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Abstract
Wepropose a novel hybrid platformwhere solid-state spin qubits are coupled to the acousticmodes of
a two-dimensional array of optomechanical (OM) nano cavities. Previous studies of coupledOM
cavities have shown that in the presence of strong optical drivingfields, the interplay between the
photon-phonon interaction and their respective inter-cavity hopping allows the generation of
topological phases of sound and light. In particular, themechanicalmodes can enter aChern insulator
phasewhere the time-reversal symmetry is broken. In this context, we exploit the robust acoustic edge
states as a chiral phononic waveguide and describe a state transfer protocol between spin qubits
located in distant cavities.We analyze the performance of this protocol as a function of the relevant
systemparameters and show that a high-fidelity and purely unidirectional quantum state transfer can
be implemented under experimentally realistic conditions. As a specific example, we discuss the
implementation of such topological quantumnetworks in diamond basedOMcrystals where point
defects such as silicon-vacancy centers couple to the chiral acoustic channel via strain.

1. Introduction

In recent years the efforts towards building scalable quantum information processing devices have reached
unprecedented intensities. For this purpose, a number of physical platforms, such as superconducting circuits
[1], cold atoms in optical lattices [2, 3], trapped ions [4], Rydberg atoms [5] and defect centers in solids [6–10],
are actively investigated. In parallel, various strategies for implementing hybrid quantum systems are currently
explored [11–13], with the long-term goal to combine the strengths of the different architectures and tomitigate
system-specific weaknesses. In this context, high-Qmechanical elements play a particularly important role for
realizing coherent quantum interfaces [14–21] as they can be coupled efficiently to a large variety of other
quantum systems [22]while being themselves only weakly affected by decoherence. Similar to optical fields,
acoustic waves can be guided along coupled resonator arrays or continuous phononicwaveguides [23–25],
which can be used to implement chip-scale quantumnetworks where quantum information is distributed via
individual propagating phonons [23, 26–29]. In particular, such phononic quantum channels have been
proposed to overcome the problemof coherently integrating a large number of electronic spin qubits associated
with defect centers in diamond [14, 28, 30–34]. However, being in its infancy, the control of acoustic waves on
the quantum level still facesmany challenges, whichmust bemet both on an experimental and on a conceptual
level. This includes, for example, the scattering of phonons along the channel by fabrication imperfections, but
evenmore fundamentally, the ability to emit phononwavepackets with a specified shape and direction, as a
prerequisite formany quantum state transfer protocols [35].

In this workwe propose and analyze an hybrid phononic quantumnetwork, where spin qubits or other two-
level systems (TLS) are coherently coupled to the chiral acoustic edge channels of a two dimensional (2D)
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optomechanical (OM) array [36–41]. This architecture ismotivated by the progress in engineering spin-phonon
interactions in solid-state systems [42–49], as well as in fabricating 2DOMcrystals [50–53]with different
geometries and band structures. In a previous work [54] it has been shown that 2DOMarrays can exhibit a rich
set of topological phases of sound and light that can be fully explored by tuning in situ the optical driving of the
cavities. In particular, for weakOM interactions, the acoustic excitations are expected to enter aChern insulator
phasewhere chiral edge states propagate along the array boundaries. Thus this hybrid quantum systemoffers a
platform to study rich physics emerging from the interplay between spins,mechanical and optical degrees of
freedom in phaseswhere time-reversal symmetry is broken.

As a first application for this setupwe focus on the quantum-state transfer between TLS located in distant
cavities via chiral acoustic edge channels. Compared to state transfer protocols in regular 1Dphononic
waveguides [23, 26, 28, 29], this platformoffers the advantages of a unidirectional propagation [35, 55–57],
which is robust against local perturbations andwhere the direction can be controlled by external optical driving
fields.While the basic protocol discussed in this work is very general, a naturally-suited systemwhere these ideas
can be implemented is an array of separated silicon vacancy (SiV) centers in a diamondOMcrystal. In this case,
quantum information can be stored in the long-lived spin degrees of freedomof the SiV ground state [58–62],
where at low temperatures ofT1 K coherence times exceedingT2∼10ms have been demonstrated [61, 62].
At the same time the orbital degrees of freedomof the defect allow strong and tunable coupling to vibrational
modes, as recently discussed in [28]. Combinedwith the ability to design chiral acoustic channels viaOM
interactions this coherent spin-phonon interface offersmany new tools to overcome fundamental challenges in
phononic quantumnetwork applications.

2.Model

Weconsider a 2D array ofOMcavities as depicted infigure 1, where each lattice site contains a single TLS. The
OMarray can be realized, for example, in so-called ‘snowflake’ structures [63], where high-Q vibrational and
opticalmodes are co-localized in regions of engineered defects created by smoothly varying the size of the
patterned periodic snowflake holes (see figure 1(a)).

At each lattice site j, the variation in the index of refraction due tomechanical vibrations leads to a strongOM

coupling that can be described by the standardOMHamiltonian  w w= +ˆ ˆ ˆ ˆ ˆ† †H b b a aM j j c j jOM

+ +ˆ ˆ ( ˆ ˆ )† †
g a a b bj j j j0 [64]. Here âj (b̂j) represents the annihilation operator of the photonic (phononic)mode of

frequencyωc (ωM) and g0 is theOMcoupling per photon. Due to the strong localization of both photons and
phonons, this coupling can reach values of about g0∼250 kHz [52], whichwewill assume for all the following
estimates. The optical cavities are driven by a strong external laser field of frequencyωL, which drives each optical
mode into a coherent state with amplitude a = q w-( )t n e ej c

ti ij L , where nc?1 is themean intracavity photon

Figure 1. Schematics of the 2Dhybrid system and the state transfer protocol. (a)OMcavities engineered from smooth alterations of a
snowflake-hole patterning in diamond. The cavities are arranged in aKagome structurewhere the unit cells include a basis of three
sites s={A,B,C}. A TLS is embedded in every site. The phase pattern {θs} induced by the optical driving generates a fluxΦ upon
hopping anti-clockwise through a unit cell. (b)Energy structure of the SiV ground-state subspacewhere the two lowest-energy states
ñ∣1 and ñ∣2 form a long-lived spin qubit. Amicrowave driveΩ(t) couples opposite spin states while the strain associatedwith a single

phonon couples the orbital degrees of freedom ñ∣e with strength gs. The combination of the two processes leads to a tunable
interaction between the spin states and phonons of frequency∼ω0. (c) State transfer between distant TLS via topologically protected
chiral acoustic waves propagating along the boundaries of the structure.
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number. By redefining a + ( )a a tj j j , theOM interactions can be linearized and in a frame rotatingwithωL,
the resultingHamiltonian for thewhole 2DOMarray is given by (ÿ=1)

å åw= - D + + + + +q q-

á ñ

ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ( )
† † † † † †H b b a a G a b G b a Kb b Ja ae e h.c. . 1

j
M j j j j j j j j

i j
i j i jOMC

i i

,

j j

Here J>0 (K>0) denotes the nearest-neighbor photon (phonon) hopping rate andΔ=ωL−ωC<0 is the
detuning between the cavities and the drive. In equation (1), =G g nc0 is the linearOMcoupling, which is
enhanced by the number of photons in a cavity. The sign of J andK depend on the details of the design of theOM
defect cavities. The case J,K<0 (without TLS) is discussed in [54]. Here, we explore the different scenario
where J,K>0. Belowwe show that this choice leads to amore favorable scaling of the topological band gaps and
the required input power. At this stage, we consider all parameters identical throughout the lattice except for the
driving phases θj. Note that in equation (1), wemade an additional rotating-wave approximation by neglecting
processes that do not conserve the number of excitations (~ +q-G a be h.c.j j

i j ). The validity of this
approximation is discussed in appendix A.

