
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

TELECOMMUNICATIONS DIVISION

Malware Detection using Machine Learning:

A double input architecture

by

Panagiotis Bellonias

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA OF

ELECTRICAL AND COMPUTER ENGINEERING

July 2020

THESIS COMMITTEE

Professor Aggelos Bletsas, Thesis Supervisor
Associate Professor Michail G. Lagoudakis

Professor Vasilis Katos, Bournemouth University, UK

Abstract

This thesis will try to combine two different applications, data classification,

and image classification to further improve malware detection. The effective-

ness of a double input architecture model is evaluated. The neural network

developed takes two different kinds of inputs, the grayscale image represen-

tation of the sample and features extracted from the headers of the file. For

this purpose, a dataset has been created containing data from sources like

MalShare [1] and VirusTotal [2]. Feature encoding has been used for creating

a mathematical summary of the features and standardizing the input vec-

tor. The implemented model is compared to two different neural networks to

highlight its effectiveness. The first one uses an image representation of the

executable file as an input and the second one uses only features from the

headers of the file. The double input architecture proved to outperform its

contestants with an area under receiver operating characteristic (ROC) curve

(AUC) equal to 0.989. Furthermore, state-of-the-art antivirus products were

compared to the proposed architecture, even though the latter was trained

with a relatively limited dataset. The proposed neural network was placed

third with a True Positive Rate of 0.972. Complete sources are provided for

reproducing the proposed model and the derived results [3]. The importance

of large dataset availability in such domains should not be overlooked.

Thesis Supervisor: Professor Aggelos Bletsas

Acknowledgements

Many thanks to my supervisor, Professor Aggelos Bletsas, for providing guid-

ance and feedback throughout this project but mostly for his patience and

understanding. Thanks also to my family, for motivating me through this

journey, and for providing guidance and a sounding board when required.

Lastly, I would like to thank Professor Vasileios Katos for being my advi-

sor outside Technical University of Crete, and for giving the opportunity to

develop in the cyber security field.

4

Table of Contents

Table of Contents . 4

List of Figures . 6

List of Tables . 7

1 Introduction . 8

1.1 Objective . 9

1.2 Outline . 10

2 Literature Review . 11

2.1 Static Malware Analysis . 11

2.1.1 Signature Evasion . 11

2.1.2 Code Obfuscation . 12

2.1.3 Malware Packing . 13

2.2 Machine Learning for Malware Detection 14

2.2.1 N-Grams of Bytes Sequences 15

2.2.2 N-Grams of Opcode sequences 15

2.2.3 API Calls . 16

2.2.4 Headers Meta Data 17

2.2.5 Image Representation of Malware 17

3 Background . 20

3.1 Portable Executable Format 20

3.1.1 MS-DOS Stub . 20

3.1.2 COFF Header . 22

3.1.3 Optional Header . 22

Table of Contents 5

3.1.4 Section Header . 23

3.2 Artificial Neural Networks . 24

3.3 Convolutional Neural Networks 28

3.3.1 Convolution Layer . 29

3.3.2 Non-linear Layer . 31

3.3.3 Pooling Layer . 32

3.3.4 Fully Connected Layer 33

4 Implementation . 34

4.1 Data Collection . 34

4.2 Lab Enviroment . 35

4.3 Extracted Features and Dataset 35

4.4 Samples to Images . 39

4.5 Classifiers . 40

5 Experiments and Results . 44

5.1 Experimental Setup . 44

5.2 Metrics . 44

5.3 Results . 45

5.3.1 CNN Classifier . 46

5.3.2 DNN Classifier . 48

5.3.3 Enhanced Classifier 49

5.3.4 Malware in the wild 50

5.3.5 Overall Results . 50

6 Conclusion . 52

Bibliography . 53

6

List of Figures

2.1 The images in the first row are images of 3 instances of mal-

ware belonging to the family Fakerean [4] and those in the

second row belong to the family Dontovo.A [5]. 18

3.1 PE File Format [6]. 21

3.2 Basic structure of a neuron. 25

3.3 Sigmoid function and Hyperbolic tangent function. 25

3.4 Basic structure of multi-layer perceptron. 26

3.5 Example of a convolutional neural network. 29

3.6 Example of kernel calculation within convolution layer. 30

3.7 Example of rectified linear unit transformation. 32

3.8 Two classic methods for pooling. 33

4.1 Different properties along samples. 37

4.2 Distribution of byte values of the the entry point. 37

4.3 Ratio of virtual size and disk size. 38

4.4 Summary of the Convolutional Neural Network. 41

4.5 Summary of the Dense Neural Network. 42

4.6 Summary of the Enhanced Neural Network. 43

5.1 CNN Results. 47

5.2 DNN Results. 48

5.3 Enhanced Classifier Results. 49

5.4 ROC Curve results. 51

7

List of Tables

3.1 COFF header. 22

3.2 Optional header parts. 22

3.3 Optional header standard fields. 23

4.1 Samples collected. 35

4.2 Virtual Machine System Settings. 35

4.3 Important properties of a file. 36

4.4 Dataset structure. 39

5.1 Results in unknown samples. 50

Chapter 1

Introduction

Malware is one of the most serious security threats and spreads autonomously

through vulnerabilities or careless users. To prevent infection or remove mal-

ware from a computer system, it is of utmost importance to detect malware

successfully. The concept of malware detection mainly deals with the analy-

sis of executable files to establish malicious intent. As anti-malware software

develops, malicious executables are becoming more and more sophisticated.

Thus, research has been headed into the development of more advanced de-

tection techniques. Two main analysis techniques are used to detect the

maliciousness of a portable executable: static, and dynamic analysis.

Static malware analysis refers to analyzing the binary file without

execution. It is used to confirm, whether the file being inspected is malicious

or not. It is the easiest to perform and allows extraction of the metadata

associated with the target binary, such as functions and libraries being called

by the executable. Static analysis acts as a stepping stone as it can often

provide interesting information that will determine where to focus on the

next steps of the analysis.

Dynamic malware analysis, unlike static malware analysis, is per-

formed by observing the behavior of the malware, while running its code

in a controlled environment. This technique reveals valuable insights into

the activity of the binary during its execution. The target file may also be

debugged, while running using a debugger, such as GNU Debugger (GDB)

[7], to watch the behavior of the malware, analyze system calls or other pat-

terns, while its code is being executed. This technique requires considerable

resources and can be evaded in various ways. For the purpose of this thesis,

we will focus on static malware detection.

During the last decade, machine learning has triggered a radical shift in

1.1. Objective 9

many sectors, including cybersecurity. There is a general belief among cyber-

security experts that AI-powered antimalware tools will help detect modern

malware attacks and improve scanning engines. Neural networks are used

today for a variety of applications like data classification, data prediction,

image recognition, natural language processing, and so on.

This thesis will try to combine two different applications, data classifi-

cation, and image classification to further improve malware detection. Ma-

chine learning is split into two main categories: supervised, and unsupervised

learning.

Supervised learning is the process of teaching a model by feeding it

input data as well as correct output data. This input/output pair is usually

referred to as ”labeled data”. Think of a teacher who, knowing the correct

answer, will either reward marks to or take marks from a student based on

the correctness of her response to a question. Supervised learning is often

used to create machine learning models for two types of problems, regression

and classification.

Regression is a technique that aims to reproduce the output value. It can

be used, for example, to predict the price of some product, like a price of a

house in a specific city or the value of a stock.

Classification is a technique that aims to reproduce class assignments.

It can predict the response value and the data is separated into ”classes”.

