
2

A Novel, Highly Integrated Simulator for Parallel

and Distributed Systems

NIKOLAOS TAMPOURATZIS, IOANNIS PAPAEFSTATHIOU, ANTONIOS NIKITAKIS,
and ANDREAS BROKALAKIS, Synelixis Solutions Ltd, Greece

STAMATIS ANDRIANAKIS and APOSTOLOS DOLLAS, Telecommunications Systems Institute,

Greece

MARCO MARCON, Dipartimento di Elettronica, Italy

EMANUELE PLEBANI, Advanced System Technology, Italy

In an era of complex networked parallel heterogeneous systems, simulating independently only parts, compo-
nents, or attributes of a system-under-design is a cumbersome, inaccurate, and inefficient approach. Moreover,
by considering each part of a system in an isolated manner, and due to the numerous and highly complicated
interactions between the different components, the system optimization capabilities are severely limited. The
presented fully-distributed simulation framework (called as COSSIM) is the first known open-source, high-
performance simulator that can handle holistically system-of-systems including processors, peripherals and

Extension of Conference Paper: N. Tampouratzis et al. An Open-Source Extendable, Highly-Accurate, and Security Aware
CPS Simulator. 2017 13th International Conference on DCOSS. When we presented COSSIM at DCOSS, it was a CPS-
tailored simulator with limited capabilities and the corresponding evaluation results were, thus, also limited. COSSIM
can now support the simulation of Cloud and HPC infrastructures as well, so the work presented in this article extends
the work in DCOSS in several aspects: (a) we extended the synchronization system in a novel way so as to allow it to
be decentralized/distributed itself while we evaluated it utilizing multiple HLA servers on different physical machines to
demonstrate that COSSIM is a fully-distributed framework, with no centralized components. In the conference paper, a
simple centralized approach was described, and (b) we extend the COSSIM capabilities in order to support a wide range
of different real network protocols by developing the micro-router functionality. In the conference paper, COSSIM could
support only wired Ethernet interconnections, so (c) we extended its capabilities so as to allow for different tradeoff between
accuracy and simulation times; no such capabilities have been supported in the 1st version of COSSIM. (d) We have extended
our complete framework so as to be able to handle a thousand simulated nodes; the original COSSIM simulator could
support up to 32 processing nodes. (e) Several real-world use cases of parallel applications are ported to our new system
and evaluated across different metrics. For example, we evaluated the new version of COSSIM when simulating up to 1024
X86-based and ARM-based nodes in a cluster that contains 200 physical cores. In addition, in the current article, COSSIM
has been evaluated in terms of all the additional features implemented (i.e., accuracy, scalability, and performance) when
executing the widely-used Netperf benchmark suite, which allows it to be compared against similar solutions that may
appear in the future. Furthermore, a new real-world use case has been added in the evaluation section (Section 6.4), which
clearly demonstrates that COSSIM accurately simulates a complete real system. (f) Finally, in order to further increase the
impact of our work to the HPC/Cloud/CPS community, the complete source code with its documentation has now become
freely distributed through GitHub.
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networks; such an approach is very appealing to both Cyber Physical Systems (CPS) and Highly Parallel Het-
erogeneous Systems designers and application developers. Our highly integrated approach is further aug-
mented with accurate power estimation and security sub-tools that can tap on all system components and
perform security and robustness analysis of the overall system under design—something that was unfeasible
up to now. Additionally, a sophisticated Eclipse-based Graphical User Interface (GUI) has been developed to
provide easy simulation setup, execution, and visualization of results. COSSIM has been evaluated when exe-
cuting the widely used Netperf benchmark suite as well as a number of real-world applications. Final results
demonstrate that the presented approach has up to 99% accuracy (when compared with the performance of
the real system), while the overall simulation time can be accelerated almost linearly with the number of
CPUs utilized by the simulator.

CCS Concepts: • Computing methodologies → Simulation tools; Simulation environments; Dis-

tributed simulation; • Networks→ Network simulations; • Computer systems organization→ Embed-

ded and cyber-physical systems;

Additional Key Words and Phrases: Distributed systems simulator, parallel systems simulator, CPS simulator,
integrated simulator
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1 INTRODUCTION

Nowadays, Cyber Physical Systems (CPS) and highly parallel and distributed computing systems
(i.e., Cloud and HPC systems) are growing in capability at an extraordinary rate, incorporating
processing systems that vary from simple microcontrollers to high performance units connected
with each other through numerous networks. One of the main problems the designers of such
systems face is the lack of simulation tools that can offer realistic insights beyond simple functional
testing, such as the actual performance of the nodes, accurate overall system timing, power/energy
estimations, and network deployment issues. On top of that, none of the existing solutions provide
security testing so as to be able to assess potential security problems at design time.

In this article, we present the COSSIM Simulation Framework, which is an open-source frame-
work that aims to address all the aforementioned limitations. The proposed solution efficiently
integrates a series of sub-tools that model the computing devices of the processing nodes as
well as the network(s) utilized in the the interconnections. It provides cycle accurate results
throughout the system by simulating together: (a) the actual application and system software exe-
cuted on each node; (b) the networks that are employed—COSSIM provides very accurate perfor-
mance/power/energy consumption estimates for both the processing elements and the network(s)
based on the actual dynamic usage scenarios. The simulator also provides the necessary hooks
to security testing software, making it possible to determine vulnerabilities and examine the ro-
bustness of the system under design. Last but not least, COSSIM employs a standardized intercon-
nection protocol between its sub-components (i.e., IEEE 1516.x HLA1); thus, it can be seamlessly
connected to additional similar tools, such as simulators of physical processes (e.g., HLA-Enabled
Ptolemy [Cardoso and Siron 2018]).

The main research challenges that have been addressed so as to create COSSIM, and which
are presented for the very first time in this article, are the following: (a) Develop a novel

1IEEE 1516.x: Standard for Modeling and Simulation High Level Architecture (HLA).
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synchronization scheme so as to support the notion of cycle accuracy throughout the sub-
simulators; (b) add to the synchronization scheme the ability to tradeoff the simulation time against
the required timing accuracy; (c) adapt the sub-simulators so as to be able to fully handle real net-
work packets; (d) adapt the sub-simulators as well as the synchronization scheme so as to imple-
ment a novel fully distributed system where no critical task and/or sub-simulator is centralized so
as to be able to efficiently handle the simulation of a thousand parallel processing nodes intercon-
nected with any available network technology.

2 PARALLEL SYSTEMS SIMULATORS AND THE COSSIM APPROACH

The COSSIM simulator can be utilized mainly in the development of two classes of systems—(a)
CPS and (b) Cloud and HPC systems. Starting from the CPS domain, the available tools for CPS
simulation fall under two main categories. The first one focuses mostly on the functionality of
the system under design and thus they try to model different entities in a CPS system—a physical
process, an electromechanical physical component, user behavior, events, message exchanges be-
tween components, and so on. Such tools are mostly based on the use of well-defined models of
computation. Among them, the most profound ones are Ptolemy [2018], Matlab Simulink [2019],
and Modelica-based simulation environments. While these tools can model physical processes,
they can only be used during the initial design phase of the CPS application (they can even gener-
ate application code) since they mainly offer functional simulation. As a result, they cannot han-
dle cycle-accurate processing simulation, power consumption estimations of the actual processing
components, nor the simulation of the actual networks that are going to be employed.

Simulators that do handle those aspects can typically be found in the field of Wireless Sensor
Networks (WSNs), which is a certain subset of CPS. Most of these tools are designed around a spe-
cific WSN-related operating system or a specific device. For example, TOSSIM [2013] can simulate
WSN applications designed for the TinyOS operating system; it can simulate the whole OS stack
including the applications developed on nesC, while offering models for specific micro-controllers
(AVR ATmega128) along with its peripherals. Similarly, COOJA [2016] is built to simulate sensor
networks whose nodes run mainly the Contiki operating system [Musznicki and Zwierzykowski
2012]; it can load binaries generated from other OSs as well. While it can simulate the actual soft-
ware stack that is executed, it can support only simple micro-controllers; additionally, it can handle
a small number of network protocols, while it provides the means to track energy consumption
through Energest [Dunkels et al. 2007]. Other WSN simulators [Avrora 2010; Fraboulet et al. 2007]
focus on specific micro-controllers or motes (they can model the whole sensor node including
sensors and the radio communications chip). These simulators can effectively model both the ac-
tual software executed on the processing nodes and the network between the devices; however,
their applicability cannot be generalized neither in terms of software (e.g., support for different
operating systems or software packages), nor in terms of hardware (e.g., support for other more
complicated CPUs) or network (e.g., they can only simulate specific wireless protocols). As a re-
sult, those tools cannot handle the simulation of general CPS that requires the modeling of very
diverse processing devices together with a multitude of networks.