In addition to the localized optical andmechanicalmodes, we consider a TLS embedded in each sites of the
array, which is coupled to the acoustic vibrations via strain.Wemodel the interaction by a Jaynes–Cumming
couplingwith time-dependent strength ( )g tsp , such that the effectiveHamiltonian describing the full hybrid 2D

array reads

å åw
s s= + + ++ˆ ˆ ˆ [ ( ) ˆ ˆ ] ( )( ) ( ) ( )H H g t b

2
h.c. . 2

j
z

j

j

j j
jOMC

0
sp

Hereω0 is the transition frequency of the TLS, ŝz is the usual Pauli-Z operator and s s=- +ˆ ˆ( ) ( ) †j j destroys a spin
excitation in site j.

While the spin-phonon coupling assumed inHamiltonian(2) is very generic and could be realizedwith
various types of TLS [16, 22, 26], we explicitly consider the example of SiV centers in diamond in our following
analysis. As depicted infigure 1, the electronic ground-statemanifold of this center consists of two long-lived
spin states denoted by ñ∣1 and ñ∣2 , which can be coupled to amechanical vibrationalmode via amicrowave
assisted Raman process involving the excited state ñ∣3 .More precisely, the strength of the time-dependent spin-
phonon coupling d= W( ) ( )g t t gssp and the qubit frequencyω0 can be externally tuned via themicrowave drive

amplitudeΩ(t) and detuning δ compared to the state ñ∣3 , respectively. Here gs is the intrinsic strain coupling
between the state ñ∣1 and ñ∣3 . See appendix B, formore details about SiV defects and their strain coupling.

3. Acoustic edge channels

Themain purpose of considering a 2DOMarray instead of a simple 1Dphononic waveguide is to use theOM
interaction for engineering topologically protected acoustic edge channels, alongwhich phonon propagation
becomes unidirectional and immune against local disorder. Asfirst proposed in [54], such a scenario can be
achieved by imposing a non-trivial pattern of the driving phases θj, whichmimics the presence of a strong
effectivemagnetic field. Similar to electronic systems in realmagnetic fields, the resulting bandstructure of the
OMcrystalmay then exhibit topologically protected bandswith a non-trivial Chern number, which for a finite
system are associatedwith left- or right-propagating edgemodes. In contrast to [54], we here consider a different
band structure which leads tomuch larger topological gaps in presence of weaker optical driving power.

3.1. Topological phases of sound in anOMKagome lattice
While chiral acoustic edge channels can be implementedwith various differentOM lattice geometries, we here
exclusively focus on theKagome lattice for which topological phases of sound and light have already been
described in [54]. TheKagome crystal structure (see figure 1) is defined by a triangular Bravais lattice spawned by
the unit vectors = -


{ ( )R a1, 31 , =


( ) }R a2, 02 and a three-cavity basis given by =

{ ( )r a0, 3 2A ,
= -

 ( )r a1 2, 3 2B , = -
 ( ) }r a1 2, 3 2C . Here a is the distance between two adjacent cavities and {A,B,

C} refer to the different cavities within a unit cell. This structure possesses the full  v6 symmetry of the
corresponding Bravais lattice.

In absence of the external driving fields, i.e.G=0, theOMcrystal system is time-reversal symmetric and
contains six energy bands. The three acoustic (optical) bands are centered aroundωM (−Δ) and have a total
width of 6K (−6J). A zoom in of the non-interacting band structure in a spectral range that includes all acoustic
bands but exclude far detuned opticalmodes is shown infigure 2 (a).We see that the 6 and time-reversal
symmetries impose essential degeneracy at the high-symmetry points of the Brillouin zone, i.e.K=(2π/3a,0)
and p p¢ = ( )a aK 3 , 3 , whereDirac cones are formed, and at G = ( )0, 0 , where a quadratic band-crossing
point appears. Importantly, one of the optical (mechanical) bands isflat. This feature reflects the existence of
localized normalmodes describing a standingwavewhere the six cavities along the edges of the sameWigner–
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Seitz cell are excitedwith equal amplitude but alternating sign.More details about the diagonalization of theOM
Hamiltonian in the quasimomentum space are given in appendix C.

For finite driving of theOMcavities ( ¹G 0) the acoustic and photonic bands hybridize. Following [54], we
choose the pattern of phases q q q q q q q pD = - = - = - = 2 3B A C B A C for every unit cells. In other
words, we consider a driving of one of the opticalmodes at the G point. Such phase pattern can be generated by
simply using three optical drives pointing at 120° angle from each others [54] (see figure 1(a)).Most importantly,
it breaks the time-reversal symmetry without breaking the spatial symmetries of the Kagome lattice and, thus,
lifts the essential degeneracies giving rise to topological band gaps [65].

Here, we focus on theweakOMcoupling limit where the detuning of all opticalmodes is larger than theOM
coupling, i.e. w + D + ∣ ∣G J2M , such that all the excitations are still almost phononic or optical in nature. In
this regime, the existence of topologically non-trivial phases for sound can be understood from the fact that
phonons can also hop to neighboring lattice sites through virtual optical excitations. In the conceptually simplest
settingwhere the optical bandwidth is small compared to the detuning, w + D ∣ ∣J M , this hopping is
restricted to nearest neighbors and has an amplitude

w + D
q D

( )
( )K

G J
e . 3ij

M

opt
2

2
i ij

Since the resulting overall phonon hopping amplitude, = +K K Kij ij
eff opt, then becomes a complex quantity, a

phononmoving anti-clockwise around a crystal unit cell basis (i.e.   A B C A) acquires a phase
F = 

w- D+( )
3 arctan JG

JG K

3

2 M

2

2 2 . This is reminiscent of a charged particlemoving in amagnetic fieldwhereΦ

represents the normalizedmagnetic flux encircled by the three cavities of the basis [66]. Note that the totalflux
within a Bravais unit cell is zero asmoving anti-clockwise over an hexagonal path leads to a phase shift of−2Φ
(see figure 1(a)), simulatingwhat is known as the anomalous quantumHall effect [65]. In amore realistic
situation, as considered in this work, the optical hopping rate is larger than the detuning, i.e.  w + D∣ ∣J M . In
this case, the same intuition holds but the optically-induced phonon hopping becomes longer-ranged and one
must resort to a full numerical evaluation of the band structure, as exemplified infigure 2(b). Finally, in this
same limit withK=J, the corresponding fluxΦopt experienced by the lightfield remains negligible, thus
suppressing any non-trivial topology of the opticalfield.