Malware detection is a classification problem.

Unsupervised learning represents a subset of machine learning tasks

that are based around using unlabeled training data, which is data that

does not have any kind of label designating its classification. Compared

to supervised learning, where training data is labeled with the appropriate

classifications, methods using unsupervised learning must learn relationships

between elements in a dataset without data labeling.

1.1 Objective

The objective of this thesis is to design and evaluate a neural network for

portable executable files to classify them as malicious or benign, based on

1.2. Outline 10

supervised learning. The model developed takes two different kinds of inputs,

a grayscale image representation and features extracted from the headers of

the file. For this purpose, a dataset has been created containing data from

sources like MalShare and VirusTotal. Feature encoding has been used for

creating a mathematical summary of the features and standardizing the input

vector.

The model developed is compared to two different neural networks to

highlight its effectiveness. The first one uses an image representation of

the executable file as an input and the second one uses only features from

the headers of the file. Furthermore, state-of-art antivirus products were

compared to the architecture mentioned. Complete sources are provided for

reproducing the proposed model and the derived results.

1.2 Outline

• Chapter 1 introduces the concepts covered in this thesis.

• Chapter 2 presents previous research in the field of static malware anal-

ysis with machine learning.

• Chapter 3 defines the format of the portable executable file and analyzes

its headers, which need to be studied to better understand the im-

plemented model. Moreover, the necessary background regarding the

main deep learning algorithms is described.

• Chapter 4 presents in detail the steps and processes involved in creating

the dataset as well as implementing the models.

• Chapter 5 reviews the experimental results and their implications in the

real world.

• Chapter 6 summarizes the results, the model, and areas of research that

have not been covered in this thesis. It also talks about potential gaps

in this thesis and future research.

Chapter 2

Literature Review

This section covers work published in using machine learning for malware

detection. The basic models developed during this thesis are similar to the

implementations described in this section. However, most of the literature

is not reproducible due to the lack of availability of the data set used, or

the use of proprietary frameworks for obtaining results. Related work in this

field is also covered which deals with malware detection on other platforms

using static as well as dynamic analysis of files.

2.1 Static Malware Analysis

This technique refers to analyzing the Portable Executable files (PE files)

without running them. There is a variety of challenges lying in this approach,

most of which are solved by dynamic analysis. The most popular challenges

are presented below, along with the incapability of semantic-analyzers in

addressing them.

2.1.1 Signature Evasion

Conventional malware detection products work by examining each object and

calculating its digital signature. Signature-based detection is an anti-malware

approach that identifies the presence of a malware infection or instance by

matching at least one byte code pattern of the software in question with

the database of signatures of known malicious programs [8], also known as

blacklists.

This method requires a database of signatures continuously updated. To

maintain the database, some experts analyse every new malicious programs

and try to reverse engineer a corresponding signature, with the constraint to

2.1. Static Malware Analysis 12

produce less possible false-positives. Bonfante et al. [9] proposed a strategy

based on control flow graphs as signatures to perform detection to combat this

problem. They designed a graph, which consisted of nodes for all commonly

used assembly instructions. A reduced version of the graph was used as a

signature to detect malicious samples. According to their experiments, that

strategy resulted in better overall detection accuracy for larger samples.

Unfortunately, today’s advanced malware can alter its signature to avoid

detection. Signatures are created by examining the internal components of an

object. Skilled malware authors modify these components while preserving

the object’s functionality. There are multiple transformation techniques used

by malware authors, such as code permutation, register renaming, expanding

and shrinking code, insertion of garbage code or other constructs, which can

alter a signature. Another thing to keep into consideration is that advanced

malware is often designed to be single-use, targeting just one organization or

a few people within one organization. This narrow focus greatly reduces the

odds that its signature will ever appear in a database of malicious objects.

2.1.2 Code Obfuscation

Obfuscated programs are ones whose execution is hidden by malicious ac-

tors. Several techniques include dead code insertion, register reassignment,

subroutine reordering, instruction substitution, and code manipulation.

Dead-code insertion adds some NOP (No operation Performed) in-

structions or inserts ineffective PUSH/ POP statements to a program to

change its look, but keep its same behavior.

Register reassignment works by switching registers or by reassigning

the value of one register to unused one. For example, EAX is reassigned to

EBX register. EAX is used in arithmetic operations and EBX points to the

address space containing initialized static variables.

Subroutine reordering is a group of program operations that do a

specific task. This technique changes the subroutines order randomly in the

program.

In instruction substitution, original instructions that perform the

2.1. Static Malware Analysis 13

same function are replaced by equivalent ones, such as replacing MOV

instruction with PUSH instruction.

In code integration, malware embeds itself to another legal program.

To apply this technique, malware decompiles its targeted program and adds

itself in between its source code [10]. Code integration is considered as one of

the most sophisticated obfuscation techniques that allows malware to evade

detection.

Mosel et al. [11] highlighted a significant flaw in static malware analysis

techniques, simply by using opaque constants to obscure program control

flow. The semantic analysis was beaten by introducing a randomized ap-

proach to calculating constants in real-time. One such method mentioned is

to use a random seed to generate addresses where variables are stored, or to

daisy-chain the process and store variables in addresses present in other ad-

dresses. However, calculating the value of certain constants is considered an

NP-hard problem. In that paper, the use of the 3SAT algorithm is discussed,

which is difficult to be computed in polynomial time.

Preda et al. [12] proposed a semantics-based approach to compare the

similarity between original malicious code and obfuscated malware code. Re-

search showed that by adding NP-hard computation or similar methods, ob-

fuscation techniques like NOP insertion, command substitution, and variable

renaming could be detected successfully. However, the practical implemen-

tation of this approach has not been fully realized.

2.1.3 Malware Packing

Packed programs are a subset of obfuscated programs in which the malicious

program is compressed and cannot be analyzed [13]. To identify if malware is

packed or not, a security professional can carry a static check on it and if an

extremely small number of strings is found then there is a near one hundred

percent chance that the code is malicious. Different types of encryption could

be used in combination with such techniques to prevent malware detection.

Polypack is a tool developed to highlight the fact that packers are an effective

method of evading anti-virus and anti-malware software [14]. Polypack uses

2.2. Machine Learning for Malware Detection 14

an array of packers and antivirus engines as a feedback mechanism to select

the packer that will result in the optimal evasion of the antivirus engines.

Towards understanding the utility and efficacy of such a service, a version

of PolyPack which employs 10 packers and 10 popular antivirus engines was

developed. Results indicated that the tool provides 2.58 times more effective

evasion of antivirus engines than using an average packer.

2.2 Machine Learning for Malware

Detection

There is a general belief within the cybersecurity industry that AI-powered

anti-malware tools will help detect modern malware attacks and improve

scanning engines. The number of studies published in the last decade on

malware detection techniques that leverage machine learning enhances this

belief. According to Google Scholar, the number of research papers published

in 2019 is 5130, a 240% increase compared to 2015 and a 925% increase with

respect to 2010.

Traditional machine learning approaches can be categorized into two pri-

mary groups, static and dynamic approaches, depending on the type of anal-

ysis. The main difference between them is that static approaches extract fea-

tures from the static analysis of malware, while dynamic approaches extract

features from the dynamic analysis. Since the work presented here focuses

on the static approach, the corresponding literature is being presented.

Static features are extracted from a program without involving its execu-

tion. This is important since, in real-life scenarios, the user should not run

the suspected executable to detect its maliciousness. In Windows Portable

Executable files, static features are derived from two sources of information,

the binary content of the executable or the assembly language source file

obtained after decompiling and disassembling the binary executable.

