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Abstract—This paper presents a novel traffic control action 

referring to virtual moving of the internal boundary of bi-
directional highways for lane-free traffic of automated 
vehicles. Since capacity of lane-free traffic is roughly 
proportional to the road width, the total cross-road capacity 
may be shared flexibly (in space and time) between the two 
opposite directions according to the current bi-directional 
demand. In order to determine the control input, which is the 
road width or capacity sharing factor, an appropriate QP 
(Quadratic Programming) problem formulation employing the 
macroscopic CTM (Cell Transmission Model) is developed. 
Simulation results with and without control are analyzed and 
compared to demonstrate the potential of the proposed scheme 
in exploiting the available road infrastructure at 
unprecedented levels. 
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I. INTRODUCTION 

Vehicular traffic is crucial for the transport of persons 
and goods, but daily traffic congestion, entailing substantial 
delays, excessive environmental pollution and reduced traffic 
safety, has been an increasingly serious problem around the 
world that calls for drastic solutions. Conventional traffic 
management measures are valuable [1], [2] but not always 
sufficient to tackle the heavily congested traffic conditions, 
which must be addressed in a more comprehensive way that 
exploits gradually emerging and future ground-breaking 
capabilities of vehicles and the infrastructure. During the last 
decade, there has been an enormous effort by the industry 
and by numerous research institutions to develop and deploy 
a variety of vehicle automation and communication systems 
that are revolutionizing the vehicle capabilities [3]. 

A recent paper [4] launched the TrafficFluid concept, 
which is a novel paradigm for vehicular traffic, applicable at 
high levels of vehicle automation and communication and 
high penetration rates, as expected to prevail in the not-too-
far future. The TrafficFluid concept is based on the following 
two combined principles: (1) Lane-free traffic, whereby 
vehicles are not bound to fixed traffic lanes, as in 
conventional traffic, but may drive anywhere on the 2-D 
surface of the road; (2) Vehicle nudging, whereby vehicles 
communicate their presence to other vehicles in front of 
them, and this may exert a “nudging” effect on the vehicles 
in front, i.e. vehicles in front may experience (apply) a 
pushing influence. Several advantages and challenges related 
to this novel traffic paradigm are discussed in [4] and [5]. 
This paper exploits the lane-free property of TrafficFluid, i.e. 
the possibility for vehicles to drive on the 2-D road surface 

without being bound to lanes. As demonstrated in a small 
experiment in [4], and is also intuitively sensible, lane-free 
traffic implies that the flow capacity may exhibit incremental 
(increasing or decreasing) changes in response to 
corresponding incremental (widening or narrowing) changes 
of the road width. 

Consider a road or highway with two opposite traffic 
directions, where connected and automated vehicles (CAV) 
are driving. The total carriageway capacity (for both 
directions) could be shared among the two directions in a 
flexible way according to the prevailing bi-directional 
demand, so as to maximize the infrastructure exploitation 
congestion in either direction. Flexible capacity sharing may 
be achieved via virtual moving of the internal boundary, 
which separates the two traffic directions, and corresponding 
communication to the CAV to respect the changed internal 
boundary. This way, the carriageway’s width portion (and 
total capacity share) assigned to each traffic direction can be 
changed in space and time (subject to constraints) according 
to an appropriate control strategy, as illustrated in Fig. 1. 

The idea of sharing the total road capacity among the two 
traffic directions is not new and has been occasionally 
employed for conventional lane-based traffic, typically 
offline or manually [6]. The measure is known as tidal flow 
or reversible lane control, and its main principle is to adapt 
the total available cross-road supply to the bi-directional 
demand. Its most basic form is the steady allocation of one 
(or more) lanes of one direction to the opposite direction for 
a period of time (ranging from few hours to many days) in 
the aim of addressing abnormal traffic supply or demand. 
More advanced reversible lane systems may operate in real 
time to balance delays on both sides of a known bottleneck 
(e.g. bridge, tunnel) by assigning a lane to the each of the 
two directions in alternation in response to the prevailing 
traffic conditions. To this end, optimal control or feedback 
control algorithms of various types are proposed (see e.g. [7], 
[8]).  