We note in passing that syntheticmagnetic fields for vibrations in a phononic crystal can also be generated by
purely geometricalmeans as described in [67]. This scenario is, however, fundamentally different as no breaking
of the time-reversal symmetry takes place. This underlying symmetry is imprinted in themagnetic field that has
opposite signs in the K and ¢K valleys. This type of time-reversal preserving syntheticmagnetic field is usually
referred to as a pseudomagnetic field.We emphasize that pseudomagnetic field induced edge states have a time-
reversed counter-propagating partner. Therefore, there is no protection against back scattering by lattice scale
disorder and a two-level defect will couple to both channels with approximately equal strength.

3.2. Topological gaps
The breaking of time-reversal symmetry opens gaps between the acoustic bands, bringing the vibrational
excitations into a Chern insulator phase. This is confirmed by computing the topological invariant, known as the

Chern number [66], ò= á¶ ¶ ñ - á¶ ¶ ñ
p


   [ ∣ ∣ ]C k m m m mdn k k n k k n k k n k k n

i

2 BZ
2

, , , ,x y y x
for each acoustic band nwith

Figure 2.OMband structures. (a)Dispersion relation of the non-interactingOMsystem (G = 0), where the three lowest-energy
bands representmechanicalmodeswhile the highest-energy band is optical in nature. The drive detuning here is

wD = - - -J K2 4M , which leads to δOM=3K, and J/K=200. (b)Dispersion relation along the path G G   ¢ K M K1

in the Brillouin zone [depicted in (a)] forG=2K, δOM=3K and J/K=200. The black arrows indicate the dominant angular-
momentum conservingOM interactions responsible for the gap. TheChern numbersCl associatedwith the two lowest-energy
mechanical bands are shown.
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energy eigenstates ñ∣mk n, . Here the integral is performed over the first Brillouin zone. For the two lowest-energy
mechanical bands, one findsC1=1 andC2=0 (seefigure 2(b)).

As shown infigure 2(b), for weakOM interactions the gaps open at the symmetry pointsK and ¢K , while for
larger couplings, competing processes taking placewith quasimomentumnear the high-symmetry points

= -p ( )M 1,
a1 2

1

3
, = - p ( )M 1,

a2 2

1

3
and = -p ( )M 0,

a3
1

3
close the gap again. The dominantOM

processes allowed by the conservation of angularmomentum can be captured using a simple analyticmodel
fromwhich one accurately predicts the band gap


d

d
= + -

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ ( )G

KMin
2

1
4

1 , , 4OM
2

OM
2

forG<Gc, where

d= ( )G K K3 2 , 5c OM

is the critical coupling abovewhich the gap decreases (see appendixD). Here d w= -D - - -J K2 MOM is
the detuning between the lowest optical band and themechanical Dirac points in the noninteracting limit (see
figure 2(b)).

From the above expressions it follows that the band gap ò reaches themaximumvalue ò=K for a detuning
δOM above the threshold d = K2OM

th and driving strengths in afinite range  G G Gcmin where

d= +G K Kmin
2

OM . Infigure 3(a), we show ò as a function of δOM andGwhile explicitly indicatingGc and
Gmin. In panel (b), we show ò as a function ofG for d =K 1.5, 2.0OM . For experimentally relevant phonon
hopping ratesK/2π∼100MHz, theminimal coupling »G K3min at threshold dOM

th is reachedwith a
number of intra-cavity photons ~ ´n 0.75 10c

6.While generally challenging, we note that recent experiments
suggest that diamond structures [68] aremore compliant to stronger drives compared to silicon-based systems
[50–53].

3.3. Edge channels
For afinite size system, the existence of separated energy bandswith non-trivial Chern number is associatedwith
a set of topologically protected chiral edge states, which propagate along the boundaries of theOMarray.
Specifically, the difference between the number of such edge states propagating clockwise and anti-clockwise is
given by the sumover the topological invariantCn associatedwith all lower-energy bands.

To study inmore detail the properties of these edge channels in the present setup, we consider infigure 4(a) a
stripe of infinite length along xwith straight edges at y=0 and = - -( )y N a1 3y . HereNy is the number of

unit cells along

R1 and the upper straight boundary is obtained by excluding the cavitiesA of all cells at y=0. For

this geometry, the full OMcrystal Hamiltonian ĤOMC in equation (1) can be diagonalizedwithin each quasi-
momentum kx subspace, allowing us to capture the dispersion relation and the structure of the edge states
localized at the boundaries. Details of the diagonalization are presented in appendix C. Infigure 4(b), we show an
example of themechanical band structure as a function of kx forG=2K, d = K3OM andΔθ=3π/2.On the
upper boundary, a single edge state is present and its dispersion relation w ( )kE x is shown by the black curve
crossing the gap for p p< k a2 x . The group velocity of phonons propagating along this channel is given by

Figure 3.Topological gap. (a)Topological gap size ò as a function ofG and the detuning δOM for J/K=200. The upperwhite line
representsGc (see equation (5)) and the bottomone shows theminimalOMcouplingGmin for which ò reachesK. (b)Gap size as a
function of δOM forG/K=1.5 andG/K=2.0with J/K=200.
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w
=

¶
¶

( ) ( ) ( )v k
k

k
, 6g x

E x

x

and is positive for the phase patternΔθ=3π/2. The situation is completely symmetric for the edge state at the
lower boundary: its energy crosses the gap for  p< k a0 2x and it has a negative group velocity.

For the purpose of using such edgemodes as phononic quantum channels, two other key propertiesmust be
taken into account: their penetration depth into the bulk and how strongly they are hybridizedwith the optical
bands. The latter plays an important role for dissipation and the former characterizes how strongly the edge
modes couple to the TLSs. In general, we canwrite the annihilation operator for an edge-state excitationwith
quasi-momentum kx as

å= +f- -xˆ ( ) [ ( ) ˆ ( ) ( ) ˆ ( )] ( )( )( )b k u k b k v k a ke , 7E x
s m

k
s x s m x s x s m x

,

i
, ,

ma
kx m x

where ˆ ( )b ks m x, [ ˆ ( )]a ks m x, is the phononic (photonic) annihilation operator acting on the basis s={A,B,C} of
themth unit cell along


R1with quasi-momentum kx. The upper boundary corresponds tom=0. The

coefficients ( )u ks x and ( )v ks x are the respectivemechanical and optical probability amplitudes, ξ(kx) is the
penetration depth andfm(kx) is a generic phase.We define the optical fraction of the edge state as

å=
- - x

( ) ∣ ( )∣ ( )
( )

P k
v k

1 e
1, 8x

s

s x
opt

2

a
kx

2

where the upper bound is set by the normalization condition.
In the view of a state transfer between TLS embedded in the outermost cavities along the boundaries of the

array, we aremostly interested in the edge-state excitation that lies within the gap and has the smallest
penetration depth and photonic amplitude. This conditionmotivates us to define k0 such that ( )u ks 00

ismaximal
(see figure 4(e)), where s0 represents the outermost cavities along the boundary. Infigure 4, we show the optical
fraction, the penetration depth ξ(kx) and the group velocity, all evaluated for kx=k0.Wefinally note that for the
straight edges considered, i.e.where only the cavitiesB andC form the outermost layer of the boundaries, noA
cavities throughout the crystal supports an edgemode (i.e. uA=0).