In the area of Cloud simulators, the most widely used simulation framework is CloudSim [Goyal
et al. 2012] and its numerous extensions or derivatives (e.g., CloudSim4DWf [Fakhfakh et al.
2017], CloudTax [Pittl et al. 2017], CloudSimDisk [Louis et al. 2016]). Compared to COSSIM, these
simulators are working at a much higher abstraction level using generic non-detailed models;
they cannot precisely simulate the actual execution of an application, neither can they model
the exact processing hardware utilized. Other cloud simulators focus on specific aspects of the
data center that are useful for cloud providers such as, and mainly, resources’ provisioning.
Those simulators model user and application requirements through stochastic processes or

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 1, Article 2. Publication date: March 2020.



2:4 N. Tampouratzis et al.

mathematical models in order to predict resource usage and provide optimization insights for
avoiding excessive overprovisioning and underutilization (GreenCloud [2017], ElasticSim [Cai
et al. 2017], CACTOS [Ostberg et al. 2014]). COSSIM is orthogonal to those systems; the initial
results from those tools, for a specific application, can be significantly fine-tuned by executing
the application on top of COSSIM and extracting precise application performance and/or power
consumption indicators. The COSSIM results can certainly contribute to the optimization of the
system and data center design, in terms of performance and/or energy.

Cloud computing is mainly about sharing resources and making efficient use of computational
machines by multiple users and applications. Complimentary to the cloud data servers, while also
sharing certain aims and features, the parallel systems are intended to execute highly complex and
demanding applications (High Performance Computing-HPC systems). The problem in this case is
not to design an infrastructure that can be effectively used by multiple users but to make a system
of systems that is tuned to execute, in the most efficient (performance, energy or both -wise) man-
ner, a single (or a few) parallel application(s). The advent of applications that require extreme com-
putational resources (such as deep learning, AI, analytics, real-world phsyical/chemical/biological
simulations, etc.) both for academic/research and commercial purposes makes the design and de-
ployment of such systems and applications a very interesting and expanding area. In the HPC
domain, there are certain tools such as those by Mohammad et al. [2017], which model process-
ing units in a cycle accurate way, while others (e.g., see Ahmed et al. [2017]) that focus on the
simulation of real networks; thus, the existing approaches either focus on providing high accurate
results per node and more simplistic network models or they replace processing cycle-accurate
simulation with application traces or functional modeling and focus on the network part. COSSIM
goes beyond those approaches by combining successfully both aspects while providing additional
functionality (such as testing the robustness of applications).

There are also the Hornet [Ren et al. 2012] and Sniper [Carlson et al. 2011] simulators, which
can simulate multi-core X86 machines with different NoC configurations permitting tradeoffs be-
tween accuracy and simulation speed. However, the notion of relaxed synchronization, in those
simulators, is different from the one used in COSSIM; in COSSIM, relaxed synchronization is ap-
plied in the intercommunication between the processing nodes (through external networks), while
Hornet/Sniper employ relaxed synchronization within the processing simulation. Moreover, both
Hornet and Sniper can only simulate multi-core systems and not highly parallel distributed sys-
tems of systems.

In summary, to the best of the authors’ knowledge, no integrated solution exists that can handle
the simulation of actual CPS, Cloud, and HPC systems, including their complete software stack and
network dynamics. In order to address the lack of such tools, COSSIM efficiently integrates several
well-established simulation sub-systems in a single framework that works in the transparent to
the user way (i.e., as if it was a single tool rather than a framework). COSSIM is the only known
tool that can handle the network, processing, and power simulation in an integrated and fully
distributed manner, allowing for much faster and more accurate development.

3 COSSIM DESIGN CHOICES

3.1 Processing Simulator

Highly parallel systems, such as CPS, comprise of a set of nodes and a number of networks that
connect those nodes together. The diversity of nodes used in such systems is high; there can be
simple micro-controllers that control an actuator device or provide readings from a sensor, net-
work devices, powerful main control units, server systems, and so on. Thus, in order to accurately
simulate a processing node, a system simulator that is cycle-accurate, Instruction Set Architecture
(ISA) independent, configurable (in terms of supported devices and system features), able to boot
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real-world operating systems, and execute software compiled for the specified processing node is
required.

There is a wide range of open-source processing simulators. Open Virtual Platforms (OVP)
[Imperas Software Ltd. 2019] is a high-performance simulator that can simulate advanced multi-
core heterogeneous platforms, while it can support the most popular processor families (ARM,
MIPS, PowerPC, etc). However, it cannot model any operating system, and it does not provide
power models. On the other hand, SimpleScalar [Burger and Austin 1997] is a tool on top of which
the designer can perform program performance analysis, detailed micro-architectural modeling,
and hardware-software co-verification. It can simulate very complex CPUs (Alpha, x86, ARM, etc.)
while it provides means to track energy consumption through the Wattch framework [Brooks et al.
2000]. However, it cannot model or run an operating system.

GEM5 [2019] is a computer system simulation platform that can cover almost all the aforemen-
tioned requirements. It can simulate single or multi-core homogeneous or heterogeneous systems
including their peripherals. The main engine of the simulator is ISA agnostic, and it can be con-
figured to support a broad range of ISAs. GEM5 does not support natively any power/energy es-
timations; however, it can be integrated with other tools in order to provide this functionality.
The most common power estimator used in tandem with GEM5 is McPAT [Li et al. 2009], while a
number of integration tools have been released [Khudia 2014; Endo 2016]. As a result, in order to
efficiently simulate all processing aspects, COSSIM employs the GEM5 simulator.

3.2 Network Simulator

Although GEM5 can provide system simulation up to the level of the Network Interface Card
(NIC), it does not support network modeling. Therefore, COSSIM employs a dedicated network
simulator that handles all network related modeling above the physical layer of a NIC. The sim-
ulator selected for this task is OMNET++ [OMNET 2019]. Through OMNET++, different network
protocols and topologies can be supported and a realistic network behavior of the parallel system
can be modeled; devices such as bridges, switches, and routers integrated in the CPS/HPC/Cloud
system developed can also be modeled so as to further increase the simulation accuracy. Through
OMNET++’s extensions, it is also possible to estimate the power consumed at the network as well
as the radio devices (i.e., radio transceiver power consumption) of the nodes by using the MiXiM
add- on [MiXiM 2011].

It should be noted that there exist a number of different alternatives to OMNET++. The most pop-
ular ones are the ns2 [2011] and ns3 [2019] network simulators. Similarly to OMNET++, they are
also discrete event network simulators, supporting a multitude of network protocols. OMNET++
has been selected mostly because of its wide support of plugins, the reported shorter learning curve
than ns2 and ns3, and its higher performance and accuracy [Rehman Khana et al. 2013; Sundani
et al. 2011].

3.3 Integration of Components

Binding the aforementioned processing and network simulators together is a very complex task,
requiring carefully designed communication interfaces and synchronization schemes. These bidi-
rectional interfaces have to pass information on the type and timing of events as well as to provide
a common data representation scheme throughout the framework.

During the last decades, a number of standards for distributed simulation have been developed.
Functional Mock-Up Interface (FMI) [FMI 2019] is a tool-independent standard for the exchange
of dynamic models and for co-simulation. The primary goal was to support the exchange of simu-
lation models between suppliers and OEMs, while the second goal was the seamless co-simulation
using communication technologies like COM/DCOM, CORBA, Windows message-based
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interfaces, or signals and events. However, FMI does not currently support any communication
protocol—something essential for distributed/parallel simulation. Therefore, FMI cannot be con-
sidered an appropriate standard for COSSIM’s processing and network integration. Moreover, Test
and Training Enabling Architecture (TENA) [Noseworthy 2008] is an architecture proposed so as
to promote integrated testing and simulation-based acquisition through the use of a real-time syn-
thetic environment, which integrates testing, training, and simulation. However, TENA does not
provide integrated Time Management, which is a necessary feature for simulation events because
its aim is to integrate real-time systems. Moreover, Distributed Interactive Simulation (DIS) [DIS
1996] and Aggregate Level Simulation Protocol (ALSP) [Wilson and Weatherly 1994] were used
to define an interoperability infrastructure for linking simulations of various types at multiple lo-
cations so as to create realistic, virtual worlds for the simulation of highly interactive activities.
However, DIS and ALSP protocols are currently being replaced by the IEEE High Level Archi-
tecture (HLA) [HLA 2010] standard, which unifies their characteristics and mechanisms [Sean P.
Griffin and Fischer 1997].

As a result, in order to efficiently integrate the Processing and the Network sub-simulators,
COSSIM employs the HLA standard. HLA determines the functional entities, design rules and
interfaces for each connected simulation sub-system and specifies the communication between
the individual components. It requires a certain Run Time Infrastructure (RTI), which performs
event-based tasks that we have used so as to support full synchronization (i.e., having the same
notion of global time) across all COSSIM sub-systems. Among the numerous RTI implementations,
COSSIM has adopted CERTI [2018], which is an open-source, widely-used RTI implementation.

