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Abstract

This thesis focuses on the statistical analysis of well log data from two hydrocarbon
reservoirs located in Labrador Island, Western Newfoundland (Canada). The data is
obtained from two onshore wells (Finnegan and Seamus). We focus on the analysis
of four logs (spontaneous potential, Gamma radiation and two induction logs) from six
different formations. The thesis has three main objectives: (i) to estimate the probability
distributions and spatial correlations in data obtained from the same well, (ii) to evaluate
cross-correlations between logs across the two different wells, and (iii) to explore methods

for the reconstruction of missing well log data.

With respect to the first objective, the exploratory statistical analysis indicates that
the majority of the respective properties do not follow the Gaussian distribution. How-
ever, after removing an empirically determined trend function, the residuals are closer to
the Gaussian distribution. The spontaneous potential and Gamma radiation indicators
can be described by Cauchy and Gumbel distributions, while the induction indicators
by means of the Gamma and Weibull distributions. Variogram analysis suggests that
spontaneous potential and Gamma Radiation conform to the same type of theoretical

variogram model with similar sill and range values.

In reference to the second objective, the statistical analysis indicates weak cross cor-
relations between log data measured at the two different wells. The Gamma radiation
logs show both positive and negative cross correlations which are overall higher (in mag-

nitude) than for the respective correlations for the other three logs.

Regarding the third objective, the comparison of the performance of different im-
putation, interpolation and time series algorithms for gap filling indicates that linear
interpolation, linear weighted moving average and less often the Kalman-ARIMA meth-

ods are the top-performing algorithms for well log gap filling.



HeptAndn

H Tewotatiotn] mopéyel epyalelor oTATIOTIXNG AVIAUCTC Yial TNV UEAETN YOWEXWY 1|
YWEOYPOVIXWY QuUOIXOY PETOBANTOY. H mpocéyyion wag ywpoyeovixAc YEWOTATIOTIXAC
AVIAUGTC OE BEGOUEVA LUOPOYOVOVIRAXMY Ta OToLa Yapax TNeilovTal amd avoUoLOYEVELX AmOTEAEL
avTixelyevo €peuvag. 261600, YEYOdOL AVAAUCTC YPOVOCELHOY oL TEPLAoBAvouY TNy
enelepyacio LOVODIAOTATOV YPOVIXWY BEGOUEVWLY, UTOPOUY XEANGCTA Vo EQURUOCTOUV GE
TEOBAAUATA TOU APOEOUY OVODLACTATA Y WEIXE BEBOUEVA, OTKC YIo TUPADELY A OEOOUEVAL
otaypaplwy amd yewteroel. Téco 1 emotAun tng N'ewotatiotnrc 600 xou 1 avdhuon
Xpovooelpmy eivon avTIXeElUEVa UE EPELYNTIXG EVOLUPEROY XAl EQPUPUOYEC OE TOAN ETG TN
HoVIXd TEdla, OTWS OTOV TOUEN TNG UETOAAELTIXNG, TNG UNYOVIXAC TeTpeAaiov, oe Touelc

TEPBAUAAOVTIXOY ETUCTNUGY, 0T TNAETLOXOTNOT XU TNV EMLCTAHUY TWV VALXGY.

Yxomog ng epyactiog elvol 1) EQUPUOYY| YEWOTATIOTIXGY UEVOOWY X LOVTEAWY AVIAUGTG
YEOVOGELP®Y UE GTOYO TNV AVIAUCT TV YWEIXWY CGUCYETICEWY OLoYpaPLdY YEMTENONGC,
omwe eniong xaw v TEORAedn (amoxatdotoon) xevav dedopévev (missing data). To
%EVE Bedouévewy Tpoépyovtal elte and aotoylec eZomhiouol, elte amd BucAelTovpyio TwY
aoUnTipwy, R axdun oand opdlpata oto cuoThuaTa "anocTohc/avdxtnoncg” Sedouévnv.
To mpofAfuato autd BucYERUIVOLY TNV SLUBIXACTN EXTIUNOTE TWV YEWAOYIXWY CY NUATIOUOY
am6 g dwypapieg. H mapoloa epyacio ypdptnxe ue tnv npoontixy Tpocéyyiong Ty dvo
TAEATAV® VePATWY, ONAADY| TNG AVAAUGTC TWYV YWEIXWOY CUCYETIGEWY XL TN ATOXATAGTAUON

C XEVWV GEOOUEVWV.

H noapodoa epyacia ETMXEVTIPOVETAL GTNY AVIAUGT) SLIECULOY BESOUEVWY amd BLorypapieg
TOIELTARKY LBpOYOVavipdxwy Tou Beloxovtal otny vico Labrador oto Autixé Newfound-
land (Kovaddc). H perétn Baoiletan otny avdiuon twv axdhovdwy tTecodpny eTAEYUEVGLY
OLLYPUUPLV:  (PUOLXO BUVOUIXO, BEXTNG OXTVOBOAG YAUMO XU NAEXTEOMAY VITIXNC ETOLY-
oYM and €2l oynuatiogols tou Beloxovto oe B0 emdxTieg YewTeNoelg, ovopatt Finnegan
xar Seamus. Ot 800 yewtproelc Bploxovtaw oe andotaon 14.5 yAu petald toug. Avohu-
TIXOTERQ, Ol UTO UEAETY oynuaTiopol Tne yewtenone Finnegan eivon ou axdrovdor: Goose
(American) Tickle pe 1422 dedopéva, Table Point ye 725 8edopéva, Aguathuna ye 250
oedouéva, Catoche pe 624 dedouéva, Boat Harbour ye 599 dedopéva, xou Watts Bight
ue 349 Sedopéva. AvtioTorya, oL UG UEAETN oynuaTiopol TN YEOTENoNG Seamus €ivol ot

oaxohovdor: Goose (American) Tickle pe 1700 dedoyéva, Table Point pe 871 dedopéva,



Aguathuna pe 347 dedouéva, Catoche pe 721 dedouéva, Boat Harbour pe 819 dedouéva,
xan Watts Bight pe 406 6edopéva.

H ouyxexpévn perétn eotdler oe tpla xpor onueia eviagpépovtog: (i) extiunon
YWEXOY cuoyetioewy and daypapiee mou howPdvoviar and v Bl yewdtenon, (ii) ex-
Tiunon TN €TEpOcUCYETIONG HETOEY TV YETPHOEWY TWV (BLV PUOXGOY WLOTATWY antd dlo

SropopeTinéc Yewtproels, (iil) diepeltivnon LeddBwy YLol TNV avaxataoxeL| XEVEHY SESOUEVMV.

INo tov mp®Tto 0TdY0, TEOGOLOPICUUE TOUC BLEPOPOUS YEWAOYIXOUS CYNUATIONOUS OTA
onueio TV YEWTEHoEWY. Egapudoaue diepeuvntiny| oTATIOTIXY aVIAUGT] BEBOUEVLV Yol VoL
TEOGBLOELOTOVY OL XATaVOUES TdavoTnToC xdUe Blorypoplag avd oy NUATIONO, OTKS ENioNG

2Ol YLOL VO TPOGOLOPLGTOLY Tol BEATIOTA HOVTEAN BApLOYRUUUATODY ovd SLorypapla.

INo tov deltepo otoyY0 Yenoylono|oaue YeVOBOUS TUPEUBOANC UE OXOTO VoL BNULOURY Y-
coupe 6Vo euduypouplouéva oOVola Bedouévwy e xowvo Brua derypotorndloc. Auth n
otaduaota xplinxe amapaltnTn SLOTL BlaopeTixol oynuatiool Beloxovion e SLopopeTXd
BN xoatd uixog g xdde yedtenong, eved to Briua derypatondlog Sopépel uetald Tov
yvewterioewy. Ev cuveyela cuyxplvoue Ta amoTEAECUATA TV TWHOV TOV 0Ld(popwy UeVOdwY
TAPEUPOATC TTOL EQUEUOTTNXAY VLol TOV UTOAOYLOUO TNE ETEPOCUCYETIONG TOV YEWTPHOEWY.
Ot pédodot autol TepLhapBAvouy TNV YeaUUXT TUeeUB0AT, TNV xUBT TUEEUBOAY|, TNV TapEU-
Bolf ognvoedmy cuvapThcewy (splines) 6nwe emiong xou TNV TEYVIXH TOU XOVTWVOTEPOU

yeltova.

O tpltog otd)0¢ amooxonel GTNY Slepelvnon TOV EPUPUOY®Y TNS AVAAUCTC YPOVOCELRMY
oY extiunon xevayv dedopévov Saypapudyv. To yovtéla avtxatdotaone (imputation) xat
ToEEUSOATC YeNoWoToloLYToL GLYHDWS YLl VoL TANPKOCOUY XEVA DEBOUEVLY GE Blarypapleg
yvewTteroewy. Ta Tov uTohOYIoNO NG AmMddocNE TWV BLdPopwY HEVOBMY, Ol XUTAYEYEO-
wéveg drorypagpies dlaywpilovton oe 800 Bloxpttd ohvola: To chvoho exnaidevons (oL Tuég
TWV BLoypopLdY 6€ oUTO TO GUVOAO VEWEOUVTOL YVWOTES) XU TO GUVOAO eEAéyyou (6mou
oL Téc T darypaplay Yewpoiviar dyvnotes). H oUUmAAemon TV xevoy €YLve Ye TV
xeNon Twv PEVOBKY avTXATdo TaoTG, TapeUBorng xat ypovooepny. Ot uédodol nepthau3d-
vouv v Kalman Arima, tnv puédodo puéco 6pou, v yeouuxr TopeUBols xon TNy TopeU-
Bolh oonvoelddv cuvapthoewy (Spline) énwe enione xou TOV amhdc XVOVUEVO UEGO GO,
xan tov Luytopévo xwvnto péoo 6po. H axpiBela tne mpdPredng Baolotnxe otnyv andotaon
AVAPESH OTOL AVVEVTIXG BEBOUEVA XU OTIC EXTWNACELS PECW TWV PEYODWY AVTIXATAC TUOTG,

TapeUPORAC 1) XPOVOCELRMY.



LYETIXA UE TOV TPWTO GTOYO NG EpYACIOC, 1) SLEEUVNTIXY avdAUoT) €BelEe OTL 1) TAELO-
npla TwV PETEOVUEVKY WI0THTWY dev axoloudel Ty I'raovcoiavr xatavour| mdavotntog.
Ye auTEC TIC TEPITTMOELS, XUTOTLY APUPECC UG CUVARTNONG TAONS To CTATIOTIXG UT-
ohowma Beloxovtar mo xovid oty I'voovolovy| xatavour,. To anotedéopata tng perétng
amodeYUOUY OTL oL BlayEAplEC PUALXOU BuVUULIXOU Xt Bdtaéng oxTvoBoAlag Yoo TEpL-
YedpovTon xaAUTERY amd xatavopés miavotntac mou opllovion 6e Gho To TEdlo TWV TEAY-
HOTIXOY TV, 6Tws ot xatavopés Cauchy xon Gumbel. Avtideta, ol Sioypaplec enorywyhc
TEpLypdpovToL XahOTEPA OO XATAVOUES ToU 0pllovTal 6TO GUVORO TV VeTIX®OVY aptludy
omwe ot xotavopés I'dupa xow Weibull. To anotedéopata tng avdiuong tov Boptoypay-
udtwy €deay 6Tl oL Blarypagpieg GUOLXOL BuvaUXoD xou SLdTaENS axTvoBohiog Yduua, TOAD
oLy Va Tpocapuélovial 6TOo (610 YewenTixd LOVTEND BaploypdUUATOS Xot AUTO OPELAETOL OTO
YEYOVOS OTL oL TWES TNS 0poghc xa Tng Lwvn emipponc elvon tapduoleg. H avdiuon Bopt-
oypduuatog emPBeBarcdvel TNV UPNAY yweixn eTepoYEVELd oL YopoxTNEilel TIg XoTorypapég

OLOLY PUUPLEIV.

‘Ocov agopd 610 delTEpo 6TOY0 NS epyaciog, To apLiUNTIXd ATOTEAECUATA TNS O TATIO-
TXAC avdhuong €dellay acVeV ETEPOCUOYETION HETAED TOV LOIOTATWY TOU UETEHUNXAY OTIG
oo yewtpnoe. H etepocuoyétion eetdotnne Y€ow TOL UTONOYIGUOD UETEWY OTATIO-
Txhc €€dpTNong Onwe 1 cuyETion Pearson xou 1 cuoyétion Spearman. ‘Onwe avogpépinxe
AVOTEPW, YL TOV UTOAOYIOHO TV ETEPOCUCYETICEWY yenotuomolinxay pedodol mapey-
Bokrc pe oxomd TNV odoyevomoinom tou Briuatog derypatondiag. ‘Oleg ol uédodol 0dYyn-
OOV OE TOPOUOLES EXTIUNTELS TwV cuoyeTioewy. Ot Sorypapieg Sudtadng axtivy yduuo anéd-
(OOAY TO TLO EVOLAPEPOVTA ATOTEAECUATO OE GYECT| UE TIC UTONOLTES DLy PpIES, TOPOVCLY-
Covtag 1600 VeTinég 600 xou apvnTinég TWég ouoyetioenwy. Ot Tiée Twv YeTndy ouvte-
Aeotwv ocuoyétiong xupatvovtar amd 0.001 €wg 0.483, v oL TES TV dEVNTIXOY GUVTE-

AeoTwV cuoyétiong exteivovta and -0.142 €we -0.001.

Avagopd e tov Tteito atdyo g cpyosiag, n oUYXEION XAl 1) TOCOTIXOTOMAN NG
am6d00Ne TV oAYoplduwy avTixatdoTaone ol TapeUBoAig €0eEE OTL 1) YROUULXY] TUpPEU-
Bohy), o Luylouévog Yécog 6pog, xou AyoTepo ouyvd 1 uédodoc Kalman-Arima, eivon ta mo

ATOBOTIXA HOVTENN ATOXATAC TACTS XEVKY DEDOUEVV.



Acknowledgements

First of all, I would like to thank the members of my thesis committee. Professor D.
T. Hristopulos, for tirelessly answering all of my questions and intrigued me right from
the beginning. Thank you for sharing your expertise and insights at critical moments.
I have very much enjoyed working with you. I would also like to thank Professor A.

Vafeidis and Professor N. Varotsis for their useful comments.

I would like to express my sincerest and heartfelt gratitude to the members of the
Geostatistics Laboratory in the School of Mineral Resources Engineering at the Technical
University of Crete, Mr. Manolis Petrakis, Dr. Andrew Pavlides and Mrs. Vasiliki Agou.
I really appreciate all of the questions that you have asked me throughout the process
and all of the feedback you have provided me with, which surely has greatly contributed
to the quality of this thesis.

I would also like to thank my dear friends, of whom some I have met during my studies

at TUC, for their motivation, support and great laughs!

Last but not least, I owe a debt of gratitude to my parents Dimitrios and Virginia,
who have always believed in me, for their unconditional love and support, and Dimitris

for his patience.

vi



Contents

Abstract

Hepirndn
Acknowledgements

Contents

List of Figures
List of Tables

1 Introduction

2 Formation Evaluation : Well Logs
2.1 Basic Log Types . . . . . . . .
2.2 Well Logging Methods . . . . . . ... ... ...
2.2.1 The Spontaneous Potential Log . . . . . . . . ... ... ... ...
2.2.2 The Gamma Ray Log . . . .. ... ... ... ... ... ....
223 Induction Log . . . . . . . . ..
2.3 Welllog quality . . . . . . . . . .

3 An Introduction to Time Series
3.1 Stochastic Processes and Time Series . . . . . . . . . . ... . ... ....
3.2 Fundamental Concepts . . . . . . . . .. ... ...
3.2.1 Moments . . . . ... e
3.3 Time Series Analysis . . . . . . .. .
3.3.1 Trend Removal . . . . . . . . . . . . . . .
3.3.2 Stationarity . . . . . . ...

4 Non-stationary Time Series
4.1 Simple Time Domain Models . . . . . . . . . ... ... ... .......
4.1.1 Independently and Identically Distributed . . . . . . . ... .. ..
4.1.2 White Noise . . . . . . .. .
4.1.3 Random Walk Model . . . . . . . .. . ... ... ...
4.2 Autocovariance and Autocorrelation Function . . . . . . .. .. ... ...
4.3 Non-Stationarity . . . . . . . . . . . . e

ii

iii

vi

vii

XV

17
17
18
19
21
23
25



Contents viii
4.4 Forecasting Models . . . . . . .. .. L 34
4.4.1 Auto-regression . . . . . ... 35

4.4.2 Moving Average . . . . . . . ... 35

4.4.3 Autoregressive Integrated Moving Average (ARIMA) . . . . . . .. 36

4.4.3.1 ARIMA Parameter Selection . . . .. .. ... ... ... 37

4.4.4 Model Selection . . . . .. ... 38

4.5 Correlation Techniques . . . . . . . .. ... .. L 40
4.6 Fitting Criteria . . . . . . . . .. 42

5 Data Analysis Processes 44
5.1 Preliminary and Exploratory Analysis . . . .. ... ... ... ... ... 44
5.2 Probability Distributions . . . . . . . . ... oo 47
5.2.1 Probability distribution models . . . . . . ... ... ... 48

5.3 Spatial Modelling : Estimation of Spatial Correlation . . . . . . . ... .. 50
5.3.1 Experimental Variogram . . . .. .. ... ... ... ... ..., 51

5.3.2 Theoretical Variogram model . . . . . .. .. ... ... 53

5.4 Variogram Fitting Methods . . . . . . . ... ... ... ... 59

6 Well Logs Correlation 61
6.1 Information about the Hydrocarbon Gas Reservoir . . . . .. .. .. ... 62
6.1.1 Notions and Assumptions for the Data . . . . . .. ... ... ... 66

6.2 Methodology . . . . . . . . . 67
6.3 Goose (American) Tickle Formation . . . . ... ... ... ... ..... 68
6.4 Well Log Correlations . . . . . .. .. ... ... 80
6.5 Synopsis . . . ... 82

7 Interpolation and Imputation Methods 91
7.1 Missing Data . . . . . . . . 91
7.2 Missing Data in a Univariate Sample . . . . . .. ... .. ... ..... 94
7.3 Imputation Methods . . . . . . . . .. ... 95
7.3.1 Mean Imputation . . . . . . ... L 96

7.4 Kalman Filter . . . . . . . ..o 96
7.5 Interpolation Methods . . . . . . . .. ... o 100
7.5.1 Linear Interpolation . . . . ... .. ... ... ... ... ..... 100

7.5.2  Spline Interpolation . . . . . ... ... Lo 100

8 Gap Filling 102
8.1 Data Characterization of Table Point Formation. . . . . . . . . ... ... 103
8.2 Imputation Algorithms . . . . . . . .. .. ... o 109
8.3 SYHOPSIS . . . .o 128

9 Conclusions 129
9.1 Spatial Correlations . . . . . . . . . . .. . ... ... . 130
9.2 Missing data reconstruction . . . . .. .. .. Lo Lo 131

A Geostatistical analysis of the selected formations 142
A.1 Seamus 216mm hole section . . . . . . . . ... oL 142



Contents ix

A.1.1 Table Point Formation . . . . . .. ... ... ... ... ...... 144

A.1.2 Aguathuna Formation . . . . ... ... ... ... .. ... .... 149

A.2 Finnegan 216mm hole section . . . . . . . .. ... ... ... 154
A.2.1 Table Point Formation . . . . . ... .. ... .. .......... 155

A.2.2 Aguathuna Formation . . . ... .. ... ... ... ........ 161

A.3 Correlation Graphs . . . . . .. . ... 168

B Data Structures and Algorithms 174
B.1 Correlations . . . . . . . . ... 174

B.2 Missing data . . . . . .. ... 213



List of Figures

2.1

2.2
2.3
24

2.5

3.1

3.2

3.3

4.1

4.2
4.3

4.4

4.5
4.6

5.1

5.2
5.3

Average logging cost represents the 10% of the total well cost which is
providing the 90% of the total geological information. Figure retrieved
from [81] . . ...
Generation of the membrane potential. Figure retrieved from [32]
Common responses of a Spontaneous Potential log. Adapted from [36] . .
Caliper and gamma ray curve in comparison with the spontaneous po-
tential curve. The studied formation is referred to clean and shale zones.
Figure retrieved from [32] . . . .. ... .. .. Lo oL
Example of high resistivity induction log from Halliburton (Oil field service
company). Figure retrieved from [8] . . .. ... ... ... L.

Example of displacement recorded during an explosion. Data retrieved
from "astsa" package in R statistical computing environment. . . . . . .
Decomposition of multiplicative time series. The number of observations
is equal to 150 and the number of observations per unit of time is equal
to T4, . o o e
Time series with linear trend (blue line) and residuals (red line) after
removing the trend (black dotted line). . . . . .. ... ... 0oL

Simulation of N=100 random values of a Gaussian white noise (w;) with
mean p = 5 and standard deviation o,,=0.3 (left). The auto-correlations
of a simulated white noise series are all zero except at zero lag (see ACF
Plot). o
Realization of a simulated 2D random walk with 1000 steps. . . . . . . . .
Top left: Simulated random walk of 1000 random values. Bottom left:
Simulated random walk of 1000 random values with drift §= 0.5. The
decline of the respective autocorrelation functions (ACF) (top right and
bottom right plots) progresses slowly in both cases. The decline of the
ACF for the random walk with drift progresses more slowly than the ACF
of the random walk without drift. . . . . . . .. ... ... ... ... ...
Moving averages of the white noise process shown in figure 4.1. Left:
3-point moving average. Right: 10-point moving average. . . . . . . . . . .
Correlogram estimate of the auto-correlation function. . . . . . ... ...
Correlogram estimate of the partial-autocorrelation function . . . . . . . .

Example of 1000 generated random values from the standard normal dis-
tribution, with zero mean and standard deviation equal to one. . . . . . .
The three principal parameters of the variogram from [11] . . . . . . . ..
The used parameters are range parameter ¢ = 1 and sill b = 1. Image
retrieved from [49]. . . . . . .o

X

o7



List of Figures xi

5.4 The used parameters are range parameter ¢ = 1 and sill b = 1 and varying
v smoothness parameter. Image retrieved from [49].. . . . . . . .. .. .. 58

6.1 Finnegan and Seamus hydrocarbon wells location in Western Newfound-

land and Labrador Island. Image retrieved from the Government of New-
foundland and Labrador website, section; Onshore Maps and Data. . . . . 61

6.2 Finnegan well logs of 311mm hole section. The spontaneous and gamma-

ray logs are displayed on the left side of the log. The induction resistivity
logs are on the right. . . . . . .. .. ... oo 64

6.3 The spontaneous and gamma-ray logs of Finnegan 216mm hole section

and Seamus 216mm hole section are displayed on the left and right side
of the log, respectively. . . . . . . . . . ... 64
6.4 Finnegan well logs of the induction resistivity logs of 216mm hole section. 65
6.5 Seamus well logs of the induction resistivity logs of 216mm hole section. 65

6.6 Histogram of original and detrended data-sets of SP and GR logs of the

Goose (American) Tickle formation found in Finnegan 311 hole section.
Histograms with binwidth =30.. . . . . ... ... ... ... ... .... 71

6.7 Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Finnegan 311mm hole section. . . . . . .. ... .. ... .... 72

6.8 Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Finnegan 311mm hole section. . . . . . . ... ... ... .... 73

6.9 Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Finnegan 311mm hole section. . . . . . .. ... ... ..... 74

6.10 Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Finnegan 311mm hole section. . . . . . . ... ... ... ... 75

6.11 Variogram plots. The weights are determined using N;/ h?, where Nj is
the number of pairs at certain lag. . . . . ... ... ... L. 76

6.12 Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan. . . . . . .. ... .. ... ... .. 83

6.13 Histogram of original and detrended data-sets of GR logs of the Goose

(American) Tickle formation found in Seamus 216 hole section. His-
tograms with binwidth =30. . . . . . ... ... ... ... .. 84

6.14 Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Seamus 216mm hole section. . . . . . ... ... ... ... ... 85

6.15 Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section. . . . . . ... ... ... ... ... 86

6.16 Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Seamus 216mm hole section. . . . . . .. ... ... ... ... 87

6.17 Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Seamus 216mm hole section. . . . . . .. .. ... ... ... 88

6.18 Variogram plots. The weights are determined using N;, where N; is the
number of pairs at certain lag. . . . . . .. ... oo 89

7.1 Missing Data Patterns. (a) Univariate, (b) Monotone, (c) Connected, (d)

Random. The rows correspond to observations, the columns to variables.
Annotated by [92]. . . . . ..o 93

7.2 Algorithm flowchart of created missing data used in the univariate sample

of physical properties logging measurements. The algorithm is structured
based on [B1]. . . . ... 95



List of Figures xii

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10

8.11
8.12
8.13

8.14

8.15

8.16

8.17
8.18
8.19

8.20

8.21

8.22

8.23
8.24

STL Decomposition . . . . . . .. .. o 104
STL Decomposition . . . . . . . . . ... 105
Autocorrelation Function . . . . . . .. ... . 107
Autocorrelation Function . . . . . . .. .. ... . 108
RMSE of Spontaneous Potential Data . . . . . . .. ... ... ...... 112
MAPE of Spontaneous Potential Data . . . . . . . ... ... ... ... .. 113

Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.1. The missing
values are imputed by Kalman Arima. . . . . ... .. ... ... ..... 114
Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.25. The missing
values are imputed by Kalman Arima. . . . . .. .. .. ... ....... 114
Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.5. The missing
values are imputed by Kalman Arima. . . . . .. ... ... ... ..... 115
Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.8. The missing

values are imputed by Kalman Arima. . . . . .. .. ... ... .. .... 115
RMSE of Gamma Ray Data . . . . . . ... ... ... ... ... ..... 116
MAPE of Gamma Ray Data . . . . . . ... ... ... ... ... ..... 117

Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.1. The missing values are
imputed by Kalman Arima. . . . ... ... ... ... ... ........ 118
Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.25. The missing values are
imputed by Kalman Arima. . . . . .. .. ... ... ... ... . 118
Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.5. The missing values are
imputed by Kalman Arima. . . . ... ... ... ... . .......... 119
Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.8. The missing values are

imputed by Kalman Arima. . . . .. ... ... ... .. .......... 119
RMSE of Array Induction Two Resistivity A10 Data . . . . . . .. .. .. 120
MAPE of Array Induction Two Resistivity A10 Data . . . . . . .. .. .. 121

Histogram and Scatter plot of the Array Induction Two Resistivity A10
original and estimated values when the missing rate of the data is 0.1.
The missing values are imputed by Kalman Arima. . . . ... ... ... 122
Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.25.
The missing values are imputed by Kalman Arima. . ... ... ... .. 122
Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.5.
The missing values are imputed by Kalman Arima. . .. ... ... ... 123
Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.8.
The missing values are imputed by Kalman Arima. . .. ... ... ... 123
RMSE of Array Induction Two Resistivity 20in Data . . . . . . . .. . .. 124
MAPE of Array Induction Two Resistivity 20in Data . . . . . . . . .. .. 125



List of Figures xiii

8.25 Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.1.
The missing values are imputed by Kalman Arima. . .. ... ... ... 126
8.26 Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.25.
The missing values are imputed by Kalman Arima. . . .. ... ... .. 126
8.27 Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.5.
The missing values are imputed by Kalman Arima. . .. ... ... ... 127
8.28 Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.8.
The missing values are imputed by Kalman Arima. . . ... ... .. .. 127

A.1 Fitting of the distributions by maximum likelihood. Featured data-set;

SP log of Seamus 216mm hole section. . . . . . ... ... ... ... ... 144
A.2 Fitting of the distributions by maximum likelihood. Featured data-set;

GR log of Seamus 216mm hole section. . . . . . ... ... ... ... ... 145
A.3 Fitting of the distributions by maximum likelihood. Featured data-set;

A10 log of Seamus 216mm hole section. . . . . . .. ... ... ... ... 146
A.4 Fitting of the distributions by maximum likelihood. Featured data-set;

A20 log of Seamus 216mm hole section. . . . . . .. ... ... ... ... 147

A5 Variogram plots. The weights are determined using N;, where Nj is the
number of pairs at certain lag. For the calculation of the Spontaneous

potential the weights are determined using N;/h2. . . ... ... ... .. 148
A.6 Fitting of the distributions by maximum likelihood. Featured data-set;

SP log of Seamus 216mm hole section. . . . . . ... .. .. ... ..... 149
A.7 Fitting of the distributions by maximum likelihood. Featured data-set;

GR log of Seamus 216mm hole section. . . . . . . .. ... ... ... ... 150
A.8 Fitting of the distributions by maximum likelihood. Featured data-set;

A10 log of Seamus 216mm hole section. . . . . . . .. ... ... ... .. 151
A.9 Fitting of the distributions by maximum likelihood. Featured data-set;

A20 log of Seamus 216mm hole section. . . . . . .. ... ... ... .. 152
A.10 Variogram plots. The weights are determined using N;, where Nj is the

number of pairs at certain lag. . . . . . ... ..o Lo 153
A.11 Fitting of the distributions by maximum likelihood. Featured data-set;

SP log of Finnegan 216mm hole section. . . . . . ... ... ... ..... 156
A.12 Fitting of the distributions by maximum likelihood. Featured data-set;

GR log of Finnegan 216mm hole section. . . . . . . .. .. .. ... .... 157
A.13 Fitting of the distributions by maximum likelihood. Featured data-set;

A10 log of Finnegan 216mm hole section. . . . . .. ... .. ... .... 158

A.14 Fitting of the distributions by maximum likelihood. Featured data-set;

A20 log of Finnegan 216mm hole section. . . . . .. ... ... .. .... 159
A.15 Variogram plots. The weights are determined using N;, where Nj is the

number of pairs at certain lag. . . . . . .. ... oL 160
A.16 Fitting of the distributions by maximum likelihood. Featured data-set;

SP log of Finnegan 216mm hole section. . . . . . .. ... ... .. .... 162
A.17 Fitting of the distributions by maximum likelihood. Featured data-set;

GR log of Finnegan 216mm hole section. . . . . . .. . . ... ... .... 163



List of Figures xiv

A.18 Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Finnegan 216mm hole section. . . . . . . ... ... ... ... 164
A.19 Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Finnegan 216mm hole section. . . . . . . ... ... ... ... 165
A .20 Variogram plots. The weights are determined using N;, where Nj is the
number of pairs at certain lag. . . . . . . ... 166
A.21 Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan. . . . . . . ... ... ... ... .. 169
A.22 Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan. . . . . . . . ... ... ... ... 170
A.23 Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan. . . . . . . . . ... ... ... .. 171
A.24 Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan. . . . . . . . ... ... ... ... 172
A.25 Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan. . . . . . . . ... .. ... ... .. 173



List of Tables

3.1

4.1
4.2

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10

6.11
6.12

6.13

6.14

Al
A2
A3
A4
A5

A.6

Common trend functions . . . . . . . . .. ... L 23
ARIMA model of order p,d,q ([40]).. . . . . . .. ... oL 37
Basic ARIMA models ([40]). . . . . . . ... .. oo 37
Summary of studied data-sets. . . . . . . ... ... oL 66
Data statistics of Finnegan 331mm hole section. . . . . . .. .. .. ... 70
Detrended data statistics of Finnegan 331 hole section. . . . . . . .. ... 70
Estimated trend models. . . . . . . ... oo 71
Distributions’ estimated parameters and information criteria of the Goose
(American) Tickle formation found in Finnegan 311mm hole section. The

units of measurement are [mV|, [GAPI|, [@hmm| for SP, GR and A10, A20
respectively. . . . . . Lo 71
Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 77
Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 77
Leave-One-Out Cross Correlations of the known geological series of Finnegan
and Seamus wells. . . . . . . ... 81
Data statistics of Seamus 216mm hole section. . . . . .. .. .. .. ... 84
Detrended data statistics of Seamus 216mm hole section. . . . . . . . . .. 85
Estimated trend model. . . . . . . ..o oL 85
Distributions’ estimated parameters and information criteria of the Goose
(American) Tickle formation found in Seamus 216mm hole section. The

units of measurement are [mV/|, [GAPI|, [2hmm| for SP, GR and A10, A20
respectively. . . . . . Lo 86
Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 90
Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 90
Spontaneous potential statistical parameters of Seamus 216mm. . . . . . . 142
Gamma ray statistical parameters of Seamus 216mm. . . . . . . . ... .. 143
Array Induction 10in statistical parameters of Seamus 216mm. . . . . . . 143
Array Induction 20in statistical parameters of Seamus 216mm. . . . . . . 143
Detrended data statistics of Table Point formation found in Seamus 216mm

hole section. . . . . . . . . L 144
Estimated trend models. . . . . . . ... oo 144

XV



List of Tables xvi

A.7 Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216mm hole section. The units of mea-
surement are [mV/], [GAPI|, [2hmm]| for SP, GR and A10, A20 respectively.145

A.8 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . oL 146
A.9 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . oL 147
A.10 Detrended data statistics of Aguathuna formation found in Seamus 216

hole section. . . . . . . . . L 149
A.11 Estimated trend models. . . . . . . .. ... oL 149

A.12 Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measure-
ment are [mV], |GAPI], [Qhmm| for SP, GR and A10, A20 respectively. . . 150

A.13 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . . 151
A.14 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 152
A.15 Spontaneous potential statistical parameters of Finnegan 216mm. . . . . . 154
A.16 Gamma ray statistical parameters of Finnegan 216mm. . . . . . . . . . .. 154
A.17 Array induction 10in statistical parameters of Finnegan 216mm. . . . . . . 154
A.18 Array induction 20in statistical parameters of Finnegan 216mm. . . . . . . 154
A.19 Detrended data statistics of Table Point found in Finnegan 216 hole section.155
A.20 Estimated trend models. . . . . . .. ... oL 155

A.21 Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measure-
ment are [mV], [GAPI], [Qhmm| for SP, GR and A10, A20 respectively. . . 155

A.22 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . L 156
A.23 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 157
A.24 Detrended data statistics of Aguathuna formation found in Finnegan 216

hole section. . . . . . . . . . 161
A.25 Estimated trend models. . . . . ... 0oL o oL 161

A.26 Distributions’ estimated parameters and information criteria of the Table

Point formation found in Seamus 216 hole section. The units of measure-

ment are [mV], [GAPI|, [Qhmm] for SP, GR and A10, A20 respectively. . . 161
A.27 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . . 167
A.28 Fitting of the best theoretical model to the experimental variograms of

the field. . . . . . . 167



Chapter 1

Introduction

Geostatistics provides tools for the statistical analysis of spatial or spatiotemporal data.
On the other hand, time series analysis provides tools for processing temporal data; such
tools can also be applied to one-dimensional spatial data such as well log data. Both
geostatistics and time series analysis can be applied to mining and petroleum engineering
data, as well as ground-based environmental and remote sensing data. Well logs were
developed and used to perform geothermal ([90]; [79]; [87]; [68]), geotechnical (|75];
[19]; [82]) and environmental studies (|85]; [59]; [44]). Observations about how deep a
formation is and what type of lithologies are expected to be found while the borehole is

being drilled deeper and deeper, can be obtained and be further analyzed.