Reversible lanes have also been considered in connection 
with lane-based CAV driving. Reference [9] uses the system 
optimal dynamic traffic assignment models for a single 
destination [10] and for more general networks [11], that 
utilize the Cell Transmission Model (CTM) [12]. Lanes are 
introduced as integer variables, and the problem is 
formulated as a mixed integer linear programming (MILP) 
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Fig. 1. Space-time flexible internal road boundary 



problem that has, however, high (exponential) complexity 
due to the many integers variables involved. This model was 
also used in [13] for a single link utilizing stochastic demand 
as a Markov decision process. The MILP problem is solved 
using a heuristic and is incorporated within a UE routing 
problem. 

Lane-based tidal flow control systems may be very useful 
for certain situations (e.g. work zones), but they face a 
number of difficulties that limit their widespread use. Most 
importantly, the resolution of infrastructure sharing among 
the two traffic directions cannot be higher than one lane, 
which is not sufficiently fine-grained for most traffic 
situations. A second drawback is about reversible lane 
implementation; whenever a reversible lane switch to the 
opposite direction is decided, a time-delay (corresponding to 
the travel time on the reversible lane) must be respected, 
before actually opening the lane to the opposite direction, so 
as to allow for the evacuation of the lane and avoid 
simultaneous opposite-direction movements. In addition, a 
reversible lane must extend over sufficient length (minimum 
of few kilometers) to avoid counter-problems due to merging 
or diverging traffic. 

Even in the future CAV traffic, however, some of the 
mentioned difficulties would persist in lane-based conditions, 
notably the low capacity sharing resolution, the merging 
nuisance and, last not least, the complex (integer-based) 
nature of the corresponding optimization problems that 
hinder real-time feasibility. In contrast, in a lane-free CAV 
traffic environment, the mentioned difficulties are largely 
mitigated. Specifically: 

 The resolution of infrastructure sharing among the 
two directions can be high. 

 The smooth driving of CAV in a lane-free road 
surface allows for the internal boundary to be a 
smooth space-function, as illustrated in Fig. 1. 

 Due to moderate changes of the internal boundary 
over time and space and the lack of physical 
boundary, the aforementioned safety-induced time-
delay, required to avoid opposite movements on the 
same road surface, may be small. 

 As practiced in this paper, the resulting optimization 
problems include only real-valued variables (no 
integers are necessary) and may therefore be solved 
very efficiently, so as to be readily real-time feasible. 

Thanks to these characteristics, real-time internal 
boundary control for lane-free CAV traffic may be broadly 
applicable to the high number of arterial or highway 
infrastructures that feature unbalanced demands during the 
day in the two traffic directions, so as to strongly mitigate or 
even avoid congestion. 

This paper proposes a macroscopic model-based 
optimization scheme to elaborate on and demonstrate the 
characteristics of internal boundary control. The well-known 
CTM [12] is employed to this end, leading to a convex 
Quadratic Programming (QP) problem. A carefully designed 
simulation scenario highlights some interesting implications 
of this innovative control measure. 

The rest of the paper is organized as follows: Section II 
outlines some preliminary issues related to the problem at 
hand; including the CTM-based optimal control problem is 

given in Section III. Transforming the formulation to QP 
problem form is presented in Section IV. Simulation results 
are delivered in Section V and, following this, some 
conclusions and discussion are included in Section VI. 

