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ABSTRACT

These days, Convolutional Neural Networks are popular for image classification
and recognition. We prefer to utilize them because they achieve high accuracy by
exploiting the inherent properties of images. A major disadvantage of CNN is that
they perform many and complex calculations that cost a lot of time, energy and
resources. The best solution that we can suggest is to take advantage of the proper-
ties of Field Programmable Gate Arrays. FPGAs are specialized in the acceleration
of calculations and they consume less energy than Graphics Processing Units or
Central Processing Units.

We introduce a framework written in C++ that can adopt FPGA kernels to
accelerate calculations as matrix multiplications. We connected an available ma-
trix multiplication with addition implementation to the framework and we tested
it on a Trenz Platform. Apart from that, we implemented a fast and cache-aware
framework applying OpenMP, GCC option flags, OpenMP environment variables
and features from C++17. Our CNN framework is tested on a LeNet-5 architecture
using the MNIST dataset containing L1, L2 Regularizations, Vanilla, Momentum,
Momentum with Nesterov Updates, He-et-al weight initialization, Fisher-Yates shuf-
fle, Stochastic Gradient Descent techniques that are all implemented from scratch.
Furthermore, we implemented 3 ways of load MNIST dataset, as well as, naive,
cache blocking, OpenMP and Hybrid cache blocking with OpenMP in matrix mul-
tiplication, transpose and copy algorithms, that we tested and investigated their
behavior among the mini-batch sizes and the number of used threads.

Besides all the aforementioned that was made from scratch, we used the Xil-
inx Vivado SDK to make a bare-metal C++ project with the appropriate cache
size linker script and adjusted the matrix multiplication with addition code to our
framework. Afterwards, we programmed the Trenz Platform that contains an ARM
CPU and an FPGA accelerator. As a result, we achieved a 4.3x-8.5x better per-
formance using an FPGA to accelerate matrix multiplication with addition than
using a naive or a cache blocking single thread implementations and in specific
unfair(lack of multi-threading on Trenz) cases, depending on the mini-batch size
of multi-threading OpenMP(up to 1.27x) or Hybrid algorithms(up to 2.27x) on a
CPU.
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Chapter 1

Introduction

1.1 Overview

The goal of this thesis was to implement a framework to train Neural Networks
using the advantages of an FPGA. The framework is based on a Convolutional
Neural Network, which is a popular and successful deep neural network model. Deep
Neural Networks require computational power, that technologies as GPU, TPU or
FPGA can handle faster than general-purpose processors. FPGAs are designed
to reprogram and to consume low power per instruction. For the aforementioned
reasons, we focus on FPGA technology for the acceleration of the computations.

The purposed CNN is designed in a hybrid CPU/FPGA system, where CPU acts
as the controller and FPGA perform the computations. At the moment, we want
to adjust a matrix multiplication with addition computation function in the Fully
Connected layer and as future work to expand the FPGA usage and implement and
adjust computation functions that slow down the training process. The kernels that
we have programmed use the generated bitfiles from Vivado Xilinx Tools. Apart
from that, we make research in software to investigate the behavior of matrix multi-
plication, transpose and copy functions in more than one algorithm implementations
that help us to improve our framework.

1.2 Related Work

There are many frameworks that built-in for different purposes and problems.
The framework that we guided and tried to translate in C++ was an implementation
from C231n course - Convolutional Neural Networks for Visual Recognition from
Stanford [2] and Paras Dahal’s Deepnet [8] that are both written in Python and are
used to introduce someone into the Neural Networks.

Another interesting implementation of a CNN framework that has the same logic
and we take into consideration while we build ours is Darknet, written in C and
Cuda for CPU and GPU computation support [9].
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Some other significant and widely used frameworks that we can refer as related
work, considering that a lot of our work focus on CNN in general, are:

• TensorFlow
The most popular framework at the moment is the TensorFlow . It is adopted
by many researchers and large companies that use AI in their services due
to flexible architecture and the computational graph abstraction usage. It is
available in C++, Python, and R and it has 2 helpful and widely used tools,
the TensorBoard and TensorFlow Serving [10].

TensorBoard is the interface that visualizes effectively the network to optimize,
debug and understand the model. TensorFlow Serving is claimed that is a
high-performance, flexible serving system for machine learning models and it
is designed for production environments [11, 12].

The major disadvantages of TensorFlow are that it is not completely open-
source, the Python is not a high-level language hence it is slow and the lack
of many pre-trained models [11, 12].

• The Microsoft Cognitive Toolkit/CNTK
It is another open-source deep learning framework to train deep learning mod-
els created by Microsoft . It is similar to Caffe framework and its interface can
support Python, C++, C#/.NET, and Java. Microsoft Cognitive Toolkit sup-
ports CNN and RNN to solve efficiently handwriting, speech and image recog-
nition problems. It is flexible and it supports distributed training. Therefore,
it lacks visualizations and it does not support ARM architecture that mobile
devices mainly supports [11, 13, 12].

• Caffe
Caffe is a powerful deep learning framework which is developed by Berkeley
AI Research (BAIR) and by community contributors . It is fast, efficient and
supports C, C++, Python, MATLAB. It is claimed that it is easy to build a
CNN for image classification and generally for deep learning research. Caffe
works in CPU and GPU and allows the training of a model without writing
code. Therefore, it is not great for new architectures and RNNs [13].

• Torch/PyTorch
Torch is a framework for deep learning based on Lua which is used by many in-
dustry giants and researchers . It uses C/C++ libraries and CUDA. Moreover,
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it is an open-source, flexible, high-level speed and efficiency library that has
many available pre-trained models. Although its documentation is unclear,
Lua is not popular nowadays and it lacks plug-and-play code for immediate
use [13].

PyTorch is an open-source and also supported from Facebook, rapidly grown
framework . Furthermore, PyTorch is a port to Torch framework, therefore it
runs on Python which is one of the most popular, preferred and easy to use
language today. It can execute high complexity computations of tensors. The
PyTorch framework has a simpler modeling process in comparison to Torch
framework [12].

• Theano
Theano is the oldest deep learning framework in Python and it was developed
at the University of Montreal in 2007 . It is claimed a powerful library that
allows for numerical operations involving multi-dimensional arrays with a high
level of efficiency. The intensive computations performed properly optimized
in GPU instead of CPU with high efficiency in its operations and numerical
tasks. Therefore, it is a bit buggy in Amazon Web Services(AWS) and in case
we want to gain a high level of abstraction, it needs to be used with other
libraries [13].

• Keras
Keras is a user-friendly, easily extensible framework. It runs seamlessly on
both CPU and GPU while it works with Theano and TensorFlow. A major
disadvantage is that it can not be efficiently used as an independent framework
[12]. Keras supports Python language and both CNN and RNN. It is a nice
start for the users that have some experience in Python and want to delve
further into deep neural networks [13].

There are many more frameworks, but we focus on the most significant to get a
better idea on frameworks, their purpose, general functionalities and why they are
preferred as they are the most popular nowadays.

FPGA accelerated Neural Networks

We found some interesting frameworks that are accelerated by FPGAs that are
worthy to mention:
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• TABLA
TABLA is a template-based framework that focuses on training acceleration of
statistical machine learning . It automatically generates accelerators in Verilog
for stochastic gradient descent [14].

• F-CNN
The F-CNN is an FPGA-based Framework for training CNNs, that has mod-
ules implemented for acceleration using FPGAs. It is claimed that is energy
efficient than GPU and has higher performance than a CPU, both implemented
on Caffe[15].

• FINN
FINN is an experimental framework from Xilinx Research Labs that use a
flexible heterogeneous streaming architecture to build fast and flexible BNN
inference FPGA accelerators. The generated accelerators can are great for
embedded applications such as autonomous driving because they have sub-
microsecond latency while executing millions of classifications per second. It
is claimed to has the fastest classification rates [16].

• FPDeep
FPDeep is a framework that trains DNNs using layer parallelism and a hybrid
of model, in order to configure distributed reconfigurable clusters . Its policy
is to balance the workload among FPGAs, achieving better utilization. The
whole system is fine-grained pipelined and reduces the storage request. It is
claimed to have good scalability to numerous FPGAs, limited only by FPGA’s
bandwidth connection to other FPGAs [17].

There are many more and we should investigate them further to improve our
framework in the future, using their techniques.

1.3 Contributions and Outline

Initially, this thesis aimed to understand, explore, implement and optimize a ba-
sic CNN framework that can easily adjust IP cores that accelerate the computation
functions on an FPGA. FPGAs are known for fast computation operations with
low power consumption, hence the neural networks can take advantage of them at
their heavy, multiple and complex computational functions within the layers, Many
vendors and researchers have implemented, announced frameworks, libraries, sys-
tems for deep learning. Therefore, we wanted to understand in-depth and evaluate
or even optimize a CNN framework that could easily be imported in Vivado SDK
to accelerate via IP cores the complex calculation and we could use it as a basic
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framework to focus further on FPGAs and IP cores or separately in framework than
to implement every time the whole system.

In Chapter 2 we provide relevant theoretical and basic mathematical back-
ground for neural networks, backpropagation, optimization, neural networks, com-
mon layers and we refereed to often used architectural design patterns for processing
images and text, especially for convolutional and recurrent neural networks. Fur-
thermore, we make a generic and basic introduction of the High-Level Synthesis and
FPGAs technology.

In Chapter 3, we develop a CNN model that can classify fast grey-scale images
from MNIST dataset. We set some goals and we perform many optimizations and
explore methods that we compare and finally make some choices that lead to a
specific CNN framework that we use, although it is configurable if we want to make
changes. Moreover, we used some profiling tools to determine possible errors or
weaknesses of our framework that we deal or we choose to examine further in the
future.

In Chapter 4, we introduce in general the existing IP core of matrix multipli-
cation and addition computation function that it was available and our attempt to
adjust it in our system. We describe the changes that we should do to compile and
run in the platform and the process that we follow to achieve it.

In Chapter 5, we sum up the results of the software and the hardware imple-
mentations and compare them.
Finally, in Chapter 6, we conclude to the outcome of this thesis, identify the re-
maining challenges and discuss the path forward.
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Chapter 2

Background and Concepts

This chapter provides the necessary technical background details on neural net-
works, more specifically in Convolutional Neural Networks. Additionally, the second
section makes an introduction of Field-Programmable Gate Arrays and High-Level
Synthesis.

2.1 Convolutional Neural Networks

This section will deal with the basic theory of Neural Networks in general and
Convolutional Neural Networks. There is a hierarchy from abstract concepts like a
neuron to more specific like the CNN layers that are developed in our architecture.

Figure 2.1: Example of a CNN[1].

2.1.1 Introduction to Neural Networks

Neural networks are popular nowadays. There is an enormous amount of datasets
and information that need to be classified. In this case, neural networks are trying to
do this task, operating as human’s neurons, and make decisions with good accuracy.

Neuron

Neurons are inspired by the biological neurons in a human nervous system. The
way of their connection and their anatomy tried to match with mathematical for-
mulas. Hence, we assume that a neuron is the basic computational unit that is
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connected with the others via synapses. Signal input is transferred among the den-
drites of neurons and the single output fires/exits from axon which is connected
with dendrites via synapses [2].

Figure 2.2: A basic scheme of a neuron and it’s general/typical mathematical
match[2].

A mathematical neuron is a computational node that has one or more inputs x
and a single output f*(x)(see Figure 2.1). Inside neuron, we do the computations de-
pending on the layer’s functionality and learn new features keeping them as weights
(memory) to identify future inputs.

Feedforward Neural Network

Feedforward neural networks or Deep feedforward networks or multi-layer percep-
trons(MLPs) are artificial neural network and that is claimed as the most essential
parts of deep learning models. The goal of a feedforward network is to learn features
and find an approximate function for the whole network that can identify specific
information like numbers, objects in an image, etc. Their name suggests the flow
of information through the function of the neuron or layer of neurons that it is in-
serted to the output. There is not feedback process from the neuron to itself, with
connections from the output back to input forming a cycle, like in recurrent neural
networks. Hence, they composing many different functions describing an acyclic
graph combining layers connected in a chain structure. Each perceptron in a layer
is connected to every perceptron on the next layer and there is no connection among
perceptrons in the same layer. The overall length of the layer’s chain depends on the
depth of the model, hence they are named "deep" feedforward networks. The first
layer is often named as the input layer, the last output layer and the layers between
them are commonly referred to as hidden layers because they do not connect with
the external world[18].
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Figure 2.3: Deep Neural Network structure.

A single layer of nodes can consist of a single-layer perceptron network which is
the simplest neural network, nevertheless, we focus on deep neural networks that
have much more than one layer of output nodes.

Backpropagation

Figure 2.4: The use of chain rule for the backward pass in computational graphs.[3]

The output of the feedforward network becomes the input of the backpropaga-
tion process. This process is developed to optimize the weights and bias of a neural
network by updating them to a value closer to the target output. Hence, the back-
propagation algorithm is claimed to be an inexpensive procedure that can minimize
the error of each layer and the whole network’s error. The chain rule is also ap-
plied in backpropagation, but it is in reversed flow. Furthermore, the layers that
are affected within by performing computations are the Convolutional and Fully
Connected as they update weight, bias arrays calculate it with a λ hyperparameter.
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The changes will be explained later by calculating the derivatives of these layers.
The loss of the epoch or mini-batch can be calculated by the absolute difference of
forward and backward function during training. The backpropagation algorithm is
an inexpensive procedure to eliminate cost function[18, 19].

2.1.2 Introduction to Convolutional Neural Networks

Figure 2.5: LeNet-5 Architecture as a CNN example [4].

Convolutional Neural Networks or CNN or ConvNets are neural network archi-
tectures specialized to handle data with some spatial topology, commonly applied
to analyze images, videos, text, etc[20]. Inputs of data are described as 3D arrays as
(depth,height,width) of image. We will focus on images where depth consists of the
number of colors that an image have. More specifically, 1 refers to grayscale and 3
to color channels RGB (Red-Green-Blue). Every image has 28x28 pixels height and
width, the so-called feature maps[20].

2.1.3 Layers

As it is aforementioned, the neurons are grouped in structures and referred to as
layers. Moreover, they categorized as input, output or hidden layers while the latter
are able to interpret non-linearities in the input data. [20]

Our framework, at this moment, has implemented the following layers that will
be analyzed afterward:

• Convolutional

• Maxpool

• Batch Normalization

• Fully Connected

• Flatten

• Dropout

• Activation: ReLU

• Activation: Tanh

• Activation: Sigmoid
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Convolutional Layer

The Convolutional layer is used for the most demanding computational work of
a Convolutional Neural Network. It’s the special layer of Convolutional Neural Net-
works. The Convolutional layer use im2col(image to columns) and col2im(columns
to image) methods and slide 2D kernels/filters/windows over width and height of
the padded image to get a 2D activation map as it is illustrated:

Figure 2.6: The input image takes the height and width of the filter to become a col-
umn vector. On the other hand, the col2im function takes the resulted matrix with
the width and height of the filter to become a row vector and afterward, we convert
it back to image. It’s a confusing process of multiple convert ions etc but we can gain
better performance than an only for-loop convolution process. The disadvantage of
im2col and col2im implementation is the amount of memory that we should have
and use to perform the necessary calculations and conversions/transformations [21].

At forward pass, we convolve at the 2D dimensions(height x width) of the input
image creating an activation map that detects features and computes dot products
between every input’s position and the entries(learned variables) of the filter. Each
region of the input image will connect to only one neuron as a hyperparameter and
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Figure 2.7: The feature map reshape from 3D to 1D for every picture like the
Convolutional weights to perform matrix multiplication for the forwarding [5].

it is called the filter size or receptive field of the neuron.

Z l
ij =

m−1∑
a=0

m−1∑
b=0

Waba
l−1
(i+a)(j+b) (2.1)

The Convolutional layer’s input is an image of D(depth)xW (width)xH(height)

(3D dimension array), in which the depth is 1 for grayscale images like the MNIST
dataset has and we use it or 3(RGB) for colorful images. Moreover, we need three
hyperparameters to get an optimized output volume. These are the number of the
filters that will become the depth of the output volume and they are trained to
seek for something different in the input, although each time a set of neurons look
to the same region of the input as a depth column (fibre). Furthermore, the other
two are the stride that specifies the slide of the filter of the window/filters with
spatial extent (F ) and the zero-padding that fulfill the input volume with zeros
depending the divisions of sliding filters to fit while sliding. There is a formula for
it: (W − F + 2xP )/S + 1 and (H − F + 2xP )/S + 1 [2].

Parameter sharing scheme is useful in convolutional layer to control the number
of parameters assuming that region features are useful to compute at more than one
spatial region. Hence, the restriction of each depth slice(activation map) within the
output volume to the same weight and bias will lead us to a reduction of the number
of parameters.

The backpropagation is affected by updating only a single set of weights instead
of every single one because each neuron in the output volume represents the overall
gradient of which can be totaled across the depth [22].

Following the theory:
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∂C

∂W l
ab

=

N−m∑
i=0

N−m∑
j=0

∂C

∂Zijl
× al−1

(i+a)(j+b) (2.2)

∂C

∂bl
=

N−m∑
i=0

N−m∑
j=0

∂C

∂Z l
ij

(2.3)

∂C

∂al−1
ij

=
m−1∑
a=0

m−1∑
b=0

∂C

∂Z(i−a)(j−b)
×Wab (2.4)

Maxpool Layer

Maxpool layer is often used to reduce the computations and the number of pa-
rameters that the Convolutional layer produces. It is periodically used after a couple
of Convolutional layers to cut down the spatial size and control over-fitting. As its
name suggests it operates Max to every depth slice of input volume independently
and down-samples it. While the output height (Hout = (Hin−F )/S+1) and width
(Wout = (Win − F )/S + 1)are depend on the stride (S) and spatial extent (F )

parameters, the depth remain the same.

Figure 2.8: Left: Maxpool forward stage sliding window chose max values inside.
Right: The backward stage returns the max value in the position of the window
that it was stored from forwarding while the rest of them remain zero [23].