For example, in geology, well logging readings are a considerable source of information
that can be used to create a preliminary geological map that is necessary for surface
exploration ([66]; [42]; [76]), in petrophysics, they provide a unbias evaluation of the
potential production of hydrocarbon reservoirs ([99]; [88]; [48]); in geophysics, collecting
and assessing high precision well-log data is the first step of seismic analysis and real-
time evaluation of the formation’s and fluid’s properties ([63]; [91]; [94]); in petroleum
engineering well-log data is used to estimate parameters for numerical simulations (|28];
[65]; [86]). In this thesis we apply geostatistical methods and time series methods to

analyze well-log correlations and to predict missing data (missing data reconstruction).

In this thesis we apply geostatistical methods and time series models to analyze well-
log correlations and to predict (reconstruct) missing data. The missing data problem

occurs due to instrument failures, sensor malfunctions and data “send /retrieval” problems

1
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that hinder the evaluation of geological formations. Correlations reflect spatial continuity
and provide information needed for prediction methods that are used to reconstruct gaps

in the data.

The study focuses on the analysis of available well logs from two hydrocarbon reser-
voirs located in Labrador Island, Western Newfoundland (Canada). The data is obtained
from two onshore wells (Finnegan and Seamus). The distance between the Finnegan and
Seamus well is 14.7km. We will focus on the analysis of four select logs (Spontaneous Po-
tential, Gamma Radiation and two Induction logs) from six formations. More explicitly,
the examined formations from Finnegan well are the following: Goose (American) Tickle,
comprising 1422 data points; Table Point comprising 725 data points; Aguathuna with
250 data points; Catoche with 624 data points; Boat Harbour with 599 data points, and
Watts Bight with 349 data points. Accordingly, the formations probed in the Seamus
well are: Goose (American) Tickle with 1700 data points; Table Point with 871 data
points; Aguathuna with 347 data points; Catoche with 721 data points; Boat Harbour
with 819 data points, and finally Watts Bight with 406 data points.

This thesis has three main objectives: (i) to estimate spatial correlations in well log
data obtained from the same well, (ii) to evaluate cross-correlations between measure-
ments of the same property across the two different wells, and (iii) to explore methods

for the reconstruction of missing data.

To address the first objective, we identify the different geological formations at the
locations of the two wells. We apply exploratory data analysis to determine the relevant
probability distributions and summary statistics, as well as variogram analysis to identify
spatial correlations within each formation and to determine the optimal variogram model

for each measured property.

In order to address the second objective, we use several interpolation methods to create
two data sets with formation alignment and common sampling step. This processing is
necessary since different formations are found at different depths along each drill hole,
and the data in each drill hole have unequal sampling steps. We compare the different
interpolation methods used in terms of the resulting values of well-to-well log correlations;
these methods comprise: linear interpolation, cubic and spline interpolation, and nearest

neighbor interpolation.
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The third objective is to investigate the potential of time series methods for estimat-
ing missing data in the well log data series. Missing data imputation and interpolation
models are typically used to improve missing well log data quality. To assess the perfor-
mance of different methods, full data records are split into two disjoint sets: a training
set (where the log values are assumed to be known) and a testing set (where the log
values are assumed to be missing). We use different imputation, interpolation, and time
series methods for filling the gaps (testing set values); these methods comprise: Kalman
ARIMA, mean imputation, linear and spline interpolation, as well as linear weighted and
simple moving average methods. The prediction accuracy (which measures the agree-
ment between the original testing set values and the imputed or interpolated values) is

used to quantify the performance of the gap-filling methods.

With respect to the first objective of the study, the exploratory analysis indicates
that the majority of the respective properties do not follow the Gaussian distribution.
However, after removing a trend function, the residuals are closer to the Gaussian dis-
tribution. Results demonstrate that the Spontaneous potential and Gamma radiation
indicators can be most often described by Cauchy and Gumbel distributions. In contrast,
the Induction indicators can be most often described means of the Gamma and Weibull
distributions. The results of the variogram analysis indicate that Spontaneous potential
and Gamma Radiation indicators are mostly fitted to the same type of theoretical vari-
ogram model, with similar sill and range values. The variogram analysis confirmed that

high spatial heterogeneity characterizes the entire span of the logging records.

With respect to the second objective, the statistical analysis indicates a weak corre-
lation between the respective properties measured at the two different wells. The asso-
ciation between the data at the neighboring wells is examined by means of statistical
dependence measures such as the Pearson’s linear correlation coefficient and Spearman’s
rank correlation coefficient. The cross correlations calculated from the processed data
using different interpolation models lead to similar values. The Gamma radiation logs
show both positive and negative correlation which are overall higher (in magnitude) than
for the other three logs. The values of the positive correlation coefficients range from
0.001 to 0.483, while the values of the negative correlation coeflicients range from -0.142

to -0.001.

Regarding the third objective of the study, the comparison of the performance of
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different imputation, interpolation and time series algorithms for gap filling indicates
that linear interpolation, linear weighted moving average and less often the Kalman-

ARIMA methods are the top-performing algorithms.



Chapter 2

Formation Evaluation : Well Logs

Using well logs in oil and gas
exploration is like "hunting on a game

preserve"

George R. Pickett
Colorado School of Mines

In situ measurements taken by running logs can give answers to whether a geological
structure of a potential oil or gas reservoir exists. Additional information includes the
finding of the reservoir’s location in the geological strata, the productivity of the up-
stream, midstream and downstream industry and the inductive inferences of evidence of

a near reservoir.

Interpretation of well-logs delineates the properties related to geology and petro-
physics, such as the determination of rock and reservoir fluids composition, which are
usually deduced from examinations of outcrops, cores and cuttings. Any other useful in-
formation can be obtained by measuring the natural gamma ray radiation, bulk density,
sonic transit time etc. Consequently, log data often constitutes the signature of the rock.

Those well logging techniques would be further examined in this section.
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2.1 Basic Log Types

The while drilling evaluation techniques are beneficial and allow a real-time character-
ization of the drilled formations. These techniques require expensive high-technology
sensors to be inserted in the bottomhole assembly, while performing high resolution
records ([24]; [62]; [18]; [81]). For this reason, a brief introduction of the main types of

logs will be presented.
Logging While Drilling (LWD)

The Logging-While-Drilling (LWD) formation evaluation sensors acquire downhole
data while drilling, collecting mainly petrophysical data. The measuring elements are
part of the instrumented Bottom Hole Assembly, also called BHA, the drilling collars;
pulses of the signals are transmitted to the surface via the mud column. The advantages

of LWD are:
1. Access to real time information.

2. Mud invasion does not have an effect on measurements.

3. The LWD tools is more serviceable for collecting data from tough structural envi-

ronments, such as deviated wells, horizontal wells or an unstable borehole.

4. The LWD sensor provides information about the well’s placement and stability
while minimizing the risk of a stuck pipe, thus a safer and more efficient hole is

drilled.

However, there are factors restricting the LWD tool’s efficiency and those are mentioned

below:
1. Data transmission/recording may be affected by the speed’s telemetry or by the
existence of pumped mud into the drill string.
2. Limited memory size.

3. Most LWD tools are powered by batteries with limited battery life that fluctuates

from 40 to 90 hours depending on the tool.
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4. LWD tool’s placement in the bit have to be taken into consideration due to some
technical limitations. For instance, ROP’s productiveness and sufficiency can pos-

sible be influenced by the location of the tool in the drill string.

Measurements While Drilling (MWD)

The Measurement-While-Drilling formation evaluation technique measures data which
is near the bit, without interrupting the standard drilling operations. The recorded
information reaches the surface by the exact mechanism of transmission of the LWD tool

(mud pressure pulses). The advantages of MWD are:

1. Real time directional drilling operations monitoring.
2. Advantageous use in wellbore completion.

3. Estimation of drilling formation properties and drilling parameters, such as the
bottom hole pressure, the torque and the weight on the bit, in the interest of

optimizing the drilling process.

2.2  Well Logging Methods

Drilling and geophysical techniques are more often used in modern exploration and eval-
uation of a formation. Well logging data acquisition and interpretation is of the utmost
interest of geoscientists. The measurements made with logging tools provide accurate and
reliable information of both the rock and its fluid content. Several significant advances
have been developed in order to make the acquisition of the data a credible process,
including the interpretation of well log data in various rock formations. This practice is
considered rather biased than to extract information given from a scattered core analysis
sample. Therefore gives the advantage of an objective visualization of the formations at
the specific scale plus a representative and more detailed description of the formations.
These developments can ensue a precise, even if errors are present, well log data inter-
pretation and reinterpretation and a quickly data obtainment, whereas reduce the total
well cost. It is of considerable importance to cite that a wireline logging cost is usually
ranging from 5 to 10% of the the total well cost covering approximately 90% of the total

geological information which is illustrated in figure 2.1 .
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FIGURE 2.1: Average logging cost represents the 10% of the total well cost which is
providing the 90% of the total geological information. Figure retrieved from [81]

We classify the various well logging measurements into two board categories according
to their properties (|80]). The first group includes natural or spontaneous phenomena.
The basic equipment employs a single detector to acquire data from the wellbore (passive
system). The second group includes induced phenomena. The basic equipment requires a
sources or an emitter to appropriately stimulate a response in the formation, annexed to

a detection system to track down the presence of electromagnetic waves and radioactivity.

The categories of the logging measurements that arise from natural or spontaneous
phenomena are: Natural gamma radioactivity, Spontaneous potential (SP), Temperature

of formation, Hole-diameter (caliper log) and the Hole inclination (deviation log).

The categories of the logging measurements that arise from induction phenomena
are: Electrical (resistivity, conductivity, dielectric constant), Nuclear (density, photo-
electric absorption, hydrogen index, macroscopic thermal neutron capture cross-section,
elemental composition, proton spin relaxation time) and Acoustic measurements (acous-

tic velocity, acoustic-signal amplitude, well seismics).

2.2.1 The Spontaneous Potential Log

Spontaneous Potential is proved to be a considerable useful tool that permits the efficient

collection of a substantial data set. Readings of spontaneous potential can give strong and
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significant evidence about the indication of lithology, porosity and permeability of the
different drilled formations. Conclusions about the location, the formation water salinity
and hence the formation oil saturation along the drilled hole are made. The drilling
operations are performed in order to find the pay zone rich in hydrocarbons. Readings
and core analysis samples are inspected and analyzed in order to make correlations

between the well to generally characterize the constituting rock properties ([8]).
Principle

Continuous recordings of the spontaneous potential include the electrochemical po-
tential difference, measured with a voltmeter, between a single electrode in the borehole
and a ground referenced electrode placed at the surface. Electrochemical potentials of

interest are the liquid junction potential and the membrane potential.

Liquid junction potential: Let’s consider two sodium chloride solutions and a mem-
brane barrier separating the two different concentrations. Then, the higher concentration
solution’s ion will tend to drift to the less concentrated solution, since the Na™ alacrity
is slower than the Cl~ ions, thus creating a liquid junction potential. The maximum
liquid junction potential will be measured if the salinity between the mud filter (less

concentrated solution) and the formation water (more concentrated solution), is great.

Membrane potential: Created in molecular constructions between shale and sandstone
beds. In figure 2.2 a semipermeable shale barrier acts like an ionic sieve and separates
the two different salinities solution. The less mobile Na ™ ions are travelling through the
membrane more rapidly that the Cl™ ions since the shale barrier is more permeable to
Na " ions than to Cl~ ions. In figure 2.2a, the current density of the diffusing particles
is Jgirr and n is the particles concentration. At this point, the negative charge causes
no movement of the Na™ and Cl~ ions in the region. In figure 2.2b, a charge separation
occurs when an electric field is applied. The magnitude of the ionic current J.y rent
increases and the Na anions are passing to the right region while the Cl cations are
slowing down to the left until the anions and cations reach an equilibrium, thus creating

a membrane potential.

Factors affecting the measurements
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FIGURE 2.2: Generation of the membrane potential. Figure retrieved from [32]

Some typical responses of a Spontaneous Potential log are illustrated in the figure 2.3.
Correspondence of spontaneous potential measurements depend mainly on the following

addressing factors:
1. Thickness of the permeable bed; when the SP curve is narrowed then it requires a
bed thickness correction.
2. Bed resistivity; high resistivity levels reduce the reflection of the SP curve

3. Shale content; reduces the SP deflection
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4. Hydrocarbon content; reduces the SP deflection

5. Mud and water resistivity; oil-based mud can not be used when SP is recorded

since electrical conductive paths through the mud are blocked.

SP Log
10 mv
-+
Impermeable
Shale |
Permeable Sand j
Fresh Water g
Permeable Sand r"———
Salt Water ]
Permeable Sand f E,
Brackish Water =
~ e
Impermeable o
Shale
Impermeable
Formation
/
Shaly Sand /’
Salt Water /
Clean Sand L---..

FIGURE 2.3: Common responses of a Spontaneous Potential log. Adapted from [36]
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2.2.2 The Gamma Ray Log

Gamma Ray measurements are practically used for three main reasons. Readings of
gamma ray result in evaluation of the shale content of a formation or a shale reservoir.
In other applications, it can be used for analysis of the lithology and mineralogy of
the drilled formation. Moreover, it can be used for stratigraphic correlations. Those
correlations are based on shale distributions in the studied geological area and the age
of shale. When correlations are made, we need to take into account the contamination

from non-shale radioactive sources ([7]).
Principle

The gamma ray log records the total natural gamma radiation emitted from isotopes
of three main source elements: °K(potassium), 23?Th(thorium), 283U (uranium).
The gamma rays emitted from an isotope in the formation gradually discrete in energy.
Hence, the gamma ray intensity that the log measures is a function of: (a) the initial
gamma ray emission ; and (b) the Compton scattering in the formation that the gamma
rays encounter between the gamma emission and the detector. In figure 2.4, an illustra-
tion of the Gamma Ray log in comparison with the Spontaneous Potential and Caliper
log is presented. On average, a shale contains 6 ppm uranium, 12 ppm thorium, and 2
ppm potassium. The magnitude of gamma ray measurement in clean limestone, salts,
coal, anydrite, shaly sand and dolomite is usually small while in case of shale is relatively

large.
Factors affecting the measurements

The dependency of the measurements responds mainly to the concentration of K, Th,

U occur in the formation. Other minor factors including :

Interfering peaks close to the principle peaks in each window of energy band.

e Two "escape peaks" related to each principle high energy peak, resulting in Th

interference in the U window, and Th and U interference in the K window.

The bore-hole size, tool position (centering/eccentricity).

Mud weight, casing size and weight and cement thickness.
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FI1GURE 2.4: Caliper and gamma ray curve in comparison with the spontaneous poten-
tial curve. The studied formation is referred to clean and shale zones. Figure retrieved
from [32]

2.2.3 Induction Log

Induction logs are a type of Resistivity log. Induction logging devices are recommended
when the drilling fluid is oil-based, air or gas-based mud that do not conduct electricity.
Induction logging tools measure the formation’s resistivity and conductivity for satura-
tion estimates (differentiate the water-bearing zones from the hydrocarbon-bearing ones)

when induced by a focused magnetic field.
Principle

The Array Induction Log (AIL) tool includes of a multiple transmitting coil and eight
groups of receiving coils, spacing from 6 inches to 6 ft at three or one frequency. Each
array consists of a single transmitter coil and two receivers. The tool measures the

conductivity of the formation by corresponding to multi-frequency and multi-coil pairs.
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Different resistivity curved with three vertical resolutions 1,2 and 4 ft are obtained at
different investigation depths, 10,20, 30, 60 and 90 inches. Other induction tools produce
two types of signals; the inphase (R-signal) and the quadrature (X-signal) induction sig-
nal. The inphase signal is presented on standard dual induction—SFL log presentations
while both the inphase and quadrature signal are combined during advanced processing
in the logging tool itself to run real time corrections for environmental and geological
conditions. Modern induction logs include several sets of coils with focused currents.
Thus, the effects of the borehole and surrounding formations are minimized. Most mod-
ern resistivity log suites use different depths of investigation with various combinations

of measurements ([4], [54]).
Factors affecting the measurements

Correspondence of conductivity measurements depend mainly on the following ad-

dressing factors:

1. Mud inside the borehole; recommended when the drilling fluid is oil-based, air or

gas-based mud

2. Bed thickness; is not recommended in resistive and compact formations since the

signal level is low.

3. Formation resistivities; dramatic increase of the difference between apparent and

true formation resistivity.
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FIGURE 2.5:

Example of high resistivity induction log from Halliburton (Oil field
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2.3 Well log quality

The key data points that we can collect from a drilled formation are the measurements of
a hydrocarbon-bearing productive zones; the definition of the reservoir type and thick-
ness; the distinct prediction of porosity and permeability of the prospective zones; the
determination of the fluid type, flow and migration through the pores of the complex

geological environment.

In a process of planning and conducting a well log operation, well log quality control is
a subject of major interest. Acquisition problems including skips, nose, spikes and miss-
ing data result in data misinterpretation. The majority of well logs include systematic
error and environmental corrections. Those corrections are not able to completely elim-
inate the occurred errors. Nevertheless, the measurements’ correctness becomes crucial
when observation points are very close to the decision making threshold. Additionally,
we need to clarify that by increasing the frequency of logging may not be a guarantee
of increased knowledge of information and by no means does reduce the overall logging

costs.



Chapter 3

An Introduction to Time Series

3.1 Stochastic Processes and Time Series

Time series are sets of observations taken sequentially at a specified time vector t =
(t1,...,tn)". Observations that contain data points taken continuously over some time
interval are referred to as continuous-time series, while observations that consist of
individual data points separated by time intervals are referred to as discrete-time series
(e.g. seismic imaging data) ([100], [61]). An example of a discrete time series is illustrated
in figure 3.1. In this thesis the term "data" will always refer to acquired observations as a
discrete sequence at uniform intervals. Time series analysis is the statistical methodology

pertained to the analysis of such sequence of data.

The sequence of variables Y7,Ys, ..., Yy or (V};), at times t = 1,2,..., N, is called a
time series, where NV is the number of observations of the time series Y;. The study of a
time series requires the collection of a large number of observations taken by a specific
time frequency. We often use time series analysis to understand the past and therefore
to predict the future. One basic feature of a time series analysis is the interpolation of

the observed correlation between two successive values.

17
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FIGURE 3.1: Example of displacement recorded during an explosion. Data retrieved
from "astsa" package in R statistical computing environment.

3.2 Fundamental Concepts

In this section an introduction on the principal points of the statistical moments will be
made. Statistical moments are functions expressed explicitly by an analytical expression’
and they are often used to express statistical characteristics of a random field. There are
four moments of a probability distribution that are briefly overviewed. The first moment
is the mean, the second moment is the variance, the third moment is the skewness and
the fourth moment is the kurtosis. The first two statistical moments provide information

about the appearance of a distribution, whereas the third and the fourth moments provide

information about the symmetry and shape of the distribution ([39]).

L Also defined as deterministic functions.
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3.2.1 Moments

Let us consider a stochastic process {Y; :t= 0,41, £2,+3,...}. Then we can define the
mean function as:

we = E(Y) (3.1)

fort =0,£1,+£2,43,....
Generally, p; may differ at each time point ¢.

The variance of a random variable X can be determined as:
Var(X) =% = E[X — E(X))? (3.2)
or
Var(X) = 0% = E(X?) — [B(X))? (3.3)

We call the standard deviation(o,) the positive square root of the variance of X.

The standardized version of X is described as:

X —
X* — (X = px) (3.4)
ox
The covariance of X and Y is defined as:
Cov(X,Y) = E[(X — px) (Y — py)] (3.5)

In time series analysis, the same function is called autocovariance and it is given by:
Yk = Cov(Yy, Yiyk) = E[(Ye — pe) - (Yern — puri)] = E(YeYirn) — ppiern (3.6)
The autocorrelation function is defined as:
Ptit+k = Corr (Y, Yiqx) (3.7)

for t =0,£1,4+2,43, ..., where the correlation coefficient of Y; and Y; , is defined by:

Cov(Yy, Ys
prirk = Corr(Yy, Yiiy) = W (3.8)
Y9y t+k
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Note that the correlation coefficient satisfies
—1 < Corr(Ys, Yiix) < 1. (3.9)

In the case of standardized variables Y;* and Y}, ;, then p = E(Y;*Y/" ).
Values of p; ;44 near £1 signify strong linear dependence between random variables,
whereas values below 0.2 signify low linear dependence. Values of Y;,Y;1, are uncorre-

lated if the autocorrelation function is equal to zero.

In order to examine the covariance function properties of every possible time series

models, lets consider x1,z9,...,Tm and y1,y9,. .. ,Yn are constants while ¢1,t2,. .. ¢, and
81,59,. . . ,8p, are time points, then:
m n m n
Cov inYti, ZyzYsl] = Z r;y;Cov(Yy,, Ys,) (3.10)
i=1 j=1 i=1 j=1

The skewness measures the asymmetry of the distribution and is defined as ([96]):

E(X - )]

3
Oz

(3.11)

St =

This is estimated from a sample (x1,...xz,) by means of the average
. (z; — p)?
§t = —
¢ ; nod

where n is the sample size and 6, is the sample estimate of the standard deviation.

If

e s, € [—1,1] then the distribution is highly skewed
o s; € [—1,—0.5] or s; € [0.5,1] then the distribution is moderately skewed

e s, € [—0.5,0.5] then the distribution is approximately symmetric

The kurtosis measures the heaviness or the lightness of the tail of the distribution

relative to the normal distribution of the same variance and is defined as:

E[(X — )]

ke =
g

(3.12)
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This is estimated from a sample (x1,...xz,) by means of the average

where n is the sample size and &, is the sample estimate of the standard deviation.

If

e k; = 3 then the distribution is Gaussian
e k; € [3,00] then the distribution is leptokurtic

o ki € [—00,3] then the distribution is platykurtic

3.3 Time Series Analysis

There is a distinguished remark that we need to take under consideration when dealing

with time series data. The fact that there is the profound relationship between the impute

current values to that of its preceding or later data points that affect the parameter we

are interested in (]20], [61]).

In figure 3.2 the main time series components are illustrated.

1. Trend - the increasing or decreasing overall direction of the value in the series, over

time.

2. Seasonality - repeating variations or short-term cycles in the series caused by re-

occurring events.

3. Random component - random shifts in the time series that may be ascribed to

noise or other unsystematic events.
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Other time series components include:

1. Outliers (Special events) - abnormal observations due to random or special events.
Special attention needs to be taken when analyzing or interpreting the outliers in

order to be effectively characterized.

2. Level shifts - sudden fluctuations on the mean time series level.

Decomposition of multiplicative time series
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FIGURE 3.2: Decomposition of multiplicative time series. The number of observations
is equal to 150 and the number of observations per unit of time is equal to 14.

At this point we need to elucidate the difference between the three dominant types of
time series, stationary, additive and multiplicative. Their composition is considered as

follows:

The stationary model’s main assertion is that the mean, variance and autocorrelation

(see section 4.2) are constant through the course of time.
stationary = seasonality and/or noise

The main characteristic of the additive model is that all components are independent

to each other and are implemented in the same attributed unit of measurement.

additive = trend + seasonality + noise
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On contrast, in the multiplicative model, only the trend component has the same at-
tributed unit of measurement of the observed time series, while all the other components

are independent to this same unit.
multiplicative = trend * seasonality * noise

In the additive model case, the trend component doesn’t affect the seasonality when
calculating the values of the series. This assumption can be verified, especially when

analyzing natural phenomena.

3.3.1 Trend Removal

We need to take into consideration that the data gathered through logging is liable to
sampling or measurement error. That is, real data often exhibit more complicated trend
models. By means of simplicity, the trend function u, will be modelled by low-order
polynomials of the coordinators of the series’ data points in order to ensure consistency
of interpretation of the spatial direction in the data, and on the other hand, to examine
under which possible circumstances the effect of a trend on a variogram (see section 5.3)
might be bypassed to allow a sufficient analysis of the data. In Table 3.1 some common
1D trend models are shown. The selection of the best trend model is done by means of

Least Squares Errors (LSE). An indicative plot appears in Figure 3.3.

H Model Trend Function (1D) H
Mean Uy = Qg
Linear Uy = ag + a1
Quadratic Uy = ag + a1 + asx?
Cubic Uy = ag + a1z + asx® + azx®
Quartic  uy = ag + a1= + agx® + asz® + agxt

TABLE 3.1: Common trend functions
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FIGURE 3.3: Time series with linear trend (blue line) and residuals (red line) after
removing the trend (black dotted line).
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3.3.2 Stationarity

The term stationary process implies that the properties of the process do not change
over time ([40], [53]). A process Y; is said to be strictly stationary if the joint distri-

bution of Y;,,Y;,,....Y;, is equal to the joint distribution of Yy, _,Y:,—k,....Y:, —k, at time

points ty,ta,....t, and all possible time lag k. Thus, it follows that E(Y;) = E(Y;_k)
and Var(Y:)=Var(Y;_) for all £ and k so that the mean function is constant and the
variance is also constant over time. On the contrary, a process Y;, is said to be weakly
stationary if it has the same mean value, pu, at all time points; it has the same variance,

Y0, at all time points; and Cov(Yy, Yiix) = i for all lags k, meaning that the covariance

of the values at any two time points, ¢t,t — k depend only on lag k.
Stationarity Tests

Fitting a model in time series usually implies the prerequisite that the time series
are stationary. It is possible to check the stationary behaviour by using a variety of
tools. Those include the Ljung-Box test; the Augmented Dickey-Fuller (ADF) t-test;
the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test; the Wavelet Spectrum Test and the
Priestley-Subba Rao (PSR) test (|70]). In this thesis, the stationary or nonstationary
behaviour will be determined by the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test.

In the KPSS test the model is based on linear regression and the represented compo-
nent are the sum of three parts: the deterministic trend (¢), a random walk process (r),
and a stationary error (e;) of the first equation, estimated by the ordinary least squares
regression (OLS) and by stationary assumption. The model is being described by the

following equation:

Yy =at+r+ € (3.13)

when 7 = r;_1 + uz. The component u; is the error term of the second equation, by
assumption of an i.i.d. series. If a = 0, then y; is stationary around r;, alternatively,
if a # 0, the vy is stationary around a linear trend ([89]). The data is usually log-
transformed in order to eliminate any exponential trends and transform them into linear

ones.
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KPSS test often erroneously rejects the hypothesis that the data can be modeled as
a stationary time series. This type of error can be prevented by combining the results of

the KPSS and the ADF tests.



