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Abstract 

The heart is one of the most important organs of the human body, which is 

responsible for the circulation of blood in it. Many times, however, various 

cardiovascular diseases cause problems in its functionality and need 

immediate treatment. These diseases are either caused by lifestyle, or exist in 

the form of congenital anomalies and cause problems later in the patient’s life. 

One such abnormality is the bicuspid aortic valve, which affects approximately 

1% to 2% of the world's population. It might cause various other cardiovascular 

diseases such as aortic valve stenosis, which can cause decreased blood flow to 

the aorta, which is the main artery of the human body. Hence, a fast and 

accurate diagnosis of the aortic valve type is important for the immediate 

treatment of possible diseases. The most immediate way to detect the type of 

aortic valve is by an echocardiogram. In some occasions, the noisy nature of 

ultrasound makes it difficult for doctors to diagnose.  

This study aims to distinguish the aortic valve into bicuspid (abnormal) and 

tricuspid (normal), from echocardiographic data, in order to facilitate 

specialists during the examination of patients. Aortic valve classification is 

achieved using deep convolutional neural networks and specifically the well-

known 2D network, VGG16, which is extended to 3D. Various techniques, such 

as data augmentation and transfer learning, are used to address the limitation 

of the small amount of available data. The proposed architecture achieves an 

accuracy of 93.82% up to 98.64%, which makes it capable of being used to assist 

cardiologists during the diagnosis. 
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Περίληψη 

Η καρδιά είναι από τα βασικότερα όργανα του ανθρωπίνου σώματος, 

καθώς είναι υπεύθυνη για την κυκλοφορία του αίματος μέσα σε αυτό. 

Πολλές φόρες, όμως, διάφορες καρδιαγγειακές παθήσεις προκαλούν 

προβλήματα στην λειτουργεία της και χρήζουν άμεσης αντιμετώπισης. Οι 

παθήσεις αυτές είτε προκαλούνται από τον τρόπο ζωής, είτε υπάρχουν υπό 

την μορφή ανωμαλιών εκ γενετής και προκαλούν προβλήματα αργότερα 

στη ζωή του. Μία τέτοια ανωμαλία είναι η δίπτυχη αορτική βαλβίδα την 

οποία εμφανίζει περίπου το 1% με 2% του παγκόσμιου πληθυσμού. Αυτή 

δύναται να προκαλέσει διάφορες άλλες καρδιαγγειακές παθήσεις όπως, 

για παράδειγμα στένωση της αορτικής βαλβίδας η οποία μπορεί να 

προκαλέσει μείωση της ροής του αίματος προς την κυριότερη αρτηρία του 

ανθρωπίνου σώματος, την αορτή. Γίνεται αντιληπτό ότι είναι σημαντική η 

σωστή διάγνωση του τύπου της αορτικής βαλβίδας για την άμεση 

αντιμετώπιση πιθανών νοσημάτων. Ο πιο άμεσος τρόπος για την 

ανίχνευση του είδους της αορτικής βαλβίδας, είναι το υπερηχογράφημα 

καρδιάς. Συχνά, όμως, η θορυβώδες φύση του υπερηχογραφήματος 

δυσκολεύει την διάγνωση από τους γιατρούς.  

Στην μελέτη αυτή γίνεται προσπάθεια για την διάκριση της αορτικής 

βαλβίδας σε δίπτυχη (μη-φυσιολογική) και τρίπτυχη (φυσιολογική), από 

δεδομένα υπερήχου καρδιάς, με σκοπό την διευκόλυνση των ειδικών κατά 

την διάρκεια της εξέτασης των ασθενών. Η διάκριση της αορτικής βαλβίδας 

επιτυγχάνεται με χρήση συνελικτικών νευρωνικών δικτύων και πιο 

συγκεκριμένα μέσω του γνωστού 2D δικτύου, VGG16, το οποίο επεκτείνεται 

σε 3D. Διάφορες τεχνικές επαύξησης δεδομένων και μεταφοράς γνώσης 

αντιμετωπίζουν το περιορισμό που εισάγει ο μικρός αριθμός των 

διαθέσιμων δεδομένων. Η προτεινόμενη αρχιτεκτονική επιτυγχάνει 

ακρίβεια από 93.82% έως και 98.64%, γεγονός που την καθιστά ικανή να 

χρησιμοποιηθεί για την υποβοήθηση της διάγνωσης από τους ειδικούς. 
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Chapter 1 Introduction 

Considering that the heart is a vital organ of the human body there is a lot of 

research focused on diagnosing Cardiovascular Diseases (CVD) with the use of 

various Artificial Intelligence (AI) algorithms. Machine Learning (ML), a subset 

of AI, is the most utilized tool for the detection, segmentation, and classification 

of CVD. It not only facilitates the tasks performed by medical specialists via 

providing targeted, real-time indications during the examination of the patient, 

but also it can achieve high performance in such processes. In order to develop 

an efficient neural network (NN), an enormous amount of data is needed for 

both training and testing. For heart-related issues, data can be acquired from 

electro-cardiograms (ECG), magnetic resonance imaging (MRI), heart 

computed tomography (CT) scans and echocardiograms. The echocardiogram 

is a simple, non-invasive, inexpensive method, with a short period of 

acquisition of the results; thus, it is primarily used in detecting various CVD. 

 

1.1 Related Work  

There are a lot of studies in literature that address the classification of the Aortic 

Valve (AV) from a medical perspective [1]–[3], using statistical analysis on 

manually extracted features from echocardiograms, such as the diameter of the 

aorta and the number of raphes. Furthermore, Sadron et al. [4] discuss the 

benefits of 3D transthoracic echocardiograms (TTE) in children for determining 

the configuration of the AV, comparing 2D and 3D techniques. 

Numerous studies deployed deep learning (DL) algorithms to deal with the 

problem of CVD detection. Most of them are concentrated on identifying the 

echocardiographic view [5], [6] and [7]. Howard et al. [7] proved that recent 

state-of-the-art networks can halve the classification error of the different 

standard views. Nizar et al. [8] focused on detecting the valve in an image or 

video accentuating the role of inference speed in real-time applications. Gong 

et al. [9] implements a novel deep convolutional Generative Adversarial 

Network (GAN) for Fetal congenital Heart Disease (FHD) recognization.  
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Additionally, many studies explored the significance of using ML in 

cardiovascular imaging and especially in echocardiography. Seetharam et al. 

[10] pointed out limitations of ML and Liu et al. [11] provided a detailed review 

of DL architectures and the tasks that can be accomplished on ultrasound (US) 

data.  

Various medical tasks can be automated with ML algorithms. Zhang et al. [12] 

proposed a representative example of fully automated procedures. This work 

proposed a pipeline for the analysis of echocardiograms which provides 

echocardiographic view classification, disease detection such as Hypertrophic 

Cardiomyopathy (HCM), Pulmonary Arterial Hypertension (PAH), and 

cardiac Amyloidosis and finally information regarding the structure and 

function of the heart. It is common sense that this automation cannot replace 

human specialists but only help them with their diagnosis.  

