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Abstract: Fish-cage dysfunction in aquaculture installations can trigger significant negative consequences affecting the
operational costs. Low oxygen levels, due to excessive fooling's, leads to decrease growth performance, and feed efficiency.
Therefore, frequent periodic inspection of fish-cage nets is required, but this task can become quite expensive with the
traditional means of employing professional divers that perform visual inspections at regular time intervals. The modern trend in
aquaculture is to take advantage of IT technologies with the use of a small-sized, low-cost autonomous underwater vehicle,
permanently residing within a fish cage and performing regular video inspection of the infrastructure for the entire net surface. In
this study, we explore specialised image processing schemes to detect net holes of multiple area size and shape. These
techniques are designed with the vision to provide robust solutions that take advantage of either global or local image structures
to provide the efficient inspection of multiple net holes.

1 Introduction
With the term ‘commercial aquaculture’ we refer to the industry of
intensive fish farming, where the term farming implies all actions
necessary to secure a robust fish rearing process to achieve high
rates of production and food quality. The infrastructure of
aquaculture consists of floating underwater fish cages, where
sufficient oxygen supply is one of those conditions to be satisfied,
fresh water and food to the fish population. The growth of
aquaculture [1] becomes so significant in recent years that makes it
imperative to take actions that guarantee the sustainability of the
structures. It is clear that maintenance actions must take place in a
regular and efficient basis to restrain faults and, as a consequence,
minimise the overall operational cost of the facilities.

Fish escapes from net holes, decreased growth performance or
feed efficiency, as a result of low oxygen levels due to excessive
fouling, are just a few of the most common problems. Furthermore,
the recent trend in aquaculture is to move its activities away from
the shore, to avoid competition from other users of the coastal
zone, to increase farming sites and to reach more suitable
environmental conditions. This trend increases the inspection costs,
due to the additional transportation and delay demands, while
frequent inspections are still required.

The advances in IT technologies offer a variety of additional
inspection solutions, such as static submerged cameras, Remotely
Operated Vehicle (ROV) and other sensors, capable of transmitting
almost real-time information to the land-based facilities. Although
these solutions certainly facilitate the operational procedures, they
do require constant human involvement for their operation, which
is associated with increased delays and costs. To overcome the
manual inspection, the evident solution is to engage automated
schemes with the use of autonomous underwater vehicle (AUV),
permanently residing within a fish cage and performing regular
inspection of the infrastructure [2, 3]. The mission of such an AUV
is to record annotated video from the total net-surface and upload
the video to a land-based server. Dedicated software can be
deployed to analyse the video and automatically scan it for

problematic areas (e.g. net holes, excessive fouling). Upon
successful detection, the position of the area, in terms of the
inspection date, depth and bearing, as well as a relevant image are
reported to the appropriate channel, with appropriate notifications
(email, sms etc.). Nevertheless, the inspection methodology must
handle diverse problems stemming from the underwater conditions,
such as the blurred and obscure imaging due to the lighting
conditions that vary with the day time or the season, the changing
zoom recording due to the varying distance from the net, the mixed
views of the net with overlaid fish, other floating structures etc.
Thus, the software operation in a robust and efficient way is of
utmost importance, rendering the specific application context quite
different from other inspection areas.

In our study, we focus on the detection of fish cage net holes of
different size and shape, since their presence must be handled fast
and efficiently. We explore several circumstances of capturing the
fish cage net under the water, with varying structure deformation
and position. As a consequence, we test our methods on conditions
that illustrate net cells with multiple combinations of translation,
rotation and resize. In particular, the images used in this study for
demonstration purposes represent net cases with differences
regarding the size and the shape of holes, while in particular cases
the appearance of some net cell boundaries is motion deformed due
to water currents.

The rest of the paper is organised as follows: In Section 2, the
state-of-the-art is presented regarding both the technologies for fish
cage infrastructure inspection and the image processing techniques
applied for the detection of net malfunction. In Section 3, we
present the proposed image processing approach that is developed
and implemented aiming first at global (abstract) and then at the
local (detailed) search for the net structure. Finally, the outcome of
our study is summarised in Section 4.

2 State-of-the-art
According to the FAO handbook of aquaculture operations in
floating HDPE cages [4], the default way to monitor underwater
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infrastructures and perform maintenance operations is the use of
professional divers. However, their contribution is recommended to
be as minimum as possible, while automated monitoring systems
are encouraged.

