB and it provides the REST 

methods for inserting sensors. It stores the sensors’ information in the Directory 

DB in order to be discoverable by the local users and the  authorized remote 

users. Also, it provides the REST methods for inserting sensors to the 

Publish/Subscribe Service in order to forward its sensors’ data to the Sensor 

Data Storage Service, which are received from Sensors Interface Service. 

• Sensor Interface Service 

The purpose of this service is to be able to support different types of 

sensors that transmit data through the UltraLight 2.0 protocol. Data is obtained 

from the gateways that are connected to the system's Sensor Interface Service. 

The Sensor Interface Service receives the physical sensor’s data from the 



LINCA SYSTEM REQUIREMENTS AND DESIGN 60 

 

 

gateways and updates the corresponding sensor that is maintained in the 

Publish Subscribe Service. In this way, the sensor entities in the system are 

constantly updated with the current measurements of the physical sensors. 

 

➢ Cloud Management Service 

This service is used by  the administrators of cloud systems, if they wish to 

register their cloud system to LINCA. Also, it is used by the Customer users for 

querying for available LINCA’s cloud systems that are registered to LINCA 

system by the corresponding administrators. This type of service consists of the 

following micro-services: 

• Query Cloud Service 

The purpose of this service is to present to  the users the available remote 

clouds that are registered in LINCA. After the identification and authorization 

process that is described above is done, this service is responsible to search 

for the LINCA’s clouds in Directory DB. Afterwards,  the users can choose the 

remote clouds systems that they are interested in and request subscription from 

the corresponding cloud administrator. If a remote administrator accepts the 

user’s subscription request then this administrator creates and stores to their 

cloud system, the roles and permission of this user. In this way, each cloud’s 

administrator can manage the roles and permissions of the remote users that 

are subscribed to their cloud system. 

• Register Cloud Service 

This service is connected to the Directory DB and it provides the REST 

methods for inserting the cloud’s information to it . This service stores its cloud’s 

information in the Directory DB in order to be discoverable by the authorized 

remote users that wish to subscribe to their cloud system. If the administrator 

accepts the user’s subscription request that they received from a remote 

LINCA’s cloud system, then it creates and stores to their cloud system the roles 

and permissions for that remote user. In this way, the administrator of this cloud 

can manage the roles and permissions of the remote users that are subscribed 

to their cloud system. 

➢ Application Logic 

Application Logic includes the code for orchestrating individual services, so that 

the cloud system can implement the specified functionality.  

➢ User Service 

This service consists the Web Application of the cloud system. It is 

considered part of the Application Logic as it contains the code needed to 

implement the graphical interfaces of the cloud system. 
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4 LINCA System Implementation  

LINCA is a unified master-less distributed system consisting of different 

cloud systems. Each LINCA’s cloud system is deployed as a Virtual Machine 

(VM) which are provided from IntelliCloud that is based on OpenStack. The 

individual services of each cloud system except from Directory DB are deployed 

as docker container. Directory DB was deployed as individual service in every 

cloud system. Also, the deployment of these services is based on the following 

technologies: 

PHP - PHP is a programming language for creating dynamic web pages. 

A PHP page is processed by a compatible Web server, such as the Apache 

Server, in order to produce the final content in real-time, which will either be 

send to the user's browser in an HTML format or transmitted to another PHP 

script. The Apache servers’ images are used to produced Apache servers’ 

containers for the Back-End to handle most REST requests between different 

services. Therefore, the PHP and some of its extensions are used. More 

specifically: 

o cURL - cURL is a PHP library that allows data transfers between 

services using various protocols, such as DICT, FTP, FTPS, 

HTTP, HTTPS etc.. The library is used in order to call the HTTP 

protocol methods, such as POST, GET, DELETE, PATCH, PUT, 

directly through the PHP code. 

 

o CassandraDB PHP Library – This library has the role of a driver 

to manage the distributed Apache Cassandra Database through a 

PHP code. The API provided by this library enables basic 

Cassandra functions, such as command queries, writes, updates 

etc. The CassandraDB PHP library is used in order to insert and 

search the  LINCA’s sensors and the cloud systems, where they 

are stored the Directory DB. Also, this library is used in order to 

update the user’s subscriptions list that is stored in Directory DB 

as well. 

The section 4.1 below, is a presentation of the mapping of LINCA’s cloud 

systems services, as shown in Figure 22, to services of FIWARE’s catalogue. 

Also, in Section 4.2 the interaction between LINCA’s clouds systems is 

presented. 
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4.1  Implementation of LINCA’s Cloud System Services 
 

 

Figure 22 – Mapping LINCA’s cloud system services with FIWARE’s Services 

 

LINCA's individual cloud systems are developed on Intellicloud virtual 

machines (VMs) that use the OpenStack platform. Each cloud system (VM) 

has a private and a public IP Address. The communication of individual 

LINCA cloud systems is done using the private IP address while the public ip 

address is used for the interaction of cloud systems with their users. 

Within each cloud system there is a docker that hosts containers with 

the corresponding system services. The containers are connected to an 

internal network created by the docker and can communicate with each other 

via internal ip addresses. The docker uses two ports mechanisms to interact 

with its containers, the expose and the publish mechanism. The publish 

mechanism can assign a port to a container in order to receive requests from 

services outside the local docker container. The expose mechanism can 

assign one or more ports to a container to communicate only with containers 

that are connected to the local docker network. 

Therefore, to access a cloud service, a user must use the public ip 

address of the cloud in combination with the publish port assigned to that 

service. 

Communication between a system service (container) with a service 

(container) of another system is carried out using the private ip addresses of 

the individual systems along with the publish ports of the corresponding 

system services. 
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The docker which hosts system services in the form of containers can 

be installed on any computer. DockerHub, which is a publish repository of 

images, offers images of FIWARE services to develop into docker containers. 

In conclusion, LINCA implementation can be deployed on a group of 

computers that can communicate with ip addresses under the same network 

and have the docker installed. The mapping of cloud system services with 

FIWARE services is as follows: 

• User Identification and Authorization Service  

This service is a docker container running Keyrock IDM image34. 

Keyrock IDM is provided from the FIWARE service and uses the OAuth2 

authorization protocol to authenticate users and provide authorization for 

access to services of LINCA’s cloud system. The authentication and 

authorization of users who wishes to access services of a remote cloud system 

is described in section 4.2. 