II. PRELIMINRIES 

Various dynamic traffic flow models have been 
employed in the formulation of optimal control problems, 
among which a simple but realistic possibility is CTM [12], 
see [10], [14] for CTM-based optimal control formulations 
(among many others). CTM is a first-order model with 
triangular FD, which attains a space-time discretized form 
via application of the Godunov numerical scheme [15]. The 
main advantage of CTM, when used within an optimal 
control setting, is that it may lead to a convex, hence globally 
optimizable, linear or quadratic optimization problem, which 
can be solved numerically using very efficient available 
codes. The reason behind this property is that the 
nonlinearities that every traffic flow model must necessarily 
feature to realistically reflect the traffic flow dynamics, have, 
in CTM, a piecewise linear form that is amenable to linear 
constraints for the optimization problem and, hence, to a 
convex admissible region. 

Lane-free traffic is not expected to give rise to structural 
changes of existing macroscopic models. It is reasonable to 
assume, as also supported by results in [4], [16], [17], that 
notions and concepts like the conservation equation, the 
fundamental diagram, as well as moving traffic waves will 
continue to characterize macroscopic traffic flow modelling 
in the case of CAV lane-free traffic. By the same token, 
specific physical traffic parameters, such as free speed, 
critical density, flow capacity, jam density, are also relevant 
for lane-free traffic, but may of course take different values 
than in lane-based traffic. In the next section, we will use 
CTM, appropriately adjusted to incorporate the internal 
boundary control, so as to cast the control problem in the 
form of a convex Quadratic Programming (QP) problem. 

In the present context, it is crucial to elaborate on the 
impact of internal boundary control on the respective 
Fundamental Diagrams (FDs) of the two opposite traffic 
directions, which we call directions a  and ,b  respectively 
(Fig. 1). Let us assume that directions a  and b  are assigned 
respective road widths (in m) aw w   and 

(1 ) ,bw w    where 0 1   is the sharing factor and w  
is the total road width (for both directions). Let ( ),Q   where 
  is the traffic density in veh/km, be the total FD (both 
directions) of a highway section, which would prevail if the 
whole carriageway would be assigned to only one of the two 
opposite traffic directions (i.e. for   equal 0 or 1), with total 
critical density cr , total capacity capq  and total jam density 

max .  Let us consider the case of partial road sharing, i.e. 
min max ,     where min max, (0,1)    are appropriate 

bounds to be specified later. We want to derive the 
corresponding FDs and parameter values for the two 
directions a  and .b  It is not difficult to deduce (see also [18] 
for a more general derivation) that the FDs for the two 
directions, which are functions of ,  are given by 


( , ) ( / ),

( , ) (1 ) ( / (1 ))

a a a

b b b

Q Q

Q Q

    

    

 

   
 

where a  and b  (in veh/km) are the respective densities of 
the two directions.  



Let us subdivide a highway stretch holding two opposite 
traffic directions a  and b  in n  road sections, each some 
500 m in length. The total road width, which is assumed 
constant over all sections for simplicity, can be flexibly 
shared among the two directions in real time. As the sharing 
may be different for every section, we have corresponding 
sharing factors ,i 1,2,....., ;i n  and (1) applies to each 
section. As a consequence, the total section capacity, as well 
as the critical density and jam density, are shared among 
traffic directions a  and b  according to 


, ,

, ,

,max max ,max max

( ) , ( ) (1 ) ,

( ) , ( ) (1 ) ,

( ) , ( ) (1 ) .

a b
i cap i i cap i cap i i cap

a b
i cr i i cr i cr i i cr

a b
i i i i i i

q q q q   

       

       

    

    

    

 

The corresponding changes of the triangular FD that may 
occur at each section and traffic direction are illustrated in 
Fig. 2. More specifically, when the value of control input is 
0.5, i.e., the flow capacities of the two directions are equal, 
their FDs are “nominal” (blue line with (.)N parameters); 
when the control input is different than 0.5, we get two FDs: 
the extended one (green line with (.)E parameters) applies to 
the direction that is assigned higher width; and the reduced, 
complementary FD (orange line with (.)R parameters) applies 
to the other direction that is assigned less flow capacity. 
Based on (2), all FD parameters of a section change, 
whenever it is decided to change the corresponding sharing 
factor in real time. 