We conclude this section by noting several important differences between the results presented here and
those in [54]. In this work, we consider positive hopping amplitudesK>0 and J>0which results in inverted
dispersion relations compared to [54]. As a consequence, the lowest-energy optical band isflat (forG=0). This
feature changes qualitatively theOM interaction. In particular, the band gap ò and the optical fractionPopt
become independent of J for large dJ OM. In contrast, these quantities are suppressed as K J andK/J,
respectively, for negative hopping amplitudes [54]. Since ~J K 104 is of the order of the ratio between the
speed of light and sound in thematerial, this allows us to reachmuch larger band gaps at the expense of larger
optical fraction. Finally, for positive hopping amplitudes, the driven opticalmode coincides with the lowest-
energy band, such that the detuning from the drive frequency is considerably smaller than for the case of the
highest-energy band considered in [54]. Due to this reduction of the detuning by about 6J∼100 GHz, the
necessary power of the external drive to reach ~n 10c

6 is strongly reduced.

Figure 4.Topologically protected edge states. (a) Schematic of an infinite 1D stripe along xwith straight boundaries. (b)An example of
the dispersion relation of theOMmodes of the infinite stripe withNy=21 unit cells along


R1,G=2K and δOM=3K. The edge-state

frequenciesωE(kx) are highlighted in black and the resonance frequency of the TLS,ω0, is shown in red. The edgemode propagating on
the upper (lower) edge is labeledU (L). (c) and (d)Optical fraction of the edge state evaluated at k0 [shown in panel (e)] as a function of
G and δOM. The black lines in (c) indicate the value ofGc and the value ofGmin. (f)Penetration depth ξ(k0) of the edge states as a
function of δOM forG/K=1.5 andG/K=2.0. (g)Group velocity vg of the edge state propagating along the upper boundary
( p p< k a2 x ) evaluated at k0 as a function of δOM forG/K=1.5 andG/K=2.0. In allfigures, the photon hoping is J/K=200.
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4.Quantum state transfer

So far, we have focused solely on theOMcavities without considering finite couplings to the TLS. In this section,
we exploit the time-dependent spin-phonon coupling gsp(t) and the acoustic chiral edge states to transfer an
arbitrary quantum state between any pairs of TLS embedded in distant cavities along the boundaries of the
structure.

In this protocol, only the emitting (e) and receiving (r)defects are driven, i.e.only ¹( )( )g t 0l
sp

with l={e,
r}, while all the other undriven centers are far off-resonancewith anymechanical excitations.We also consider a
low-temperatures environment  wT kM B (corresponding toT1 K for SiV centers) inwhich case the
system remains in the single excitation subspace. Finally, we account for dissipative processes by including
photon and phonon loss in every cavities of the crystal.We denote by k w= QC C C (κM=ωM/QM) the photon
(phonon) decay rate whereQC (QM) is the optical (mechanical) quality factor. By restricting the dynamics to the
single-excitation subspace, we can account for losses by simply considering a non-unitary time evolution by
substituting k-D  -D - i 2C (w w k - i 2M M M ) in equation (2).

4.1.Markovian channel
In the limit of weak spin-phonon couplings [ ( )( )g t Kl

sp
], the topological phase of sound described in the

previous section is approximately unperturbed by the TLS.Moreover, for resonance frequenciesω0 of both TLS
deepwithin the topological band gap, the defects only couple efficiently to the acoustic edgemodes. In this limit,
the coherent dynamics of the state transfer protocol can be described by the effectiveHamiltonian

å å å åw
w

s s= + + +
= =

+
ˆ ( ) ( ) ˆ ( ) ˆ ( ) ˆ [ ( ) ˆ ( ) ] ( )

† ( ) ( ) ( )H t k b k b k
N

g t b k
2

1
e h.c. , 9

k
E E E

l e r
z
l

k l e r

l l
E

kn a
st

,

0

,
eff

2i l

where k and nl represent the quasi-momentumof the edge state and the position of the TLS l along the edge ofN
cavities, respectively. The effective spin-phonon coupling = x f- -( ) ( ) ( )( ) ( ) ( ) ( )g t u k g tel

s
m a k k l

eff
i

spl
l ml depends on the

distance of the defect from the boundary (ml) and captures the properties of the edgemodes previously derived
in the context of the semi-infinite stripe. Although the structure supporting the state transfer is afinite 2D crystal
(see figure 5(a)), equation (9) is valid for defects positioned far from any dislocations, e.g. a corner. Similarly, one
can estimate the decay rate of the chiral channel as k k k= - +x-( ) ∣ ∣ [ ] ( )( )k u P k1 eE s M

a k
C

2 2
opt . For the

scenarios considered in this work, where themechanical frequencies are in theGHz regimewhile the optical
modes are in the hundreds of THz, k k w w~ ~ 10C M C M

4 in cases of similar quality factors. As a
consequence, the optically induced decay rate is expected to exceed by far the intrinsicmechanical loss.

Figure 5. State transfer protocol. (a) Schematic of the state transfer over eight cavities around a corner for two scenarios: (1)G=2K,
δOM=4K and = ´Q 5 10C

7 (solid lines) and (2)G=2K, δOM=20K and =Q 10C
7 (dashed lines). (b)Time dependent coupling

rates for the emitting and receiving defects. The emitting pulse is identical in both scenarios (black solid line). (c)The phase of the
receiving pulses. (d)Amplitudes of the TLS as a function of time. In allfigures, we have consideredωM/K=460, w = ´K 2 10C

6,
J/K=200 and =g K 0.06sp

max .
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Considering the single-excitation ansatz

åy a b s sñ = ñ + + + ñw-
+ +∣ ( ) ∣ [ ( ) ˆ ( ) ˆ ( ) ˆ ( )]∣ ( )( ) ( ) †

t a t a t a t b k0 e 0 , 10t
e

e
r

r

k
k E

i 0

where ñ∣0 represents the vacuum state with both centers being in their lowest-energy state and no acoustic
excitations in thewaveguide, a perfect transfer of an arbitrary state corresponds to = =( ) ( )a t a t 1e r f0 and