As already stated, the automated monitoring system should, at
least, monitor the fish cage structure for the existence of possible
deformations along with any factors related to the health of the fish
population. Contemporary ROV and AUV setups are equipped
with one or more (in case of stereo vision) camera sensors, while
they can capture video data, transfer video to an external server
and, in some cases, process data on board in real-time [3–7]. The
use of such systems enables actions like monitoring of fish cage
nets in a regular basis.

The underwater video data processing, in both cases of online
or offline assessment [8–11] is quite complex since the conditions
under which data acquisition is performed cannot be fully
controlled. They depend on the depth, the water currents, the
presence of fishes, fouling or water formations. If we consider the
specific task of monitoring the fish cage nets for discontinuities, it
is clear that underwater conditions affect in a direct way the mode
of net positioning, shift or rotation. For example, the same net cells
are expected to differ in size and shape in successive frames
because of their different pose to the camera. The detection of net
discontinuities (like holes, fouling etc.) using image processing and
machine vision techniques is similar to the task of detection of
pattern irregularities, but with the presence of affine
transformations, at least translation and rotation. Methods that use
simple edge detection techniques, like Canny detector [12] or
simple Hough transform [13], are not able to provide adequate
results due to the temporal and spatial deformation of net cells.

Many interesting approaches have been introduced to address
the irregularity in patterns. In [14], a multi-directional spatial
tracking approach is proposed based on affine transformation,
while in [15] texels are detected and their spatial arrangement is
analysed to derive the distribution of texels for texture modelling.
Other studies explore regular and near-regular textures by
extracting their global periodicity using affine deformation and

Delaunay triangulation-like method [16], by manipulating the
geometric, lighting and colour deformation field [17] or by
computing local periodicity statistics [17].

Regarding the specific task of improving the lighting conditions
using underwater image enhancement, there are state-of-the-art
methods that consider light diffusion properties and illumination
irregularities along with trends of image restoration methodologies
[18]. In our study, we neglect the effects of depth and focus on the
poor contrast of images that may be caused by absorption and
scattering since we are not considering deep ocean conditions in
aquaculture. More specifically, for improving contrast and
sharpness, as well as for reducing non-uniform lighting of the
images we test a multiplicative imaging model and apply
homomorphic filtering as a preprocessing step for improving
contrast and sharpness, as well as for reducing non-uniform
lighting of the images [19]. Furthermore, to improve the lighting
conditions we are currently experimenting with a LED source at
the green–blue spectral region for reduced absorption and
scattering [18]. Since the light transmission in underwater
conditions does not form the main concept of this paper, we do not
expand further on the formation and restoration of net images, but
rather focus on the analysis of the net structure and its irregularities
due to destructive damage.

So, in our study, we propose two different approaches that are
suitable for in-situ monitoring and real-time application. They are
based on statistical analysis and histogram considerations along
with Hough transform. We aim to develop approaches that bear
small computational complexity to address real-time
implementation in the future, possibly performed right on the AUV.

3 Proposed methodology
The proposed methodology is presented as a combination of two
different approaches, one based on the global distribution pattern
detected via the Hough transform and another based on a statistical
analysis of local intensity values. The key idea is to cover both
global and local search for holes because the conditions under
which the fish cage nets are operating are unpredictable even in
well-infrastructured underwater facilities. Thus, there are cases
where the global image content is clear and available for
processing, while others where only the local information of
stretched net cells is available for processing. Furthermore, the
underwater captured net images contain net cell areas along with
translated, resized or rotated net cells. Our proposed fault
identification scheme takes advantage of both global and local
image information to cover most cases of net images. As the first
step in our implementation, we test the proposed methodologies on
net images presenting diverse structures of net cells, which are
captured under different illumination, zoom factors and angle
views conditions. For demonstration purposes, three different
images are presented where the net cells differ in size and shape
characteristics. These three images are common net images found
in the web and they are captured under unknown to us conditions.
The testing with images captured under realistic underwater
conditions with equipment of known technical specifications is
planned for future work.

3.1 Global search for holes

The first approach is implemented through either non-overlapping
or shift invariant moving window that runs all over the image with
a 50% overlapping coverage from one position to another. Net hole
detection results through statistical modelling of sum-distribution
of net pixel intensities, to define outliers (hole positions) with a
certainty based on p-values.

More specifically, every image is binarised using the Otsu
threshold with black colour to represent the net lines and white
colour to represent the background (Figs. 1a and b). 

Then, the image is being split into larger blocks with each block
covering the 25% of the total image area, while the overlapping
area between blocks is set to 50%. These blocks are again being
split to 16 sub-blocks each, as illustrated in Figs. 2a–c. The key
idea behind this operation is to get a way to access multiple views
of image blocks illustrate with similar net content.