Chapter 4

Non-stationary Time Series

4.1 Simple Time Domain Models

The main purpose of time series analysis is to develop a mathematical model that provides
plausible definitions for source data of a relevant stochastic process (|84]). One possible
way to define the stochastic process is to determine the joint probability density function

of the sequence of variables {Y1,Y2,..., Yy} that can be described as

f(M,Y2,...,Yn) (4.1)

If the probability density function were specified, then a future value point of the time
series could be easily assessed at a particular probability. However, it is impossible to
completely identify those multivariate distributions due to high number of parameters

that they contain.

In this section one group of simple time domain models will be analyzed. Those

models are used to produce more advanced models.

4.1.1 Independently and Identically Distributed

The term "independently and identically distributed" (iid) implies that the random vari-
ables of the sequence {Y1,Ys,...,Yn} have the same distribution and also are mutually

independent.

27
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Let us suppose that {Y1,Ys,..., Yy} are i.i.d. with the same distribution as a random
variable Y, then the probability distribution of this stochastic process is equal to the

product of single probability density functions:

fM, Y2, YN) = f(Y1) - f(Ya) - .o f(YV) (4.2)

thus,
E(Y1+Y2+...+YN):N‘E(Y) (4.3)
Var(Yi+ Yo+ ...+ Yy) =N -Var(Y) (4.4)

4.1.2 White Noise

A white noise time series is an example of a stationary process. We assume that the {e;}

so-called white noise process has zero mean and denote o2 variance for all t, respectively:
{e;} ~WN(0,02) (4.5)

where W denotes the white independent noise, thus we write W ~ i.i.d.(0, o3,),([16]).

In the case of a white noise, the previous values of a time series cannot be properly
processed in order to predict a future value, thus forecasting is impossible. The resid-
uals of a typical regression describe an example of white noise whereas define random
errors, stochastic shocks or other innovations. White noise can be used for synthetic

data simulation.

As mention in the 4.1.1 section , an 4.i.d. process is a case of white noise. A sequence

of random variables {e;} is i.i.d. if:

E(et) = p, constant (4.6)

Yo = E(e?) = Jgs,‘v’t (4.7)

S

where e; is independent of e, for all ¢t and s , and t # s . If the values of a time series w;

follow a standard normal distribution:

w; ~ N(0,0?) (4.8)
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Gaussian White Noise Process

then the series is known as Gaussian white noise (Figure 4.1).
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FIGURE 4.1: Simulation of N=100 random values of a Gaussian white noise (w;) with
mean p = 5 and standard deviation o,,,=0.3 (left). The auto-correlations of a simulated
white noise series are all zero except at zero lag (see ACF plot).

4.1.3 Random Walk Model

A random walk model describes a series in which the change from one time point ¢ to
another time point ¢t + 1 are random. It is defined as the time series Y; that results
when a completely random displacement ¢; is added to the previous Y;_; according to

equation (4.9):
Yt = th—]. + &t

for t = 1,2,3...n, with Yp=0 and &; i.i.dN(0,02) variables.

A simple example of a random walk model is described in figure 4.2 where we can
assert that an individual is walking into a path. The probability of taking a step back,

forward or move in the right or left direction is equal.
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Starting from t=1 and then using the successive substitution method in 4.9 we may

rewrite it as follows:

Yi=Yy+ e (4.10)
Yo=Y +eo=Yy+¢e1+ 29 (4.11)
t
Yt:Y()—i-El—i-&Q—i-...—i-Et:Yb-‘rZEi (4.12)
i=1

A random walk plus drift model is given by (Eq.4.13):
Yi=0+Y1+¢ (4.13)

for t=1,2,3...,n, with Yo=0 and &; i.i.d N(0,02) are the white noise innovation terms.

The general solution of the equation 4.13 results from the same method of successive

substitution implemented in equation 4.9. Thus,
t
Vi=Yo+0t+ ) ¢ (4.14)

=1

for t=1,2,3...,n, with € 4.i.d normally distributed N(0,0?) innovation terms.

The random walk with drift is not stationary, which can be seen by calculating the

mean F(Y;) and the variance -y that are functions of time ¢ ([33]):

n
E(Yiyn) =Y +na+ > E(er) =Y +na (4.15)
=1

The first moment indicates that the process is not mean stationary:
n
Var(Yign) = Z Var(ei—;) = Za?t = noZ, (4.16)
i=1

The second moment indicates that the process in not variance stationary and the variance
changes depending on time ¢. A summarizing image of a simulated random walk with

and without drift appears at figure 4.3.
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FIGURE 4.2: Realization of a simulated 2D random walk with 1000 steps.
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FIGURE 4.3: Top left: Simulated random walk of 1000 random values. Bottom left:

Simulated random walk of 1000 random values with drift = 0.5. The decline of the re-

spective autocorrelation functions (ACF) (top right and bottom right plots) progresses

slowly in both cases. The decline of the ACF for the random walk with drift progresses
more slowly than the ACF of the random walk without drift.
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4.2 Autocovariance and Autocorrelation Function

As previously referred in chapter 3, the mathematical definition of the sample covariance

between two stochastic variables x = x4, y = ¥ is set as follows:

Coy = — > (i — Z)(yi — 1) (4.17)

i=1

Then the autocovariance at lag k is given by the following expression:

Y = Cov(yt, Yerk) = El(yt — 9)(Yerk — J)] (4.18)

where £k = 0,1,2,... and 3 and y;+ are values of the time series at different times.
The variance of the time series corresponds to the autocovariance at lag k = 0. For a

stationary time series the variance is constant.

The autocorrelation coefficient at lag k is computed by means of the equation:

_ El(y: — 9)Werr — 9)] _ Cov(ye, Yi+k)
VEy — DIEYsr — 9)?] Var(y:)

Pk (4.19)

The cross-correlation statistics for positive values of lag k between the two variables is

defined by ([67])
1 n—~k

" Z(»Tt —Z)(Ye+r — ¥) (4.20)

t=1

C:Ey ==

Thus, the cross-correlation function is given by the expression:

Cay
= — 4.21
SN 2

4.3 Non-Stationarity

A time series is called nonstationary if the mean and/or variance change over time. A
simple example of nonstationarity is the random walk with or without a drift. Non-
stationary behaviour is common in nature, especially in the fields of economics ([5]) or

signal analysis ([38]).
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Well log data is often corrupted by the different types of noise that results in nonlinear
and nonstationary characteristic behaviour, causing abrupt discontinuities in the series,
whereas making the recognition of the formation boundaries a difficult and ambiguous
process. Additional signal analysis techniques must be applied so as to take care of

nonstationary well log signals.

4.4 Forecasting Models

The second part of this thesis frames on predicting the values for the continuous gaps in
the well logs, acquired through sensing tools, providing better quality of information for

the following steps in the interpretative formation evaluation techniques.

Many study-cases have chosen a variety of well logs and used varied algorithms and
methods to identify the correlations between logs. The most commonly tested techniques
are the ones of generalised linear models - Ordinary least squares (OLS), Bayesian Ridge
Regression(BRR), and Random Sample Consensus (RANSAC) - and non-linear models
- Artificial Neural Net-works (ANN), Random Forests (RF), and Gradient Tree Boosting
(GB) ([52] ; [74]; [14]; [25]). There are other techniques for grid filling when the data
set is incomplete using the Maximum entropy spectrum analysis, minimum curvature or

natural neighbor shorting ([46]; [101]).

However, the science community considers the rapid growth of application of time se-
ries forecasting methods to be of great utilitarian value in order to fill missing data under
specific mathematical statements. Nevertheless, this practice is still in its incipient stages
due to some complex conditions concerning the analysis of data. For instance, a major
issue includes the unravelling and extraction of the convoluted trend and seasonality of

the well log data, which are often stymied by their high complexity.
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4.4.1 Auto-regression

The general equation for linear regression is defined as:

y=o+pBr+e (4.22)

where « is the intercept, g is the linear co-efficient, x is the independent variable and €
is the random noise. In most cases, there are more than one parameters that affect the
study and thus multiple regression is preferably used. The following equation describes

the above:

y=a+pfiar+ Pera+ -+ Bpn + € (4.23)

Generally, we may assert that the auto-regression (AR) model predicts the next point

from the use of the previous value points of the data. This is defined by the equation:

Xi=c+ B1*xi—1+Po*Ti—a...0n % Ti—n +¢€ (4.24)

where c¢ is a constant which is, in some cases, zero and the mean of the time series, x;_,,
are the independent previous value points, [3,, are the parameters of the model and ¢ is
the error term which is also called the innovation term. A white noise model is typically

used to describe the innovation term.

4.4.2 Moving Average

It’s possible to replace the white noise series w; by a moving average to smooth out
fluctuations, trends and cycles of the time series ([83]). Suppose that V; is the moving

average of span N at time period ¢, then :

Vi

t
Yi+Yia+...+Ye vyt 1
— =% Z Y; (4.25)

N

where Y, Yi_1,...,Y;_ny1 are the most recent N observations with weight zero to all
other observations ([61]). An illustration of two moving average models of the white

noise process shown in figure 4.1 appear in the graphs of figure 4.4.
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FIGURE 4.4: Moving averages of the white noise process shown in figure 4.1. Left:
3-point moving average. Right: 10-point moving average.

4.4.3 Autoregressive Integrated Moving Average (ARIMA)

The combination of a d-degree differencing with autoregresssion and a moving average
model is called an ARIMA (p, d, q) model (Table 4.1, Table 4.2) and can be written as

follows :

Yi=0+w1Yio1+ o+ 0prdYip—d+ oo+t — o — 015021 — .. — Oggi—yg (4.26)

where ¢ are the parameters of the AR(p) component model and 6 are the parameters
of the M A(d). The model implies the assumption of a stationary times series, without

trend and a constant variance and mean throughout the series. In reality, thought, this
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is rarely the case. In order to model a non-stationary time series we initially remove the
trend next we transform the data into stationary data set, we perform the model on the

adapted data and finally the trend aspect is added back into the main series (|60]).

The model denotes the dependency of a number of previous values Y;_;, j =1,...,p+

d, of a current random error €; and a number of previous errors €;—;,7 = 1,...,q.

p | Order of the auto-regressive part
d | Degree of first differencing involved
q | Order of the moving average part

TABLE 4.1: ARIMA model of order p,d,q ([40]).

White noise ARIMA(0,0,0)
Random walk ARIMA(0,1,0) with no constant
Random walk with drift | ARIMA(0,1,0) with a constant

Moving Average ARIMA(0,0,q)

TABLE 4.2: Basic ARIMA models ([40]).

4.4.3.1 ARIMA Parameter Selection

Based on the aforementioned statements, it is important to carefully choose the optimum
order of the ARIMA model. This selection process includes the determination of the
Auto-correlation function (ACF), referred in equation 4.19, and Partial-autocorrelation

function (PACF) in order to find the values p, d, ¢ that optimize the metric of interest.

Auto-correlation is defined as the degree of correlation between the current observed
data point and its previous or future point, thus is a measurement of the order of the
dependence. The interval between the observed data point and its previous values used
in measure the correlation is called the lag. Partial-autocorrelation is a measurement of

correlation between observations’ residuals with the next lag k value.

If we consider m = p + g + P + @, where p, ¢ are the non-seasonal components of an
ARIMA model and P, @ are the seasonal components of an ARIMA model (referred as
SARIMA) then the optimum chosen components are the ones that minimize the Akaike

Information Criterion (AIC) (see section 4.6).
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FIGURE 4.6: Correlogram estimate of the partial-autocorrelation function

4.4.4 Model Selection

The following step in data analysis is to obtain a model with good prediction accuracy.
This statistical technique of evaluation and model selection is called Cross-Validation
(CV). Tt is crucial to identify and include all the important factors and interaction
and at the same time omit the unimportant ones. In practise, the data set will be
equally partitioned into two segments: one used for training and the other used for
testing. Various procedures of different validation methods are proposed in order to
estimate accuracy. The least biased accuracy types of cross-validation is the regual
cross-validation, the leave-one-out Cross-Validation (LOOCYV), the leave-p-out Cross-
Validation (LpOCYV) and the k-fold Cross Validation (k-fold CV) ([27], [45]). In this

analysis we are concerned with the common validation measures
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Validation Measures

A number of validation measurement formulas provide an evaluation of association
between each model. The tested equations are the Mean Absolute Error (MAE), the
Mean Squared Error (MSE), the Root Mean Squared Error (RMSE), the Pearson’s cor-
relation coefficient (rp) and the Spearman’s correlation coefficient (rg). The regression
error metrics are useful for evaluating the model’s precision. Pearson’s and Spearman’s
correlation coefficients benchmark linear and monotonic relationships between the pre-
dicted and estimated variables, respectively. Let y be the observed values, y; be the
predictive values and n be the number of observations. Writing the formulas explicitly,

we have:
1w .
MAE = — > e =yl (4.27)
t=1

The MAE is used to measure the prediction’s closeness and accuracy. MAE gives more
weight to the average magnitude of errors between predicted and the corresponding

observations.
1 n
MSE = — i — y]? 4.28
nZ[yt Yl ( )

t=1

The MSE refers to the sum of squared bias and variance and is a useful metric for

providing indirect mathematical insight about the behaviour of the natural processes.

DS EE (129

The RMSE is used to calculate the prediction’s closeness and accuracy while measuring

the quadratic average magnitude of relatively large errors.

100 <~ |9 — il
MAPE = — Y % (4.30)
n Yt
1=t

The MAPE expresses the mean absolute percentage error and has the advantage of being

scale independent. Very high actual values will result in extremely low error and vise
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versa.

>t (9t —9) (3 —9)

rp = — (4.31)
V0 = 9)2 0 (i — 9)°

The Pearson’s correlation is frequently used to measure the degree to which two variables
are correlated, thus querying their linear dependency. The closer the Pearson’s product

(rp) is to 1 or —1, the more accurate the linear fit is.

— i)’ (4.32)

The Spearman’s correlation measures the strength of association between two sets of
continuous variables ¢; and 1; where d; indicates the differences between the ranks of g

and .

4.5 Correlation Techniques

K-Nearest Neighbor(KNN)

The K-Nearest Neighbor (KNN) technique will be used in order to correlate two
discrete physical property logs of two distinguished oil and gas wells that have different
depth steps resolutions and are located in the same studied area. This technique uses
a k-dimensional tree (also called k-d tree) to store and organize spatial data in a k-

dimensional space.

Given a set 2 of points n, we need to rapidly find the closest point in the metric space

(k-neighbor), more simply, we need to find the k objects nearest to the query point ¢

(13D)-

First, the calculation of the Fuclidean distance between the numeric values of the data
points is implemented. The algorithm will compute the distance between each data point
and the test data. Finally, the data points that have the highest probability in being

similar to the tested data are classified. The mathematical formula of the Euclidean
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distance is shown below.

d(p,q) = d(q,p) = V(@1 — p1)® + (@2 — p2)> + - + (@i — pi)?

=X

(4.33)

The KNN is a non-parametric technique, which means that no additional assump-
tions about the data sets needs to be taken. Yet, certain caution must be taken when
using this algorithm, especially when data points are in boundary which can lead to

misclassification.
Classification measures for missing values

Missing data on model induction is a rather major drawback concerning the fields
of Machine Learning (ML); Data Mining (DM) and other correlated areas. Some good
reference in the area are : [9], [56], [17], [55], [37].

In the scientific field of applied geophysics the majority of data sets are obtained
from measurements of natural (or spontaneous) phenomena and induced phenomena at
prediction time. The conditions under which the open-hole and cased-hole measurements
are made often cause the data to have several gaps. Classification measures in such cases

is useful so as to classify the unknown values.
Cost function

When performing multiple well logs correlation a practical solution for optimizing a
reasonable computational cost is of high significance for computer implementation. In
his study, [50|, proposes the dynamic depth warping method where a pair of well logs
A(n) and B(m) with the n-th and m-th point in the well A and B, respectively, the
cost function is a difference metric d(n, m) of matching points between the two well logs,

|A(n) — B(m)|. The cost function is defined as:

VI Ai(n) — Bim)P W (k)
)= k

d(n,m

(4.34)

for i =1,2,...,k logs and W (k) the weighting coefficient for the k-th log.
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More resent studies emphasize in the intrinsic importance of utilizing deliberated
training models of neural networks. A more comprehensive description of this practise

can be found in [31], [10].

4.6 Fitting Criteria

Maximum Likelihood Estimation

The Maximum likelihood estimation method (MLE) is an indispensable tool used for
parameter estimation and is preferred for a variety of mathematical modelling techniques

when the data is non-normal. Suppose that z; are ¢.i.d, then the likelihood is defined as:

L(O) = ][ f(xi | 6)

=1

The L(0) signifies the observing probability f the given data as a function of §. In order
to maximize the product of the previous function, we maximize the log likelihood, using

the fact that the logarithm is an increasing function:
n
1(0) = ) _log(f(xi | 0)
i=2

This method can be performed on data so as to extract as much information as possible.

Information criteria are useful for model selection. In this thesis the AIC and BIC
criteria are used to determine which distribution model is most appropiate for a given
set of stochastic variables. The mathematical expressions of these criteria are written

below:
AIC : Akaike Information Criterion

The AIC approach aims to clarify the best fitted model of the observed data via the

principles of MLE and negative entropy .

AIC = —2log L(0) + 2k (4.35)

"Measure of diveregence of normality ([15])
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BIC : Bayesian Information Criterion

The BIC approach aims to identify the best fitted model of the observed data by
comparing probabilities, under the consideration that each of the candidate models is

the true model.

BIC = —2log L(0) + klog(n) (4.36)

Concisely, both criteria can be used in order to reassure the robustness of a model’s
fitness. These criteria are giving optimal model selection results under defined condi-
tions, whereas fail to fully describe the complexity of a real model problem. Hence, the

understanding of the nature of the problem is necessary.
Goodness-of-fit statistics

The measurements of goodness of fit of a statistical model is an important step on
data analysis in order to examine if the initial hypotheses about the observation process
fit a model adequately as well as if we can consider it consistent with those hypothe-
ses. The following tests can be used for such a reason are the Kolmogorov-Smirnov
test; the Cramér—von Mises criterion; the Anderson—Darling test. In this thesis the
Anderson—Darling test would be used for the analysis. All distributions tested for this

particular thesis are fully specified in chapter 5.2.



Chapter 5

Data Analysis Processes

When it comes to data processing for interpretation, there is not a standard procedure for
every data set. Usually the investigator follows a sequence of operations to result in cor-
rect conclusions. In time series analysis and forecasting there are some general accepted
steps performed, including the evaluation and trend model removal and then residuals
diagnostic processes. In the following section, a brief description of each procedure is

presented.

5.1 Preliminary and Exploratory Analysis

Preliminary data analysis aims to provide summary statistics for all data and examine
if there are issues that can affect the modeling processes. Univariate analysis refers to
the analysis of data that contain only one variable. Multivariate analysis is the analysis
which examines the relationship between two or more variables. The primary analysis

includes both univariate and multivariate analysis ([21]).

Exploratory data analysis aims to provide information about the various character-
istics of a data-set by displaying several graphical techniques and tools. The following

tools are going to be used in this thesis.

44
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Histograms

A histogram is a graphical display that forms the shape of a probability distribution
function by plotting a number of observations from a distribution. We can define a
histogram as a function that calculates a number of intervals n; and then divides them

into variable values. The calculated density histogram is a discrete function with values

fi

S [ S T 5.1
n(cri — cr;i) b (5.1)

where f; is the frequency of the data for each histogram class (bin) 4, [cf i, cr] is the
width of each bin (note that cr ;41 = cr;), n is the number of samples and N is the

number of bins.

QQ plots

A commonly used technique for informally calculating goodness-of-fit as well as es-
timating the scale and location for a family of distributions F, is called QQ plot or
quantile-quantile plot ([2]). The scale parameter defines the heaviness of the tail. In
some cases, is hard to judge the normality from a histogram. A normal QQ plot graphs
the shape of the empirical distribution (y-axis) against the shape of a normal distribu-
tion (x-axis) thus provides a visual check in order to examine whether or not the points
are close to a straight line. For the thesis’s purposes we will adapt this method to the

problem of detecting the lack-of-fit at the distribution tails.

PP plots

Probability-probability plots (also known as PP plots) are a graphical tool for inter-
preting CDFs of a family of distributions against one another ([97]). PP plots are well
suited to compare probability distributions that are not overlapping. Notably, the PP-
plot is sensitive to differences in the middle of a distribution, in comparison with those

in the case of the QQ plot.
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5.2 Probability Distributions

Many geophysical processes are usually modeled and based on the distributions! de-
scribed in this section. Those distributions refer to stochastic processes. In this study,
we will use the term stochastic instead of random to describe a non-random evolution of
the natural process. Estimating the parameters of a distribution is a challenge. Those
parameters are usually complicated functions that depend on the geophysical parameters
of interest ([26]). The data is subject to a great degree of uncertainty that we wish to

describe, in a simple and effective way. Thus, we use the probability theory.

While geophysical data-sets obtained by formation evaluation tools can compute nat-
ural properties or describe natural phenomena, we have to do some simplifications, as
time discretization at the annual time scale ([47]), so that we can perform a classical

statistics implementation of our data.

The typical elements of any distribution are variables included in the probability dis-
tribution function (PDF) and the cumulative distribution function (CDF). Even different
order moments can be regarded as parameters that can make inferences about the lo-
cation, scale and shape of the distribution. Common discrete distributions include the
Binomial, Geometric, Logarithmic, Poison, Zipf and more, while common continuous
distributions include Cauchy, Laplace, Gaussian (or Normal), Beta, Gamma, Student -
t, Weibull, Pareto, Exponential, Gumpel and many more (|58]). Only a few of them will
be analyzed for the propose of this thesis.

Cumulative Distribution Function

A Fx(z) function is said to be a Cumulative Distribution Function (CDF) if it has

the following characteristics:

dFx (x
1. 4Ex@ > g
2. Fx(—OO)IO

3. FX(+oo) =1

The CDF function gives the corresponding probability of a set of random variables x

that occur below a specific value and is expressed by the mathematical formula of :

!Primary statistical tool for analysing and illustrating raw data.
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Fx(z) = /_x fx(u)du (5.2)

Probability Density Function

A fx(z) function is called a Probability Density Function (PDF), for a sample area
X, if it has the following properties:

1. fx($> >0

2. [y [x(x)de =1

The PDF function gives the probability of both continuous and discrete distributions

within a specific range of values and is expressed by the equation of:

b
Prib> X >a] = / fx(x)dx (5.3)

5.2.1 Probability distribution models

Normal Distribution

We call X a normal random variable with elements ;1 € IR, 02 > 0 and we can rewrite
it as X ~ N(u,0?). The Normal distribution is also known as Gaussian distribution and

in non-technical literature is called the bell curve.

Probability density function :

1 _(a—p)?

flaso,p) = e (5:4)

oV 2
where € IR. We can imply that fy(u—vy) = fy(n+vy),y € R, which means that fy
is symmetrical to the p parameter. There is maximum point at yg = p that is the only

local (and absolute) maximum. The inflection points are y; = u — o and yo = u + o.
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Weibull Distribution

The Weibull distribution can be considered as the generalization of the exponential

distribution.

Probability density function :
fxs A, o) = axgoteAe” (5.5)

where x € IR, A > 0, @ > 0. The « parameter is called shape parameter. When «
increases, the curve narrows. The A parameter is called the scale parameter. Weibull
distributions with @ < 1 have a decreasing failure rate, whereas Weibull distributions

with @ > 1 have an increasing failure rate.
Gamma Distribution

The Gamma distribution can be considered as the generalization of the exponential

distribution.

Probability density function :

Aa
flz A o) = (@) z e (5.6)

where > 0. The gamma function is defined as : I'(a) = fooo z*le=%dz, a > 0. The

Gamma distribution is right-skewed.
Logistic Distribution

Probability density function :

e—w

Hee ) = Giemp

(5.7)

for any o € IR, > 0 and = € R while w is defined as : w = #3* . A The f(z) is

symmetric about = « plus the f increases on (—oo,a) and decreases on (a,00).
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Log-logistic Distribution
Probability density function :

kzk—l

f(x;kvz):m

(5.8)

QI

for any k € (0,00) while k and z are defined as : k=2, 2=2 ,2>0,a0>0,8>0.

The o and § elements denote the scale and the shape parameters, respectively.
Chauchy Distribution
We call X a cauchy random variable with elements o € IR, v > 0.
Probability density function :

f<x;a,v>=7;[1+<$;“

)7 (5.9)

for x € IR. The f(z) is symmetric about z = «, it increases and then decreases, when

the mode is = a. As x approaches co or —oco then f(z) — 0.
Gumbel Distribution

We call X a gumbel random variable with elements © € IR and § > 0 and is a
particular case of the class of extreme-value distributions. A Gumbel distribution is

right-skewed.

Probability density function :

i) = e~ (5.10)

where z is defined as : z = % , € IR. At the location of the mode (x = p), the

density f(z) = e~! is approximately 0.37, regardless of the value of 3.

5.3 Spatial Modelling : Estimation of Spatial Correlation

This section refers to the well-log data correlations and the importance of investigation of
spatial correlation of the heterogeneity and variability of physical properties the geolog-

ical strata. This can be done with variography, which establishes the rate of similarity
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between sample points as a function of a distinct seperation distance h. Their visual

representation is displayed in Figure 5.2.

5.3.1 Experimental Variogram

The computational method of the experimental variogram is the Matheron’s method of

moments (MoM) estimator ([64]):

. 1 2

W) = 35w > [z(u) = 2(u+ h)] (5.11)
N(h)

where N(h) is the number of comparison pairs for lag h, z(u) and z(u + h) are the

observed values of z at locations v and u + h. In other words, the variogram is defined

as equal to one half of the average of squared differences between the field values.
Nugget

The existence of nugget effect (or nugget) is related to the fluctuation of the short
range variability in the data. The nugget is equal to the intersection of the variogram
with the y-axis of the graph. If the nugget is larger in comparison with the sill then
that indicates too much noise and really small spatial correlation. Notice that below the

intersection point no information can be obtained for interpretation ([77]) .
Sill

The sill of a variogram is the inflection point of the curve at which levels off and
represents the variance of the variables. Positive or negative spatial correlation occurs
when the data points are below or above the sill, respectively. The existence of trends in
the data can be indicated by the behavior of the variogram curve based on the sill. In

that case, the trends have to be proceed accordingly ([41]).
Range

The distance at which the variogram’s value points level off to the sill is known as
the range and is a maximum correlation length estimation between two sampling points
at separation distance h. One remark is that spatial correlation can be calculated if the

point distances are greater than the range, but is practically zero. ([34]).
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FIGURE 5.2: The three principal parameters of the variogram from [11]
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5.3.2 Theoretical Variogram model

Bochner’s Theorem

The covariance is defined as a deterministic function between two points and denotes
the interdependence of those points on a field Z on IRY. However, it is not correct to
consider that a deterministic function can be defined as a covariance function. The covari-
ance functions cannot be any functions unless they meet under some conditions. Those
conditions must be determined, as they represent several theoretical models. Therefore,
the experimental spatial correlation adjust to a defined fitting model. The conditions

that define the permissible covariance functions are provided by the Bochner’s theorem.
Theorem 5.1 (Bochner’s Theorem). A function éx is a permissible covariance function,
if the following conditions hold:
1. Theintegraléx (k) = [ cx(r) e®Tdr exists and is symmetric, i.e., ¢x (k) = éx(—k),
2. it is non negative for all frequencies k, an

3. is bounded for all frequencies k.

Variogram Models

Fitting a variogram model to the empirical variogram is necessary for two main reasons
([71):

1. Spatial prediction algorithm (Kriging) requires spatial continuity of the data.

2. A variogram model can ensure a positive definite model of spatial variability.
The most common are the spherical, exponential, gaussian, and power functions. These
models ensure mathematical stability during calculations ([41]) and are known to be

positive defined. Examples of experimental and theoritical variogram models used in the

present thesis are :
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Nugget Effect Model

The nugget effect model represents a constant value for all distances greater to zero.

It is described by the function:

0 ifh=0
v(h) = (5.12)
1 ifh<O

In order to optimize any process under study is essential to understand the nature of the
nugget effect since the model describes the spatially uncorrelated range of the observed

values.
Spherical Model

Represented by quadratic modified equation. It is described by the function:

Co+Cp [22 — L3 if0< h<a,
yhy=4 " e ol = (5.13)
Co+ Cy if h > a.

Cy denotes the nugget variance and C refers to the variance of the spatially correlated
component. The quantity « is a distance parameter and indicates the spatial dependence.
Exponential Model

Similar to the spherical model in variability with distance reaching the sill asymptot-

ically. It is described by the function:

Co+ O, [1—6%} h> 0,
2 (h) = (5.14)
0 h=0.

The parameter a denotes the range of the spatial dependence, also referred to as corre-

lation length.
Gaussian Model

The Gaussian model uses the normal distribution curve, thus has a parabolic shape

in short distances where phenomena identical. It is described by the function:

~(h) = Co + C1 (1 — 7)) (5.15)
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The Gaussian model has smoother spatial changes than other experimental variogram

models.
Matérn Model

The Matérn model can be characterized as a generalization of various variogram model
functions. The Exponential model for v = 0.5, the Whittle’s model for v = 1, as well
as the Gaussian model for v = oo are some of the cases. The parameter v is referred
to the literature as the smoothness parameter. Different behaviors of the model can be
described due to great flexibility of the number of the parameter v. The corresponding
variogram function with v = co denotes a smooth behavior. Alternatively, if the v ~ 0,

then is related to a very rough behavior. The model is described by the function:

1 h h

v(h) = Co + C1[1 — m(g)y Ku(g)] (5.16)

where Cj is the nugget effect. The sill is the sum of Cy and €. The K, denotes the
Bessel function:

Ky (t) = (5)7" (5.17)

and the I'(v) denotes the Gamma function :
o
r,= / e turtdt (5.18)
0

The non-negative parameter of the covariance is the component v.
Power Model

A spacial case of the power model is the Linear model, where a = 1 and h describes

the slope. It is described by the function:
~v(h) = Cyh® (5.19)

for 0 < a < 2. The parameter a describes the variation’s intensity while the parameter
2H describes the curvature. There is no sill for the power-law variogram. Thus, allow

for infinite variance.
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Pentaspherical Model

Represents a five-dimensional analogue of the spherical model. The formula is de-

scribed by the function:

G~ 58 + 4P h<a
’y(h) _ ] 1 8 (520)
Cl h >a

The parameter a denotes the range and the C7 is the sill. One remark is that the curve

rises gradually in comparison with the spherical model, with gradient 15C /8a.
Circular Model

The formual is describe by the function:

2 —1h 2h h?
Ci[l = zcos™ o+ 224 /1 =] h<a (5.21)
1 h>a

v(h) =

The parameter a denotes the range and the C is the sill. The model’s curve rises

rightly and reaches the range with gradient 4Cy /ar.
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5.4 Variogram Fitting Methods

The purpose of fitting a theoritical variogram model to the calculated experimental
variogram model is to estimate the optimum variogram parameters. The smoothing
parameter of the variogram is defined by the number of lags k, yet there is no established
rule for selecting the optimum number of lags. Some proposed methods for choosing
the optimum fitted model, based on the leave-one-out cross-validation (LOOCV) and
the Akaike information criterion (AIC) are the Ordinary Least Squared (OLS) and the
Weighted Least Squares (WLS) ([43]). Some good studies in the area are the ones of [57]
and [69] with applications in the geophysical study field.