Nevertheless, it is possible future architectures to contain few or any of pooling
layers, because they suggest worse generative models in training than the models
without pooling [2].

Fully-Connected Layer

Fully connected layer have full connections of its inputs, as they perform matrix
multiplication with a weight matrix and add a bias offset. Any change of its input
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Figure 2.9: Matrix multiplication in Fully connected layerś forward process for one
neuron.

values affect the output values. The inputs are the 3D gray images flatten in 1D. The
result of Flatten layer is a 2D array because we process batches and/or mini-batches
of images, instead of single images. It is defined by

Yij = Xik ∗Wkj + bi (2.5)


X11 · · · X1j

... . . . ...
Xi1 . · · · Xij

 ∗


W11 · · · W1j

... . . . ...
Wi1 . Wij

+


b1
...
bi

 =


Y11 · · · Y1j

... . . . ...
Yi1 · · · Yij

 (2.6)

where W is the weight array, X is the input array of features, Y is the output
array, b is the bias vector and i,j,k the dimensions of the arrays/vector.

The aforementioned (Convolutional) layer differs from Fully Connected layer, as
its neurons share parameters and they are locally connected in the input. Hence,
we assume that it is possible to convert a Fully Connected layer to a Convolutional
layer and conversely, as their functional form is exactly the same [2].

Fully Connected layer is used in the classification stage. The weight matrix is
initialized following the He et al.[24] technique that will be explained in detail later.
Biaś offset is set to zero, according to the Python model that we are consulting.

Flatten Layer

Flatten layer is the connection between the training procedure and the classifi-
cation of our Convolution Neural Network. The pooled featured map flatten in a
column.
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Figure 2.10: Flatten layer reshape 2D images to 1D -vector- arrays before Fully-
Connected layer [25].

The output of the Flatten layer is the input of the Fully-Connected layer, after-
ward. Following some convolutional layers, it is necessary to flatten the array to use
the fully connected layer for their connection [26].

Batch Normalization Layer

µB =
1

m

m∑
i=1

xi (2.7)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (2.8)

x̂i =
xi − µB√
σ2
B + ϵ

(2.9)

yi = γxi + β (2.10)

A batch normalization layer normalizes each input channel to have 0-mean and/or
unit (1) variance across a mini-batch. Hence, they reduce the sensitivity to network
initialization and speed up the training procedure between Convolutional and acti-
vation (ReLU) layers. Each input channel subtracts the mini-batch mean and after
it divides it by the mini-batch standard deviation, while the layer shifts the input
data by a learnable offset β and scales it by a learnable scale factor γ [2, 27].

The equations for backpropagationś γ and β [8]:

∂C

∂γx̂i
=

∂C

∂yi
(2.11)
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The output volume of backpropagation is calculated by[8]:

∂C

∂β
=

m∑
i=1

∂C

∂yi
(2.12)

∂C

∂γ
=

m∑
i=1

∂C

∂yi
× x̂i (2.13)

∂C

∂xi
=

∂C

∂x̂i
× 1√

σ2
B + β

+
∂C

∂µB
× 1

m
+

∂C

∂σ2
B

× 2

m
(xi − µB) (2.14)

Dropout Layer

dropout ×
×

×

×

×

×

×

Figure 2.11: Dropout example with pruned nodes.

Dropout is a recent effective method to prevent a neural network from overfitting
and provides an efficient way of approximately combining exponentially many dif-
ferent neural network architectures. While the network is training, it keeps a large
number of parameters and complex that restrict the network to generalize to new
data. During the forward propagation, the input amount or neurons n is multiplied
by probability p. The p random fraction will decide the percentage of neurons that
will be ignored by the network. Therefore, Dropout force the network to learn the
most robust features that are related to other different subsets of other neurons and
are less susceptible to noise. Although training time is reduced for each epoch, the
network will need an almost double number of iterations until convergence [28]. The
default probability is p = 0.5.

b = mask/(1− p) (2.15)

While, the derivative for the back-propagation is

∂b =
mask

1− p
(2.16)
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Dropout belongs to regularization methods of a Neural Network among the L1
(Laplacian) and L2 (Gaussian) regularization techniques. Furthermore, Dropout is
preferred to be applied after a Fully-Connected, because a Convolutional layer has
significant resistant to overfitting due to shared weights of filters[8].

Figure 2.12: Dropout with 0.5(probability) cut out factor keep value over 0.5 and
the rest become zero(pruned)[29].

Activation Layers

There are a plethora of activation functions, which introduce non-linearity into
the network. In our implementation, we handle these functions as layers. Each
layer of a neural network performs a linear transformation of the input. However,
activation layers perform a scalar, non-linear, fixed mathematical operation in every
single number of its input. The output of the activation layers helps the network to
find and extract complex features to pass them in the next input[30].

As previously mentioned there are several activation functions, therefore, we
currently have implemented only ReLU, Sigmoid, and Tanh that are widely known
and used. Further implementation of activation layers/functions is part of our future
work.

Activation Layer: ReLU

Rectified Linear Unit (ReLU) and many alternatives are used successfully in the
last few years in deep neural networks. The ReLU activation function is the most
used and it is used in almost all the CNN or deep learning[31]. It was introduced
by Hahnloser et al. in 2000 [32] and it is defined by the function f(x) = max(0, x)

or

ReLU(x) =

x, if x ≥ 0

0, if x < 0
(2.17)
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ReLU behaves as a ramp function[33]. Input positive values x ≥ 0 yield a linear
output of the input while negative ones x < 0 forces them to zero, providing a good
performance[34].

As the activation is thresholded to zero and sparsely activated, it is considered
to have a cheap operation compared to Tanh or Sigmoid activation functions. Fur-
thermore, ReLU is claimed to accelerate the convergence of Stochastic Gradient
Descent-SGD better than the Sigmoid and Tanh functions [35]. Therefore, in case
of many ReLU units become or are zero, then the gradient becomes zero which is
known as a "dead" unit and it is an irreversible condition from that point on while
learning rate is too high[2].

The backward function of ReLU computes the value z = y ∗ f ′(x), where y is the
output of the previous layer’s backward function and [36]

f ′(x) = ReLU ′(x) =

1, if x > 0

0, if x ≤ 0 .
(2.18)
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Figure 2.13: Left: Plot for ReLU Forward. Right: Plot for ReLU Backward

Activation Layer: Sigmoid

The sigmoid or logistic function or sigmoidal curve named by its characteristic
S-shape. It is a special case of logistic function and its non-linearity function is
defined by

Sigmoid(x) =
1

1 + e−x
(2.19)
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The sigmoid function exists into a range between 0 and 1. More specifically, large
positive numbers become 0, while large positives become 1. It is used for models
that have to predict the output and it is used for multiclass classification as it is
a more generalized logistic activation function. Moreover, it is differentiable and
monotonic whereas it’s derivative is not (monotonic).

Major drawbacks are that sigmoid outputs are not zero-centered that can cause
undesirable zig-zag movement in weight gradient updates. Therefore, it could be
eliminated or reduced in the final update of the batch, because of the gradient’s
addition across it. As well as, the most significant problem is that sigmoid kills
gradients and cause saturation. In case of, 0 or 1 the gradient is almost zero, which
means that it deactivates the local gradient while the too large initial weights will
saturate and the network will almost stop learn. For the aforementioned reasons,
sigmoid is rarely used [2].

The derivative for the back-propagation of a sigmoid function is

d

dx
Sigmoid(x) =

1

1 + e−x
· (1− 1

1 + e−x
) (2.20)
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Figure 2.14: Left: Plot for Sigmoid Forward. Right: Plot for Sigmoid Backward
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Activation Layer: Tanh

The Tanh non-linearity is another S-shaped function with range [-1, 1]. Further-
more, this function is differentiable and monotonic, whereas its derivative is not
monotonic. Tanh function’s output is zero-centered unlike a sigmoid, but their ac-
tivations both saturate which means that suffers from vanishing gradient problem.
As well as, both Tanh and logistic sigmoid activation functions are commonly used
in feed-forward networks. Tanh is more preferable than sigmoid, because is step-
per and referred to as the scaled version of the sigmoid [31]. However, the choice
between sigmoid or Tanh is depending on the requirement of gradient strength [2]

Tanh(x) =
2

1 + e−2x
− 1 (2.21)

The derivative for the back-propagation of a Tanh function is

d

dx
Tanh(x) = 1− (

2

1 + e−2x
− 1)2 (2.22)
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Figure 2.15: Left: Plot for Tanh Forward. Right: Plot for Tanh Backward

2.1.4 Convolutional Neural Network Architectures

Many CNN architectures were introduced at ImageNet Large Scale Visual Recog-
nition Competition and they are named [37]. The most popular are:

• LeNet-5
LeNet-5 first introduced and developed by Yann LeCun in 1998. LeNet-5
is designed for handwritten and machine-printed character recognition [38].
We also have implemented a slightly different version of it as it is a basic
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architecture to test our framework. In theory, LeNet-5 has only 7 hidden
layers as it is illustrated in Figure 2.5 and described in detail in the LeCun’s
paper [38]. The basic differences of our implementation are the max-pool layer
instead of average-pool and an extra layer to flatten 4D arrays to 2D.

• AlexNet
It was introduced in ImageNet ILSVRC challenge in 2012 by Alex Krizhevsky,
Ilya Sutskever and Geoff Hinton[39]. AlexNet is similar to LeNet architecture,
but it is deeper and it uses ReLU activation, more filters per layer, dropout
to prevent overfitting and Maxpool layers instead of Average-Pool.

Figure 2.16: AlexNet CNN architecture layers [40].

• VGG-16

Figure 2.17: VGG-16 CNN architecture layers [41] .

VGG-16 is a simpler architecture model than the previous as it uses a few
hyperparameters. It was introduced in ILSVRC 2014, where it got the second
place (1st was GoogleNet -2014-) by Karen Simonyan and Andrew Zisserman.
The most important outcome from this paper was the claim that the depth of
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the network is a critical component to get a good performance. Therefore, it
is expensive as it uses a lot of parameters and memory [42, 2].

• GoogleNet
It was the winner of ILSVRC 2014 implemented by Szegedy et al. from Google.
Inception Module was its main contribution. This module helped to dramat-
ically reduce the number of parameters in the network if we compare it with
AlexNet. As well as, the Fully Connected layers at the top of the ConvNet
replaced by Average Pooling, hence a large number of unimportant parameters
eliminated. The latest introduced version of GoogleNet is Inception-v4 [43, 2].

Figure 2.18: GoogleNet CNN architecture layers [41].

• ResNet
ResNet was the winner of ILSVRC 2015 and was developed by Kaiming He et
al. The Fully Connected layers are missed from the end of the network while
heavy use of batch normalization exists [44].

2.2 High-Level Synthesis and Field-Programmable Gate Arrays

This section provides the necessary theory of Field-Programmable Gate Arrays
(FPGAs). The first part focuses on High-Level Synthesis(HLS), which is considered
as a programming methodology for FPGAs in high-level languages such as C and
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Figure 2.19: ResNet CNN architecture layers [41].

C++ and the second part highlights characteristics and basic details of the FPGA
technology.

2.2.1 Introduction to High-Level Synthesis

Latest generation High-Level Synthesis tools and their support of language like
C, C++, OpenCL, etc has increased the programmer’s productivity and provide a
friendlier environment for the developers that are not familiar with Hardware De-
scription Language (HDL), such as VHDL or Verilog in depth. Register Transfer
Level (RTL) describe combinational logic, basic arithmetic operations as well as reg-
isters. Moreover, RTL becomes active at either the rising edge, falling edge of a clock
signal and they are very close to the logic gates and wires of circuits that consists the
FPGA or ASIC technology. Hence, RTL synthesis can control the resulted hardware,
in which a programmer should make design decisions that later any change would
be difficult and costly to happen. Furthermore, HLS tools encourage programmers
to move from Register transfer level to more abstract and optimized designs and al-
gorithms that can follow along with the rapid development of systems-on-chip(SoC)
without being experts or experienced in depth. The implementation in HLS for
application-specific integrated circuits (ASICs) and field-programmable gate arrays
(FPGAs) optimized considering the power, performance and cost requirements of a
certain system [45, 46].

A major problem of these days is the complexity of high-level code and the ra-
tio of the VHDL developer population in comparison to C/C++. Moreover, the
programmers can separate functions from architecture made the design and compo-
nents more portable and easier specified using C and similar languages. However,
the hardware is potentially slower and inefficient, as it is fundamentally concurrent.
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As well as, C language does not support parallelism, so we should use properly
libraries to avoid sequential execution. Therefore, it is still easier to use C/C++
language as there is an extensive infrastructure of compilers, books, standards, etc
and many programmers who know and it is more easy to integrate their skills in
C/C++ than learn a new language or to use correctly and efficiently complex ones
like VHDL or Verilog.

Figure 2.20: Left:HLS high-level to low-level code[47]. Right: A typical
C++/SystemC HLS flow[48].

One of the most popular HLS compilers is Vivado High-Level Synthesis (VHLS)
by Xilinx. Designers can use most features of C/C++ language as loops, arrays,
structs, floats, etc. All these are automatically converted into counters, memories,
computation cores, handshake protocols, leading state machines and schedules. The
compilation is depending on the system libraries and the choices that the user will
decide to use, for example, C++17 version, meta-instructions as "pragma" for par-
allel operations and many more [46].

Figure 2.21: Left:Levels of abstraction in FPGA Design[49]. Right: Pure Untimed
C/C++ Design Flow [47]. Writing RTL that works smoothly on both FPGA and
ASIC implementations is possible using HLS technology
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2.2.2 Introduction to Field-Programmable Gate Arrays

FPGAs are integrated circuits (ICs) that can be programmed for different algo-
rithms and configured by a developer to implement digital circuits. Logic cells of
an FPGA can be configured to implement software algorithms that are cost and
performance efficient in many computational problems of common functions. FP-
GAs contains a two-dimensional array of logic blocks and programmable switches
that are connected via programmable interconnects. Furthermore, FPGAs provide
the ability of dynamical reconfiguration which can affect part (partial reconfigura-
tion) or all of the resources that are available in the FPGA (full reconfiguration).
Programming information for the logic blocks, the interconnects and the function
units are contained in a bitstream that is commonly held in SRAM. This process,
which is the same as loading a program in a processor, can affect part or all of the
resources available in the FPGA fabric.[50, 51]

Figure 2.22: (a) : Sketch of the FPGA architecture and (b): a diagram of a simple
logic block FF, flip-flop[52].

Differences between FPGAs and ASICs

Application-Specific Integrated Circuits (ASICs) are custom-tailored semicon-
ductor devices or microchips that are designed for a special application. There
are many differences between FPGAs and ASICs, as well as, many advantages or
disadvantages in both of them. The major differences referred to tool availabil-
ity, performance, power consumption, design flexibility and the cost of production.
More specifically, ASICs can no longer be altered after they get out of the produc-
tion line, they are not reusable as FPGAs and they demand lengthier development
cycles that turn out to be costlier. However, they are smaller, faster and more
energy-efficient as they do not suffer from timing overhead from generic intercon-
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nects and configuration logic in contrast to FPGAs. We tend to prefer ASICs for
high volume, complex, high-cost applications and it is easier to develop software on
them while programmable FPGAs are more suitable for prototyping, lower speed,
lower complexity, and lower volume designs [46].

Differences between FPGAs and GPUs

Graphics Processing Units (GPUs) are specialized for arithmetic intensive, highly
parallel computations while the same program will be executed repeatedly in parallel
structure. It is possible to achieve high speedup when the program is partitioned into
smaller, independent blocks of data elements that each execute the same code with
a lower requirement for sophisticated flow control, and perform minimal conditional
branching. Hence, the memory access latency can be hidden with calculations and
instruction/thread-level parallelism, although huge data caches. The languages that
are commonly used to program a GPU are CUDA (for NVIDIA GPUs) and OpenCL
(general-purpose). The advantage of an FPGA over a GPU is the availability of
freely programmable general-purpose logic blocks in which they can have heavily
specialized accelerators for specific tasks, resulting in advanced processing speed,
higher throughput, and energy savings [53, 54, 55].

Figure 2.23: Tradeoffs between CPU, GPU, FPGA and ASIC [56].
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Chapter 3

CNN Implementation,
Training and Optimizations

3.1 Introduction

The previous chapter introduced the goals of this thesis: The implementation
of a CNN Framework for training from scratch and the acceleration of the Fully
Connected using an FPGA as accelerator.

This chapter is dealing with the first aspect that is the implementation of a
CNN Framework, especially the training process and some optimizations for better
performance. Firstly, at the following section -3.2-, includes a summary list of the
goals and specifications of our implementation. In section 3.3, it is presented an
overview of the framework, illustrating the hierarchy of framework files (Figure 3.1)
and then the top-level procedures in a basic flowchart (Figure 3.2). To be more
precise, in Section 3.4 there is a synoptic outline of the content of the layers that
we have implemented, so far. Afterward, there is the presentation of the dataset
that it is used and tested, which is known as MNIST (Section 3.5). The following
section (3.6) discusses the processing of data before the training, such as weight
initialization, normalization, and regularization of the data and the parameters.
Section 3.7 and 3.8 introduce the training techniques, such as softmax classifier
which use cross-entropy loss, regressions and the SGD Momentum, that are currently
implemented for the CNN Framework. Following that, there is a whole section(3.9)
to explain the learning process, that the CNN Framework follows, of the present
design. The last section 3.10 finally discusses some GNU and OpenMP optimizations
and techniques that seem to have better time performance in the custom-tailored
Convolutional Neural Network architecture than in naive implementation.

3.2 Goals and Specifications

The aforementioned theory motivated us to implement a CNN Framework that
will use the advantages of an FPGA Ultrascale board for the training procedure.
The board has been used for IP core development was Xilinx ZYNQ UltraScale+
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XCZU9EG MPSoC due to the significant computational load of a CNN. Our ap-
proach was to design and develop a system that optimizes matrix multiplication of
Fully Connected layer. This layers will have adapted, fully functional FPGA-based
kernels as future work. The accelerator will be flexible for any CNN topology as the
Fully Connected bitstream and the dataset will be in an SDcard [46].

