Fotakis Tzanis Electrical & Computer Engineering School Technical University of Crete

Analysis and Design Methodology of Convolutional Neural Networks mapping on Reconfigurable Logic Diploma Thesis

Table of Contents

- 1. Introduction
- 2. Neural Networks
- 3. Related Work
- 4. Theoretical Modeling & Robustness Analysis
- 5. Architecture Design
- 6. FPGA Implementation
- 7. Results
- 8. Conclusion

What are Neural Networks?

Representation of Artificial Neural Networks

ANNs on CPUs

- + Easy development
- + High clock frequency
- + Advanced Vector Extensions (AVX)
- + Streaming SIMD Extensions (SSE)
- Costly
- Non-scalable
- Energy inefficient
- Traditional Low Bandwidth Memory up to 50 GB/s

AMD Epyc 7002 series chip

ANNs on GPUs

NVIDIA Titan RTX card

- + Relatively easy development
- + Very high parallelism Thousands of cores
- + Specialized Tensor Cores
- + Vector processing Streaming Multiprocessors
- + High Bandwidth Memory up to 750 GB/s
- + Multiple GPUs in a system
- Very power hungry
- Costly to scale up
- Increased latency

ANNs on ASICs

Google TPU v3

- + Best parallelism
- + Lowest power & energy consumption
- + High Bandwidth Memory
- Extremely expensive to design and produce
- Serve a single purpose
- Can become deprecated fast AI field is still developing

ANNs on FPGAs

FORTH QFDB

- + Flexible
- + Low power & energy consumption
- + Low latency
- + Standalone
- Difficult to develop
- Constrained resources

What is Reconfigurable Logic

- Look-Up Tables (LUTs)
- Flip-Flops (FFs)
- Block-RAM (BRAM)
- Ultra-RAM (URAM)
- Digital Signal Processing (DSP) blocks
- Hard Processor cores (SoC/MPSoC devices)
- DDR & HBM (modern FPGAs)

Neural Networks

ANN Architectures

- Multiclass Perceptron
- Autoencoder
- Convolutional
- Recurrent
- Long short-term memory

Typical Convolutional Neural Network

The Convolution Layer

The Max-Pooling Layer

The Fully-Connected Layer

 $Output(i) = Bias(i) + \sum_{j=1}^{N} Input(j) * Weight(i, j), for i = 1, 2, ..., M$

Activation Functions

CNN Architectures: LeNet-5

CNN Architectures: AlexNet

CNN Architectures: ZFNet

CNN Architectures: GoogLeNet / Inception

CNN Architectures: VGGNet

																										Number of Parameters (millions)	Top-5 Error Rate (%)
Image	Conv3-64	Max pool		Conv3-128	Max pool		Conv3-256	Conv3-256	Max pool			Conv3-512	Conv3-512	Max pool			Conv3-512	Conv3-512	Max pool			FC-4096	FC-4096	FC-1000	Soft-max	133	10.4
		_										/GG	11														
Image	Com/3-64	LRN	Max pool	Conv3-128	Max pool		Conv3-256	Conv3-256	Max pool			Conv3-512	Conv3-512	Max pool			Conv3-512	Conv3-512	Max pool			FC-4096	FC-4096	FC-1000	Soft-max	133	10.5
				_			_	_			VG	3-11	(LR	N)			_										
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Max pool			Conv3-512	Conv3-512	Max pool			Conv3-512	Conv3-512	Max pool			FC-4096	FC-4096	FC-1000	Soft-max	133	9.9
	_			_	-		_	_				GG	13														
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Conv1-256	Max pool		Conv3-512	Conv3-512	Conv1-512	Max pool		Conv3-512	Conv3-512	Comv1-512	Max pool		FC-4096	FC-4096	FC-1000	Soft-max	134	9.4
											VGG	-16	Con	v1)													
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Conv3-256	Max pool		Conv3-512	Conv3-512	Conv3-512	Max pool		Canv3-512	Canv3-512	Conv3-512	Max pool		FC-4096	FC-4096	FC-1000	Soft-max	138	8.8
												GG	16														
Image	Conv3-64	Conv3-64	Max pool	Conv3-128	Conv3-128	Max pool	Conv3-256	Conv3-256	Conv3-256	Conv3-256	Max pool	Conv3-512	Conv3-512	Conv3-512	Conv3-512	Max pool	Conv3-512	Conv3-512	Conv3-512	Conv3-512	Max pool	FC-4096	FC-4096	FC-1000	Soft-max	144	9.0
	_	-		_	-		_	_	_	_	۳,	IGG	19						_	_		_	_	_			