2.2. Machine Learning for Malware Detection 15

2.2.1 N-Grams of Bytes Sequences

One of the most common type of features for malware detection is n-grams.

An n-gram is a contiguous sequence of n items from a given sequence of

text. N-grams can be extracted from the bytes sequences representing the

malware’s binary content and from the assembly language source code. Many

tools have been developed for this purpose such as Hex dump [15].

Masud et al. [16] created 4-grams from byte sequences of PE32 files. The

features were collected by sliding window of n bytes. This resulted in 200

millions of features using 10-grams for about two thousands files in over-

all. Furthermore, feature selection was applied to select 500 most valuable

features based on Information Gain metric. Information Gain measures the

quality of a split during the training of Decision Trees. Achieved accuracy

on malware detection was up to 97% using such features.

Similar approach was proposed by Fuyong et al. [17]. They calculated the

information gain of each bytes n-gram in the training samples and selected

K n-grams with the maximum information gain as features. Afterwards,

they calculated the averages of each attribute of the feature vectors from the

malware and benign samples separately. Lastly, a new piece of software was

assigned to one of the two categories according to the similarity between the

feature vector of the unknown sample and the average vectors of the two

categories.

Another work on byte n-grams described a method to extract bytes n-

gram features, with n ranging from 1 to 8, from known malicious samples to

assist in classification of unknown executables [18]. As the number of unique

n-grams is extremely large, they used a technique called classwise document

frequency to reduce the feature space. Finally, different N-gram models were

prepared using various classifiers like Näıve Bayes, Instance-based Learner,

Decision Trees, Adaboost and Random Forests.

2.2.2 N-Grams of Opcode sequences

Opcode sequences or operation codes are set of consecutive low level machine

abstractions used to perform various CPU operations. As it was shown [19],

2.2. Machine Learning for Malware Detection 16

such features can be used to train Machine Learning methods for successful

classification of the malware samples. However, there should be a balance

between the size of the feature set and the length of n-gram opcode sequence.

N-grams with the size of 4 and 5 result in highest classification accuracy

as unknown malware samples could be unveiled on a collection of 17,000

malware and 1,000 benign files with a classification accuracy up to 94% [20].

Shabtai et al. [21] proposed a framework for detecting malware based on

opcode n-gram features with n ranging from 1 to 6. They performed a wide

set of experiments to: identify the best term representation, whether it is the

Term Frequency or Term Frequency-Inverse Document Frequency, determine

the n-gram size, find the optimal K top n-grams and feature selection method,

and evaluate the performance of various machine learning algorithms.

Despite their success at detecting malware, n-gram approaches have some

issues that are worth mentioning. Researchers have concluded that byte n-

grams appear to be learning mostly from string content in an executable, in

particular items from the PE header [22]. As there are millions of potential

n-grams, for a larger n, feature selection techniques tend to select them as

features by frequency of occurrence. This encourages the selection of low

entropy features consisting mostly of strings and padding. Also, regardless

of what kind of n-grams are learned, an exact match must be obtained when

classifying a new sample. Based on the power-law observation of the n-gram

distribution, previously unobserved n-grams will be exported from each file.

This is a scenario where more features are produced than samples, which is

a source of over-fitting.

2.2.3 API Calls

API calls are the function calls used by a program to execute specific func-

tionality. There is a distinction between System API calls that are available

through standard system DLLs and User API calls provided by user installed

software. These are designed to perform a pre-defined task during invoca-

tion. Suspicious API calls, anti-VM and anti-debugger hooks and calls can

be extracted by PE analysers such as PEframe [23]. Researchers studied 23

2.2. Machine Learning for Malware Detection 17

malware samples and found that some of the API calls are present only in

malicious samples rather than benign software [24]. Function calls can be

composed in graphs to represent PE32 header features as nodes, edges and

subgraphs [25]. This work shows that ML methods achieve accuracy of 96%

on 24 features extracted after analysis of 1,037 malware and 2,072 benign ex-

ecutables. Further, in [26] 20,682 API calls were extracted using PE parser

for 1,593 malicious and benign samples. Such large number of extracted fea-

tures can help create a linearly separable model that is crucial for many ML

methods like Support Vector Machines or single-layer Neural Networks.

2.2.4 Headers Meta Data

PE header represents a collection of meta data related to a Portable Exe-

cutable file. Basic features that can be extracted from a PE32 header are

Size of Header, Size of Uninitialized Data, Size of Stack Reserve, which may

indicate if a binary file is malicious or benign. Shugang Tang [27] utilized

Decision Trees to analyse PE header structural information for describing

malicious and benign files. Another academic work used 125 raw header

characteristics, 31 section characteristics, 29 section characteristics to de-

tect unknown malware in a semi-supervised approach [28]. T. Wang et al.

[29] used a dataset containing 7,863 malware samples from VX Heaven web

site [30] in addition to 1,908 benign files to develop a SVM based malware

detection model with an accuracy of 98%.

2.2.5 Image Representation of Malware

A ground approach for malware visualization was first introduced by Nataraj

et al. [31] who visualized the malware’s binary content as a gray scale image.

This is achieved by interpreting every byte as one pixel in an image, where

values range from 0 to 255 (0:black, 255:white). Afterwards, the resulting

array is reorganized as a 2-D array.

Fig. 2.1 depicts samples from two malware families represented as gray

scale images. It is clear that the image representation of samples of a given

family is quite similar while distinct from that belonging to a different family.

2.2. Machine Learning for Malware Detection 18

Figure 2.1: The images in the first row are images of 3 instances of malware
belonging to the family Fakerean [4] and those in the second row belong to
the family Dontovo.A [5].

This visual similarity is the result of reusing code to create new binaries.

Thus, if old samples are re-used to implement new binaries, the resulting

ones would be similar. In most cases, by representing an executable as a

gray scale image it would be possible to detect small variations between

samples belonging to the same family.

This visual similarity has been exploited by various authors for detecting

and classifying malware. In particular, Nataraj et al. [31] extracted features

from the gray scale representation of malware’s binary content. Finally, a

new executable is classified under one family or another using the K-Nearest

Neighbor algorithm (K-NN) with the Euclidean distance as metric. Ahmadi

2.2. Machine Learning for Malware Detection 19

et al. [32] extracted Haralick and Local Binary Pattern features for classi-

fying malware using boosting tree classifiers. Haralick features describe the

correlation in intensity of pixels that. are next to each other in space.

The grayscale image representation of software has some drawbacks di-

rectly related to how images are generated. Primarily, binaries are not 2-D

images and by transforming them likewise you introduce unnecessary priors.

First, to construct an image, an image width must be selected, which adds

a new hyper-parameter to be tuned. By selecting the width consequently,

one can determine the height on the image depending on the size of the bi-

nary. Second, it imposes non-existing spatial correlations between pixels in

different rows, which might not be realistic.

Additionally, like the majority of static features, it suffers from code ob-

fuscation techniques. In particular, techniques like encryption and compres-

sion might completely change the bytes structure of a binary program and,

thus, methods based on this kind of representation would fail to correctly

classify its class.

Chapter 3

Background

This section briefly describes the portable executable (PE) file format and its

header. Moreover the necessary background is provided regarding Convolu-

tional and Dense Neural Networks, which are used as the main deep learning

algorithms for the purpose of this work.