Fig. 1  Net images
(a) Initial net image, (b) Net image after being split into non-overlapping blocks

 

Fig. 2  Net image split into blocks and sub-blocks
(a) 15 blocks of net image of Fig. 1a, (b) 16 sub-blocks of block 1, (c) 16 sub-blocks
of block 5
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The manipulation of the total count of net pixels (i.e. black
pixels) within a block may provide a representative way to detect
net holes, as this number decreases in the presence of holes.
However, the absolute count of the black pixels (net line) can
easily lead to erroneous conclusions, since its value under normal
conditions differs drastically based on the distance from the net, its
deformations, as well as the angle of viewing. It becomes obvious
that an efficient normalisation scheme is necessary and to this
respect, we base our proposed method on the statistical modelling
of the count distribution of net pixels for the entire image.

After the split of each image to blocks (block number: i = 
[1,15]) and sub-blocks (sub-block number: (i,j), j = [1,16]), we
calculate the normalised sum value of black pixels in each sub-
block (i,j) based on the total count within the image examined. The
idea behind splitting the image into subblock is to process large
images in a short time using parallelism. Nevertheless, the size of
each sub-block should enable capturing the basic net-cell unit, to
enclosure an adequate amount of information concerning the net
cells for evaluating the basic structure. For example, in Fig. 2 the
net holes in sub-blocks enable capturing the irregular forms
compared to the rest of the image content. Since the method can be

extended to different inspection conditions, the size of sub-blocks
should be selected in relation to the image resolution, the viewing
focal length and the distance from the nets. Based on different
experiments the size of a sub-block should be at least two times the
size of the net cell as depicted in the image of interest.

As a next step, we calculate the mean and standard deviation of
net pixels within the examined image. In the next step, we
formulate the histogram of block counts, forming a near-normal
distribution around the calculated mean. We check the assumption
of normal distribution using the Lilliefors test. Under the normality
assumption, we use the 5% p-value as a significance measure for
assessing whether or not the count of each sub-block may form an
extreme value to the overall distribution. In the case of non-
normally distributed data, first, use the Box-Cox transformation
before applying the p-value test. In this test, we mostly care about
the lower part of the distribution, under the 0.025 p-value, which
indicates the lack of pixels corresponding to the net structure. The
upper extreme may indicate extreme values of large counts that
may occur from severe folding and overlapping of net lines, from a
drastic change in the focus point or in the distance from the net.

Overall, the count of net pixels in sub-blocks is used to define
the statistic to assess extreme values. The value of each sub-block
is compared against the test statistic. At the lower part of the
histogram, we expect to find sub-blocks triggering the existence of
irregularities (holes). At the higher part of the histogram, we
identify irregularities due to reasons other than lack of net
structure. Nevertheless, the lower part of the histogram can easily
be misleading in the case of poor illumination conditions. Some
examples of the last two cases are presented at Fig. 3. More
specifically, in Fig. 3a, the case of an external (non-net) object is
presented within the oval shape, whereas the case of poor imaging
conditions is reflected within the triangle shape. In Fig. 3b, a result
of net-hole detection is presented using the same approach.

To alleviate the false detection of holes due to a set threshold on
the histogram, which might oversee low-end irregularities in the
histogram distribution, we tested an alternative threshold based on
the knee-point of the cumulative distribution function (cdf). For
instance, if we calculate the cdf of sub-block counts corresponding
to the one of Fig. 3b, then we identify a threshold value at the point
of sharp increase, as in Fig. 4a. The detected image blocks where a
hole or a part of it is engaged are shown in Fig. 4b. We observe
here that the method can accommodate irregularities in the net
structure. However, it cannot deal with very small holes due to line
breaks in the net, where the broken line still appears hanging in the
image. In this case, the net count will involve the same number of
pixels as in the normal net formation, but some of them correspond
just to broken lines. One way to overcome this limitation is to
proceed with a moving window scheme instead of non-overlapping
windows. This scheme would indicate large differences along the
sequel of positions, triggering the existence of structural
irregularity in the net weavings. In any case, the local method
developed in the next section also aims to alleviate such limitations
associated with the inspection of the ‘gross’ structure.

Figs. 5 and 6 illustrate an example of the detection process in an
image with a large hole structure, whereas Figs. 7 and 8 illustrate
the case of small area net hole coverage. 

The blocks that are identified in Fig. 6 actually cover most of
the net image area where the hole is located. Only some areas of
the hole might remain undetected, as only a small part falls within
a sub-block.