The control time step cT  does not need to be equal to the 
model time step ,T  but is assumed to be a multiple of ,T  in 
which case, the control time index is given by 

.c ck kT T     It is noted that the notation ( )ck  indicates 
that the specific sharing factor is applied for the duration of 
the control time interval [ , ( 1) ).c c c ck T k T     

For the internal boundary control problem, we would like 
to disallow the utter closure of either direction; hence, the 
assigned road width in either direction should never be 
smaller than the widest vehicles driving on the road, hence 
we have the constraints 

 ,min ,max0 1i i i       

where ,mini w   and ,max(1 )i w   are the minimum 
admissible widths to be assigned to directions a  and ,b  
respectively.  

Another restriction to be applied to the sharing factors 
concerns the time-delay needed to evacuate traffic on the 
direction that receives a restricted width, compared with the 
previous control time step. This time-delay is small in lane-
free CAV traffic with moderate changes of the sharing 
factors that are applied to short sections. This time-delay is 
omitted here for simplicity, but it is considered in a more 
comprehensive work [18]. 

III. CTM-BASED OPTIMAL CONTROL PROBLEM 

We are now ready to present the CTM equations, 
considering the changing sharing factors. We recall that we 
consider a highway stretch with n  sections, with respective 
lengths .iL  Traffic flows from section 1 to section n  for 
direction ;a  and from section n  to section 1 for direction b  
(see Fig. 3 for an example). We denote ,a

i  1,2,...., ,i n  
the traffic density of section ,i  direction ;a  and ,b

i  
1,2,...., ,i n  the traffic density of section ,i  direction .b  

Similarly, we have the mainstream exit flows of section i  
being denoted a

iq  for direction a  and b
iq  for direction .b  

Thus, 0
aq  is the feeding upstream mainstream inflow for 

direction a ; and 1
b
nq   is the feeding upstream mainstream 

inflow for direction .b  In addition, every section may have 
an on-ramp or an off-ramp at its upstream boundary. The on-
ramp flow (if any) for section ,i  direction ,a  is denoted ;a

ir  
and the on-ramp flow (if any) for section ,i  direction ,b  is 
denoted .b

ir  The off-ramp flow (if any) of section ,i  
direction ,a  is calculated based on known exit rates a

i  
multiplied with the upstream-section flow, i.e. 1;

a a
i iq   and 

the off-ramp flow (if any) of section ,i  direction ,b  is 
calculated based on known exit rates b

i  multiplied with the 
upstream-section flow, i.e. 1.

b b
i iq    

The conservation equation for direction a  is presented as 
follows 

1( 1) ( ) ((1 ) ( ) ( ) ( )),

1, 2,..., .

a a a a a a
i i i i i i

i

T
k k q k q k r k

L

i n

        


 

According to CTM, the traffic flows are obtained as the 
minimum of demand and supply functions, except for the last 
section, where we consider only the demand function, as we 
assume that the downstream traffic conditions are 
uncongested. So, we have 

1 1
1

1

( ( ), ( ))
( ) min ( ( ), ( )), ( ) ,

(1 )
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i D i i c ia

i
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


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 


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where the demand and supply functions are given by 

 

 max

( ( ), ( )) min ( ) , ( ) ,

1,2,..., ,

( ( ), ( )) min ( ) , ( ( ) ( )) ,

1,2,..., 1,

a a
D i i c i c cap f i
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S i i c i c cap s i c i

Q k k k q v k

i n

Q k k k q w k k

i n

   

     





 

 
  Fig. 2. The triangular fundamental diagram with flexible internal 

boundary 



where fv  is the free speed (which is assumed equal for all 
sections for simplicity) and sw  is the back-wave speed.  