= =( ) ( )a t a t 0e f r 0 . Here t0 and tf are the initial andfinal times of the protocol, respectively. In the case where
the TLS see a constant density of states of the acousticmodes, it is possible the apply the standard Born–Markov
approximation to the Schrödinger equation  y y¶ ñ = ñ∣ ( ) ˆ ( )∣ ( )t H t ti t ss (see appendix E), leading to the
following local equations ofmotion

g
g¶ = - - q( ) ( ) ( ) ( ) ( ) ( )( )a t

t
a t t f t

2
e . 11t l

l
l l

t
l

i
in,

l

Here, the transfer rate between the chiral waveguide and the defects is

g =( )
∣ ( )∣

( )
( )

t
g t

v a
2 , 12l

l

g

eff
2

with º ( )v v kg g 0 and q =( ) [ ( )]( )t g targl
l

eff
. The inputfield of the receiving node is t= - f( ) ( )f t f t epin,r out,e

i p with
τp andfp the time and phase acquired during the propagation from the emitter to the receiver. In the case of a
perfectly straight edge, t = -( )n n a v2p r e g and f = -( )k n n a2p r e0 . The strategy to achieve a high-fidelity

state transfer is to control in time ( )( )g tr
eff

in order to suppress the outputfield

g= + q-( ) ( ) ( ) ( )( )f t f t t a ter r r
t

rout, in,
i r of the receiver. Thus in this idealized limit, the state transfer-problem

becomes equivalent to the scenario discussed in the original work byCirac et al [35] and similar optimized pulse
shapes can be used to achieve close-to-unity state transfer fidelities. Themain limitation then arises from
propagation losses and the ratio between the TLS decoherence rate and themaximal transfer rate γmax that one
can reach in a specific implementation.

4.2. Exact evolution
While the above description properly highlights the physics underlying the state-transfer protocol, it becomes
exact only for extremelyweak couplings to perfectMarkovian 1D channels. In contrast, we here performno
approximations and numerically simulate the full dynamics of the time evolution as governed by equation (2).
We use a slowly varying pulse for the emitter = -( ) [ ]( ) ( )g t g min 1, ee t

sp sp
max 4 2 with aweakmaximal coupling

=g K 0.06
sp
max . The optimal pulse for the receiver ( )( )g tr

sp
is then determined bymaximizing at every time step

the amplitude of the receiver ∣ ( )∣a tr . Infigures 5(b)–(d), we show two examples of state transfers over a distance
of eight cavities along the edge of a crystal withNx=16 (Ny=11) unit cells along x (y). Specifically, in both
examples the emitter and the receiver are located on different edges of the crystal (see figure 5(a)), such that the
non-trivial transfer of excitations around a corner is included in the simulations.We compare two scenarios: the
first onewith higher cavity quality factor = ´Q 5.0 10C

7 and strongOMcouplingG=2Kwith δOM=4K;
and the secondwith lower =Q 10C

7 andmore detunedOMcouplingG=2K and δOM=20K. In thefirst
scenario, the edge state ismore localized and has a slower group velocity (see figure 4), leading to a faster state-
transfer via a stronger g ~g 0.03max sp

max (see equation (12)). However, the larger optical hybridization and longer

time spent in thewaveguidemake the optically-induced decay ratemore detrimental, hence the need of higher
QC. In the second scenario, the transfer is slowerwith g ~g 0.006max sp

max , butmore resilient to dissipation.

Infigure 6(a), we analyze themaximalfidelity = ∣ ( )∣F a tr f
2 as a function of the detuning δOM forG=2K

for = ´{ }Q 0.5, 1.0, 5.0 10C
7. It highlights the larger optically-induced decay rate for smaller detunings. In

the short-time limit, one can approximate the optical loss as k- ~F N P a v1 s C gopt withNs the number of
traveled cavities. For larger detunings, the optical loss is reduced, but the smaller decay rates require longer time
tf to transfer the state, which can become an issue compared to the coherence time of the TLS. As an example, for
K/2π=100MHz and =g K 0.06

sp
max , tf∼2μs forG=2K and δOM=4K. This is still fast compared to the

expected inhomogeneous dephasing times * m~ –T 10 100 s2 andmuch shorter than the intrinsic coherence time
ofT2∼10ms demonstrated for SiV centers at low temperatures.

4.3.Disorder
So far, we have consider identical parameters over the entire system, i.e. perfectlymatchedmechanical
frequencies, detunings andOMcouplings. In experiments, reaching a high level of homogeneity is challenging
and any realizations is expected to have a certain level of disorder.We here analyze the robustness of the state
transfer in presence of such imperfections within the system. To do so, we consider all parameters to be slightly
different for every cavities. For example, we consider local disorder such that w w= +( )( ) p1M

j
j where pj is
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randomly chosen from a uniformdistribution ranging from−W/2 toW/2. The same formof local disorder are
considered forΔ( j),G( j), k( )

C
j and k( )

M
j , where the upper script j refers to the jthOMcavity. Infigure 6(b), we plot

the state transfer fidelity as a function ofW averaged over 50 realizations of disorders.We compare the
robustness forG=2K and δOM=4K, where the gap is ò=K, to the scenariowithG=2K and δOM=20K,
where the gap is ò≈0.34K. The state-transfer fidelity starts to decrease for disorder strengths large enough to
close the topological gap, which is roughly set byWωMò (as indicated by the vertical lines infigure 6(b)). An
additional advantage of workingwith largerOM interactions is thus the increased resilience to disorder due to
the larger gap.

Note that in order to consider the same disorder strengthW for all the relevant parameters in the dynamics,
we defined the disorder over the optical cavity frequencies in terms of the detuningΔ∼J instead of the bare
frequency w ~ J10c

4 . Thismeans that the acceptable level of disorder ~W 0.01 translates into relative
variations of the cavity frequenciesωc of about 10

−3 percent. Reaching this level of precision is technically
challenging, but since this is a common goal formany photonic crystal applications, a lot of efforts are currently
focused on the development of photonic structures with significantly reduced levels of disorder. A promising
direction are post-fabrication fine-tuning techniques, such as demonstrated in [69, 70], by which the required
levels of accuracy can be reached.

5. Conclusion and outlook

In this work, we have proposed and analyzed a 2Dhybrid systemwhere the acoustic excitations within aKagome
lattice of coupledOMcavities interact with spin degrees of freedomof point defects. In this context, we have
described the emergence of a topological phasewhere time-reversal symmetry is effectively broken for the
acoustic excitations as a result of the interplay between theOM interaction and the inter-cavity hopping. As a
potential application, we have shown that the resulting acoustic chiral edge states can serve as phononic
quantum channels, which are purely unidirectional and robust with respect to onsite-disorder. Our analysis
revealed how the key properties of such topological channels depend on the relevantOMcoupling and detuning
parameters and how an optimized trade-off between optical losses, propagation speed and disorder protection
can be achieved. Apart from the considered example of SiV defects in diamondOMcrystals,most of these
considerations will be relevant as well for other types of qubits or other artificial realizations of topological
systems.

Beyond quantum communication applications, the proposed hybrid systemprovides a versatile platform to
study interacting quantummany-body systems, where topological phaseswith broken time-reversal symmetry
are combinedwith strong nonlinearities provided by the spin qubits. The rich physics expected for such
interacting topological insulators is still little understood and could be probed in such setting in various
parameter regimes and employing only static spin-phonon interaction, which are in generalmuch simpler to
engineer.