4 COSSIM ARCHITECTURE

Figure 1 illustrates the COSSIM simulator with all its components and interfaces. Multiple in-
stances of a node simulator module (i.e., a GEM5-based module called cGEM5) are required for the
efficient simulation of the numerous processing nodes of a parallel system. The network that binds
together the different nodes is simulated by the network simulation module (i.e., OMNET++ based
module called cOMNET++). The processing simulation instances are connected with the network
one through IEEE HLA-compliant interfaces (interface #1). Additionally, each cGEM5 instance is
connected through a custom XML interface with a McPAT instance to estimate the energy/power
consumption of each node (interface #2), while cOMNET++ employs internally the MiXIM add-on
to estimate the power consumption of the network. Both cGEM5 and cOMNET++ instances have
been properly modified to provide hooks that allow security software components to interact with
the simulation process so that security tests can be performed during the simulation (interfaces
#3, #4, #5).

Figure 1 also illustrates the primary inputs that a user has to provide to the overall system
and the primary outputs of the simulation process. Specifically, System Configuration (number of
CPUs, memory sub-system, peripherals, etc.) have to be defined either using a configuration file or
the supplied graphical interface. Furthermore, image files of the OSes that will be executed on the
nodes of the simulated platform have to be provided by the user. An image file includes the OS ker-
nel, the application executable,2 and all the libraries that are required. Finally, through a Network &

Topology description, the user can define a network topology (e.g., distance between nodes, topol-
ogy, mobility between nodes) and describe the interconnection channels and the selected network
protocols.

The COSSIM output comprises of the following: (a) Processing & Network statistics containing
all the measured metrics of the simulation process (e.g., clock ticks, real-time execution, cache

2The simulator includes a number of preassembled linux-based OS images in which the user can execute C/C++ and Java
applications.
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Fig. 1. Top-level view of the COSSIM framework. Fig. 2. COSSIM system interconnection.

misses, number of packets sent, number of packets dropped, delay of received packets), (b) the
output of the actual application that is executed, (c) security metrics (e.g., increase in response time,
rejection rate, vulnerability density, system robustness), and (d) power and energy estimations for
each node (including details such as peak power, runtime dynamic power, leakage, etc.) as well as
for the network(s) utilized.

The implemented Interface #1 is responsible for the integration of the processing and the net-
work simulation instances through HLA. The HLA-compliant interfaces that have been added to
the GEM5 and OMNET++ simulators implement both the required interconnection and synchro-
nization functions. Interface #1 consists of four sub-parts per node—(i) two responsible for the
exchange of the Data Packets and the synchronization of the Processing with the Network sub-
tools and (ii) two responsible for the initialization and synchronization of the overall COSSIM
framework through custom-made SynchServer. Finally, COSSIMlib is implemented so as to enable
the interoperability between cGEM5/cOMNET++ and CERTI/HLA as described in Section 5.3.

4.1 cGEM5

In order for GEM53 to serve as the processing simulation sub-system in the COSSIM framework, it
has properly been extended to support certain additional features. Based on the COSSIM require-
ments, the underlying processing simulation sub-system should support the simulation of a CPU
including several levels of memory hierarchy and complex peripherals (such as network cards,
accelerators, or other components), as well as the execution of a full operating system on top of
the simulated device. Currently, cGEM5 can support single and multi-core ARM and X86 architec-
tures, real network cards, and a complete TCP/IP protocol stack included in a Linux-based OS Kernel

module with the appropriate drivers. Additionally, cGEM5 can also execute safety-critical systems
(such as RTOS) [Namitha Gopalakrishna 2014].

In the following sections, the limitations of the current, publicly available version of GEM5
are described in tandem with the modifications and extensions that have been implemented to
alleviate those restrictions.

4.1.1 Extending the Network Model of GEM5. In GEM5’s publicly available repositories, the
only network interface card implemented, tested, and verified is the Intel 8254x based gigabit
Ethernet adapter. It is provided as a PCI GEM5 network device using the e1000 Linux driver.

3The adapted version GEM5 for COSSIM will be referred to as cGEM5.
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However, the latest version of GEM5 supports this real-network device only on ARM-based ar-
chitectures [Stevenson 2014]. GEM5 has been modified so as to support the Intel 8254x network
card for the x86 ISA [Tampouratzis 2016]. On top of that, proper drivers to support it have been
built; it should be noted though that the available drivers by Intel required Linux kernel 3.x sup-
port; therefore, the COSSIM underlying kernel supporting the network cards had to be custom
built since the GEM5 repositories only offered Linux kernel 2.x for x86 simulated systems.

In addition to the network interface cards, GEM5 supports networking through a simple Ether-
link device. Etherlink is a virtual dummy link that emulates a cable over which Ethernet packets
are sent and received without any delay (no switching or routing functionality is implemented).

In the scope of COSSIM, these limitations are unacceptably restrictive. Therefore, Etherlink
could not be used in its current form and thus it has been modified, while NICs supporting more
protocols have been developed. Since NIC device models cannot easily be developed without spe-
cific information from their manufacturer—the Intel NIC model used in GEM5 has been contributed
by Intel itself—and in order to support different physical networks, the COSSIM novel approach is
to tap the Ethernet packets from Etherlink and send them to the Networking Simulator, modifying
at the same time the packets to match the specific network protocol required by the simulated
application (i.e., Ethernet, WiFi, 3G). In more details, the network-related simulation data flow is
as follows: (a) in the processing simulator, a NIC is fully modeled and the application is connected
to it through its developed device driver; (b) in the network simulator, the network packets pro-
duced by the NIC are changed, by our developed microrouters (see below), to any network protocol
(without any effect in the simulated time/characteristics) and are accurately and fully handled by
the network simulator. The user can alter the characteristics of the NIC if he/she wants to model
an NIC with different latency/throughput/and so on, while if he/she is not that interested to simu-
late the exact NIC characteristics (which is probably the case for most Cloud/HPC developers), the
default NIC can be used, and any network topology, technology, and protocol can be accurately
simulated within cOMNET++. In such a way, COSSIM can also simulate applications that receive
data in user space (without Linux interaction) as long as the application has been linked to the
software implementing the NIC interface.

In order to achieve the aforementioned objectives, the CERTI HLA interface [Certi 2018] has
been employed. Specifically, the COSSIMlib has been integrated with the main core of the GEM5
system through Etherlink. COSSIMlib is a wrapper to an RTI library, which is responsible for the
exchange of the messages over the network with the HLA Server via TCP and UDP sockets. COS-

SIMlib exchanges Ethernet Packets captured from the Etherlink Device and sends (and accord-
ingly receives) them to (from) the HLA Server. Figure 2 provides an overview of the implemented
scheme.

4.1.2 Supporting Parallel/Distributed Simulation. The simplistic network model of GEM5 has
another serious limitation. It only supports the simulation of two identical networked systems

(for example, two identically configured ARM processors with exactly the same peripherals and
memory configuration). Furthermore, the simulation of both systems is executed within the same
thread; thus, a serious performance penalty is triggered while no synchronization primitives be-
tween the two systems are provided. (Recently, authors in Mohammad et al. [2017] provide a dis-
tributed GEM5 version that supports only ARM-based processors and a simplistic network model.)

By using HLA-compliant cGEM5 interfaces combined with a network simulator, as described
in the previous section, the different cGEM5 instances can be efficiently connected. Each cGEM5
instance models a single node and different GEM5 instances are connected through a simulated
network (more precisely, through HLA links and a network simulator). By following this ap-
proach, COSSIM overcomes all network related limitations of GEM5 as there are no limitations

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 1, Article 2. Publication date: March 2020.



A Novel, Highly Integrated Simulator for Parallel and Distributed Systems 2:9

for identically configured systems, nor is there a restriction on the number of GEM5 systems that
participate in the network. A very important additional benefit is that parallelism can be extracted
at the process level, since multiple GEM5 instances can be run in parallel. On top of that, as CERTI
HLA functions over IP, the different GEM5 instances do not even need to be on the same physical
machine, and the overall COSSIM simulator can thus be considered a fully distributed simulator.

4.2 cOMNET++

The key idea behind using a dedicated network simulator in COSSIM is to be able to support
multiple network protocols, topologies, and devices through which nodes (represented by cGEM5
instances) can be interconnected. OMNET++ has been chosen as the most capable and feature-
rich network simulator in that context; however, it also has certain limitations. OMNET++ does
not support the real protocol stacks (e.g., Linux ones) as GEM5 does; therefore, in order to effi-
ciently interconnect the two simulators, a module for encapsulating/decapsulating cGEM5 binary
packets into OMNET++-compatible packets is designed. In addition, in order to support different
network protocols (e.g., WiFi protocols) within OMNET++, micro-router modules are implemented
as described in the next paragraphs.

4.2.1 HLA Enabled Node Functionality. cGEM5 instances are connected to cOMNET++ through
HLA. For each cGEM5 instance, a node is created within cOMNET++, called HLA-Enabled node.
These nodes can transparently communicate with cGEM5 through a designed HLA RTI wrapper,
while encapsulating/decapsulating network packets in a comprehensible form for both simulators.
Within OMNET++, the HLA-Enabled nodes can communicate with any normal OMNET++ node,
e.g., a router or a switch; thus, any kind of topology can be supported.