 

• Registration of the cloud system in Keyrock IDM 

The system administrator registers the cloud system in the Keyrock IDM 

service. The new system registration is done with the assistance of the 

graphical environment provided by Keyrock IDM. When the cloud system is 

registered, the Keyrock IDM creates two unique identifiers related to this 

system. These two identifiers are named, client_id and client_secret. After 

joining the  above two identifiers with the ":" symbol between them (i.e. 

client_id:client_secret) and encrypting them with the base64 method (i.e. 

base64 (client_id: client_sercret)) a new identifier will be created, and it will be 

called "Authorization_Basic".  For Keyrock IDM, this identifier is the identity of 

the cloud system. A connection request to the system must necessarily include 

the "Authorization_Basic" in its header. 

▪ Registration of a new user in the registered cloud system 

The user that is interested in accessing the cloud system should first create 

an account with the Keyrock IDM service on that cloud. To do so, they must 

complete a registration form where they must enter their details as well as the 

user’s group which they want to join. Once this form is completed correctly, the 

local administrator will either accept or reject the user’s registration request. If 

it is accepted, the Admin will rank them in the user category they have chosen. 

The user with "Customer" category is assigned the role of "Customer" while the 

user in the "Infrastructure Owner" category is assigned the role of 

"Infrastructure Owner". The authentication process begins when the user fills in 

the login details (email and password) and requests access to the cloud system. 

In more detail, a REST request is executed from the local cloud Application 

Logic endpoint to the local cloud Keyrock IDM service. The header of this 

request includes the "Authorization_Basic" wich is produced by Keyrock IDM 

during the registration. The body contains the user's login information. Upon 

successful authentication, the local cloud Keyrock IDM will return an OAuth2 
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token to the endpoint of the local cloud Application Logic and the user will be 

able to access the cloud system. A session is then created on the user's server 

that stores the user's OAuth2 token (i.e. $ _SESSION [OAuth2_token]). This is 

where the first stage of user authentication ends. Next, the cloud application 

logic generates a second REST request to the local Keyrock IDM that contains 

the user's OAuth2 token. Local Keyrock returns to the local Application logic, 

the user roles in the cloud system. Once this is done, if the user’s role is 

"Customer" ,  a $ _SESSION ["User_category"] with the value “Customer” will 

be created if the user’s role is "Infrastructure Owner" ,  a $ _SESSION 

["User_category"] with the value “Infrastructure Owner” will be created. This 

ensures that the graphical interfaces for the "Customer" category are 

accessible only to users with an active session (  $ _SESSION 

["User_category"] ) with the "Customer" value. The same applies to graphical 

interfaces for “Infrastructure Owners”  . If a user attempts to access a graphical 

interface that does not correspond to their user category, then the system 

routes them to the original graphical interface where they  must enter their login 

details again. 

▪ User authorization on registered cloud system 

Users' access policies to resources are developed by the local Keyrock IDM 

in the form of roles-permissions. More specifically, an in-service permission 

defines the right of its owner to execute a specific REST request in that service. 

o Example: The "Customer_Access" permission  specifies the HTTP 

request with GET method at URL: http://localhost/CustomerPortal. 

    A role holds some permissions. The user assigned to this role also receives 

the corresponding permissions.  

o Example: The "OrdinaryCustomer" role includes the 

"Customer_Access" permission. So, the owner of the 

"OrdinaryCustomer" role has the right to make an HTTP request with 

GET method at URL: http://localhost /CustomerPortal  

   The user with the "Customer" role has the following permissions : 

o Use of the Query Available Clouds Service to search available clouds. 

(POST request http://localhost/getAvailableClouds.php) 

o Use of the Query Sensors Service to search sensors. (POST request 

http://localhost/getDesiredIDs.php ) 

o Use of the Query Sensors Service to search the list with user’s 

subscribed sensors. (POST request  

http://localhost/getMySensors.php  ) 

o Use of the Query Sensor Service to subscribe to a sensor. (POST 

request  http://localhost/subcreate.php ) . Also, an HTTP request 

(POST request  v2/Entities ) is routed to Publish/Subscribe in order to 

receive updates of the subscribed sensor’s measurements. 

o Use of the History Service to view statistic values of a subscribed 

sensor. (POST request  http://localhost/getHistoryValue.php ). 
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o Use of the History Service to view current value of a subscribed sensor. 

(POST request  http://localhost/getCurrentValue.php ). 

The user with the "Infrastructure Owner" role has the following 

permissions : 

o Use of the Sensor Interface Service to register a sensor’s drivers to the 

local cloud system. (POST request  http://localhost/AgentParser.php ) 

. 

o Use of the Register Sensor Service to register a sensor to Directory 

DB (Cassandra DB), in order to be discoverable from authorized users 

from other clouds. (POST request  http://localhost/RegisterSensor.php 

). 

o Use of the Query Sensors Service to search the list with user’s 

registered sensors. (POST request  

http://localhost/getInfraSensors.php ). 

o Use of the History Service to view statistic values of a  sensor. (POST 

request  http://localhost/getHustoryValue.php ). 
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o Use of the History Service to view current value of a sensor. (POST 

request  http://localhost/getCurrentValue.php ). 

The HTTP methods of the Keyrock IDM service discussed in this section 

are described in the  REST Table 1 : 

 

Method URL Method Request Header Request Body Method Descr. 

POST /auth2/token Authorization: 

base64 (client_id: 
client_secret) 

{  

&username="username" 
&password= "password" 

 } 

A valid username 

and password 
must had given. 

Returned an 
OAuth2token. 

POST /v1/auth/tokens  { 
 "name": 
"admin_username" 

"password":"admin_passw
ord" }  

Admin 
information is 
given . Returned 

an access 
identifier:Χ_subj_

token . 

POST /v1/applications/ 

client_id/ 
users/user_id/ 

roles/role_id 

X-Auth-

token:Χ_subj_toke
n 

 This method 

corresponds  
“role_id” to user 

with id  “user_id”. 

GET /user?access_tok

en= {OAuth2 
token} 

Authorization: 

base64 (client_id: 
client_secret) 

 Receives an 

OAuth2 token in 
its URL. If it is 

valid , user’s 
information is 

returned ( User 
id, User Roles, 
Permissions …) 

 

REST table 1 – Keyrock IDM 

 

• Authorization Policy Decision Point (Authorization PDP) 

This service is a docker container running AuthZForce image35. This 

service is provided by the FIWARE catalogue and it is the Authorization Policy 

Decision Point (PDP) service of the local cloud system. The aim of this service 

is to make decisions, permit or deny, about the user’s access requests. The 

decision it makes, is based on access rules that are stored in the service. This 

access rules follow the XACML standard. 

A role that is registered in local cloud Keyrock IDM service is associated 

with one of the stored AuthZForce access rules. An access rule describes how 

the user request must be standardized for approval. AuthZForce has  the 

following RESTful interfaces : 
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▪ Creating a new role in the local cloud Keyrock IDM service, 

automatically triggers a REST request from the local Keyrock IDM 

to the AuthZForce Service. This service will create a new access 

rule that is associated with the new role from the Keyrock. 