Similarly, for direction b  we have 

1( 1) ( ) ((1 ) ( ) ( ) ( )),

1,2,...,

b b b b b b
i i i i i i

i

T
k k q k q k r k

L

i n

        


 

and the flows are given by 
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1

1
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( ( ), ( ))
( ) min ( ( ), ( )), ( ) ,

(1 )

2,3,...., ,

( ) ( ( ), ( )),

b
b b bS i i c
i D i i c ib

i

b b
D i c

Q k k
q k Q k k r k

i n

q k Q k k

 
 



 

 




    



  

where 

 
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IV. QUADRATIC PROGRAMMING FORMULATION 

The conservation equations (4) and (7) are linear, but, 
due to the presence of the min-operator in (5), (6), (8) and (9)
(9), the CTM flow equations presented in the previous 
section are nonlinear. In this regard, (5) and (6) of direction 
a  yield the following four inequalities 

 ( ) ( ) ,a a
i f iq k v k  

 

 ( ) ( ) ,a total
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i
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
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where (10) and (11) define the demand function while (12) 
and (13) imply the supply function. Similarly, for direction 
b  we have  

 ( ) ( ),b b
i f iq k v k  

 ( ) (1 )( ) ,b total
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To complete the QP problem formulation, we need to 
specify a quadratic cost function. The cost function must be 
defined in such a way that the main control goal as well as 
operational aspects of implementation are considered. In this 
sense, we define the cost function as follows 

   

   

1
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1
1 1 1 1
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2 2

2 1 3
0 2 0 2
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 


   

    

   

 

 
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The cost function extends over a time horizon of K  
model time steps or cK  control time steps, where 

c cK K T T  and it includes four terms. The first term 
presents the Total Time Spent (TTS) as a most important 
term for the pursued traffic flow efficiency maximization. 
The second and third terms aim at penalizing the variation of 
the control input in consecutive time-steps and segments, 
respectively, so as to obtain a smooth control input in space 
and time. The last term is considered in order to limit 
deviations of the sharing factors form the nominal value of 
0.5, which is the equal share for both directions. This 
completes the QP problem formulation, which may now be 
used to address the internal boundary moving problem. 

V. SIMULATION TEST 

The motorway stretch considered for simulation testing 
of the proposed concept is displayed in Fig. 3. Its length is 3 
km and it is subdivided in 6 sections of equal length. 

The modelling time step is 10s,T   and the control time 
step 60s.cT   The considered time horizon is 1 h, hence 

360K   and 60.cK   The utilized CTM parameters are 
100km/hfv   and 12km/h;sw   while the total cross-road 

capacity to be shared among the two directions is 
max 12,000 veh/hq  . The upper and lower bounds for the 

sharing factors, so as to avoid utter blocking of any of the 
two directions, are equal for all sections and are given the 
values min 0.16   and max 0.84.   The exit rates of the off-
ramps are both equal to 0.1.  

The demand flows for the investigated scenario are 
displayed in Fig. 4 for both directions. It may be seen that the 
two directions feature respective peaks in their upstream 
mainstream demands that are slightly overlapping. In 
addition, the on-ramp demands are constant, with the on-

Fig. 3. The considered highway stretch 



ramp demand in direction a  being higher than in direction 
.b  

The simulation results for the no-control case will be 
presented first, followed by the results obtained with optimal 
internal boundary control resulting from the solution of the 
corresponding QP problem. The weight parameters used in 
the cost function of the QP problem for the respective terms 
are 4 4 5

1 2 310 , 10 , 10 .w w w      

Using the entering flows of the proposed scenario in the 
CTM equations with constant internal boundary at 0.5i   
for all sections, we obtain the simulation results of the no-
control case with a TTS value equal to 209.8 veh∙h. Fig. 5 
displays the corresponding spatio-temporal density 
evolution. More precisely, the variable displayed for each 
direction is the relative density, defined as 