In this respect, the COSSIM approach is based on having each simulated node consisting of two
parts: the processing part (simulated in cGEM5) and the network part (handled in cOMNET++),
which communicate through the HLA interfaces. Each of the HLA Enabled Nodes has a minimum
functionality that allows them to communicate with their counterpart on the cGEM5 side. The
network sub-system of the COSSIM simulator is designed to model the complete network related
behavior of each simulated node along with all the network characteristics. The upper protocol
stack (from Layer 2 and above) is accurately simulated from the processing sub-system.

More specifically, a CERTI-HLA-compliant wrapper has been developed and integrated within
cOMNET++, offering an interface to each node simulated in cGEM5, supporting consistent com-
munication and synchronization. Moreover, since the goal of COSSIM is to provide cycle-accurate
simulation, the whole Linux protocol stack is executed within cGEM5, thus producing a fully RFC-
compliant binary IP packet. In order for these packets to be forwarded, they are encapsulated prop-
erly by an HLA-node that is designed and instantiated by us inside the cOMNET++ L2/L3 packet
structure.

The first step in designing this HLA-node, was to modify the standard cOMNET++ cPacket struc-
ture so as to include payload data. The second step was to develop a custom-fit functionality that is
automatically inherited in each of the HLA enabled nodes of the simulation to seamlessly convert
the cGEM5 packets to cOMNET++ packets and vice versa. As a result, in COSSIM, each packet sent
from the cGEM5 subsystem into the cOMNET++ one passes through a sequential de-capsulation
procedure (i.e., parsing) from the Ethernet/L2 level to the L3 level (the IP level) followed by an
encapsulation procedure in the cOMNET++ protocol stack. In the opposite direction (from cOM-
NET++ to cGEM5), all the L2/L3 fields are properly de-serialized into a single RFC-compliant binary
packet (i.e., a valid Ethernet packet) that forms the payload for the HLA channel as illustrated in
Figure 3.
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Fig. 3. The En/De-capsulation vs. serialization process inside OMNET++ HLA nodes.

Fig. 4. COSSIM node with micro-router support. Fig. 5. Ethernet and Wireless Network simula-
tion with the micro-router functionality.

4.2.2 Transparent Micro-Routers Functionality. Currently, there are no other Network Interface
Cards supported by GEM5 besides Ethernet ones. To be able to support different network proto-
cols (e.g., LoRa, 5G), within OMNET++, a micro-router module has been implemented allowing
the user to seamlessly change the physical layer from Ethernet to any other option supported
by OMNET++. In this way, the cGEM5 nodes always see an “Ethernet attached” network on the
cOMNET++ side, but the actual network employed within cOMNET++ is fully user-defined. The
implemented COSSIM transparent micro-routers have an Ethernet interface (100% compatible with
the Linux protocol stack) and are connected to the cGEM5 node counterpart, while their second
interface is interchangeable through the OMNET++/COSSIM Graphical User Interface (GUI). The
micro-routers are implemented in such a way that they do not alter the timing characteristics of
the packets in terms of the simulated time in any way, or, in other words, they work transparently,
and they do not affect the timing accuracy of the simulator.

To demonstrate the functionality of the mico-routers, as shown in Figure 4, HLAnode0 is the
attachment point of the cGEM5 node and the OMNET++ simulated infrastructure. On the left of the
figure, micro_router0 is responsible for changing the network interface from Ethernet to wireless,
ppp, and the like. Specifically, the micro-router is implemented as an INET StandardHost enhanced
with routing capabilities and multiple interfaces. Figure 5 (left) depicts a scenario where two HLA
enabled nodes are connected via an Ethernet link, while Figure 5 (right) depicts a scenario where
the COSSIM micro-router links an HLA enabled node to a wireless interface without affecting the
cGEM5 configuration. In both configurations, the IP assignment between the OMNET++ nodes
can be set either automatically or manually.

4.3 Integration of Security Tools

The COSSIM simulation framework integrates a number of tools that allow the CPS designer to
evaluate the security of the system simulated. COSSIM’s security module is an extension of COS-
SIM, which consists of two main sub-modules—the DoS Testing System (DTS) and the Fuzz Testing

System (FTS).
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Fig. 6. Integration of COSSIM Sensor Device with cGEM5 (full-system mode).

The DTS is responsible for testing the resilience of a parallel system under simulation against
various types of denial-of-service (DoS) attacks. As DoS is a network attack to CPUs, DTS is tightly
connected with both the network simulation components of the COSSIM framework and the Node
simulator, via HLA. In the scope of DTS, a Resource Monitor Detector is implemented utilizing
cOMNET++’s facilities for collecting statistics data; those data are then inspected, analyzed, and
transformed by DTS’s embedded visualizers and statistics tools. In more details, the detector gets
the network data through cOMNET++’s gates through which messages and datagrams travel back
and forth. As a result, when the monitor detects some kind of anomaly regarding the monitored
node’s resources, the detector can instantly filter or modify the packets passing through it and
generate different black and white lists based on modern approaches for packet filtering, as well
as queuing theory.

The FTS provides automated testing of components’ interfaces for discovering vulnerabilities. It
produces input test vectors that are fed into the parallel system/application under test. This process
(fuzzing) is capable of exposing errors that arise as a result of the processing of these input vectors.
Specifically, FTS is made up of two sub-systems: the FTS Client and the FTS Server. The FTS Server

is responsible for catching the data on the hooked interfaces, providing them to the FTS Client,
fetching back the modified/fuzzed values, and continuing the execution with these modified data
fields. On the other hand, the FTS Client manages the fuzzing effort; it has interfaces for providing
the test vectors for the data fields that the FTS Server provides id’s for. The FTS Server, requires
to start and restore GEM5 simulations and run the test vectors from the same checkpoint, (e.g.,
the same processor state) so as to be able to handle clean test cases. For this reason, it utilizes the
pause-resume functionality of COSSIM, which allows all the simulation components to be paused
and resumed at/from the same simulated time.

4.4 Simulation of Physical Parts of a CPS

In the case of CPS simulation, COSSIM simulates the cyber part rather than the physical part
of the system; in order to support the efficient simulation of the physical part as well, COSSIM
provides two main options. The first one, extends GEM5 by adding support for sensor devices in
the processing system through programmed I/O using one memory bus master port to read the
sensor values. To incorporate efficiently different sensors within cGEM5, a set of device drivers
has been developed, while a specific ioctl [2017] function has been implemented so as to achieve
efficient user-kernel space communication as illustrated in Figure 6.

In addition, the COSSIM framework can be seamlessly interconnected with any other HLA-
compliant approaches simulating the physical aspects of the system (e.g., Ptolemy II [2018]). Specif-
ically, our tool can be connected with any other HLA-compliant tools in order (for each process-
ing node) to have access to the physical processes that “generate” the sensing data. Regarding the
physical aspects that relate to the network performance, those are already included in COSSIM
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Fig. 7. Node results for a specific combination of
nodes.

Fig. 8. Comparison of “Number of seconds simu-
lated” value.

through the OMNET++ simulator, which offers an extension that models the physical world re-
garding the reaction between the physical and network processes. For example, a designer can
seamlessly model, within COSSIM, the movement of the nodes in the space, obstacles in the wave
propagation, attenuation, noise, re-transmissions, and the like.

4.5 Eclipse-based GUI

The Eclipse-based GUI of OMNET++ has been extended so as to fully integrate the capabilities of
the COSSIM tool. Specifically, the COSSIM GUI consists of two Eclipse plugins: (i) the simulation
configuration tool and (ii) the execution monitoring tool.

The simulation configuration tool has the form of a wizard that is installed as a plugin in
Eclipse/OMNET++ and guides the user through the cGEM5 configuration process for each of the
simulated nodes. This process was a very time-consuming one, as it was usually performed through
the command line and there was a need for a large number of parameters that have to be set for
each of the nodes. Based on our initial measurements within the COSSIM design team, the GUI, by
itself, reduces the configuration time of the simulation by 90% in the case of a 10-node system. In
addition, our GUI prevents the user from setting wrong parameters and thus minimizing the risk
of starting a time-consuming simulation that will latterly be proven wrong or inadequate.

The second plugin that has been developed is the COSSIM execution monitoring tool, which is
a graphical interface that integrates and visualizes the most important results from the COSSIM
simulations; the output results can be presented either per node or per complete simulated parallel
system. Figures 7 and 8 illustrate the COSSIM results for a certain simple application scenario with
six nodes.

5 NOVEL INTERCOMMUNICATION AND SYNCHRONIZATION MECHANISM

One of the main novel aspects of COSSIM is the developed intercommunication and synchroniza-
tion scheme, which is fully compliant with the IEEE HLA standard.

5.1 Overview of HLA

HLA is a standard for distributed discrete-event simulations, generally used to support analysis,
engineering and training; it has been developed so as to promote reusability and interoperability.
In HLA terminology, the logical representation of an interconnection of different simulators is
called a Federation and includes multiple modules, which are called Federates, and which com-
municate via an RTI. The RTI provides a number of services like Federation Management, Time
Management, and Object Management that are utilized in simulation control, synchronization,
and data exchange [Roth et al. 2011]. The connection between the simulators, based on the HLA
standard, is established by a federate library that encapsulates the HLA interfaces and which can be
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Fig. 9. The High Level Architecture (HLA).

specialized to certain simulation scenarios; the communication from the RTI to a federate and
vice versa is established via the RTI-Ambassador and the Federate-Ambassador modules, which
cause a strict segregation of simulation while supporting several communication primitives as
illustrated in Figure 9. Specifically, Figure 9 presents one Federation for each cGEM5 instance
(Federate 1) together with the communication with the cOMNET++ counterpart node (Federate 2),
while the Federation Object Model (FOM) contains the description of the data exchange process
within the federation.