 

▪ The local cloud Policy Enforcement Policy (PEP) Proxy Servers 

forward to AuthZForce the user’s access request, in order to be 

evaluated for approval or rejection. 

 

• Policy Enforcement Point Proxy Server (PEP Proxy Server) 

This service is a docker container running Wilma image36. Wilma PEP 

proxy provided by the FIWARE catalogue and is implemented in order to 

corporate with the local Keyrock IDM and the local AuthZForce PDP. This 

collaboration provides protection to others local services of the cloud system 

from local users. The purpose of any PEP Proxy Wilma is to “protect” their 

respective services from unauthorized users and services:  

o Publish/Subscribe Service  

o Sensor Data Storage Service 

o History Service 

o Register Sensor Service 

o Register Cloud Service 

o Query Sensors Service 

o Query Available Clouds Service 

The PEP Proxy Servers 1, 2, 3, 6  and 7, as shown in Figure 20, because 

they act as an intermediary  for the user’s request and services that they provide 

protection,  need the user's unique OAuth2 token in the header of its HTTP 

request in order to authorize and authenticate user through its collaboration 

with User Identification-Authorization Service and Authorization Decision Point 

as shown in Figure 23.  

 
Figure 23 – PEP Proxy Wilma using OAuth2 token
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On PEP Proxy Servers 4 and 5, as shown in Figure 20, because they 

act as intermediary for their protected services and services that want access 

to them,  the service requests header contains the Master key code of the PEP 

Proxy Server, as shown in Figure 24 

 

 

 
 

Figure 24 – PEP Proxy Wilma using Master Key 

 

 

The authentication and authorization of users who wishes to access 

services that are located to a remote LINCA’s cloud system, it will be describe 

in section 4.2. 

 

• Publish/Subscribe Service  

This service is a docker container running Orion Context Broker image37. 

This service is provided by the FIWARE catalogue. It operates according to the 

NGSI-2 model data model for managing context information through its 

RESTful interface. The service functions are described as follow: 

 

o Create/Update Entities 

The task is to design the Orion Context Broker to maintain the NGSI 

entities that describe: 

A. Every different sensor in local cloud 

When a sensor is registered at the local end, an HTTP request is 

routed to create a new NGSI "sensor" entity in Orion Broker. This request 

is implemented using the POST method. The body of this request 

includes the following as shown in Figure 24. 
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Figure 24 – Create/Update request Orion Context Broker 

In detail, the features included in the Figure 24 are as follows: 

▪ Id – Unique Identifier of the sensor. 

▪ Type – Refers to the type of the NGSI entity. The value “Sensor” 

indicates that is a sensor entity. 

▪ Attributes – Attributes for a particular sensor. 

▪ Name – name of the attribute of the sensor. 

▪ Type – type of sensor’s attribute. 

▪ Value – value of senor’s attribute. 

▪ updateAction – Contains the value “Append”. This means 

that the above request when is made for the first-time acts 

as creation request. This request creates an entity as it is 

described in its body. In the case where the entity already 
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exists, the request acts as a update request (changing the 

existing entity). 

 

B. Every different sensor in foreign cloud 

When a user subscribes to a sensor that is located at a foreign cloud, 

the local Orion Context Broker subscribe to the foreign Orion Context 

Broker to receive updates for these sensors. Thus, the foreign Orion 

Context Broker creates a sensor entity to the local Orion. 

o Subscription Entities 

Through subscriptions to entities, Orion Context Broker triggers 

updates on any changes (the "ONCHANGE" condition) that occur in an 

entity's attributes. The update is sent to a predefined - by the subscriber - 

URI via a REST request using POST method. The request body contains 

the change information which is described with the NGSI-2 information 

model. The entity subscription function is used by the local Data Storage 

Service. Having the role of subscriber, it receives notifications at its 

endpoint about changes in sensor measurements and stores them in the 

system's historical database. 

Figure 25 – Subscribe request to Orion Context Broker 

 

In detail the features included in the Figure 25 are as follows: 

▪ Entities – The entities we subscribe to. 

▪ IdPattern – This is the only sensor ID we want to create a 

subscription for. 

▪ Notifications – This is a feature that contains the information 

about the updates it receives.
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▪ httpCustom : This is an http request that we modify 

as we want. 

▪ url – Indicates the final destination of the updates it 

receives. In this case it’s the PEP Proxy of the Data 

Storage Service. 

▪ Throttling - This is a variable that specifies the frequency at 

which updates will be sent to the specified endpoint.  

 

The following REST table 2 shows the REST methods that implement 

all the functions of the Orion Context Broker as discussed in this section: 

  

 

 

REST table 2 – Orion Context Broker 

 

• Sensor Data Storage Service 

This service is a docker container running Cygnus  image38.  The Cygnus 
service is based on the "Apache flume40" architecture and provides various 
agents (Agents) responsible for collecting NGSI data streams and storing them 
in a predefined (external) database. An agent consists of a listener who is  
responsible for receiving the data, a "channel" where the listener forwards the 
data, and a "sink" that "receives" the data from the channel in order to store 
them in an external database . The components of Cygnus is shown in Figure 
26. 

Metho

d 

URL Method Request Header Request 

Body 

Method Descr. 

POST /v2 /Entities Fiware-

ServicePath: 
/Sensors 

Diagram 

2.1.3.2.1 

Creation of  

«Sensor» entity. 

GET /v2 /Entities /{entity 
id} 

FiwareServicePat
h: /Sensors 

  Recovery of 
entity with ID 

“entityid” which is 
located in 

«Sensor» entities. 

DELE

TE  

/v2 /Entities /{entity 

id} 

FiwareServicePat

h: /Sensors 

 Deletion of entity 

with ID “entityid” 
which is located in 

«Sensor» entities. 
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Figure 26 – Cygnus 

Cygnus provides various specialized agents to collect and maintain 

NGSI data in the following database - repository services: 

• HDFS Hadoop -  file sharing system. 

• MySQL - relational database. 

• CKAN - Open Data Platform. 

• MongoDB -  NoSQL database for documents. 

• Kafka -  Subscription Message Broker. 

• DynamoDB - Cloud-based NoSQL database from Amazon Web 

Services. 

• CarTo - Database specializing in geographic data. 

 

For example, in the scenario where we need to store NGSI feeds in a 

DynamoDB database, we will need to use a specialized "DynamoDB agent" of 

the Cygnus service. Similar to the MongoDB database storage scenario, we will 

need a specialized "MongoDB agent". In this work we have put in place a 

specialized agent (Cygnus) for storing raw and aggregated data in the historical 

database of the MongoDB system. 