CNN Architectures: ResNet

Related Work

Software Frameworks

TensorFlow O PyTorch

K Keras Caffe

Software Frameworks: TensorFlow

- By Google
- Most popular
- Lower-level Much coding High Configurability
- Python, Javascript, C++, C#, Java, Go & Julia interfaces
- Targeted for production
- Static computation graph Efficient but less flexible
- CPU, GPU & TPU acceleration
- Server, Mobile & Embedded platforms

Software Frameworks: PyTorch

O PyTorch

- By Facebook
- Based on Torch
- CPU & GPU acceleration
- Dynamically updated graph
- Targeted for prototyping & research
- Contains many pre-trained models

Software Frameworks: Keras

- Higher-level
- Back-ends: TensorFlow, Theano & CNTK
- Easy huge models Less configurable
- Targeted for learning & prototyping

Software Frameworks: Caffe

- By Berkley, University of California
- Written in C++ Python interface
- CPU & GPU acceleration
- Not all Neural Networks supported
- Caffe2 merged with PyTorch

Hardware Frameworks

Hardware Frameworks: Google TPU

Google TPU v3

- By Google since 2015
- Used with TensorFlow
- Accelerate 95% of their AI needs
- Publicly available on Google Compute Engine since 2017
- Initially only inference & 8-bit fixed-point
- 200x compared to Intel Haswell CPU
- 70x compared to NVIDIA K80 GPU
- Version 2 and above add training & floating-point

Hardware Frameworks: Google TPU v1 Block Diagram

TPU v1 Block Diagram

- Operate on matrices GPUs operate on vectors
- 2x Matrix Multiplier Units (MXUs)
- MXU based on systolic arrays
- 16k MAC ops/cycle
- Up to 128GB HBM (TPU v3)
- 92 TOPS

Hardware Frameworks: Google TPU v3 Pods

- 2048 TPU Cores
- 32TB HBM
- 92 PFLOPS
- Suitable for very large models (weeks/months of training) - no custom operations

FPGA Frameworks: Xilinx CHaiDNN

- Released in February 2018 Targeted for CNN inference
- 6-bit & 8-bit fixed-point variable through layers
- Similar to single-precision floating-point
- Dynamic fixed-point Quantization & Xilinx Quantizer
- 128-1024 Double-Pumped DSPs Up to 700MHz URAM supported
- Unsupported layers added via Software
- Fully-Connected & SoftMax layers implemented through Software
- Hardware & Software layers run in parallel
- PetaLinux Caffe framework
- DietCHai for smaller MPSoCs

FPGA Frameworks: Xilinx DPU

- Released in February 2019 Replaces CHaiDNN Still in development
- Targeted for CNN inference 8-bit fixed-point
- On-Chip memory utilized as buffer
- All layers are hardware accelerated
- Up to four DPU cores in a single DPU IP
- Double Data Rate / Double-Pumped DSPs
- 512-4096 operations per cycle per core

FPGA Frameworks: Xilinx DPU v1

96x16 DSP Systolic Array

FPGA Frameworks: Xilinx DPU v2

- Hybrid Computing Array
- Processing Elements based on fine grained building blocks (multipliers, adders, accumulators)
- Deep Pipeline
FPGA Frameworks: Xilinx DPU v3

- Multiple Batch Engines
- Multiple DPU Cores

FPGA Frameworks: Xilinx Vitis AI

- Released in December 2019
- High-level abstraction
- Al inference applications
- Based on Xilinx DPU
- Optimized IPs, tools & libraries
- PetaLinux
- Instruction optimization -Vitis AI Compiler
- Vitis Al Quantizer 8-bit fixed point parameters