 

1.2 Motivation 

Patients with bicuspid aortic valve (BAV) might develop CVDs and basically 

aortic valve stenosis, which is a life-threatening disease, as the valve may 

contract and the blood flow begins to decrease. As seen in the literature above, 

there is not any study -in our knowledge- that tries to identify whether the 

patient has a bicuspid aortic valve or a normal tricuspid one using deep 

learning techniques on video or image data. Thus, the primary objective of this 

study is to customize the well-known VGG16 network architecture, developed 

by Karen Simonyan & Andrew Zisserman [13], in order to efficiently classify 

the shape of the aortic valve from echocardiograms. The main challenge is that 

the echocardiograms, sometimes, are difficult to read and the sonographers 

might struggle to correctly classify the aortic valve configuration. A major 

limitation is the small dataset size, which is outfaced with transfer learning and 

case-realistic augmentation.  
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1.3 Thesis outline 

The study, additionally, includes an illustrative description of the theoretical 

background, that is needed, to grasp the problem, the developed approach and 

the corresponding results. Specifically, in chapter 2 the medical and technical 

background are presented, providing information about the BAV, 

Convolutional Neural Networks’ (CNN) various operations and how they 

learn features from images. In chapter 3 there is the full description of the 

dataset as well as the methodology used to create, train and test the 3D 

architecture and the alternative classification techniques used instead of fully 

connected layers. The results of the study are summarized in chapter 4 and 

finally, in chapter 5 there is a discussion about the outcome of the study. 
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Chapter 2 Theoretical Background 

2.1 Medical overview 

2.1.1 Anatomy and functionality of the heart 

Heart is a concave muscle and one of the most important parts of the human 

body, since it is responsible for circulating the blood in it. This muscle, that has 

the size of a human fist, pumps blood from tissues through veins, then filters 

the carbon dioxide in lungs and other substances in kidneys and then it pushes 

oxygen-rich blood through arteries back to the tissues [14]. In figure 1, the 

shape and various parts of the heart are presented. Heart consists of four 

cavities and four valves which let the blood flow in only one direction. Those 

cavities include two atria and two ventricles, divided into the left and right part 

of the muscle. The left atrium is connected to the left ventricle through the 

mitral valve and the right atrium is connected to the right through the tricuspid 

valve. The right atrium receives blood from all parts of the body through the 

veins, promotes it to the right ventricle and from there to the pulmonary 

circulation for oxygenation. Then the blood is pushed from the lungs to the left 

atrium and from there to the left ventricle. With the muscle’s contraction 

oxygenated blood is transferred to the whole body through the aorta and large 

arteries. 

Unfortunately, the function of the heart is altered either due to extrinsic factors 

such lifestyle, either from congenital anomalies that cause various problems 

later in the life of the patient. Common cardiovascular diseases are: 

 Heart attacks 

 Heart valve diseases 

 Vascular disease 

 Abnormal heart rhythms 

 Aortic stenosis 

Those diseases are, sometimes, treatable and the restoration of the normal 

functionality of the heart is possible.  
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Figure 1 Anatomy of the heart. (https://pacificmedicalacls.com/images/Image-1-

Diagram-of-the-human-heart.png) 

 

2.1.2 The aortic valve 

Aorta is the main artery of the human body, since the oxygen-rich blood is 

funneled through it to the rest of the body. It is connected with the left ventricle 

via the aortic valve, which prevents backward blood flow from the aorta to the 

ventricle. Aortic valve has three leaflets which seal the valve during the closed 

state and let the blood flow in the open state. However, some people have an 

altered shape of valve which has a missing leaflet. In this congenital and 

abnormal shape the valve is called bicuspid, while the normal configuration is 

known as tricuspid aortic valve.  

  

https://pacificmedicalacls.com/images/Image-1-Diagram-of-the-human-heart.png
https://pacificmedicalacls.com/images/Image-1-Diagram-of-the-human-heart.png
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The different configurations of the aortic valve are summarized in the next 

figure: 

 

Figure 2 Configurations of the aortic valve. [2] 

Bicuspid aortic valve may cause a reduction of the blood flow to the aorta, 

hence cause aortic stenosis. This underlines the need for early diagnosis and 

treatment. Finally, in order to better understand the shape of aortic valve the 

following figures represent the two usual configurations: 

 

Figure 3 Tricuspid valve as shown in an echocardiogram. Usually it is interpreted as 

inverted Mercedes sign. 
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Figure 4 Bicuspid valve as shown in an echocardiogram. Usually it is interpreted as 

an open fish mouth. 

There are a lot of medical tests used to diagnose a bicuspid valve, such as MRI 

and CT scans, but ultrasound tests are more accessible, since they visualize in 

real-time the heart’s structure. On top of that echocardiograms are cheaper than 

the other methods and most important it does not emit ionizing radiation upon 

the patient. Thus, cardiologists use echocardiograms as the primary 

noninvasive examination method. 

 

2.2 Artificial Neural Networks 

In this era of information there is a need for creating more complex algorithms, 

in order to solve complicated problems. In 1943 Warren McCulloch created the 

first algorithm that can learn, named artificial neural networks (ANN). This 

attempt was inspired from the structure and functionality of biological 

neurons. An example of the simplistic architecture of ANNs is shown in figure 

5. The common pipeline for solving a problem utilizing a neural network 

consists of four stages. First stage is data acquisition, in which all the data that 

is going to be used to train and test the network should be gathered and 

preprocessed, in order to become trainable. Second stage is the training of the 

network, where the weights of the network constantly change in order to learn. 

Next stage is the evaluation of the network with metrics calculated upon the 
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test data. Lastly, the trained network is deployed in order to solve the problem 

it was trained for. 

Due to the spread of machine learning in various scientific fields, the simple 

architectures of artificial neural networks became insufficient for problem 

solving. New types of neural networks where developed to cope with the 

challenges that were introduced by the community that embraced machine 

learning algorithms. Well known examples are Recurrent Neural Networks 

(RNN) which can model time series efficiently and Convolutional Neural 

Networks (CNN) that can be trained to perform various operations on images.  

The amount of applications that required image processing via this novel 

problem solving technique increased, because more valuable information 

could be extracted from images. Common need were object detection, image 

segmentation and classification based on the context of the image. The main 

drawback of ANNs is that they cannot handle efficiently the enormous input 

size of an image and hence a lot of computational resources are needed for 

training. Contrastingly, CNNs need both less resources and time to train due 

to their structure and functionality. They have filters that convolve with the 

image and then the output is propagated to the next layers.  

 

 

Figure 5 Typical structure of a simple artificial neural network. 

(https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-

h-1-h-2-h-n-o_fig1_321259051)  

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
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A typical structure of a CNN is shown in the next figure: 

 

Figure 6 Typical structure of a convolutional neural network. 

(https://www.sciencedirect.com/science/article/abs/pii/S0925231217308445) 

The architecture of a CNN enables it to recognize the images’ context and 

analyze the correlation of the input along both x and y axes.  This type of 

networks offered promising results in all image manipulation tasks, but soon 

their weakness appeared. They could not learn enough features in order to 

perform well in all kinds of applications. Shallow CNN architectures are not 

adequate for classification tasks with complex input, since the amount of 

features they can learn is limited from the architecture itself. This complexity, 

usually, is found in medical images where the input is complex and contains a 

lot of useful information. Specialists need more reliable Computer Aided 

Diagnosis (CAD) tools, in order to diagnose fatal diseases earlier and with 

greater precision. Thus, a new type of neural network appeared and was 

named Deep Learning, due to its multilayer architectures.   

 

2.3 Deep learning 

Deep neural network have stacked multiple layers, so they can extract more 

features than shallower architectures. This enables them to be trained on more 

complex datasets, achieving great performance. In deep neural networks, as in 

in CNNs, the procedure of feature selection is automated and optimal, since 

convolutional layers’ weights are tuned in each epoch, with respect to the input 

data. On the contrary optimality of extracted features is in doubt, because there 

is no concrete mathematical foundation that is able to prove it. Hence, the deep 

https://www.sciencedirect.com/science/article/abs/pii/S0925231217308445
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network’s optimality in constrained for a custom application. Furthermore, 

deep neural networks can model more abstract notions on input, due to the 

multilayer architecture. Each layer learn unique features. In the first layers 

simple features like edges are extracted. In the next layers, those edges are 

combined and form shapes, therefore while going deeper features become 

more advanced such shapes and textures. In the next few pages we will present 

the fundamental principles of deep neural networks. 

 

2.3.1 Convolution 

Convolution is the most fundamental principle of deep learning. Convolutional 

layers contain small fixed sized filters that convolve with the image and extract 

features. A large image contains petite regions with valuable information 

which is extracted via convolution. While the kernel moves towards the 2 

directions of the image small convolutional kernels trace pixel wise point-to-

point influence that the human eye cannot see. The mathematical formulation 

of convolution is: 

 

 

where x is the N-by-M input image, h the filter used and y the resulted image. 