By using the subscription function of the Orion Context Broker service, 

the agent subscribes to all Orion sensor entities. So, with every change that 

happens to the value of a sensor attribute, an update is triggered from Orion to 

the endpoint of the agent subscriber. The agent thus receives all measurements 

of the system's sensors each time they occur. 

It then has the responsibility of storing the measurements as raw and 

aggregated data in the historical database. In this way the agent maintains a 

time series data for the measurements of each different sensor. 

In order to store aggregated information : 

 

For each different sensor, different variables are maintained in the 

database that relate to:   

▪ The maximum value of the sensor measurements for the last 

month / day / hour.  

▪ The minimum value of the sensor measurements for the last 

month / day / hour.  
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▪ The sum of the sensor measurements for the last month / day 

/ hour. 

Example :  

Suppose that the maximum temperature of the sensor with "urn: ngsi-ld: 

tl: beacon: 001" identifier for this month is kept in the variable 

"MAX_temperature_ urn: ngsi-ld: tl: beacon: 001_September" within the history 

DB and has the value "34". The agent receives an alert with the new " urn: ngsi-

ld: tl: beacon: 001" sensor temperature measurement set to "36". The agent will 

update the variable for the maximum sensor temperature for this month from 

"34" to "36". 

With this tactic, a request to retrieve the maximum / minimum / average 

measurement of a sensor for any month / day / hour can be executed instantly 

once there is a Pro-aggregation. Otherwise, we would have to recover a fairly 

large number of raw metrics between the time frame we are interested in 

(maybe thousands of metrics) and export - at that time - with some MAX / MIN 

/ AVERAGE algorithm to the desired value (Much more time consuming). 

At this point, as the operation of a Cygnus agent has become more 

understandable, it is worthwhile to note one more positive thing that it offers on 

an architectural level. As explained at the beginning of the section the agent 

consists of a listener, a channel and a "sink". The channel acts as a temporary 

repository of data received by the listener (the size of the channel memory is 

set when the agent is initialized), Sink undertakes to "retrieve" the temporary 

data in the channel and store it in the external database. This way, a failed 

record (eg network delay, database overload, etc.) can be repeated without 

losing data.  

The REST method provided by the service for receiving and storing 

NGSI feeds is described in the following REST table 3. 

 

 

REST table 3 - Cygnus 

 

 

Method URL Method Request Header Request 

Body 

Method Descr. 

POST /notify   Endpoint of the 

subscriber of this 
service. Subscribed  

data streams are sent 
for storage.  
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• History Service 

This service is a docker container running Comet image39. FIWARE-

COMET is a service provided by FIWARE. It is locally linked to the MongoDB 

(History DB). 

With its RESTful interface, it retrieves raw and aggregated historical 

information which is stored in the MongoDB (HistoryDB).  

This information has been stored on a historical basis by the Cygnus 

agent as we saw in the previous section. The REST API of the service is 

described in the following REST table 4: 

 

 

REST table 4 – STH Comet 

 

• Sensor Interface Service 

This service is a docker container running IoT-Agent  image40. This service 

is provided by FIWARE and it aims to provide:  

▪ Provide a sensor insertion mechanism to the infrastructure owners 

according to their specifications so that customer can find the registered 

devices. 

 

▪  Recovery and translation of data sent by the sensors and then 

forwarded to the Publish Subscribe service. 

The sensor is inserted by using the graphical interface where it gives the 

infrastructure owner the choice to select the cloud they wish to insert the sensor 

Method URL Method Request 

Header 

Request 

Body 

Method Descr. 

GET /STH/v1/contextEntities/ 
type/ Sensor/ id/ 
{Sensor_id} 

/attributes/{temperature} 
&LastN=1 

  Request for retrieving 
the current value of 
temperature from a 

sensor with the ID 
“Sensor_Id”. 

GET /STH/v1/contextEntities/ 
type/ Sensor/ id/ {Sensor 

id} 
/attributes/{temperature}/ 

aggrMethod={max/min/avg} 
&aggrPeriod= {Hour} 

&dateFrom ={2019-09-
01T00:00:00.000Z} 

&dateTo ={2019-09-
2T23:59:59.999Z} 

  Request for retrieving 
the min/max/sum from  

historical data of a 
sensor with the ID 

“Sensor_Id”. Τhe 
“aggrMethod” takes 

values like “sum”, 
“max”, “min”. The 

“aggrPeriod” takes 
values like  “month”, 
“day”, “hour”. 
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and then to complete the sensor characteristics. This allows the infrastructure 

owners to easily insert sensors at the clouds that are authorized. 

• Query Sensors Service 

This service is a docker container running Apache Server image41. The 

purpose of the service is to provide the users with a specified search engine so 

the users can find the devices they need. 

The sensors can be selected by the user, firstly by choosing their cloud 

that they are located at, through the graphical interface. In addition, they can 

choose the type of sensors’ measurements. In this way, the user can easily 

search for sensors in LINCA’s clouds. Before the search starts, an 

authentication and authorization process is executed, in order to check if user 

is authorized at the LINCA’s clouds that wants to search for their connected 

sensors. The service communicates with the Directory DB to retrieve sensors 

from the requested LINCA’s clouds. 

• Query Available Clouds Service 

This service is a docker container running Apache Server image42. In 

this service a user can search for any available clouds that are registered in 

LINCA system. They can choose in which one they want to subscribe to. If the 

corresponding cloud admin accept the user’s subscription request, then the 

user can query for the sensors in admin’s cloud. 

 

• Register Sensor Service 

This service is a docker container running Apache Server image43. The 

purpose of this service is to provide users with a specified graphical interface 

so users can register their sensors to their connected LINCA’s cloud system. 

In the graphical interface, Infrastructure Owners can fill the information 

that are related to their sensors, such as name, id, owner details and type of 

measurements. Also, this service communicates with the Directory DB in order 

the infrastructure Owners to insert their sensors information to it. In this way 

authorized users can search for sensors that are connected in their authorized 

LINCA’s cloud systems.  

This service is also used to update the customer’s subscription list in 

Directory DB. For example, when a customer creates a subscription to a 

sensor, a request is routed from Register Sensor Service to Directory DB to 

update the user’s subscription list.  

• Register Cloud Service 

This service is a docker container running Apache Server image44. In 

this service, a user-admin can register his/her cloud’s information in LINCA in 

order to be discoverable by others remote authorized users . An authorized 
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user means that it made a subscription request to this admin’s cloud and this 

admin accept it and created for this user roles-permissions 

4.2   LINCA’s Cloud Systems Interaction 

LINCA’s is a master-less distributed system that is consisted of with 

identical and equal cloud systems. These clouds systems can interact with each 

other through RESTful communication in order to satisfy the demands of user 

categories that described in Section 3.1. More specifically, LINCA’s cloud 

systems interact with each other when: 

• A Customer user is searching for the available cloud systems that are 

registered in LINCA. 