HLA services are grouped into six groups based on where they are utilized in the federate life
cycle. Table 1 describes the subset of HLA services used in COSSIM together with a brief descrip-
tion of each service. The reader is referred to [HLA 2010a, 2010b] for a complete description of all
HLA services. The services in Table 1 cover the following aspects:

(1) Federation management—Defines how federates can connect to the RTI; create, join, and
manage federations; save and restore federation states; and defines a system implementing
an accurate synchronization scheme.

(2) Declaration management—Defines how federates declare their intentions with regard
to publication and subscription of classes and interactions.

(3) Object management—Defines how federates can utilize objects and interactions.
(4) Time management—Defines how time is used in a federation and how it affects object

and interaction updates.

5.2 COSSIM HLA Services

The novel COSSIM HLA time management services enable, for the first time in the area of highly
parallel system simulation, deterministic, cycle accurate and reproducible distributed simulations
providing dual-stage synchronization scheme (Section 5.4). Each federate manages its own logical
time and communicates this time to the RTI. The RTI ensures correct coordination of federates by
advancing time coherently. Logical time is roughly equivalent to “simulation time” in the classical
discrete event simulation terminology, and is used to ensure that federates observe events in the
same order [Lee 2011]. Logical time is not necessarily mapped to real time.

(1) Federate’s time policies: HLA time policies describe the involvement of each federate
in the progress of time. It may be necessary to map the progress of one federate to the
progress of another. There are two sets of federates: A regulating federate participates
actively in the decisions for the progress of time while a constrained federate follows the
time progress imposed by other federates. A combination of both federates is also allowed
by HLA.

(2) Time progress: Time advancement requests by federates are made through the HLA
timeAdvanceRequest service (TAR), which is used to implement time-stepped federates,
while the granted time is provided by timeAdvanceGrant (TAG) callback. The time
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Table 1. HLA Services for COSSIM Implementation

Services Description

F
e
d

e
ra

ti
o

n

createFedExecution() Create a federation

destroyFedExecution() Unregister a federation

joinFedExecution() Participate in a federation

resignFedExecution() Resign a federation

registerFedSynchPoint() Register a Synch Point

synchPointRegSucceeded() * Reg Synch point succeeded

announceSynchPoint() * Wait a Synch Point

synchPointAchieved() Release form a Synch Point

federationSynchronized() * Announce Synchronization

tick() Allow to deliver callback

D
e
cl

a
ra

ti
o

n publishInteractionClass() Declare publication of a class

unpublishInteractionClass() Unpublish a class

subscribeInteractionClass() Subscribe to receive Inter

unsubscribeInteractionClass() Unsubscribe to receive Inter

O
b

je
ct sendInteraction() Generate Interaction event

receiveInteraction() * Deliver the Interaction event

T
im

e

enableTimeRegulation() Federate is regulator

timeRegulationEnabled() * Regulator succeeded

enableTimeConstrained() Federate is constrained

timeConstrainedEnabled() * Constrained succeeded

queryFederateTime() Query curr. time from RTI

timeAdvanceRequest(), TAR Requests an advance of time

timeAdvanceGrant(), TAG * Time Advancement granted

(Services with a * are ent from RTI to Federates (callbacks))

Table 2. Overview of COSSIMlib Architecture

GEM5/OMNET++
Attributes

CERTI bindings

P
re

-I
n

it
ia

li
ze

join()
createFederationExecution

joinFederation

publish() publishInterctionClass

subscribe() subscribeInteractionClass

In
it

ia
li

ze

setTimeRegulation()

enableTimeRegulation

timeRegulationEnabled *

enableTimeConstrained

timeConstrainedEnabled *

pause()
registerFederationSynchPoint

announceSynchPoint *

synchronize()
synchronizationPointAchieved

federationSynchronized *

In
te

ra
ct

io
n

step()

queryFederateTime

timeAdvanceRequest

timeAdvanceGrant *

sendInteraction() sendInteraction

getPacket() receiveInteraction *

F
in

a
l

resign()
resignFederationExecution

destroyFederationExecution

advancement phase of a Federate F in HLA is a three-step process: (i) F sends a request
using the TAR service; (ii) F can receive interactions (Data Packets) using receiveInterac-

tion callback; (iii) F waits for the granted time tG (TAG). At the TAG(tG) reception, the
federate’s local time will be advanced to tG according to the data in the TAR request.

The time management scheme and its semantics are shown in Figure 10. As demonstrated in this
example, a federate produces an event at time t1 sending one DataPacket using sendInteraction().
The current (logical) time is t1; let us consider that the next event is e2 with timestamp t2, t2 = t1

+ Δ, Δ > 0. The federate asks the RTI whether the time should be progressed with the invocation
of TAR(t2). Until the reception of the TAG(t2) callback, the logical time of the federate is stalled
at t1, and it can receive a ReceiveInteraction(v,t1’) callback. Timestamp t1’ is in the interval [t1,

t2]. Subsequently, Federate can execute a computation step with the values received within the
ReceiveInteraction callback. The federate then receives TAG(t2) and can increase its local time to
t2. In a nutshell, if a TAR(t2) has been sent, the time granted by the TAG service is tG = t2.

5.3 COSSIMlib Arhitecture

The implemented COSSIMlib enables the interoperability between cGEM5/cOMNET++ and the
CERTI/HLA Federations. It is built on top of the CERTI API, a C++ binding of CERTI based on
HLA version 1.3. Since the HLA communication mechanisms are based on TCP/IP packets, both
HLA Server (RTIG) and SynchServer can be executed either in the same physical machine or in
physically-entangled servers. The same applies for all the components of the simulator (i.e., each
cGEM5 instance and cOMNET++), thus enabling fully distributed simulation of large parallel
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Fig. 10. Time management services.

systems. Table 2 summarizes the implemented methods in COSSIMlib and the corresponding
HLA services of Table 1.

The pre-initialize methods of the COSSIMlib implement certain services of the Federation man-
agement (e.g., create and join tasks for a federation) and some services of the Declaration manage-
ment that have to do with the publication and subscription of object’s instances in a federation.
Specifically, three basic methods are implemented—Join, which is responsible for creating a Fed-
eration and joining the Federate to this Federation; Publish, which is responsible to publish the
interaction class so as to allow for the sending of Data Packets; Subscribe, which is responsible for
the subscription to the interaction classes, in order to receive Data Packets.

The Initialize methods of the COSSIMlib implement certain services of the Federation and Time
management, which are relevant to the HLA synchronization and time policy (e.g., constrained
and regulating federates). Specifically, three basic methods are implemented—SetTimeRegulation

to declare the federate policy; Pause to initiate the establishment of a named checkpoint that serves
to synchronize all federates according to federation-defined semantics; Synchronize to declare that
all other federates (in the same federation) have joined.

The Send & Receive Interaction methods of the COSSIMlib implement certain Time manage-
ment and Object management Services. Specifically, three basic methods are implemented that
support the send and receive Interactions within the HLA Federations: SendInteraction sends Data
Packets from cGEM5/cOMNET++ Federate to the CERTI server; ReceiveInteraction, which inher-
its the receiveInteraction callback decodes and reads the DataPacket whenever is triggered; Step,
which requests an advance of the logical time of the federate to a specified federation time using
the timeAdvanceRequest HLA service. Finally, the Resign (finalize) method is implemented, which
is related to the Declaration and Federation management services, and which is responsible for the
correct termination (i.e., resignation) of the federates as well as the destruction of a federation.

5.4 Synchronization between COSSIM Modules

Within COSSIM, we have developed a novel dual-stage synchronization scheme consisting of the
following sub-schemes:

(1) Synchronization per node. Each cGEM5 node needs to communicate, in a consistent way,
with its corresponding node in the network simulator (i.e., cOMNET++) and exchange data
packets. This type of synchronized communication is necessary because certain network
data between the two simulators must be exchanged in a manner that will preserve the
exact time ordering. For this reason, one federation is created per node pair so as to support
full synchronization as illustrated in Figure 11(a).
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Fig. 11. COSSIM HLA federations.