Figure 6. State transfer fidelity. (a) State transfer fidelity = ∣ ( )∣F a tr f
2 as a function of δOM for optical quality factors

= ´ ´Q 5.0 10 , 10 , 5 10C
6 7 7. Here,G=2K and =Q 10M

6. (b) Fidelity as a function of the disorder strengthW forG=2K,
δOM=4K (δOM=20K ) and = ´Q 5 10C

7 ( =Q 10C
7) plotted in solid line (dashed). The vertical lines represent the disorder

strengths for whichWωM=òwhere ò/K=1.0 for δOM/K=4 and ò/K=0.34 for δOM/K=20. In allfigures, we have considered
ωM/K=460,ωC/K=2×106, J/K=200 and =g K 0.06sp

max .
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AppendixA. Rotatingwave approximation andOM instability

For completeness, we remind here theHamiltonian for the 2DOMarray considered in themain text, which is
given by (ÿ=1)

å åw= - D + + + + +q q-

á ñ

ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ( )
† † † † † †H b b a a G a b G b a Kb b Ja ae e h.c. . A.1

j
M j j j j j j j j

i j
i j i jOMC

i i

,

j j

All the parameters are defined in themain text.
To deriveHamiltonian (A.1), we have neglected the effects of theOMoff-resonant parametric type terms

å +q- ˆ ˆ ( )G a be h.c. A.2
j

j j
i j

Such terms describe the creation and annihilation of photon-phonon pairs and have been dropped during the
derivation of equation (1) based on a rotatingwave approximation. The processes that dominantly contribute to
the corrections to the rotatingwave approximation describe the creation (annihilation) of a phonon
accompanied by the creation (annihilation) of a photon in the flat Kagome band. The typical oscillation
frequency δK of these terms in the rotating frame is set by the distance of the flat optical band from its blue side
band, d d w~ + 2K MOM . As a consequence the leading order corrections to the RWAare of the order

d w~ +( )G 2 MOM . It is important to keep inmind that contrary to the usual case of time-reversal preserving
OMsystems such terms can lead to anOM instability even in the regimewhere they represent a small
perturbation andwhen the driving is red detuned compared to all optical resonances, see [54] for a detailed
analysis. The reason for this behavior is that the same opticalmode couples to differentmechanicalmodes on its
blue and red sidebands. As a consequence themechanicalmodes that couple only to the blue sideband of the flat
Kagome band but not to its red sideband are subject to a small overall optical induced amplificationwith rate
k d~ GC K

2 2 . This implies that a smallmechanical decay rate of the order k k d~ ( )GM C K
2 2 is required to

stabilize the system,which is present for all parameter regimes considered in thismanuscript.

Appendix B.Negatively charged silicon-vacancy centers in diamond

In this sectionwe describe inmore detail the negatively-charged silicon-vacancy center in diamond.More
precisely, we focus on its electronic ground-state and its strain coupling to vibrationalmodes of its host crystal.

Themolecular structure of the SiV center belongs to theD3d point group symmetry and their electronic
ground state are formed by an unpaired hole of spin S=1/2 subjected to a strong spin–orbit interaction. The
resulting fourfold ground state subspace is comprised of two doublets, ñ ñ ñ ñ- + {∣ ∣ ∣ ∣ }e e1 , , 2 , and

ñ ñ ñ ñ+ - {∣ ∣ ∣ ∣ }e e3 , , 4 , , which are separated by pD 2 46 GHzSiV [59, 60]. Here, ñ∣e are eigenstates of

the orbital quasi-angularmomentumoperator L̂z associated to a 2π/3 rotation about the symmetry axis of the

defect (taken to be along z), i.e.  ñ = ñ = ñp 
-

 
p pˆ ∣ ∣ ∣

ˆ
R e e ee e2 3

i iLz2
3

2
3 . In the presence of amagnetic field

=
 
B B ez0 , theHamiltonian for a single SiV center is (ÿ=1)

w w= ñá + D ñá + D + ñá

+ W ñá + ñá +w f+

ˆ ∣ ∣ ∣ ∣ ( )∣ ∣

[ ( ) (∣ ∣ ∣ ∣) ] ( )[ ( )]

H

t

2 2 3 3 4 4

1

2
e 2 3 1 4 h.c. , B.1

B B

t t

SiV SiV SiV

i d

where w g= BB s 0 and γs is the spin gyromagnetic ratio. In equation (B.1), we have included a time-dependent
driving field of frequencyωdwith a tunable Rabi-frequencyΩ(t) and phasef(t), which couples the lower and
upper states of opposite spin. This drive can be implemented locally on individual defects either directly with a
microwavefield of frequency w ~ Dd SiV [71], or indirectly via an equivalent optical Raman process [28].

B.1. Strain coupling tomechanicalmodes
Within anOMcavity, we consider a singlemechanicalmode associatedwith a displacement profile

 ( )u r . In
addition tomodifying the indice of refraction seen by the opticalmode, such deformation of the cavitymodifies
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the electronic environment seen by the SiV center, resulting in the coupling of its orbital states ñ∣e [47, 48, 72].
The SiV-phonon coupling can be described by (ÿ=1)

= ++ˆ ˆ ˆ ( )H g J b h.c., B.2sint

where = = ñá + ñá- +ˆ ( ˆ ) ∣ ∣ ∣ ∣†J J 1 3 2 4 is the spin-conserving lowering operator and gs is the strain-induced

coupling rate which is proportional to the local strain tensor  = +¶
¶

¶
¶

  ⎡⎣ ⎤⎦( ) ( ) ( )r u r u rab
x a x b

1

2 b a
. The resulting

coupling rate can bewritten as p x=
lD

( )g d r2s
x

SiV
ZPF

SiV

, where d/2π∼1 PHz is the strain sensitivity [47, 48],

xZPF∼1 fm is themechanical zero pointmotion [63], l ~D 200 nm
SiV

the characteristic phononwavelength in
diamond and x

( )rSiV is the dimensionless strain distribution evaluated at the position of the SiV center

rSiV.

Fromdeformations
 ( )u r observed in previous experiments [50] and state-of-the-art positioning of SiV defects

[73], we expect x ~
( )r 1SiV , leading to interaction rates as large as p ~g 2 30 MHzs . This estimation is

consistent withfinite-element simulations performed for 1Ddiamond nano-cavities [28]. Formatching
frequencies ( wD = MSiV ) andmechanical quality factorsQ∼ 105, strong-coupling regime *w>g Q T, 1s M 2
should be reached, allowing coherent excitation transfer between the SiV center and themechanical resonator.