FPGA Frameworks: NVIDIA Deep Learning Accelerator (NVDLA)

- Released in Q3 2017
- Free & Open architecture
- Goal to standardize inference DL accelerator development
- Headless implementation: Manager is the main system processor
- Headed implementation: Manager is a companion microcontroller
- Modular & Highly customizable
- Suitable for both FPGAs & ASICs

FPGA Frameworks: NVIDIA Deep Learning Accelerator (NVDLA)

- Binary and 4-bit integer up to 64-bit floating-point
- Convolution core
- Single Data processor
- Planar Data processor
- Channel Data processor
- Data Reshape Engine
- Memory-to-Memory or Pass-Through

Theoretical Modeling & Robustness Analysis

PyTorch, C/C++, MATLAB

 $\textbf{PyTorch} \rightarrow \textbf{pure Python} \rightarrow \textbf{C/C++ \& MATLAB}$

- Replicate PyTorch functionality
- Evaluation using PyTorch
- PyTorch pre-build & pretrained AlexNet as a reference
- 2500 images of Kaggle cats & dogs database
- Better understanding of underlining algorithms
- Explore Hardware implementation opportunities
- Quantization techniques \rightarrow reduce memory footprint
- Algorithmic optimizations
- Minimize hardware resources and optimize performance using various tools

Algorithms

- Convolution Layer
- Max-Pooling Layer
- Fully-Connected Layer
- ReLU
- SoftMax

Memory Footprint

- Classic hardware architectures \rightarrow Compute bound
- ASICs & FPGAs → Memory bound
- Highest benefit: Memory requirements fit into BRAM (order of MBs)
- Otherwise, external memory used \rightarrow latency & IO stalls
- Goal: Minimize memory footprint & bandwidth

Memory Footprint: AlexNet Parameters (float32)

Layer	#Parameters	Footprint	Memory (%)
Conv1	64 * 3 * 11 * 11 = 23232	92.92KB	0.04
Conv2	192 * 64 * 5 * 5 = 307200	1.22MB	0.5
Conv3	384 * 192 * 3 * 3 = 663552	2.65MB	1.09
Conv4	256 * 384 * 3 * 3 = 884736	3.53MB	1.45
Conv5	256 * 256 * 3 * 3 = 589824	2.35MB	0.97
FC1	9216 * 4096 = 37748736	150.99MB	61.79
FC2	4096 * 4096 = 16777216	67.10MB	27.46
FC3	4096 * 1000 = 4096000	16.38MB	6.70
Total	61090496	244.36MB	100

Memory Footprint: AlexNet Data Stages (float32)

Layer	#Data	Footprint	Memory (%)
Image	3 * 224 * 224 = 150528	150.52KB	6.07
Conv1	64 * 55 * 55 = 193600	774.40KB	31.22
MaxPool1	64 * 27 * 27 = 46656	186.62KB	7.52
Conv2	192 * 27 * 27 = 139968	559.87KB	22.57
MaxPool2	192 * 13 * 13 = 32448	129.79KB	5.23
Conv3	384 * 13 * 13 = 64896	259.58KB	10.46
Conv4	256 * 13 * 13 = 43264	173.05KB	6.98
Conv5	256 * 13 * 13 = 43264	173.05KB	6.98
MaxPool3	9216	36.86KB	1.49
FC1	4096	16.38KB	0.66
FC2	4096	16.38KB	0.66
FC3	1000	4KB	0.16
Total	682856	2.48MB	100

Memory Footprint Reduction

- Data type bit-width shortening (float64-float16)
- Simpler data types (fixed-point/integers)
- Binary
- Quantization
- Quantization aware training
- Compression
- K-Means clustering
- Second Level Codebook

Memory Footprint Reduction

Trading accuracy to performance.