3.1 Portable Executable Format

Each executable file has a common format called Common Object File For-

mat (COFF), a format for executable, object code, shared library computer

files used on Unix systems. Portable Executable format, Fig. 3.1, is one

such COFF format available today for executable, object code, Dynamic-

link libraries (DLLs), font files, and core dumps in 32-bit and 64-bit versions

of Windows operating systems. It was introduced by Microsoft with the

Windows NT 3.1 operating system. Unix uses the ELF format which is anal-

ogous to the Windows PE format. This thesis focuses on Windows PE files,

explicitly.

The proposed model analyzes features extracted from PE files along with

the image representation of the sample to determine whether the file is ma-

licious or not. This section describes the information that can be obtained

from PE files.

3.1.1 MS-DOS Stub

This stub is executed whenever the file is executed in the MS-DOS environ-

ment. Its only purpose is to print a message indicating that the file cannot

be run in the MS-DOS environment. A signature added after the MS-DOS

stub indicates that the file is in PE format.

3.1. Portable Executable Format 21

Figure 3.1: PE File Format [6].

3.1. Portable Executable Format 22

3.1.2 COFF Header

At the beginning of an object file, or immediately after the signature of an

image file, is a standard COFF file header. The format of this header is

defined in Table 3.1. Note that the Windows loader limits the number of

sections to 96.

A file can only be executed on a machine if the machine field matches the

target machine the file is to be executed on.

Offset Size Field Description

0 2 Machine
Identifies the target machine that

the executable can run on.

2 2 NumberOfSections Size of the section table.

4 4 TimeDateStamp
Date of Creation. Represented as
seconds after January 1, 1970.

8 4 PointerToSymbolTable
File offset of COFF symbol table.

0 for no table.

12 4 NumberOfSymbols Number of entries in the symbol table.

16 2 SizeOfOptionalHeader
Size of the optional header
(required for executables)

18 2 Characteristics Indicates the attributes of the file.

Table 3.1: COFF header.

3.1.3 Optional Header

The next 224 bytes in the executable file constitute the PE optional header.

Despite its name, this is not an optional entry in PE executable files. This

header provides information to the loader present in the operating system,

which is responsible for handling the execution of files. The optional header

is split into 3 major parts defined in Table 3.2.

Offset Size Header Part Description

0 28 Standard fields Common for Windows and Unix COFF implementations.

28 68 Windows-specific fields Defines windows specific features.

96 Variable Data directories Address and size of special tables used by OS.

Table 3.2: Optional header parts.

3.1. Portable Executable Format 23

Size of the optional header is defined in the SizeOfOptionalHeader field in

the COFF header. A magic number present in the optional header determines

whether the executable is PE32 or PE32+. PE32+ executables allow 64-bit

memory address space, but can be no more than 2 gigabytes in size. Further

details on the standard fields can be found in Table 3.3.

Offset Size Field Description

0 2 Magic 0x10B for PE32 / 0x20B for PE32+.

2 1 MajorLinkerVersion The linker major version number.

3 1 MinorLinkerVersion The linker minor version number.

4 4 SizeOfCode The size of the code (text) section.

8 4 SizeOfInitializedData The size of the initialized data section.

12 4 SizeOfUninitializedData The size of the uninitialized data section.

16 4 AddressOfEntryPoint The memory address of the entry point relative to the image base.

20 4 BaseOfCode The memory address that is relative to the beginning-of-code section.

Table 3.3: Optional header standard fields.

Windows specific fields contain certain information required specifically

for Windows environments. It contains operating system version, image ver-

sion, size of the headers, size of the image, DLL characteristics, loader flags,

length of the data directory, the data directory itself, and the checksum. Size

of the image determines how much address space must be reserved by the

operating system for the image to run.

The data directories give the address and size of directories required by

Windows. This includes, but is not limited to, import/export tables, resource

table, exception table, etc.

3.1.4 Section Header

Section headers are located sequentially right after the optional header in

the PE file format. Each section header is 40 bytes with no padding between

them. Section headers are defined as in the following structure:

• Name. Each section header has a name field up to eight characters long,

for which the first character must be a period.

3.2. Artificial Neural Networks 24

• PhysicalAddress or VirtualSize. The second field is a union field that

is not currently used.

• VirtualAddress. This field identifies the virtual address in the process

address space where the section is loaded. The actual address is created

by taking the value of this field and adding it to the ImageBase virtual

address in the optional header structure.

• SizeOfRawData. This field indicates the FileAlignment-relative size of

the section body. The actual size of the section body will be less than

or equal to a multiple of FileAlignment in the file.

• PointerToRawData. This is an offset to the location of the section body

in the file.

• Characteristics. Defines the section characteristics.

An application for Windows typically has the nine predefined sections

named .text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug.

Some applications do not need all of these sections, while others may define

still more sections to suit their specific needs. Kindly refer to [33] for further

information in predefined sections and the PE format.

3.2 Artificial Neural Networks

Artificial neural network is made up of neurons, which are connected with

each other and form a neural network. A neuron is the unit of a network and

the basic structure of a single neuron is shown in Fig. 3.2.

According to the figure given, suppose the neuron takes xi as the input

and gets the outputs based on the following computation:

output = f

(

3
∑

i=1

(wixi) + b

)

, (3.1)

where wi are defined as weights, the b is defined as bias and f(.) is a non-

linear activation function. During the computation phase, every input value

3.2. Artificial Neural Networks 25

Figure 3.2: Basic structure of a neuron.

xi is weighted and multiplied by a weight wi then the weighted input values

plus the bias b are devoted into the activation function, where this linear

combination is transformed into a non-linear one. There exist several classic

non-linear activation functions, among which logistic sigmoid function and

hyperbolic tangent function, presented in Fig. 3.3 are general choices.

Figure 3.3: Sigmoid function and Hyperbolic tangent function.

According to the function definition, for one single neuron, the mapping

3.2. Artificial Neural Networks 26

relations between input and output is in fact a logistic regression. A classic

neural network is made up of multiple neurons and the outputs of the previous

layer are the inputs of the next layer. Fig. 3.4 is an example of a feedforward

neural network, which is also known as multi-layer perceptron. As it is shown,

Figure 3.4: Basic structure of multi-layer perceptron.

within the neural network, the neurons are grouped into layers. Each layer

is fully connected to the subsequent one and the connections do not form

cycles. It is clear to see that within each layer, there is a bias parameter

bi, which is used to compute the output of the corresponding neuron. The

leftmost layer is the input layer and the rightmost layer is the output layer.

The layer in the middle is defined as hidden layer, as its values can not be

observed in the training set.

Suppose there are three layers within the neural network, nl=3, and the

i–th layer is labeled as Li. Therefore, the first layer, which is also defined

as the input layer, is presented as L1, the second layer as L2 and the third

layer as L3. The parameters of the model are defined as (W,b) = (W(1), b(1),

W(2), b(2)), where bi
(l), is the bias to unit i in layer l+1 and Wij

(l) denote

the weight value to the connection between the unit j in the layer l and the

unit i in layer l+1. Moreover, W(1)
∈R3x3, W(2)

∈ R1x3, b(1) ∈ R3x1 and b(2)

∈ R1 are defined in this case.

3.2. Artificial Neural Networks 27

In the initial step, the activations of the hidden nodes are computed as:

α
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1), (3.2)

α
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2), (3.3)

α
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3), (3.4)

where αi
(l) is defined as the activation of unit i in layer l, and f(.) is a

non-linear activation function. The activations of the hidden units are then

devoted into the next layer, which takes all these activations as the inputs.