Table 3. Synch per Node
Intervals for Typical

Network Bandwidths

Network Synch per node

Bandwidth Interval

100Mbit 100us

1Gbit 10us

10Gbit 1us

Table 4. Simulation Speedup vs.
Accuracy Using Different Global

Synch Interval (1Gbit)

Global Synch Network Simulation

Interval Accuracy (%) Speedup

1ms 5.36% 3.84x

100us 25.28% 2.67x

10us 99.63% 1x

Table 5. Simulation Speedup vs.
Accuracy Using Different Global

Synch Interval (10Gbit)

Global Synch Network Simulation

Interval Accuracy (%) Speedup

100us 10.56% 5.63x

10us 31.89% 2.82x

1us 98.68% 1x

(2) Global Synchronization. The COSSIM simulator needs to periodically synchronize all
nodes. This is because it supports different types of CPUs with potentially different clock
cycles and/or different network protocols, all resulting in varying workload for the simu-
lators’ engines. Therefore, the simulated time (i.e., the time aspect of the modeled system)
in each node can be completely different for the same wall clock time. For this reason, a
Global Synchronization federation is developed to achieve a unified notion of time that
contains all cGEM5 nodes and one OMNET++ helper Node (SynchNode) as illustrated
in Figure 11(b). The SynchNode is a normal user-space instantiated node (as the rest of
the HLA Enabled Nodes) inside OMNET++ that follows the standard Node structure; as a
result, it is 100% compatible with OMNET++.

The Synchronization time per node and the Global Synchronization time are two different entities
that can be separately defined by the user. The first one is mostly defined by the latency of the net-
work interface, and it doesn’t constrain the simulation speed while the second is a tradeoff between
simulation speed and simulation accuracy as demonstrated in the validation and performance sec-
tion. More specifically, Table 3 presents the Synchronization per node interval for typical Network
bandwidths, while Tables 4 and 5 present the tradeoff between network accuracy and simulation
speed when using different Global Synchronization intervals for 1Gbit and 10Gbit network links,
respectively. It should be noticed that both synchronization intervals affect the network accuracy
while the processing simulation accuracy is not altered as GEM5 is cycle-accurate by default. The
relaxed synchronization feature of COSSIM is supported in case the user is less interested in the
accuracy (i.e., if some network packets are dropped/not handled) and more interested in the speed
of the simulation process (e.g., in the initial design space exploration phase).

The proposed global synchronization scheme is responsible for the preservation of the, unique,
cycle-accurate notion of the COSSIM simulation process. OMNET++ is natively an event driven
simulator, however, by employing the global synchronization scheme, it becomes hooked to the
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Table 6. Systems Used to Evaluate COSSIM Simulator

Machine # Type CPU Model Total Cores RAM OS

1 Workstation Intel i5-4590 4 Physical 16GB Ubuntu 16.04
2 Server1 2x Intel Xeon E5-2440v2 16 Physical 64GB CentOS 7.2
3 Server2 2x Intel Xeon E5-2440v2 16 Physical 64GB CentOS 7.2
4 Cluster 44x AMD Opteron 2300 176 Physical 176GB Ubuntu 14.04

“cycle-events” of each of the cGEM5 simulated nodes. This not only prevents the clocks of all the
nodes from any drift but also implicitly “forces” the cOMNET++ to act like a “cycle-driven” event
simulator. In this respect every component of the simulated system has the exact same notion of
time (i.e., in terms of clock cycles).

6 VALIDATION AND PERFORMANCE ANALYSIS

The evaluation of the COSSIM simulation framework has been initially performed using light
versions of two Linux distributions—Gentoo Base System for x86 processors and BusyBox for ARM
ones. In both systems, the Ubuntu-minimal package and the JRE7 are installed so as to enable the
execution of C, C++, and Java applications (thus, resembling a realistic deployment scenario).

6.1 Evaluation of Processing Simulator Part

COSSIM utilizes a modified version of the mainstream GEM5 simulator. However, all modifications
are mainly related to the Ethernet interface and the developed HLA components. As such, the
main computation engine of the GEM5 simulator is left intact and, therefore, the performance of
the cGEM5 component of the COSSIM simulator is in line with the reported performance of the
publicly available version of GEM5. GEM5’s performance varies greatly with the complexity of the
processing system that is being simulated. A typical simple CPU (InOrder CPU) can be simulated
at a rate of 1 to 3 Million Instructions/Sec (MIPS). More complex CPU structures (e.g., Out of Order
CPUs) and memory subsystems can reduce the rate of simulated instructions to as low as 0.1–0.3
MIPS [Saidi 2012; Carlson 2015].

The key concept of the COSSIM approach is to execute the cOMNET++ simulator in a typical
workstation (this is not a bottleneck as demonstrated in the next paragraphs) so as to easily utilize
the GUI that facilitates the orchestration and visualization of the simulation, while the cGEM5
instances are executed in one or more servers (distributed simulation). For this reason, in the
following experiments, the cOMNET++ simulation was executed on a workstation based on an
Intel i5-4590 processor (Machine 1). On the other hand, the simulation of the CPUs as well as the
HLA Server were executed on two servers based on four Intel Xeon E5-2440v2 (totally 32 physical
cores with 128GB of RAM—Machines 2&3) as described in Table 6.

Figure 12 illustrates the mean instructions per second simulated when Mobile Visual Search4 is
executed in the COSSIM system including the time needed for the negotiations and setup of the
corresponding networks interconnecting the different nodes for both X86 and ARM processors;
it should be noted that those numbers do not differ between the numerous CPU-bound applica-
tions we have executed on the COSSIM platform. As this figure demonstrates, as the number of
nodes increases, the rate of simulated instructions (thus, performance) decreases. This is mainly
due to the Global Synchronization schemes for the 2–32 node experiments, while there is a steep
performance drop when more than 32 cGEM5 instances are executed on the 32 physical cores due

4Mobile Visual Search is a computer vision application built on the idea of retrieving interesting information about physical
objects.
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Fig. 12. Performance results using typical GEM5
configuration.

Fig. 13. Simulation time using different synchro-
nization intervals.

Fig. 14. Simulation time using a cluster of 44 server blades.

to lack of processing resources. For the specific experiment, the synchronization interval is set at
10ms, which gives us a good tradeoff of accuracy and simulation speed, since the focus of this
experiment is to investigate the scalability of our approach, which is not affect by the interval
value. Consequently, after every 10ms of simulated time, all nodes are halted so that they can all
be synchronized and then resume operation. Apparently, this synchronization interval determines
the accuracy of captured events. A short synchronization interval will yield the most accurate re-
sults at the cost of lower overall performance, while a more relaxed (i.e., longer) synchronization
interval will result in no practical slowdown due to synchronization, at a potential loss of accuracy.

Figure 13 depicts the impact of the synchronization interval in the performance of the overall
simulation, as measured by the wall-clock time required to complete a simulation with 16 nodes.
There is a dramatic drop in performance for very short interval times (smaller than 100us), mainly
due to the increased number of messages that cOMNET++ has to manipulate.

Furthermore, Figure 14 illustrates the simulation time required to boot the OSs with their net-
work card configuration for 16–1024 ARM-based nodes and X86-based nodes using a 10us synchro-
nization interval. For this experiment, a cluster that contains 44 HP Proliant BL465c server blades
with totally 176 physical cores is used (Table 6). Based on those results, it becomes evident, as in
the previous figure, that performance is heavily impacted when the number of cGEM5 instances
spawned becomes higher than the number of physical processor cores of the distributed system
on which the simulation is executed. Specifically, in the 16–128 nodes experiments, the simulation
time is almost constant, while, after 176 cores, doubling the number of cGEM5s instances triggers
an increase in the simulation time by a factor of two. Summarizing, the effect of the network has a
negligible impact on the overall performance; as a result, COSSIM has good scalability in case the
number of cGEM5 instances is lower or equal to the number of the physical cores of the underlying
system.
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Fig. 15. TCP_Stream throughput for 1server/
1client using different Global Synchronization in-
tervals.

Fig. 16. CPU Utilization using TCP_Stream for
1server/1client & 1server/2clients experiments.

6.2 Evaluation of Network Simulator Part

The network performance of COSSIM’s novel approach has been evaluated using the widely used
Netperf 2.7.0 benchmark suite and, specifically, the very demanding TCP_STREAM and TCP_RR
benchmarks. Netperf [HP Networking Performance Team 2018] was developed by Hewlett-
Packard; it is widely used in measuring the performance of many different types of networks
and it provides tests for throughput and end-to-end latency.

6.2.1 TCP_STREAM Benchmark. The TCP_STREAM test is the most widely-used test in net-
perf. It transfers certain data from the system where netperf is executed to that running netserver.
Figure 15 illustrates the throughput (Mbits/sec) achieved on this benchamark in the case of two
COSSIM simulated x86 systems and two real x86 systems; in both cases, the simulated and real
systems are connected through Gigabit Ethernet. Specifically, 5MB5 of total data are exchanged in
each experiment, while different buffer sizes are utilized in the “send” calls of the test. Command
1 shows the netperf TCP_STREAM configuration, which is used for 100 bytes buffer size.

netperf -H IP -t TCP_STREAM-c -C -l -5000k -- -m 100 (1)

As described in Section 5.4, COSSIM Synchronization is based on two different entities that can
be separately defined by the user; for the TCP_STREAM experiments, the synchronization per
node interval is set at 10us (i.e., each node is guaranteed to receive at most one Data Packet every
10us). This interval is selected due to the Gigabit Ethernet interconnection between the nodes.
Specifically, since the maximum Ethernet packet is 1536 bytes [eth 2016], by selecting a synchro-
nization period of 10us, each node can receive up to 1536 bytes/10us, or 153.600.000 bytes/sec,
or 1.228.800.000 bits/sec, so it can support full Gigabit Ethernet speed. On the other hand, three
different intervals have been tested for the Global Synchronization, from 100us to 10ms. Figure 15
illustrates that as the Global Synchronization decreases, more accurate results are obtained (i.e.,
much closer to the actual performance of the real system), while using 100us as the Global Syn-
chronization interval, triggers very accurate results for all buffer sizes. Furthermore, as the number
of buffer messages increases the throughput of the application, both the simulated and the real sys-
tem moves toward the maximum possible one.