The dimensions of the resulted image are calculated using the following 

equations: 

 

 

 

where 𝑜𝑢𝑡𝑊 is the output width and 𝑜𝑢𝑡𝐻 the output height. (WxH) is the size 

of the input image and (𝐹𝑊x𝐹𝐻) is the convolutional kernel’s size. 𝑆𝑊 and 𝑆𝐻 is 

the stride used in each dimension and P is the amount of extra dimensions with 

0’s used for padding outside the border of the image. The term stride refers the 

amount of pixels the kernel moves in each direction and the term padding 

refers to the extra zeros placed around the border of the image, so that the 
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output convolution has the same dimensions as the input image. If the resulted 

image do not have the same dimensions then it is called valid padding. To 

determine the extra dimensions needed for the padding of the input, in order 

to have the same size as the output we use the following formula: 

 

where K is the kernel’s size. An example of valid padding is displayed in the 

following figure: 

 

Figure 7 Valid padding. (https://ieeexplore.ieee.org/document/8596839) 

 

It is understood that no extra zeros were placed near the border of the input 

image, hence the output has smaller dimensions. Next an example of same 

padding is presented: 

 

Figure 8 Same padding. (https://medium.com/analytics-vidhya/understanding-cnns-

68da06af1dfb) 

https://ieeexplore.ieee.org/document/8596839
https://medium.com/analytics-vidhya/understanding-cnns-68da06af1dfb
https://medium.com/analytics-vidhya/understanding-cnns-68da06af1dfb
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In the second example there were placed two extra columns and two rows, 

filled with zeros near the border of the image, so the output image has the same 

size. This description of convolution applies for 2D data samples. However, 

convolution can be extended to 3D. Instead of using 2D kernels that move 

towards the 2 dimensions of the image, 3D filters are applied, which move in 3 

dimensions of the 3D input. In this manner the layers learn spatio-temporal 

features and specifically the correlations between the 3 axes, where the third 

axis is time.  

 

2.3.2 Activation functions 

Activation functions control whether a neuron will be activated by the current 

input or not. The output of a neuron must be equal to a value greater than the 

activation threshold so as the neuron can be activated and propagate its value 

to the next neuron. A common example of activation function is the binary step 

activation, where the neuron is activated only if the input value is greater than 

the selected threshold.  

 

Figure 9 Binary step activation function.1 

 

Besides this step function there is the linear activation, where the output of a 

neuron is a linear function of the provided input as it is shown in figure 10. In 

                                                 

1 All figures for activation functions where from: https://missinglink.ai/guides/neural-network-

concepts/7-types-neural-network-activation-functions-right/  

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
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general linear functions cannot learn complex features. First, they do not allow 

backpropagation, since there is a constant derivative and has no correlation 

with the input data. As a result the network cannot learn which weight causes 

better predictions. Secondly, there is no point to stack multiple layers together 

since one is a linear combination of its predecessors, since this transforms a 

network into a regression model. Nevertheless, linear activation can be used 

for more than two classes, in contrast with the binary step.  

 

Figure 10 Linear activation function. 

Conversely, non-linear activation functions allow the network to create more 

complex mappings between the network’s endpoints and can handle the major 

drawbacks of the linear as well. Their derivatives are related to the input, so 

they allow backpropagation. More complex features can be learnt, because 

multiple layers can be stacked together. The most common activation functions 

are presented below: 

 

Figure 11 Sigmoid (logistic) activation function. 
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The sigmoid function, shown in figure 11, has output values between 0 and 1. 

The main drawback of this function is that it causes the elimination of the back-

propagated gradient, also known as the Vanishing Gradient Problem. In order 

to minimize the vanishing of the gradient, relu (rectified linear unit) was 

introduced. It has a computationally feasible cost, allowing fast convergence 

and as well it allows the backwards propagation of the derivatives. The 

challenge of using this function is the Dying Relu Problem, where derivatives 

approximate zero when there is negative or close to zero values and decelerates 

backpropagation. 

 

Figure 12 Relu activation function. 

Finally, to deal with the dying relu problem, leaky relu was introduced. It 

restraints Dying ReLU Problem, but output may not be consistent for negative 

values of the input. 

 

Figure 13 Leaky relu activation function. 
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Selection of activation function must take into consideration the number of 

classes, since not all functions are suitable for multiclass problems, the values 

generated and finally whether they should propagate the output of the neuron 

to the next or make a prediction, like the softmax activation function does and 

hence position them properly.  

 

2.3.3 Pooling layers 

Another important part of a deep learning network is the dimensionality 

reduction of the data propagated to the next layer. This down sampling 

happens in pooling layers (e.g. max, min, sum, etc.) and enables the network to 

learn advanced features (shapes, textures, details) on deeper layers, since the 

influence of the bigger image parts starts eroding. These layers result to optimal 

feature selection by the network. The pooling operations consists of selecting a 

value from a pooling layer’s receptive field and transfer it to the next layer, 

while all the other values are skipped. The selected value can be the largest in 

this small region, so it is called max pooling and is the most commonly used. 

Respectively, it is called min pooling when the smallest value is selected. In 

addition, there are some cases that sum or average pooling can be used. This 

means that the result is either the sum of the values of the receptive field, either 

their average. 

 

Figure 14 Max and average pooling operations. 

(https://www.cs.cmu.edu/~16311/current/schedule/ppp/CNNs.pdf) 

https://www.cs.cmu.edu/~16311/current/schedule/ppp/CNNs.pdf
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2.3.4 Basic network architecture and operation 

Every deep learning network layer contains at least one convolutional layer 

followed by an activation function and then a max pooling layer. Feature 

extractions occurs in the first layer and feature selection in the last. This layer 

sequence is repeated several times so it forms a deep, multilayer architecture. 

Finally, there is a flatten layer which creates an 1D vector followed by dense 

layers which contain nodes that are connected with all the nodes from the 

previous and next dense layers, but not between the same layer. This part of 

the network is called Fully Connected layer and forms the classifier that is 

trained for deciding the class that the provided sample belongs to. The figure 

below shows the common order of layers in deep learning architecture: 

 

Figure 15 Common layer order in deep learning architectures. 

(https://www.researchgate.net/figure/A-basic-CNN-architecture-with-a-convolution-

pooling-activation-along-with-a-fully_fig3_323694671) 

In order to operate a neural network, there are some stages that must be 

completed. The first stage is the forward pass where the network uses the 

existent weights and process the input in each layer. While passing the input 

forward, the network generates an output that is the prediction for the given 

input. The output of the forward pass may have great deviation from the real 

output. This is the reason why backpropagation of the error is occurring. When 

the output of the forward pass is generated, a loss function is used to calculate 

the model error between the prediction and the ground truth. The whole 

training process is based on optimizing the selected loss function. Then the 

gradient of the network’s output loss with respect to all weights is calculated 

and used in order to recalculate the network’s weights. 

After calculating the gradients, the backpropagation stage begins, in which the 

calculated gradients are propagated from the last to the first layer of the 

network. The propagated deviations are then multiplied by a learning rate and 

https://www.researchgate.net/figure/A-basic-CNN-architecture-with-a-convolution-pooling-activation-along-with-a-fully_fig3_323694671
https://www.researchgate.net/figure/A-basic-CNN-architecture-with-a-convolution-pooling-activation-along-with-a-fully_fig3_323694671
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used in recalculating the weights for each layer. A simple interpretation of how 

the backpropagation happens in a neuron is presented in the following figure: 

 

Figure 16 Gradient backpropagation. (https://slideplayer.com/slide/14518448/  - slide 

36) 

A more detailed interpretation of the training procedure is provided by the 

figure below: 

 

Figure 17 Detailed interpretation of training process in neural networks. 