Least Squares

In the Ordinary Least Squares (OLS) method we attemp to estimate the parameter
vector 6 of the theoritical variogram ~y(h) fitted in the experimental variogram 4(h),
hence minimize the sum of square differences R(6) given by the following equation :

Fori=1,2,....k

k
R(6) = > wili(hi) = (ki O)F (5.22)

In the case of OLS the weights w; are equal to 1. The OLS method assumes that all
differences resulted from the optimization process are normally distributed and indepen-

dent.

In the case of Weighted Least Squares (WLS) the weights w; are dependent upon the
weighting method and w? = 1/Var(9(h;)). One method of weighting is described by
[22] and is given by the formula:

k -y .
R(0) = % ; Ni[v’(y}(z’g) — 1) (5.23)

where N; are the number of pairs for the lag i. WLS fitting is more accurate for short
distances, while on the hand the OLS performs an overall best fit at all distances con-
sidering constant variance. In R environment this could be done by using the argument
fit.method. For the purpose of the thesis, the fit. method=1 with weights N; from the
experimental variogram and fit.method=7 with weights N;/ h? from the experimental

variogram, are going to be used. Those weights depend on fitting parameters.
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Cross-Validation Method

With the cross-validation method it is possible to calculate the error between the real
and the predicted value for a number of data points with known values. Therefore, it
allows us to compute the goodness of the performance of each interpolation algorithm.
The main selected methods of CV for the purpose of this thesis have been analytically

extensively adverted in the subsection 4.4.4



Chapter 6

Well Logs Correlation

In this section our research aims at finding a solution for the problem of correlation

between available well logging data. This section seeks to address the following concepts:
e Implement geostatistical preliminary and exploratory analysis in order to demon-
strate spatial dependencies.

e Investigate methods of improving accuracy of well to well log correlations. The

solution to the problem is based on interpolation methods.
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FIGURE 6.1: Finnegan and Seamus hydrocarbon wells location in Western Newfound-
land and Labrador Island. Image retrieved from the Government of Newfoundland and
Labrador website, section; Onshore Maps and Data.
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6.1 Information about the Hydrocarbon Gas Reservoir

In this thesis we use well logs from two onshore natural gas reservoirs in Western New-
foundland and Labrador Island (Canada). The onshore exploration wells Seamus and
Finnegan were drilled by Nalcor Energy and partners in 2010/2011 and had good gas
shows. However, both were suspended since the natural gas encountered in the wells was
non-commercial. The Seamus well was drilled to a total final depth of 3, 160m while the
Finnegan well reached an onshore depth of 3,130m. The data-sets gathered as a result
of drilling, testing and seismic analysis of the wells can be integrated for (i) the better
understanding of the Western Newfoundland and Labrador Island petroleum geology,
(ii) onshore studies of the regional stratigraphy and correlation into offshore blocks, (iii)

extrapolation to various offshore exploration licences in the area.

The two drilled well-bores are located within the Cambrian Ordovician-Anticosti
basin. The Anticosti basin is the largest Paleozoic basin of Western Newfoundland and
Labrador Island with both offshore and onshore covered areas. The geological model of
the basin contains rock sequences from Lower Cambrian to Devonian evolution period
of the northern Appalachian orogen including a sliver of overlying carboniferous clastics
that are associated with multiple tectonic events. Good oil and gas production reservoirs
are presented in the Lower Ordovician and Mid-Upper Ordovician (HTD), the Carbon-
ate thrust slice, and the Lower Devonian sandstone. Dolomitized carbonate rocks and

sandstones are the predominant reservoir rocks in the Anticosti basin.

The studied group of Goose Tickle includes the Goose (American) Tickle formation,
the Table Head group includes the Table Point formation while the St.George group
includes the Aguathuna, Catoche, Boat Harbour and Watts Bight formation. All those
formations are present to both studied wells. Reservoir potential is recognized within the
stratigraphic unit of Goose (American) Tickle and Table Point formations while main

reservoirs are recognized within the St.George group.

These hydrocarbons occurrences associated with the Paleozoic basin are considered
of high geological risk with regard to hydrocarbon mitigation, oil biodegradation, and
lateral seal. The use of high quality acquisitive data can lead to the direct detection of

porosity and fluid type and thus minimize the specified risk.
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The recorded data includes the GR (Gamma Ray), SP (Spontaneous Potential), A10
(Array Induction Two Foot Resistivity, Depth of Investigation: 10in) and A20 (Array

Induction Two Foot Resistivity, Depth of Investigation: 20in) well logs.

All the information and data used for this thesis has been retrieved from the Final

well reports of Seamus and Finnagan wells found in [1].

Figures 6.2, 6.3, 6.4, 6.5 illustrate the available well log data of the selected formations.
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FIGURE 6.2: Finnegan well logs of 311mm hole section. The spontaneous and gamma-
ray logs are displayed on the left side of the log. The induction resistivity logs are on

the right.
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FIGURE 6.3: The spontaneous and gamma-ray logs of Finnegan 216mm hole section
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respectively.
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6.1.1 Notions and Assumptions for the Data

In table 6.1 a summary of the selected formations’ thickness and data consistency is
represented. Indications of complex, non-stationary behavior can be visualized by the

figures 6.2, 6.3, 6.4, 6.5, as the means and variances are not constant over depth.

Formations Formation thickness (m) Observed data (n)
Finnegan Goose (American) Tickle 284.4 1422
Table Point 145 725
Aguathuna 50 250
Catoche 124.8 624
Boat Harbour 119.8 599
Watts Bight 69.8 349
Seamus  Goose (American) Tickle 259.1 1700
Table Point 132.6 871
Aguathuna 52.7 347
Catoche 109.8 721
Boat Harbour 124.8 819
Watts Bight 61.8 406

TABLE 6.1: Summary of studied data-sets.

The analysis is progressed by removing potential trends in the datasets; in order
to ensure consistency of interpretation of the spatial direction in the data and on the
other hand, to examine under which possibly circumstances the effect of a trend on a

semivariogram might be bypassed to allow a sufficient analysis of the data.

For a quick-well log interpretation the principle data sources have been used in order
to locate and identify the different geological formations. Firstly, the formation interval
is identified by the SP and GR log responses. High SP usually represent permeable
beds, or fresh water, while low SP often represent shale beds, or salt water. If the
SP is constant over depth then the formation is impermeable. Additionaly, high GR
represent shaly sandstones, or shandy shales, while low GR usually represent sand, or
coal, limestone and dolomite. The process of visual evaluation and identification was
surely ambiguous but nevertheless capable of resulting enough information. However,
the optimum selection of a formation delimitation can best impact the field development
and benefit the planning of a drilling program. Thus, the recognition of the stratigraphic
boundaries were defined by district lithological and coring analysis reported by the Nalcor

Energy Oil & Gas Inc.



Analysis of Well-Log Spatial Correlations 67

6.2 Methodology

Different types of noise result in nonlinear and nonstationarity characteristic behaviour,
the convoluted trend and seasonality of the well log data is difficult to extract. We like
to examine the effectiveness of a trend in the analysis of the data, so there is no need for
any transformations or removal of extremely complected trend models. For the analysis
procedure the following variogram models have been used: 1) Exponential, 2) Gaus-
sian, 3) Spherical, 4) Pentaspherical, 5) Circular. The utilized algorithms for statistical
analysis and construction of the variograms, as well as the algorithm for calculating the
correlations between well logs were developed and run in R and Matlab environment.

The algorithms were developed for:
1. Detrending 1D data,
2. Fitting probability distributions to data series,
3. Plotting QQ, Empirical and Theoretical CDFs, and PP graphs,
4. Calculating the experimental variogram and fitting the theoretical variogram model,
5. Performing cross-validation for a given model, and
6. Interpreting several interpolation methods to estimate the query point of the stud-

ied data and improve the performance of correlation algorithm .

In order to estimate the empirical semivariogram we used the Cressie-Hawking robust
estimator which provides a satisfactory model that improves the variogram estimation
of a described geologically continuous process. This developed model deals with outliers

and non-normality for distributions particularly heavy in the tails region (|23]).
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6.3 Goose (American) Tickle Formation

The Goose (American) Tickle formation is a geological unit dominated by silty argillite
with minor sandstones ([72]). The Goose (American) Tickle formation is found in
Finnegan well at depth of around 1965m and 2250m. The formation contains more
than 60% sandstone and less than 40% shale rocks. The same formation is present in
Seamus well in a depth range from about 2225m and 2585m, and contains more than

60% sandstone, less than 40% shale and less than 10% limestone rocks [1].
Finnegan 311mm hole section

To begin with, the statistical moments were calculated and presented in table 6.2.
The next step is the elimination of any possible trend in order to remove any long-time
scale fluctuations. The chosen logs are the Spontaneous Potential and Gamma Ray logs,
as they both contain a describable trend component. The complete expressions of the
resulting trend models are shown in table 6.4, while the statistics of the detrended values
can be seen in table 6.3. In figure 6.6 the histograms of the original and detrended

data-sets are plotted.

In figures 6.7, 6.8, 6.9, 6.10 the fitting of the tested distributions is presented. The
values of Spontaneous Potential and Gamma ray determine the total field 2 C IR, so the
tested distributions were the Gaussian, Cauchy and Gumbel distribution. The data-sets
of Array Induction logs determine the total field Q, C IR™ | so the tested distribu-
tions were the Gaussian, Weibull and Gamma distributions. In Table 6.5 the estimated
parameters and validation measures are presented. The formations of Table Point and

Aguathuna are presented in Appendix A.2.
Spontaneous Potential

As presented by Figure 6.7 the, the Q-Q plot shows luck-of-fit at the Cauchy and Gum-
bel distribution tails. The graph of Empirical and theoretical CDFs confirms that the
empirical values don’t match up well with theoretical distributions. The P-P cross-plot
shows that the matching cumulative probabilities from the two cumulative distributions
don’t agree. The information criteria presented in Table 6.5 agree that the best model

is the Gaussian model, followed by Cauchy and Gumbel.



Analysis of Well-Log Spatial Correlations 69

Gamma Ray

As presented by Figure 6.8 the, the Q-Q plot shows luck-of-fit at the Cauchy and
Gumbel distribution tails. The graph of Empirical and theoretical CDFs confirms that
the empirical values don’t match up well with the Cauchy and Gumbel theoretical dis-
tributions. The P-P cross-plot shows that the matching cumulative probabilities from
the two cumulative distributions of Cauchy and Gumbel don’t agree. The information
criteria presented in Table 6.5 agree that the best model is the Gaussian model, followed

by Cauchy and Gumbel.
Array Induction (10in)

As presented by Figure 6.9 the, the Q-Q plot shows no significant luck-of-fit at the
studied distribution tails and a good indication that the dataset comes from a Gaussian
distribution. The graph of Empirical and theoretical CDFs confirms that the empirical
values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot
shows that the matching cumulative probabilities from the tested cumulative distribu-
tions match up pretty well. The information criteria presented in Table 6.5 agree that the
best model is the Gaussian model, followed by Gamma and Weibull. We will continue

under the assumption that the dataset comes from a Gaussian distribution.
Array Induction (20in)

As presented by Figure 6.10 the, the Q-Q plot shows no significant luck-of-fit at the
studied distribution tails and a good indication that the dataset comes from a Gaussian
distribution. The graph of Empirical and theoretical CDFs confirms that the empirical
values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot
shows that the matching cumulative probabilities from the tested cumulative distribu-
tions match up pretty well. The information criteria presented in Table 6.5 agree that

the best model is the Gamma model, followed by Gaussian and Weibull.
Variogram Analysis

A set of theoretical variograms were constructed for each physical property in order
to determine the required nugget, sill and range. The experimental variograms were cal-
culated based on the 5.11 equation. The set maximum correlation distance is split into
lag distance bins in order to construct each variogram for each variable. The respective

minimum lag distance for the physical property of Spontaneous Potential is equal to
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2.5m, Gamma Ray is equal to 4m, Array induction of 10in is equal to 0.5m and Array
induction of 20in is equal to 0.2m. The variogram plots are illustrated in Figure 6.11.
Four available models were fitted to the studied physical property and the determination
modelling parameters for each fit is summarized in table 6.6. The determination coeffi-
cients are summarized in Table 6.7. An initial observation is that the best fitted models
for the Spontaneous Potential property are the Circular model, followed by Spherical
and Pentaspherical. For the Gamma Ray property the best fitted model is the Circular
model, followed by Spherical and Pentaspherical. For the Array Induction (10in) prop-
erty the best fitted model is the Exponential, followed by Penthaspherical and Gaussian,
while for the Array Induction (20in) case, the best fitted model is the Gaussian, followed

by Circular and Spherical.

The fact that not all properties fit optimally to the same theoretical model is possibly
due to different number of points used to each experimental variogram calculation. The
sill and range seems to be close for the Spontaneous Potential and Gamma Ray, which

were fitted to the same theoretical variogram models.

Logs Min Max Mean Median Mode
SP(mV) -124.31 -11.84 -67.11 -64.39  -93.08
GR(GAPI) 44.83 113.21 78.67 81.12 87.88
A10(Ohmm) 9.77 26.41  17.41 17.43 16.21
A20(Ohmm) 30.8 93.67 56.82 55.93 55.1

Logs Variance SD Skewness Kurtosis
SP(mV) 813.43 28.52 -0.03 1.84
GR(GAPI) 90.46 9.51 -1.01 3.90
A10(Ohmm) 5.5 2.34  -0.03 3.04
A20(Ohmm) 82.63 9.09 0.53 3.63

TABLE 6.2: Data statistics of Finnegan 331mm hole section.

Log Min Max  Mean Median Mode

SP(mV) -22.33  19.21 1.54e-14 -0.25 -9.14
GR(GAPI) -32.98 33.84 4.96e-14 1.56 6.02

Log Variance SD  Skewness Kurtosis
SP(mV)  43.16 6.57 0.18 3.00
GR(GAPI) 73.79 8.60 -1.07 4.65

TABLE 6.3: Detrended data statistics of Finnegan 331 hole section.
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FIGURE 6.6: Histogram of original and detrended data-sets of SP and GR logs of the
Goose (American) Tickle formation found in Finnegan 311 hole section. Histograms
with binwidth = 30.

Log Model Estimated Trend Function

SP  Linear —115+6.75- 10~ %2 + €;,¢ ~ N(0,6.57%)

GR Quadratic 68+ 4.23 1072z —5.70 - 10>z 4 2.64 - 107823 + ¢;,€ ~ N(0,8.6°)

TABLE 6.4: Estimated trend models.

Histograms
Distribution = Parameters Information Criteria
SP  norm 1=1.546e-14,0=6.577 AIC=9398.92, BIC=9409.44
Cauchy a=-0.399,y=3.772 AIC=9843.06, BIC=9853.59
Gumbel 1=-3.229,b=6.354 AIC=9558.30, BIC=9568.82
GR  norm 1=4.965e-14,0=8.587 AIC=10161.95, BIC=10172.47
Cauchy a=1.977,7=3.987 AIC=10216.97, BIC=10227.49
Gumbel 1=-4.691,b=10.586 AIC=10824.91, BIC=10835.43
A10 norm 1=17.408,0=2.344 AIC=6466.42, BIC=6476.94
Weibull a=8.008,A\=18.427 AIC=6543.608, BIC=6554.129
Gamma, a=53.607,A= 3.079 AIC= 6489.494, BIC=6500.01
A20 norm 1#=56.817,0=9.087 AIC=10322.96, BIC=10333.48
Weibull a=6.238, A= 60.757 AIC=10513.14, BIC= 10523.66
Gamma, a=39.844,A=0.701 AIC=10272.02, BIC=10282.55

TABLE 6.5: Distributions’ estimated parameters and information criteria of the Goose
(American) Tickle formation found in Finnegan 311mm hole section. The units of
measurement are [mV], [GAPI], [Qhmm]| for SP, GR and A10, A20 respectively.
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Variograms
Model Sill Range Nugget
SP  Cir 55.148 39.170 6.066
Exp 92.257 43.880 5.625
Pen 58.584 59.45  5.96
Sph 96.174  46.010 5.996
GR Cir 57.55  34.83  20.26
Gau 46.07  13.83  23.66
Pen 58.83  49.68  19.96
Sph 58.03  40.13  20.09
A10 Exp 4.514  0.807  0.000
Gau 3.258 0.766  0.871
Pen 4.021 1.885  0.158
Sph 3.945 1.567  0.221
A20 Cir 46.5 0.725  0.000
Gau 4725 0.356  0.000
Pen 47.69  1.069  0.000
Sph 47.200 0.858  0.000
TABLE 6.6: Fitting of the best theoretical model to the experimental variograms of the
field.
Variograms
Model MSE MAE RMSE
SP  Cir 3.223  1.369 1.795
Exp 11.199 2.639 3.346
Pen 5.726  1.953 2.393
Sph 4.438 1.668 2.107
GR Cir 8.348  2.379 2.889
Gau 40.261 5.522 6.345
Pen 11.024 2.782 3.320
Sph 9.278  2.497 3.046
A10 Exp 0.180  0.318 0.425
Gau 0.296 0.471 0.544
Pen 0.293  0.459 0.542
Sph 0.299  0.467 0.547
A20 Cir 27.237 3.672 5.219
Gau 26.560 3.867 5.154
Pen 32.164 4.317 5.671
Sph 29.746 3.963 5.454

TABLE 6.7: Fitting of the best theoretical model to the experimental variograms of the
field.
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Seamus 216mm hole section

First, the statistical moments were calculated and presented in table 6.9. The following
step is to remove any possible trend in order to eliminate any present variations. The
Gamma Ray log is the only one with a present removable trend component. The complete
expressions of the resulting trend models are shown in Table 6.11 , while the statistics
of the detrended values can be seen in table 6.10. In figure 6.13 the histogram of the

original and detrended data-set is plotted.

In figures 6.14, 6.15, 6.16, 6.17 the fitting of the tested distributions is presented.
The values of Spontaneous Potential and Gamma ray determine the total field 2 C IR,
so the tested distributions were the Gaussian, Cauchy and Gumbel distribution. The
data-sets of Array Induction logs determine the total field Q, C IRT , so the tested
distributions were the Gaussian, Weibull and Gamma distributions. In Table 6.12 the
estimated parameters and validation measures are presented. The formations of Table

Point and Aguathuna are presented in Appendix A.1.
Spontaneous Potential

As presented by Figure 6.14 the, the Q-Q plot shows luck-of-fit at the Cauchy distri-
bution tails. The graph of Empirical and theoretical CDFs confirms that the empirical
values don’t match up well with theoretical distributions. The P-P cross-plot shows
that the matching cumulative probabilities from the two cumulative distributions don’t
agree. The information criteria presented in Table 6.12 agree that the best model is the

Gaussian model, followed by Gumbel and Cauchy.
Gamma Ray

As presented by Figure 6.15 the, the Q-Q plot shows luck-of-fit at the Cauchy and
Gumbel distribution tails. The graph of Empirical and theoretical CDFs confirms that
the empirical values don’t match up well with the Cauchy and Gumbel theoretical dis-
tributions. The P-P cross-plot shows that the matching cumulative probabilities from
the two cumulative distributions of Cauchy and Gumbel don’t agree. The information

criteria presented in Table 6.12 agree that the best model is the Gaussian model, followed

by Cauchy and Gumbel.
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Array Induction (10in)

As presented by Figure 6.16 the, the Q-Q plot shows luck-of-fit at the studied distri-
bution tails. The graph of Empirical and theoretical CDFs confirms that the empirical
values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot
shows that the matching cumulative probabilities from the tested cumulative distribu-
tions match up well. The distribution is higly right skewed (positive skew). The infor-
mation criteria presented in Table 6.12 agree that the best model is the Gamma model,

followed by Weibull and Gaussian.
Array Induction (20in)

As presented by Figure 6.17 the, the Q-Q plot shows luck-of-fit at the studied distri-
bution tails. The graph of Empirical and theoretical CDFs confirms that the empirical
values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot
shows that the matching cumulative probabilities from the tested cumulative distribu-
tions match up pretty well. The distribution is higly right skewed (positive skew). The
information criteria presented in Table 6.12 agree that the best model is the Gamma

model, followed by Weibull and Gaussian.
Variogram Analysis

In figure 6.18 the constructed theoretical variograms of each log are presented. We
set the maximum correlation distance bins in way that we can construct each variogram
for each physical property log. The respective minimum lag distance for the property of
Spontaneous Potential is equal to 2m, Gamma Ray is equal to 8m, Array induction of
10in is equal to 3m and Array induction of 20in is equal to 2m. The modelling parameters
of each fitted model are summerized in Table 6.13, while their coefficients are summed up
in Table 6.14.First we observed that the best fitted models for the Spontaneous Potential
log are the Spherical model, followed by Pentaspherical and Circular. For the Gamma
Ray log the best fitted model is the Pentaspherical model, followed by Spherical and
Gaussian. For the Array Induction (10in) log the best fitted model is the Gaussian,
followed by Penthaspherical and Spherical, while for the Array Induction (20in) case,
the best fitted model is the Penthaspherical, followed by Exponential and Spherical.



Analysis of Well-Log Spatial Correlations 80

As previously mentioned, the fact that not all logs fit optimally to the same theoretical
model is probably due to different number of points used to each experimental variogram

calculation.

6.4 Well Log Correlations

Interpolation Methods Interpolation processes are used to estimate the values of a
function between two known points on a line or a curve. The problem of interpolation can
be easily described as: Lets consider a range of a function f(zg), f(z1), f(z2),..., f(xn)
that corresponds to xg,x1,x9,...,, data points. We need to find a function y,, that
has the same values with the f, function, at the same xzq,z1,xo,...,z, data points.
If we agree that p, is a known function, then we can "read" the f, function in the
intermediate data points, xg, x1,x2, ..., Z,, called interpolated points. In this thesis the
methods that are going to be applied are the Linear, Nearest Neighbor, Cubic and

Spline interpolation.

The selected logs of the two wells were correlated with the Pearson and Spearman
correlation coefficient; the RMSE measure was as well calculated. The depth measure
used in the correlation was the standard true vertical depth. The depth step of Finnegan
216 mm and 311 mm diameter hole section is 0.2m, while the Seamus 215 mm hole
section is 0.1524m. As the scale changes so does the range of the data sets. In order
to correctly correlate two series we need to perform a range standardization. The first
step is to insert the data set to the Matlab environment. Then, use several interpolation
methods to create two data sets with formation alignment and common sampling step.
This is done by removing the difference of the initial distances of each set and then set
the initial points to zero. The next step is to choose one of the two studied series of a
selected formation, with a known and constant depth step. We keep this step constant
and we will create a common depth step scale for both series by choosing a maximum
cutoff point. Finally we compare the different interpolation methods used in terms of
the resulting values of well-to-well log correlations. We will apply the same process for
all the studied formations. To illustrate, their graphical representation is presented in

figures 6.12, A.21, A.22, A.23, A.24, A.25.
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The Gamma Ray log has been used as the lithological indicator for the correlation.

Measurements of the gamma ray index are primarily used to correlate stratigraphic

sections. Shales and clays found in oil and gas wells are usually responsibly for emitting

natural radioactivity as their radioactive isotope content and mineralogy can be tracked

down by gamma ray devices. Gamma-ray fluctuations indicate changes in formation

mineralogy. Thus, gamma-ray logs taken from different wells within the same region of

study can be efficiently used for well to well correlation, since similar formations will

result in similar feature measurements.

Cross Correlation Scores

Model rp rg RMSE(GAPI)
Goose ( American ) Tickle Linear 0.257  0.295 23.613
NN 0.255 0.294  23.653
Cubic 0.255  0.294  23.648
Spline 0.255 0.294 23.656
Table Point Linear 0.09 0.192  8.083
NN 0.094 0.199 8.098
Cubic 0.089  0.19 8.105
Spline 0.089 0.187 8.110
Aguathuna Linear 0.261 0.483 18.310
NN 0.261 0.480 18.322
Cubic 0.260 0.480 18.371
Spline 0.257  0.479  18.396
Catoche Linear -0.104 -0.142 18.483
NN -0.107 -0.140 18.537
Cubic -0.103 -0.139 18.556
Spline -0.102 -0.138 18.572
Boat Harbour Linear -0.070 -0.401 11.415
NN -0.066 -0.038 11.460
Cubic -0.069 -0.040 11.470
Spline -0.102 -0.138 18.572
Watts Bight Linear -0.002 0.042 16.025
NN 0.001  0.043 15.965
Cubic -0.003 0.040 16.127
Spline -0.001 0.040 16.150

TABLE 6.8:

Leave-One-Out Cross Correlations of the known geological series of

Finnegan and Seamus wells.
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6.5 Synopsis

Preliminary and exploratory data analysis tools allow the user to examine the data in
more quantitative ways. The tools used were Histograms, Normal QQ-plots, Emprirical
and theoretical CDF’s plots, and P-P plots. Moreover, variogram analysis was used to

examine the spatial autocorrelation between the measured respective properties.

Thee exploratory analysis indicates that the majority of the respective properties do
not follow the Gaussian distribution. However, after removing a trend function, the
residuals are closer to the Gaussian distribution. Results demonstrate that the Sponta-
neous potential and Gamma radiation indicators can be most often described by Cauchy
and Gumbel distributions. In contrast, the Induction indicators can be most often de-
scribed means of the Gamma and Weibull distributions. The theoretical variograms’
formalization was manually achieved by applying WLS, for weights equal to N; and
N;/ hjz, accordingly. The weighting scheme of N;/ h? gives more weight to early lags. On
the contrary, the weighting scheme of NN; give more weight to later lags. The results of
the variogram analysis indicate that Spontaneous potential and Gamma Radiation in-
dicators are mostly fitted to the same type of theoretical variogram model, with similar
sill and range values. The variogram analysis confirmed that high spatial heterogeneity

characterizes the entire span of the logging records.

The statistical analysis indicates a weak correlation between the respective properties
measured at the two different wells. The association between the data at the neighbor-
ing wells is examined by means of statistical dependence measures such as the Pearson’s
linear correlation coefficient and Spearman’s rank correlation coefficient. The cross cor-
relations calculated from the processed data using different interpolation models lead to
similar values. The Gamma radiation logs show both positive and negative correlation
which are overall higher (in magnitude) than for the other three logs. The values of
the positive correlation coefficients range from 0.001 to 0.483, while the values of the
negative correlation coefficients range from -0.142 to -0.001. These findings support the

notion that the Gamma ray log is influenced by lithological changes.
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Min
110.937
35.167
9.762
9.001

Max

173.937
113.907
1950
1950

Median

141.312
71.049
70.810
117.945

Mode

141.312
62.583
37.734
63.713

Mean

142.347
72.472
94.512
163.904

Logs
SP(mV)
GR(GAPI)
A10(Ohmm)
A20(Ohmm)

SD Kurtosis

2.788
2.351
99.550
20.405

Skewness

12.464  -0.025
14.374  0.208
142.029 9.115
162.22  3.226

Variance

155.356
206.604
20172.2
26316.1

Logs
SP(mV)
GR(GAPI)
A10(Ohmm)
A20(Ohmm)

TABLE 6.9: Data statistics of Seamus 216mm hole section.
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FI1GURE 6.13: Histogram of original and detrended data-sets of GR logs of the Goose
(American) Tickle formation found in Seamus 216 hole section. Histograms with bin-
width = 30.
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Log Min Max Mean Median Mode
GR(GAPI) -33.230 34.531 1.33e-13 0.642 -4.614

Log Variance SD Skewness Kurtosis
GR(GAPI) 142921 11.955 -0.017 2.365

TABLE 6.10: Detrended data statistics of Seamus 216mm hole section.

Log Model Estimated Trend Function
GR Linear 58.65+ 1.841- 102z + ¢;, e ~ N(11.96%)

TABLE 6.11: Estimated trend model.
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FIGURE 6.15: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section.

Histograms
Distribution = Parameters Information Criteria
SP  norm 1=142.347,0=12.460  AIC=11836.3 BIC=11846.9
cauchy a=142.419,~v=7.209 AIC=12340.2, BIC=12350.8
gumbel 1=136.085,b=12.219 AIC=12057.2, BIC=12067.8
GR  norm 1=1.33e-13,0=11.95 AIC=11711.1, BIC=11721.7
cauchy a=0.536,7=8.080 AIC=12421.3, BIC=12431.9
gumbel 1=-5.978,6=11.354 AIC=11880, BIC=11890.6
A10 norm 1#=94.512,0=141.981  AIC=19140.7, BIC=19151.3
weibull a=1.142,A=100.450 AIC=16596.5, BIC=16607.2
gamma, a=1.885,A=0.012 AIC= 16363.8, BIC=16374.5
A20 norm 1#=163.904,0=162.168 AIC=19539.7, BIC=19550.4
weibull a=1.212, = 176.322 AIC=18214.7, BIC= 18225.3
gamma a=1.638,A=0.010 AIC=18122.6, BIC=18133.2

TABLE 6.12: Distributions’ estimated parameters and information criteria of the Goose
(American) Tickle formation found in Seamus 216mm hole section. The units of mea-

surement are [mV], [GAPI|, [Qhmm| for SP, GR and A10, A20 respectively.
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FIGURE 6.18: Variogram plots. The weights are determined using N;, where N; is the
number of pairs at certain lag.
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Variograms
Model Sill Range Nugget
SP  Sph 191.089  21.120 O
Pen 193.064  25.056 O
Cir 189.217  17.192 O
GR  Sph 107.790  32.895 59.588
Gau 88.947 13.576 71.532
Exp 125.756  14.106 47.824
Pen 109.254  39.894 58.691
A10 Sph 2463.633 12.880 572.131
Exp 2880.569 6.009  358.367
Pen 2504.862 15.942 560.626
Cir 3431.690 11.301 592.550
A20 Sph 8888.640 7.699  3697.260
Gau 7612.02 3432 4789
Exp 10460.82 3.250  2592.67
Pen 9020.19 9.356  3617.89
Cir 8755.98  6.664  3757.48
TABLE 6.13: Fitting of the best theoretical model to the experimental variograms of
the field.
Variograms
Model MSE MAE RMSE
SP  Sph 700.453 22935  26.466
Pen 707.263 22936  26.594
Cir 711.312  23.465  46.670
GR  Sph 164.396  10.737  12.822
Gau 180.643  10.849 13.440
Exp 228.621 12.541 15.120
Pen 164.04 10.769 12.808
A10 Sph 117608  274.766 342.940
Gau 83937 249.511 289.719
Pen 107069  259.225 327.213
Cir 122047  282.321 349.353
A20 Sph 986212  804.021 993.082
Gau 1060172 853.261 1029.65
Exp 952405  731.143 975.912
Pen 952353  784.392 975.886
Cir 1044511 843.266 1022.01

TABLE 6.14: Fitting of the best theoretical model to the experimental variograms of
the field.