Memory Footprint Reduction: Evaluation

- Baseline: PyTorch pre-trained pre-build AlexNet model
- Inferencing 2500 pre-transformed Kaggle cats & dogs images
- Top-1 error rate
- MATLAB implementation used
- PyTorch & C/C++ do not support half-floating point

Memory Footprint Reduction: Floating Point

Convert 32-bit floats to their closest representation.

ΤοοΙ	Data type	Top-1 Error rate (%)	Avg. inference time (sec)
PyTorch	float64	0	0.091
PyTorch	float32	0	0.034
MATLAB	float64	0	6.624
MATLAB	float32	0	8.162
MATLAB	float16	0.36	147.480

- Convert 32-bit float number sets to fixed-point
- Select best radix-point position to most accurately represent the number set
- Use same scale factor on whole set
- Every layer has its own scale factor

$$Position = argmin_{i=0}^{W} \left[\frac{\sum_{j=1}^{size(S)} |S_j - FixPtConvert(S_j, W, i)|}{size(S)} \right]$$

ΤοοΙ	Data type	Top-1 Error rate (%)	Avg. inference time (sec)
MATLAB	fixed64	0	7.318
MATLAB	fixed32	0	7.692
MATLAB	fixed16	22	6.650
MATLAB	fixed14	28.44	6.813
MATLAB	fixed12	36.24	6.797
MATLAB	fixed10	77.07	6.929
MATLAB	fixed8	100	6.312

Histogram limits significantly altered

Significant spiking

Severe subsampling

Use Mean Squared Error (MSE)
Position =
$$\operatorname{argmin}_{i=0}^{32} \left[\frac{\sum_{j=1}^{\operatorname{size}(S)} |S_j - \operatorname{FixPtConvert}(S_j, W, i)|^2}{\operatorname{size}(S)} \right]$$

Use Mean Quarted Error (MQE)
Position =
$$\operatorname{argmin}_{i=0}^{32} \left[\frac{\sum_{j=1}^{size(S)} |S_j - FixPtConvert(S_j, W, i)|^4}{size(S)}\right]$$

Memory Footprint Reduction: Fixed Point MQE

ΤοοΙ	Data type	Top-1 Error rate (%)
MATLAB	fixed64	0
MATLAB	fixed32	0
MATLAB	fixed16	4.42
MATLAB	fixed14	17.59
MATLAB	fixed12	48.11
MATLAB	fixed10	86.91
MATLAB	fixed8	99.3

Histogram limits identical

Slight spiking

No subsampling, but spiking

Memory Footprint Reduction: All data types tested

- Accuracy degradation is expected
- Model dependent
- Training dependent

- Floating-point arithmetic scales automatically
- Fixed-point activations may overflow
- Quantize every layer outputs
- Keep the upper N most significant bits to retain accuracy
- Finding on runtime the uppermost on is computationally intensive \rightarrow any fixed-point benefits get obsolete

Calculate optimal activation scale factor per layer.

 $Theoretical_{bitWidth} = input_{bitWidth} + weight_{bitWidth} + \lceil \log_2 \# Additions \rceil$

Layer	Theoretical bit-width	Practical bit-width
Input	8	8
Conv1	25	17
Conv2	27	14
Conv3	27	15
Conv4	28	15
Conv5	28	17
FC1	30	17
FC2	28	17
FC3	28	17

- Theoretical worse case scenario significantly differs from practical
- Inference 2000 images, find maximum absolute valued activation per layer
- Maximum theoretical bit-width is 30-bits → all activations fit in 32-bit integers before quantization

Layer	Weights	Bias	Output	
Input	-7	-	-	
Conv1	-7	-5	-2	
Conv2	-5	-7	0	
Conv3	-7	-7	3	
Conv4	-8	-6	5	
Conv5	-9	-5	10	
FC1	-10	-10	15	
FC2	-10	-9	19	
FC3	-9	-9	23	

Optimal scale factor per layer.

- Biological brain phase from birth until mid-20s
- Network compression
- Weak weights get pruned $\rightarrow w \varepsilon[-f, f] = 0$, f: pruning factor
- Calculations can get skipped
- Higher memory & power efficiency & inference performance
- Accuracy-Performance tradeoff
- Weight pruning amount varies per network
- Global pruning factor: Not a good idea!