The main goals are :

1. Develop and implement a CNN framework.

2. Accelerate matrix multiplication and addition (X*W +b) of Fully Connected
layer

3. MNIST dataset

4. Optimize training procedure

a) OpenMP

b) Fisher-Yates algorithm

c) -O3 technique

d) an FPGA accelerator

5. The FPGA-based architecture will be developed on a Zynq UltraScale+ MP-
SoC (ZU9EG, 64-Bit DDR4, 8 GByte [57]).

6. Adjust HLS code and Vivado Design to Framework in Vivado SDK tool.

7. Test and verify the whole system

8. Set new goals/next steps for future work development and optimization.

Figure 3.1: CNN learns features from input images and classifies them, as it is
illustrated. [1]
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3.3 Framework Overview

Our design was based on a Python implementation [58] for Stanford’s CS231n
course project[2]. First of all, we tested and made corrections to the model-Python
code. Then, the initial Python code was modified to update, regularize and get
weights and biases in each layer, instead of keeping and modify them at the end of
every minibatch, using lists.

run_cnn.cpp

load_mnist.hpp

solver.hpp

nnet.hpp

numpy.hpp

globals.hpp

glayers.hpp

stdlibs.hpp

layers

conv.hpp

maxpool.hpp

batchnorm.hpp

fullyconnected.hpp

flatten.hpp

dropout.hpp

relu.hpp

relu_2d.hpp

tanh.hpp

tanh_2d.hpp

sigmoid.hpp

sigmoid_2d.hpp

Figure 3.2: The structure of C++ code files. The main function is in .cpp file or
more specifically in run_cnn.cpp, which is the top-level file of our framework.
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run_cnn

load_MNIST()

solver(X,y)
SGD_momentum

shuffle_batches Fisher-Yatesyes

CNN()
Init.

no

epoch<=N

train forward
(minibatch)

yes

train
softmax_loss
(minibatch)

train backward
(minibatch)

predict forward
(minibatch)

predict
softmax_argmax

(minibatch)

Output Results

Stop

no

Figure 3.3: Top-Level flowchart of CNN Framework with MNIST dataset. Layers
have constructors(for initialization), forward and backward routines. Layers are
connected via variadic templates which is a feature of C++17 for the recursive call
of functions. The output of the previous layer becomes the input of the next layer.
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Figure 3.4: An object-oriented view of the developing framework.

The C++ Framework uses classes in each layer that are similar to the Python
code. The parameters are kept in namespaces and they can be modified from glob-
als.hpp. The parameters of layers should be properly used as in Python code, which
means that a user should calculate correctly the inputs for the padding, height,
width, etc, of the network that she/he wants to construct. The layers and its tem-
plates can be modified from glayers.hpp, in a similar way as in the Python code.
Although the majority of layers is based on the Python code, the Maxpool Layer
is implemented differently, in a more naive solution, without im2col function. The
"#define LAYERS" should be filled with the sequence of the network that the user
wants, using the feature learning(optionally) and the classification(mandatory) parts
of a CNN/FNN. Hence, this sequence will be used from the variadic template, which
is a feature of C++17, and recursively will call the arguments-layers- in the forward
and backward function call to perform the training of the network. Moreover, the ac-
tivation functions that a user will use, are implemented for 4D and 2D input/output
static arrays for the feature learning and the classification independently.

The network uses Stochastic Gradient Descent (SGD) with momentum update
and shuffle of the batches. We also implement vanilla update and both L1 and
L2 regularization. Furthermore, we implement the read/load of MNIST dataset to
train our network and test it. Further implementation of the framework will be part
of our future work.

The initial parts of code from Paras Dahal [58] and the changed ones of the
Python code are:
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• The CNN class

• The SGD solver function

• The momentum update function

• The regularization functions, l1, l2 and their derivatives delta_l1,
delta_l2

that transform list of arrays to single lists that are better handled from C++,
because of our platform’s memory limitations.

3.4 Implementation of the Layers

Following the theory above and a Python implementation [2, 58], the classes
contain the following functions that they are made from scratch:

Convolutional Layer

We construct a class for Convolutional layer using the im2col process:

• Conv() : the Class constructor

– random_randn_4d(W) : He-et-al initialization for 4D Weight array

– zeros_bias(b) : zero initialization for bias array

• forward(X) : X is a 4D array with image features

– im2col_indices : the 4D array become a 2D column vector for the
mini-batch of images

– ravel : ravel reshape Weight array from 4D to 2D

– matmul_bias_conv : matrix multiplication with cache blocking. The
output array is initialized by getting the bias array values

– unravel : reshape the output of matrix multiplication from 2D to 4D

– transpose_4d_conv_fw : re-order 4D array to get batch-size at first
dimension as the X feature (input) array

– l1_regularization_conv or l2_regularization_conv: compute the
regularization loss ( details in Section 3.4.1)

• backward(dout) : dout is the derivative of the 4D feature array
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– transpose_4d_conv_bw : transpose 4D array to get the number of
filters at the first dimension

– ravel : the transposed array becomes 2D from 4D

– transpose : the 2D output array of im2col_indices (forward function)
transposes before matrix multiplication

– matmul : perform matrix multiplication to get derivative of Weight
array

– unravel : reshape 2D array of previous matrix multiplication to get 4D
derivative Weight array

– sum_4d_axis : sum all the values to 2nd dimension of the transposed
dout input array

– ravel : reshape 4D Weight array (forward function) to 2D

– transpose : transpose the 2D Weight array

– matmul : matrix multiplication of the 2D transposed Weight array and
the 2D dX input array

– col2im_indices : perform col2im process to get a 4D array of features
as it is described above

– delta_l1_regularization_conv or delta_l2_regularization_conv:
compare Weight and bias with their derivatives to find the difference and
regularize it (details in Section 3.4.1)

– vanilla_update_conv or momentum_update_conv : compare the
Weight and the bias arrays with their derivatives to find the difference
(details in Section 3.6)

Maxpool Layer

• Maxpool() : the Class constructor

• forward(X) : X is a 4D array with image features

– maxpool_fw : find the max values of the X (4D input array) of the
given size kernel/filter/window and rest of them become zeros.we also
keep their positions

• backward(dout) : dout is the derivative of the 4D feature array
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– maxpool_bw : keeping the positions from forwarding process and re-
place the same positions of with the values with the ones of derivative
array dout

Batch Normalization Layer

• Batchnorm() : the Class constructor

– ones_bn : fill beta array with 1

– zeros_bn : fill gamma array with 0

• forward(X) : X is a 4D array with image features

– ravel : reshape array from 4D to 2D

– mean_axis_0 : find mean value for µB

– var_axis_0 : compute σ2
B

– norm_up, norm_down and norm_x : compute x̂i

– mul_bn : calculate yi output array with 2D shape

– unravel : reshape array from 2D to 4D

• backward(dout) : dout is the derivative of the 4D feature array

– ravel : reshape array from 4D to 2D

– subtr_bn : subtract X input array from forward function with µB array
to get the derivative of µB

– sum_2d_bn_axis_0 : sum by concatenate zero axis of 2D dout array
to get the derivative of β

– mul_bn_sd and sum_2d_bn_axis_0 : multiply 2D dout array and
x̂i array and then sum by concatenate zero axis of the multiplication’s
2D output to get the derivative of γ

– mul_bn_dout_bn : calculate derivative of x̂i

– dvar_bn : compute the derivative of σ2
B

– dmu_bn : calculate the derivative of µB

– dout_bn : calculate the output array as 2D

– unravel : reshape array from 2D to 4D
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– vanilla_update_bn or momentum_update_bn : compare the Weight
and the bias arrays with their derivatives to find the difference (details
in Section 3.6)

Flatten Layer

• Flatten() : the Class constructor

• forward(X) : X is a 4D array with image features

– ravel : reshape array from 4D to 2D

• backward(dout) : dout is the derivative of the 2D feature array

– unravel : reshape array from 2D to 4D

Fully Connected Layer

• FullyConnected() : the Class constructor

– random_randn : He-et-al initialization for 2D Weight array

– zeros_bias : zero initialization for bias array

• forward(X) : X is a 2D array with image features

– copy_2d_array : make a copy of input array to use it in the backward
function

– ravel_2d1 : This function currently help us to pass 2D arrays as 1D in
accelerator

– matmul_bias : matrix multiplication with cache blocking. The output
array is initialized by getting the values of bias array

– MulAdd_start : call FPGA accelerator instead of matmul_bias if the
second dimension of output array is > n ∗ 32, for n >= 0

– unravel_1d2 : This function currently help us to transform the accel-
erator’s 1D output array to 2D

– l1_regularization_fc or l2_regularization_fc : compute the regu-
larization loss ( details in Section 3.4.1)

• backward(dout) : dout is the derivative of the 2D feature array
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– transpose : transpose the forward’s 2D input array before matrix mul-
tiplication

– matmul_f : perform matrix multiplication to get derivative of Weight
array

– sum_2d_zero_axis : sum the values of 2D array into 1d to get the
derivative array of bias

– transpose : transpose the Weight array

– matmul : perform matrix multiplication between the dX input array
and transposed Weight array to get the output array

– delta_l1_regularization_fc or delta_l2_regularization_fc: com-
pare Weight and bias with their derivatives to find the difference and
regularize it (details in Section 3.4.1)

– vanilla_update_fc or momentum_update_fc : compare the Weight
and the bias arrays with their derivatives to find the difference (details
in Section 3.6)

Dropout Layer

• Dropout() : the Class constructor

• forward(X) : X is a 2D array with image features

– random_binomial : fill mask array with random values that are chosen
by the binomial distribution of a given probability value

– mul_sd :multiply the X array with the mask( includes values chosen to
keep or pruned by a given cut-off factor) array

• backward(dout) : dout is the derivative of the 2D feature array

– mul_sd : multiply the dout array with the mask( includes values chosen
to keep or pruned by a given cut-off factor) array

ReLU Layer

• Relu() : the Class constructor

• forward(X) : X is a 4D/2D array with image features
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– copy_2d_array : make a copy of input array to use it in the backward
function

– relu_fw : if X input array is less than zero it prunes it

• backward(dout) : dout is the derivative of the 4D/2D feature array

– relu_bw : if X input array is less than zero it prunes it, otherwise it
keeps the value of dout aray

Sigmoid Layer

• Sigmoid() : the Class constructor

• forward(X) : X is a 4D/2D array with image features

– sig_fw : calculate the sigmoid of input array

• backward(dout) : dout is the derivative of the 4D/2D feature array

– sig_bw : calculate the derivative sigmoid of input array

Tanh Layer

• Tanh() : the Class constructor

• forward(X) : X is a 4D/2D array with image features

– tanh_fw : calculate the tanh of input array

• backward(dout) : dout is the derivative of the 4D/2D feature array

– tanh_bw : calculate the tanh of input array

The inner calculations of the aforementioned functions and their functionality
are described in the previous chapter (Section 2.3.1), as well as in [2, 8].
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3.5 MNIST Dataset

The MNIST (Modified National Institute of Standards and Technology database)
of handwritten digits in gray-scale is a subset of US NIST (National Institute of
Standards and Technology), which is a larger set. It is commonly used for training
and testing in the machine learning field [59]. The training set consists of handwrit-
ten digits from 125 high school students (50%) and 125 employees (50%) (totally
250 different people - 100%) from the Census Bureau. Also, the test set contains
handwritten digits from different people like the aforementioned description.

There are four files available, which contain separately train and test, and im-
ages and labels. The training set contains 60000 examples and the test set 10000
examples. The first 5000 examples of the test set are taken from the original NIST
training set, whereas the last 5000 examples are taken from the original NIST test
set. Moreover, the first 5000 examples are cleaner and easier than the last 5000
examples. It is important to know that, all the integers in the files are stored in
the MSB (Most Significant Bit) first (high endian) format used by most non-Intel
processors. Hence, users of Intel processors and other low-endian machines must
flip the bytes of the header [60]. The aforementioned information from MNIST’s
website was necessary to understand how to load and use MNIST properly.

For the MNIST dataset, we have 3 partially different implementations. One of
them uses the ff.h library to read the sdcard via FATFs for the to run the code in
the platform and the other two uses the ifstream to read the dataset. The last two
differs in the way that they read the data. One of them uses the reinterpret_cast of
C++ while the other uses a buffer to do the same process and adjust them in the
array.

Method ELOAD VLOAD FATFs
(reinterpret_cast) bare-metal

Avg. Time (sec) 0.041024960 0.0419951540 40.5107269

Table 3.1: Load whole MNISTs time for each of the 3 ways (VLOAD and ELOAD
( Kronos CPU-20 threads OMP), FATFs in bare-metal(Trenz ARM-1 thread)

3.6 Design choices

Before the learning process, we should make some assumptions for the model
that we will follow as it will affect the whole learning process.

Some of the files have the parameters (globals.hpp) and the layers (glayers.hpp
or lenet5.hpp) or even the libraries (stdlibs.hpp) that can be modified easily. The
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user is not necessary to know in-depth what the whole CNN do to make a simple
modification. It can be further parameterized in a future release.

Data Preprocessing

The range of MNIST images is from 0 to 255, hence we normalize it by dividing
each cell by 255 to get a new range from 0 to 1.

Parameters Initialization

Weights will store some values that they learn during the training, but before
that they should initialize in a value that we will decide and help the network to
learn quickly and efficiently.Firstly, for many reasons that are explained in [2], it’s
recommended to initialize the weights with He-et-al [24].In this case, especially for
ReLU activations that we have in our network with 2.0/n variance and standard
deviation

√
2.0/n, so the He-et-al initialization will be

W =
np.random.randn(n)√

(2.0/n)
(3.1)

If we would have Tanh activation functions we would use Xavier initialization
which is

W =
np.random.randn(n)√

(1.0/n)
(3.2)

and differs only in divisor of the square root. However, the implementation of
Xavier initialization is part of future work. At this moment, the user should change
it by hand.

These techniques warrant that gradients do not vanish or explode too quickly,
while they avoid slow convergence and also ensure that we do not keep oscillating off
the minima and minimize the variance of the parameters. However, the bias simply
will be initialized to zero [2, 24].

Batch Normalization

Batch normalization is implemented in Batchnorm Layer (subsection 2.3.1 and
3.4 ). It is common to insert it after Fully Connected or Convolutional layers or
before ReLU layers. ReLU activation layers of the network adopt a unit Gaus-
sian distribution at the beginning of the training while properly initializing neural
networks[2]. There is a detailed explanation in the paper of Ioffe and Szegedy [27].
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3.6.1 Regularization

There are many techniques to increase the test accuracy while the algorithms we
want to use should adjust the changes of new inputs. These techniques are referred
to as regularization techniques. We perform regularization techniques to improve
performance and perform generalization. Additionally, regularization can prevent
our model from overfitting or underfitting phenomena that we should avoid.

L1 Regularization

L1 or Lasso or L1 norm adds λ ∗
∑

|W |(absolute value of magnitude) of coeffi-
cient as penalty term to the loss function multiplied by λ a positive hyperparameter,
controlling the strength of the regularization. Furthermore, L1 leads the weight ar-
rays to become sparse, which means too close to absolute zero, during optimization,
and it has multiple solutions. L1 can not learn complex patterns and it is robust
to outliers, in other words, the "noisy" inputs almost do not affect neurons with
L1 regularization. However, it has a built-in feature selection mechanism, while it
generates a model that is simple and interpretable. The backpropagation call the
L1 function that adds λ ∗ W

|W |+1e−8 to the Weight gradient [2, 61, 18].The 1e−8 is
added in case the dividend (|W |) is zero and we want to avoid it.

Algorithm 1 L1 Regularization
Input: W: Weight array
Output: out: calculation result

1: #pragma omp parallel for schedule(static, prmts::sch_static) private(i, j, k, l)
2: for all dimensions of W array do
3: sum = sum_all(abs(W ))
4: end for
5: // default lam = 0.001
6: out = lam ∗ sum
7: return out

Algorithm 2 Derivative of L1 Regularization
Input: W: Weight array
Output: dW: derivative of the Weight array

1: // default L1_REG_CON = 1e-8 and lam = 0.001
2: #pragma omp parallel for schedule(static, prmts::sch_static) private(i, j, k, l)
3: for all dimensions of W array do
4: dW+ = prmts :: lam ∗W/(abs(W ) + L1_REG_CON)
5: end for
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L2 Regularization

L2 (Gaussian) or Ridge or L2 norm or Tikhonov regularization is the most com-
mon regularization method. Contrary to L1, L2 has one non-sparse solution, has
not to feature selection and it is not to robust to outliers. Moreover, L2 can learn
complex data patterns, while it can give better prediction when the output vari-
able is a function of all input features. The L2 regularization diffuse weight array
while it heavily penalizing peaky weight arrays. At forwarding, the L2 regression
adds 1

2λ ∗
∑

W 2(squared magnitude) of coefficient as penalty term to the loss func-
tion multiplied by λ parameter. At the backward procedure, the L2 method adds
lambda ∗ |W | to the Weight gradient.

Algorithm 3 L2 Regularization
Input: W: Weight array
Output: out: calculation result

1: // default lam = 0.001
2: sum = sum_all(pow(W, 2))
3: out = (1/2) ∗ lam ∗ sum
4: return out

Algorithm 4 Derivative of L2 Regularization
Input: W: Weight array
Output: dW: derivative of the Weight array

1: // default lam = 0.001
2: #pragma omp parallel for schedule(static, prmts::sch_static) private(i, j, k, l)
3: for all dimensions of W array do
4: dW+ = prmts :: lam ∗W
5: end for

Usually, L2 is used combined with a Dropout at the end of the layer’s sequence.
The default is p = 0.5, but it can be tested in range 0.2-0.8 depending on the
accuracy-time needs. Bias regularization is not common, as it gives a worse per-
formance to Neural Network. A combination of both L1 and L2 regularization is
named Elastic net regularization [2, 61, 18].