Chapter 7

Interpolation and Imputation

Methods

7.1 Missing Data

Missing data cases arise in all types of statistical analysis. In the geophysical literature,
the interest rate in evaluation and prediction of a model’s performance and accuracy
was relatively low until the development and utilization of stimulation models became a

necessity in predicting geophysical phenomena ([98], [51]).

In the beginning we need to distinguish the three major missingness patterns. Different
imputation methods are requisite for different missing data patterns. Those patterns
describe which values are missing and which values are observed as well as denote where
those values are located in the dataset ([29]). In this thesis, only one dependent variable

has missing data and thus, a univariate missing data pattern is formed.
Missing Data Mechanism

Missing Data Mechanisms arouse the interest of data scientists who work with miss-
ing data handling tools and methods. Those tools and methods are to a large extend

dependent upon the nature of the mechanism impaired in a subset of missing values

([78])-

Let’s consider a set Y = (y;;) which is supplemented with data and an array of
missing data cumulants, M = (M;;). The mechanism of the emergence of missing data

91
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is characterized by the conditional distribution M, given Y. The above consideration

can be mathematically attributed by the expression:

FMIY, @) (7.1)

where ¢ are the unknown parameters. We then define the missing patterns as Y5, and
the observed patterns as Y. In case the values of a missing pattern are not randomly

missing, then the analysis will interpret to non-significant results.

Some analysis procedures are used only when specific missing data values are sorted
into groups of order. The advantages of identifying the patterns and reasons for missing

data are ([93]):

1. Classification of given data in the rows and columns in order to check in which

pattern the data is imputed.

2. Finding of the appropriate technical analysis of missing data that will give rise to

reliable and accurate results.

In this thesis we consider only one variable with missing data, so we distinguish the
univariate type of pattern. In figure 7.1 the standard taxonomy of the main types of
missing data patterns are displayed. There are three main mechanisms described in the
literature. The Missing Completely at Random (MCAR), Missing at Random (MAR)
and Missing Not at Random (MNAR). For the purposes of the thesis we will analyse the

following two mechanisms.

o Missing Completely at Random (MCAR): The missingness of the measurements
are not dependent upon neither the observed nor the lost data values of the Y set.

We can mathematically describe this statement as follows:

Therefore, the missing variables are unrelated to the measured variables and the
missingness rate is completely unsystematic. For example when data is missing
for the mud pulse telemetering system for which the signal was lost due to hole
sloughing, the presence of mudcake, or the invasion of the formation by drilling

mud. Those factors affect the data rate transmission ([35]).
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e Missing at Random (MAR): The missingness of the measurements are exclusively
related to the observed variables, Y ;s and not to the missing patterns. This is

described as:

FM|Y, ) = f(Yobs|©), V¥inis, ¢

For example when data is missing because the mud pulse telemetry has low trans-
mission data rate which is also affected by the input voltage threshold, pulse timing

process or the pulse pressure of the fluid drilling site ([35]).

X X
X X
X X X
X X X
X X | X X
X X | X X X
X X| X | X X X
X X| X | X X X
@) (b) © @

FIGURE 7.1: Missing Data Patterns. (a) Univariate, (b) Monotone, (c) Connected, (d)
Random. The rows correspond to observations, the columns to variables. Annotated
by [92].
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7.2 Missing Data in a Univariate Sample

The data used for the purposes of this thesis concerns a equi-spaced univariate series,
meaning that depth increments between successive data observations are equal,

|1 — 29| = w2 — 23| =+ - = |Tp1 — TN

The simulation algorithm of missing values in a univariate sample data-set that de-
scribes the MCAR mechanism was introduced by [51]. In figure 7.2 the algorithm’s
flowchart used for this thesis is represented. The first step is the analysis of the project’s
documentation. The next step is to randomly delete 10% of the univariate input data.
Now that 10% of the data is lost we check in which pattern the data is imputed and
for that reason an univariate ¢-test comparison is used to compare the missing data sub-
groups. This test checks for statistically significant differences. The null-hypothesis is
that the two means are equal and that the test statistics follow a Student-t distribution.

The t-test statistic is defined by the formula:

t= e (7.2
1 + 2
N

where, Yobs, Ymis, a%, a%, ni1, no are the mean, the variance and the sample size for the
observed and the missing data, respectively. At last, the degrees of freedom v that are
associated with the variability estimate are defined. The v parameter will eventually
specify the t¢-distribution that is used to calculate the p — values and t — values for
the test (|95]). Considering that the MCAR mechanism asserts that both complete and
missing data belong to the same population, the null-hypothesis which defines, that the
two means and variances are equal, has to be accepted accordingly. If the p-value is less
than or equal to 0.05, then the null-hypothesis is accepted and the MCAR is chosen as
the main Missing Data Mechanism. If the p-value is greater than 0.05 then the main
Missing Data Mechanism is the MAR. The algorithm will run the same commands in
order to classify the missing patterns and mechanisms for missing data rates of 0.25, 0.5,

0.8.
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FIGURE 7.2: Algorithm flowchart of created missing data used in the univariate sample
of physical properties logging measurements. The algorithm is structured based on [51].

7.3 Imputation Methods

The aim of imputation is to “preserve the characteristics of their distribution and rela-

tionships between different variables” as noted by [6].

Consider Y, as a completely observed n x p matrix and a X as a partially observed
n X p matrix of the complete sample data Y. Imputation techniques are applied to the
aforementioned X matrix in order to fully record a matrix Y* that is the approximation
of the previously considered Y matrix. Several methods are reported in the literature to
address the process of imputation. In the following lines the main techniques applied in

this thesis are described.
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7.3.1 Mean Imputation

One of the easiest ways to fill in each missing value is with the sample mean of the
corresponding variable of the valid value units. Nonetheless, the major disadvantage of
the mean imputation is that it reduces the variability, since all imputed values are equal
to mean. That also affects other inferential statistics which are also underestimated,
such as the standard deviation and the confident intervals. The method results to bias
mean estimates when data are not MCAR. This method should be generally avoided and
only be used as a rapid fix when, for example, the handful information is not or hardly
related to the studied variable. Let * the imputed values of the studied observation y.

Then the imputed values are estimated by the observed mean by the following formula:

xS (7.3

i€obs

The y; is defined as the i-th observed value on a set of observed units, while N is the

number of the i-th observed values for the studied variable y.

7.4 Kalman Filter

State Space Form

The State Space Model was originally developed by electrical engineers to control linear
dynamic systems in either continuous or discrete forms. The way a system changes is a
function of the current state of the system which can be influenced by external input state
variables. Those are defined as the minimum variables that fully describe the studied
system. Therefore, the derivatives of a dynamic system are a function of both the current
state as well as any external inputs. We can simply describe the state space modelling
process as a repackaging of the high order differential equations into a set of first order
equations. Thus, we can look at the underlying behavior of the interconnected system

as well as how the system is affected by external or even multiple external inputs.

For the purpose of this thesis, we will determine a set of vectors x1, s, ..., x, which
we will assume to be an unobserved series of unobserved values associated with an ob-
served series of observed values y1,¥2,...,yn. The defined relationship between those

two vectors is described by a state space model.
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The simplest way to describe a time series state model is by a time series additive
form; additive = trend + seasonality + system noise or y = v +si+e fort =1,...,n. A
suitable model is then constructed for the trend and seasonal component using a random

walk model y; of size n. Therefore, y;+1 = y¢ + 1¢, where 7, are i.i.d. random variables

2

of zero mean and variance oy,

. Considering that the random walk is a non-stationary
process, we conclude that the model is non-stationary as well. Differencing is a technique

used to make a model stationary.

A full description of the General Linear Gaussian time series space model is described

in the following lines ([30]):

Y = Zyay + €, ~ N(0, Hy)
(7.4)
ar+1 = Tyay + Ry, e ~ N(0, Hy)

The considered simple classical state model of a random walk plus measurement error
exhibits the characteristics of a state model structure. The y; is the observation equation
with a1, a9, ..., a, unobserved values that form the a; state equation. The y; is a p x 1
observation vector and the a; is a m x 1 state vector. Considering the above, the analysis
must be based on the observations y;. The matrices Z;, T}, Ry, H; and (J; are assumed

to be known.

The analysis of trend, seasonal and error components of the time series will be exam-

ined by simple generated state space models.
Trend Component

The model of the trend component is given by the following equations:

Y =pe+e, e~ N0, 07
p1 = pe toe+ &, S~ N(O,UE) (7.5)

Vir1 =Vt + G, G~ N(0,07)

where v; is a slope term generated by a random walk. If the variances of £ and ¢ are both
greater than zero then the the trend level and slope will produce a different trend state
over time. In the case when the error measurements of £ and ( are equal to zero then the
slope term remains constant over time while the state equation of a future observation

te+1 is dependent upon the previous observation p; and the slope term in that way
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that the trend becomes linear. Eventually the produced equation will be reduced to the

deterministic linear trend and noise model.
Seasonal Component

The model for the seasonal component, when the seasonal pattern is constant over

time, say, s, is modelled by the constant ’y}k, for j =1,...,s, and is given by the form

d =0 (7.6)
j=1

Since, in practise, the seasonality changes over time, we assume an added potential
error wy in the above equation, considering a j — th number of seasons in the data, for
j=1,...,s and 34 = 'y;‘, since the observations of the model are constant seasonal

components. Thus, the following equations are formed

s—1
Z%%lfj tw =0
§=0
or (7.7)
s—1
V41 = — Z Ve+1—j T Wt
j=1

where w; ~ N(0,02)
ARIMA Models in State Space Form

The components of a state space model are consider the same as in time series ¥, based
on [12]. First, the trend and seasonal component needs to eliminated from the series by
differencing. Thus, the produced model will have a stationary behavior, meaning that

means and covariances will remain invariant over the course of time.

In section 4.4.3 the ARIMA non-negative integers (p, d, ¢) where defined. The number
of differences d is defined by the transformation Ay; = y;—y;_1 and Ay, = AY"(At) for
the first and d — th differences used to eliminate the trend component. At the important
special case when there is a seasonal component, and s is the number of seasons in the
data, the Agy; = y¢ — yr—s and A%y, = AT1(A,t) are the first and s — th differences

used to eliminate the seasonal component. Finally, when stationarity is achieved the
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transformed variables are defined as
yi = AADy, (7.8)

where d, D = 0, 1, ... and now a stationary autoregressive moving average model ARMA ((p, q)

equation is modelled given the following form:

Yi = 01Y1 ot oYy T G+ 0161 4+ 04Gp (7.9)

where ¢; ~ N (0, ag) is an i.i.d. series of error measurements. The above equation can

be rewritten as:

r r—1
Y = Z PiYi—; + G+ Z 0;Ct—j (7.10)
j=1 j=1
where t = 1,...,n and r = max(p,q + 1) considering the fact that some coefficients are

Zero.
Kalman Filter

The Kalman Filter is used to fit an ARIMA model in a time series and is a appropriate
form for online real time processing. The Kalman Algorithm Filter initially calculates
the distribution of the current state model by taking into consideration the available
observation until a certain time, for each time period. Thus, the unobserved state is
estimated under the conditions that this estimation is irrelevant to the future observed
states. Additionally, it estimates the maximum likelihood of the data in a way that the
ARIMA model fits the data optimally. The Kalman Filter can be used to correct ARIMA

forecast results by removing measurement errors.
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7.5 Interpolation Methods

In section 6.4, a short introduction about what are the interpolation processes was made.
In this section, we will use two interpolation methods, named, Linear and Spline inter-

polation to predict missing values of a discrete time series.

7.5.1 Linear Interpolation

Linear Interpolation is a method of approximation of the value of function f(z), at a
specific point & that interprets between to known points x1,x2, when 1 < T < 2. We
estimate the value of the function f(#) using a linear line that passes through points
(z1, f(x1)) and (x2, fz2). Those conditions are satisfied when the linear function is

calculated by the formula

)y = YR v

y(i‘ Lo — T - l’l)
or
o flai(ze —2)) + f(22)(T — 21) (7.11)
y(@) =
To — T
T € [z1,22]
where, y(x1) = f(r1) and y(z2) = f(z2) with estimated error: R/ = @(iﬁ_@)(i_m)’

when & € [z, x9].

7.5.2 Spline Interpolation

We need to estimate a function, say s(z), which is defined from a set of point [z;, s(x;)],
fori =0,1,...,n, by using low order polynomials pieces on sub-intervals joined together

with certain continuity conditions in a domain of the function, zg <z < z; .

A cubic spline S3 ;(z) is a piece-wise of third order polynomials. Let’s consider a cubic
polynomial form: Ss;(z;) = a; + b;(z — 21)? + d;(x — 2;)3, for i = 0,1,...,n — 1. The

four unknown coefficients need to be specified in order to find the cubic splines. Thus,

Ss,i(wi) = s(xi) (7.12)
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fori =0,1,...,n. The first n+1 conditions are based upon the fact that the S5 function
has to pass through all the points of its domain. Moreover, n — 1 conditions can possible

be produced by the equivalence of the neighboring polynomials at the joint points. Thus,
Ss,i(wi) = Ssiv1(2i) (7.13)

fori=1,2,...,n— 1. Additionally the equivalence of the first and second order deriva-
tives of the function, at the same points, can ensure extra 2n — 2 conditions. That
is,

Syi(wi) = Sz, 1(2),i=1,2,...,n—1

(7.14)
é'ﬂ»(xi) = Sél,i+1(fb“z’)7i =12,...,n—1

Therefore, there are a total of 4n — 2 linear constraints on the 4n unknown coefficients
and we need two extra constrains. The additional constrains can be specified by the

following various ways

e Natural Cubic Splines. The imposed conditions are Sy ;  ; (z;) = 0 and S5 (o) = 0.

o Not-a—knot. The imposed conditions are Sz’;(x;) = 53, (%) and S3'j(z1) =
S35(x1).

o Complete cubic spline. The imposed conditions are S5 ;(z;) = f'(z;) and Sj o(w0) =

[ (o).



Chapter 8

Gap Filling

Usually, the gaps of logging records are rather small, especially when compared to the
total depth of a well. In this section we take a topic in well log time series analysis where
missing data can be estimated by means of interpolation and imputation. This section

seeks to address the following concepts:

e Missing data imputation, interpolation and time series analysis algorithms are used

to improve missing well log data quality.

e Prediction precision between the original and the imputed time series data is used

to quantify the performance of the predictive modeling methods.

Preliminary Data Analysis

Firstly we will properly convert the scale of depth axis to the scale of time axis. Then
we simulate missing values on continuous data sets by performing imputation algorithms
of Kalman Smoothing (KS) with a ARIMA model, Spline Interpolation, Linear Interpo-
lation, Simple Moving Average, Linear Weighted Moving Average and Mean Imputation

models and then finally compare them to the original selected data sets.

For our example, we select the Table Point Formation data set of the Seamus well. In
our case, we need to analyze a formation that is present in both Seamus and Finnegan
hydrocarbon and gas wells. We use the available Spontaneous Potential, Gamma Ray

and Array Induction Two Resistivity logs to demonstrate our experiment. Missing

102
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completely at random (MCAR) and Missing at random (MAR) were used as a generated

missing value mechanism ([78]).

8.1 Data Characterization of Table Point Formation

Decomposition

The four different well log data sets of Table Point Formation of the Seamus well,
consist of n=871 observations. Before we implement the imputation algorithms, we
need to decompose the time series in order to examine their characteristics as refered
in section 3.3. The STL (Seasonal and Trend decomposition using Loess) method of
decomposition is performed to split the time series into seasonality, trend and remainder
component using the st/ function in R. From figures 8.1a to 8.2b we extract the following
considerable information. The Spontaneous Potential (Figure 8.1a), Gamma Ray (Figure
8.1b), Array Induction Two Resistivity A10 (Figure 8.2a) and Array Induction Two
Resistivity A20 (Figure 8.2b) data-sets show no apparent trend and no regular seasonality
and display non-stationary and non-linear characteristics. This is quite common due to
well log data complex behavior which is a result of several factors affecting the signal
transmission and recording system. Petrophysical properties of the porous media, such as
the porosity, permeability and water saturation of the reservoir rock as well as the drilling
mud composition, mud weight, mud cake and casing can significantly effect the record
and display of the well logging sound waves signals. Those effects must be accounted for

to obtain accurate measurements.
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Autocorrelation Function

The next step of the analysis is to detect non-randomness in data and at the same
time to identify an appropriate forecast and imputation model if our data is a result
of a non-random process. Indications of strong correlation across all the lags suggest
that the future observations are highly dependent on available past observations, thus
the predictions and imputations would be both accurate and precise. In figures 8.3a
to 8.4b the lag is returned in units of time. The blue dotted lines indicate bounds for
statistical significance. The horizontal lines are at a distance of £2/y/n = +2//871.
The three first following correlograms demonstrate signs of non-stationary behavior due
to very slow decrease of ACF, which means that the mean will change over time. We
will compute the KPSS test to accept or reject the null-hypothesis that the series is
stationary. In 8.3a the p-values = 0.083, while in 8.3b, 8.4a and 8.4b the p-value is less
than 0.01, meaning that in all cases the null-hypothesis is rejected. This behavior is also
confirmed by the ADF test. The results of ADF test for the raw data of the given data
sets confirm the assumptions of non-stationary. In 8.3a the p-values = 0.99, in 8.3b the
p-values = 0.085, in 8.4a the p-values = 0.837 and in 8.4b the p-values is less than 0.01.
For the three fist cases, the p-values of the ADF test is less than the critical value 0.05
and the assumptions about the non-stationarity is confirmed. In the case of 8.4b the
p-values of the test confirm the null-hypothesis of stationarity. By comparing the two
tests we conclude that only in the case of 8.4b the two tests suggest that the time series

is stationary.

e In figure 8.3a there is a strong positive correlation decreasing over the course of

time.

e In figure 8.3b the autocorrelation function demonstrates a slowly decreasing pro-
cess and then, at lag 6, it reaches the boundaries of the confidence interval under
which the values with either positive or negative change are no longer statistically

significant.

e In figure 8.4a the time series dies off positively and slowly. After the lag 10, the au-
tocorrelation function continues to decreases and becomes negative; corresponding

to the presence of a trend component.
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e In figure 8.4b the time series is trended, since the autocorrelations are large and

positive for short lags and then decreasing slowly for large lags.
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FIGURE 8.3: Autocorrelation Function
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8.2 Imputation Algorithms

Spontaneous Potential

In error metrics 8.5 and 8.6 two type of errors where calculated, the Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively. Results
demonstrated that the Linear Weighted Moving Average and Simple Moving Average
performance is almost identical. Obviously, the Mean Imputation algorithm exhibits the
worst performance due to the presence of a strong trend component. In general, all the
rest of the algorithms performed in a similar way, producing more accurate predictions
for the observable rate of missingness equal to 0.1. The occurrence of very few high
outliers in some cases is the result of . Based on the produced figures we can cite that
RMSE and MAPE lead to similar results. The corresponding histograms and scatter
diagrams of the original and estimated values of the several missingness factor 0.1, 0.25,
0.5, 0.8 are presented in figures 8.7, 8.8, 8.9 and 8.10, respectively. The model used
is the Kalman ARIMA. Generally, the estimated values follow the original observations
for a missing rate of 0.1, without, however, exhibiting satisfying proximity of the total
distribution. As the missing rate increases to a maximum rate of 0.8, the distribution’s’

convergence weakens.
Gamma Ray

In error metrics 8.11 and 8.12 the same two type of errors where calculated, the Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively.
Results show that Linear Interpolation and Linear Weighted Moving Average show the
best modeling performance. The Spline Interpolation model display small error values
for missing rate equal to 0.1, 0.25 and 0.5, while for rate equal to 0.8 show great variance.
On the other hand, the Kalman Arima model produces a few extreme error values includ-
ing the small rates of missing values. The Mean Imputation algorithm exhibits the worst
performance due to the presence of a trend component. Based on the produced figures
we can cite that RMSE and MAPE lead to similar results. The corresponding histograms
and scatter diagrams of the original and estimated values of the several missingness fac-
tor 0.1, 0.25, 0.5, 0.8 are presented in figures 8.13, 8.14, 8.15 and 8.16, respectively. The
model used is the Kalman ARIMA. Generally, the estimated values follow the original

observations for a missing rate of 0.1, without, however, exhibiting satisfying proximity
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of the total distribution. As the missing rate increases to a maximum rate of 0.8, the

distribution’s convergence weakens.

Array Induction Two resistivity A10

In error metrics 8.17 and 8.18 the two type of errors where calculated, the Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively.
Results show that Linear Interpolation and Linear Weighted Moving Average show the
best modeling performance and they are almost identical. The Spline Interpolation model
display small error values for missing rate equal to 0.1, 0.25 and 0.5, while for rate equal
to 0.8 show great variance. On the other hand, the Kalman Arima model produces a few
extreme error values including the small rates of missing values. The Mean Imputation
algorithm exhibits the worst performance due to the presence of a trend component. The
Simple Moving Average shows good performance. Based on the produced figures we can
cite that RMSE and MAPE lead to similar results. The corresponding histograms and
scatter diagrams of the original and estimated values of the several missingness factor
0.1, 0.25, 0.5, 0.8 are presented in figures 8.19, 8.20, 8.21 and 8.22, respectively. The
model used is the Kalman ARIMA. Generally, the estimated values follow the original
observations for a missing rate of 0.1, without, however, exhibiting satisfying proximity
of the total distribution. As the missing rate increases to a maximum rate of 0.8, the

distribution’s convergence weakens.
Array Induction Two resistivity A20

In error metrics 8.23 and 8.24 the two type of errors where calculated, the Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively.
Results show that Kalman Arima, Linear Interpolation and Linear Weighted Moving
Average show the best modeling performance and they are almost identical. The Kalman
Arima model produces one extreme error value at missing rate equal to 0.5. The Spline
Interpolation model display small error values for missing rate equal to 0.1, 0.25 and
0.5, and then for rate equal to 0.8 show great variance. The Mean Imputation algorithm
exhibits the worst performance due to the presence of a trend component. The Simple
Moving Average shows good performance. Based on the produced figures we can cite
that RMSE and MAPE lead to similar results. The corresponding histograms and scatter

diagrams of the original and estimated values of the several missingness factor 0.1, 0.25,
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0.5, 0.8 are presented in figures 8.25, 8.26, 8.27 and 8.28, respectively. The model used
is the Kalman ARIMA. Generally, the estimated values follow the original observations
for a missing rate of 0.1, without, however, exhibiting satisfying proximity of the total
distribution. As the missing rate increases to a maximum rate of 0.8, the distribution’s

convergence weakens.
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FIGURE 8.19: Histogram and Scatter plot of the Array Induction Two Resistivity A10
original and estimated values when the missing rate of the data is 0.1. The missing
values are imputed by Kalman Arima.
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original and estimated values when the missing rate of the data is 0.25. The missing
values are imputed by Kalman Arima.
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FIGURE 8.21: Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.5. The missing
values are imputed by Kalman Arima.
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original and estimated values when the missing rate of the data is 0.8. The missing
values are imputed by Kalman Arima.
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FIGURE 8.25: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.1. The missing
values are imputed by Kalman Arima.
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FIGURE 8.26: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.25. The missing
values are imputed by Kalman Arima.
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FIGURE 8.27: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.5. The missing
values are imputed by Kalman Arima.
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8.3 Synopsis

One of the goals of this study was to investigate how the analysis of well log data and
the resulting models are affected by various amounts of missing data and missing data
patterns. Imputation, interpolation and time series algorithms for gap filling in univariate
time series (well log data) are compared by means of cross validation. These methods
comprise: Kalman ARIMA, mean imputation, linear and spline interpolation, as well as

linear weighted and simple moving average method.

The results show that Linear interpolation, Linear weighted Moving Average and
in certain cases Kalman Arima, exhibit similar performance, which is superior to the
other methods. Histograms and Scatter plots used for the analyses confirm the good
performance of the Kalman Arima algorithm. For high rates of missing data, the cross-
validation measures tend to deteriorate for all the methods considered. Finally, the Mean-
based imputation algorithm produced the largest bias and seems to be most severely

affected by the presence of the trend component.



Chapter 9

Conclusions

This thesis seeks to address questions related to the statistical analysis of well log data.
For this purpose, we obtained datasets from two hydrocarbon reservoirs that are located
in Labrador Island, Western Newfoundland (Canada). The data, which are obtained from
two wells (Finnegan and Seamus) that located onshore, contain a significant amount of
geophysical information. To simplify the analysis we focused on four logs (corresponding
to spontaneous potential, Gamma radiation and two induction logs). The data from
these logs span six different formations. Thus, data analysis must face the challenge of

handling transitions between different formations.

The thesis has three distinct objectives. The first objective is the estimation of the
probability distributions and spatial correlations in data pertaining to the same well log.
The second objective is to evaluate potential cross-correlations between logs which are
obtained from different wells. The motivation for this task is to investigate if information
from one well can be used to fill gaps in the data logs from a neighboring well. Finally,
the third objective is to explore methods for the reconstruction of missing well log data
using univariate methods (which do not account for cross-correlations between properties

in the same well or across different wells).

We report on the conclusions regarding the three main objectives which have been
reached by means of the well log data analysis in the two sections below. The first two
section comprises conclusions related to the first two objectives, since they both refer to

spatial correlations. The second section addresses the goal of missing data reconstruction.
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9.1 Spatial Correlations

One of the objectives of this study was to investigate whether geostatistical tools can be
used to provide useful information concerning spatial correlations in recorded well logs.
Exploratory data analysis was used to summarize the statistical properties of the large
data sets from the Seamus and Finnegan wells using graphical tools. We also investigated
the fit of several probability distribution models to the data. The distribution fitting
procedure suggests that regardless of the specific formation that is being considered,
Spontaneous potential and Gamma radiation indicators can be best described by means
of Cauchy and Gumbel distributions. In contrast, the Induction indicators are best
described means of the Gamma and Weibull probability distributions. In some cases
of well logs with skewed histograms, we also investigated the probability distributions
of the data logarithms. It was realized that the respective histogram plots of the data
logarithms seem to follow more closely the Gaussian distribution than the original values.
These observations are useful, since a number of geostatistical methods work best for
Gaussian and near-Gaussian data. However, their direct application to data that follow
highly skewed distributions and/or fat-tailed (e.g., Gamma, Weibull, Gumbel, Cauchy)

is not recommended.

The issue of spatial auto-correlations in logs from a single well was investigated by
means of variogram analysis. A thorough analysis of the variogram functions for differ-
ent logs and within different formations was carried out. This involved the estimation of
the empirical (data-based) variogram estimates and their fits with theoretical variogram
models using the method of weighted least squares. An overview of the results showed
that a single optimal theoretical model for all the properties cannot be established. Fur-
thermore, the results of the variogram analysis indicate that Spontaneous potential and
Gamma Radiation indicators are mostly fitted to the same type of theoretical variogram
model, with similar sill and range values. The most commonly obtained theoretical model
is the Spherical, followed by the Pentaspherical and Gaussian models. The typical values

for the range and the sill depend on the formations.

The results of the geostatistical analysis suggest that geostatistical tools can sup-
plement available geophysical methods by providing useful information about regional

stratigraphy and the spatial correlation patterns of a given exploration area.
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The geostatistical study also involved the calculation of well log cross-correlations
between Seamus and Finnegan wells. The respective gamma ray logs for the two wells
are displayed in figures 6.12, A.21, A.22, A.23, A.24, A.25. The log data from the two
wells were processed by means of interpolation methods to establish a common sampling
step in order to calculate cross correlations. Different interpolation models were tested
but it was found that they all lead to similar cross-correlation values. The Gamma
radiation logs exhibit both positive and negative correlation values which are overall
higher (in magnitude) than those of the other three logs that are studied. The values
of the positive correlation coefficients range from 0.001 to 0.483, while the values of the
negative correlation coefficients range from —0.142 to —0.001. These findings support
the notion that the Gamma ray log is influenced by lithological changes according to the

explanation provided in Section 6.4.

The analysis of the well log data shows clear signs of non-stationarity. The analysis of
data with non-stationary statistics is challenging and remains an open research field. The
broad implication of the present study is that methods can only be good as the context
within which they are applied. The human factor cannot be eliminated from the process:
Experts still need to choose which well log can give meaningful information and which
method or set of methods should be applied to extract the information. Alternative and
additional suggestions include the calculation of cross-correlation between Spontaneous
potential logs and Gamma radiation logs, as well as the calculation of the uncertainty
propagation through exemplary algorithms or the estimation of the effect of manually

imputed parameters, defined by the user, in the calculation of experimental variograms.

9.2 Missing data reconstruction

The third objective of this study was to explore the performance of different methods
that can be used for the reconstruction of missing data in well logs. The results of our
analysis confirm that different gap-filling methods may be most suitable for different

patterns of missing data.

The algorithms that are used herein relied on the assumption that the handling missing

values come from a univariate time series. Importantly, our analysis concluded that
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identifying the patterns and reasons for the missing data can help to provide reliable and

accurate reconstructions.

For the reconstruction of missing values, we used a number of interpolation, im-
putation and time series methods which included Kalman Smoothing (KS) with an
ARIMA model, Spline Interpolation, Linear Interpolation, Simple Moving Average, Lin-
ear Weighted Moving Average and Mean Imputation. Based on statistical validation
measures and comparison maps, we conclude that Linear Interpolation, Linear Weighted
Moving Average and in some cases Kalman Arima, are the methods that exhibit superior
and quite similar performance. Histograms and scatter plots confirm the good perfor-
mance of the Kalman Arima algorithm. Moreover, we can conclude that significant biases
occur in the reconstructions if the data sets involve non-modeled spatial trends and when

the missing data rate is high (i.e. > 50%)

Imputation and interpolation methods can be easily applied to univariate time series.
Future research could investigate the effects of sampling size and number of random-
effects (i.e. when performing Multiple Imputation algorithms) and algorithmic improve-
ments. Further studies should focus on exploring different imputation techniques under
more comprehensive missing data scenarios (i.e. Complete Case Analysis (CCA), Last
Observation Carried Forward (LOCF), Complete Case Missing Value (CCMVPM) re-
striction, Available Case Missing Value (ACMVPM) restriction, Neighboring Case Miss-
ing Value (NCMVPM) restriction, and the selection model (SMPM).