CPU utilization is an important and very often overlooked component of the overall networking
performance. Unfortunately, it can be one of the most difficult metrics to measure accurately and
portably. Netperf is one of the most accurate benchmarks for measuring CPU utilization [HP Net-
working Performance Team 2018]. CPU utilization in netperf is reported as a value between 0 and

5As adequate quantity of data, 5MB was selected to reach the maximum speed of experiment.
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Fig. 17. TCP_STREAM Throughput using 1server and 1–32 clients.

100% regardless of the number of CPUs involved; for a TCP_STREAM test, it is the microseconds
of CPU time consumed to transfer 1024 bytes of data.

Figure 16 shows the CPU utilization (in the simulated node) for 1-server/1-client and 1-server/2-
clients experiments using a Global Synchronization interval of 100us, which is adequate for full
speed simulation, and Synchronization per node of 10us. Figure 16 demonstrates that as the buffer
size is less than 10 bytes, the CPU utilization is steadily at 100% for both 1 client and 2 clients
experiments (i.e., they are CPU-bound). This is reasonable because the clients need to truncate the
5MBs in a lot of small packets, while the throughput achieved is much lower than the maximum
one (Figure 15). In addition, as the buffer size gets larger and up to 1000 bytes, the CPU utilization
is much lower and the experiment becomes network-bound. The 2-client experiment needs less
CPU processing in each client CPU because the packets are sent at lower rates while the server
CPU utilization is similar to that of the 1-client with small differences due to the higher number
of total packets the server gets.

Figure 17 illustrates the throughput for the TCP_Stream experiments using one server and from
1 up to 326 clients. In that configuration, a router has been configured with 2–33 Gigabit Ethernet
ports to establish a star network topology. Figure 17 shows that as the number of clients increases,
the throughput decreases because the server has to serve all clients. The maximum throughput
achieved by our simulator using 1000-bytes Ethernet packets is ranging from 998Mbits/sec to
69Mbits/sec for 1 and 32 clients, respectively.

6.2.2 TCP_RR Benchmark. Request/Response performance is often overlooked, but it is just as
important as bulk-transfer performance for several applications. While things like larger socket
buffers and TCP windows, as well as stateless offloads like TSO (TCP segmentation offload) and
LRO (Large Receive Offload) [Corbet 2007] can cover numerous latency and even path-length sins,
those sins do surface in the request/response tests. While in a bulk-transfer test the reporting
metric is the units of bits transferred per second, the TCP_RR test reports the transactions per
second where a transaction is defined as the completed exchange of a request and a response.

Figure 18 illustrates the transactions per second in the case of two COSSIM-simulated x86 sys-
tems and two Real x86 systems; the configuration consists of one server and one client running
the netperf TCP_RR benchmark and connected through Gigabit Ethernet. In more detail, different
request/response packet sizes have been evaluated ranging from 1 byte to 10K bytes within 17

6In this case, COSSIM is evaluated for up to 32 clients, due to physical cores bound; the aim of this experiment was
to evaluate the system when assigning one cGEM5 instance per physical core so as not to suffer from the performance
degradation due to lack of processing power.
7One second was selected since it allows the simulated system to reach each maximum performance/speed.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 1, Article 2. Publication date: March 2020.



A Novel, Highly Integrated Simulator for Parallel and Distributed Systems 2:21

Fig. 18. Transactions per second using 1server/1client
with different Global Synchronization intervals.

Table 7. Transmission Rate of TCP_RR Using
Different Global Synchronization

1ms 100us 10us Real Systems

1 byte 1,883.2 us/pkt 395.8 us/pkt 99.9 us/pkt 98.3 us/pkt

10 bytes 1,757.4 us/pkt 395.9 us/pkt 99.8 us/pkt 99.6 us/pkt

102bytes 1,972.3 us/pkt 396.9 us/pkt 101.8 us/pkt 102.6 us/pkt

103bytes 2,012.7 us/pkt 434.7 us/pkt 163.9 us/pkt 151.7 us/pkt

104bytes 680.7 us/pkt 801.2 us/pkt 431.1 us/pkt 331.8 us/pkt

second of total time. Command 2, below, shows the netperf TCP_RR configuration, which is used
for a request/response packet size of 100 bytes.

netperf -H IP -t TCP_RR -l 1 -- -r 100,100 (2)

In all the TCP_RR experiments, the synchronization per node interval is set at 10us so as to
achieve full Gigabit Ethernet rates (as described in the previous paragraph) between the nodes.
On the other hand, three different intervals are selected for Global Synchronization from 10us
to 1ms. Figure 18 illustrates that as the Global Synchronization decreases, more accurate results
are obtained (i.e., much closer to the actual performance of the real system); when using a Global
Synchronization of 10us, the transactions/second is very similar to those achieved by the Real
Systems for all request/response sizes. TCP_RR requires a smaller Global Synchronization inter-
val (10us) than the TCP_STREAM experiment (100us) in order to obtain very accurate results
due to the smaller length of each packet in TPC_RR (i.e., higher number of packets are sent per
second). Finally, Table 7 summarizes the transmission rate of the above systems; the highest trans-
mission rate for the simulated system is achieved using 1-byte request/response packets; when
we use a 10us Global Synchronization interval we can simulate this high bandwidth system with
very high accuracy—99.9 microseconds/packet are Reported by COSSIM against the 98.3 microsec-
onds/packet measured in the Real-nodes.

Both netperf experiments demonstrate that with a relatively low Global Synchronization Inter-
val, COSSIM can extremely accurately simulate both network-bound and CPU-bound applications.

6.3 Performance Evaluation of Distributed COSSIM Simulator

In this section, the performance of the COSSIM simulator is presented when simulating multiple
processing systems in multiple distributed machines. In addition, the performance of COSSIM
is also demonstrated when the only centralized module (i.e., HLA Server) is also replicated and
executed in a distributed manner, thus making the complete COSSIM framework fully distributed.

The performance of our novel COSSIM simulation framework has been further analyzed on the
distributed scenario described in Section 6.1 (three Systems—one workstation and two servers).

Specifically, Figure 19 illustrates the performance of the simulator when the main COSSIM com-
ponents (cOMNET++, HLA servers, and all cGEM5 instances) are executed on the same physical
machine (machine 1—straight line) and when they are executed in the distributed scenario (ma-
chine 2 and machines 2 and 3—dashed lines). Figure 19(a) illustrates the simulation time required to
boot the OSs with their network card configurations for 2–32 ARM-based nodes, while Figure 19(b)
for 2–32 X86-based nodes.
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Fig. 19. COSSIM simulation time using Distributed Machines.

As clearly demonstrated in Figure 19, performance is heavily impacted when the number of
cGEM5 instances spawned becomes higher than the number of physical processor cores present
in the underlying machine (i.e., there is a steep performance drop when more than four cGEM5
instances are executed on the 4-core machine 1, and more than 16 cGEM5 instances are executed
on one of two 16-core servers).

On the other hand, the effect of the network simulation has a negligible impact on the overall
simulation performance. Specifically, in 2 and 4 nodes experiments, Machine 1 is faster than the
distributed system due to the faster single thread execution on the Intel i5-4590 of Machine 1 when
compared with that of the Intel E5-2440v2 CPUs of the two servers. When the number of cGEM5
instances increases, the single server setup is actually faster for up to 16 cGEM5 instances (i.e.,
equal to the number of the physical cores); the slight performance degradation in the 2-server setup
is due to the fact that there is an additional overhead for the packets exchanged between the two
servers. However, in the 32-nodes experiment, the 2-server setup, with its higher available physical
cores, surpasses the single-server one by approximately 70%. Similar results are obtained when
simulating X86-based nodes, which require more processing time to boot the OS (Figure 19(b)).
Summarizing, when there are 32 cGEM5 instances and they are executed in the 32 physical cores
of the two servers, the overall simulation time is almost constant for all simulated nodes (each
cGEM5 node is executed per physical core) achieving up to 337% and 423% speedup (for ARM and
X86 based architecture respectively) when compared with the case that all cGEM5 instances are
executed on the same 4-physical core/8-virtual-core CPU.

6.3.1 Evaluation of COSSIM Utilizing Multiple HLA Servers. The only centralized sub-system of
COSSIM is, so far, the HLA Server; so we use the TCP_RR benchmark to evaluate its performance
when sending a very large number of messages, and the Global Synchronization Interval selected
is short (i.e., for high accuracy). Specifically, we trigger the worst-case scenario by sending 1-byte
request/response packets and having a 10us Global Synchronization Interval.