B.2. Time-dependent effective spin-phonon coupling
In the specific case of a state transfer protocol, one has to control in time an effective coupling between the spin
degree of freedom, encoded in the two lowest-energy ground-states ñ∣1 and ñ∣2 , and themechanicalmode. This
can be performed by an off-resonant driving of the state ñ∣3 (see figure B1 and equation (B.1)), leading to a
standard three-levelΛ atomic system. For large drive detunings d w= - D0 SiV, i.e. d w w- W∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣g , ,s M 0

withω0=ωd+ωB the frequency of the emitted phonons, the higher-energy state ñ∣3 can be adiabatically
eliminated resulting in an effective time-dependent spin-phonon coupling

d= W( ) ( ) ( )g t g t . B.3ssp

Assuming  pW <( )t0 2 100 MHz and δ/2π 400MHz, this rate can be tuned between gsp=0 and a
maximal value of p ~g 2 7 MHz

sp
max , which is still large enough to reach the strong coupling regime.

AppendixC.Diagonalization of theOMcrystalHamiltonian in themomentum space

In this appendix, we provide details of the diagonalisation in the quasi-momentum space of theOM
Hamiltonian (1) in the case of an infinite 2D array and a semi infinite stripe. Focusing on theKagome lattice
architecture, the sumover all sites j of the crystal in equation (1) can be expanded into the sumover all unit cells
of the triangular lattice and the three basis cavities within each cells, i.e.  { }j j s, corresponding to the cavity

s={A,B,C } in the unit cell centered at = +
  
R m R n Rj j j1 2. Doing so, ĤOMC reads

å åw= - D + + + + +q q-ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ( )
† † † † † †H b b a a G a b G b a Kb b Ja ae e h.c. . C.1

j s
M s j s j s j s j s j s j s j s j

n n
r i s j r i s jOMC

,
, , , ,

i
, ,

i
, ,

. .
, , , ,

s s

Here, ån n. . represents the sumover the nearest neighbors.

Figure B1. Silicon-vacancy center in diamond. (a)Energy structure of the SiV ground-state subspacewhere the two lowest-energy
states ñ∣1 and ñ∣2 form a long-lived spin qubit. Amicrowave driveΩ(t) couples opposite spin states while the strain associatedwith a
single phonon couples the orbital degrees of freedom ñ∣e with strength gs. The combination of the two processes leads to a tunable
interaction between the spin states and phonons of frequency∼ω0 as shown in (c).
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C.1. Infinite 2D crystal
In the limit where the system is an infinite 2D array with  ¥N cavities, one can define

å= -
  ˆ ( ) ˆ ( )·b k

N
b

1
e , C.2s

j

k R
s j

i
,

j

which destroys an excitationwith the conserved quasi-momentum

k . The same definition applies for the optical

modes, leading to

å å= = + +
   

 
ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )H H k H k H k H k , C.3

k k

M C GOMC

where themechanical Hamiltonian

å w= + +

+ + + + +

-

- + -

    

   

 

    

ˆ ( ) ˆ ( ) ˆ ( ) { ( ) ˆ ( ) ˆ ( )

( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) } ( )

† · †

·[ ] † · †

H k b k b k K b k b k

K b k b k K b k b k

1 e

1 e 1 e h.c. . C.4

M
s

M s s
k R

A B

k R R
A C

k R
B C

i

i i

1

1 2 2

Here, =
 ˆ ( ) [ ˆ ( )]

† †b k b ks s and the equivalent form applies to the photons


ˆ ( )H kC . TheOM interactions read

å= +q
  ˆ ( ) ˆ ( ) ˆ ( ) ( )

†
H k G b k a k e h.c. C.5G

s
s s

i s

SinceHOMC is quadratic, one can fully solve the excitation spectrum considering only a single excitation for
which


ˆ ( )H k is a 6×6matrix. Diagonalising


ˆ ( )H k for every


k within thefirst Brillouin zone of theKagome

lattice leads to a six-band dispersion relation as shown infigure 2 of themain text.

C.2. Semi-infinite stripe
For a stripe that is infinite in the x direction (along


R2)withNy unit cells along


R1, only the quasimomentum

along x (kx) is conserved and the proper expansion for b̂s j, (same for âs j, ) reads

å=
p

p

=-

ˆ ˆ ( ) ( )b
N

b k
1

e . C.6s j
x k a

a
nk a

s m x,
2

2
i2

,

x

x
j

Here  ¥Nx is the number of unit cells along x and ˆ ( )b ks m x, is the destruction operator for amechanicalmode
with quasi-momentum kx in cavity s of themth unit cell along


R1.We thus consider a strip that goes from y=0

to = -y N a3y and increasingmmeans to go along−y.
Similar to the infinite 2D case, one gets

å å= = + +ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )H H k H k H k H k , C.7
k

x
k

M x C x G xOMC

x x

with

å å åw= + +

+ + + +

+ + +

= =
-

-
-

-

ˆ ( ) ˆ ( ) ˆ ( ) { ˆ ( )[ ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( )] ˆ ( ) ˆ ( )[ }
ˆ ( ) ˆ ( )[ ] ( )

† †

†

†

H k b k b k K b k b k b k

b k b k b k b k

b k b k

e

1 e

1 e h.c. C.8

M x
s m

N

M s m x s m x
m

N

A m x B m x
k a

B m x

C m x C m x B m x C m x
k a

B x C x
k a

1
, ,

1
, , 1

2i
,

, , 1 , ,
2i

,0 ,0
2i

y y

x

x

x

The last line describes the hoppings within thefirst unit cell and so determines the formof the edge. In that case,
the siteA ismissingwhich leads to a straight edge as pictured infigure 4 of themain text. The optical
Hamiltonian ˆ ( )H kC x adopts the same form.

Within the single excitation subspace, Hkx
is amatrix of dimension 3Ny− 1 and its diagonalisation leads to

the dispersion relation shown infigure 3(a) of themain text. ForfiniteG and a phase patternΔθ=±3π/2, the
edge states appear in the energy spectrum and can be expressedwithin the same basis, i.e.

å= +f- -xˆ ( ) [ ˆ ( ) ˆ ( )] ( )( )( )b k u b k v a ke e . C.9E x
s m

k
s s m x s s m x

,

i
, ,

ma
kx m x

Here, the coefficients us and vs are themechanical and optical probability amplitudes on the basis s, respectively.
The edge state decays exponentially within the bulkwith a penetration depth ξ(kx) and phasesfm(kx).

AppendixD. Topological gap

In this section, we derive inmore detail the effectivemodels to describe the opening and closing of the
topological gap.We consider an infinite 2D array and utilize themodes derived in equation (C.2).
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As described in themain text, at the high symmetry points K and ¢K , the eigenstates of the Kagome lattice
have alsowell-defined quasi-angularmomentum (upon rotation of 2π/3), i.e. ñ = ñp s

s
s

- pˆ ∣ ∣R m meK K2 3 ,
i

,
2
3 with

σ={−1, 0, 1} (same for ¢K ). In that case

å= + +s
s p s p

-
-



ˆ ( ˆ ˆ ˆ ) ( )
·

b
N

b b b
e

3
e e . D.1

j

R

A j B j C jK

K

,

i

,
i 2 3

,
i 2 3

,

j

In addition, a phase pattern of the drive q q q q q q q pD = - = - = - = 2 3A B B C C A means that only the
opticalmode ñG ∣o , is driven.