(https://en.proft.me/2016/06/15/getting-started-deep-learning-r/) 

https://slideplayer.com/slide/14518448/
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At this point we should underline that training a neural network is a 

computationally heavy and time-consuming task as it requires a lot of 

resources, to perform the numerous calculations that are needed. The algorithm 

used during training has an important role as well as the selection of different 

network hyper parameters. Despite the heavy computational load deep 

learning has become a trend and is widely used, since it has high performance 

in classification and segmentation tasks of general images as well as more 

complicated input as medical images and videos. 

 

2.3.5 Performance evaluation of a network 

Another important aspect for the development of a successful model with high 

accuracy is evaluating it. Testing the network with unseen data must be 

performed in order to calculate its real performance. The most common 

evaluation method is calculating the model’s accuracy, by dividing the amount 

of all the correct prediction by the total amount of predictions made by the 

network, using the same test set. Other common metrics, which were used in 

this thesis, are: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2𝑥𝑇𝑃

2𝑥𝑇𝑃+𝐹𝑃+𝐹𝑁
 , the harmonic mean of precision and sensitivity. 

Finally, the AUROC (Area Under the Receiver Operating Characteristics) curve 

was used in order to further evaluate the model’s performance. The ROC curve 

is a graph that shows the model’s performance at various classification 

thresholds, by plotting the true positive rate, which is defined as the recall and 

the false positive rate that equals 
𝐹𝑃

𝐹𝑃+𝑇𝑁
. AUC (Area Under Curve) measures the 

area under the ROC curve, providing a complete measurement across all 

thresholds used for classification. Last, is the confusion matrix, also known as 

the error matrix. In the y-axis it displays the predicted labels and in the x-axis 

the actual labels, while each cell contains the amount of samples of the 

predicted class that where classified as the corresponding actual class.  
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Chapter 3 Methodology 

3.1 Available dataset 

Τhe selected dataset has a crucial role in every deep learning study. The quality 

of the data is contingent on the technical specifications of the machine used to 

capture them, the nature of the tests and the experience of the specialist 

performing them. Although, high quality helps the training procedure of the 

network, it is not always sufficient [15] for achieving high performance. Three 

necessary conditions that must be satisfied, on top of data quality, are the 

dataset size, the deep learning network architecture and the tuning of model’s 

hyper parameters.  Large train dataset will help preventing the network from 

overfitting and increase generalization. Furthermore, testing the model on a 

larger test set increases the precision of any performance metric calculated on 

it. Furthermore, the network’s architecture (filter and layer size and quantity, 

type of each layer and its location) and the selection of the parameters (learning 

rate, optimization technique, etc.) can influence the learning procedure as well 

the amount of features learnt by it. More filters in a convolutional neural 

network means that more features can be learnt, but it requires more training 

data. This shows the importance of the dataset while deploying a deep learning 

model. This also applies in medical applications where extreme caution is 

needed for accurately diagnosing diseases, such as in the current study. 

In this thesis, the provided dataset consists of a total of 67 echocardiograms and 

100 images from open and closed state showing both normal and abnormal 

aortic valves. Provided files have three color channels Red, Green and Blue 

(RGB). Those echocardiograms were captured from patients at the Naval 

Hospital of Athens by an experienced sonographer and were provided 

confidentially to us for the purposes of the study. No personal or health-related 

information were available to preserve the anonymity of the patients. The 

received echocardiograms and images were captured from the Parasternal 

Short Axis (PSAX) view, for at least one cardiac cycle, containing the 

electrocardiogram (ECG) waveform and various ultrasound indicators which 

are not used in the present study. The GE Versana Active with 3Sc-RS probe 

was used to capture the echocardiograms. The aortic valve types that were 

interpreted in both the images and the videos are Tricuspid, Bicuspid and 
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Raphe. As mentioned in section 2.1.2, tricuspid is the normal and both bicuspid 

(type 0) and raphe (types 1 and 2) from figure 2 are the abnormal configurations 

of the aortic valve. The number of available videos for each type are shown in 

Table 1. 

 Number of cases Type 

Normal aortic valve 30 Tricuspid 

Abnormal aortic valve 

9 Bicuspid 

28 Raphe 

Table 1 Amount of provided videos. 

 

Similarly, the number of available images are depicted in Table 2. 

 Number of cases Total Type 

Normal aortic 

valve 

60 open/closed 

state 
120 Tricuspid 

Abnormal aortic 

valve 

11 open/closed 

state 
22 Bicuspid 

29 open/closed 

state 
58 Raphe 

Table 2 Amount of provided images. 

The amount of available data is relatively small; however, in such applications, 

larger dataset is important in order to evaluate model's performance and 

increase precision of metrics. Hence, a case-realistic augmentation schema is 
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developed and described in section 3.3. Finally, the class imbalance does not 

seem to be significant for the two class classification problem (normal vs 

abnormal), since there are 30 normal versus 37 abnormal videos and 120 normal 

versus 80 abnormal images. In contrast, there is a significant class imbalance 

between the three class cases. 

 

3.2 Data preprocessing  

A vital step, before training a neural network, is preprocessing the data. This 

should happen for two main reasons. First of all, the data must fulfill the 

network’s constrains, like the input size in a convolutional layer, else the 

training procedure cannot begin. Secondly, the data dimensions might be 

exhausting for the available computational resources. Thus, data preprocessing 

preserves the feasibility of the development and implementation of the 

network. In this study, we used some common preprocessing methods such as 

cropping, resizing and converting to grayscale in order to reduce the size of the 

data and comply with the network’s architecture input dimensions. 

It is worth mentioning that not all videos had the same amount of frames, 

varying from 15 to 482 frames. There were three videos (1 from bicuspid type 

and 2 from tricuspid) with only a single frame; thus, they were excluded from 

the analysis.  From the single (raphe) case with 482 frames we managed to 

produce one extra video, splitting the initial video into two parts by looking 

the ECG waveform for capturing a cardiac cycle.  In each video, every frame 

was striped and stored -in the correct order- in a folder named after the video’s 

title. Then, we thoroughly selected only 40 frames from each video to cover one 

cardiac cycle in all available cases. The selection did not happen randomly, 

conversely it was based on the electrocardiogram provided within the video. 

Consequently, all videos with less than 40 frames were interpolated to increase 

the frame rate and acquire the extra frames that were needed. Lastly, each 

preprocessing method was applied directly to each consecutive frame of every 

video, as well as each image. 
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The first preprocessing method of the images was the RGB to grayscale 

conversion where the ITU-R BT.601-2 [16] luma2 transform was used, described 

by the following equation: 

 

𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 =
𝑅 × 299 + 𝐺 × 587 + 𝐵 × 114

1000
 

 

In this way, the initial three channels (RGB) were replaced by the luminance 

channel, since color in the given images does not contain any resourceful 

information. The conversion to grayscale was not applied in provided images, 

because they were used to train the VGG16 2D architecture, which accepts the 

three color channels, as well. 

Cropping was the second method applied on the data, because it can drastically 

remove all the unwanted indicators from video frames and images. For the 

bicuspid and raphe cases, center-cropping was applied, while the tricuspid 

cases needed a custom square cropping area starting in the (68, 5) point and 

ending in the (570, 386) point of both frames and images. This happened 

because data for the abnormal class had centered the echocardiograms in both 

images and frames, while echocardiograms were not centered in the data from 

the normal cases. Finally, all the video frames were resized to a 256x256 fixed 

size and all images’ size was set to 224x224 so they can be used to train the 2D 

VGG16.  

 

Figure 18 (left) RGB image, (right) grayscale using ITU-R BT.601-2 luma transform. 

                                                 

2 Luminance transformation for compressed images. 
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Figure 19 Picture above is the original raphe frame, while the picture below is the 

same image but cropped. 
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3.2.1 Video interpolation techniques 

As mentioned previously, during the preprocessing of videos there was the 

need to interpolate those with less than 40 frames. Interpolation is a technique 

that generates new data from existing frames in order to extend the frame rate 

of the video. This technique can be applied using different methods and tools. 