Overall, our results show that well log data analysis can benefit from the application
of geostatistical and time series methods. The latter can be effectively applied to one-
dimensional spatial data, such as those obtained by well logs. While the current study
focused on the modeling of spatial correlations in each well independently of other wells
in the area, multivariate time series models could be used to provide jointly analyze data

across different wells.
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Appendix A

(Geostatistical analysis of the

selected formations

The Table point formation is a geological unit dominated by dolomitized carbonate
conglomerates and calcarenites, while fossils dating back to the Ordovian period are also
present. The Aguathuna formation is a geological unit dominated mainly by limestone,

dolostone, and shale ([13]).

A.1 Seamus 216mm hole section

The statistical parameters of the the Table Point and Aguathuna formation of the Seamus

216 hole section are presented.

SP ((mV)  Min Max  Mean Median Mode

Table Point -102.81 -13.37 -67.97 -75.25  -93.06
Aguatha  -75.25  18.68 -30.77 -34.5 14.37

SP (.mV)  Variance SD Skewness Kurtosis

Table Point 618.08 24.86 0.64 2.07
Aguatha  753.19 2744 0.27 1.84

TABLE A.1: Spontaneous potential statistical parameters of Seamus 216mm.

GR (GAPI) Min Max Mean Median Mode

Table Point 6.43 46.95 15.72 14.52 13.34
Aguatha 8.92 9744 27.07 2214 14.18
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GR (GAPI) Variance SD Skewness Kurtosis

Table Point 24.43 4.94 1.74 7.6
Aguatha 254.26 15.95 1.32 4.62

TABLE A.2: Gamma ray statistical parameters of Seamus 216mm.

A10 Min Max Mean Median Mode

Table Point 20.27 235.82 92.7 83.08 85.33
Aguatha  65.95 197.78 140.55 143.9 108.65

A10 Variance SD Skewness Kurtosis
Table Point 1162.45 34.09 1.72 5.7
Aguatha 868 29.46 -0.45 2.6

TABLE A.3: Array Induction 10in statistical parameters of Seamus 216mm.

A20 Min Max Mean Median Mode

Table Point 24.73 1950 877.8  764.98 1950
Aguatha  83.46 1950 920.15 887.61 1950

A20 Variance SD Skewness Kurtosis
Table Point 239297.4 489.18 0.6 2.43
Aguatha 258693.5 508.62 0.27 2.1

TABLE A.4: Array Induction 20in statistical parameters of Seamus 216mm.
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A.1.1 Table Point Formation

Log Min Max Mean Median Mode
SP(mV) -30.077 22.496 7.219e-14 0.155 -21.828

Log Variance SD Skewness Kurtosis
SP(mV) 134.33 11.590 -0.111 2.106

TABLE A.5: Detrended data statistics of Table Point formation found in Seamus
216mm hole section.

Log Model Estimated Trend Function

SP  Qubic —33.9+2.61-10"2z + —6.34-10 %22 +6.96 - 10~ 723 + €;,¢ ~ N(0,11.6%)

TABLE A.6: Estimated trend models.
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FicUrReE A.1: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Seamus 216mm hole section.
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FIGURE A.2: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section.

Histograms

Distribution

Parameters

Information Criteria

SP norm

©="7.219e-14,0=11.58

AIC=6742.95, BIC=6752.49

Cauchy a=-0.309,7=8.465 AIC= 7219.65, BIC=7229.19
Gumbel 1=-5.826,b=11.160 AIC=6857.59, BIC=6867.13
GR  norm 1=15.718,0=4.940 AIC=5258.35, BIC= 5267.89
Weibull a=3.102,\=17.473 AIC=8622.55, BIC=8632.09
gamma a=12.167,\= 0.774 AIC= 5049.42, BIC= 5058.95
A10 norm 1=92.701,0=34.075 AIC=5258.35, BIC= 5267.889
Weibull a=2.746,\=103.987 AIC=8593.23, BIC=8602.76
gamma a=9.318,\=0.101 AIC= 8358.49, BIC=8368.03
A20 norm u=877.803,0=488.899 AIC=13262.5, BIC=13272.1
Weibull a= 1.878,A=990.129 AIC=13132.3 , BIC= 13141.8
gamma a=2.856,A=0.003 AIC=13146.4, BIC= 13156

TABLE A.7: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216mm hole section. The units of measurement are
[mV], [GAPI|, [Qhmm]| for SP, GR and A10, A20 respectively.
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FIGURE A.3: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Seamus 216mm hole section.

Variograms
Model Sill Range Nugget
SP  Gau 229.263  10.078 3.410
GR Cir 13.893 3.095 1.303
Gau 11.992 1.744 3.231
Pen 10.738 8.043  4.933
Sph 14.216 3.447  0.981
Al10 Cir 713.728  16.272 0.000
Pen 717.241  22.522 0.000
Sph 714.986  18.505 0.000
A20 Exp 213056 2.171  0.000
Gau 170931.4 2.143  32864.3
Pen 181428.5 7.005  27292.6
Sph 177039.4 5.915 31402.4

TABLE A.8: Fitting of the best theoretical model to the experimental variograms of

the field.
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Q-Q plot
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FIGURE A.4: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Seamus 216mm hole section.

Variograms
Model MSE MAE RMSE
SP  Gau 82.054 7.493 9.058
GR Cir 2.706 1.329 1.645
Gau 2.285 1.212 1.511
Pen 1.850 1.045 1.360
Sph 2.712 1.326 1.647
A10 Cir 4440.83 56.005  66.639
Pen 4394.45 56.105  66.291
Sph 4395 56.042  66.295
A20 Exp 1386-10°  8455.11 11774.3
Gau 25524-10° 13309.9 15976.3
Pen 17091-10° 10084.6 13073.2
Sph 18224-10° 10704.3 13500

TABLE A.9: Fitting of the best theoretical model to the experimental variograms of

the field.
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FIGURE A.5: Variogram plots. The weights are determined using N;, where N; is the
number of pairs at certain lag. For the calculation of the Spontaneous potential the
weights are determined using N;/h?.
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A.1.2 Aguathuna Formation

Log Min Max Mean Median Mode
A10(Ohmm) -83.268 45.952 1.233e-13 4.303 1.847

Log Variance SD Skewness Kurtosis
A10(Ohnmm) 485.109  22.025 -0.781 3.715

TABLE A.10: Detrended data statistics of Aguathuna formation found in Seamus 216
hole section.

Log Model Estimated Trend Function
A10 Linear 106.61 —0.192 + ¢;,€ ~ N(0,22.1%)

TABLE A.11: Estimated trend models.
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FIGURE A.6: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Seamus 216mm hole section.
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FIGURE A.7: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section.

Histograms
Distribution = Parameters Information Criteria
SP  norm 1=-30.771,0=27.405 AIC=3286.38, BIC=3294.08
Cauchy a=-36.001,v=19.518 AIC=3476.17, BIC=3483.87
Gumbel 1=-44.006,b=23.065 AIC=3274.43, BIC=3282.13
GR  norm = —4.895e—15,0=15.68 AIC=2898.93, BIC= 2906.63
Cauchy a=-8.045,A=5.786 AIC=2886.79, BIC=2894.49
Gumbel a=—-6.710,A= 10.262 AIC= 2767.84, BIC= 2775.54
A10 norm p=1.23e—13,0=21.99 AIC=3133.72, BIC= 3141.42
Cauchy a=5.192,A\=11.841 AIC=3222.16, BIC=3229.86
Gumbel a = —11.710,A=25.847 AIC= 3269.59, BIC=3277.29
A20 norm 1#=920.154,0=570.886 AIC=5312.54, BIC=5320.24
Weibull a=1.863,A=1034.914 AIC=5278.68, BIC= 5286.38
Gamma, a=2.568, A=0.003 AIC=5298.38, BIC= 5306.08

TABLE A.12: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measurement are [mV],
[GAPI|, [Qhmm]| for SP, GR and A10, A20 respectively.
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F1GURE A.8: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Seamus 216mm hole section.

Variograms
Model Sill Range  Nugget
SP  Gau 2035.890 7.629 0.000
Al10 Gau 403.185  4.816 0.000
Sph 390.383  10.151  0.000
Pen 408.810  13.288  0.000
Cir 388.817  8.944 0.000
A20 Sph 269635.7 6.979 36447.3
Gau 234617.4 3.38148 71416.5
Exp 310531 2.642 0.000
Pen 272134.8 8.463 34517.7
Cir 264979.3  6.240 40977.7

TABLE A.13: Fitting of the best theoretical model to the experimental variograms of

the field.
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F1GURE A.9: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Seamus 216mm hole section.

Variograms
Model MSE MAE  RMSE
SP  Gau 2314.63 38.7431 48.111
A10 Gau 634.203 18.409  25.183
Sph 1098.68 28.921  33.146
Pen 1292.77 30.844  35.955
Cir 900.201 25.840  30.003
A20 Sph 10965 x 10°  27872.2 33112.8
Gau 10938 x 10°  27604.8 33072.3
Exp 12133 x 10°  29224.7 34832.4
Pen 110415 x 105 28174.4 33228.7
Cir 10854 x 10°  27639.9 32945.5

TABLE A.14: Fitting of the best theoretical model to the experimental variograms of

the field.
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FIGURE A.10: Variogram plots. The weights are determined using NN;, where N; is
the number of pairs at certain lag.
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A.2 Finnegan 216mm hole section

The statistical parameters of the the Table Point and Aguathuna formation of the

Finnegan 216 hole section are presented.

SP (mV)  Min Max  Mean Median Mode

Table Point 206.11 316.73 254.49 243.96  245.17
Aguathuna 195.36 257.63 224.02 220.66 212.17

SP (.mV)  Variance SD Skewness Kurtosis

Table Point 697.33 26.40 0.46 1.92
Aguathuna 204.38 14.29 0.41 2.06

TABLE A.15: Spontaneous potential statistical parameters of Finnegan 216mm.

GR (GAPI) Min Max Mean Median Mode
Table Point 3.65 34.78 11.64 11.82 12.42

Aguathuna 5.26 70.38 21.63 17 12.3
GR (GAPI) Variance SD Skewness Kurtosis
Table Point 29.54 544  0.85 4.13
Aguathuna 143.21 11.97 1.51 5.36

TABLE A.16: Gamma ray statistical parameters of Finnegan 216mm.

A10 (Ohmm) Min Max Mean Median Mode

Table Point  189.76 2927.43 1239.76 1239.32 1232.15
Aguathuna  58.56  9280.18 1290.24 1288.16 1157.22

A10 (Ohmm) Variance SD Skewness Kurtosis
Table Point  33911.99 184.15 1.9 27.62
Aguathuna  664848.5 815.38 6.04 54.82

TABLE A.17: Array induction 10in statistical parameters of Finnegan 216mm.

A20 (Ohmm) Min Max Mean Median Mode

Table Point ~ 245.35 1818.34 1231.72 1238.03 1232.15
33.38  3567.02 1206.96 1276.09 1218.03

Aguathuna
A20 (Ohmm) Variance SD Skewness Kurtosis
Table Point  13612.58 116.67 -2.22 24.79
Aguathuna  173256.6 416.24 0.41 10.13

TABLE A.18: Array induction 20in statistical parameters of Finnegan 216mm.
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A.2.1 Table Point Formation

Log Min

Median Mode

SP(mV)  -48.818
GR(.GAPI) -6.928
A20(Ohmm)  -988.255

2.673e-13  4.513 -1.636
-1.247e-14  -0.909  3.745
4.568e-13  6.186 17.826

Log Variance

Skewness Kurtosis

A10(Ohnmm) 270.041
GR(.GAPI)  18.696
A20(Ohmm) 13603

-0.795 3.113
1.285 5.325
-2.257 25.008

TABLE A.19: Detrended data statistics of Table Point found in Finnegan 216 hole

Log Model Estimated Trend Function

SP  Linear 290.32 —0.09z + ¢;, € ~ N(0,16.4%)
GR  Linear 17.35—0.016x + ¢;,¢ ~ N(0,4.332)
A20 Linear 1237.09 —0.015x 4 ¢;,€e ~ N(0,117?)

TABLE A.20: Estimated trend models.

Histograms

Distribution = Parameters

Information Criteria

SP  norm ©=2.672e-13,0=16.42 AIC=6127.86, BIC=6137.04
Cauchy a=5.232,7=8.332 AIC= 6291.04, BIC= 6300.22
Gumbel u=-8.779,b=18.466 AIC=6379.97, BIC=6389.15

GR norm = —1247e—14,0=4.321 AIC=4189.26, BIC= 4198.43
Cauchy a=-1.205,A=2.293 AIC=4306.18, BIC=4315.35
Gumbel a=-1.903,\= 3.175 AIC= 4002.98, BIC= 4012.16

A10 norm p=1239.764,0=184.025  AIC=9636.58, BIC= 9645.76
Cauchy a=1239.361,A=39.761 AIC=8841.62, BIC=8850.8
Gumbel a = 1150.319,A=255.331  AIC=10011.5 , BIC=10020.7

A20 norm 1=4.965e—14,0=8.587 AIC=10161.9 , BIC=10172.5
Cauchy a=1.967,A=3.977 AIC=10217, BIC= 10227.5
Gumbel a=-4.691, A=10.576 AIC=10824.9, BIC= 10835.4

TABLE A.21: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measurement are [mV],
[GAPI], [Qhmm] for SP, GR and A10, A20 respectively.
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FIGURE A.11: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Finnegan 216mm hole section.

Variograms
Model Sill Range  Nugget
SP  Cir 2035.890 7.629 0.000
Gau 2035.890 7.629 0.000
Pen 2035.890 7.629 0.000
Sph 2035.890 7.629 0.000
GR Exp 403.185  4.816 0.000
Gau 390.383  10.151  0.000
Pen 408.810  13.288  0.000
Sph 388.817  8.944 0.000
A10 Exp 269635.7 6.979 36447.3
Gau 234617.4 3.38148 71416.5

TABLE A.22: Fitting of the best theoretical model to the experimental variograms of

the field.
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FIGURE A.12: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Finnegan 216mm hole section.

Variograms
Model MSE MAE RMSE
SP  Cir 21.871 3.786 4.676
Gau 51.565 5.575 7.181
Pen 22.166 3.849 4.708
Sph 22.070 3.825 4.698
GR Exp 0.933 0.771 0.966
Gau 0.993 0.759 0.996
Pen 0.710 0.700 0.842
Sph 0.673 0.695 0.820
A10 Exp 1784640 956.02  1335.9
Gau 1148419 852.498 1071.64

TABLE A.23: Fitting of the best theoretical model to the experimental variograms of
the field.



Geostatistical Analysis 158
3000-
-~ | :: o
0.008 i ”
! o
: E 2000-
g ! — = o
® 0.004- narm o narm
S - - cauchy E o cauchy
O gumbel = = gumbel
= 3
0.002- g 1000°
=]
=]
0.000-
1000 2000 3000 -2000 0 2000 4000
Array Induction Two Foot Resistivity A10[Ohmm] Theoretical guantiles
Empirical and theoretical CDFs P-P plot
1.00 1.00-
[}
0.751 @© 075~
E
o
w — norm 'E o norm
0 050 -~ cauchy a050- o cauchy
gumbel _8 @ gumbel
a
0251 Eoos-
0.00 0.00- |
1000 2000 3000 0.00 025 050 075 1.00

Array Induction Two Foot Resistivity A10[Ohmm]

Theoretical probabilities

F1cUrRE A.13: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Finnegan 216mm hole section.



Geostatistical Analysis 159

0.08-

| 20-
0.06 2 noo o
E
%‘ — norm 2 ° norm
5 0.04- -~ cauchy E 0- o cauchy
O I gumbel = = gumbel
=
0.02- w
_ -20- 4
Hﬂm L [@ o o oo
0.00- =
-200 100 0 100 200
Theoretical quantiles
P-P plot
1.00 1 1.00-
[}
0.751 @© 075~
E
o
w — norm 'E o norm
0 050 -~ cauchy a050- o cauchy
gumbel _8 @ gumbel
‘a
0251 Eoos-
0.004 0.00- ¥
-20 0 20 0.00 0.25 0.50 075 1.00
Array Induction Two Foot Resistivity A20[Ohmm] Theoretical probabilities

FIGURE A.14: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Finnegan 216mm hole section.



Geostatistical Analysis 160

125
100
75
+ Cir
—_ Gau
'C;-,: + Pen
Sph
-+ Table Point
50
25

00 25 50 75 100
lag(m)

(A) Spontaneous Potential

12500
20
10000 AR ‘N
15
+ Exp
— Gau — * Exp
f—; z geﬂ -C\; 7500 - '(I;,:tl:’lle Point
10 - Tgble Point
5000
5
0 10 20 30 40 0 5 10 15 20
lag(m) lag(m)
(B) Gamma Ray (¢) Induction A10

FIGURE A.15: Variogram plots. The weights are determined using NN;, where N is
the number of pairs at certain lag.



Geostatistical Analysis

161

A.2.2 Aguathuna Formation

Log

Min Max Mean Median Mode

SP(.mV)
GR(.GAPI)
A10(Ohmm)
A20(Ohmm)

-29.441  28.190  -1.473e-15 -1.159  28.189
-20.638  41.896  1.553e-14 -1.453  -3.914
-1270.69 7955.62 7.846e-14  -65.771 -193.574
-1150.17  2321.79 2.274e-13  22.513  -79.281

Log

Variance SD Skewness Kurtosis

A10(Ohnmm) 114.036  10.679  0.200 2.600
GR(.GAPI) 107.700  10.378  1.217 5.166
A10(Ohmm) 649360  805.829 6.141 56.023
A20(Ohmm) 162932  403.649 0.505 10.477

TABLE A.24: Detrended data statistics of Aguathuna formation found in Finnegan 216

hole section.

Log Model Estimated Trend Function
SP  Linear 202+ 0.271z — 5.81-107%2% 4 ¢;,¢ ~ N(0,10.7%)
GR  Linear 11.193 —0.082z + ¢;, ¢ ~ N(0,10.42)
A10 Linear 1486.817 — 1.560z + €;, e ~ N(0,8072)
A20 Linear 1377.926 — 1.354x + €;, e ~ N(0,4042)
TABLE A.25: Estimated trend models.
Histograms
Distribution = Parameters Information Criteria
SP  norm = -1.472e-15,0=10.657 AIC=1904.17, BIC= 1911.22
Cauchy a=-1.493,7=6.990 AIC= 2015.16, BIC=2022.21
Gumbel 1=-5.212,b= 9.976 AIC=1922.86, BIC=1929.91
GR  norm u=1.583e—14,0=10.357 AIC=1889.82, BIC= 1896.87
Cauchy a=-1.986,A=5.168 AIC=1909.45, BIC=1916.5
Gumbel a=-4.604,A= 8.095 AIC= 1841.2, BIC=1848.25
A10 norm W= 7.846e—14,0=804.222 AIC=4074.62, BIC= 4081.68
Cauchy a=39.125,A=113.621 AIC=3566.45, BIC=3573.5
A20 norm 1=2.273e—13,0=402.844  AIC=3727.58 , BIC=3734.63
Cauchy a=39.125,A=113.621 AIC=3566.45, BIC= 3573.5

TABLE A.26: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measurement are [mV],
[GAPT], [Qhmm] for SP, GR and A10, A20 respectively.
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Variograms
Model Sill Range Nugget
SP  Gau 156.957  6.263  19.116
Pen 181.122  16.780 0.000
Sph 178.355  13.704 0.527
GR  Exp 259.38 10.858 0.000
Gau 158.032  6.341  19.529
Sph 180.957  14.201 1.651
A10 Exp 105.904  2.428  1.500
Gau 79.836 2.781  23.569
Sph 87.332 6.720  17.702
A20 Exp 232382.0 6.037  58595.3
Gau 163960.4 4.791  87586.9
Sph 184620.1 12.042 76319.8
TABLE A.27: Fitting of the best theoretical model to the experimental variograms of
the field.
Variograms
Model MSE MAE RMSE
SP  Gau 52.395 5.294 7.238
Pen 33.896 4.782 5.822
Sph 178.355 13.704  0.527
GR  Sph 45809 - 10° 205523 214031
Gau 45815105 205540 214045
Exp 45817 -10% 205543 214050
A10 Exp 87474 -10% 8042.73 9352.79
Gau 12790 - 10*  9350.49 11309.4
Sph 21954 -10*  12556.6 14817
A20 Exp 15356 - 10*  10089.4 12392
Gau 30253 -10* 14065.4 17393.5
Sph 21955 -10*  12555.8 14817.5

TABLE A.28: Fitting of the best theoretical model to the experimental variograms of

the field.
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A.3 Correlation Graphs

All correlations computation presented in appendices, are based on Pearson’s rank cor-
relation and have been verified through Spearman’s rank correlation. The graphical
outcomes of the correlation table 6.12 are compiled in figures A.21, A.22, A.23, A.24,
A.25. Results show no strong sign of correlation between the values of Gamma Ray log

in Seamus and Finnegan well.
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Appendix B

Data Structures and Algorithms

All algorithms for statistical and spatial analysis as well as the algorithms for the esti-

mation of missing values in data, were developed and run in R and Matlab environment.

B.1 Correlations

The preliminary, exploratory and variogram analysis was developed and run in R envi-
ronment. The calculation of the well-log correlations was developed and run in Matlab

environment.

#R packages
library(gstat)
library (automap)
library (ggplot2)
library (MASS)
library(fitdistrplus)
library(gridExtra)
library (actuar)
library (extraDistr)
library (imputeTS)
library (Amelia)
library(forecast)

library(readr)

174
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library (caret)

#Set graph size
x11(width=8, height=9, pointsize=15)
par (mfrow=c(1,1), mar=c(3,3,3,3))

#Import data
setwd ("c:\\users\\Anastasia\\Desktop\\NalcorEnergy"’)
rm(list=1s(all.names=TRUE))

graphics.off ()

F311<-read_delim("Finnegan311l.csv", ";", escape_double = FALSE,
trim_ws = TRUE)

F216<-read_delim("Finnegan216.csv", ";", escape_double = FALSE,
trim_ws = TRUE)

S216<-read_delim("Seamus311.csv", ";", escape_double = FALSE,

trim_ws = TRUE)

#Select formations

#Formations of the Finnegan 311 hole section
#Goose (American) Tickle

Goose311_1=matrix (F311$DEPT[7087:8509])
Goose311_2=matrix(F311$SP[7087:8509])
Goose311_3=matrix (F311$GR[7087:8509])
Goose311l_4=matrix(F311$M2R1[7087:85091])
Goose311_5=matrix (F311$M2R2[7087:85091])

GooseDataF<-cbind (Goose311_1,Goose311_2,Goose311_3,Goose311_4,Goose311_5)

#Formations of the Finnegan 216 hole section
#Table Point

TableF_1<-F216$DEPT[180:905]

TableF _2<-F216$SP[180:905]
TableF_3<-F216$GR[180:905]

TableF _4<-F216$M2R1[180:905]

TableF _5<-F216$M2R2[180:905]

TableDataF<-cbind (TableF_1,TableF_2,TableF_3,TableF_4,TableF_5)
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#Aguathuna
AguathF_1<-F216$DEPT[906:1155]
AguathF_2<-F216$SP[906:1155]
AguathF _3<-F216$GR[906:1155]
AguathF _4<-F216$M2R1[906:1155]
AguathF_5<-F216$M2R2[906:1155]

AguathDataF<-cbind (AguathF_1,AguathF_2,AguathF_3,AguathF_4,AguathF_5)

#Formations of the Seamus 216 hole section
#Goose (American) Tickle
Goose216_1<-S216$DEPT[500:2000]
Goose216_2<-S216$SP[500:2000]
Goose216_3<-S2168GR[500:2000]
Goose216_4<-S216$M2R1[500:2000]
Goose216_5<-8S216$M2R2[500:2000]

GooseDataS<-cbind (Goose216_1,Goose216_2,Goose216_3,Goo0se216_4,Goo0se2216_5)

#Table Point
TableS_1<-3216$DEPT[2700:3570]
TableS_2<-S216$SP[2700:3570]
TableS_3<-5216$GR[2700:3570]
TableS_4<-S216$M2R1[2700:3570]
TableS_5<-3216$M2R2[2700:3570]

TableDataS<-cbind (TableS_1,TableS_2,TableS_3,TableS_4,TableS_5)

#Aguathuna
AguathS_1<-S216$DEPT[3571:3917]
AguathS_2<-S216$SP[3571:3917]
AguathS_3<-S216$GR[3571:3917]
AguathS_4<-S216$M2R1[3571:3917]
AguathS_5<-S216$M2R2[3571:3917]

AguathDataS<-cbind (AguathS_1,AguathS_2,AguathS_3,AguathS_4,AguathS_5)

HAHAHHSHBHAHAH AR HSHAHAHAHHSHBHAH AR HH RS HAH AR AR RS H B H AR AR AS RS HAHEH
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#CALCULATION OF MOMENTS
set.seed (1)
options(digits = 6)
Moments.gen<-function (x){
min=min (x)
max=max (x)
mean=mean (x)
med=median (x)
mod=getmode (x)
var=var (x)
sd=sqrt (var (x))
sk=skewness (x)
kur=kurtosis (x)
print (min)

print (max)

print (mean)

print (med)

print (mod)

print (var)

print (sd)

print (sk)

print (kur)

¥

x<-c(2:5)
for (j in x){

k<-(GooseDataF[,jl)
print (Moments.gen(k))
print ("Next Formation")
1<-(TableDataF[,j])
print (Moments.gen (1))
print ("Next Formation")
m<-(AguathDataF[,j])
print (Moments.gen (m))
print ("Next Formation")
n<-(GooseDataS[,jl)
print (Moments.gen(n))

print ("Next Formation")
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q<-(TableDataS[,jl)
print (Moments.gen(q))
print ("Next Formation")
p<-(AguathDataS[,jl)

print (Moments.gen(p))

HAERAHHHHHABHHH A AR HH AR BB BB S A BHBH AR H BB R AR BH BB HHH SRR B AR HH AR HHH
#DETRENDED DATA

#Transform the data into time series

#Formations of the Finnegan 311 hole section

#Goose (American) Tickle

#Spontaneous Potential

AAPL1 <-ts(Goose311_2,start(Goose311_1,0.2))

regl <- 1m(AAP1L"time (AAPL1))

detrended<-as.numeric (AAPL1-predict.lm(regl))

summary (reql)

#Gamma Ray

AAPL2<-ts(Goose311_3,start (Goose311_1,0.2))

reg2 <- 1m(AAPL2"time (AAPL2)+ I(time (AAPL2)"~2) + I(time (AAPL2)"3))
detrendedl<-as.numeric (AAPL2-predict.1lm(reg2))

summary (req?2)

#Formations of the Finnegan 216 hole section
#Table Point

#Spontaneous Potential

AAPL3 <-ts(TableF_2,start(TableF_1,0.2))

reg3 <- 1m(AAPL3"time (AAPL3))
detrended3<-as.numeric (AAPL3-predict.1lm(reg3))

summary (req3)

#Gamma Ray

AAPL4 <-ts(TableF_3,start(TableF_1,0.2))

reg4 <- 1m(AAPL4"time (AAPL4))
detrended4<-as.numeric (AAPL4-predict.1lm(reg4))

summary (req4)
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#Array Induction 20

AAPL9 <-ts(TableF_5,start(TableF_1,0.2))

reg9 <- 1m(AAPL9 time (AAPL9))
detrended9<-as.numeric (AAPL9-predict.1lm(reg9))

summary (req9)

#Aguathuna

#Spontaneous Potential

AAPL12 <-ts(AguathF_2,start (AguathF_1,0.2))

regl2 <- Im(AAPL127time (AAPL12)+ I(time (AAPL12)"2))
detrended12<-as.numeric (AAPL12-predict.1lm(regl2))

summary (req12)

#Gamma Ray

AAPL5 <-ts(AguathF_2,start (AguathF_1,0.2))
regh <- 1m(AAPL57time (AAPL5))
detrendedb5<-as.numeric (AAPL5-predict.1lm(regh))

summary (req5)

#Array Induction 10

AAPL10 <-ts(AguathF_4,start (AguathF_1,0.2))

regl0 <- 1m(AAPL10~time (AAPL10))
detrended10<-as.numeric (AAPL10-predict.1lm(regl10))

summary (req10)

#Array Induction 20

AAPL11 <-ts(AguathF_5,start (AguathF_1,0.2))

regll <- 1m(AAPL11~time (AAPL11))
detrendedl1<-as.numeric (AAPL11-predict.1lm(regll))

summary (reql1)

#Formations of the Seamus 216 hole section
#Goose (American) Tickle

#Gamma Ray

AAPL6 <-ts(Goose216_3,start(Goose216_1,0.1524))
reg6 <- 1m(AAPL6~ time (AAPL6))
detrended6<-as.numeric (AAPL6-predict.lm(reg6))

summary (req6)
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#Table Point

AAPL7<-ts(TableS_3,start(TableS_1,0.1524))
reg7<-1m(AAPL7 time (AAPL7)+ I(time (AAPL7)~2) + I(time (AAPL7)"~3))
detrended7<-as.numeric (AAPL7-predict.1lm(reg7))

summary (req7)