Fig. 3  Image examples with different cdf value cases
(a) Example of cdf values <0.025 in the mean distribution value (within triangle shape) and >0.925 p-value (within oval shape), (b) Hole net detection result

 

Fig. 4  Cumulative histogram of image intensity values
(a) Cumulative histograms and threshold taking into account every image block, (b)
Final result of hole detection

 

Fig. 5  Example of a net image with large hole
(a) Initial image, (b) Split image result into blocks
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In the case of a net image like the one presented in Fig. 7a, the
corresponding results in Fig. 8 show that the hole is detected
successfully but there is also a case detected where no hole exists.
This happens due to extremely poor illumination conditions that
cannot be tolerated by the single threshold used. The last two
problems can be dealt with an approach of moving windows
instead of non-overlapping windows for the definition of sub-
blocks. This scheme will achieve more detailed region coverage to
capture a hole region well within the range of a sub-block, as to
trigger its presence. The drawback of this implementation relates to
the increased cost of operation and the increased time requirements
for detection. It is a fact the AUV or ROV setups are often built

using low-level hardware or even reconfigurable logic processing
to achieve (near) real-time results. Although effective processors
have recently been used, the operation of a moving window could
pose a serious obstacle for operations at 30 frames per second on a
high-resolution wide view of the scene analysed in different scales,
as highlighted in [20] for multiscale images. With the sliding
window approach, the computational complexity rise to O(N2M2)
where N is the size of a rectangular image and M the size of a
rectangular window. With efficient implementation schemes, this
complexity can drop down to O(N2M) [20], which is still quite high
for real-time implementation on portable low-level hardware
components. Furthermore, this approach still considers a gross
distribution estimation of the net lines, with multiple structures
resulting to the same histogram distribution, so that it is prone to
false negative errors. To resolve such ambiguity issues, we propose
a net-modelling approach in the next section, based on the
directionality of the net lines.

3.2 Local search for holes

In a local detailed view of the content of net images, we implement
a methodology that models linear directions on edges via Hough
transform. The idea here is to model the edge structures (net lines)
with straight lined obtained from the Hough table. We expect to
identify two main directions (θ-values) with periodic repetitions in
the distance axis. Since the net lines are highly deformed, we do
not expect to achieve a perfect match of the model lines to the edge
structures. However, the closest distance of each model point to an
edge (net) pixel should be within some tolerance levels, if the net
line exists. Otherwise, in the case of a net hole, we expect to
identify extreme large distances, signifying empty space among
model lines. The main steps of this approach are:

• Fit model lines over actual edge structures.
• Compute the distance divergence measure at each model point

(from an actual edge) via the vertical distances of the model line
to the closest edge.

• Perform statistical modelling of point divergences to define
outliers (hole positions) with a certainty level based on p-values.

More specifically, in our approach, the Hough transform is
implemented in the direction of detecting straight lines. For any
line passing through the point (xi, yi) in the space plane, there is an
equation in the polar coordinate system:

xcos θ + ysin θ = ρ, (1)

where ρ represents the distance from the origin to the closest point
of the line and θ is the line orientation. For any point (xi, yi) on this
line, ρ and θ are constant [21]. Thus, an accumulator for each point
(ρ, θ) in the Hough space would indicate a single line in the image
space.

If we plot the sinusoids described in (1) for every image pixel,
then we get an image like in Fig. 9b, where the horizontal axis
represents θ and the vertical axis represents ρ. Each sinusoidal line
corresponds to one edge pixel in the image domain, whereas each
point in the Hough plane reflects an entire line in the image plane. 

Thus, to locate the main straight lines, we need to find the main
peak trends of ρ and θ values. To this direction, we access the
Hough table to get the first 100 maxima and then we estimate their
CDF distribution, as in Fig. 10a. We identify the knee point of this
curve as a threshold value (Fig. 10a) and we keep all values in
Hough table that are higher than this as peak values. These points
represent the main lines that model the image and are positioned in
a narrow band around two specific values of θ. Subsequently, we
define the bands around two maxima θ values that actually reflect
the main line directions in the image using the histogram
representation of the corresponding θ values as in Fig. 10d.
Furthermore, the maxima ρ values within these bands define the
peaks of interest in the Hough table, indicating all lines of interest
in the image across two main directions. As a result, up to this step,
we have a clear estimation of θ and ρ values of straight lines that
appear in the image.