In our approach we used linear and motion interpolation, on 15 bicuspid videos 

out of 28. For linear interpolation the “FFmpeg” [17] library was used, 

providing mediocre results, since the output videos were blurry, making them 

almost impossible to investigate. Similarly, for motion interpolation the tool 

“butterflow” [18] was used, which implements the methodology introduced by 

G. Farneb�̈�ck [19], which is based on polynomial expansion. After executing 

both methods, we compared the final results and discarded the one with the 

worst optical performance. The motion interpolation performed optimally; 

thus, it was selected as the default interpolation method.  Observing the two 

images bellow, our choice is justified. 

 

 

 

 

 

3.3 Data augmentation 

After the preprocessing step, dataset consists of 8 bicuspid cases, 28 tricuspid 

cases, and 29 raphe cases each one contains 40 carefully selected grayscale 

frames from the corresponding videos. The few samples designates that there 

Figure 20  (left image) Linear interpolated frame, (right image) motion interpolated frame. 

Above frames are not from the same video file, but it is clear which method performed better, 

since the left image is blurry and illegible, while the right one is more clean. 
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is a need for an increase in dataset size. To deal with the small dataset size, we 

implemented five augmentation techniques to not only increase the provided 

dataset size, but also to create a more robust model for the classification of the 

aortic valve. The proposed techniques presented below, try to simulate case-

realistic distortions that may occur when capturing videos or images on 

ultrasound data. 

 

3.3.1 Additive noise 

Noise is the most common distortion in every signal. Ultrasound images are 

not always clear and the specialists may have difficulties deciding in which 

class the configuration of the aortic valve belongs during the test, depending 

on the level of their experience. Hence, additive noise tries to simulate this 

confusing situation on top of the already naturally noisy echocardiograms. 

Moreover, some videos were clear, so we added the noise to create noisy copies 

of them, in order to create a more robust model. To apply this technique, we 

create a new image of the same size as the original frame, filled with zeros. 

Then, for each pixel of that new image a value between 0 and 45 is assigned, 

out of a discrete uniform distribution. Finally, the generated image is added to 

the original with respect to “uint8” type. If any pixel’s value is exceeding the 

minimum or maximum of the range: [0, 255], it is trimmed to the nearest legal 

value. 

  

Figure 21 Original image (left), original image with additive noise (right) 
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3.3.2 Horizontal flip 

Original image is flipped horizontally only, which does not alter the content, in 

contrast with vertical flipped echocardiograms, that are not a common case in 

real time echocardiography. 

  

Figure 22 Original image (left), horizontally flipped image (right) 

 

3.3.3 Jittering 

Jittering is a technique that randomly increases or decreases intensity levels in 

pixels by introducing small variations in the original image. This method is 

usually applied by adding or subtracting small values in range [1, 4] as [20] 

proposes. On our data this had no effect on frames, since they had relatively 

small and large values, which were near 0 and 255 respectively. In this study, 

the contrast of the dataset, can be altered by arbitrarily multiplying by 1.25, 

which means 25% increase in intensity, or by 0.75, which translates into 25% 

decrease of the pixels’ values. This contrast transformation can be expressed 

using the following equation:  

 

𝑗𝑖𝑡𝑡𝑒𝑟𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =  {
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 × 1.25, 50% propability to be applied
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 × 0.75, 50% propability to be applied
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Figure 23 Original image (left), jittered image (right). At the lower left part of the 

jittered image we can observe an increase in intensity of pixels. 

 

3.3.4 Translation 

Image translation is a transformation that slightly moves the objects of the 

image, by shifting its location within the image’s boundaries. Interpreted 

objects in translated images have different position compared with the initial 

image. The transformation matrix describing translation is: 

 

𝑇𝑀 = [
1 0 𝑡𝑋

0 1 𝑡𝑌
], 

 

where 𝑡𝑋 and 𝑡𝑌 are the amount of shift to be applied in x and y axes 

respectively. To randomize the shifts, two extra parameters “p” and “range” 

were introduced, representing a uniform probability and the maximum 

translation range. The values of 𝑡𝑋 and 𝑡𝑌 were calculated using the formulas: 

 

𝑡𝑋 = 𝑟𝑎𝑛𝑔𝑒 × 𝑝 −
𝑟𝑎𝑛𝑔𝑒

2
,  𝑡𝑌 = 𝑟𝑎𝑛𝑔𝑒 × 𝑝 −

𝑟𝑎𝑛𝑔𝑒

2
 

 

The selected range is a scale of 5 pixels, due to the fact that the echocardiogram 

did not disappear from frames. Probabilities were generated from a uniform 

distribution. 
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Original Image Translated Image 

(p=0.2) 

Translated Image 

(p=0.4) 

   

Translated image 

(p=0.6) 

Translated image 

(p=0.8) 

Translated image 

(p=0.9) 

   

Figure 24 Original and translated images with different values of p. 

 

With translation we can simulate the cropping error that may occur during 

preprocessing, especially in the tricuspid case, that original images were not 

centered. The term “cropping error” refers to the main region of 

echocardiogram appearing in the cropped image, due to variations in image 

sizes among all cases. The output of translation may seem to be the same, since 

the echocardiograms inside were moved in a small range, in order to be entirely 

in the images’ borders.  

 

3.3.5 Shearing 

The last augmentation technique is shearing which applies an affine transform 

on the source image. Affine transformations are also called collinear, since all 

parallel lines of the original image are still parallel in the resulting image. The 

shearing technique is performed to partly simulate the movement of the 

sonographer's wrist and the aforementioned cropping error. For using this 

method, two transformation matrices must be initialized containing three 
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points from input image and their corresponding position in the output image. 

The selected points from input image are: 

 

𝑃1
𝐼𝑛 = (5, 5), 𝑃2

𝐼𝑛 = (20, 5), 𝑃3
𝐼𝑛 = (5, 20) 

Variables “range” and “p” were used again to randomize the selection of the 

position of the corresponding points in the output image, which they can be 

computed with the following equations: 

 

𝑃1
𝑂𝑢𝑡 = (𝑝𝑡1, 5), 𝑃2

𝑂𝑢𝑡 = (𝑝𝑡2, 𝑝𝑡2), 𝑃3
𝑂𝑢𝑡 = (5, 𝑝𝑡2), 

with 𝑝𝑡1 = 5 + 𝑟𝑎𝑛𝑔𝑒 × 𝑝 −
𝑟𝑎𝑛𝑔𝑒

2
  and 𝑝𝑡2 = 20 + 𝑟𝑎𝑛𝑔𝑒 × 𝑝 −

𝑟𝑎𝑛𝑔𝑒

2
 

The probability range was set to [0.3, 0.6] uniformly generated, as well as the 

value of range and other constants were selected in a manner that would not 

alter the output dramatically.  

Original Image Sheared image 

(p=0.1) 

Sheared image 

(p=0.4) 

   

Sheared image 

(p=0.6) 

Sheared image 

(p=0.8) 

Sheared image 

(p=0.9) 

   

Figure 25 Original and sheared images for different values of p. 
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The tables below summarize the increase of the dataset’s size:  

 
Tricuspid Bicuspid Raphe Total 

Videos Images Videos Images Videos Images Videos Images 

Initial size 28 60 8 11 29 29 65 100 

Augmented 

size 
476 1020 136 187 493 493 1105 1700 

Table 3 Size of dataset before and after augmentation. 

 

 
Normal Abnormal 

Videos Images Videos Images 

Initial size 28 60 37 10 

Augmented size 476 1020 629 680 

Table 4 Comparison of the size of the two classes 

 

In the proposed augmentation schema, five techniques were implemented for 

increasing dataset size. Additionally, with the first three techniques mentioned 

and the last two which have probabilities as arguments, the resulted dataset 

size was 17 times larger than the initial. Hence, a more robust model can be 

developed, capable to achieve higher performance.  
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3.4 Implementation of 3D VGG16 network architecture 

This section contains an extended description of the main implementation of 

current thesis, which is focused on developing deep convolutional neural 

networks for classifying the configuration of the aortic valve. The selected 

architecture is derived from the VGG16 network which Karen Simonyan and 

Andrew Zisserman [13] introduced in 2015. Although, there are more modern 

neural network architectures such ResNeXt-50 [21], Inception-v4 [22] and 

Xception [23], we stick to VGG16 since there is a wide range of applications that 

utilize this network and noise in input images does not drastically affect its 

performance [15]. 