• A user wants to subscribe to remote cloud systems in order to access 

their services and devices. 

• Authentication and Authorization process of user takes place, in order 

to get access to remote services 

• A Customer user is searching for sensors that are connected to remote 

cloud systems. 

• A customer is subscribed to sensors that are connected to remote 

cloud systems and their data bust be fetched by user’s cloud system 

in order to provide the sensors’ updates to the subscriber. 

 

Figure 27 – LINCA’s cloud systems interaction 
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The Figure 27 illustrates a view of the LINCA’s clouds system interaction. 

Arrows represent the RESTful communication over HTTP protocol of: 

• Services that are in the same cloud system. 

▪ Red Dashed Arrows : communication of security 

service with the other services as described in section 

4.1. 

▪ Black Arrows : communication between the rest 

services of the cloud system as described in section 

4.1. 

 

• Services that are in different cloud system. 

▪ Red Arrows : communication between security services 

of each cloud system in order to register, authenticate 

and authorize user in a remote cloud system. 

▪ Green Arrows : communication between Database 

Services of each cloud system. More specifically , 

Directory DB  of each cloud system is a node of 

Cassandra’s ring. After the authorization and 

authentication process user can seek sensors that are 

connected to LINCA.  

▪ Yellow Arrows : communication between 

Publish/Subscribe Services of each cloud systems in 

order to retrieve updates of subscribed sensors’ 

measurements.  

 

The connection of services of the same cloud system is explained in 

section  4.1. In addition, we will describe the communication between remote 

services(services that are located in different LINCA’s cloud systems). 

• Interaction of Security Services  

Each Security Service is consisted from 4 micro services as described 

in Section 3.6.2. These micro services are the User Identification and 

Authorization Service, Policy Enforcement Point Proxy Server (PEP Proxy), 

and Authorization Policy Decision Point (Authorization PDP). 

As shown in Figure 13 ,when user  subscribe to a remote cloud system 

of LINCA, his/her permissions for this cloud is stored as a XACML file in the 

AuthZForce Service of this remote cloud system.  

In this way, the cloud system that the user is connected, and he/she 

routes requests to services of remote cloud system, is responsible for the user 

authentication and the remote cloud system that user wants to access its 

services , is responsible for user authorization because it maintains user’s 

permissions in its Authorization PDP Service. 

 A security service communicate with other security service of different cloud 

system  when a customer  through his/her cloud system tries to query or 
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subscribe to sensors that are connected to a remote cloud system to LINCA. 

Also, this process performed when a customer wants to retrieve current and 

statistic value of a subscribed sensor that is connected to a remote cloud 

system of LINCA. 

When a user is trying to log in to his/her cloud system the local 

Identification-Authorization Service checks if the requested user belongs to its 

cloud system. If the identification is successful, an OAuth2 token is returned, 

which defines the identity of this user in his/her cloud system. 

When the logged in user wishes to query or subscribe sensors that is 

connected to a remote cloud system of LINCA, must provide in the request’s 

header his/her OAuth2 token that received when he/she logged in. The local 

PEP proxy Query Sensor  receives first the user’s request in order to check to 

its cloud system who the user is and what permission it has to the remote cloud 

in wich the requested sensors are connected. Actually, the PEP proxy Query 

Sensor extracts the OAuth2 token from the user’s request  and asks the 

Identification-Authorization Service which is located to user’s cloud system (the 

cloud system that is connected and can route request)  who the user is. After 

the Identification-Authorization Service identifies the user, it returns to the local 

PEP proxy Query Sensor the user’s profile information. Next, the local PEP 

Proxy Query Sensor based on the information that it received from the 

Identification-Authorization Service, asks the Authorization PDP Service that is 

located to the remote cloud, if this user has the permission to query or subscribe 

sensors of this cloud. If the Authorization PDP returns “Permit” then the local 

PEP Proxy Query Sensor forwards the user’s initial request to the local Query 

Sensor Service. Otherwise, if the Authorization PDP return is “Denied”, the PEP 

proxy will not forward the request. Then, the local Query Sensor Service is 

searching in the local node of the Cassandra (Directory DB) the sensors of the 

remote cloud. The above process is represented as workflow in Section 3.5  

and as an abstract view in Figure 28 below: 
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Figure 28 – PEP Proxy using OAuth2 between remote LINCA’s cloud systems 

 

• Interaction of Public/Subscribe Services  

Each Publish/Subscribe Service consists the Orion Context Broker 

Service ,as described in Section  3.6.2 . The communication between Publish 

Subscribe Services that are located to different clouds is explained in the 

following Scenario : 

• Scenario 

 

o An Infrastructure Owner is connected to CLOUD 1, as shown in Figure 

27, and is authorized to register its sensors, “Sensor1” and “Sensor2” 

to its cloud system. As result, these sensors send data to Sensors 

Interface Service through gateways in ordered to forwarded to 

Publish/Subscribe Service. The two services that were mentioned 

above are located to CLOUD 1. 

o User A is connected to CLOUD 2 and he/she routes a subscription 

request to CLOUD 1. 

o We assume that the Admin of CLOUD 1 accepts the request and 

he/she assign roles and permission to User A. As a result, user A has 

the permission to query and subscribe to sensors that are connected 

to CLOUD 1.  

o User A through his local system (CLOUD 2) routes request in order to 

subscribe sensors “Sensor1” and “Sensor2” that are located to 

CLOUD 1. 

o After the authentication and authorization mechanism that explained 

above (Interaction of Security Services), user A is successfully 
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subscribed to these sensors. More specifically, Publish/Subscribe 

Service of CLOUD 1 is subscribed to Publish/Subscribe of CLOUD 2 

for the “Sensor1” and Sensor2”. 

When “Sensor1” or “Sensor2” send new measurements to their 

Publish/Subscribe Service (CLOUD 1) , then this service forwards the new 

measurements to the subscribers of these sensors. So, Publish/Subscribe 

Service of CLOUD 1 will forward the measurements to Publish/Subscribe 

Service  of CLOUD 2. In addition, Publish/Subscribe Service  of CLOUD 2 will 

forward these measurements to the Sensor Data Storage Service of CLOUD 2 

in order to store them in History DB. This procedure is repeated for every new 

measurement from “Sensor1” and “Sensor2”. 