Layer	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7
Conv1 (%)	7.15	13.66	91.3	91.3	0	0	0
Conv2 (%)	13.82	26.9	95.83	95.83	0	0	0
Conv3 (%)	13.54	26.63	98.62	98.62	0	0	0
Conv4 (%)	15.32	29.99	93.14	93.14	0	0	0
Conv5 (%)	15.55	30.53	94.02	94.02	0	0	0
FC1 (%)	41.23	41.23	41.23	94.48	41.23	71.89	96.61
FC2 (%)	36.69	36.69	36.69	90.61	36.69	62.52	90.61
FC3 (%)	27.27	27.27	27.27	89.68	27.27	47.74	75.56
Total (%)	37.97	38.54	41.22	93.11	37.38	64.79	89.65
Accuracy (%)	91.74	80.8	0	0	90.87	71.77	15.06

FC only

- Less Pruning \rightarrow Higher Accuracy
- Convolution layers more prone to error
- Pruning also denoises Low valued weights act as noise

- Aggressive pruning
- High concentration of zeroes
- High compression factor
- Severe absence of near-to-zero valued weights

- Fine-tuned pruning
- Normal concentration of zeroes
- No discontinuation

Architecture Design

The platform

- Targeted for FPGAs
- Flexible & Versatile \rightarrow easy transfer
- Scalable \rightarrow multi-FPGA platforms
- Expandable \rightarrow Easy adding of new layer types & accelerators
- Capable of running various CNN models
- Easy experimentation & development
- Minor to no code changes
Platform Block Diagram

Platform: Non-Volatile Memory

- Storage Medium
- Network model configurations
- Weights & Biases
- Class labels
- Input data, e.g. Images
- SD card M.2 SSD (QFDB)
- External storage devices via Ethernet & JTAG

Platform: Volatile Memory

- Main system memory: DDR
- DDR loaded using PS part
- No global BRAM module
- Accelerators: BRAM caches
- Accelerators responsible to load their BRAM & locate data on DDR
- BRAM caches are private to their accelerator

Platform: Compute Engine

- Both PS & PL part utilized
- Bulk of computation on PL part through hardware accelerators
- Sophisticated work on PS part \rightarrow Initialization, Data loading, Input data preprocessing, accelerator configuration & scheduling
- Network layers both software & hardware
- Convolution, Max-Pooling & Fully-Connected accelerators
- Accelerator driver only knows how to configure it
- Driver is reusable

Platform: I/O

- Memory-Mapped I/O (MMIO)
- Streaming (AXI4-stream)
- BRAM MMIO Not used

Port bit-width	MMIO avg. cycles	Streaming avg. cycles		
32-bit	62700922	65611580		
128-bit	15761270	16201797		

40MB data - 40KB bursts

Platform: Software

- Accelerator drivers Abstract form, every accelerator implements same functions
- Scheduler
- Application Logic
- User Interface

Platform: Software Flowchart

Platform: Serial Scheduler

- Simple
- Best suited for debugging & validating
- About 90% of total inference time is consumed by convolution layers
- Possibility for deadlocks

Platform: Layer Pipelining Scheduler

- A layer gets its input as soon as its previous generates a single output
- Accelerator instances needed as many as there are in the model
- Almost 3x speedup
- Decreases latency & increases throughput
- Accelerators need to support pipelining
- Relatively complex

Output Pixel Creation Time

- Outputs generated in specific order to become useful inputs
- Convolution layers use cubes of inputs
- Max-Pooling layers use squares of inputs

Pixel Usage Frequency

Platform: Multi-Inference Scheduler

- Multiple accelerator instances
- Multiple inferences in parallel
- Increases batch size & throughput
- Possibility for deadlocks

Platform: Image-Pipelining Scheduler

- Combination of Layer Pipelining & Multi-Inference
- Every layer handles a different input image
- Decreases latency & increases throughput
- Possibility for deadlocks