Therefore, the output of the last layer is computed as:

output = α(3) = σ(W (2)α2 + b(2)) = σ(W (2)f(W (1)x+ b(1)) + b(2)), (3.5)

where σ means that the activation function for the output layer could be

different than the activation function in the hidden units.

The whole process is called forward propagation, based on the fact that

the inputs are forwarded through the network. There is one thing to stress

that the non-linear activation function is a must within the network, which

transforms the original linear combination into a non-linear one.

In a supervised learning scenario, Artificial Neural Networks can be trained

using the backpropagation algorithm, which readjusts the weights of the in-

terconnections in the neural network based on local error rates.

Backpropagation in neural networks describes the process of using a local

error of the network to readjust the weights of the interconnections backwards

through the neural net. Explicitly, this means that after a prediction for a

set of input values has been made, the actual output value is compared to

the prediction value and an error is calculated. This error is then used to

readjust the weights of the connections starting at the edges that are directly

connected to the output nodes of the network and then proceeding further

into it. In order to train a neural network, it is important to understand the

main parameters that can be used to optimize the learning process:

The learning rate specifies how fast the learning process is performed.

The parameter’s value lies between 0 and 1 and is multiplied with the local

3.3. Convolutional Neural Networks 28

error for every output value. Therefore, a learning rate of 0 would result in

no adaptation at all. The correct setting for the learning rate is crucial to

the success of the learning process. If the value is set too high the weights

can oscillate and complicate the finding of the optimal values. However, if

the value is set too low, found errors will not have enough weight to push

the network into a new optimization and the weights can get stuck in local

maximum. In order to find the correct settings, a decay parameter can be

added. This parameter ensures a high learning rate value in the earlier cycles

of the training process to avoid getting stuck in local maximum and forces

its reduction during the learning process to avoid oscillation.

Another important parameter for neural networks is called momentum.

It is used to smooth out the optimization process by using a fraction of the

last weight change and adding it to the new weight change.

The minimal error is a stop criterion for the learning process. Once the

combined error of the network falls below this threshold, the learning process

is stopped.

Combining these parameters, the formula for computing a new weight for

a connection is the following:

W = l + ǫ+m ∗Wp, (3.6)

where W is the new weight change, l is the learning rate, ǫ is the minimal

error, m is the momentum and Wp is the weight change of the previous cycle.

3.3 Convolutional Neural Networks

Convolutional Neural Networks, known as CNNs, are a category of Neural

Networks that have proven very effective in areas such as image recognition

and classification. CNNs have been successful in identifying faces, objects

and traffic signs apart from powering vision in robots and self driving cars.

There are four main layers in the CNN structure: convolution, non-linear,

pooling or subsampling and fully connected layer. The mentioned layers are

depicted in Fig. 3.5.

3.3. Convolutional Neural Networks 29

Figure 3.5: Example of a convolutional neural network.

3.3.1 Convolution Layer

The convolution layer is the foremost part of CNN, which does the heavy cal-

culation of convolution neural network operation. The CNN extracts different

features of the inputs and the convolution layer extracts low-level features of

the image, such as edges, lines, and corners. The key point of the convolution

layers is the usage of learnable kernels. The kernels are generally small in

spatial dimensionality, but they can spread along the entire input. When an

input comes into a convolutional layer, the layer applies each filter across the

input and then produces a 2-dimensional activation map. Every kernel has

its own activation map, which will be stacked along the depth later. As a

result, it is necessary to stress that the depth of the filter should be the same

as the depth of the input.

Fig. 3.6 visualizes the classic operation of the kernel within the convo-

lution layer. After extraction of the target part from the input, the kernel

passes through the entire vector. After gliding through the input, the output

of convolution calculation is the scalar product of each value in the kernel.

Generally, the kernel starts from the top left corner of the image. Hypo-

thetically, there is an input with 32 × 32 array of pixel values and the kernel

covers the area of 5 × 5. As the filter is sliding around the input image, it

multiplies the values in the kernel with the original pixel values of the im-

age and then the multiplication is summed up and every part of the input

volume produces its own number. After the kernel passing through all the

parts of the image, the output of the convolution operation is an array with

3.3. Convolutional Neural Networks 30

Figure 3.6: Example of kernel calculation within convolution layer.

a 28 × 28. This array is known as the feature map. Compared with artificial

neural network, the convolutional layer shows great ability in reducing the

complexity of the model by using the kernel.

When designing the convolution layer, there are three hyper-parameters

to be considered: the depth, the stride and setting zero-padding.

The depth of the output volume corresponds to the number of the kernels

used for convolution and each of these kernels offers its own feature map of

the image input. By reducing this hyper parameter, it can minimize the

total number of neurons within the network. However, it may decrease the

performance of the convolution neural network on the pattern recognition.

The stride illustrates the steps of kernel sliding through the input volume.

If the stride is set as 1, then the filters will move one pixel at a time. If the

stride is set as 2, then the filters will jump 2 pixels at a time during the

sliding period, which will produce smaller output volumes. It is clear to see

that if the stride is set to a greater number, it will reduce the amount of

overlapping area and produce lower spatial dimension outputs.

In general cases, it is convenient to fill zeros around the border of the

input, which is called zero-padding. The introduction of zero-padding gives

further control to the spatial size of the output volumes.

When using these parameters, the spatial dimensionality of the convolu-

tional layers output is changed. The formula followed gives the details of this

3.3. Convolutional Neural Networks 31

change:
(V −R) + 2Z

S + 1
, (3.7)

where V represents the input volume size, R represents the receptive field

size, Z is the amount of zero padding set and S represents the stride.

It is necessary to notice that if the calculation from this equation is not

equal to an integer, then the stride needs to be altered to meet this expecta-

tion, or the neuron is not able to fit for the given input.

Despite the effort of these methods, in some cases, the model is still enor-

mous as some images may have multiple dimension. For this consideration,

parameter sharing is used to reduce the overall number of parameters within

the convolutional layer. The idea of parameter sharing is based on an as-

sumption that if the feature of one region is useful to compute at a set spatial

region, then it will be likely useful in another region. Within the convolu-

tion layer, each activation map within the output volume is set as the same

weights and bias, so there is a huge decrease on the number of the param-

eters produced by the convolutional layer. Based on this theory, during the

phase of backpropagation, each neuron in the output represents the overall

gradient so that only a small group of weights need to be updated instead of

every single one.

3.3.2 Non-linear Layer

The convolutional neural network applies a non-linear transformation on the

input, whose purpose is to identify the features within each hidden layer. In

artificial neural network, the non-linear transformation function is sigmoid or

hyperbolic tangent. However, for image processing, if data are more sparse,

the result will be better. Based on this understanding, rectified linear units

is often used as the non-linear transformation.

Rectified linear unit, implements function: y = max(x,0), so the output

is in the same size as the input. Rectified linear unit increases the non-

linear properties of the decision function and it has no negative effect on

the receptive fields of the convolution layer. Compared to other non-linear

functions, the training speed of the rectified linear unit is much faster. Fig.

3.3. Convolutional Neural Networks 32

3.7 sets an example of the rectified linear units.

Figure 3.7: Example of rectified linear unit transformation.

3.3.3 Pooling Layer

After the operation of convolution layer, the data comes into the pooling

layer. The major purpose of the pooling layer is also to reduce the dimension-

ality, the number of the parameters as well as the computational complexity.

Besides, it helps to make the features robust against noise and distortion.

The pooling layer operates on each feature map of the input and scales its

dimensionality by using the function defined. Generally, there are two clas-

sic pooling functions, which are max pooling and average pooling. Fig. 3.8

illustrates the operations of both pooling methods.