 

• Interaction of Database Services  

Each Database Service consists a Directory DB. This database is an 

implementation of  Cassandra Database.  Each Directory DB that is located to every 

cloud system of LINCA corresponds to a node of Cassandra’s ring. The  

communication in  Cassandra ring  is described in Section 2.5.1. Authorized users can 

query LINCA’s sensors through the local node of Cassandra Cluster. Unauthorized 

user cannot get access to the any node of Cassandra’s ring because the only way to 

get access to them  is through Register Sensor Service, Register Cloud Service, Query 

Sensor Service ,Query Available Clouds Service which are protected by Security 

Services.  

 

4.3   Docker and Virtual Machine Interaction 

LINCA's individual cloud systems are developed on Intellicloud virtual 

machines (VMs) that use the OpenStack platform. The individual services of 

each cloud system are deployed as docker containers except from Directory 

DB (Cassandra) which is a deployed as a service in the Virtual Machine (VM), 

as shown in Figure 29. Each cloud system (VM) has a private and a public IP 

Address. The communication between cloud-cloud and cloud-user is done by 

using the public IP address. 
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 Figure 29 – Docker of LINCA’s cloud system 

 

 The containers are connected to an internal network created by the docker and 

can communicate with each other via internal ip addresses. The docker uses 

two ports mechanisms to interact with its containers, the expose and the publish 

mechanism. The expose mechanism can assign one or more ports to a 

container to communicate only with containers that are connected to the 

internal docker network. The Figure 30 represents the communication of docker 

containers (cloud services) over the internal docker network. Containers of this 

docker network can communicate with each other via internal ip addresses (e.g. 

Container 1 internal ip address is 172.18.1.5) along the exposed ports (e.g. 

Container 1 exposed port is 8060). Also, a docker container (e.g. Container 2) 

can exposed one or more ports.  

 
Figure 30 – Docker Network 
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The publish mechanism is a way of binding host machine port to a 

running docker container port. In other words, when a port of docker container 

is published, it is mapped to a specific port of the host machine. In this way 

docker containers can receive requests from services that are outside the 

docker internal network. 

Therefore, a user in order to access a cloud service that is deployed as 

docker container, he/she must use the public ip address of the cloud system 

(VM) along with the published port of the docker container in which the service 

is running. The Figure 31 shows that the published port 8061 of Container 4 

and is mapped to the host port 80. As a result, the Container 4 can receive 

requests from services outside the internal docker network. The requests can 

be sent through the public ip of the host machine along with the published port 

of Container 4 (e.g. 147.27.50.200:8061). 

 

 

 
 

Figure 31 – Communication of docker container with outside world 

 

 

The docker service can be installed on any computer. Also, DockerHub, 

which is a publish repository of images, offers images of FIWARE services in 

order to develop them as docker containers. In conclusion, LINCA can be 

implemented deployed on any group of computers that can communicate under 

the same network and have the docker service installed. 
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5. Back – End Performance 

 

Each of the cloud systems was developed on Intellicloud of Technical 

University of Crete. In total, 3 virtual machines are used. Each of this machine 

consists a docker machine and Apache Cassandra Database. In every docker 

machine there are 22 docker containers where the following services are 

executed: 

• Web Application 

• Application Logic  

• Query Sensor Service 

• Query Available Cloud Service  

• Register Sensor Service  

• Register Cloud Service 

• STH-Comet Service  

• Cygnus Service 

• Orion Context Broker Service 

• Sensor Interface Service 

• PEP Proxy for each protected service,7 in total. 

• Keyrock IDM 

• AuthZForce 

• MySQL Database 

• MongoDB, 2 in total. 

The technical features of the above virtual machines are as follows: 

 

CPU 4 VCPU 

Memory 8GB 

HDD 80GB 

OS Ubuntu 16.04 LTS 

 

The Apache Benchmark tool was installed and used in each virtual 

machine, in order to determine the performance of the system under real 

conditions. This tool can create quite a few simultaneous requests. Also, it 

can create heavy workloads on each system service individually by specifying 

the number of requests to be served and how many of them will be executed 

at the same time. 

In each of the following experiments, 2000 requests are made to each 

system’s service. These requests are repeated with different number of 

concurrencies. The measurements refer to the execution time per request that 

occurred and are divided into categories according to their concurrency. 

These categories are as follows: 
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As local services we define the services that are located to the cloud 
system in which the user is connected and makes requests and as remote 
services we define the services that are located to a remote cloud system of 
LINCA in which the user is interested to access its services. 
 

 

5.1. Experiment 1 – Query Sensors in Local Cloud System 

Scenario - The user through the graphical interface is querying for sensors 

based on desired features, that are connected to his/her local cloud system. A 

local cloud system defines the cloud where the user logs in and makes 

requests. For this experiment, the local cloud is called Athens with ip address 

http://147.27.50.200. 

Services - User via Web Application chooses the attributes of the sensors 

that wishes to search and are connected to his/her local cloud. The Web 

Application forwards the request to Application Logic. After, the Application 

Logic adds User OAuth2 token to the initial user’s request and then forwards it 

to the local PEP Proxy that “protects” the local Query Sensor Service. Next, this 

PEP proxy checks User OAuth2 token in local Keyrock. Immediately, local 

Keyrock checks its database if user exist with the corresponding OAuth2 token. 

If user, exist then it returns to local PEP proxy the user’s information. In addition, 

PEP proxy checks for user’s permissions in local AuthZForce PDP Service. If 

local AuthZForce returns “Permit” then the PEP proxy forwards the initial user’s 

request to the protected service, the local Query Sensor Service. If local 

AuthZForce returns “Denied” then the PEP proxy will not forward the initial 

request. After the successful user authentication and authorization, the local 

Query Sensor Service starts to query Directory DB for the desired sensors that 

are connected to the local cloud. In the end, Directory DB returns the desired 

sensors that are connected to the local cloud. The above workflow is 

represented in Section 3.5. 

Details - The request examined in this experiment, concerns finding 

sensors at the user's local cloud (ip address: http://147.27.50.200) that 

measure temperature and pressure. The query was made on a collection of 

900 sensor entities (virtual, in order the response to be realistic) with only three 

of them meeting the query criteria. 

REST - POST http://147.27.50.200:8060/getDesiredIDs, with request body 

(city=Athens && measurement= Temperature && measurement = Pressure). 
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Results - The results for the execution time per request are listed in the 

following Figure 32. 

 

 

Figure 32 – Execution time per request for querying sensors in Local Cloud System 

 

 

5.2.   Experiment 2 - Query Sensors in Remote Cloud System 

 Scenario - The user through the graphical interface is querying for sensors 

based on desired features, that are connected to a remote cloud system. A 

remote cloud system defines the cloud in which user is not directly connected 

but is authorized to query for its sensors through user’s local cloud. For this 

experiment, the local cloud is called Athens with ip address http://147.27.50.200 

and the remote cloud is called Chania with ip address http://147.27.50.199. 