#Aguathuna

AAPL8<-ts(AguathS_4,start (AguathS_1,0.1524))
reg8<-1m (AAPL8  time (AAPLS))
detrended8<-as.numeric (AAPL8-predict.1lm(reg8))

summary (req8)
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#PLOT DISTRIBUTIONS

list.of .data.sets <- list(
yl<-as.vector (detrended),
y2<-as.vector (detrendedl),
y3<-as.vector (Goose311_4),
y4<-as.vector (Goose311_5),
yb<-as.vector (detrended3),
y6<-as.vector (detrended4),
y7<-as.vector (TableF_4),
y8<-as.vector (TableF_5),
y9<-as.vector (AguathF_2),
y1l0<-as.vector(detrended5),
yli<-as.vector (AguathF_4),
yl2<-as.vector (AguathF_5),
y13<-as.vector (Goose216_2),
yl4<-as.vector(detrended6),
y15<-as.vector (Goose216_4),
yl6<-as.vector (Goose216_5),
yl7<-as.vector (detrended?7),
y18<-as.vector(TableS_3),
y19<-as.vector(TableS_4),
y20<-as.vector(TableS_5),

y21<-as.vector (detrended8),
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y22<-as.vector (AguathS_2),
y23<-as.vector (AguathS_3),
y24<-as.vector (AguathS_5)
)

my.distr.functionl<-function(neg.data){
fg <- fitdist(y1l,"norm")
fm <- fitdist(yl,"cauchy")
fk <- fitdist(yl,"gumbel", start=1ist(a=100, b=100))
f_list <- list(fg,fm,fk)
plot.legend <- sapply(c(l:length(f_list)),
function(x) f_list[[x]]$distname)
f1 <- denscomp(f_list, legendtext = plot.legend,
xlegend = "right",
plotstyle = "ggplot",breaks=30)
f2 <- qqcomp(f_list, legendtext = plot.legend,
xlegend = "right",
plotstyle = "ggplot")
£f3 <- cdfcomp(f_list, legendtext = plot.legend,
xlegend = "right",
plotstyle = "ggplot")
f4 <- ppcomp(f_list, legendtext = plot.legend,
xlegend = "right",
plotstyle = "ggplot™")
grid.arrange (f1,f2,f3,f4)

summary (fg,fm,fk)}

my.distr.function2<-function(pos.data){
fg <- fitdist(yl,"norm"
f1 <- fitdist(yl,"weibull")
fmm <-fitdist(yl,"gamma")
f_list <- list(fg,fl,fmm)
plot.legend <- sapply(c(l:length(f_list)),
function(x) f_list[[x]]$distname)
f1 <- denscomp(f_list, legendtext = plot.legend,
xlegend = "right",

plotstyle = "ggplot",breaks=30)
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f2 <- qqcomp(f_list, legendtext = plot.legend,
xlegend = "right",

plotstyle = "ggplot™")

£f3 <- cdfcomp(f_list, legendtext = plot.legend,
xlegend = "right",

plotstyle = "ggplot")

f4 <- ppcomp(f_list, legendtext = plot.legend,
xlegend = "right",

plotstyle = "ggplot")

grid.arrange (f1,f2,£3,f4)

summary (fg,f1l, fmm)

for(i in 1:length(list.of.data.sets)){
if (list.of.data.sets[[i]]1>0) {
my.distr.function2(pos.data=1list.of.data.sets[[i]])
} else if {list.of.data.sets[[1]1]1<0} {

my.distr.functionl(neg.data=1list.of.data.sets[[1]]) }}

results.of.all.data.setsl <- lapply(list.of.data.sets,

FUN=c(my.distr.functionl)

results.of.all.data.sets2 <- lapply(list.of.data.sets,

FUN=c(my.distr.function2)
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#EMPIRICAL VARIOGRAMS

##Finnegan 311###

#Goose (American) Tickle

#Spontaneous potential

Test = data.frame (DEPTH=Goose311_1, SP=detrended)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=50,cressie=TRUE,width=2.5)
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#Gamma ray

Test = data.frame (DEPTH=Goose311_1, SP=detrendedl)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=60,cressie=TRUE,width=4)

#Array Induction 10

Test = data.frame (DEPTH=Goose311_1, SP=Goose311_4)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50

coordinates (Test) = ~ DEPTH+y
k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=16,cressie=TRUE,width=0.5)

#Array Induction 20

Test = data.frame (DEPTH=Goose311_1, SP=Goose311_5)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=3,cressie=TRUE,width=0.2)

##Seamus 216##

#Goose (American) Tickle

#Spontaneous potential

Test = data.frame (DEPTH=Goose216_1, SP=Goose216_2)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=50,cressie=TRUE,width=2)

#Gamma Ray
Test = data.frame (DEPTH=Goose216_1, SP=detrended6)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol 1)*50
coordinates(Test) = ~ DEPTH+y
k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=150,cressie=TRUE,width=8)
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#Array Induction 10
Test = data.frame (DEPTH=Goose216_1, SP=Goose216_4)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=50,cressie=TRUE,width=3)

#Array Induction 20

Test = data.frame (DEPTH=Goose216_1], SP=Goose216_5)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=55,cressie=TRUE,width=2)

#Table Point

#Spontaneous Potential

Test = data.frame (DEPTH=TableS_1, SP=TableS_2)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates (Test) = ~ DEPTH+y
k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=35,cressie=TRUE,width=1.5)

#Gamma Ray

Test = data.frame (DEPTH=TableS_1, SP=detrended7)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=20,cressie=TRUE,width=1)

#Array Induction 10
Test = data.frame (DEPTH=TableS_1, SP=TableS_4)
Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50

coordinates(Test) = ~ DEPTH+y
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k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=50,cressie=TRUE,width=2)

#Array Induction 20

Test = data.frame (DEPTH=TableS_1, SP=TableS_5)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=15,cressie=TRUE,width=0.7)

#Aguathuna

#Spontaneous Potential

Test = data.frame (DEPTH=AguathS_1, SP=AguathS_2)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=15,cressie=TRUE,width=0.6)

#Array Induction 10

Test = data.frame (DEPTH=AguathS_1, SP=detrended8)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=11,cressie=TRUE,Width=O.5)

#Array Induction 20

Test = data.frame (DEPTH=AguathS_1, SP=AguathS_5)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)%*50
coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=30,cressie=TRUE,width=1)

##Finnegan 216
#Table Point

#Spontaneous Potential
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Test = data.frame (DEPTH=TableF_1, SP=detrended3)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=10,cressie=TRUE,width=0.5)

#Gamma Ray

Test = data.frame (DEPTH=TableF_1, SP=detrended4)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=40,cressie=TRUE,width=1)

#Array Induction 20

Test = data.frame (DEPTH=TableF_1, SP=detrended9)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=20,cressie=TRUE,width=1)

#Aguathuna

#Spontaneous Potential

Test = data.frame (DEPTH=AguathF_1, SP=AguathF_2)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=16,cressie=TRUE,width=0.7)

#Gamma Ray

Test = data.frame (DEPTH=AguathF_1, SP=detrended5)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=15,cressie=TRUE,width=0.5)

#Array Induction 10
Test = data.frame (DEPTH=AguathF_1, SP=detrended10)
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Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates(Test) = ~ DEPTH+y
k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=15,cressie=TRUE,width=0.5)

###A20

Test = data.frame (DEPTH=AguathF_1, SP=detrendedl1l)

Test$y = matrix (1L, nrow = length(Test$DEPTH), ncol = 1)*50
coordinates (Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vkl = variogram(kl,cutoff=15,cressie=TRUE,width=0.5)
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#THEORETICAL VARIOGRAMS

#Finnegan 311 hole section

#Goose (American) Tickle

#Spontaneous Potential
tested_parl=fit.variogram(vkl,model=vgm(55,"Sph",42,5 ))
tested_par2=fit.variogram(vkl,model=vgm(55,"Exp",42,5 ))
tested_par3=fit.variogram(vkl,model=vgm(55,"Pen",42,5 ))

tested_parb5=fit.variogram(vkl,model=vgm(55,"Cir",42,5 ))

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind(variogramlLine (tested_par2,maxdist =
max (vk2$dist)),id="Exp"),
cbind(variogramLine (tested_par3,maxdist =
max (vk2$dist)),id="Pen"),
cbind(variogramlLine (tested_par5,maxdist =

max (vk2$dist)),id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +
geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+ geom_line() + theme_light()+ theme(axis.title.x =
element_text(size=15) ,axis.title.y =

element _text (size=15))+theme (axis.text.x =

element _text(size=15) ,axis.text.y = element_text(size =15))+ scale_y_continuou
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scale_x_continuous (name="Distance (h)") +
scale_color_manual (values = c("#FE2712",

"#008000" ,"#100C08" ,"#0OOFFFF" ,"#FFOOFF" ,"#0000FF")) +
theme (legend.title=element _blank())+theme(plot.title =
element _text(size=15), plot.subtitle =element_text(size =
15) ,plot.caption = element_text(size = 12,face="italic"))
+ theme( legend.text=element_text(size=15))

+ x1im(0,50) + xlab("lag(m)")

#Gamma Ray

tested_parl=fit.variogram(vkl,model=vgm(45,"Sph",75,
nugget =25 ))
tested_par2=fit.variogram(vkl,model=vgm(45,"Gau",75,
nugget =25 ))
tested_par3=fit.variogram(vkl,model=vgm(45,"Pen",75,
nugget =25 ))
tested_par4=fit.variogram(vkl,model=vgm(45,"Cir",75,

nugget =25 ))

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind (variogramLine (tested_par2,maxdist =
max (vk2$dist)),id="Gau"),
cbind(variogramlLine (tested_par3,maxdist =
max (vk2$dist)) ,id="Pen"),
cbind (variogramLine (tested_par4,maxdist =

max (vk2$dist)),id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +
geom_line(data=vglLinel,size=0.8) + geom_point(size=3) +
geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =
element_text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FE2712",
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"#000000" ,"#100C08" ,"#O0OFFFF","#FFOOFF")) +

theme (legend.title=element_blank ())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,60) +

xlab("lag(m)")

#Array Induction 10

tested_parl=fit.variogram(vkl,model=vgm(5,"Sph",2,5 ))
tested_par2=fit.variogram(vkl,model=vgm(5,"Gau",2,5 ))
tested_par3=fit.variogram(vkl,model=vgm(5,"Exp",2,5 ))
tested_par4=fit.variogram(vkl,model=vgm(5,"Pen",2,5 ))

tested_par6=fit.variogram(vkl,model=vgm(5,"Cir",2,5 ))

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist=

max (vk1$dist)),id="Sph"),

1]

cbind (variogramLine (tested_par2,maxdist

max (vk2$dist)),id="Gau"),

cbind(variogramLine (tested_par3,maxdist

max (vk2$dist)),id="Exp"),

cbind(variogramlLine (tested_par4,maxdist

max (vk2$dist)),id="Pen"))

ggplot (vk1l, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element_text (size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =
element_text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +
scale_x_continuous (name="Distance (h)") +
scale_color_manual (values = c("#FF0000",
"#7CFCOO","#000000" ,"#00OFFFF" ,"#0000FF" ,"#FFOOFF")) +
theme (legend.title=element_blank ())+theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),
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plot.caption = element_text(size = 12,face="italic"))
+ theme (legend.text=element_text(size=15)) + x1im(0,16) +

xlab("lag(m)")

#Array Induction 20

tested_parl=fit.variogram(vkl,model=vgm(50,"Sph",1,0))
tested_par2=fit.variogram(vkl,model=vgm(50,"Gau",1,0))
tested_par3=fit.variogram(vkl,model=vgm(50,"Pen",1,0))

tested_parb=fit.variogram(vkl,model=vgm(50,"Cir",1,0))

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind(variogramLine (tested_par2,maxdist =
max (vk2$dist)),id="Gau"),
cbind(variogramlLine (tested_par3,maxdist =
max (vk2$dist)) ,id="Pen"),
cbind(variogramlLine (tested_par5,maxdist =

max (vk2$dist)) ,id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =
element_text(size=15),axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",
"#7CFCOO","#000000" ,"#O0OFFFF" ,"#0000FF")) +

theme (legend.title=element _blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,3.5) +

xlab("lag(m)")

#Seamus 216



R and Matlab environment 191

#Goose (American) Tickle

#Spontaneous Potential

tested_parl=fit.variogram(vkl,model=vgm(200,"Sph",30,10))
tested_par2=fit.variogram(vkl,model=vgm(200,"Pen",30,10))

tested_par3=fit.variogram(vkl,model=vgm(200,"Cir",30,10))

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Sph"),

cbind(variogramlLine (tested_par2,maxdist

max (vk2$dist)),id="Pen"),

cbind(variogramLine (tested_par3,maxdist

max (vk2$dist)) ,id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =
element_text(size=15),axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",

"#000000" ,"#7CFCO0","blue")) +

theme (legend.title=element _blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,50) +

xlab("lag(m)")

#Gamma Ray

tested_parl=fit.variogram(vkl,model=vgm(200,"Sph",40,0))
tested_par2=fit.variogram(vkl,model=vgm(200,"Gau",40,0))
tested_par3=fit.variogram(vkl,model=vgm(200,"Exp",40,0))

tested_par4=fit.variogram(vkl,model=vgm(200,"Pen",40,0))
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vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind(variogramlLine (tested_par2,maxdist =
max (vk2$dist)),id="Gau"),
cbind(variogramLine (tested_par3,maxdist =
max (vk2$dist)),id="Exp"),
cbind(variogramlLine (tested_par4,maxdist =

max (vk2$dist)),id="Pen"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element_text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element _text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",

"#7CFCOO","#000000" ,"#00OFFFF","#0000FF")) +

theme (legend.title=element_blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme (legend.text=element_text(size=15)) + x1im(0,105) +

xlab("lag(m)")

#Array Induction 10

tested_parl=fit.variogram(vkl,model=vgm(2000,"Sph",10,0))
tested_par2=fit.variogram(vkl,model=vgm(2000,"Exp",10,0))
tested_par3=fit.variogram(vkl,model=vgm(2000,"Pen",10,0))

tested_parb5=fit.variogram(vkl,model=vgm(2000,"Cir",10,0))

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Sph"),

cbind(variogramlLine (tested_par2,maxdist

max (vk2$dist)),id="Exp"),

cbind(variogramLine (tested_par3,maxdist

max (vk2$dist)),id="Pen"),
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cbind(variogramLine (tested_par5,maxdist =

max (vk2$dist)) ,id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element_text (size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",
"#7CFCOO","#000000" ,"#O0OFFFF" ,"#0000FF")) +

theme (legend.title=element _blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,50) +

xlab("lag(m)")

#Array Induction 20

tested_parl=fit.variogram(vkl,model=vgm(1500,"Sph",20,0))
tested_par2=fit.variogram(vkl,model=vgm(1500,"Gau",20,0))
tested_par3=fit.variogram(vkl,model=vgm(1500,"Exp",20,0))
tested_par4=fit.variogram(vkl,model=vgm(1500,"Pen",20,0))
tested_par6=fit.variogram(vkl,model=vgm(1500,"Cir",20,0))

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind (variogramLine (tested_par2,maxdist =
max (vk2$dist)),id="Gau"),
cbind(variogramlLine (tested_par3,maxdist =
max (vk2$dist)),id="Exp"),
cbind (variogramLine (tested_par4,maxdist =
max (vk2$dist)),id="Pen"),
cbind(variogramlLine (tested_par6,maxdist =

max (vk2$dist)) ,id="Cir"))
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ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vgLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =
element_text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",

"#7CFCOO" ,"#0000FF","#000000" ,"#00OFFFF" ,"#FFOOFF")) +

theme (legend.title=element _blank())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,55) +

xlab("lag(m)")

#Table Point

#Spontaneous Potential

tested_par2=fit.variogram(vkl,model=vgm(300,"Gau",10,20),

fit.method 7)

vglinel<-rbind(cbind(variogramlLine (tested_par2,maxdist =

max (vk2$dist)),id="Gau"))

ggplot (vk1l, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element_text (size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =
element_text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#0000FF","#000000")) +

theme (legend.title=element _blank())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))
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+ theme( legend.text=element_text(size=15)) + x1im(0,35) +

xlab("lag(m)")

#Gamma Ray

tested_parl=fit.variogram(vkl,model=vgm(200,"Sph",2,0),

fit.method = 1)

tested_par4=fit.variogram(vkl,model=vgm(200,"Pen",2,0),

fit.method 1)

tested_parb=fit.variogram(vkl,model=vgm(200,"Gau",2,0),
1)

fit.variogram(vkl,model=vgm(200,"Cir",2,0),

fit.method

tested_par6

fit.method 1)

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind(variogramlLine (tested_par4,maxdist =
max (vk1$dist)),id="Pen"),
cbind(variogramlLine (tested_par5,maxdist =
max (vk1$dist)),id="Gau"),
cbind(variogramlLine (tested_par6,maxdist =

max (vk2$dist)) ,id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line () + theme_light()+ theme(axis.title.x =
element_text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element _text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",

"#T7CFCOO","#0000FF" ,"#FFA500","#000000")) +

theme (legend.title=element_blank ())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,20) +

xlab("lag(m)")
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#Array Induction 10

tested_parl=fit.variogram(vkl,model=vgm(1000,"Sph",20,0),

fit.method = 1)

tested_par3=fit.variogram(vkl,model=vgm(1000,"Pen",20,0),

fit.method = 1)

tested_par5=fit.variogram(vkl,mode1=vgm(1000,"Cir",20,0),

fit.method = 1)

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Sph"),

cbind(variogramlLine (tested_par3,maxdist

max (vk1$dist)),id="Pen"),

cbind(variogramlLine (tested_par5,maxdist

max (vk1$dist)),id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line () + theme_light()+ theme(axis.title.x =
element_text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element_text (size=15) ,axis.text.y = element_text(size =
scale_y_continuous (name="$\gamma (h)$") +
scale_x_continuous (name="Distance (h)") +
scale_color_manual (values = c("#FF0000",

"#00O0OFF" ,"#FFA500","#000000")) +

theme (legend.title=element_blank ())+theme(plot.title =
element _text(size=15), plot.subtitle = element_text(size
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,50)

xlab("lag(m)")

#Array Induction 20

tested_parl=fit.variogram(vkl,model=vgm(200000,"Sph",3,0),

fit.method = 1)

tested_par2=fit.variogram(vkl,model=vgm(200000,"Gau",3,0),

+
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fit.method = 1)

tested_par3=fit.variogram(vkl,model=vgm(200000,"Exp",3,0),

fit.method 1)

tested_par4=fit.variogram(vkl,model=vgm(200000,"Pen",3,0),

fit.method 1)

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist =
max (vk1$dist)),id="Sph"),
cbind(variogramlLine (tested_par2,maxdist =
max (vk1$dist)),id="Gau"),
cbind(variogramLine (tested_par3,maxdist =
max (vk1$dist)),id="Exp"),
cbind(variogramlLine (tested_par4,maxdist =

max (vk2$dist)) ,id="Pen"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element_text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element _text(size=15),axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",

"#000OFF","#FFA500" ,"#00FFFF","#000000")) +

theme (legend.title=element_blank ())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,15) +

xlab("lag(m)")

#Aguathuna

#Spontaneous Potential

tested_parl=fit.variogram(vkl,model=vgm(1000,"Gau",15,20),

fit.method = 1)
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vglLinel<-rbind(cbind(variogramLine (tested_parl,maxdist =

max (vk1$dist)),id="Gau"))

ggplot (vk1l, aes(x=dist,y=gamma,colour=id)) +
geom_line(data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =
element_text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#000000",

"#FF0000")) +

theme (legend.title=element_blank ())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic")) + theme(
legend.text=element _text(size=15)) + x1im(0,15) +

xlab("lag(m)")

#Array Induction 10

tested_parl=fit.variogram(vkl,model=vgm(550,"Gau",1,0),
1)

tested_par2=fit.variogram(vkl,model=vgm(550,"Sph",1,0),

fit.method

fit.method = 1)
tested_par3=fit.variogram(vkl,model=vgm(550,"Pen",1,0),
fit.method = 1)

tested_par4=fit.variogram(vkl,model=vgm(550,"Cir",1,0),

fit.method 1)

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Gau"),

cbind(variogramlLine (tested_par2,maxdist

max (vk1$dist)),id="Sph"),

cbind(variogramLine (tested_par3,maxdist

max (vk1$dist)),id="Pen"),
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cbind(variogramLine (tested_par4,maxdist =

max (vk2$dist)) ,id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element_text (size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",
"#000OFF","#000000" ,"#FFA500" ,"#00FFFF")) +

theme (legend.title=element _blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic")) + theme(
legend.text=element_text(size=15)) + x1lim(0,12) +

xlab("lag(m)")

#Array Induction 20

tested_parl=fit.variogram(vkl,model=vgm(300000,"Sph",2,0),
fit.method = 1)
tested_par2=fit.variogram(vkl,model=vgm(300000,"Gau",2,0),
fit.method = 1)
tested_par3=fit.variogram(vkl,model=vgm(300000,"Exp",2,0),
fit.method = 1)
tested_par4=fit.variogram(vkl,model=vgm(300000,"Pen",2,0),
fit.method = 1)
tested_parb=fit.variogram(vkl,model=vgm(300000,"Cir",2,0),

fit.method = 1)

vglinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Sph"),

cbind(variogramlLine (tested_par2,maxdist

max (vk1$dist)),id="Gau"),

cbind(variogramLine (tested_par3,maxdist

max (vk1$dist)),id="Exp"),
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cbind(variogramlLine (tested_par4,maxdist

max (vk2$dist)),id="Pen"),

cbind(variogramlLine (tested_par4,maxdist

max (vk2$dist)),id="Cir"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element_text (size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =

element _text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma(h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c("#FF0000",

"#000OFF" ,"#FFA500" ,"#000000" ,"#00FFFF")) +

theme (legend.title=element_blank ())+theme (plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic")) + theme(
legend.text=element_text(size=15)) + x1im(0,30) +

xlab("lag(m)")

#Finnegan 216
#Table Point

#Spontaneous Potential

tested_parl=fit.variogram(vkl,model=vgm(150,"Gau",5,0),
fit.method = 1)
tested_par2=fit.variogram(vkl,model=vgm(150,"Sph",5,0),
fit.method = 1)

tested_par3=fit.variogram(vkl,model=vgm(150,"Cir",5,0),
fit.method = 1)
tested_par4=fit.variogram(vkl,model=vgm(150,"Pen",5,0),

fit.method = 1)

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist

max (vk1$dist)),id="Gau"),

cbind(variogramLine (tested_par2,maxdist

max (vk1$dist)),id="Sph"),
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cbind(variogramlLine (tested_par3,maxdist

max (vk1$dist)),id="Cir"),

cbind(variogramlLine (tested_par4,maxdist

max (vk2$dist)),id="Pen"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line () + theme_light()+ theme(axis.title.x =
element_text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =

element_text (size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c(

"#000OFF" ,"#FFA500" ,"#FF0000" ,"#00FFFF" ,"#000000")) +

theme (legend.title=element_blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15)
, plot.caption = element_text(size = 12,face="italic")) +
theme ( legend.text=element_text(size=15)) + x1lim(0,10) +

xlab("lag(m)")

#Gamma Ray

fit.variogram(vkl,model=vgm(25,"Gau",20,0),
1)
tested_par2=fit.variogram(vkl,model=vgm(25,"Sph",20,0),

tested_parl

fit.method

fit.method = 1)
tested_par3=fit.variogram(vkl,model=vgm(25,"Exp",20,0),
fit.method = 1)

tested_par4=fit.variogram(vkl,model=vgm(25,"Pen",20,0),

fit.method 1)

vglLinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Gau"),

cbind(variogramlLine (tested_par2,maxdist

max (vk1$dist)),id="Sph"),

cbind(variogramline (tested_par3,maxdist
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max (vk1$dist)),id="Exp"),
cbind (variogramLine (tested_par4,maxdist =

max (vk2$dist)),id="Pen"))

ggplot (vk1l, aes(x=dist,y=gamma,colour=id)) +
geom_line(data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element _text(size=15) ,axis.title.y =

element_text (size=15))+theme (axis.text.x =

element_text(size=15) ,axis.text.y = element_text(size = 15)) +

scale_y_continuous (name="$\gamma (h)$") +
scale_x_continuous (name="Distance (h)") +
scale_color_manual (values = c(

"#00OOFF" ,"#FFA500" ,"#FF0000" ,"#00FFFF","#000000")) +
theme (legend.title=element_blank ())+theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))
+ theme( legend.text=element_text(size=15)) + x1im(0,40) +

xlab("lag(m)")

#Array Induction 10

tested_parl=fit.variogram(vkl,model=vgm(10000,"Gau",1,7000))

tested_par2=fit.variogram(vkl,model=vgm(10000,"Exp",1,7000))

vglLinel<-rbind(cbind(variogramLine (tested_parl,maxdist

max (vk1$dist)),id="Gau"),

cbind(variogramlLine (tested_par2,maxdist

max (vk1$dist)) ,id="Exp"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +
geom_line (data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element _text(size=15) ,axis.title.y =

element _text (size=15))+theme(axis.text.x =

element _text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +



R and Matlab environment 203

scale_color_manual (values = c( "#000000","#FFA500"))

+ theme (legend.title=element_blank())+theme (plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme (legend.text=element_text(size=15)) + x1im(0,20) +

xlab("lag(m)")

#Aguathuna

#Spontaneous Potential

tested_parl=fit.variogram(vkl,model=vgm(50,"Gau",5,0),

fit.method 1)

tested_par2=fit.variogram(vkl,model=vgm(50,"Sph",5,0),
fit.method = 1)
tested_par3=fit.variogram(vkl,model=vgm(50,"Pen",5,0),

fit.method = 1)

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist =
max (vk1$dist)),id="Gau"),
cbind(variogramlLine (tested_par2,maxdist =
max (vk1$dist)),id="Sph"),
cbind(variogramLine (tested_par3,maxdist =

max (vk2$dist)) ,id="Pen"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vgLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =
element_text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c(

"#000000" ,"#FFA500" ,"#FF0000" ,"#00FFFF")) +

theme (legend.title=element _blank())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))
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+ theme (legend.text=element_text(size=15)) + x1im(0,15) +

xlab("lag(m)")

#Gamma Ray

tested_parl=fit.variogram(vkl,model=vgm(100,"Sph",5,0),
fit.method = 1)
tested_par2=fit.variogram(vkl,model=vgm(100,"Gau",5,0),

fit.method = 1)

fit.variogram(vkl,model=vgm(100,"Exp",5,0),
1)

tested_par3

fit.method

vglinel<-rbind(cbind(variogramlLine (tested_parl,maxdist

max (vk1$dist)),id="Sph"),

cbind (variogramLine (tested_par2,maxdist
max (vk1$dist)),id="Gau"),
cbind(variogramlLine (tested_par3,maxdist =

max (vk2$dist)) ,id="Exp"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +

geom_line (data=vglinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =

element _text(size=15) ,axis.title.y =

element _text(size=15))+theme (axis.text.x =
element_text(size=15),axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c(

"#000000" ,"#FFA500" ,"#FF0000" ,"#00FFFF")) +

theme (legend.title=element _blank ())+theme(plot.title =

element _text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic")) +

theme ( legend.text=element_text(size=15)) + x1lim(0,15) +

xlab("lag(m)")

#Array Induction 10
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tested_parl=fit.variogram(vkl,model=vgm(300000,"Sph",5,0),

fit.method

tested_par2

fit.method

tested_par3=

fit.method =

vgLinel<-rbind(cbind(variogramLine (tested_parl,maxdist

ggplot (vk1,

1)

fit.variogram(vkl,model=vgm(300000,"Gau",5,0),

1)

fit.variogram(vkl,model=vgm(300000,"Exp",5,0),

1

max (vk1$dist)),id="Sph"),

cbind(variogramlLine (tested_par2,maxdist

max (vk1$dist)),id="Gau"),

cbind(variogramlLine (tested_par3,maxdist

max (vk2$dist)),id="Exp"))

aes (x=dist ,y=gamma,colour=id)) +

geom_line(data=vglLinel,size=0.8) + geom_point(size=3)

+geom_line ()

+ theme_light ()+ theme (axis.title.x =

element_text(size=15) ,axis.title.y =

element _text (size=15))+theme (axis.text.x =

element _text(size=15) ,axis.text.y = element_text(size =

scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c(

"#000000" ,"#FFA500" ,"#FF0O00O","#00OFFFF")) +

theme (legend.title=element_blank ())+theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size

plot.caption

element_text(size = 12,face="italic"))

15)) +

+ theme (legend.text=element_text(size=15)) + x1im(0,15) +

xlab("lag (m)

|I)

#Array Induction 10

tested_parl

fit.method =

fit.variogram(vkl,model=vgm(150000,"Sph",5,0),

1)

tested_par2=fit.variogram(vkl,model=vgm(150000,"Gau",5,0),

158),
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fit.method = 1)
tested_par3=fit.variogram(vkl,model=vgm(150000,"Exp",5,0),

fit.method = 1)

vglLinel<-rbind(cbind(variogramLine (tested_parl,maxdist
max (vk1$dist)),id="Sph"),
cbind(variogramlLine (tested_par2,maxdist =

max (vk1$dist)),id="Gau"),

cbind(variogramLine (tested_par3,maxdist

max (vk2$dist)) ,id="Exp"))

ggplot (vkl, aes(x=dist,y=gamma,colour=id)) +
geom_line(data=vglLinel,size=0.8) + geom_point(size=3)
+geom_line() + theme_light()+ theme(axis.title.x =
element_text (size=15) ,axis.title.y =
element_text(size=15))+theme (axis.text.x =

element _text(size=15) ,axis.text.y = element_text(size = 15)) +
scale_y_continuous (name="$\gamma (h)$") +

scale_x_continuous (name="Distance (h)") +

scale_color_manual (values = c(

"#000000" ,"#FFA500" ,"#FF000O0" ,"#00FFFF")) +

theme (legend.title=element_blank ())+theme(plot.title =
element_text(size=15), plot.subtitle = element_text(size = 15),
plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + x1im(0,15) +

xlab("lag(m)")

#Calculate Validation Scores

#Experimental variogram

exp.var<-vkl$gamma

#Estimated variogram

est.var<-variogramLine (tested_parl,maxdist =

max (vk1$dist) ,n=nrow(vk1l))
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my.val.scores <- function(exp.var,est.var){

d = exp.var[[i]]-est.var[[i]]$gamma)

mse = mean ((d)~2)
mae = mean (abs(d))
rmse = sqrt(mse)

}

#Print the following code for each exp.var and est.var

print<-my.val.scores (exp.var,est.var)

HHAHRAHHHBH RS HAHAHBHBAH AR AR AR AR B AR AR AR AR BH B R AR AR B H BB H AR RSB HH
#MATLAB
HHAHAHAHHBHAHAHAH A SRS HAHAH AR A SRS H AR AR AR A SRS H AR AR AH RS H AR AR AR RS H
#CORRELATIONS

clc; clear variable; close all;
load (’Finnegan311.dat’)

load (’Finnegan216.dat’)
load(’Seamus216.dat’)

% Table Point

DEF=DEPT(180:905); %Depth of Finegan
GRF=GR(180:905);

DES=DEPT1(2700:3571); %Depth of Seamus
GRS=GR1(2700:3571);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min (DEF) ;

DES=DES-min (DES);

M=max (DES) ;

find (DEF<=M+0.5 & DEF>=M-0.5)
Cutoff=663;