Our Network use by default the L2 regularization technique which can be changed
from globals.hpp which is set as a global parameter. At the moment the user can
choose between L1, L2 or both. We get the estimated regularization loss at the
end of the forward function of Convolutional and Fully Connected Layers that use
Weight and bias parameters. Respectively, at the same layers, at the end of the
backward function, before the update of weight and bias arrays, we perform the
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delta L1, L2 or both regularization methods to "correct" the weight gradient arrays
for the next batch or epoch.

Dropout

Apart from the techniques above, Dropout is a technique to avoid overfitting in
a Neural Network. However, Dropout is implemented as a Layer (subsection 2.3.1
and 3.4 ).

There many more techniques apart from the above to prevent overfitting or un-
derfitting of a Neural Network. Some of them are :

• Dropout

• Regularization (L1, L2)

• Data augmentation

• DropConnect

• Feature scale clipping

• Global average pooling

• Early stopping

• Cross-validation

• Injecting Noise

• Ensembling

• ...

We have implemented the first two techniques (Dropout and Regularization (L1,
L2)). The others are considered as future work.

3.7 Loss functions

During of training process, the classification part contains a loss function of
every forward pass, also known as cost function or objective. At backpropagation,
the extracted results from loss function will be the input data of the last layer of
the network. The network will keep a loss value that will be increased/decreased
during the passes of mini-batches. The quality of the parameters of a particular set
is expressed by the loss function [2].

3.7.1 Softmax classifier

Softmax function takes as input the real values from an array and transforms
them into real values that are in the range (0,1). The sum of all values of the array
is up to 1. The equation of the softmax function is:
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fj(z) =
ezj∑
k e

zk
, ∀j ∈ 1...N (3.3)

The output values are analogous to input values but in a changing range. The
maximal input value will get the largest portion of the distribution in the new range.
More specifically, the Softmax class classifier has a probabilistic interpretation map-
ping "softly" the values of the input array to probabilities, meaning that the output
values will have the new range (0,1). Full Softmax which is the variant that we
describe is the one that we will use to calculate the probabilities for every possible
class. When we do not have many classes the Full Softmax is cheap, hence we use
it for the MNIST dataset which contains 10 classes of single-digit numbers (0-9).
The alternative variant of Softmax, which we can use for a huge number of classes
is Candidate sampling, therefore we will not deal with it at the moment, so we will
focus on Full Softmax exclusively [8, 62, 63].

Figure 3.5: Softmax Classifier example for one data point. The final loss of the
calculations for Softmax classifier is −ln(0.353) = 1.04 [2].

Cross-Entropy

A common loss function that we are currently using is cross-entropy . As we
know, Softmax classifier uses the Cross-Entropy loss. The equation of cross-entropy
is formed as:

Li = − log

(
efyi∑
j e

fj

)
or Li = −fyi + log

∑
j

efj (3.4)
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It is used often in regression or classification problems. Cross-entropy has an
interesting probabilistic interpretation and information theory view. We can define
it for two discrete probability distributions q(estimated distribution) and p(true
distribution) as:

H(p, q) = −
∑
x

p(x) log q(x), where q = efyi/
∑
j

efj (3.5)

and p is a vector containing only one chosen value "1" in a vector position as a
flag. For example, when we detect in an image of MNIST dataset the number 2
then we get p = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The Probabilistic interpretation minimizes the negative log-likelihood performing
Maximum Likelihood Estimation (MLE) in the proper class and can be expressed
as [2]:

P (yi | xi;W ) =
efyi∑
j e

fj
(3.6)

The derivative of cross-entropy is:

∂Li

∂fk
= pk − 1(yi = k), where pk =

efk∑
j e

fj
, Li = − log (pyi) (3.7)

[2] and a further detailed computing explanation there is in [62].

The classification function that we implemented following Cross-Entropy and
Softmax methods:
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Algorithm 5 Loss Function - Cross-Entropy and Softmax
Input: X: output array from forward function

y: labels’ array
Output: out: output array transformed in range (0, 1)

loss_out : loss value

1: max_2d_single_axis(X,X1d)
2: for all dimensions of X array do
3: Xexp = exp(X −X1d)
4: end for
5: sum_2d_single_axis(Xexp,Xexp1d)
6: for all dimensions of Xexp array do
7: p = Xexp/Xexp1d
8: end for
9: sum_2d_single_axis(Xexp,Xexp1d)

10: for all dimensions of p array do
11: // (of p[i][j])
12: if y == j then
13: p_likelihood = p
14: end if
15: end for
16: for all dimensions of p_likelihood array do
17: log_likelihood = (−1) ∗ log(p_likelihood)
18: end for
19: for all dimensions of log_likelihood array do
20: loss+ = log_likelihood
21: end for
22: lossout = loss/minibatch_size
23: for all dimensions of p array do
24: // (of p[i][j])
25: if y == j then
26: out = p− 1
27: else
28: out = p
29: end if
30: end for
31: for all dimensions of out array do
32: out/ = minibatch_size
33: end for

3.7.2 Regression

Regression is the squared difference of target and predicted value of the weights
Convolutional or Fully Connected Layers. It is performed exclusively in these two
layers because only they use weight arrays. The derivative of weight arrays is up-
dated accordingly. Regression is defined as derivative function/delta of L1 and L2
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Regularization as it is performed during the backpropagation (for more details see
3.4.1) [2].

3.8 Optimization algorithm

An optimization technique connects train(forward-backpropagate) and predict
/test(forward) processes. Optimization algorithm attempts to improve loss, while
it updates the parameters of the network to achieve it. More specifically, we try to
find a set of weights that approaches as close as possible to the optimal, but also it is
necessary to minimize the loss function. There are several optimization algorithms
to train our network. Therefore, we chose the Stochastic Gradient Descent method
with momentum update and Nesterov to implement at the moment [64, 18, 2].

3.8.1 Gradient Descent

Figure 3.6: Cases of low, good, high and too high learning rate in contrast to the
given model [65].

It is the most popular, simple and common method to optimize neural networks.
There are many variations of Gradient Descent that evaluate the gradient and up-
date the parameters of the neural network. During the training process, these
optimization algorithms learn by performing small local steps using the gradient of
the loss function to seek for the global minima. Gradient Descent along with Back-
propagation algorithm is a popular way to perform the learning process in many

45



neural networks. Furthermore, Gradient Descent needs only first-order derivatives
of parameters relating to the loss function. The size of the steps is referred to as
Learning rate and is essential to be chosen carefully as they to determine the next
point:[66, 67, 2, 8, 68].

3.8.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is very efficient, but also a simple technique
that is usually used for deep learning. Stochastic Gradient Descent often is used for
sparse and large-scale machine learning problems in natural language processing and
text classification. It attempts to avoid stuck into a local minimum by sampling data
in a stochastic manner and updating parameters repeatedly making small pertur-
bations with the sampling data. Stochastic methods perform hill-climbing methods
that effectively "guess" using a learning rate and afterward "check the "guess", hence
they can allow faster convergence to the optimum. During training, the gradient de-
scent is actually slow to converge. Hence, the variation that often is used is Stochas-
tic Gradient Descent which estimates the gradient from mini-batches. Mini-batch
is called a small sample of randomly chosen training input data in every iteration
and its size is a hyperparameter for SGD. Performing many close estimated updates
give us better results. Mini-batches are randomly shuffled training MNIST images
using the Fisher-Yates algorithm (see 3.8.1) [2, 8, 18, 69, 70].

Figure 3.7: + refers to a minimum of the cost. SGD makes some small perturbations
until convergence. Therefore, it is faster to compute SGD than GD, as GD uses the
whole batch instead of one training example [71].

An epoch is a complete pass of mini-batches through a given dataset. Mini-
batches are separated and shuffled at the get_minibatches function in python. In
our implementation, during the solver, we get the stepping the size of data we need
to pass to CNN class and we perform the shuffle of the training data in a function
separately [2, 8].

Stochastic gradient descent with momentum performs a parameter update for
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Figure 3.8: + refers to a minimum of the cost. SGD with mini-batches often leads
to reaching faster convergence [71].

each training example x(i) and label y(i):

θ = θ − η · ∇θJ(θ;x
(i:i+n); y(i:i+n)) (3.8)

Algorithm 6 Stochastic Gradient Descent with minibatches
Input: train_X: 4D MNIST train images, train_y: 1D MNIST train labels,

test_X: 4D MNIST train images, test_y: 1D MNIST test labels

1: for epochs do
2: for mini_batches of train_X and train_y do
3: cnn.train(train_X, train_y)
4: end for
5: /* ret is the array have stored inside the predicted values */
6: for mini_batches of train_X and train_y do
7: cnn.predict(train_X)
8: accuracy_func(train_y, cnn.ret)
9: end for

10: for mini_batches of test_X and test_y do
11: cnn.predict(test_X)
12: accuracy_func(test_y, cnn.ret)
13: end for
14: end for

3.8.3 Vanilla Update

SGD uses the learnable parameters(Weight and bias arrays) of forwarding, as well
as the gradients("dW" derivative of Weights and "db" derivative of bias arrays) of
backpropagation for each layer( Conv and FC). Then, it updates parameters along
the negative gradient, multiplied with learning rate [8, 2]. The equation for Vanilla
gradient descent computes (for the entire training dataset) the gradient of the cost
function to the parameters [67]:
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θ = θ − η∇θJ(θ) (3.9)

Vanilla Update is part of the backward function of Convolutional, Batch Normal-
ization and Fully Connected Layers of our implementation. The other layers do not
have Weight, bias array parameters or in case of Batch Normalization layer gamma
and beta array parameters.

Algorithm 7 Vanilla Update
Input: W: Weight array, dW: derivative Weight array

b: bias array, db: derivative bias array
Output: W: Weights array, b: bias array

1: #pragma omp parallel for
2: for loop
3: W -= learning_rate ∗ dW
4: b -= learning_rate ∗ db
5: end loop

3.8.4 SGD with Momentum

Momentum update or classical momentum (CM) is another technique to ap-
proach a better convergence in a deep neural network that Polyak introduces on
1964 [72]. It is motivated by the physical perspective of optimization problems.
This method suggests an improvement from the SGD above. Furthermore, SGD
with momentum update is claimed that the gradient directly integrates the posi-
tion of the standard SGD and presents the velocity v. Velocity is the parameter
that is initialized at zero using the hyperparameter mu(momentum update) which
is typically 0.9 and it is stored to make the proper updates of the parameters. Hy-
perparameter mu can control the velocity and allow faster descent, while it is used
to exclude overshooting to a specific area. SGD advantage a little of the momen-
tum schedules, but it speedups the learning in later stages [8, 2, 20]. SGD with
momentum is computed by multiplying the momentum term γ of the update vector
of the previous step/layer to the current update vector and the learning rate η to
the gradient of the objective function ∇θJ(θ) [67]:

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt
(3.10)
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Nesterovs accelerated gradient

Nesterov momentum or NAG (Nesterovs Accelerated Gradient by Nesterov, 1983)
operates slightly better than standard momentum as it is an improved version with
stronger theoretical converge. More specifically, as we see above in Figure 3.8.,
NAG has better convergence rate than gradient descent in most of the cases, like
the momentum method. It can be explained as a calculation of the gradient in a
"lookahead" evaluation position and then perform a correction [73, 8]. The effective
lookahead can be calculated by adding in the SGD momentum equation 3.10 the
momentum term of NAG γvt−1 to move the parameters θ. The momentum term of
NAG is an approximation of the next position of the parameters[67]:

vt = γvt−1 + η∇θJ(θ − γvt−1)

θ = θ − vt
(3.11)

Momentum Update, as well as Vanilla Update, is part of the backward function of
Convolutional, Batch Normalization and Fully Connected Layers that update their
Weight, bias arrays or in case of Batch Normalization layer the gamma and beta
arrays of parameters.

Figure 3.9: Using momentum with gradient update, we can reach out to the "looked-
ahead" position [2].
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Algorithm 8 Momentum Update and Nesterov
Input: W: Weight array, dW: derivative Weight array,

b: bias array, db: derivative bias array,
velW: look-ahead Weight array, velb: look-ahead bias array

Output: W: Weights array, b: bias array

1: /* mu = 0.9 */
2: if nesterov
3: #pragma omp parallel for schedule(static, prmts::sch_static)
4: for loop
5: W += mu ∗ velW
6: b += mu ∗ velb
7: end loop
8: end if
9:

10: /* default learning rate: l_rate= 0.01 */
11: #pragma omp parallel for
12: for loop
13: velW = velW ∗mu+ lrate ∗ dW
14: velb = velb ∗mu+ lrate ∗ db
15: W -= velW
16: b -= velb
17: end loop

3.9 Optimizations

There are a couple of optimizations that we have implemented to get a better
performance in the CPU. More specifically, we tried to take advantage of the locality
of cache, parallel performance, and efficient randomness. There are described in
details afterward.

3.9.1 Data Processing - Shuffle: Fisher-Yates algorithm

The Fisher-Yates shuffle algorithm published in 1938 from Ronald Fisher and
Frank Yates, named by their surnames. It is used to randomly shuffle a given
input(list of elements). The algorithm permutes each element of the list with the
same probability using a random number generator. They first describe it in their
book [74]. Statistical tables for biological, agricultural and medical research. As it
is described, the user writes down the finite sequence of elements. After that, she/he
picks randomly a number from space [1, k], which is a list of non-picked elements
yet. This process is repeated with O(n2) asymptotic complexity.
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Figure 3.10: An illustration of shuffling images along with the labels [71].

Algorithm 9 Fisher-Yates shuffle Algorithm[7].
Input:X: 4D array of images, y: 2D array of labels
Output:input arrays (X, y) shuffled in any random sequence

1: int j;
2: srand(time(NULL));
3: for i = (minibatch_size− 1) downto 1 do
4: j = rand()%(i+1);
5: std::swap(input_X[i], input_X[j]);
6: std::swap(input_y[i], input_y[j]);
7: end for

3.9.2 Durstenfeld shuffle algorithm

In 1964, a better approach of the shuffle algorithm introduced by Richard Dursten-
feld and later in 1969 Donal Knuth, but it is often called the Fisher-Yates algorithm.
Neither of them acknowledged Fisher-Yates work, hence it is believed that they did
not know about it [75]. However, it is an improved version of the Fisher-Yates algo-
rithm and it has linear O(n) complexity. The algorithm is slightly different. More
specifically, Durstenfeld moves, at each iteration, the struck elements to the end of
the list by swapping them with unstruck ones.

3.9.3 Optimizing compilation using GCC’s -Ox

The default option is -OO which is used to reduce the compilation time. In case
we use -O3 the compiler tries to reduce execution time, the execution speed and
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the code size, whereas it increases the performance of the generated code and the
compilation time. -O3 uses all the implementations-turn on of flags- of the -O1 and
the -O2.[76]

Some of the extra flags that we use at the compile step are (explanations have
mainly taken by online GCC Option manuals [76]):

• -funroll-all-loops
At compile time or upon the entry of a loop it can detect the number of
iteration of loops that can be unrolled. If it is used correctly it can make our
code larger but faster, otherwise, the code will run slower than the naive one.

• -fsched-pressure
It can improve code and reduce its size by preventing register pressure increase
above the number of available hard registers and subsequent spills in register
allocation. Scheduling should be enabled before register allocation’s activation.

• -fselective-scheduling, -fselective-scheduling2, -fsel-sched-pipelining,
-fsel-sched-pipelining-outer-loops
The -fselective-scheduling or -fselective-scheduling2 must be turned on, other-
wise, it has no effect to the code. As well as, if -fsel-sched-pipelining is not
turned on the -fsel-sched-pipelining-outer-loops that pipeline outer loops has
also no effect.

• -ftree-vectorize, -ffast-math, -fassociative-math , funsafe-math-optimizations
It is turned on under -O3 and it performs vectorization on trees. As well
as, to enable vectorization of floating point reductions we used -ffast-math or
-fassociative-math.
The -ffast-math sets -fno-math-errno, -funsafe-math-optimizations, -ffinite-
math-only, -fno-rounding-math, -fno-signaling-nans and -fcx-limited-range and
it yields a faster code.
The -fassociative-math allows the re-association of operands in a series of
floating-point operations. Hence, it may also reorder floating-point compar-
isons and thus may not be used when ordered comparisons are required. This
option requires that both -fno-signed-zeros and -fno-trapping-math be in ef-
fect. Moreover, it doesn’t make much sense with -frounding-math.

• -frename-registers
It is enabled by default with -funroll-loops. It attempts to avoid false depen-
dencies in scheduled code by making use of registers left over after register
allocation. The processors with many registers are the ones that benefit at
most.
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• -fprefetch-loop-arrays
If it is supported by the target machine, it generates instructions to prefetch
memory to improve the performance of loops that access large arrays. There-
fore, this option it is possible to generate better or worse code. In other words,
the results are highly dependent on the structure of loops within the source
code.

• -march=native
It is an option tells GCC that it should produce code for a certain kind of
CPU. This flag can provide massive speedups for numerically-intensive code,
but it is specialized for the hardware architecture that it was compiled.

• -flto
It creates an output that can be optimized later, at link-time. If we specify the
optional n, the optimization and code generation done at link time is executed
in parallel using n parallel jobs by utilizing an installed make program.

• -D_GLIBCXX_PARALLEL
It is used after the flags to convert all use of the standard (sequential) algo-
rithms to the appropriate parallel equivalents. It also may change the sizes
and behavior of standard class templates that are included in detail in gcc
manual.

• -Wno-write-strings
Do not warn the user when compiling C, give string constants the type const
char[length] so that copying the address of one into a non-const char * pointer
which normally produces a warning.

• -fomit-frame-pointer
It is enabled by -03. Using this option, we don’t keep the frame pointer in a
register for functions that don’t need one. This avoids the instructions to save,
set up and restore frame pointers; it also makes an extra register available in
many functions.

• -fsingle-precision-constant
We treat the floating point constant as single precision constant instead of
implicitly converting it to double precision constant.