Services - User via local Web Application chooses the attributes of the 

sensors that wishes to search and the remote cloud that their connected. The 

local Web Application forwards the request to local Application Logic. After, the 

local Application Logic adds User OAuth2 token to the initial user’s request and 

then forwards it to the local PEP Proxy that “protects” the local Query Sensor 

Service. Next, this PEP proxy checks User OAuth2 token in local Keyrock. 

Immediately, local Keyrock checks its database if user exist with the 

corresponding OAuth2 token. If user, exist then it returns to local PEP proxy the 

user’s information. In addition, local PEP proxy checks for user’s permissions 

in AuthZForce PDP Service that is located to the remote cloud that user wants 
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to find its devices. If remote AuthZForce returns “Permit” then the local PEP 

proxy forwards the initial user’s request to the protected service, the local Query 

Sensor Service. If remote AuthZForce returns “Denied” then the PEP proxy will 

not forward the initial request. After the successful user authentication and 

authorization, the local Query Sensor Service starts to query Directory DB for 

the desired sensors that are connected to the remote cloud. In the end, 

Directory DB returns the desired sensors that are connected to remote cloud. 

The above workflow is represented in Section 3.5. 

Details - The request examined in this experiment, concerns finding 

sensors at the user's remote cloud (ip address: http://147.27.50.199) that 

measure temperature and pressure. The query was made on a collection of 

900 sensor entities (virtual, in order the response to be realistic) with only three 

of them meeting the query criteria. 

REST - POST http://147.27.50.200:8060/getDesiredIDs, with request body 

(city=Chania && measurement= Temperature && measurement = Pressure). 

Results - The results for the execution time per request are listed in the 

following Figure 33. 

 

 

Figure 33 – Execution time per request for querying sensors in Remote Cloud System 
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each concurrency category. This difference is due to the connection time that 

Experiment 2 needs to authenticate-authorize a user in a remote cloud and to 

query for sensors that are connected to this remote cloud. The results for the 

average execution time per request of Experiment 1 and Experiment 2 are 

shown in the following Figure 34.  

 

 

Figure 34 – Average execution time per request for querying sensors in Local Cloud System and in 

Remote Cloud system 
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in History DB for the maximum temperature measurements of the chosen 

sensor. At last, History DB returns the requested information. The above 

workflow is represented in Section 3.5. 

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor 

/id/urn:ngsild:t:beacon:1/attributes/Τemperature?aggrMethod=max&aggrPerio

d=hour&dateFrom=2019-08-24T10:25:00.000Z&dateTo=2019-08-

25T10:25:00.000Z".  

Results - The results for the execution time per request are listed in the 

following Figure 35. 

 

Figure 35 – Execution time per request for retrieving maximum value of sensor  
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Web Application forwards the request to local Application Logic. Local 

Application Logic adds User OAuth2 token to the initial request and then 

forwards it to local PEP Proxy. Local PEP proxy checks User OAuth2 token in 

local Keyrock. Immediately, local Keyrock checks its database if user exist with 

the corresponding OAuth2 token. If user, exist then local Keyrock returns to 
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user’s permissions in AuthZForce PDP Service that is located to the remote 

cloud in which the subscribed sensor is connected. If remote AuthZForce 

returns “Permit” then local PEP proxy forwards the initial user’s request to the 

protected service, local STH-Comet. If local AuthZForce returns “Denied” then 

the local PEP proxy will not forward the initial request. Comet processes the 

request and starts querying in History DB for the maximum temperature 

measurements of the chosen sensor. At last, History DB returns the requested 

information. The above workflow is represented in Section 3.5. 

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor 

/id/urn:ngsild:t:beacon:251/attributes/Τemperature?aggrMethod=max&aggrPe

riod=hour&dateFrom=2019-08-24T10:25:00.000Z&dateTo=2019-08-

25T10:25:00.000Z".  

Results - The results for the execution time per request are listed in the 

following Figure 36. 

 

Figure 36 – Execution time per request for retrieving maximum value of sensor  
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Figure 37 – Average execution time per request for retrieving max value of sensor in Local Cloud 

System and in Remote Cloud system 

 

 

5.5.   Experiment 5 - Retrieve Current Value of Local Sensor 

 Scenario - The user, through the graphical interface, requests the current 

temperature measurement of his/her subscribed sensor “urn:ngsi-

ld:t:beacon:13”. This sensor is connected to user’s local cloud system. 

Services – User via local Web Application chooses from subscribed 

sensors list the sensor “urn:ngsi-ld:t:beacon:13” in order to retrieve its current 

temperature measurements. Local Web Application forwards the request to 

local Application Logic. Local Application Logic adds User OAuth2 token to the 

initial request and then forwards it to local PEP Proxy. Local PEP proxy checks 

User OAuth2 token in local Keyrock. Immediately, local Keyrock checks its 

database if user exist with the corresponding OAuth2 token. If user, exist then 

local Keyrock returns to local PEP proxy the user’s information. Local PEP 

proxy checks for user’s permissions in local AuthZForce PDP. If local 

AuthZForce returns “Permit” then local PEP proxy forwards the initial user’s 

request to the protected service, local STH-Comet. If local AuthZForce returns 

“Denied” then the local PEP proxy will not forward the initial request. Comet 

processes the request and starts querying in History DB for the current 

temperature measurements of the chosen sensor. At last, History DB returns 

the requested information. The above workflow is represented in Section 3.5. 
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REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor 

/id/urn:ngsi-ld:t:beacon:13/attributes/Τemperature?LastN=1".  

Results - The results for the execution time per request are listed in the 

following Figure 38. 

 

Figure 38 – Execution time per request for retrieving current value of local sensor  
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temperature measurement. At last, History DB returns the requested 

information. The above workflow is represented in Section 3.5. 

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor 

/id/urn:ngsi-ld:t:beacon:251/attributes/Τemperature?LastN=1".  

Results - The results for the execution time per request are listed in the 

following Figure 39. 

 

Figure 39 – Execution time per request for retrieving current value of remote sensor  

 

By computing the average execution time per request of Experiment 5 and 

Experiment 6, we notice a difference between their average execution time of 
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Figure 40 – Average execution time per request for retrieving current value of sensor in Local Cloud 

System and in Remote Cloud system 
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returns “Denied” then the PEP proxy will not forward the initial request. Also 
Query Sensor Service is responsible to update user’s subscription list in the 
local node of Cassandra’s cluster. The above workflow is represented in 
Section 3.5. 