In order to use VGG16 for video classification we had to expand it from 2D 

network to 3D. Thus, we replaced all 2D convolutions with 3D, as well as all 

2D Max pooling operations were extended to 3D. Despite those changes, the 

network was impossible to be trained, due to the computational resources that 

were needed to be allocated in order to carry out the calculations. To deal with 

resource limitation, we reduced the amount of parameters to be trained.  

The resulting architecture consists of 5 convolutional blocks, each having two 

or three 3D convolutional layers with Relu as the activation function and the 

last convolutional layer is followed by a 3D Max pooling operation. In the first 

convolution block the convolutional layers have 32 3D convolution kernels. The 

next block consists of two convolutional layers with 64 filters. Next three blocks 

have three convolution layers with 128, 256, 256 filters correspondingly. Lastly, 

there are two dense layers with 2048 nodes each and a Dense layer with only 

two nodes with softmax activation, forming a fully connected prediction 

network. Batch normalization between all convolutional layers and dropout 

with 50% rate were included between dense layers, for preventing network 

from overfitting. The figure 26 presents our 3D-expanded VGG16 architecture:  
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Figure 26 3D architecture implemented for the purposes of the study. 

 

3.4.1 Replacing Fully Connected layers with an SVM clasifier 

To further extend the VGG16 architecture, we replaced the Fully Connected 

part of the network with an SVM classifier with linear kernel. E. Trivizakis et 

al. [24] proposed to replace the softmax layer with the SVM. We incorporated 

this idea to our architecture, but instead of replacing the softmax activated layer 

only, we completely removed the fully connected layer and placed the SVM. 

The convolutional blocks (feature extraction part of the network) are 

responsible for feature extraction and the SVM accepts those features as input 

and classify samples. The feature extraction from convolution blocks and the 

training of the SVM executed separately, since they could not be embedded in 

a single network, due to the bottleneck that the feature extraction part 

introduces. Convolutional kernels were initialized using the corresponding 

trained weights from previous network (figure 28).  
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The altered architecture is presented in the figure below: 

 

 

 

Figure 27 Altered 3D architecture with an SVM replacing the fully connected 

network. 

 

All 3D architectures, including a detailed description of the input and output 

of each layer are presented in Appendix A. 
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Figure 28 Weights from the trained 3D network were used to extract features from 

videos. The extracted features then were used to train and test the SVM classifier. For 

the training of the SVM were used the same data samples as for the training of the 3D 

network. 

 

3.4.2 Extention of 2D filters to 3D 

For implementing transfer learning, 3D weights from a similar architecture 

must be acquired. This acquisition is not possible, since there is no other 3D 

network following the exact same architecture. Thus, we had to expand the 

weights from various 2D networks to 3D to be fitted in our implementation. In 

order to perform the expansion, we extracted every single filter from each 

convolutional layer and then we stacked it three times in order to form a 3x3x3 
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cube. This cube was the 3D filter that was embedded in the same position in 

the corresponding layer of our 3D network.     

 

 

Figure 29 2D to 3D expansion of the trained weights. This figure represents the 

expansion of the filters in the first convolutional layer. A 2D 3x3 filter is stacked in 

order to form a 3D 3x3x3 filter. 

 

The first layer in our architecture has 32 initial filters, in contrast with the 

original VGG16, which has 64. During expansion we ensure that only the first 

32 filters of the first layer of the 2D network are expanded, in order to accelerate 

the procedure. This process is repeated for every convolutional layer, using the 

first half of its filters. 

 

3.5 Experiments  

After implementing the main network and the SVM expansion on it, we started 

experimenting with the available dataset. Firstly, we split videos and images to 

fixed train and test sets, containing 80% and 20% of the available data 

correspondingly. We also used 20% of the train set for validation during the 

training of the network with the augmented data. All experiments were 

executed in the Google Colab3 platform, using GPU backend for accelerating 

the training procedures. Training was extremely time-consuming, due to the 

complexity of operations in a 3D Network. Convolutional kernels were 

initialized by drawing weights from a Uniform distribution within the range [-

a, a] where 𝑎 = √
6

𝐼
, and I the number of incoming neurons from the previous 

layer. For every network, we chose Adam optimizer with an adaptable learning 

                                                 

3 https://colab.research.google.com 

https://colab.research.google.com/
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rate starting of 10−4, with 50 epochs to minimize cross-entropy loss function 

and a batch size of 1, due to memory resource limitations. All hyper parameters 

tuned after multiple trials that were executed on the data before augmentation. 

The conducted experiments are: 

1. Classification of the aortic valve in 2 classes (normal/abnormal) using 

video data and the 3D network. 

2. Classification of the aortic valve in 2 classes (normal/abnormal) using 

video data and transfer learning in the 3D network. 

3. The two experiments aforementioned were repeated using the SVM 

extended 3D network. 

4. Classification of the aortic valve in 3 classes (normal/abnormal) using 

video data and the 3D network. 

5. Classification of aortic valve in 2 classes using images (2D network), 

with and without transfer learning. 

6. The 3D network were re-trained for the 2 class classification problem, 

using the weights of the 2D network trained on our data. 

 

The first experiment used the video data to classify the configuration of the 

aortic valve in 2 classes, “Tricuspid” (normal) and “Bicuspid” (abnormal) with 

both bicuspid and raphe cases included. In the second experiment we used the 

extension method described in section 3.4.2, to extend the 2D VGG16 weights, 

which were trained in ImageNet dataset, to 3D. After expanding the weights, 

we trained the whole network on our dataset again, in contrast with 

conventional transfer learning, in which only the fully connected layers are 

trained. In this manner, we accomplished to fix any mismatch that may have 

occurred in weight expansion and achieve slightly faster convergence during 

training. Then, experiments 1 and 2 were repeated using an SVM instead of 

fully connected layers test the SVM-extended network as well. Finally, we 

wanted to inspect whether the 2-class or the 3-class classifier can achieve better 

classification performance.  

Next, we trained the 2D network using available images, for comparing its 

performance against the 3D network. In order to clarify, which architecture can 

achieve higher accuracy we trained the conventional 2D VGG16 network for 

100 epochs, instead of 50, using Adam optimizer, with an adjustable learning 

rate of 10−4, to minimize cross-entropy loss and a batch size of 4. K. Simonyan 
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and A. Zisserman [13]  stated that the training finished at 74 epochs. In our case, 

the network could not converge with a larger learning rate, hence we executed 

training for more epochs. This reduction of epochs needed for convergence 

occurs due to the normalization that the deep network architecture introduces. 

In addition, the experiment repeated using transfer learning, with the 2D 

trained weights on ImageNet. During the specific experiment, we used the data 

showing only the open state of the aortic valve, as the doctor captured them, as 

well as equal number of frames from the videos that interpret the aortic valve, 

just before or after it is fully opened. Lastly, in the final experiment, we 

expanded the 2D weights from previously trained network, on the images with 

fully open state and compared its performance with the expansion of the 2D 

weights trained on ImageNet.   
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Chapter 4 Results 

4.1 Normal and abnormal aortic valve classification from 

video data 

In the first two experiments, we successfully accomplished to build a 3D 

network that can achieve high accuracy while trained on augmented data with 

and without transfer learning. The evaluation of the performance is 

summarized in the table below: 

3D model trained 

on augmented 

data 

Without Transfer 

Learning 

With Transfer 

Learning (Run 1) 

With Transfer 

Learning (Run 

2) 

Accuracy (%) 93.27 91.47 97.75 

Error rate (%) 6.73 8.53 2.25 

AUROC (%) 92.18 93.49 97.39 

Sensitivity 1 1 1 

Specificity 0.8437 0.8020 0.9479 

Precision 0.8943 0.8698 0.9621 

F1-score 0.944 0.93 0.9806 

Table 5 Performance of 3D network trained with augmented data, using random 

initialization of weights and transfer learning. 