• -frounding-math
It is an experimental option that disables all GCC optimizations that are
affected by rounding mode. It will disable the transformations and optimiza-
tions that assume default floating-point rounding behavior, As it is referred in
GCC Option’s manual, this option disables constant folding of floating-point
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expressions at compile-time (which may be affected by rounding mode) and
arithmetic transformations that are unsafe in the presence of sign-dependent
rounding modes. This is round-to-zero for all floating-point to integer conver-
sions and round-to-nearest for all other arithmetic truncations.

• -ffinite-math-only
It yield faster code while it allows optimizations for floating-point arithmetic
that assume that arguments and results are not NaNs or +-Infs.

• -fno-trapping-math
While we compile code, we can assume that floating-point operations cannot
generate user-visible traps, like division by zero, overflow, underflow, inexact
result and invalid operation

• -fno-signed-zeros
It allows optimizations for floating-point arithmetic that ignore the signedness
of zero and implies that the sign of a zero result isn’t significant.

• -freciprocal-math
It allows the reciprocal of a value to be used instead of dividing by the value.

• -fopenmp, -lpthread
They are used to enable the OpenMP librariy functionalities

• -fvpt, -fprofile-values
They are used combining with others to profile the code.

There are a plethora of flags that the user can use and all of them are listed
in GNU’s GCC guide, however, their usage should be carefully considered because
they can affect negatively our results.

Instead of, it is not a flag/GCC Option to consider it in this subsection, but a
Linux resource value, it is necessary before we run our application to increase stack
memory via "ulimit -s". There are 2 options. On the one hand, there is the command
"ulimit -s unlimited" to set the stack size unlimited (unlimited value depends on the
operating system), while the program allocates more and more space to maintain
the inner values/arrays. On the other hand, you can determine the amount of stack
you need, using a tool like Valgrind[77] and set it by hand (ie. "ulimit -s 16777216"
which is nearly 2 GB). If it will not increase the program throws Segmentation fault,
because it runs out of memory.

54



3.9.4 Cache Blocking

Cache Blocking is an efficient and helpful optimization that we used mainly in
transpose, copy and matrix multiplication in order to reduce cache misses and the
total time of each epoch and generally the whole program. Furthermore, it is a
way to increase spatial and temporal locality of reference (i.e. exploit full cache
lines, to improve data reuse). Hence, it is more beneficial when we deal with multi-
dimensional arrays and it may be faster than naive one observe it by testing it or
by cache analysis. While we load a small subset cache block of a much larger data
set, the memory bandwidth pressure reduces, because of the spatial locality and
we avoid possibly memory bandwidth bottlenecks. Blocking (tiling) is an approach
that many matrix algorithms can adopt efficiently [78]. Matrix multiplication and
some transpositions made according to cache blocking theory that improves the run
time of out CNN.

Figure 3.11: Matrix Multiplication process without(/before) Cache Blocking [79].

Figure 3.12: Illustration of Matrix Multiplication process, using Cache Blocking to
take advantages of cache locality [79].
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Algorithm 10 (Full) Cache Blocking for Matrix Multiplication and addition
Input:A[i_dim][j_dim] , B[j_dim][k_dim], C[i_dim]
Output:O[i_dim][k_dim]

1: for int ii=0, ii < i_dim, ii+ = block_size do
2: max_i2 = ii+ block_size < i_dim ? ii+ block_size : i_dim;
3: for int i=ii, i < max_i2, i++ do
4: for int kk=0, kk < k_dim, kk+ = block_size do
5: max_k2 = kk + block_size < k_dim ? kk + block_size : k_dim;
6: for int k=kk, k < max_k2, kk ++ do
7: muladd = C[i];
8: for int jj=0, jj < j_dim, jj+ = block_size do
9: max_j2 = jj + block_size < j_dim ? jj + block_size : j_dim;

10: for int j=jj, j < max_j2, jj ++ do
11: muladd += A [i][j] * B [j][k];
12: end for
13: O[i][k] = muladd;
14: end for
15: end for
16: end for
17: end for
18: end for

Another interesting function that we attempted to implement using cache block-
ing was the transpose of a 4D array. The general idea of it sums up in the algorithm
below. The block size was chosen to be 64, which is equal with the cache coherence
size of our server.
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Algorithm 11 (Full) Cache Blocking to transpose 4D array
Input:IN[i_dim][j_dim],[k_dim][l_dim]
Output:OUT[l_dim][i_dim],[j_dim][k_dim]

1: for int ii=0, ii < i_dim, ii+ = block_size do
2: max_i2 = ii+ block_size < i_dim ? ii+ block_size : i_dim;
3: for int i=ii, i < max_i2, i++ do
4: for int jj=0, jj < j_dim, jj+ = block_size do
5: max_j2 = jj + block_size < j_dim ? jj + block_size : j_dim;
6: for int j=jj, j < max_j2, j ++ do
7: for int kk=0, kk < k_dim, kk+ = block_size do
8: max_k2 = kk+ block_size < k_dim ? kk+ block_size : k_dim;
9: for int k=kk, k < max_k2, k ++ do

10: for int ll=0, ll < l_dim, ll+ = block_size do
11: max_l2 = ll+ block_size < l_dim ? ll+ block_size : l_dim;
12: for int l=ll, l < max_l2, l ++ do
13: OUT[l][i][j][k] = IN[i][j][k][l] ;
14: end for
15: end for
16: end for
17: end for
18: end for
19: end for
20: end for
21: end for

We also implemented cache blocking in functions that copy 4D arrays to get
faster results, exploited the locality of cache blocking. Block size is set to 64 like
the cache coherence size.
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Algorithm 12 (Full) Cache Blocking to copy 4D array
Input:IN[i_dim][j_dim],[k_dim][l_dim]
Output:OUT[i_dim][j_dim],[k_dim][l_dim]

1: for int ii=0, ii < i_dim, ii+ = block_size do
2: max_i2 = ii+ block_size < i_dim ? ii+ block_size : i_dim;
3: for int i=ii, i < max_i2, i++ do
4: for int jj=0, jj < j_dim, jj+ = block_size do
5: max_j2 = jj + block_size < j_dim ? jj + block_size : j_dim;
6: for int j=jj, j < max_j2, j ++ do
7: for int kk=0, kk < k_dim, kk+ = block_size do
8: max_k2 = kk+ block_size < k_dim ? kk+ block_size : k_dim;
9: for int k=kk, k < max_k2, k ++ do

10: for int ll=0, ll < l_dim, ll+ = block_size do
11: max_l2 = ll+ block_size < l_dim ? ll+ block_size : l_dim;
12: for int l=ll, l < max_l2, l ++ do
13: OUT[i][j][k][l] = IN[i][j][k][l] ;
14: end for
15: end for
16: end for
17: end for
18: end for
19: end for
20: end for
21: end for

3.9.5 OpenMP

OpenMP (Open Multi-Processing) is a library (omp.h) that supports multi-
platform shared-memory parallel programming in C/C++ and Fortran. [80] Using
OpenMP all threads share memory and data. There are sections in an OpenMP
program that are sequential and sections that are parallel. More specifically, at
run-time, an OpenMP program will use one thread for the sequential sections, and
several threads for the parallel sections. In terminology, there are master and slave
threads. Slave threads are the parallel sections that cause additional threads to fork,
while the master thread runs from the start to the end. The reason that we use
OpenMP is that it allows the programmer to transform her/his code to a lower-level
parallel and more efficient from a naive version.

There are some environment variables that we set to maximize performance [81]:
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• OMP_WAIT_POLICY=active
When it is active, it encourages idle threads to spin rather than sleep

• OMP_DYNAMIC=false
At false state, we use it to do not let the run-time deliver fewer threads than
we asked for.

• OMP_STATIC=true
At true state, we use it to let the run-time deliver a specific number of threads
to run our program.

• OMP_PROC_BIND=spread
It specifies whether threads may be moved between processors and by choosing
SPREAD option, a sparse distribution across the place partitions are used.

• OMP_NESTED=true
It enables nested parallelism.

• OMP_SCHEDULE=static
It allows specifying schedule type and chunk size. We decide to choose static
allocation as it is measured as more efficient.

• OMP_PLACES=sockets
Automatically generate masks binding tasks on the sockets of the CPUs that
we have been allocated to the job. We may have sub-optimal binding when
the number of tasks differs from the number of allocated sockets.

• OMP_NUM_THREAD=N
We set the number of threads we wish. N is depending on the system’s spec-
ifications. We have a machine with 40 threads, so we will use the maximum
possible threads that will give us faster run execution time.

• GOMP_SPINCOUNT=infinite
Always threads wait actively with consuming CPU power. It defines the num-
ber of busy cycles.

• OMP_STACKSIZE=300M
We set the default thread stack size to 300M(Megabyte) of threads created by
the OpenMP run time.
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Algorithm 13 Matrix Multiplication and addition with OpenMP
Input:A[i_dim][j_dim] , B[j_dim][k_dim], C[i_dim]
Output:O[i_dim][k_dim]

1: #pragma omp parallel for default(none) shared(A, B, C, O)
schedule (static, prmts::sch_static) private( muladd)

2: for int i=0, i < i_size, i++ do
3: for int k=0, k < k_size, k ++ do
4: muladd = C[i];
5: for int j=0, j < j_size, j ++ do
6: muladd += A [i][j] * B [j][k];
7: end for
8: O[i][k] = muladd;
9: end for

10: end for

We implemented the matrix multiplication and we tested many versions of it,
until we choose the fastest one. Chunk size in scheduling was decided to set as 16,
because we have float(4-bytes) values and the cache line is 64bytes (4*16), hence it
is a way to prevent false sharing due to multi-threading. The fastest was an hybrid-
version of cache blocking and OpenMP implementation that in general follows the
GEBP logic[82] :

Algorithm 14 (Partial) Cache Blocking for Matrix Multiplication with OpenMP
Input:A[i_dim][j_dim] , B[j_dim][k_dim], C[i_dim]
Output:O[i_dim][k_dim]

1: for int ii=0, ii < i_dim, ii+ = block_size do
2: for int i=ii, i < min(ii+ block_size, i_dim), i++ do
3: #pragma omp parallel for default(none) shared(A, B, C, O, i)

private( muladd)
4: for int k=0, k < k_size, k ++ do
5: muladd = C[i];
6: for int j=0, j < j_size, j ++ do
7: muladd += A [i][j] * B [j][k];
8: end for
9: O[i][k] = muladd;

10: end for
11: end for
12: end for
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We also tested this technique to functions that implemented transpose of the
arrays. Their results were depended on the size of the arrays and the read/writes
of the memory blocks. Hence, for 4D and 3D arrays, we have better performance
in time following the same pattern of one cache blocking dimension and the rest
of them speeded-up with OpenMP. Although the cache blocking dimension is not
static, it is depending on the current array we want to transpose every time.

Algorithm 15 Transpose with OpenMP (ie. transpose 4D array in forward function
of Convolutional layer)
Input:IN[i_dim][j_dim][k_dim][l_dim]
Output:OUT[l_dim][i_dim][j_dim][k_dim]

1: #pragma omp parallel for default(none) shared(IN, OUT)
2: for int i=0, i < i_size, i++ do
3: for int j=0, j < j_size, j ++ do
4: for int k=0, k < k_size, k ++ do
5: for int l=0, l < l_size, l ++ do
6: OUT[l][i][j][k] = IN[i][j][k][l];
7: end for
8: end for
9: end for

10: end for

Algorithm 16 (Partial) Cache Blocking for Transpose with OMP (ie. transpose
4D array in forward function of Convolutional layer)
Input:IN[i_dim][j_dim][k_dim][l_dim]
Output:OUT[l_dim][i_dim][j_dim][k_dim]

1: for int ii=0, ii < i_dim, ii+ = block_size do
2: max_i2 = ii+ block_size < i_dim?ii + block_size : i_dim;
3: for int i=ii, i < max_i2, i++ do
4: #pragma omp parallel for default(none) shared(i, IN, OUT)
5: for int j=0, j < j_dim, j ++ do
6: for int k=0, k < k_dim, k ++ do
7: for int l=0, l < l_dim, l ++ do
8: OUT[l][i][j][k] = IN[i][j][k][l];
9: end for

10: end for
11: end for
12: end for
13: end for
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3.9.6 Limitations and Problems

During the implementation of the framework we dealt with various problems, the
majority of them resolved, while some of them will be fixed in the future.

Limitations

A major limitation that we faced, was the change of stack size. We had to set
"ulimit -s unlimited" or "ulimit -s 16777216" in order to get results instead of
Segmentation fault at run. Our implementation creates a sequence of layers inside
a namespace that it is used to pass the layers(arguments) to variadic templates.
The purpose of that namespace is that the input and output of the layers are called
by variadic templates in a recursive manner that facilitates their connection and
collects them in one place to make some minor changes in a ("kind-of") user-friendly
network layer’s (architecture) representation. Hence, the namespace allocates a lot
of stack space. The initial stack size is depended on the system and can be changed
by the commands above, otherwise, it will keep gobbling up RAM for the program’s
needs in stack size until the system runs out of memory entirely and it will throw
Segmentation fault. Therefore, we could increase more the stack size, but it was not
necessary for the current implementation and for our tests.

Problems

There were many problems, during the implementation of the framework. We
wasted a lot of time with various problems as the aforementioned stack size, a
close to Python implementation layer’s connection way that dealt with variadic
templates, the C++17 support from system’s GCC while Vivado SDK uses the
system’s compiler, hence it’s version that was not supported in Server, the Python
vs C++ loss in precision for calculations near-zero (while we verified one-to-one the
results inside the arrays for specific values), etc. Most of the problems encountered,
while false sharing, further hot-spots and bottlenecks, and some minor problems
will be fixed in a future version of the framework. False sharing observed while we
wanted to use more than half of server’s cores and we got worse results. We will
try to fix it with padding and spacing of the results in association with the system’s
size of cache line (future work).
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3.9.7 Profiling

The last subsection of the second chapter includes frameworks and tools that
analyses and profile our code, in order to find possible problems or bugs or to take
some measurements of our implementation.

• Perf tool
Perf is a tool in Linux which provides us an analysis of a program’s perfor-
mance. Using Perf we could mine various information that helped us further
improve our code and detect problems. The last version of our code get the
following statistics:

Figure 3.13: Perf Tool

• Valgrind

Valgrind is a framework for building tools. Valgrind has various analysis tools
to profile and check our program. We use its tools to detect memory leaks,
memory debugging and profile the memory usage of our program.

Cachegrind

We used Cachegrind to get some statistics of I1, D1, and LL (last-level) caches
(read and write) and investigate if we can improve further our code, decreasing
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the miss rates, especially the read ones. It also informs us about the stack
limit that we can use and further details of the cache like the associative sizes
of the cache and the general cache configuration. The current version of our
code get the following statistics:

Figure 3.14: Cachegrind Tool

Memcheck

The most used and default tool of Valgrind is Memcheck. It can detect mem-
ory errors like incorrect free of the heap, mismatches of malloc-free pattern,
memory leaks, undefined values, illegally access of memory, etc. The last
version of our code informs us that we do not have any (common) error:

Figure 3.15: Memcheck Tool
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Chapter 4

FPGA Accelerator Design
and Implementation

4.1 Introduction

The fourth Chapter describe the specifications and some significant details of the
Kronos Server that we used to develop our Framework (Section 4.1.1) and the Trenz
Ultrascale+ platform that we used (Section 4.1.2). The next section (Section 4.2)
refers to the Xilinx Vivado HLS tool and more specifically about the implementa-
tion of Matrix Multiplication with Addition, IP core, in Vivado HLS (Section 4.2).
The design of the hardware application is produced by Vivado Design tool (Section
4.3). Following that, the CNN framework adjusts the IP Core’s functionality in
SDK (Section 4.4) There are some Optimizations, suggestions, and notes for the
implementation of Matrix Multiplication ( for the forward’s Matrix Multiplication
call of the Fully Connected layer) IP core. Finally, Section 4.5 describes some major
problems and limitations of the final project.

4.1.1 Kronos Server Overview

Our implementation was tested and we took our measurements from the lab’s
server named Kronos. Kronos is a Dell Server with 40 threads of logical cores in
CPUs(64-bit), x86_64 architecture, 2 threads of 10 Cores per socket. The CPU
model is E5-2630 v4@ 2.20GHz (3.1 max GHz CPU). The cache memory of both
L1d and L1i corresponds to 32KB, L2 to 256KB and L3 to 25600KB.

4.1.2 Trenz Platform Overview

An available and suitable for our project platform was a Trenz Electronic Starter
Kit TE0808-04-09-2IE-S. There is a ZU9EG chip on the TEBF0808-04 module(Figure
4.3) that is connected to the carrier board and inside a black Core V1 Mini-ITX
Enclosure, it contains a pre-assembled heatsink [6]. We are using the Zynq Ultra-
Scale+ Multi-Processor system-on-chip (MPSoC) that its family is based on the
Xilinx UltraScale MPSoC architecture [83]. It is designed for the evaluation of
the embedded applications with graphics, video, waveform, and packet processing

65



Figure 4.1: Intel CPU architecture information

providing significant power savings, programmable acceleration, and heterogeneous
processing.

The Application Processing Unit (APU) of the Zynq UltraScale+ MPSoC in-
cludes a quad-core Arm Cortex-A53 MPCore processor(up to 1.5GHz, 64-bit, L1i
32KB, L1d 32KB, L2 1MB). Moreover, the Real-Time Processing Unit (RPU) con-
tain a dual-core Arm Cortex-R5 (up to 600MHz, 32-bit Arm v7-R, L1i 32KB,
L1d 32KB) based processing system (PS). There is also a Mali-400MP2 (64-bit,
L2 64KB) GPU and Xilinx programmable logic (PL) UltraScale architecture with
the programmable FPGA fabric in a single device. Furthermore, the board has an
external memory of 4 GByte 64-Bit DDR4 SDRAM and 256KB On-Chip Memory.
More details about the overview of the Zynq UltraScale+ MPSoC, there are in [83]
of Xilinx documentation.