( ) ( ) ( ) ( ) ( ( 1) )a a a a
cr crk k k k k        for direction 

a  and ( ) ( ) ( ) ( ) ((1 ( 1)) )b b b b
cr crk k k k k         for 

direction .b  Note that density (in veh/h) by itself is not 
sufficient, in the internal boundary control environment, to 
distinguish between under-critical and congested traffic 
conditions, because the critical density is also changing 
according to the applied control. Of course, the critical 
density is not changing in the no-control case, but we use 

already here relative densities for consistency with the 
control case. According to the definition, relative density 
values lower than 1 refer to uncongested traffic; while values 
higher than 1 refer to congested traffic; clearly, when the 
relative density equals 1, and the downstream section is 
uncongested, we have capacity flow at the corresponding 
section.  

Fig. 5 shows that, heavy congestion is created in section 
5 for direction a  due to the strong ramp inflow, in 
combination with the increased mainstream demand, at 
around 60.k   The congestion tail propagates backwards, 
reaching up to section 2, and the congestion is dissolved at 
around 200,k   thanks to the rapid decrease of the 
mainstream demand (Fig. 4). In direction ,b  we have also a 
congestion being triggered by the increasing mainstream 
demand, in combination with the on-ramp flow, in section 3 
at around 250.k   Due to lower on-ramp flow, this 
congestion is smaller than in direction ;a  it spills back up to 
section 5 and dissolves at around 330.k   

Next, the simulation results in the presence of the 
controller will be presented. The spatio-temporal evolution 
of the relative densities in Fig. 6 confirm that the proposed 
capacity sharing strategy is effective in alleviating, in this 
case utterly avoiding, the congestion. 

Figs. 7, 8, 9 display more detailed information for this 
case. Specifically, each figure holds the results of two 
respective sections; for each section, we provide three 

 
Fig. 5. Relative density of the two directions in the no-control case 

 
Fig. 6. Relative density of the two directions in the control case 

 
Fig. 4. Demand flows of each direction 

 
Fig. 7. Density, flow and control trajectories in the control case (sections 
1 and 2) 

 
Fig. 8. Density, flow and control trajectories in the control case (sections 
3 and 4) 



diagrams: 

 The first diagram shows the two traffic densities (in 
veh/km), for directions a  and ,b  along with the 
corresponding two critical densities, which are 
changing according to the sharing factor in the 
section. 

 The second diagram shows the two traffic flows, for 
directions a  and ,b  and the corresponding two 
capacities, which are changing according to the 
sharing factor in the section. In addition, the sum of 
both flows is also displayed (cyan curve). 

 The third diagram shows the two sharing factors. 
Note that the time axis in this case displays the 
control time steps .ck  

The displayed results confirm that densities (flows) are 
always lower than the respective critical densities 
(capacities) in all sections and in both directions; hence 
traffic conditions are always and everywhere under-critical. 
In fact, the total-flow curve (for both directions) does not 
reach the total carriageway capacity (of 12,000 veh/h) at any 
time anywhere. In short, congestion is utterly avoided. The 
sharing factor trajectories of the sections reveal that this 
excellent outcome is enabled via a smooth swapping over 
time of the capacity assigned to the two directions, whereby 
more capacity is assigned to direction   during the first half 
of the time horizon and vice-versa for the second half, so as 
to accommodate the changing respective demands and their 
peaks. The resulting TTS value is equal to 164.9 veh∙h that is 
an improvement of 21.4 % over the no-control case. Since no 
congestion is formed in the no-control case, the reduction in 
travel delay is 100 %. 

VI. CONCLUSION 

In this study, internal boundary moving for lane-free 
traffic has been addressed and investigated. To this end, 
quadratic programming has been employed as a fast and 
effective tool to design the dynamic and space-dependent 
sharing factor between two traffic directions. The simulation 
results have been presented with and without control, and 
their comparison, both qualitative and quantitative (based on 
TTS values), confirm the effectiveness of the proposed 
measure and scheme. 
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Fig. 9. Density, flow and control trajectories in the control case (sections 
5 and 6) 

 