Figure 20 (left) illustrates the CPU Utilization of the HLA Server (using one Global HLA Server
for both Global Synchronization and all the necessary Synchronizations per node) for the experi-
ments described in the last paragraphs. As clearly demonstrated, the CPU load grows significantly
with the number of nodes simulated. As a result, and in order to be able to simulate thousands of
nodes in a fully distributed manner, we develop a version of our HLA Server, which can also be
executed in a decentralized manner. In particular, we have performed two experiments, utilizing
two identical HLA Servers in two different scenarios.

In the first scenario, one HLA Server is used for the Global Synchronization, and the other for
all the node synchronizations. In this case, the CPU Utilization on the first HLA Server, due to the
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Fig. 20. HLA CPU utilization using 1 HLA and 2 HLA servers.

Fig. 21. Mobile visual search topology.

small Global Synchronization interval, is kept high, while the second HLA Server is under-utilized
(Figure 20(a), right).

In the second scenario, we use the unique feature of our approach, which allows to distribute
even the Global Synchronization part without any synchronization deficiency. So one HLA Server
serves 50% of the simulated nodes (both the Global and per node Synchronization schemes), and
the other, the remaining 50%. In this case, the CPU Utilization of both nodes is very low, as shown
in Figure 20(b), right. Those results clearly demonstrate that COSSIM is a fully-distributed frame-
work, with no centralized components; thus, it can efficiently handle thousands of simulated nodes
if/when executed on a multi-thousand core machine.8

6.4 Evalaution on a Real-world Application/System

Our simulator has also been evaluated when simulating Mobile Visual Search (MVS) [Paracchini
et al. 2016], which is a real-world distributed application. MVS is built on the idea of retrieving
interesting information about physical objects using only the image content; multimedia content
can be sent back in response to a search or to a user’s action. The aim of MVS is to analyze a
query image taken by the user and search for similar images inside a large database as illustrated
in Figure 21. MVS is already used in many different contexts such as interactive museum guides,
e-commerce mobile applications, localization systems, and so on.

The MVS algorithm is composed of two interconnected modules: the Image Analyzer (IA) and
the Retrieval Stage (RS). Firstly, in the IA, a series of advanced image processing techniques are

8Network simulation in cOMNET++ is several orders of magnitude faster than processing simulation in cGE5, so we believe
that there is no need to parallelize cOMNET++.
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Table 8. Global and Local Matching Scores on the Building Database

applied on the image acquired by the user in order to localize the interesting regions of it (i.e.,
key-points). Each selected key-point is then analyzed and, for each one of them, a local descriptor
is extracted. The last operation of the IA is the aggregation of the computed local descriptors into
a compact global descriptor, which describes the whole image. These descriptors are concatenated
and further compressed in order to reach a size of around 15–20 KB for each VGA image. The
whole IA stage can be executed in the user’s mobile device.

On the other hand, the RS is responsible to compare the image descriptor created in the IA
with a plethora of other descriptors extracted offline from each image in the database. In the first
step of RS, the images in the database are quickly ranked in respect to the similarity of their global
descriptor to the one computed from the query image. In this way, only a short list of the images in
the database are selected as possible matches. A more precise comparison using local descriptors,
including geometry checks and outliers rejection, is performed and the most similar image to the
query one is finally selected. The RS requires access to the whole database, and for this reason, it
is executed on a server.

The real system that is modeled/simulated by COSSIM consists of:

—One central node with an Intel Core i5-5200 2.2 GHz quad Core CPU and 4 Gbytes of RAM
—Two sets of ARM-based devices, one consisting of Cortex-A15 2.0 GHz quad core CPUs

(Odroid XU3) and another one consisting of Cortex-A7 1.4 GHz quad core CPUs; all systems
have 2Gbytes of RAM.

Having two different ARM-based devices let us compare the capabilities of COSSIM when sim-
ulating both an in-order CPU (A7) and an out-of-order one (A15). In addition, the Odroid XU3
comes integrated with the power analysis tool that was modified and used by us in order to collect
the data reported in the next sections. The MVS cloud application simulated by COSSIM consists
of:

—One central node with X86 2.2 GHz CPU and 4GB of RAM
—Mobile nodes with two possible different processors—In-order ARM working at 1.4 GHz

CPU, and Out-of-Order ARM working at 2 GHz CPU; both of them have 2 GB of RAM.
—Wireless Network (WiFi)

6.4.1 Verification of COSSIM Functionality. In order to verify the correctness of the simulation
process, the final output of the simulation was compared with the output of the native system.
In particular, the local and global descriptor scores extracted from the ordered list of results were
compared. Table 8 reports the top three matches for the query image on the left. As it can be
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Table 9. MVS Simulated Time Comparison Using Two Different Synchronization Intervals (1ms & 10us)

Simulated Native Simulated Native
Simulated X86 Intel i5-5200

ARM In-Order ARM A7 Out-of-Order ARM A15

Synch Interval 1ms 10us - 1ms 10us - 1ms 10us -

Image 1 50,687ms 57,945ms 58,244ms 14,499ms 15,478ms 15,613ms 645ms 522ms 508ms

Image 2 66,782ms 88,236ms 89,568ms 21,459ms 22,951ms 23,229ms 641ms 484ms 498ms

Image 3 50,782ms 60,936ms 61,481ms 14,437ms 15,627ms 15,855ms 644ms 516ms 502ms

Average 56,084ms 69,039ms 69,764ms 16,798ms 18,018ms 18,232ms 643ms 507ms 501ms

Table 10. MVS Simulated Time Comparison Using Two Different Synchronization Intervals (1ms & 10us)

ARM A7 ARM A7 ARM A15 ARM A15

Energy (mJ) Peak Power (W) Energy (mJ) Peak Power (W)

Simulated Native Simulated Native Simulated Native Simulated Native

Image 1 1,060.85 1,381.52 0.132 0.12 692.66 753.71 1.503 1.54

Image 2 1,733.85 1,982.53 0.172 0.14 1,041.13 1,236.84 1.518 1.55

Image 3 887.62 899.63 0.142 0.12 693.60 771.97 1.503 1.54

Average 1,227.44 1,421.22 0.148 0.123 809.13 954.17 1.508 1.54

observed, all the result images depict the same building as the query one. For each result, we report
the local (result of local matching) and global (result of global matching) scores in the simulated
and real scenarios. The simulation replicates exactly the computations performed by the native
system, as stated by the equivalent values of the native and the simulated search results.

6.4.2 Timing Results. The simulation involves the complete MVS application composed of sev-
eral mobile imaging nodes and a central one. As stated, the query image is first processed on the
mobile device in order to extract some descriptors, thus creating a compact representation of it,
and then it is sent to the central node to be compared with all the other descriptors extracted
from each image in the database, in order to find visually similar images. In this configuration,
only compressed information about the image (descriptor) are sent through the network from the
mobile device to the central node.

Table 9 lists the simulated time of both ARM A7 In-Order, ARM A15 Out-of-Order and X86
distributed nodes. In this experiment, two different synchronization intervals are used (1ms and
10us) in order to prove the accuracy of our simulator. As shown in Table 9, more accurate results
are obtained when using smaller synchronization intervals; when the synchronization interval is
equal to 10us, the simulated time reported by COSSIM is very close to the measured time that we
get from the native system for all CPU models.

6.4.3 Energy/Power Results. Table 10 compares the Energy and Peak Power of the simulated
and the native ARM A7 and ARM A15 based nodes. We can observe that in the majority of the
cases, and also on average, the ARM energy consumption estimated in the simulation is quite close
to the real one. Finally, it should also be noticed that the peak power consumption is very accurate
(average error 0.025W (min: 0.012W | max: 0.032W) on ARM A7 and 0.03W (min: 0.032W | max:
0.037W) on ARM A15).

7 CONCLUSIONS AND FUTURE WORK

In this work, we present the COSSIM Simulation Framework, an open-source novel solution
that addresses, in a single integrated toolset, the simulation of both the processing and the
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networking parts of highly parallel systems, while also taking into account the security and the
power consumption aspects of them. By using a novel dual-stage synchronization scheme, COSSIM
is the first known system providing global cycle accurate simulation when/if required, highly par-
allel/distributed execution, and high extensibility; COSSIM can also operate as a cycle-approximate
simulator so as to allow for faster simulation times. Based on a number of experiments, the COSSIM
simulator proved to produce very accurate results for both network and processing heavy appli-
cations, while it is probably the only simulator that can efficiently simulate a thousand processing
nodes, interconnected together, in a full distributed manner; the claimed efficiency is denoted by
the fact that in order to simulate a thousand nodes, COSSIM needs only 5x more time than when
only 16-nodes are simulated.

As future work, and in order to further extend the functionality of the Simulation Framework
in the CPS domain, we aim to integrate COSSIM with a widely used physical process simulator
(i.e., Ptolemy) by using the already developed HLA interface. Additionally, we have already started
working on accelerating COSSIM by implementing certain parts of it into reconfigurable systems.

In order to further increase the impact of our work, the complete source code with its documen-
tation are freely distributed to the HPC/Cloud/CPS community [COS 2019].
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