(a) Steel enclosure (b) Carrier board (c) TEBF0808-04 module

Figure 4.2: Trenz Platform [6]
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4.2 High-Level Synthesis Design

The Vivado HLS tool synthesizes the matrix multiplication and addition within
computation function written in C. The synthesized C is transformed into an IP
block that can be used as an integrated module into the hardware system. The whole
current hardware design and IP block made by Vasileios Amourgianos-Lorentzos.

The input/output data made from custom axi streams of 128-bit data by using
the hls_stream library. The hls_stream is described as a multi-rate dataflow of 8-
bit I/O and 32-bit data processing and decimation design using hls::stream in [84].
More specifically, the custom "AXI_STREAM128_KEEP" is used in 4 unrolled
arrays of 4X4 2D dimension arrays (4x4 = 16 intermediate accumulations). Each
unroll pass the 32-bit of data to/from an array and compute/process them to an
output buffer before or after the matrix multiplication and addition computation
that keeps the 16-bit (0xFFFF). The last 16-bits of write stream are dummy bits
to latency the procedure and get the right result.

The synthesis reports for the matrix multiplication with addition functionality
give us the following estimates:

Figure 4.3: HLS Report-Performance Results
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Figure 4.4: HLS Report-Utilization Results

4.3 Vivado Design

The design of the current implementation that has attached and uses the afore-
mentioned IP core. They have been used 6 HP slave ports of 128bits width( every
port has 2GB/s read bandwidth), therefore the total bandwidth was 10GB/s, not
12GB/s, possibly because it is the limit of the RAM’s bandwidth. It is also imple-
mented and configured by Vasileios Amourgianos Lorentzos and it is the following:

Figure 4.5: Block Design from Vivado Design
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The reports of the implementation:

(a) LUTs Table (b) Graph LUTs

Figure 4.6: LUTs

(a) Hold (b) Setup (c) Pulse Width

Figure 4.7: Timing

4.4 Vivado SDK

In this section, we used the hardware implementation, the IP core and the pro-
duced files (i.e. bitstream) to created our C++ project. Firstly, we create a C
project that includes the First Stage Boot Loader (FSBL) for the ARM Cortex-A53
64-bit quad-core processor unit (APU). It has its own Board Support Package Set-
tings (BSP) project that they are linked and includes the necessary libraries in C
to boot. We were going to implement a bare-metal application, so we enabled the
Xilinx secure key library, Xilinx Secure library, and Generic Fat File System Library
in order to read from SD card, from Board Support Package Settings.

Then, we made the C++ project with its own BSP project that included also the
aforementioned libraries and it was linked to hardware design. The Vivado SDK
application uses the system’s GCC compiler, that was useful because we need the
C++17 version or above that, we already had installed from CYGWIN packages.
After that, we import the code files for CNN. We also include the needed libraries
from BSP to stdlibs.hpp file.

Before we compile the project, we should generate the linker script of the project.
We made the following changes and use the whole DDR memory:
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Figure 4.8: Linker Script changes for FSBL

Figure 4.9: Linker Script changes for CNN project

Figure 4.10: Linker Script changes for CNN project (up to 256 batch size)

We increased the stack, in accordance with the server’s limits of stack size to be
able to run our project without problems.
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Optimizations

We made various optimization changes in the setting adding the following compil-
ing flags:"-funroll-all-loops -fsched-pressure -fselective-scheduling -fsel-sched-pipelining
-fsel-sched-pipelining-outer-loops -fprefetch-loop-arrays -ftree-vectorize -frename-registers
-march=native -flto -Wno-write-strings -fvpt -fprofile-values -freciprocal-math -fomit-
frame-pointer -fsingle-precision-constant -frounding-math -fno-trapping-math -fno-
signed-zeros -ffinite-math-only -ffast-math -fno-signed-zeros -fno-trapping-math -
fassociative-math -freciprocal-math -funsafe-math-optimizations -std=c++17 " and
the optimization level to switched to -O3.

Apart from them, we also use most of the optimizations that we made for the
software implementation.

Read Files

In order to read dataset, we made a lot of changes in Load_MNIST class and
functions, but we keep the arrays as they were declared. Hence, the rest code that
used the dataset’s arrays remained unchanged. The functions within Load_MNIST
class acquired the C-logic of Vasileios Amourgianos-Lorentzos code that was linked
with the "ff.h" library.

Stream functions

The Stream functions did not change, therefore we use activation layers instead
of activation functions so they were disabled and the stream functions moved to
"numpy.hpp" file. The current HLS code will be initialized and get values/connects
with the FPGA with AXI streams inside the appropriate functions.

Matrix Multiplication

The Fully-Connected Layer uses 3 fast ways to perform matrix multiplication.
Firstly, we attached properly the FPGA accelerated function that needs 32*n size
at the second dimension of the output array. Hence, we determine if it is less
than 32 and we call the simple matrix multiplication function with partial cache
blocking technique. If we do not use the FPGA acceleration we perform the full
cache blocking method. The choices that we refer made by testing and observe the
time that we get on every occasion.
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Therefore, the 2D arrays had to be reshaped because the initial implementation
of the accelerator was for 1D arrays. Hence, the total time is significantly increased,
but it will be treated and eliminated appropriately in the immediate future.

Compile and Run

We build and compile the system with the C++ options that we referred to
previously. Both of the FSBL and the CNN projects created their .elf file. Then, we
create the boot file for SD Card to run our CNN in FPGA. The bootloader file is
the fsbl.elf, the bitstream for the programmable logic portion (zynq_wrapper.bit),
the system hardware project .hdf file (zynq_wrapper.hdf) and the last one is our
CNN project named cnn.elf. The BOOT.ini and the dataset will be saved afterward
in SD Card.

Figure 4.11: Create boot image for SD Card

After, we inserted the SD Card in the appropriate input slot and open the Trenz.
We connect via PuTTY to the serial port while we start the FPGA and clear the
memory from the buttons on the side of the Trenz enclosure box.
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4.5 Limitations and Problems

We made had a lot of problems. Many of them were dealt with, but some are
still under construction or will be encountered in the future. The main problem was
the size of the memory of the FPGA. Heap and Stack’s memory is increased, but
it is tricky how to specify them in Linker Scripts or how to use them correctly in a
bare-metal application.

Our limit is 2GB of DRR memory, Our implementation affords to load the whole
dataset and keep it for further processing.

The matrix multiplication from HLS was not fully compatible. The best accu-
racy that we could get was about 0.5 which lead us to understand that was not
implemented "correctly". It has a great speedup and it is implemented to get the
maximum speedup for the current Trenz board, therefore it is not compatible nei-
ther in forwarding or backward function. Hence, we could get an estimated time of
matrix multiplication function that it is calculated in the FPGA, resizing the weight
array to get transposed array’s sizes in forwarding function. Then we can decide if
it is worthy to implement in the future (future work) again HLS code for the matrix
multiplication function getting some measurements in the next chapter.

Update Weights and Regularization

The current IP core does not support weight update or weight regularization.
This is a major drawback because it is faster to handle inside the FPGA the cal-
culation instead of on the CPU. Therefore, it is part of the future work to make
further development and optimizations.
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Chapter 5

Evaluation and Results

5.1 Introduction

The fifth Chapter includes the measurements and some observations about the
results. More specifically, we take some measurements, using the LeNet-5 architec-
ture as it is described in Section 5.1 and we observe the behaviour of the CNN on the
server-CPU, given a variety of mini-batch sizes and thread number. Following that,
the next Section 5.2 contains some optimization and research results. More precisely,
Subsection 5.2.1 have time performances of Matrix Multiplication with Addition on
the server’s CPU, the Trenz’s CPU(ARM) and the Trenz’s FPGA(connected with
an ARM CPU). The other two Subsections have the measurements from transpose
(Subsection 5.2.2) and copy (Subsection 5.2.3) that performed only on CPU’s. Last
Section 5.3 contains measurements about power consumption and generic measure-
ments/calculations of the system’s performance on Server and on Trenz Platform.

5.2 CNN Performance

Layers

We attempt to take some measurements given the following parameters and
LeNet-5 architecture.
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Layers Feature Map Size Kernel Size Stride Padding

Convolutional 6 28x28 5x5 1 2
ReLU - - - - -

(/Tanh) - - - - -
Maxpool 6 14x14 2x2 2 -

ReLU - - - - -
(/Tanh) - - - - -

Convolutional 16 10x10 5x5 1 2
ReLU - - - - -

(/Tanh) - - - - -
Maxpool 16 5x5 2x2 2 -

ReLU - - - - -
(/Tanh) - - - - -
Flatten - - - - -

Fully Connected - 128 - - -
ReLU_2d - - - - -

(/Tanh_2d ) - - - - -
Fully Connected - 64 - - -

ReLU_2d - - - - -
(/Tanh_2d ) - - - - -

Fully Connected - 10 - - -

Table 5.1: LeNet-5 Architecture Table with Parameters

Time Performance of Threads - Layers

Our code uses OpenMP and Cache Blocking (Hybrid version), as we referred to
in the third Chapter. We tested our code in multiple threads for a LeNet-5 with
Tanh activation function for multiple threads.

Threads 1T 2T 4T 8T
Time (ms) (ms) (ms) (ms)

train 189.940577 108.701242 61.325151 38.949878
train inference 61.594659 33.156489 18.549237 11.797975
test inference 10.17491 5.409514 3.025038 1.926279
Epoch Time 261.710266 147.267325 82.899524 52.674219

Table 5.2: Time performance of one run of LeNet-5 (Threads : 1, 2, 4, 8)- 1 epoch,
96 mini-batch size, Kronos CPU
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Threads 16T 20T 32T 40T
Time (ms) (ms) (ms) (ms)

train 29.67968 28.340208 33.017988 35.03828
train inference 8.713907 8.405577 9.663663 10.334649
test inference 1.454152 1.401746 1.569302 1.722189
Epoch Time 39.847824 38.147611 44.251044 47.095271

Table 5.3: Time performance of one run of LeNet-5 (Threads : 16, 20, 32, 40)- 1
epoch, 96 mini-batch size, Kronos CPU

We get the best performance in 20 Threads, possibly, due to Intel QuickPath
Interconnect (QPI) overhead bus and maybe due False Sharing (multi-threading) in
memory or even hotspots that we will investigate further in the future. Therefore,
we notice that using 20 threads instead of one we perform 6.8x faster the training
process, and 7.3x faster the inference processes. In total, we get results 6.9x faster
(1 epoch) of the whole MNIST dataset.

We can see the reduction of time from the table, as illustrations, for different
number of threads below :
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Figure 5.2: Time performance for T number of threads - Kronos CPU. Using 20
threads have the best time performance (fastest).

We can see from the above the summarized time performances for multiple
threads that our CNN for LeNet-5 gets the fastest results using 20 threads (1 CPU).

While the graphs above show separately the train and inference times, we sum
them as epoch times and we get the following graph :

Figure 5.3: Epoch time for N number of threads - Kronos CPU, 96 mini-batch size
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Until now, we have investigated the time performance for the train, train in-
ference, test inference separately. Besides that, we want correct results, hence we
collect the train and test accuracy, as well as the loss in each epoch and for different
numbers of threads. The following table has the results from the run of the first
epoch:

Threads 1T 2T 4T 8T

Loss 0.335403 0.427342 0.471495 0.431629
Training Accuracy 0.894568 0.882 0.891417 0.889917

Test Accuracy 0.8998 0.8848 0.9002 0.8968

Table 5.4: Loss and accuracy of one run of LeNet-5 (Threads : 1, 2, 4, 8)- 1 epoch,
Kronos CPU

Threads 16T 20T 32T 40T

Loss 0.543014 0.438953 0.290006 0.314198
Training Accuracy 0.87955 0.886151 0.909484 0.892301

Test Accuracy 0.8847 0.893 0.9162 0.8996

Table 5.5: Loss and accuracy of one run of LeNet-5 (Threads : 16, 20, 32, 40)- 1
epoch, 96 mini-batch size

The aforementioned results can confirm to us that we have a great implementation
and our system works correctly, as the accuracy is high, the loss reduces, hence the
CNN learns during the epochs. We can not take into consideration the difference
between the thread number because we use a shuffle of batches and each full run
has a different "pack"/batch of images. The array can inform us that on a single
thread or on multiple threads, our framework works fine.
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Figure 5.4: Train and Test accuracy for T number of threads - CPU

Using the implementation of 20 threads, we get the graph of the train and test
accuracy and we can claim that the framework can be trained and learn efficiently.
Each epoch contributes to the accuracy using the updated weights of the previ-
ous epoch and finally the weights regularize and update again, during the training
procedure.

Figure 5.5: Train and Test accuracy in 15 epochs - Kronos CPU, 96 mini-batch size,
20 threads
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The Loss and Loss reduction for every epoch for the learning/training process
behaves normally, as expected in a CNN:

Figure 5.6: Loss and loss reduction in 15 epochs - Kronos CPU, 96 mini-batch size,
20 threads

The differences in times between the epochs and the training process, the training
inference and the test inference are minor as it was supposed to. We have the
same dataset size, same parameters and same architecture, so there is only a small
difference in milliseconds that are caused from the calculations on floating point
numbers, the round decisions in maths of the language and the processor, as well
as, the usage of the GCC optimisation flags that we have chosen:
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Figure 5.7: Train, train inference and test inference time in 15 epochs - Kronos
CPU, 96 mini-batch size, 20 threads

Perf tool reports are helpful to understand our implementation better and inves-
tigate further ones. While the number of threads increases, GHz and instructions
per cycle reduces. We have a deep network that can be translated into possible
hotspots. The reduction of GHz can affect instructions per cycle if our instruc-
tion needs a longer clock cycle and the task-clock, increased instructions and cycle
measurements can confirm it from their division.

Threads 1T 2T 4T 8T

task-clock (ms) 261370.5899 294294.0939 331530.8038 421872.6854
cycles 779,972,883,994 879,324,468,228 965,693,227,275 1,118,564,101,390

instructions 722,398,991,807 735,888,812,969 761,885,709,091 800,405,627,118
CPUs utilized 0.998 1.996 3.992 7.984

GHz 2.984 2.988 2.913 2.651
insn per cycle 0.93 0.84 0.79 0.72

Table 5.6: LeNet-5 Architecture Summary Table from Perf tool (1T, 2T, 4T, 8T),
96 mini-batch size
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Threads 16T 20T 32T 40T
task-clock (ms) 639032.8252 765152.7211 1421466.091 1894648.708

cycles 1,521,813,247,524 1,821,955,797,444 3,378,137,285,778 4,503,765,226,912
instructions 915,177,025,022 974,813,552,887 1,301,284,247,229 1,551,440,241,224

CPUs utilized 15.977 19.971 31.949 39.895
GHz 2.381 2.381 2.377 2.377

insn per cycle 0.6 0.54 0.39 0.34

Table 5.7: LeNet-5 Architecture Summary Table from Perf Tool (16T,20T,32T,40T),
Kronos CPU, 96 mini-batch size

While we increase the threads, we use we can assume that the dependencies/sharing
in memory, the overhead of the bus and the reduced GHz that give us the multi-
threading instead of a single thread usage, all of them affect our system by reducing
the amount of instructions per cycle that we can perform. The aforementioned
notices are shown below, clearly illustrated in graphs:

Figure 5.8: Instructions per cycle for N number of threads - Kronos CPU, 96 mini-
batch size
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Figure 5.9: Instructions and clock cycles for N number of threads - Kronos CPU,
96 mini-batch size

Figure 5.10: Clock rate for N number of threads - Kronos CPU, 96 mini-batch size
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From the Valgrind framework, using the cachegrind tool, we can extract a report
of cache misses. We want to reduce misses, as low as possible, especially read ones.
We can claim that we have a system which can be improved at the future possibly,
therefore all the miss percentages are less than 2.1% that indicates a cache optimized
framework with great miss rates even at the current version.

I refs: 2,541,477
I1 misses: 2,271
LLi misses: 2,133
I1 miss rate: 0.09%
LLi miss rate: 0.08%

D refs: 883,755 (622,613 rd + 261,142 wr)
D1 misses: 15,837 ( 13,330 rd + 2,507 wr)
LLd misses: 8,929 ( 7,002 rd + 1,927 wr)
D1 miss rate: 1.80% ( 2.1% + 1.0% )
LLd miss rate: 1.00% ( 1.1% + 0.7% )

LL refs: 18,108 ( 15,601 rd + 2,507 wr)
LL misses: 11,062 ( 9,135 rd + 1,927 wr)
LL miss rate: 0.30% ( 0.3% + 0.7% )
cache-references: 77,475,922,687
cache-misses: 3,590,753,132 4.635% of all cache refs
instructions: 522,566,193,949

Table 5.8: Valgrind (tool: cachegrind) report for LeNet-5 Architecture with ReLU
activation - Kronos CPU, 96 mini-batch size

5.3 Optimizations and research

For the current section, we decided to improve time and examine ways to reduce
"slow" in time and "heavy" in memory functions. Some of them where few matrix
multiplication calls, transpose and copy functions and see their behavior using few/a
lot of memory and their speedup in time using the algorithms from Section 3.9 or
some variants.