Following the conservation of the total angularmomentum, only fewOMprocesses are allowed. For
example, givenΔθ=2π/3, the lowest-energy optical eigenstate is ñ+∣oK, and can only interact with the
mechanical eigenstate ñ+∣oK, at theDirac pointωM+K, leading to a simple two-mode effectivemodel

d= + +- - - + - +( ) ( )† † †H a a G a b a b . D.2K K K K K K Keff, OM , , , , , ,

Here -aK, destroys a photon inmode ñG ∣o , and the effectiveHamiltonian is written in a frame that rotates at the
frequencyωM+K. Each time a phonon is destroyed, a photon of quasi-angularmomentumσ=+ is also
absorbed. H Keff, is easily diagonalized and leads to


d

d
= + -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )G

2
1

4
1 . D.3OM

2

OM
2

Note that the highestmechanical band remains untouchedwith w= +( )E KKm M,2 .
For larger coupling ratesG, processes occurring near quasi-momentum M1,M2 andM3 start to play a role (in

what followswe omit the subscript for clarity). Those high-symmetry points are invariant under 2 rotations. As
a consequence the normalmodes are divided into symmetric and anti-symmetric normalmodes at these points.
For this reason the anti-symmetricmechanical band ( )E Mm,2 do not interact with the symmetric optical band

( )E Mo,1 . The consequence is that nomatter how large the gap at K and ¢K becomes, themiddlemechanical band
stays at w=Em MM, and thus bounds the total gap at òmax=K.

Moreover, the allowed interaction between the optical band ( )E Mo,1 and the highestmechanical band
( )E Mm,3 has the net effect to push down themechanical bandwhich closes the gap. In order to accurately capture

the processes, we also need to include the lowestmechanical band, leading to a 3-mode effectivemodel

d= - + + +
⎛
⎝⎜

⎞
⎠⎟ ( )† † † †H a a Kb b

G
a b

G
a b3

2

3

2
h.c. . D.4M M M M M M M M Meff, OM ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,3

From H Meff, , one canfind the critical valueGc at which the gap starts to close, leading to the final expression


d

d
= + -

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ ( )G

KMin
2

1
4

1 , , D.5OM
2

OM
2

forG<Gc, where

d= ( )G K K3 2 , D.6c OM

is the critical coupling abovewhich the gap decreases.

Appendix E. State transfer in a 1DMarkovianwaveguide

In this section, wewrite a simplemodel for twoTLSweakly coupled to a 1D chiral channel within the Born–
Markov approximation. Doing so, we derive the effective transfer rate between the emitting TLS and the
waveguide as well as the dissipation rates due to photons and phonons loss. For consistency, we remind here the
formof the edge-state lowering operator

å= +f- -xˆ ( ) [ ( ) ˆ ( ) ( ) ˆ ( )] ( )( )( )b k u k b k v k a ke . E.1E x
s m

k
s x s m x s x s m x

,

i
, ,

ma
kx m x

Weconnect the important results to the group velocity vg, penetration depth ξ and optical fraction of the edge
statePopt, all shown infigure 4 of themain text. All the remaining parameters are defined in themain text.

We consider both the emitting and receiving defects, denoted by the subscripts {e, r} respectively, to be
localized in the outermost unit cells along the edge, i.e.m=0 in equation (E.1). Only keeping the edge state
from theOMarray, wewrite the simplestHamiltonian

= + +ˆ ˆ ˆ ˆ ( )H H H H E.2E1D TLS int
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with

å

å

w
s s

w

s

s

= +

=

=

+ +

+
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ˆ ( ) ( ) ( )
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2
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E x E x E x
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e E x

s x
k j a r

r E x

TLS
0

, ,
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2i

sp ,

2i
sp ,

x

x

e
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r
x r

Here je ( jr) and se (sr) indicate the unit-cell position along the edge andwhich basis the emitting (receiving)TLS is
coupled to, with corresponding coupling strength ( )g e

sp
( ( )g r

sp
).

We consider the single-excitation ansatz

åy a b s sñ = ñ + + + ñw-
+ +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ( ) ∣ ( ) ( ) ( ) ( ) ∣ ( )†t a t a t a t b k0 e 0 , E.4t

e e r r
k

k E x
i

, ,

x

x
0

where ñ∣0 represents the ground state of thewhole system. The Schrödinger equation for the edgemodes leads to

* * * *

ò t

t t t t

= -

+

w w w w t- - - - - -

- -

( ) ( )

[ ( ) ( ) ( ) ( ) ( ) ( )] ( )

( ( ) )( ) ( ( ) )( )

( ) ( )

a t a t
N

u k g a u k g a

e i
1

d e

e e . E.5

k
k t t

k
x t

t
k t

s x
kj a e

e s x
kj a r

r

i
0

i

2i
sp

2i
sp

x
E x

x
E x

e
e

r
r

0 0

0

0

Using this result in the equation for the receiver’s cavity and performing a Born–Markov approximation, one
recovers the standard equation

g
g¶ = - - q( ) ( ) ( ) ( ) ( ) ( )( )a t

t
a t t f t

2
e , E.6t r

r
r r

t
in,r

r

with the phase

q f= +s
s

=( ) [ ( )] ( )( )t g targ . E.7msp 0

The effective decay rate of the TLS into thewaveguide reads

åg
p

d w w= - =s
s s

s
s( ) ∣ ( )∣ ∣ ( )∣ ( ( ) ) ∣ ∣ ∣ ( )∣ ( )( ) ( )t

N
g t u k k

u

v a
g t

2 2
. E.8

x k
s x E x

s

g
sp

2 2
0

2

sp
2

x

Here, º =s s ( )u u k ks s x 0 , º =( )v v k kg g x 0 and f fº == = ( )k km m x0 0 0 , where themomentum k0 is defined as
w w=( )kE 0 0, i.e.themomentum atwhich the frequency of the TLS crosses the dispersion relation of the edge
modes. Note that the factor 2 in the second line of equation (E.8) comes from the distance of a2 between two
unit cells in theKagome lattice. For example, in cases where only the atomsB andC are excited along the straight
edges, i.e.truly 1D limit, =su 1 2s and g = ∣ ∣a g vgsp

2 , as expected in a 1Dunidirectional waveguide. Finally,
the incoming field reads

t

t g t t

= -

= - + - -

f

q t f- -

( ) ( )

[ ( ) ( ) ( )] ( )( )

f t f t

f t t a t

e

e e , E.9

er

er e er
t

e er

in,r out,e
i

in,e
i i

er

e er er

with the propagation time and phase

t f= - = -( ) ( ) ( )j j a v k j j a2 , 2 . E.10er r e g er r e0

This result is expected from the input–output formalism.
The role of the penetration depth ξ≡ ξ(kx=k0) is implicitly included in the coefficients sus as the

normalization constraint imposes

å º-
s

x∣ ∣ ( )u e 1. E.11
s m

s
,

2 ma2

As expected, as the penetration depth increases, the strength at which the TLS couples to the edge state decreases.
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