 

Abnormal is defined as the “positive” class with the label “1” and normal as 

“negative” class with the label “0”. Hence, if a video is classified as positive, it 

means that the patient has a bicuspid aortic valve.  



 

39 

 

The high performance of the proposed network is confirmed with the high 

values of sensitivity and specificity, indicating that the network identifies 

properly the greatest proportion of both positive and negative data samples.  

Accuracy and loss graphs for both train and validation phase of the first 

experiment are shown in the next figures: 

 

 
Figure 30 Train and validation phase accuracy/loss for the 3D model without transfer 

learning. 
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We can observe that validation accuracy is lower than the train accuracy, due 

to the small size (176 samples) of validation data, but we observe that the 

network starts to converge. The confusion matrices are presented as heatmaps: 

 

 
Figure 31 Confusion matrix of 3D model without transfer learning (upper part) and 

with transfer learning from the first run (below). 
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The slight drop of the accuracy of the network with transfer learning in the first 

run is explained considering the random order of the data samples that were 

used to train the network. Moreover, the lower performance of the first run 

occurs, because the initial weights were from ImageNet, which contains images 

with non-medical subject and they had not adjusted correctly, during 

retraining. In the second run, we can observe an increase in all the computed 

metrics and the average accuracy reaching 94.61%. For each run the model was 

trained from scratch. More precise results could have been provided using a 

10-fold cross validation method, but the available resources forbid such an 

operation. The Receiver Operation Characteristic curve of the first run of the 

3D network with transfer learning is: 

 

Figure 32 ROC curve of the first run. 

The ROC curve is near the ideal curve, since it passes near the left upper corner 

and is steep. 

 

4.1.1 SVM performance as a classifier 

After receiving the first evaluation of our expanded architecture, we executed 

the network with the SVM classifier. After copying the weights from the first 

run of the second experiment to the feature extraction part of the network, we 
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created the feature vector for each sample (for both train and test set) and then 

we trained the SVM with videos’ features from the train set. Next, we tested 

our SVM expanded architecture and received the following results: 

3D model with 

SVM trained on 

augmented data 

Without Transfer 

Learning 

With Transfer 

Learning 

Accuracy (%) 97.28 98.64 

Error rate (%) 2.72 1.36 

AUROC (%) 96.87 98.43 

Sensitivity 1 1 

Specificity 0.9375 0.9687 

Presision 0.9541 0.9765 

F1-score 0.9766 0.9881 

Table 6 Evaluation of 3D network with SVM with and without the use of transfer 

learning. 
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Table 7 SVM expanded network without transfer learning (left) and with transfer 

learning (right). 

 

 

 

Figure 33 ROC curve of SVM expanded network without transfer learning. 

 

 

Figure 34 ROC curve of SVM expanded network with transfer learning. 

 

The results showed that the use SVM instead of fully connected layers can only 

benefit the network’s performance. SVM classifier outperforms fully connected 

layers, since it needs less training and predicting time, while achieving higher 

accuracy. Area Under Curve metrics indicate that the classifier is capable of 

distinguishing the two classes more precisely than the conventional fully 
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connected layers. Finally, observing ROC curves make it clear that the network 

trained with transfer learning and the SVM is more capable than the one with 

no transfer learning, since the ROC curve is steeper. In the SVM experiments 

the normal cases are classified more accurately compared with the use of fully 

connected layers.  

 

4.2 Tricuspid, Bicuspid and Raphe classification 

Next, we investigated further the performance of our proposed architecture, by 

splitting the data in all three available classes rather than two which was used 

in the previous experiments. For that reason, we replaced the last dense layer 

with another that had 3 nodes with softmax activation. All weights were re-

initialized from a uniform distribution as before, while all other hyper 

parameters remained constant. Finally, we set a class “0” to be tricuspid, “1” as 

bicuspid and class “2” as raphe. 

 

 4.2.1 Expanded network with no transfer learning for 

distinguishing 3 classes 

In our first 3 class classification experiment, the network achieved an overall 

accuracy of 74.44% while it managed to recognize almost all tricuspid samples 

correctly. This translate into the network is biased to the tricuspid case. The 

confusion matrix is presented below: 

 

Figure 35 Confusion matrix of 3D network for 3 class classification. Label "0" is 

tricuspid, "1" is bicuspid and "2" is raphe. 
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Looking at the train and validation accuracy and loss graphs, we observe that 

the network converged faster, since there are small ripples after 15 epochs in 

all the waveforms, near final accuracy and loss accordingly as shown in the 

following graphs. 

 

 
Figure 36 Train and validation accuracy/loss for the 3D model in 3 class classification. 
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Figure 37 ROC curve of 3D network trained from scratch. 

Classifying samples of bicuspid class is the most challenging part, as the class’s 

ROC curve indicates. The other two classes have a higher Area Under Curve, 

proving that the network can classify samples from those classes with greater 

ease. In spite the high performance, we conjecture that the result is not reliable 

enough, in this case, since the bicuspid class has less data than the other two.  

 

4.2.2 Expanded network with transfer learning for distinguishing 3 

classes 

In addition to the previous experiment, we aimed to explore whether transfer 

learning will boost the performance of this network. In order to accomplish 

that, we initialize the weights with the expanded ones that were trained on 

ImageNet. Transfer learning, indeed, increased the performance with overall 

accuracy raised up to 83.41%.  
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Train and validation graphs are presented in the following figure:  

 

 
Figure 38 Train and validation accuracy/loss for the 3D model with transfer learning 

in 3 class classification. 
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The confusion matrix and ROC curve for this experiment are: 

 

Figure 39 Confusion matrix of 3D network with transfer learning for 3 class 

classification. Label "0" is tricuspid, "1" is bicuspid and "2" is raphe. 

 

Figure 40 ROC curve of 3D network trained using transfer learning. 
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The following table summarizes the calculated metrics per class: 

 
Without transfer 

learning 

With transfer 

learning 

Overall accuracy (%) 74.44 83.414 

 

Per class metrics 

Accuracy (%) 

Tricuspid 99.55 99.55 

Bicuspid 74.88 83.85 

Raphe 74.43 83.40 

AUROC score 

(%) 

Tricuspid 100.00 100.00 

Bicuspid 65.00 58.00 

Raphe 85.00 90.00 

Sensitivity 

Tricuspid 0.9895 0.9895 

Bicuspid 0.3928 0.3928 

Raphe 0.6060 0.8080 

Specificity 

Tricuspid 1 1 

Bicuspid 0.8000 0.9225 

Raphe 0.8500 0.9025 

Precision 

Tricuspid 1 1 

Bicuspid 0.2200 0.3666 

Raphe 0.7600 0.8163 

F1-score 

Tricuspid 0.9947 0.9947 

Bicuspid 0.2820 0.3793 

Raphe 0.6779 0.8121 

Table 8 Metrics calculated for the specific experiment 

 

In the case of three class classification, we observed that transfer learning 

increased network performance, especially in the raphe cases where more 

samples were classified correctly. As mentioned before, the large class 

imbalance played a critical role in bicuspid samples misclassification, where 

only 98 used for training out of a total 136, and were not constrained with the 

presence of transfer learning. 
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4.3 Normal and abnormal aortic valve classification from 

images 

For this experiment, we used two image sets as mentioned in section 3.5. The 

first set consists of 100 images interpreting the fully open state as the 

experienced specialist captured them. For the second set, we thoroughly 

examined the initial frames of videos and selected only the frames which 

interprete the aortic valve just before or after it was fully opened. The two 

equally sized sets were preprocessed and augmented with the same methods 

used for video frames.  