We explored/observed the time performance of each chosen function, changing
the number of threads and batch-sizes to find the best practice.
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5.3.1 Matrix Multiplication

Time Performance of Matrix Multiplication with addition - Kronos
CPU, 96 mini-batch size

We tested many versions of the Matrix Multiplication with Addition and we
sum-up the time from the algorithms of the third Chapter (3.9) in the table below:

Matrix Mult. Naive Cache-Blocking OpenMP Hybrid
with addition Algorithm Algorithm Algorithm

1st FC layer at LeNet-5 Time (ms) Time (ms) Time (ms) Time (ms)
mini-batch size

128 images 26.520995 16.063599 4.020237 2.246671
96 images 20.234731 12.054891 2.808729 1.960531
64 images 13.493708 8.065859 2.056212 1.644697
32 images 6.942636 4.099342 1.005933 1.277977
16 images 3.640126 2.034923 0.479782 1.064858

Table 5.9: Execution time: Naive and Cache Blocking (1 thread), OpenMP and
OpenMP with Cache Blocking/ Hybrid (20 threads) - Kronos CPU

We notice that OpenMP Algorithm, which is implemented with OpenMP without
Cache blocking performs better in small batch sizes. The fastest train of a batch
numerically have nearly 100 images, hence we prefer Hybrid Algorithm. Therefore,
we could handle cases that modulo of mini-batches is less than 64 with OpenMP
Algorithm to reduce (a little bit) the total time of the training process.
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Figure 5.11: Execution time Matrix Multiplication with addition: Naive and Cache
Blocking (1 thread), OpenMP and Hybrid (20 threads) - Kronos CPU

Furthermore, we made the graphs for all (3 Fully Connected Layers - FC) and
for the rest of them as their numeric difference from the first one lead us to make a
separate graph to understand their behavior in time changing the batch size of the
number of the threads.

Even though, the Fc1 has the slowest processing time it has the best time in the
FC3 for 256 batch size. The FC1 for a lot of data seems to handle better them
in the smallest batch size, here for 16 batch size. Also, the FC3 fits better in 256
batch size, while the FC2 has the best time performance in 64 batch size. The size
of input data should be considered, as well as, the average time of all the FC layers
to get the best time performance. This behavior should be investigated further in
the future.
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Figure 5.12: Matrix Multiplication with addition in FC1, FC2, FC3 layer for mul-
tiple batch-sizes - Kronos CPU (20 threads)

Figure 5.13: Matrix Multiplication with addition in FC2, FC3 layer for multiple
batch-sizes - Kronos CPU (20 threads)
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Figure 5.14: Matrix Multiplication with addition in FC1, FC2, FC3 layer for mul-
tiple number of threads - Kronos CPU (96 mini-batch size)

If we focous more in FC2 and FC3, we can clearer see the behaviour in time of
the increasing usage of the server’s threads:

Figure 5.15: Matrix Multiplication with addition in FC2, FC3 layer for multiple
number of threads - Kronos CPU (96 mini-batch size)
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The choice of 20 threads gave us the best time performance. Therefore, if we
look closely in FC2 and FC3 graph above, we can see that the FC layers need less
data and using more than the needed number of threads lead us to worse time
performance than we can get if we can not control them inside the Neural Network.

Time Performance of Matrix Multiplication with addition - FPGA

Using SDK tool and programming the FPGA via the SD card we can get some
time results. All the following results of the FPGA have I/O time. More specifically,
we refer as I/O the time of AXI DMA: RAM(/DDR) to FPGA and from FPGA
back to RAM(/DDR). The dimensions of the arrays that the kernel has and the
frameworks are not the same, so we reshape them to pass/get in/of the FPGA. We
can see that changing the dimensions of the arrays, it requires a great amount of
extra time, so we are planning to change 2D to 1D arrays in the future and it will
also improve the cache locality.

Matrix Multiplication FPGA FPGA
with addition call with ravel/unravel

1st FC layer at LeNet-5 Time (ms) Time (ms)
mini-batch size

128 images 11.587082 18.528843
96 images 8.700692 15.554193
64 images 5.809801 12.579602
32 images 2.914501 12.408542
16 images 1.466760 12.410402

Table 5.10: Time performance for single thread Trenz FPGA without and with
rave/unravel time

There is a huge different in time as we can observe. The ravel and unravel
functions add to our system a lot of milliseconds in time and slow down the time
performance of our system.

The following table includes the time differences in the Trenz’s ARM CPU work-
ing in bare-metal. We can compare the Naive algorithm, the cache blocking al-
gorithm and the Hybrid algorithm without the OpenMP support in the current
version.
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Matrix Multiplication Naive Cache-Blocking Hybrid
with addition Algorithm Algorithm (w.o. OMP)

3rd FC layer at LeNet-5 Time (ms) Time (ms) Time (ms)
mini-batch size

128 images 3.209881 4.077781 4.077631
96 images 3.210061 4.078081 4.077931
64 images 3.210121 4.078051 4.078321
32 images 3.210301 4.078321 4.078411
16 images 3.210601 4.078621 4.078501

Table 5.11: Time performance of matrix multiplication with addition in ARM CPU
- single thread - 3rd FC

Naive algorithm, on the table above, seems to have better performance in the
bare-metal, single thread ARM CPU, for small sizes of arrays.

Time Performance of Matrix Multiplication with addition - CPU -
FPGA

We sum up the aforementioned times of the FPGA and CPU in a Table to show
the differences in time:

Matrix Mult. Naive Cache-Blocking OpenMP Hybrid FPGA
with addition (w.o. OpenMP) Algorithm Algorithm Algorithm

1st FC layer Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)
mini-batch size

128 images 26.520995 16.063599 4.020237 2.246671 3.131191
96 images 20.234731 12.054891 2.808729 1.960531 2.370420
64 images 13.493708 8.065859 2.056212 1.644697 1.612620
32 images 6.942636 4.099342 1.005933 1.277977 0.893010
16 images 3.640126 2.034923 0.479782 1.064858 0.468540

Table 5.12: Execution time: Naive and Cache Blocking (1 thread), OpenMP and
OpenMP with Cache Blocking/ Hybrid (20 threads) - Kronos CPU - and bare-metal
single thread ARM-FPGA
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Matrix Mult. Naive Cache-Blocking OpenMP Hybrid
with addition (w.o. OpenMP) Algorithm Algorithm Algorithm

1st FC layer Speedup Speedup Speedup Speedup
mini-batch size

128 images 8.5 5.1 1.2 0.72
96 images 8.5 5.1 1.18 0.82
64 images 8.4 5 1.26 1.02
32 images 7.8 4.6 1.27 1.43
16 images 7.8 4.3 1.02 2.27

Table 5.13: Speed-up FPGA vs CPU: Naive and Cache Blocking (1 thread),
OpenMP and OpenMP with Cache Blocking/ Hybrid (20 threads) - Kronos CPU-
and bare-metal single thread ARM-FPGA

The framework in the bare-metal use not OpenMP, so we can compare the naive
and cache block algorithms with the FPGA implementations. We attempted to
compare it also with the ones with OpenMP, but it will be more accurate if we
were using OpenMP and its environmental variables. We can assume that FPGAs
have the best performance over Naive and Cache-blocking algorithm. Nevertheless,
Hybrid Algorithm is faster than FPGA when we use batch-sizes with over 64 images
with OpenMP using only one thread theoretically if we accept the aforementioned
assumption. FPGAs have better results for batch-sizes of less than 32 images,
OpenMP has an almost equal performance with FPGA for small batch sizes of less
than 32 image, while Hybrid algorithm has the best speedup for batches over 64.

Claiming that we can not have an accurate comparison, we conclude that FPGA
is 4.3x-5.1x times faster when we use cache blocking in CPU and 7.8x-8.5x times
faster than a naive matrix multiplication code.
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5.3.2 Transpose

Time Performance of Transpose - CPU

We tested some 4D and 2D versions of the Transpose functions, we chose the
best/fastest of them and we take some measurements as shown below:

Transpose without OpenMP Cache-Blocking Hybrid
4D OpenMP Algorithm Algorithm Algorithm

mini-batch size Time (ms) Time (ms) Time (ms) Time (ms)
96 images 0.341460 0.091139 0.557041 0.236604

Table 5.14: Transpose execution time of 4D: Naive and Cache Blocking (1 thread),
OpenMP (20 threads) - Kronos CPU

Transpose without OpenMP Cache-Blocking
2D OpenMP Algorithm Algorithm

mini-batch size Time (ms) Time (ms) Time (ms)
96 images FC bw 0.00033 0.010891 0.000735

96 images Conv bw 0.247517 0.006066 0.000424

Table 5.15: Transpose execution time of 2D array: Naive and Cache Blocking (1
thread), OpenMP (20 threads) - Kronos CPU

The transpose of a 2D array within Fully Connected Layer seems to have a 14.8x
difference using cache blocking in a small array, while the transpose in Convolutional
Layer has 14.3x, instead of using OpenMP. Without OpenMP for the small size of
arrays, the speedup is even better 330x than time with OpenMP and 22x times
faster than the cache blocking implementation. Therefore, OpenMP can handle bet-
ter larger arrays, as we notice in transpose of the 4D array in Table 5.15. OpenMP
is 2.5x times faster than Hybrid algorithm, 3.7x than without OpenMP implemen-
tation and 6.1x times faster than cache blocking which is expected, considering the
L-cache size. The aforementioned observations are illustrated below:
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The graphs below illustrate better the results that we get from all the cases
except the one without OpenMP that it was to slow to take into consideration.

Figure 5.16: Transpose in 4D and 2D arrays for multiple batch-sizes- Kronos CPU
(20 threads)

The graph above shows us that small batch sizes lead to faster transpose. Most
of the times we have more than x2 time to perform a transpose in larger batches.
Therefore, we can notice that for batch-size 32 the transpose of a large array with
OMP is faster than that with 16 batch-size. Also, the transpose with hybrid algo-
rithm is faster for 128 than 96 batch-size and if we multiply (128/16 = 8) 8 times x
0.125349 msec(16 batch size) ~= 1 that is slower than 0.684133 msec of 128 batch-
size’s measurement. The same happens with the other’s if we compare them with
x-times of the rest batch-sizes.

At the following graph, we notice that for large arrays with OpenMP(yellow bars)
we get faster results at transpose, while small arrays with OpenMP(orange bars)
are faster for just one thread (max GHz). We also can claim that 8 threads (all for
96 batch size) have the best performance in time for the hybrid algorithm in 4D
arrays, as the handle better the cache of that amount of data (blue and gray bars).
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Figure 5.17: Transpose in 4D and 2D for multiple number of threads - Kronos CPU
(96 mini-batch size)

A closer look of the chart below, it shows us a zoomed and clearer view of the
transpose time from the chart above without the transpose in the first Convolutional
layer between 2D arrays.
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Figure 5.18: A closer look of Transpose in 4D and 2D for multiple number of threads
- Kronos CPU (96 mini-batch size)

The following graph shows all the cases that transpose of 2D and 4D arrays
support, using 20 threads and 96 mini-batch size images. We can assume that
in this case, naive transpose is the best choice for large/medium 2D arrays, while
simple OpenMP implementation can handle better 4D arrays.

Figure 5.19: Transpose 4D and 2D: Naive and Cache Blocking (1 thread), OpenMP
and OpenMP with Cache Blocking/Hybrid (20 threads) for large arrays - Kronos
CPU (96 mini-batch size)
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Figure 5.20: A closer look to Transpose 2D: Naive and Cache Blocking (1 thread),
OpenMP(20 threads) - Kronos CPU (96 mini-batch size)

We can claim that from the graph above we can observe that as small as the 2D
array is the Naive transpose is the best solution while the size of 2D arrays "grows"
a bit the cache-blocking seems to be the best solution.

We can also notice here that the transpose of an array should be treated consid-
ering and applying the best method for its size to get the best time performance.

96



5.3.3 Copy

Time Performance of Copy - CPU

We tested some 4D and 2D versions of the Copy functions as we show below:

Copy without OpenMP Cache-Blocking
4D OpenMP Algorithm Algorithm

mini-batch size Time (ms) Time (ms) Time (ms)
96 images 0.043593 0.027361 0.066874

Table 5.16: Copy 4D execution time: Naive and Cache Blocking (1 thread), OpenMP
and OpenMP with Cache Blocking/ Hybrid (20 threads) implementations - Kronos
CPU

Copy without OpenMP Cache-Blocking
2D OpenMP Algorithm Algorithm

mini-batch size Time (ms) Time (ms) Time (ms)
96 images FC1 0.043409 0.015513 0.231779
96 images FC3 0.003769 0.006633 0.005159

Table 5.17: Copy 2D execution time: Naive and Cache Blocking (1 thread), OpenMP
and OpenMP with Cache Blocking/ Hybrid (20 threads) implementations - Kronos
CPU

Copying a 4D array is 2.4x faster using OpenMP due to size of the data, while an
FC1 2D array is almost 15x faster than cache blocking. Therefore, copying an FC3
2D array that is way too small than an FC1 array is preferable to use cache blocking
which is 1.2x faster than OpenMP. Even better, without OpenMP in FC3, the time
performance is 1.3x better than the OpenMP and 1.75x than cache blocking.
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We illustrate in the following graphs the aforementioned results:

Figure 5.21: Copy 4D arrays for multiple batch-sizes - Kronos CPU (20 threads)

Looking at the graph below we can claim that the time performance and the
optimal choice for the number of threads that we can use are depending on the size
of the array that we want to copy.

Figure 5.22: Copy 4D and 2D arrays execution time multiple number of threads -
Kronos CPU (96 mini-batch size)
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We can observe the behavior of 2D and 4D arrays at the following illustration
(96 mini-batch size, 16 Threads). It is obvious that copying an array with OpenMP
has the best time performance in both cases (2D and 4D).

Figure 5.23: Copy 4D and 2D array’s execution time: Naive and Cache Blocking (1
thread), OpenMP(20 threads) implementations for large arrays - Kronos CPU

Smaller 2D arrays seem to be handled better from naive algorithm while 4D arrays
continue to have better performance using the OpenMP algorithm (96 mini-batch
size, 16 Threads).
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Figure 5.24: A closer look to Copy 2D and 4D array’s execution time: Naive and
Cache Blocking (1 thread), OpenMP(20 threads) implementations for small arrays
- Kronos CPU

To sum up, it is important to determine the size of an array and choose the
solution with the best performance. Multi-threading in small arrays should not be
used, because we do not get the maximum performance of the process.

5.4 Energy Management and Efficiency

According to the theory [85] we can take some theoretical measurements of the
Theoretical Peak Floating-Point of the Server’s CPU. We will use:

Clock Frequency [ TDP |AVX ] ∗ Cores ∗ 16DP FLOPs per cycle (5.1)

to find the Thermal Design Power (TDP) frequency of the CPU:

2.2(GHz) ∗ 10(Cores) ∗ 16(FLOPs) = 352 GFLOPs per socket

and 704 GFLOPs per dual socket system

AVX instructions can be executed using more power, but the processor will reduce
its frequency about 300-500MHz, in our server we observe a 400MHz (2.2 GHz to
1.8 GHz) decrease from the base frequency.
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1.8(GHz) ∗ 10(Cores) ∗ 16(FLOPs) = 288 GFLOPs per socket

and 576 GFLOPs per dual socket system

CPU (Server)

Avg. Time Time (ms) insn per cycle GHz
Naive 1184224.697874 2.48 2.998
1 Thread 1245757.804671 2.38 3.014
GCC options 256071.725750 0.69 2.970
GCC options, 1 Thread 262707.041271 0.75 2.990
GCC options, 20 Threads 37624.735573 0.48 2.381

Table 5.18: Framework’s time in ms, CPU’s frequency and instructions per cycle -
kronos CPU

Platform CPU (Server)

Implementations Speedup
Naive 31.5

1 Thread 33.1
GCC options 6.8

GCC options, 1 Thread 6.98

Table 5.19: Whole Kronos CPU framework’s speedup comparing with the best time
performance of 20 threads with GCC options
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Platform CPU (Server) ARM-FPGA (Trenz)

Avg. Epoch Time ms ms
GCC options 256071.725750 4595801.757812

Speedup 17.95 1

Avg. Frequency GHz GHz
GCC options 2.97 1.2 (ARM)

0.3 (FPGA)

Avg. FLOPS GFLOPS GFLOPS
GCC options (TDP) 704 (P.S.) 4.8

(AVX) 576 (P.L.) 250-1k

Energy W W
Average 145 20.35(19.5-21.1)

Energy J J
Average 0.037 0.094

Efficiency 2.55 1

Avg. FLOPS/W GFLOPS/W GFLOPS/W
GCC options 4.1 12.5–50

Table 5.20: Time, GFLOPs, frequency and speedup for 1 epoch in Server and Trenz
[85, 86, 87, 88]

The Table 5.13 have the results using the Amdahl’s law to calculate the Speedup[89].

Speedup =
timewithout Enhancement
timewith Enhancement

The Speedup equation[90] will help us to determine if using an FPGA will give us
fast/faster results consuming less energy. Multiplying the Energy of each Platform
and Algorithm with Matrix Multiplication with Addition time (W*ms), we get the
following results. It is a confirmation that an FPGA is the most efficient choice for
equal or less than 96 mini-batch of images:
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Matrix Mult. Naive Cache-Blocking OpenMP Hybrid FPGA
with addition Algorithm Algorithm Algorithm

1st FC layer J J J J J
mini-batch size

128 images 3845.4 2328.7 582.9 326.25 531.5
96 images 2933.4 1748.7 407.45 284.2 164.2
64 images 1957.5 1170.2 304.5 237.8 118.2
32 images 1006.3 594.5 146.5 184.2 59.2
16 images 443.7 294.4 69.6 153.7 30.25

Table 5.21: Energy Consumption comparison between bare-metal ARM-FPGA and
CPU - LeNet-5

We can notice that the FPGA implementation has the best power performance for
batch sizes less than 96. For larger batch sizes, it is preferred to use the CPU hybrid
algorithm as our resources in the current board and design are limited. Therefore
all other implementations remain higher than the FPGA one. Furthermore, we can
observe that for more than 32 images in a batch size Hybrid algorithm consumes less
power than the others in the CPU, but for less than 32 we should prefer the simple
OpenMP one than the other CPU implementations for faster and more energy-
efficient results.