 
REST - POST http://147.27.50.200/Subcreate, with body request  

(user=athens@customer.com , city= Athens, sensor = urn:ngsi-ld:t:beacon:1). 

Results - The results for the execution time per request are listed in the 

following Figure 41. 

 

Figure 41 – Execution time per request for subscribing sensor in local cloud system  
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http://147.27.50.199 and the local cloud is called Athens with ip address 

http://147.27.50.200 

Services – User via local Web Application after the process of querying 

sensors, he/she chooses to subscribe to sensor “urn:ngsi-ld:t:beacon:256”  

who is connected to  a remote cloud system. Local Web Application 

forwards the request to local Application Logic. Local Application Logic adds 

User OAuth2 token to the initial request and then forwards it to local PEP 

Proxy. Local PEP proxy checks User OAuth2 token in local Keyrock. 

Immediately, local Keyrock checks its database if user exist with the 

corresponding OAuth2 token. If user, exist then local Keyrock returns to 

local PEP proxy the user’s information. Then local PEP proxy checks for 

user’s permissions in the remote AuthZForce PDP Service that is located to 

the remote cloud system in which the requested sensors are connected. If 

remote AuthZForce returns “Permit” then local PEP proxy forwards the initial 

user’s request to the protected service, the local Query Sensor Service. If 

remote AuthZForce returns “Denied” then the PEP proxy will not forward the 

initial request. The local Query Sensor Service is responsible to subscribe 

the local Orion Context Broker to the remote Orion Context Broker for the 

sensors that user wants to subscribe. In this way when the remote Orion 

Context Broker receives updates from the requested sensors , it will forward 

them to the local Orion Context Broker.Also Query Sensor Service is 

responsible to update user’s subscription list in the local node of 

Cassandra’s cluster. The above workflow is represented in Section 3.5. 

 
REST - POST http://147.27.50.200/Subcreate, with body request  

(user=athens@customer.com , city=Chania, sensor=urn:ngsi-ld:t:beacon:256). 

Results - The results for the execution time per request are listed in the 

following Figure 42. 
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Figure 42 – Execution time per request for subscribing sensor in remote cloud system  
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results for the average execution time per request of Experiment 7 and 

Experiment 8 are shown in the following Figure 43. 
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Figure 43 – Average execution time per request for subscribing sensor in Local Cloud System and in 

Remote Cloud system 
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user’s request to the protected service, the local Register Cloud Service. If local 

AuthZForce returns “Denied” then the local PEP proxy will not forward the initial 

request. Local Register Cloud Service process the request and imports the 

cloud’s information in Directory DB in order to be discoverable from remote 

users. In the end, Directory DB returns if the insertion was success. The above 

workflow is represented in Section 3.5. 

REST - POST http://147.27.50.200/InsertNode with body request 

(name=Athens, address= http://147.27.50.200, longitude=27.8, latitude=18.1).  

Results - The results for the execution time per request are listed in the 

following Figure 44. 

 

 

Figure 44 – Execution time per request for inserting a Cloud System in LINCA  
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Figure 45 – Average execution time per request for registering a Cloud System in LINCA
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6. Conclusions 

For this thesis, we introduced and implement a master-less distributed 

system, named LINCA. The development of LINCA in the cloud computing 

through FIWARE has the advantage  of using its services. Keyrock Identity 

Manager , Wilma PEP Proxy,  AuthZForce provide security to LINCA’s cloud 

systems  as a result to the overall LINCA. Orion Context Broker provides 

subscriptions features in order to retrieve sensors  that are connected to its 

cloud system or in a remote cloud system. Cygnus is  responsible to store and 

maintain the sensors that are received from Orion Context Broker and the STH-

Comet is responsible to retrieve history data measurements of these stored 

sensors.   

The sensor interface service as implemented is not a generic solution for 

sensor interfaces in the system as it is adapted to work only for “Proximity 

Beacon” sensor devices of “Estimote” company. Its development was carried 

out with the intention of demonstrating the system using the physical devices 

we had at our disposal (Proximity Beacons).  

Also, one of the main components of LINCA that  make it a master-less 

distributed system is Apache Cassandra. Cassandra is a master-less 

distributed database consists of nodes that form a cluster , called Cassandra 

ring. Each of these nodes is located at every LINCA’s cloud system. In this way 

, users can query for sensors that are connected to its cloud system or to remote  

cloud systems. In addition, users can search for the available cloud systems 

that are registered in LINCA system. 

Of course, the use of Service-Oriented Architecture (SOA), and more 

specifically the use of RESTful services, assist with the communication 

between services and thus the development of the service that is responsible 

for the orchestration of services in each cloud system. A great advantage of this 

architecture was the flexibility to use different programming languages for each 

cloud system operation as well as ease in modification of individual cloud’s 

services without affecting the whole system. 

Summarizing our conclusions , LINCA  is a system where different cloud 

systems can interact with others clouds under security in order to provide their 

sensors and services. Each of this system is capable of handling large number 

of devices while the functions it provides are executed in real time even for large 

number of users.  
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7. Future Work 

The design and implementation of the system can be considered that  meets 

the Functional System Requirements that are explained in Section 3.2.1, by 

achieving the development of a fully scalable, distributed, master-less IoT 

System  for   cloud system  management and the management of their 

connected devices following the three architectural model. However, the work 

as it has been done within a specific time as a result to give place for some 

issues as future work: 

• Deployment of LINCA system in Kubernetes - Kubernetes automates 

deploying, scaling and managing the individual containerized 

applications on  a cluster of  virtual servers. Kubernetes also lets you 

automatically handle networking, storage, logs, alerting  for all particular 

containers. 

• Deployment of Sensor Interface based on Back End Device 

Management (IDAS) of FIWARE –  A general solution for secure 

connection of devices to their cloud systems  can be the FIWARE Back 

End Device Management – IDAS  instead of the existing sensor interface 

service that are located in every cloud system. IDAS has the ability to 

receive data and translate specific IoT protocols (LoRaWAN0.1, HTTP, 

MQTT, CoaP) into the NGSI information protocol, that is the FIWARE 

data representation-exchange standard. In addition, the IDAS service 

has its own protection mechanism as it only receives data from the  

registered  physical devices that the infrastructure owners registered to 

their cloud systems. 

• Integration of Algorithm to exploit stored device data - This can be 

achieved by developing a service and integrating to it a new algorithm , 

which will exploit the available data of the devices that are stored in 

LINCA system in an interesting way. 

• Change communication protocol to HTTPS - All requests between 

system services are handled using the HTTP protocol. An important 

improvement in system security is that to change the  communication 

protocol to HTTPS due to it is a more secure protocol for the 

transmission of "sensitive" information. 
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