 

4.3.1 Training with frames extracted from specialist 

Acquiring a clear view of the fully opened state of the aortic valve is 

challenging, since this happens momentarily. Cardiologists are trained to 

understand immediately the open state, therefore the image selection for this 

experiment has a great quantity of clear, high quality images. The network 

trained on those images achieves an accuracy of 93.82%, while transfer learning 

increases the accuracy to 97.94%. The confusion matrices are presented below: 

 

 

 

 

 

Figure 41 Confusion matrix of 2D network trained on specialists extracted data, 

without transfer learning (left) and with transfer learning (right) 
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All calculated metrics are presented in the following table: 

2D model trained 

on cardiologist 

extracted images 

Without Transfer 

Learning 

With Transfer 

Learning 

Accuracy (%) 93.82 97.94 

Error rate (%) 6.18 2.06 

AUROC (%) 93.99 97.93 

Sensitivity 0.9041 0.9726 

Specificity 0.9639 0.9845 

Presision 0.9496 0.9793 

F1-score 0.9263 0.9759 

Table 9 Metrics calculated upon 2D network trained on cardiologist extracted images. 

From Table 9 it is concluded that all the metrics indicate the high performance 

of network. 

 

4.3.2 Training with frames extracted using ECG waveform  

Next, we initialized 2D VGG16 with weights pre-trained on ImageNet, in order 

to train the classifier to fit the video frames that we extracted near the open 

state of the valve, using the ECG waveforms. The metrics that were calculated 

are presented it the table below: 

Accuracy Error rate AUROC Sensitivity Specificity Presision 

95.21% 4.79% 0.9655 1 0.8648 0.931 

Table 10 Metrics calculated upon 2D network trained on video frames near open 

aortic valve, using ECG waveform. 
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Figure 42 Confusion matrix for 2D network trained on video frames. 

 

Apparently, network trained on fully opened state images achieves higher 

performance, since it is clear if the valve is tricuspid or abnormal, except some 

naturally noisy images. It is worth mentioning that training the network with 

the extracted data, eliminates the misclassification of the abnormal class, as 

confusion matrices indicate. This depends on the selected frames; hence the 2D 

network can achieve higher performance when the aortic valve is captured 

exactly at the open state. 

 

4.3.3 Transfer weights from 2D trained network to 3D 

Finally, we tested the 3D network using the weights from the 2D network 

trained with transfer learning, on images extracted by the specialist. In this 

manner we accelerate the training of the 3D network. Specifically, we expanded 

the weights trained on image data, provided by the cardiologist, without the 

use of transfer learning. As a result the 3D network achieved 97.30% accuracy, 

reaching the initial performance of training on video with transfer learning. 
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Metrics calculated upon it, the corresponding confusion matrix and the ROC 

curve are presented below: 

Accuracy Error rate AUROC Sensitivity Specificity Presision 

97.30 % 2,7 97.77 % 1 0.9375 0.9575 

Figure 43 Metrics calculated upon 3D network initialized with weights trained on 

provided image data. 

 

 

Figure 44 Confusion matrix of the 3D network with transfer weights from 2D 

network. 

 

 

Figure 45 ROC curve of 3D network with transfer weights from 2D network. 

All metrics, indicate the high performance of the network, as well the ROC 

curve is near the optimal.   
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Chapter 5 Discussion 

In this study, we presented our implementation of a deep neural network that 

can successfully classify the configuration of the aortic valve, introducing a 3D 

model for video analysis. The proposed 3D expansion of VGG16 network 

achieved 97.75% accuracy while using the expanded 2D weights trained on 

ImageNet. We showed that replacing the fully connected layers with an SVM 

classifier can boost the performance and achieve up to 98.64% accuracy, 

providing some methodological improvements.  

The three class classification experiment needs to be executed with more data, 

since there is significant class imbalance among the three classes; something 

that does not occur in the 2 class classification. Nevertheless, the accuracy of 

83.41% seems promising and the network should be tested using more data and 

cross validation. Finally, a new network can be introduced in order to achieve 

better classification among abnormal configurations of the valve, since our 

architecture can fully identify the normal cases.  

The conventional 2D VGG16 network achieved 97.94% accuracy on 

cardiologist extracted data and 95.21% accuracy on our set of selected images. 

This selection happened, because we aimed to prove that the network is 

capable of separating the configurations of the aortic valve not only from clear 

cut images, but also from selected frames interpreting the aortic valve near the 

open state. Thus, there is a comparison between 2D and 3D models on the same 

application. Our conclusion was that the 2D network needs images interpreting 

the valve in the fully open state, in order to achieve higher performance.  

Transferring the learnt weights from 2D to the 3D network showed that 

whether the weights were trained from similar dataset, either from images with 

different subject, transfer learning achieves higher performance and faster 

convergence. This happens because weight initialization is not random, but 

already contains common patterns across all image sets. For instance, edges 

exists in all images from different backgrounds; thus the first layers will learn 

to detect them equally. Going deeper in the network architecture, we 

understand that learned shapes and textures have significant differences from 

dataset to dataset. Hence, this differentiation might reduce the accuracy of 

transfer learning. This is the main reason we implemented transfer learning by 

initializing the network with 3D expanded weights and then trained it from 
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scratch, rather than training only the fully connected layers, as in conventional 

transfer learning. It is worth mentioning that the use of this technique also 

requires a satisfactory amount of data, so the last layers can alter the previously 

learnt patterns in order to make them fit the available data.    

 

5.1 Study limitations 

This study has some major limitations which should be taken into 

consideration. The proposed 3D architecture could not fit in a common GPU 

since it uses at least 10GB of memory for storing the network’s weights and 

processes them in the training phase. This procedure is extremely time-

consuming, since the 3D convolution is more computationally expensive than 

2D. High memory usage and long running times were the main reasons that 

we could not apply cross validation to our network, since the platform used 

introduces memory and execution time limits for users.  

The major limitation is the small dataset size, which in the three class 

classification experiment, reduced the precision of the metrics calculated upon 

the network due to the class imbalance. The proposed augmentation schema 

helped constraining this limitation, but more data would give more precise 

results. An important fact that should be mentioned is that data samples of the 

bicuspid class are extremely hard to be acquired. Considering that the current 

population on earth is around 7.8 billion people and only 1% to 2% [3] of that 

global population is estimated to have bicuspid aortic valve, nearly 150 million 

of people have this cardiac anomaly. This translates into difficulties in 

accessing, gathering and managing those datasets. 

 

5.2 Future work 

Despite the limitations, this thesis presents some promising results in 

classification of the aortic valves configuration. As seen in the literature there 

is not any study that involves with this task. In order to extend our work, Class 

Activation Maps (CAM) [25] could be used for the identification of the regions 

of the input image or video that activates the network the most; in other words 

the important parts of the input. Therefore, we could demystify how our 

extended 3D deep learning network makes its classification decisions and 
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invalidate the “black box” characterization. Moreover, new 3D kernel 

formation and training techniques can be introduced. 

To further extend our work, 3D semantic segmentation seems a challenging 

next step by extending U-Net [26] to fit 3D data. This will further help 

cardiologists to diagnose faster since they will be able to reconstruct the valve 

and observe its function in real time. Another step toward this direction is to 

replace contraction path with our 3D VGG16 architecture as Pravitasari et al. 

[27] introduced in the 2D VGG16 network. This will accelerate the training 

procedure of U-Net, since only the encoding path of the network should be 

trained. 

Finally, training the proposed network is a time consuming process due to the 

great amount of the required computational resources, as mentioned in the 

previous section. Hence, there is an imperative need to reduce the execution 

time as well as the memory used to perform operations. In this effort, richer 

computational resources must be used in order to be able to test the network 

with more data and therefore get more precise results. An excellent starting 

point would be to use Field Programmable Gate Arrays (FPGAs) to accelerate 

the training procedure. Geng et al. [28] proposes a scalable framework for 

training convolutional neural network using FPGAs. Thus, not only the 

execution times will be reduced, but also it will make feasible the creation of a 

more compact, fast and portable echocardiographic device.   
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Appendix A 3D Architectures 

  
 

Figure 46 (Left) Detailed 3D architecture, (middle) Simple 3D architecture, (right) 

3D architecture with SVM. 
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