Assuming that S stands for the ratio of the time in one processor T1 divided by
the time in N processors TN and f is the fraction of serial code in our system [91]:

S =
T1

TN
<

T1

(f + 1− f
N )T1

<
1

f

The last part of the equation uses unlimited resources-threads- that is an ideal,
often unrealistic case. Using it in our system where N: 20 threads, T1, T20 we find
the f and afterwards the theoretical maximum speedup:

S =
T1

T20
=

262707.041271

37624.735573
= 6.982

The serial code in our system is equal to:

1

(f + 1− f
20 )

= 6.982

f = 0.0932
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Hence, the best theoretical speedup, if we claim that we have infinitive threads and
the fraction of the non-parellelized code is 9.32% of total computation time is:

S = 6.982 <
1

0.0981
= 10.19

The parallel efficiency is for the best theoretical speedup

E =
S

N
=

6.982

20
= 0.35

which means that each of the cores is idle about 65% of the time and we can further
improve our code in the future.

In case of fully parallelized code or nearly 100%, the program could have parallel
efficiency 1(max).

Amdahl’s Law is a simple method to find the theoretical upper bound that is not
ordinary to surpassed or achieved in an application with serial code/tasks. However,
it is criticized because it ignores a lot of real-world overheads. To be precise, while
we were testing our system, we faced QPI bus overhead issues, using more than 20
cores, that Amdahl’s Law fails to detect as it does to many other dependencies. The
minimum time performance achieved at 20 threads instead of 40 that our system
can theoretically use. Therefore, the percentage of overall serial execution time
will remain the same which help us to make an estimated approach of the upper
bound[92].
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Chapter 6

Conclusion and Future Work

Conclusion
In this thesis, I have implemented a CNN framework almost from scratch in

C++ (v. C++17) that supports grey-scale images from MNIST dataset and also I
adjusted an IP core that performs fast matrix multiplication and addition (of the
bias array), using AXI streams. The project is implemented in a Red Hat server
and also in the Vivado SDK Suite with the appropriate changes and needs of the
FPGA platform. The CNN framework performs fast and high-accurate Stochas-
tic Gradient Descent to train and test inference, fully supported by CPUs. The
CNN framework can train a whole MNIST dataset with the LeNet-5 architecture in
28 seconds (20-core CPU) and separately accelerate the matrix multiplication and
addition process on an FPGA ~4.3x-5.1x times faster than a CPU implementation
using cache blocking and an implementation without OpenMP ~7.5x-8.5x, using one
thread, at this moment, while the energy (Watt*hour) for 1 thread is 6.9x less than
a server with CPU. Nevertheless, an epoch last ~256 seconds on a Red Hat server
and ~4596 seconds on a Trenz Platform without operating system, while we just call
it only twice per mini-batch (Fully-Connected Layer 1 and 2) in forwarding function
of the FPGA and it can be even better if we apply it to the third one (incompatible
output sizes that should be filled at input and cutted at the output, different di-
mension sizes of arrays that should be reshaped) accelerate all the computation slow
and complex functions using FPGA(s). As well as, Fully Connected layer contains 3
matrix multiplications, however, we currently apply the acceleration to one of them.

Additionally, we should import and take measurements on Trenz using OpenMP
and its environment variables to compare them, which is in our future plans. Fur-
thermore, we explore how different types of algorithms/implementations in matrix
multiplication, transpose and copy are depended on the cache size, the thread num-
ber using OpenMP and the mini-batch size and that we could take an even better
performance in a future version if we consider and control them. CNN can support
many different architectures as we have implemented many types of layers. More-
over, it is as a user-friendly framework that is similar to the Python code of CS231
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Stanford Course [2] and Deepnet [58] that we have been guided that are also easily
understood.

The current platform that we tested our system was a Trenz TE0808-04 platform
with 2GB DDR. Therefore, neural networks require a lot of memory, hence it would
be recommended to use a corresponded platform for large architectures with multiple
layers and large datasets that have enough resources to handle them.

Future Work
Many areas need improvement in our implementation. We are planning to add

features and functionalities. The areas that we will focus on are the system as
Neural Network, the improvement of memory usage and the implementation for
specific platforms.

The Neural Network system can change in many areas. More specifically, we are
planning to implement more layers and support more architectures and sequences
of layers as average pooling, binary input layer, etc. As well as, the system should
support more choices of loss functions and weight updates. As a further matter, we
plan to support many more datasets, especially RGB ones like CIFAR-10, CIFAR-
100, that are often used to train networks. The Adam weight update is under
construction and there are many more that are planned to implement. One of our
plans is to support also, RNN architectures on the same generic Neural Network
system.

We are aware that our system should be improved in many areas. First of all,
we are dealing with false sharing while using more cores do not improve our results
and while we do not share data of different threads, they are sharing a cache line,
which is faulty. Hence, we can remove false sharing by using padding and spacing
techniques. There are hotspots and parts of code that should be improved and we
can implement code that takes into consideration the size of the arrays to perform the
fastest matrix multiplication, transpose or copy technique, number of threads, etc.
to get faster results using only the needed resources for the task. Also, we can not get
faster/better results, increasing the number of available cores, because of the latency
of the QPI bus, therefore we can investigate it further in the future. Moreover, we
should improve the OpenMP code and handle special cases, while performing cache
blocking and scheduling. Another change we will make is the dimensions of current
arrays that are multidimensional, hence we do not take advantage of the locality as
we should. Therefore, there are parts of code that can be changed or improved as
they are not implemented to run in parallel, due to false results that we got. Apart
from the inner changes, we should explore more the GCC optimization flags and
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OpenMP environment options that could help us to get faster and yet correct results.
Even though we implemented a bare-metal CNN application, we could exploit the
multi-core ARM with OpenMP features, etc. in a Petalinux environment with the
necessary libraries that need our framework or to make a bare-metal application
that can handle the memory, etc. to control/manage the framework’s resources and
operations.

Although software development is a significant part of our thesis, there is also
the hardware code evaluation. There is an implementation in HLS of Convolutional
Layer that should be further developed in Vivado Design and SDK tools and then
attached to our system. Furthermore, the weight update of the Fully-Connected
layer should be also implemented apart from the constructed matrix multiplication
accelerated IP. Besides that, it would be interesting to support GPUs to compare
our results of the same system.
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Appendix A

More Results
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A.1 CPU time for each layer

We get the following results using OpenMP and Cache Blocking (Hybrid version).
We tested our code in multiple threads for a LeNet-5 with Tanh activation function
for multiple threads and we got the following results:

Threads 1T 2T 4T 8T
Layers (ms) (ms) (ms) (ms)

Forward
Convolutional 17171.771 9214.292 49.84946 34.64402

Tanh 8719.567 4243.058 24.83642 13.3892
Maxpool 499.419 272.751 1.533 1.05299

Tanh 2110.084 1052.818 6.11808 3.56738
Convolutional 39694.767 21274.692 122.14591 73.59321

Tanh 6716.072 3455.175 20.10052 10.42761
Maxpool 859.805 460.093 2.94947 1.74959

Tanh 1557.677 781.467 4.8124 2.89336
Flatten 42.898 25.429 0.14971 0.13999

Fully Connected 20857.269 10649.903 60.90863 35.32145
Tanh_2d 293.061 157.376 1.10376 0.58704

Fully Connected 517.68 396.373 3.30439 3.68241
Tanh_2d 150.862 79.784 0.47319 0.36399

Fully Connected 33.676 44.245 0.46707 0.59503
Backward

Fully Connected 97.938 542.01 6.31538 9.62487
Tanh_2d 4.139 6.047 0.05359 0.0642

Fully Connected 1012.338 1082.829 10.99837 17.68701
Tanh_2d 8.218 8.743 0.07223 0.09045

Fully Connected 7722.833 4139.153 27.64975 21.06681
Flatten 43.326 32.276 0.25896 0.27962
Tanh 78.074 49.004 0.27337 0.24129

Maxpool 258.862 161.709 1.19119 0.89504
Tanh 276.802 161.353 0.96852 0.98859

Convolutional 148381.883 81669.994 441.80117 253.15703
Tanh 118.933 85.799 0.61681 0.62694

Maxpool 431.029 278.007 1.96051 1.90771
Tanh 488.244 305.03 2.48787 1.72461

Convolutional 52262.165 38250.871 231.65433 148.87413

Table A.1: Average time for every layer of LeNet-5 (Threads : 1, 2, 4, 8)

110



Threads 16T 20T 32T 40T
Layers (ms) (ms) (ms) (ms)

Forward
Convolutional 34.63984 30.96458 32.068 37.00192

Tanh 12.32866 10.63478 9.59495 5.41782
Maxpool 1.28794 0.9517 0.99803 1.47519

Tanh 3.17273 2.88898 2.65597 1.42328
Convolutional 75.68199 63.29355 65.09242 70.28411

Tanh 10.88638 8.34537 7.29103 4.31637
Maxpool 1.91749 1.40178 1.0944 1.12461

Tanh 2.59534 1.99392 1.71611 1.32964
Flatten 0.14797 0.13225 0.16168 0.5035

Fully Connected 36.14988 28.5855 22.25263 23.02115
Tanh_2d 0.61747 0.50133 0.37796 0.5314

Fully Connected 3.45016 3.55332 5.06118 8.86438
Tanh_2d 0.37442 0.30313 0.2292 0.43619

Fully Connected 0.56321 0.67584 1.04107 1.84588
Backward

Fully Connected 10.07898 9.71828 16.15353 26.20209
Tanh_2d 0.06429 0.06567 0.10866 0.49771

Fully Connected 15.01188 18.37143 20.34919 31.83597
Tanh_2d 0.17913 0.08321 0.13159 0.49868

Fully Connected 21.44933 19.77662 24.6245 33.26432
Flatten 0.26363 0.27801 0.30391 0.52262
Tanh 0.26383 0.2039 0.2168 0.3416

Maxpool 0.83909 0.94946 1.04602 0.90236
Tanh 0.86272 1.06501 1.21812 0.84138

Convolutional 256.74239 209.57183 205.43463 185.71362
Tanh 0.73282 0.61915 0.61738 1.52037

Maxpool 1.97092 1.89875 1.73215 1.9196
Tanh 1.74692 2.09267 1.63038 2.41526

Convolutional 166.50681 134.9584 116.82502 108.6352

Table A.2: Average time for every layer of LeNet-5 (Threads : 16, 20, 32, 40)
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A.2 CPU time using 20 threads - Relu and Tanh activation functions

The following results used OpenMP and Cache Blocking (Hybrid version) in 20
threads. We can observe the differences in time for each layer and how the activation
layers affect the next layers in time (and their calculations):

20 Threads 20 Threads
Layers (ms) (ms)

Forward
Convolutional 2.84797 Convolutional 2.731528

Relu 0.148618 Tanh 0.506758
Maxpool 0.05625 Maxpool 0.092748

Relu 0.040487 Tanh 0.184584
Convolutional 6.294795 Convolutional 6.156406

Relu 0.098858 Tanh 0.444596
Maxpool 0.093008 Maxpool 0.092877

Relu 0.032665 Tanh 0.152522
Flatten 0.014641 Flatten 0.013395

Fullyconnected 2.11734 Fullyconnected 2.072485
Relu_2d 0.016058 Tanh_2d 0.033048

Fullyconnected 0.504706 Fullyconnected 0.455869
Relu_2d 0.013699 Tanh_2d 0.019871

Fullyconnected 0.09727 Fullyconnected 0.090727
Backward

Fullyconnected 1.357518 Fullyconnected 1.405481
Relu_2d 0.007714 Tanh_2d 0.007774

Fullyconnected 1.513596 Fullyconnected 1.479611
Relu_2d 0.009017 Tanh_2d 0.008989

Fullyconnected 1.933841 Fullyconnected 1.917679
Flatten 0.019909 Flatten 0.036375

Relu 0.023098 Tanh 0.016279
Maxpool 0.114904 Maxpool 0.104509

Relu 0.064337 Tanh 0.056975
Convolutional 15.251531 Convolutional 15.302945

Relu 0.067735 Tanh 0.027215
Maxpool 0.158054 Maxpool 0.158729

Relu 0.180032 Tanh 0.268937
Convolutional 10.903264 Convolutional 9.692376

Table A.3: Average time for every layer of LeNet-5 with ReLU and Tanh activation
functions
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A.3 Memory results from Perf Tool

We could extract some cache results that will be used to further improvements
in our future work.

Threads 1T 2T

task-clock (msec) CPUs utilized 261370.5899 0.998 294294.0939 1.996
context-switches K/sec 53,585 0.205 54,333 0.185
cpu-migrations K/sec 10 0 21 0
page-faults K/sec 19,394 0.074 18,716 0.064
cycles GHz 779,972,883,994 2.984 879,324,468,228 2.988
instructions insn per cycle 722,398,991,807 0.93 735,888,812,969 0.84
branches M/sec 70,487,553,149 269.684 75,197,528,041 255.518
branch-misses of all branches 1,072,696,241 1.52% 1,123,325,394 1.49%
L1-dcache-loads M/sec 289,828,753,024 108.881 289,474,958,306 983.625
L1-dcache-load-misses of all L1-dcache hits 75,927,384,684 26.20% 75,671,560,772 26.14%
LLC-loads M/sec 55,157,994,205 211.034 54,277,091,399 184.431
LLC-load-misses of all LL-cache hits 231,442,636 0.84% 487,959,644 1.80%
L1-icache-load-misses 76,481,029 73,895,089
dTLB-loads M/sec 286,339,397,481 1095.53 291,614,746,482 990.896
dTLB-load-misses of all dTLB cache hits 672,097 0.00% 901,913 0.00%
iTLB-loads M/sec 2,093,659 0.008 7,820,664 0.027
iTLB-load-misses of all iTLB cache hits 1,465,785 70.01% 2,886,647 36.91%

Table A.4: LeNet-5 Architecture Summary Table from Perf tool (1T, 2T)

Threads 4T 8T

task-clock (msec) CPUs utilized 331530.8038 3.992 421872.6854 7.984
context-switches K/sec 56,960 0.172 61,729 0.146
cpu-migrations K/sec 25 0 44 0
page-faults K/sec 11,484 0.035 7,931 0.019
cycles GHz 965,693,227,275 2.913 1,118,564,101,390 2.651
instructions insn per cycle 761,885,709,091 0.79 800,405,627,118 0.72
branches M/sec 80,847,999,463 243.863 93,356,138,528 221.29
branch-misses of all branches 1,012,090,300 1.25% 1,122,147,082 1.20%
L1-dcache-loads M/sec 293,742,895,365 886.02 301,143,470,314 713.825
L1-dcache-load-misses of all L1-dcache hits 75,879,919,398 25.83% 75,947,068,614 25.22%
LLC-loads M/sec 53,972,768,746 162.799 53,370,247,036 126.508
LLC-load-misses of all LL-cache hits 496,463,419 1.84% 508,204,767 1.90%
L1-icache-load-misses 91,501,958 103,295,020
dTLB-loads M/sec 293,698,120,001 885.885 300,582,297,213 712.495
dTLB-load-misses of all dTLB cache hits 938,981 0.00% 995,863 0.00%
iTLB-loads M/sec 6,947,945 0.021 8,448,452 0.02
iTLB-load-misses of all iTLB cache hits 1,337,424 19.25% 1,507,614 17.84%

Table A.5: LeNet-5 Architecture Summary Table from Perf tool (4T, 8T)
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Threads 16T 20T

task-clock (msec) CPUs utilized 639032.8252 15.977 765152.7211 19.971
context-switches K/sec 65,686 0.103 65,058 0.085
cpu-migrations K/sec 57 0 49 0
page-faults K/sec 7,456 0.012 8,724 0.011
cycles GHz 1,521,813,247,524 2.381 1,821,955,797,444 2.381
instructions insn per cycle 915,177,025,022 0.6 974,813,552,887 0.54
branches M/sec 123,941,367,396 193.951 142,015,100,922 185.604
branch-misses of all branches 1,112,521,138 0.90% 1,238,352,413 0.87%
L1-dcache-loads M/sec 317,394,760,727 496.68 327,046,660,078 427.427
L1-dcache-load-misses of all L1-dcache hits 75,452,799,953 23.77% 75,629,372,142 23.12%
LLC-loads M/sec 53,849,702,303 84.268 53,811,038,157 70.327
LLC-load-misses of all LL-cache hits 523,868,627 1.95% 542,777,368 2.02%
L1-icache-load-misses 154,487,328 185,555,541
dTLB-loads M/sec 316,849,450,495 495.827 327,403,073,475 427.892
dTLB-load-misses of all dTLB cache hits 1,213,087 0.00% 1,612,050 0.00%
iTLB-loads M/sec 2,757,485 0.004 3,235,026 0.004
iTLB-load-misses of all iTLB cache hits 23,701,402 859.53% 3,399,211 105.08%

Table A.6: LeNet-5 Architecture Summary Table from Perf tool (16T, 20T)

Threads 32T 40T

task-clock (msec) CPUs utilized 1421466.091 31.949 1894648.708 39.895
context-switches K/sec 82,988 0.058 112,052 0.059
cpu-migrations K/sec 1,038 0.001 440 0
page-faults K/sec 10,189 0.007 11,086 0.006
cycles GHz 3,378,137,285,778 2.377 4,503,765,226,912 2.377
instructions insn per cycle 1,301,284,247,229 0.39 1,551,440,241,224 0.34
branches M/sec 233,572,238,177 164.318 303,328,909,101 160.098
branch-misses of all branches 1,313,783,749 0.56% 1,330,390,385 0.44%
L1-dcache-loads M/sec 376,927,297,447 265.168 415,918,766,238 219.523
L1-dcache-load-misses of all L1-dcache hits 68,067,871,885 18.06% 65,905,756,224 15.85%
LLC-loads M/sec 46,237,106,374 32.528 43,170,305,685 22.785
LLC-load-misses of all LL-cache hits 705,001,052 3.05% 735,589,784 3.41%
L1-icache-load-misses 298,382,900 374,326,771
dTLB-loads M/sec 376,734,249,727 265.032 416,272,947,627 219.71
dTLB-load-misses of all dTLB cache hits 4,593,658 0.00% 4,483,663 0.00%
iTLB-loads M/sec 5,031,204 0.004 2,170,287 0.001
iTLB-load-misses of all iTLB cache hits 5,559,716 110.50% 6,219,830 286.59%

Table A.7: LeNet-5 Architecture Summary Table from Perf tool (32T, 40T)
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