Fig. 6  Histogram observations for net image in Fig. 5a
(a) Cumulative histogram, (b) Threshold determination, (c) Final result of hole
detection

 

Fig. 7  Example of a net image with small hole
(a) Initial image, (b) Split image result into blocks

 

Fig. 8  Histogram observations for net image in Fig. 7a
(a) Cumulative histogram, (b) Threshold determination, (c) Final result of hole
detection
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As a final step, we construct all model lines reflected by the
peaks in the Hough θ and ρ values and compute the Euclidean
distance from each line point to its closest edge point in the image.
The histogram of distances and its extrema parts indicate the
positions of net holes as in Fig. 11. The density of points within the
area of holes reflects the parts of model lines within a range around
the two max θ values with extremely large distance divergence
measure.

In Figs. 12 and 13, the results of two more images are
presented. It becomes clear that this method detects net breaks as a
means of detecting holes. This form of detection is more accurate
and detailed than the former method in Section 3.1, but it poses
high demands on computational complexity and time requirements.
The use of low level hardware for the processing may give a way
to handle these operations efficiently.

3.3 Proposed joint operation of fault detection schemes

In this study, we propose two methodologies for detecting holes in
fish nets, stemming from different philosophies and incorporating

their particular advantages and problems. The former one is fast
and strongly parallelisable, considering an abstract structure of the
image based on the overall distribution of intensities. The latter
method is attempting a more detailed analysis of the structure of
the net, using modelling of parallel line patterns and their local
distance properties. The last scheme can accomplish scrutinised
search on the directionality of each net line, thus providing detailed
information on the location of the line (net) breaks, but with
increased requirements in time and computational complexity. To
combine the properties of these two philosophies into a single
integrated fault detection scheme, we propose two directions, the
parallel and the sequential operation. The first one implements the
simple operation of the two schemes in parallel with the
combination of results at the fault detection level. The second one
builds on a sequential improvement of the detection ability, with
the global scheme operating first deriving the locations of the net
holes, followed by the local scheme applied only in the specific
local regions of the faults. Thus, the sequential application of the
local scheme aims to provide detailed information about the nature

Fig. 9  Hough table values for net image
(a) Initial image, (b) Hough table representing θ values (x-axis) and ρ values (y-axis) of image lines

 

Fig. 10  Explore Hough transform values for θ peaks
(a) CDF of Hough values and Threshold for peaks in image of Fig. 9a, (b) Hough values of ρ and θ, (c) Top maxima of two main θ values, (d) Histogram of main θ peaks

 

Fig. 11  Net hole detection using the maxima of Hough transform values
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of the fault within only a short time, since it operates only on a
limited range at specific local regions rather than on the entire
image.

We should notice at this point that the parallel combination pays
attention to the robustness of detection since it focuses on the
detection from both independent schemes. Alternatively, the
sequential combination emphasises on the detailed formation of the
fault (hole), as well as on the time requirements of the detection
algorithm. In this study, we verified the efficiency of each
individual scheme and their parallel combination, while the
sequential combination is the focus of a feature study incorporating
the computational requirements and the capabilities for near real-
time implementation.

The combination of the two schemes is the natural consequence
of our analysis, which can only improve the detection performance
by exploiting both local and global geometric properties of the net
structure. At this stage of development, we aim to reveal the
complementarity of two different approaches, but most importantly
we wish to emphasise their individual potential for the correct
detection of net holes. Essentially, this study explores the potential
of advanced image processing, without external lighting
conditions, to resolve issues of net inspection with respect to the
varying characteristics of net holes observed in difficult underwater
conditions (causing affine transforms like shear, resized or rotated
net cells).

4 Conclusions
The main objectives of this work are the detection of net holes
under complex formations in terms of shape and area size. The first
step of our approach relates to image pre-processing for isolating
the net structure from the background colour variations, while the
next steps focus on the exploitation of effective image processing
techniques based on both local net structure and global image
formation. The main idea behind these methods is to provide
solutions for difficult underwater environment conditions during
net image capture.

All images that were tested enabled successful net-hole
detection. The application of the proposed two approaches support
detection either in the case where the total count of net cells is
clearly identified in the image or in the case where net cells appear
resized or under rotation that may occur to a flexible net material.

The focus of this study was on the exploration of the detection
abilities, as well as the fault diagnosis reasons for each one of the
proposed schemes. The robustness of the algorithms and their
combination schemes has to be routinely tested with a sequence of
underwater images over time. However, the first indication of
results is promising for efficiently detecting and localising net

holes of different size, shape and image background. Future work
also has to deal with the real-time implementation of the two
approaches and testing on the processing unit of an ROV or AUV.
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