The pooling layer applies the max pooling function with a 2 × 2 kernel

and a stride of 2 along the spatial dimensions of the input. It is based on the

concern of the destructive functionality of pooling layer. By this operation,

it reduces the feature map down to 25% of the original size, while it still

maintains the depth volume to its standard size. In addition, it allows the

layer to pass through the entire spatial dimensionality of the input with the

overlapping area to be utilized. If the stride is set to 3 with a kernel size set

to 3, it will effectively decrease the performance of the model.

3.3. Convolutional Neural Networks 33

Figure 3.8: Two classic methods for pooling.

3.3.4 Fully Connected Layer

After several repeats of the previous layers, the data comes to the final layer

of the convolution neural network, which is the fully connected layer. Within

the fully connected layer, the neurons are directly connected to the neurons

in the two adjacent layers. The aim of this layer is to sum up the weights of

the features coming from the previous layers and indicates the probability of

each class. For example, if there is a convolution neural network for gender

classification, and the output vector is a probability of [0.7, 0.3], it means

there is 70% probability of male gender and 30% for female gender.

The functionality of each layer within the convolution neural network

has been explained. A classic convolution neural network basically contains

two parts. One part is several repeats of convolution layer, non-linear layer,

pooling layer. The purpose of this part is to reduce the dimensionality of

the input volume. Another part is the fully connected layer, following the

previous repeated layers, used to convert any vector of real numbers into a

vector of probabilities.

Chapter 4

Implementation

In this chapter, the implementation methodology is analyzed. Initially, data

collection techniques will be discussed and the lab environment is presented.

Next, the dataset is described along with the conversion of samples to images.

Finally, the various classifiers are introduced.

The development is based on Python, due to its simplicity and flexibility

of use in machine learning applications.

4.1 Data Collection

Malicious samples were collected from the MalShare Project [1], which is a

collaborative effort to create a community-driven public malware repository.

An API is provided for registered users to allow access to files and data. For

this thesis, a command-line tool was developed to interact with the API of

the platform to make the data collection process efficient and automated.

More information about the tool can be found in the Github repository of

this thesis [3].

Unfortunately, not all files in MalShare are considered as malware. There-

fore, another command-line tool was developed to check the maliciousness

of a sample. This tool takes advantage of the VirusTotal API. VirusTo-

tal aggregates many antivirus products and online scan engines to check for

viruses that the user’s antivirus may have missed, or to verify against any

false positives. For this work, malware is considered a file which is flagged as

malicious by 5 antivirus products or more in VirusTotal. Further information

regarding the tool can be found in the Github repository of this thesis [3].

Benign samples were collected from a personal computer. They consisted

of default Windows executables, DLLs and clean installations of popular

4.2. Lab Enviroment 35

software like Skype, Mozilla Firefox, Dropbox, VLC Player and more. Checks

for maliciousness were performed on those samples as well, for clarity. In

Table 4.1 , the exact number of samples is presented.

Total Samples 21,438

Malicious 12,863

Benign 8,575

Table 4.1: Samples collected.

4.2 Lab Enviroment

Before trying to analyze any kind of malware, a proper environment set up

is needed. This is the most efficient way to collect information from the

malicious executable without getting a computer infected. The best thing to

do in such cases is to have a virtual machine image ready for testing purposes.

System settings of the virtual machine are shown in Table 4.2.

Operation System Windows 10

Base Memory 10GB

Storage 200GB

Processor Intel Core i7 (2.93GHz) 3/8 cores

Table 4.2: Virtual Machine System Settings.

The virtual machine was used to store all the samples in an isolated

enviroment, run test scripts, extract the features of the dataset and convert

the samples to grayscale images.

4.3 Extracted Features and Dataset

There are two main components of the PE file extracted in order to train

our model - parsed information from a) the headers of its sample and b) the

4.3. Extracted Features and Dataset 36

encoded raw byte information.

A convenient Python script was developed, using the LIEF [34] and

numpy [35] modules, to extract the required data from any given PE file.

In this module, the extracted features are described. In total, 486 features

were extracted.

The first 11 scalars of the vector encode a set of boolean properties that

LIEF parses from the PE, as presented in Table 4.3. Each property will be

encoded to a 1.0 if true, or to a 0.0 if false.

Property Description

has configuration True if the PE has a Load Configuration.

has debug True if the PE has a Debug section.

has exceptions True if the PE is using exceptions.

has exports True if the PE has any exported symbol.

has impprts True if the PE is importing any symbol.

has nx True if the PE has the NX bit set.

has relocations True if the PE has relocation entries.

has resources True if the PE has any resource.

has rich header True if there is build information.

has signature True if the PE is digitally signed.

has tls True if the PE is using TLS

Table 4.3: Important properties of a file.

As presented in Fig. 4.1, properties like debug, exports and signature

are important features regarding malware detection, while the exceptions

property could be omitted during the training phase.

4.3. Extracted Features and Dataset 37

Figure 4.1: Different properties along samples.

Then, 64 elements follow, representing the first 64 bytes of the PE entry

point function, each normalized to [0.0,1.0] by dividing each of them by

255 - this will help the model detecting those executables which have very

distinctive entrypoints that only vary slightly among different samples of the

same family. The conclusion from Fig. 4.2 is that in most byte positions,

malware samples tend to have higher values.

Figure 4.2: Distribution of byte values of the the entry point.

The next 256 values refer to a histogram of the repetitions of each byte of

the ASCII table in the binary file - this data point will encode basic statistical

information about the raw contents of the file.

The API being used by the PE is quite relevant information. Therefore,

150 most common libraries were selected manually to be included in the

dataset as features. For each API being used by the PE, the column of

4.3. Extracted Features and Dataset 38

the relative library is incremented by one, creating another histogram of 150

values then normalized by the total amount of API being imported.

The ratio of the PE size on disk and the size it’ll have in memory, its

virtual size, is also encoded. In Fig. 4.3 the difference between malicious and

benign samples is depicted.

Figure 4.3: Ratio of virtual size and disk size.

The last features include information about the PE sections, normalized

to [0.0, 1.0]; namely the amount of sections containing code and the ones con-

taining data, the sections marked as executable, the average Shannon entropy

of each one and the average ratio of their virtual size and disk size. These

datapoints will tell the model if and how the PE is packed/compressed/ob-

fuscated as mentioned in paragraph 2.1.2.

To compute the average Shannon’s Entropy across all sections, the fol-

lowing operation was performed:

∑

n
H(n)

Hmax

,

where n is defined as the number of sections, H(n) represents Shannon’s

entropy of section n and Hmax is the max entropy across all sections. A full

overview of the dataset’s structure is presented in Table 4.4.

4.4. Samples to Images 39

Offset Description

0 md5 checksum

[1:11] Important boolean properties.

[12:77] First 64 bytes of entry point, normalized to [0.0,1.0].

[78:332]
Encoded histogram of each byte frequency,

normalized to [0.0,1.0].

[333:482] Encoded library calls.

483 Ratio between Virtual Size and Raw Size of the executable.

484
Percentage regarding the sections of the PE

referring to code execution.

485
Percentage regarding the sections of the PE

referring to memory execution.

486 Average entropy of the file.

487 Ratio between section size and virtual size

488 1 if malicious, else 0.

Table 4.4: Dataset structure.

4.4 Samples to Images

Once the dataset was gathered, the samples were converted to a 120x120

grayscale image, which means that each pixel has a value between 0 and 255.

The steps are the following:

• Read the sample in bytes.