Accelerator Architectures

- Two versions: Simple serial & High performance
- Many have been tested
- Convolution layer
- Max-Pooling layer
- Fully-Connected layer

Convolution Accelerator

Convolution Accelerator

ReLU component

Max-Pooling Accelerator

Max-Pooling Accelerator

Max & Max-Tree components

Fully-Connected Accelerator

Fully-Connected Accelerator

FPGA Implementation

Xilinx ZCU102 Evaluation Kit

Tools Used: Xilinx Vivado HLS

- Now Vitis HLS
- High-level design using C/C++, SystemC, OpenCL
- Generates VHDL & Verilog HDL designs
- Directives
- C/C++ testbench
- C/RTL Cosimulation
- Synthesis Report

Tools Used: Xilinx Vivado IDE

- VHDL & Verilog
- IP Integrator Tool
- Vivado HLS RTL designs
- Synthesis, Implementation & Download RTL designs
- RTL Simulators & Integrated Logic Analyzer IPs

Tools Used: Xilinx SDK/Vitis IDE

- Vitis IDE integrates SDK, SDAccel, SDSoC tools
- C/C++ IDE
- Application development for PS part
- PetaLinux & FreeRTOS
- Download bitstreams
- Debugging tools

Results

Compared Platforms: CPU

Intel i7 4710MQ

Cores / Threads	4/8
Max Turbo Frequency	3.5GHz
TDP	47W
Max Memory Bandwidth	25.6GB/s
Lithography	22nm

Compared Platforms: GPU

NVIDIA RTX-2060 Super 8GB

CUDA Cores	2176	
Tensor Cores	32	
GPU Memory	8GB GDDR6	
Boost Clock	1650 MHz	
Memory Interface	256-bit	
Memory Bandwidth	448GB/s	
Power Consumption	175W	

Compared Platforms: FPGA

Xilinx CHaiDNN

PL/DSP Clock Frequency	250/500 MHz		
LUT Usage	59.1%		
FF Usage	27.66%		
BRAM Usage	74.12%		
DSP Usage	53.65%		

Compared Platforms: FPGA

Proposed Platform

300MHz
7.34%
2.05%
4.03%
7.51%
1.9%

CPU & GPU Performance

- Inference 2500 images
- Use all worker & batch-size combinations
- PyTorch pre-built pre-trained AlexNet

CPU & GPU Performance: Latency

CPU & GPU Performance: Throughput

Batch Size

Final Performance

	CPU	GPU	CHaiDNN	Proposed Platform
Clock Frequency (MHz)	3500	1650	250/500	300
Throughput (Images/s)	94.84	5784.6	10.07	0.0927
Throughput Speedup	1x	60.9933x	0.1062x	0.001x
Latency (s)	0.0266	0.0009	0.0993	10.783
Latency Speedup	1x	29.5556x	0.2679x	0.0025x
Total On-Chip Power (Watt)	47	175	19.3	4.559
Power Efficiency	1x	0.2686x	2.4352x	10.3093x
Energy Cons./Image (Joule)	1.2502	0.1575	1.9165	49.1597
Energy Efficiency	1x	7.9378x	0.6523x	0.0254x
Images/Joule	2.0179	33.0549	0.5218	0.0203
Final Performance

Conclusions & Future Work

Conclusions

- Neural Networks need hardware acceleration
- Proposed platform provides an easy and structured methodology for scalable & expandable accelerator implementation
- Memory reduction is a necessity
- Further development \rightarrow higher performance

Future Work

- Quantization: better classification accuracy, K-Means clustering, Lloyd's, Pair and Quad compression, and Second Level Codebook
- Integrating the pooling layer into the convolution layer
- Pruning enabled accelerators
- Systolic arrays as their main compute engine
- Multiple accelerator instances

Future Work

- Layer-Pipelining
- Bigger FPGA devices & multiple interconnected FPGAs (FORTH QFDB & CRDB).
- Monte Carlo Dropout for increased confidence of classification results
- Designs using VHDL & Verilog for resource & performance optimization
- CPU-FPGA partitioning

Thank You! Any Questions?