StepDEF=DEF (2) -DEF (1) ;
DEKOINO=(0:StepDEF :DEF (Cutoff)) ’;

plot (DEKOINO, GRF(1:Cutoff))
GRS2=interp1 (DES,GRS,DEKOINO); %Linear
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GRS3=interp1 (DES,GRS,DEKOINO, >nearest’);
GRS4=interp1 (DES,GRS,DEKOINO, ’cubic’);
GRS5=interp1 (DES,GRS ,DEKOINO, >spline’);

Y%corrcoef (GRS2,GRS3)

% corrcoef (GRS4,GRS3)

% corrcoef (GRS5,GRS3)

figure

hold on

plot (DEKOINO,GRS2,’m’, ’LineWidth’,1.5)

plot (DEKOINO,GRS3,’c’,’LineWidth’,1.5)

plot (DEKOINO ,GRS4,’g:’,’LineWidth’,1.5)

plot (DEKOINO ,GRS5,’r:’,’LineWidth’,1.5)

plot (DEKOINO,GRF(1:Cutoff),’k’,’LineWidth’,1.5)
legend(’Linear’,’Nearest’,’Cubic’,’Spline’,’GRF’)
RS=corr (GRS3,GRF(1:Cutoff),’type’,’Spearman’);
[RP,P]l=corr (GRS3,GRF (1:Cutoff),’type’,’Pearson’);
rmse=sqrt (mean ((GRS3,GRF (1:Cutoff))."~2))

% Aguathuna

DEF=DEPT(906:1155); %Depth of Finnegan
GRF=GR(906:1155);
DES=DEPT1(3572:3917); %Depth of Seamus
GRS=GR1(3572:3917);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min (DEF) ;

DES=DES -min (DES) ;

M=max (DEF) ;

find (DES<=M+0.5 & DES>=M-0.5)
Cutoff=325;

StepDEF=DES(2)-DES(1);
DEKOINO=(0:StepDEF:DES(Cutoff-1))’;
plot (DEKOINO, GRS(1:Cutoff-1))
GRS2=interpl1 (DEF,GRF ,DEKOINO); %Linear
GRS3=interp1 (DEF ,GRF ,DEKOINO, ’nearest’);
GRS4=interp1 (DEF,GRF ,DEKOINO, ’cubic’);
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GRS5=interp1 (DEF,GRF ,DEKOINO, ’spline’);

% corrcoef (GRS2,GRS3)

% corrcoef (GRS4,GRS3)

% corrcoef (GRS5,GRS3)

figure

hold on

plot (DEKOINO,GRS2,’m’,’LineWidth’,1.5)

plot (DEKOINO,GRS3,’c’,’LineWidth’,1.5)

plot (DEKOINO ,GRS4,’g:’, ’LineWidth’,1.5)

plot (DEKOINO,GRS5,’r:’,’LineWidth’,1.5)

plot (DEKOINO, GRS(1:Cutoff-1),’k’,’LineWidth’,1.5)
1egend(’Linear’,’Nearest’,’Cubic’,’Spline’,’GRF’)
RS=corr (GRS3,GRF(1:Cutoff),’type’,’Spearman’);
[RP,P]l=corr (GRS3,GRF (1:Cutoff),’type’,’Pearson’);
rmse=sqrt (mean ((GRS3,GRF(1:Cutoff))."~2))

%Catoche

DEF=DEPT(1156:1780); %Depth of Finegan
GRF=GR(1156:1780);
DES=DEPT1(3918:4639); %Depth of Seamus
GRS=GR1(3918:4639) ;

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min (DEF) ;

DES=DES-min (DES) ;

M=max (DES) ;

find (DEF<=M+0.5 & DEF>=M-0.5)
Cutoff=548;

StepDEF=DEF (2) -DEF (1) ;
DEKOINO=(0:StepDEF :DEF (Cutoff)) ’;

plot (DEKOINO, GRF(1:Cutoff-1))
GRS2=interp1 (DES,GRS,DEKOINO); %Linear
GRS3=interp1 (DES,GRS ,DEKOINO, nearest’);
GRS4=interp1 (DES,GRS ,DEKOINO, ’cubic’);
GRS5=interp1 (DES,GRS ,DEKOINO, >spline’);
%corrcoef (GRS2,GRS3)



R and Matlab environment 210

%corrcoef (GRS4,GRS3)

%corrcoef (GRS5,GRS3)

figure

hold on

plot (DEKOINO,GRS2,’m’,’LineWidth’,1.5)

plot (DEKOINO,GRS3,’c’,’LineWidth’,1.5)

plot (DEKOINO,GRS4,’g:’,’LineWidth’,1.5)

plot (DEKOINO,GRS5,’r:?,’LineWidth’,1.5)

plot (DEKOINO ,GRF(1:Cutoff-1),°k’,’LineWidth’,1.5)
legend(’Linear’,’Nearest’,’Cubic’,’Spline’,’GRF’)
RS=corr (GRS3,GRF(1:Cutoff-1),’type’,’Spearman’);
[RP,P]l=corr (GRS3,GRF(1:Cutoff-1),’type’,’Pearson’);
rmse=sqrt (mean ((GRS3,GRF (1:Cutoff-1))."2))

%Boat Harbour

DEF=DEPT(1781:2380); %Depth of Finegan
GRF=GR(1781:2380) ;
DES=DEPT1(4640:5459); %Depth of Seamus
GRS=GR1(4640:5459);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min (DEF) ;

DES=DES -min (DES) ;

M=max (DEF) ;

find (DES<=M+0.5 & DES>=M-0.5)
Cutoff=784;

StepDEF=DES (2) -DES(1);
DEKOINO=(0:StepDEF:DES(Cutoff)) ’;

plot (DEKOINO, GRF(1:Cutoff-1))
GRS2=interpl (DEF,GRF ,DEKOINO); %Linear
GRS3=interpl1 (DEF ,GRF ,DEKOINO, >nearest’);
GRS4=interp1 (DEF,GRF ,DEKOINO, ’cubic’);
GRS5=interp1 (DEF ,GRF ,DEKOINO, >spline’);
Y%corrcoef (GRS2,GRS3)

Y%corrcoef (GRS4,GRS3)

%corrcoef (GRS5,GRS3)
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figure

hold on

plot (DEKOINO,GRS2,’m’,’LineWidth’,1.5)

plot (DEKOINO,GRS3,’c’,’LineWidth’,1.5)

plot (DEKOINO,GRS4,’g:’,’LineWidth’,1.5)

plot (DEKOINO,GRS5,’r:?,’LineWidth’,1.5)

plot (DEKOINO,GRS(1:Cutoff),’k’,’LineWidth’,1.5)
legend(’Linear’,’Nearest’,’Cubic’,’Spline’, ’GRF’)
RS=corr (GRS3,GRF(1:Cutoff),’type’,’Spearman’);
[RP,P]l=corr (GRS3,GRF (1:Cutoff),’type’,’Pearson’);
rmse=sqrt (mean ((GRS3,GRF (1:Cutoff-1))."2))

% Watts Bight

DEF=DEPT (2381:2730); %Depth of Finegan
GRF=GR (2381:2730);
DES=DEPT1(5460:5866); %Depth of Seamus
GRS=GR1(5460:5866) ;

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min (DEF) ;

DES=DES -min (DES) ;

M=max (DES) ;

find (DEF<=M+0.5 & DEF>=M-0.5)
Cutoff=308;

StepDEF=DEF (2) -DEF (1) ;
DEKOINO=(0:StepDEF :DEF (Cutoff)) ’;

plot (DEKOINO, GRF(1:Cutoff-1))

GRS

GRS2=interp1 (DES,GRS,DEKOINO); %Linear
GRS3=interp1 (DES,GRS ,DEKOINO, nearest’);
GRS4=interpl (DES,GRS,DEKOINO, ’cubic’);
GRS5=interp1 (DES,GRS ,DEKOINO,’spline’);
% corrcoef (GRS2,GRS3)

% corrcoef (GRS4,GRS3)

% corrcoef (GRS5,GRS3)

figure
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hold on

plot (DEKOINO,GRS2,’m’,’LineWidth’,1.5)

plot (DEKOINO,GRS3,’c’,’LineWidth’,1.5)

plot (DEKOINO,GRS4,’g:’,’LineWidth’,1.5)

plot (DEKOINO ,GRS5,’r:’,’LineWidth’,1.5)

plot (DEKOINO ,GRF(1:Cutoff-1),’k’,’LineWidth’,1.5)
legend(’Linear’,’Nearest’,’Cubic’,’Spline’,’GRF’)
RS=corr (GRS3,GRF(1:Cutoff-1),’type’,’Spearman’);
[RP,Pl=corr (GRS3,GRF (1:Cutoff-1),’type’,’Pearson’);
rmse=sqrt (mean ((GRS3-GRF(1:Cutoff))."~2))

% Goose (American) Tickle

DEF=DEPT2(7087:8509); %Depth of Finegan
GRF=GR2(7087:8509);

DES=DEPT1(13:2200); %Depth of Seamus
GRS=GR1(13:2200);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min (DEF) ;

DES=DES -min (DES) ;

M=max (DEF) ;

find (DES<=M+0.5 & DES>=M-0.5)
Cutoff=1864;

StepDEF=DES(2)-DES(1);
DEKOINO=(0:StepDEF:DES(Cutoff))’;

GRF

plot (DEKOINO, GRS(1:Cutoff))

GRS

GRS2=interpl1 (DEF,GRF ,DEKOINO); %Linear
GRS3=interp1 (DEF,GRF ,DEKOINO, nearest’);
GRS4=interp1 (DEF,GRF ,DEKOINO, ’cubic’);
GRS5=interp1 (DEF ,GRF ,DEKOINO, ’spline’);
% corrcoef (GRS2,GRS3)

% corrcoef (GRS4,GRS3)

% corrcoef (GRS5,GRS3)

figure
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hold on

plot (DEKOINO
plot (DEKOINO
plot (DEKOINO
plot (DEKOINO

,GRS2,’m’,’LineWidth’,1.5)
,GRS3,’c’,’LineWidth’,1.5)
,GRS4,’g:’,’LineWidth’,1.5)
,GRS5,’r:’,’LineWidth’,1.5)

plot (DEKOINO,GRS(1:Cutoff),’k’,’LineWidth’,1.5)

legend(’Linear’,’Nearest’,’Cubic’,’Spline’,’GRF’)

RS=corr (GRS3,GRF(1:Cutoff-1),’type’,’Spearman’);

[RP,Pl=corr (GRS3,GRF (1:Cutoff-1),’type’,’Pearson’);

rmse=sqrt (mean ((GRS3-GRF(1:Cutoff))."~2))

B.2 Missing data

The missing values generator and MCAR test is achieved by using the [73|’s code, as

well as the Amelia, imputeTS and forecast packages in R .

#Table Point

#Spontaneous

Timeseriesl <- ts(TableS_2,start(TableS_1,0.1524),frequency

Potential

plot(stl(Timeseriesl,s.window = c("periodic")),

main="Seamus 216 SP Data Decomposition")

acf (Timeseries1,main="")

complete.ts <-Timeseriesl

seeds <- 30

n <- length(complete.ts)

miss.rate

incomplete.ts <- array(,dim=c(n,seeds,length(miss.rate)))

<- ¢(0.1,0.25,0.5,0.8)

NAs <- array(,dim=c(seeds,length(miss.rate)))

Imputel<- array(,dim=c(n,seeds,length(miss.rate)))

Impute2<-
Impute3<-
Impute4<-
Imputeb<-

Impute6<-

array(,dim=c(n,seeds,length(miss.
array (,dim=c(n, seeds,length(miss.
array (,dim=c(n, seeds,length(miss.
array(,dim=c(n, seeds,length(miss.

array(,dim=c(n,seeds,length(miss.

rate)))
rate)))
rate)))
rate)))

rate)))

6)
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for (c in 1:length(miss.rate)){

for (i in 1:seeds){
set.seed (i)
incomplete.ts[,i,c] <-ts(miss.gen(complete.ts,miss.ratel[c]))
b=0
for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))
{b=b+1}
NAs[i,c] <-b}
incomp.ts <- as.numeric(incomplete.ts[,i,c])
Imputel[,i,c] <- na.kalman(incomp.ts,model="auto.arima")
Impute2[,i,c] <- na.interpolation(incomp.ts)
Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")
Impute4[,i,c] <- na.ma(incomp.ts,weighting="simple")
Imputeb5[,i,c] <- na.ma(incomp.ts,weighting="1linear")
Impute6[,i,c] <- na.mean(incomp.ts)

13

inc <- as.data.frame(incomplete.ts[,5,])

names (inc) <- c¢("0.1","0.25","0.5","0.8")

missmap (inc,rank.order = TRUE)

#Gamma Ray

Timeseries2 <- ts(TableS_3,start(TableS_1,0.1524),frequency = 6)
plot(stl(Timeseries2,s.window = c("periodic")),
main="Seamus 216 GR Data Decomposition")

acf (Timeseries2,main="")

complete.ts <-Timeseries2

seeds <- 30

n <- length(complete.ts)

miss.rate <- ¢(0.1,0.25,0.5,0.8)

incomplete.ts <- array(,dim=c(n,seeds,length(miss.rate)))
NAs <- array(,dim=c(seeds,length(miss.rate)))

Imputel<- array(,dim=c(n,seeds,length(miss.rate)))
Impute2<- array(,dim=c(n,seeds,length(miss.rate)))
Impute3<- array(,dim=c(n,seeds,length(miss.rate)))
Impute4<- array(,dim=c(n,seeds,length(miss.rate)))

Impute5<- array(,dim=c(n,seeds,length(miss.rate)))



R and Matlab environment 215

Impute6<- array(,dim=c(n,seeds,length(miss.rate)))

for (c in 1:length(miss.rate)){
for (i in 1:seeds)q
set.seed (i)
incomplete.ts[,i,c] <-ts(miss.gen(complete.ts,miss.rate[c]))
b=0
for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))
{b=b+1}
NAs[i,c] <-b }
incomp.ts <- as.numeric(incomplete.ts[,i,c])
Imputel[,i,c] <- na.kalman(incomp.ts,model="auto.arima")
Impute2[,i,c] <- na.interpolation(incomp.ts)
Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")
Impute4[,i,c] <- na.ma(incomp.ts,weighting="simple")
Impute5[,i,c] <- na.ma(incomp.ts,weighting="linear")
Impute6[,i,c] <- na.mean(incomp.ts)
1}
inc <- as.data.frame(incomplete.ts[,5,])
names (inc) <- c("0.1","0.25","0.5","0.8")

missmap (inc)

#Array Induction 10
Timeseries3 <- ts(TableS_3,start(TableS_1,0.1524),frequency = 6)
plot (stl(Timeseries3,s.window = c("periodic")),
main="Seamus 216 AT10 Data Decomposition")
acf (Timeseries3,main="")
complete.ts <-Timeseries3
seeds <- 30
n <- length(complete.ts)
miss.rate <- ¢(0.1,0.25,0.5,0.8)
incomplete.ts <- array(,dim=c(n,seeds,length(miss.rate)))
NAs <- array(,dim=c(seeds,length(miss.rate)))
Imputel<- array(,dim=c(n,seeds,length(miss.rate)))
Impute2<- array(,dim=c(n,seeds,length(miss.rate)))
Impute3<- array(,dim=c(n,seeds,length(miss.rate)))

Impute4<- array(,dim=c(n,seeds,length(miss.rate)))
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Impute5<- array(,dim=c(n,seeds,length(miss.rate)))

Impute6<- array(,dim=c(n,seeds,length(miss.rate)))

for (c in 1:length(miss.rate)){
for (i in 1:seeds){

set.seed (i)
incomplete.ts[,i,c] <-ts(miss.gen(complete.ts,miss.ratel[c]))
b=0
for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))
{b=b+1}
NAs[i,c] <-b }
incomp.ts <- as.numeric(incomplete.ts[,i,c])
Imputel[,i,c] <- na.kalman(incomp.ts,model="auto.arima")
Impute2[,i,c] <- na.interpolation(incomp.ts)
Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")
Impute4[,i,c] <- na.ma(incomp.ts,weighting="simple")
Impute5[,i,c] <- na.ma(incomp.ts,weighting="linear")
Impute6[,i,c] <- na.mean(incomp.ts)

3
inc <- as.data.frame(incomplete.ts[,5,])
names (inc) <- c("0.1","0.25","0.5","0.8")
missmap (inc)

#Array Induction 20

Timeseries4 <- ts(TableS_5,start(TableS_1,0.1524),frequency = 6)

plot(stl(Timeseries4,s.window = c("periodic")),
main="Seamus 216 AT20 Data Decomposition")
acf (Timeseries4,main="")

complete.ts <-Timeseries4

seeds <- 30

n <- length(complete.ts)

miss.rate <- ¢(0.1,0.25,0.5,0.8)

incomplete.ts <- array(,dim=c(n,seeds,length(miss.rate)))
NAs <- array(,dim=c(seeds,length(miss.rate)))

Imputel<- array(,dim=c(n,seeds,length(miss.rate)))

Impute2<- array(,dim=c(n,seeds,length(miss.rate)))
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Impute3<- array(,dim=c(n,seeds,length(miss.rate)))
Impute4<- array(,dim=c(n,seeds,length(miss.rate)))
Impute5<- array(,dim=c(n,seeds,length(miss.rate)))

Impute6<- array(,dim=c(n,seeds,length(miss.rate)))

for (c in 1:length(miss.rate)){
for (i in 1:seeds){

set.seed (1)
incomplete.ts[,i,c] <-ts(miss.gen(complete.ts,miss.ratel[c]))
b=0
for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))
{b=b+1}
NAs[i,c] <-b }
incomp.ts <- as.numeric(incomplete.ts[,i,c])
Imputel[,i,c] <- na.kalman(incomp.ts,model="auto.arima")
Impute2[,i,c] <- na.interpolation(incomp.ts)
Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")
Impute4[,i,c] <- na.ma(incomp.ts,weighting="simple")
Impute5[,i,c] <- na.ma(incomp.ts,weighting="1linear")
Impute6[,i,c] <- na.mean(incomp.ts)

}3}

inc <- as.data.frame(incomplete.ts[,5,])
names (inc) <- c("0.1","0.25","0.5","0.8")

missmap (inc)

#Calculated errors of simulated data

MRSE1<- array(,dim=c(seeds,length(miss.rate)))
MRSE2<- array(,dim=c(seeds,length(miss.rate)))
MRSE3<- array(,dim=c(seeds,length(miss.rate)))
MRSE4<- array(,dim=c(seeds,length(miss.rate)))
MRSE5<- array(,dim=c(seeds,length(miss.rate)))

MRSE6<- array(,dim=c(seeds,length(miss.rate)))

MAPE1<- array(,dim=c(seeds,length(miss.rate)))

MAPE2<- array(,dim=c(seeds,length(miss.rate)))
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MAPE3<- array(,dim=c(seeds,length(miss.
MAPE4<- array(,dim=c(seeds,length(miss.
MAPE5<- array(,dim=c(seeds,length(miss.

MAPE6<- array(,dim=c(seeds,length(miss.

for(l in 1:length(miss.rate)){

for(f in 1:seeds){

MRSE1[f,1]<-sqrt ((sum((Imputel[,f,1]-complete.

)/NAs[£f,1])

MRSE2[f,1]<-sqrt ((sum((Impute2[,f,1]-complete.

)/NAs [f,1])

MRSE3[f,1]<-sqrt ((sum((Impute3[,f,1]-complete.

)/NAs[£,11)

MRSE4[f,1]<-sqrt ((sum((Imputed4[,f,1]-complete

)/NAs [£,1])

MRSE5[f,1]1<-sqrt ((sum((Impute5[,f,1]-complete

)/NAs[£,11)

MRSE6[f,1]<-sqrt ((sum((Impute6[,f,1]-complete

)/NAs[f,1])

rate)))
rate)))
rate)))

rate)))

ts[,f,11)"2)

ts[,£,1])"2)

ts[,£,11)°2)

.ts[,£,1]1)"2)

.ts[,f,1]1)"2)

.ts[,£,1]1)72)

MAPE1[f,1]1<-(100/NAs[f,1])*(sum(abs ((Imputel[,f,1]

-complete.ts[,f,1])/complete.ts)))

MAPE2[f,1]1<-(100/NAs[f,1])*(sum(abs ((Impute2[,f,1]

-complete.ts[,f,1])/complete.ts)))

MAPE3[f,1]1<-(100/NAs[f,1])*(sum(abs ((Impute3[,f,1]

-complete.ts[,f,1])/complete.ts)))

MAPE4[f,1]<-(100/NAs[f,1])*(sum(abs ((Imputed[,f,1]

-complete.ts[,f,1])/complete.ts)))

MAPES[f,1]1<-(100/NAs[f,1])*(sum(abs ((Imputeb5[,f,1]

-complete.ts[,f,1])/complete.ts)))

MAPE6[f,1]<-(100/NAs[f,1])*(sum(abs ((Impute6[,f,1]

-complete.ts[,f,1])/complete.ts)))
13}

#Calculated errors of original data

MRSE1<- array(,dim=c(seeds,length(miss.

rate)))
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MRSE2<-
MRSE3<-
MRSE4<-
MRSES5<-
MRSE6<-

MAPE1<-
MAPE2<-
MAPE3<-
MAPE4<-
MAPES<-
MAPE6<-

array (,dim=c(seeds,length(miss.
array (,dim=c(seeds,length(miss.
array (,dim=c(seeds,length(miss.
array (,dim=c(seeds,length(miss.

array (,dim=c(seeds,length(miss.

array (,dim=c(seeds,length(miss.
array (,dim=c(seeds,length(miss.
array (,dim=c(seeds, length(miss.
array (,dim=c(seeds,length(miss.
array (,dim=c(seeds,length(miss.

array(,dim=c(seeds,length(miss.

for(l in 1:length(miss.rate)){

for (£

MRSE1[f,1]<-sqrt ((sum((Imputel[,f,1]-complete

in 1:seeds){

NAs[f,1]1)

MRSE2([f,1]1<-sqrt ((sum((Impute2[,f,1]-complete

NAs[f,11)

MRSE3[f,1]<-sqrt ((sum((Impute3[,f,1]-complete

NAs[f,1]1)

MRSE4 [f,1]<-sqrt ((sum((Imputed[,f,1]-complete

NAs[f,11)

MRSE5[f,1]<-sqrt ((sum((Imputeb5[,f,1]-complete

NAs[f,1])

MRSE6[f,1]<-sqrt ((sum((Impute6[,f,1]-complete

NAs[f,11)

rate)))
rate)))
rate)))
rate)))

rate)))

rate)))
rate)))
rate)))
rate)))
rate)))

rate)))

.ts)"2))/

.ts)"2))/

.ts)"2))/

.ts)"2))/

.ts)~2))/

.ts)~2))/

MAPE1[f,1]1<-(100/NAs[f,1])*(sum(abs ((Imputel[,f,1]

-complete.ts)/complete.ts)))

MAPE2[f,1]1<-(100/NAs[f,1])*(sum(abs ((Impute2[,f,1]

-complete.ts)/complete.ts)))

MAPE3[f,1]1<-(100/NAs[f,1])*(sum(abs ((Impute3[,f,1]

-complete.ts)/complete.ts)))

MAPE4[f,1]1<-(100/NAs[f,1])*(sum(abs ((Imputed[,f,1]

-complete.ts)/complete.ts)))

MAPE5[f,1]1<-(100/NAs[f,1])*(sum(abs ((Imputeb5[,f,1]
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-complete.ts)/complete.ts)))

MAPE6[f,1]<-(100/NAs[f,1])*(sum(abs ((Impute6[,f,1]

-complete.ts)/complete.ts)))

}3

missing.rate <-

cO)

missing.rate[1:30] <- 0.1

missing.rate[31:60] <- 0.25

missing.rate[61:90] <- 0.5

missing.rate[91:120] <- 0.8

#Visualization of data

z <- cbind(as.ve

r <- cbind(as.ve
p <- cbind(as.ve
q <- cbind(as.ve
w <- cbind(as.ve

x <- cbind(as.ve

ctor (NAs) ,as.
ctor (NAs) ,as.
ctor (NAs) ,as.
ctor (NAs) ,as.
ctor (NAs) ,as.

ctor (NAs) ,as.

datal <- as.data.frame(z)

data2 <- as.
data3 <- as.
data4 <- as.
datab <- as.
data6 <- as.
names (datal)
names (data?2)
names (data3)
names (data4)
names (datab)

names (data6)

plotl <- ggplot(data=datal,

data
data

data

data.

data.

<-c

<-cC

<-cC

<-cC

<-cC

<-c

.frame (1)
.frame (p)
.frame (q)
frame (w)
frame (x)
("NAs","RMSE"
("NAs","RMSE"
("NAs","RMSE"
("NAs","RMSE"
("NAs","RMSE"
("NAs","RMSE"

vector (MRSE1l) ,missing.
vector (MRSE2) ,missing.
vector (MRSE3) ,missing.
vector (MRSE4) ,missing.
vector (MRSE5) ,missing.

vector (MRSE6) ,missing.

,"missing.rate")
,"missing.rate")
,"missing.rate")
,"missing.rate")
,"missing.rate")

,"missing.rate")

aes (x=NAs, y=RMSE,

colour=factor( missing.rate)))+geom_point ()+

ggtitle ("RMSE Kalman Arima") + theme_light() + ylim(0,18)

rate)
rate)
rate)
rate)
rate)

rate)
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plot2 <- ggplot(data=data2, aes(x=NAs, y=RMSE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("RMSE Linear Interpolation") + theme_light ()
plot3 <- ggplot(data=data3, aes(x=NAs, y=RMSE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("RMSE Spline Interpolation") + theme_light ()
plot4 <- ggplot(data=data4, aes(x=NAs, y=RMSE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("RMSE MA") +theme_light ()

plot5 <- ggplot(data=datab, aes(x=NAs, y=RMSE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("RMSE LMA") +theme_light ()

plot6 <- ggplot(data=data6, aes(x=NAs, y=RMSE,
colour=factor ( missing.rate)))+geom_point ()+

ggtitle ("RMSE Mean Imputation") +theme_light ()

multiplot (plotl,plot2, plot3, plot4, ploth5, plot6, cols=3)

z1 <- cbind(as.vector (NAs),as.vector (MAPE1l) ,missing.
rl1 <- cbind(as.vector(NAs),as.vector (MAPE2) ,missing.
pl <- cbind(as.vector(NAs),as.vector (MAPE3) ,missing.
ql <- cbind(as.vector (NAs),as.vector (MAPE4) ,missing.
wl <- cbind(as.vector(NAs),as.vector (MAPE5) ,missing.

x1 <- cbind(as.vector(NAs),as.vector (MAPE6) ,missing.

datall <- as.data.frame(z1)
data22 <- as.data.frame(ril)
data33 <- as.data.frame(pl)
data44 <- as.data.frame(ql)
databb5 <- as.data.frame(wl)

data66 <- as.data.frame(x1)

names (datall) <-c("NAs","MAPE","missing.rate")
names (data22) <-c("NAs","MAPE","missing.rate")
names (data33) <-c("NAs","MAPE","missing.rate")
names (data44) <-c("NAs","MAPE","missing.rate")
names (datab5) <-c("NAs","MAPE","missing.rate")

names (data66) <-c("NAs","MAPE","missing.rate")

rate)
rate)
rate)
rate)
rate)

rate)
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plotll <- ggplot(data=datall, aes(x=NAs, y=MAPE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("MAPE Kalman Arima") + theme_light ()

plot21 <- ggplot(data=data22, aes(x=NAs, y=MAPE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("MAPE Linear Interpolation") + theme_light ()
plot31l <- ggplot(data=data33, aes(x=NAs, y=MAPE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("MAPE Spline Interpolation") + theme_light ()
plot4l <- ggplot(data=data44, aes(x=NAs, y=MAPE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("MAPE MA")+ theme_light ()

plot51 <- ggplot(data=datab5, aes(x=NAs, y=MAPE,
colour=factor ( missing.rate)))+geom_point ()+

ggtitle ("MAPE LMA")+ theme_light ()

plot61 <- ggplot(data=data66, aes(x=NAs, y=MAPE,
colour=factor( missing.rate)))+geom_point ()+

ggtitle ("MAPE Mean Imputation") + theme_light ()

multiplot (plotl1l,plot21, plot31l, plot4l, plotb5l, plot61l,

cols=3)

HAHRBHHAHHAHBHHAHA A BB HHAHHAHA R BB HBABHA RS R R HAABH AR SR B AHA R B HHHHH

#HISTOGRAMS AND SCATTER PLOTS

complete.ts <-c(Timeseriesl,Timeseries?2,
Timeseries3,Timeseries4)

seedd<-30

miss.ratel <- ¢(0.1,0.25,0.50,0.80)

incomplete.ts <- array(,dim=c(n,seeds,length(miss.ratel)))

NAss <- array(,dim=c(seeds,length(miss.ratel)))

Imputell<- array(,dim=c(n,seeds,length(miss.ratel)))

Original.data <- Timeseries

Estimated.data <- Imputell[,i,c]

make.scatters.function<-function(Original.data,Estimated.data)

{

data<-data.frame (x=0riginal ,y=Simulated)

ggplot (data,aes(x,y)) + geom_point () + theme_light () +
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xlab("0Observed Data") + ylab("Estimated Data")+
geom_smooth (method="1m",col="red") + theme(axis.title.y =
element_text (size=14)) + theme(axis.title.x =
element_text(size=14)) + theme(axis.text.x =

element _text(size=14)) + theme (axis.text.y =

element_text(size=14))}

make.hist.function<-function((Original.data,Estimated.data))
{

pl<-hist (Original ,breaks=30, col=alpha(rgb(0.9,0.1,0),0.7),
xlab="", ylab="", main="" ,cex.lab=1.5, cex.axis=1.5)
#Second distribution with add=T to plot on top

p2<-hist (Simulated ,breaks=30, col=alpha(rgb(0,0,0.6),0.7),
add=T,cex.lab=1.5, cex.axis=1.5)

#Add legend

legend ("topright", legend=c("Original","Estimated"),
col=c(alpha(rghb(0.9,0.1,0),0.7), alpha(rgh(0,0,0.6),0.7)),
pt.cex=2, pch=15,1wd=3)

}

for (c in 1:length(miss.ratel))q

for (i in 1:seeds){
set.seed (1)
incomplete.ts[,i,c]l<-ts(miss.gen(complete.ts,miss.ratel[c])
b=0
for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,
i,c])){b=b+1}

NAs[i,c] <-b }

incomp.ts <- as.numeric(incomplete.ts[,i,c])
Imputell[,i,c] <-na.kalman(incomp.ts,model="auto.arima")
make.scatters.function(Original.data,Estimated.data)
make.hist.function(Original.data,Estimated.data)

3
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