• Remove extra bytes in case the size of the sample is not multiple of 120.

• Convert each byte to its corresponding integer.

• Reshape the image to 120x120, using linear interpolation.

In this thesis, we will investigate the effectiveness of combining the image

representation of the samples with the features extracted from the PE file.

4.5. Classifiers 40

4.5 Classifiers

Deep neural networks were used for analyzing the data. There were three

neural networks constructed, one based on CNNs, one based on dense layers

and a third one combining convolutional and dense layers together. The

rectified linear unit activation function has been used for these networks.

The Adam [36] optimizer implemented in the Keras [37] library was used

for gradient-based optimization of our classifiers. A summary of both neural

networks are shown in Figs. 4.4, 4.5, 4.6, respectively.

Each neural network has a different input. The image representation of

a sample is passed as input in the convolutional neural network to predict

its maliciousness. The dense neural network takes advantage of the encoded

features described in 4.3 to identify a file as malware. Finally, the proposed

enhanced neural network is testing the effectiveness of using both an image

of the sample and numerical features as input to classify its target.

4.5. Classifiers 41

Figure 4.4: Summary of the Convolutional Neural Network.

4.5. Classifiers 42

Figure 4.5: Summary of the Dense Neural Network.

4.5. Classifiers 43

Figure 4.6: Summary of the Enhanced Neural Network.

Chapter 5

Experiments and Results

In this chapter, the experiments are presented. Results are discussed and the

performance of the classifiers is compared.

5.1 Experimental Setup

Our classifiers were trained on a computer with an Intel i7 K875 processor and

20GB of RAM. Implementation was in Python with the following libraries

installed:

• TensorFlow.

• NumPy.

• Pandas.

• scikit-learn.

• LIEF.

• PILLOW.

There are also packages and libraries which the above libraries depend on,

but are typically installed automatically as part of the installation process.

Anaconda Python was used with Python 3.7.6 for all experiments.

5.2 Metrics

In this section, the metrics to be used for this purpose are identified. The aim

of this work is to test the accuracy and diagnostic ability of our model. For

5.3. Results 45

this purpose, the receiver operating characteristic (ROC) curve is plotted and

the area under curve (AUC) is computed. This method generally provides a

better measure of the diagnostic ability of a classifier as compared to simply

stating the overall accuracy of the model against a given test set.

The ROC curve is derived by plotting the true positive rate (TPR) of

a classifier against the false positive rate (FPR). The TPR and FPR are

calculated using the following equations:

TPR =
TP

P
=

TP

TP + FN
,

FPR =
FP

P
=

FP

FP + TN
,

where TP is true positives, P is the total positive samples present in the

test set, and FN is false negatives. FP is false positives, and TN is true

negatives.

5.3 Results

In this section, validation and test results are presented for each classifier.

The data was split into training and test sets. Due to the small amount

of data available, a 90-10 split was chosen. The epoch number is set to

140, since this was the max number of epochs the classifiers needed to reach

convergence. Overfitting events were captured and presented in the figures

of this section. Multiple training sessions took place to test the validity of

the results. In the subsections following, accuracy and loss plots are provided

for each classifier.

Loss is defined as the difference between the predicted value by your

model and the true value. The most common loss function used in deep

neural networks has been used, cross-entropy. It is defined as:

Cross− entropy = −

n
∑

i=1

m
∑

j=1

yi,j log(p,j), (5.1)

where yi,j denotes the true value i.e. 1 for malware and 0 otherwise, and

5.3. Results 46

pi,j denotes the probability predicted by your model of sample i belonging to

class j. Accuracy measures the performance of our models. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

5.3.1 CNN Classifier

The results from the training of CNN classifier can be found in Figs. 5.1a,

5.1b. The model reaches convergence near epoch 94. The spikes are an

unavoidable consequence of the Adam optimizer and its function. During

every epoch, a different batch of samples is validated. However, batch size

is not equal to the cardinality of your training set. Thus, fluctuations are

observed in the validation loss. To double check the validity of the results,

the mean validation loss was calculated equal to 0.25. Based on 5.1b this

value belongs to the curve. Therefore, the results are not affected by these

spikes.

5.3. Results 47

(a) Accuracy

(b) Loss

Figure 5.1: CNN Results.

5.3. Results 48

5.3.2 DNN Classifier

The results from the training of DNN classifier are presented in Figs. 5.2a,

5.2b. This model reaches convergence at a later epoch, around 120, com-

pared to the CNN, due to less parametric complexity. However, the encoded

features have enabled the model to reach higher accuracy and lower loss as

they are more definite than the image based features.

(a) Accuracy

(b) Loss

Figure 5.2: DNN Results.

5.3. Results 49

5.3.3 Enhanced Classifier

It is observed based on Figs 5.3a, 5.2a, 5.1a that the current classifier starts

with almost the same validation accuracy with the CNN classifier and reaches

a higher maximum validation accuracy than the DNN classifier. The unex-

pected notice is that in this case, the classifier reached convergence earlier

than the others. Therefore, in later epochs, overfitting events occurred.

Also, validation loss has the minimum starting value of all classifiers and

reaches lower values as epochs go by.

(a) Accuracy

(b) Loss

Figure 5.3: Enhanced Classifier Results.

5.3. Results 50

5.3.4 Malware in the wild

In order to validate the efficiency of the enhanced classifier, another experi-

ment was conducted. With the tools described in 4.1, another 1,000 samples

were collected. This dataset was totally unknown to the classifier. The pur-

pose of the experiment was to check the TPR between the most popular

antivirus products and our neural network. The results are presented in

Table 5.1.

Product TP TN FN TPR

Avast 896 8 95 0.904

AVG 930 8 61 0.938

BitDefender 946 8 45 0.955

ESET-NOD32 973 8 18 0.982

FireEye 962 8 29 0.971

Kaspersky 945 8 46 0.954

McAfee 958 8 33 0.967

Microsoft 963 8 28 0.972

Symantec 941 8 50 0.95

TrendMicro 876 8 115 0.884

This Thesis 962 1 29 0.971

Table 5.1: Results in unknown samples.

It is observed that the neural network scored the third highest TPR.

Further training with more data would improve these results.

5.3.5 Overall Results

Comparing the three classifiers in Figs. 5.4a, 5.4b, it is proven that the double

input architecture outperforms the other neural networks. It has also been

proven that, the enhanced classifier has a better detection rate than many of

the most popular antivirus products with access in millions of samples.

5.3. Results 51

(a) ROC Curve.

(b) ROC Curve zoomed.

Figure 5.4: ROC Curve results.

52

Chapter 6

Conclusion

In this thesis, the use of a double input deep neural network for static mal-

ware detection is proved to be viable and has the potential for further study.

Experiments show that by combining different forms of a sample, can be

efficient and could slightly improve the detection rate. Basic encoding tech-

niques were used for file vectorization that can effectively summarize large

files for classification. The importance of the availability of a large dataset

in such domains cannot be overlooked. Therefore, everything needed to re-

produce this research is open-source and could be found in GitHub[3].

Further research in this area will be required to establish how efficient

double input neural networks can be as classifiers. More complicated layers

could be used to perform malware detection as long as samples with more

complexity are collected. Advanced layers could lead to overfit of the network

at a really early stage due to their complexity. Better feature selection tech-

niques or more advanced image conversion algorithms could be applied. A

larger feature space could be used by changing the dimensions of the images

to 256x256 or extracting more raw bytes from the executable.

53

Bibliography

[1] “Malshare project.” [Online]. Available: https://malshare.com/

[2] “Virustotal.” [Online]. Available: https://www.virustotal.com/gui/

[3] P. Bellonias, “Malware detection using machine learning: A double input

architecture.” [Online]. Available: https://github.com/pb96/tuc-thesis

[4] Microsoft, “Fakerean,”

https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description

?Name=Win32/FakeRean&threatId=.

[5] ——, “Dontovo.a,”

https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=TrojanDownloader

:Win32/Dontovo.A&threatId=-2147342037.

[6] Wikipedia, “Portable executable 32 bit structure.” [Online]. Available:

https://en.wikipedia.org/wiki/Portable Executable

[7] WikiPedia, “Gnu debugger,”

https://en.wikipedia.org/wiki/GNU Debugger.

[8] M. Al-Asli and T. A. Ghaleb, “Review of signature-based techniques

in antivirus products,” in International Conference on Computer and

Information Sciences (ICCIS), Sakaka, Saudi Arabia, 2019, pp. 1–6.

[9] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “Control flow graphs

as malware signatures,” in International Workshop on the Theory of

Computer Viruses, Nancy, France, May 2007, pp. 1–7.

https://malshare.com/
https://www.virustotal.com/gui/
https://github.com/pb96/tuc-thesis
https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description
?Name=Win32/FakeRean&threatId=
https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=TrojanDownloader
:Win32/Dontovo.A&threatId=-2147342037
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/GNU_Debugger

Bibliography 54

[10] W. Wong and M. Stamp, “Hunting for metamorphic engines,” Journal

in Computer Virology, vol. 2, no. 3, pp. 211–229, Dec. 2006.

[11] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-

ware detection,” in Twenty-Third Annual Computer Security Applica-

tions Conference (ACSAC 2007), Miami Beach, FL, 2007, pp. 421–430.

[12] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray, “A

semantics-based approach to malware detection,” ACM Trans. Program.

Lang. Syst., vol. 30, Aug. 2008.

[13] P. O’Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden

malware,” IEEE Security Privacy, vol. 9, no. 5, pp. 41–47, 2011.

[14] J. Oberheide, M. Bailey, and F. Jahanian, “Polypack: An automated on-

line packing service for optimal antivirus evasion,” in Proceedings of the

3rd USENIX Conference on Offensive Technologies, Montreal, Canada,

2009, p. 9.

[15] WikiPedia, “Hex dump,”

https://en.wikipedia.org/wiki/Hex dump.

[16] M. M. Masud, L. Khan, and B. Thuraisingham, “A hybrid model to

detect malicious executables,” in 2007 IEEE International Conference

on Communications, Glasgow, Scotland, 2007, pp. 1443–1448.

[17] Z. Fuyong and Z. Tiezhu, “Malware detection and classification based

on n-grams attribute similarity,” in IEEE International Conference on

Computational Science and Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous Computing, vol. 1, Guangzhou,

China, 2017, pp. 793–796.

[18] S. Jain and Y. K. Meena, “Byte level n–gram analysis for malware de-

tection,” in Computer Networks and Intelligent Computing, K. R. Venu-

gopal and L. M. Patnaik, Eds., Jan. 2011, pp. 51–59”.

https://en.wikipedia.org/wiki/Hex_dump

Bibliography 55

[19] R. K. Shahzad, N. Lavesson, and H. Johnson, “Accurate adware detec-

tion using opcode sequence extraction,” in 6th International Conference

on Availability, Reliability and Security, Vienna, Austria, 2011, pp. 189–

195.

[20] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. Bringas, “Opcode se-

quences as representation of executables for data-mining-based unknown

malware detection,” Information Sciences, vol. 231, pp. 203–216, Aug.

2013.

[21] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, “De-

tecting unknown malicious code by applying classification techniques on

opcode patterns,” Security Informatics, vol. 1, pp. 1–22, 2011.

[22] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,

M. Mclean, and C. Nicholas, “An investigation of byte n-gram features

for malware classification,” Journal of Computer Virology and Hacking

Techniques, pp. 1–20, Sep. 2016.

[23] G. Amato, “Peframe,”

https://github.com/guelfoweb/peframe.

[24] M. N. A. Zabidi, M. A. Maarof, and A. Zainal, “Malware analysis with

multiple features,” in 2012 UKSim 14th International Conference on

Computer Modelling and Simulation, Cambridge, UK, 2012, pp. 231–

235.

[25] Zongqu Zhao, “A virus detection scheme based on features of control

flow graph,” in 2011 2nd International Conference on Artificial In-

telligence, Management Science and Electronic Commerce (AIMSEC),

Dengfeng, China, 2011, pp. 943–947.

[26] M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and

S. Mukkamala, “Kernel machines for malware classification and simi-

larity analysis,” in The 2010 International Joint Conference on Neural

Networks (IJCNN), Barcelona, Spain, 2010, pp. 1–6.

https://github.com/guelfoweb/peframe

Bibliography 56

[27] S. Tang, “The detection of trojan horse based on the data mining,” in

2009 Sixth International Conference on Fuzzy Systems and Knowledge

Discovery, vol. 1, Tianjin, China, 2009, pp. 311–314.

[28] X. Ugarte-Pedrero, I. Santos, P. G. Bringas, M. Gastesi, and J. M.

Esparza, “Semi-supervised learning for packed executable detection,” in

5th International Conference on Network and System Security, Milan,

Italy, 2011, pp. 342–346.

[29] T. Wang, C. Wu, and C. Hsieh, “Detecting unknown malicious exe-

cutables using portable executable headers,” in 5th International Joint

Conference on INC, IMS and IDC, Seoul, South Korea, 2009, pp. 278–

284.

[30] “Vx heaven website.” [Online]. Available: http://vxheaven.0l.wtf/

[31] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware

images: Visualization and automatic classification,” in Proceedings of

the 8th International Symposium on Visualization for Cyber Security,

Pittsburgh, Pennsylvania, USA, 2011.

[32] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,

“Novel feature extraction, selection and fusion for effective malware fam-

ily classification,” in Proceedings of the Sixth ACM Conference on Data

and Application Security and Privacy, New Orleans, Louisiana, USA,

2016, p. 183–194.

[33] Microsoft, “Pe format,”

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format.

[34] QuarksLab, “Lief module,”

https://github.com/lief-project/LIEF.

[35] “Numpy package.” [Online]. Available: https://numpy.org/

[36] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

International Conference on Learning Representations, Dec. 2014.

http://vxheaven.0l.wtf/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://github.com/lief-project/LIEF
https://numpy.org/

Bibliography 57

[37] “Keras library.” [Online]. Available: https://keras.io/

https://keras.io/

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Objective
	Outline

	Literature Review
	Static Malware Analysis
	Signature Evasion
	Code Obfuscation
	Malware Packing

	Machine Learning for Malware Detection
	N-Grams of Bytes Sequences
	N-Grams of Opcode sequences
	API Calls
	Headers Meta Data
	Image Representation of Malware

	Background
	Portable Executable Format
	MS-DOS Stub
	COFF Header
	Optional Header
	Section Header

	Artificial Neural Networks
	Convolutional Neural Networks
	Convolution Layer
	Non-linear Layer
	Pooling Layer
	Fully Connected Layer

	Implementation
	Data Collection
	Lab Enviroment
	Extracted Features and Dataset
	Samples to Images
	Classifiers

	Experiments and Results
	Experimental Setup
	Metrics
	Results
	CNN Classifier
	DNN Classifier
	Enhanced Classifier
	Malware in the wild
	Overall Results

	Conclusion
	Bibliography

