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Abstract

Wireless Sensor Networks (WSNs) are cost effective and ultra-low power networks that have re-
cently become an integral part of many Internet-of-Things (IoT) applications. They consist of a
certain number of nodes (or terminals), each of which is connected to a large number of sensors.
Typically, the ambient information that the sensors are able to collect is wirelessly transferred to
some kind of centralized processing unit, which usually involves cloud or edge technologies.

In this work, we consider a WSN that is batteryless and solely powered by the environment.
Our goal is to utilize such a network removing the centralized processing unit, and, by carefully
balancing the computation and communication cost of modern inference algorithms, allow it to
make autonomous, in network decisions itself ; all that, exploiting its asynchronous operation that
stems from the fact that it is ambiently powered: at some point of time certain WSN nodes may
fail to operate.

In particular, we consider a linear fixed point problem and mathematically formulate its asyn-
chronous variant, aiming to capture the asynchronous operation of the WSN, according to which
some parts of the calculated vector may not be updated at some iterations. We propose a k-means
based clustering method of assigning different parts of a vector to different WSN nodes. Next, we
describe two algorithms that are both expressed as linear fixed point problems: a) Gaussian Belief
Propagation and b) Average Consensus, as well as their asynchronous variants introduced in this
work. Analysis as well as numerical results of this work show that the asynchronous operation
of a WSN can be a key in the convergence of Gaussian Belief Propagation; indeed, we show that
different asynchronous schedulings vastly affect its convergence speed, and -in some cases- asyn-
chrony can make a divergent instance (in synchronous operation) to converge. On the other hand,
in the case of Average Consensus, we derive a statistical condition that, when satisfied, leads to in
expectation convergence of the algorithm. Hence, it is possible to execute Average Consensus in
an ambiently powered WSN; the caveat here is an increased delay, since independent repetitions of
the algorithm are necessary for an accurate result.
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Chapter 1

Introduction

Decision Unit
Marconi Radio
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Emitter
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Network Powered by the Environment.
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Figure 1.1: Vision: an ambiently powered, batteryless WSN operating on an agricultural field.
The central decision unit/cloud service is removed and the network (that is solely powered by
the environment) manages to process information utilizing message passing algorithms in order to
decide itself where and when to irrigate!

The term Wireless Sensor Networks (WSN) refers to networks of sensors that collect ambient
information and transfer it to a central processing unit. They consist of nodes (or terminals), each
of which is connected to a large number of sensors. Such networks are particularly cost and power
efficient. In particular, recent advances on backscatter radio sensor networks, have demonstrated
feasibility of µWatt power and low-cost, joint sensing and wireless networking; [1, 2, 3, 4, 5, 6, 7, 8];
all is needed at the transmitter side is a radio frequency (RF) transistor, an antenna and a low-cost
microcontroller unit.

The question that arises is the following: could a WSN that is solely powered by the environment
be used without a central processing unit in order to make autonomous, in-network decisions? The
answer to this question is positive, something that is in good part due to the network’s asynchronous
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operation [9].

In particular, advances on powerful message passing algorithms for inference and optimization
[10, 11, 12] have offered novel tools on how different decision making and inference tasks can be
accomplished through nodal communication in carefully constructed graphs. Our goal is to take
advantage of the WSNs’ and the algorithms’ distributed nature and carefully balance the required
computation and communication load across different WSN terminals, in order to exploit the power
of the aforementioned algorithms and make in-network decisions [9]. For example, an ambiently
powered WSN could collect different environmental parameters from various sensors and activate
itself the appropriate sprinklers that are necessary to irrigate a field, without making use of any
external processing unit or the cloud (Fig. 1.1).

However, one should not overlook the fact that the WSNs to which we refer are solely powered
by the environment. Hence, there is the possibility that at some point, the ambient energy will not
be sufficient. As a result, their operation is considered asynchronous, in the sense that they may fail
to operate when they are required to. This very property is one of their main limitations when they
are utilized in order to distributedly process information. However, in this work, we show that this
is not the case; in particular, we show that asynchrony not only is not a limitation, but it can also
become a key feature in the convergence rate of the message passing algorithms, or even in whether
they will converge, in the first place! Therefore, we attempt to set the fundamental primitives for
ambiently powered, batteryless WSNs that process the collected information themselves, namely
Internet-of-Things (IoT)-That-Think.

Thesis Outline

In Chapter 2 we formulate the problem that we aim to solve, in Chapter 3 we provide two algorithmic
frameworks that fit our system model, in Chapter 4 we state the major results regarding the
convergence of the algorithms, in Chapter 5 we present the main numerical results and in Chapter
6 we state the main contributions of this work.

Notation

Vectors and matrices are denoted using bold lower-case and upper-case letters, respectively. xi
denotes the i-th entry of vector x. In an iterative process x(l) = f(x(l−1)), x(l) denotes the value
of x at iteration (l). diag{x} denotes the diagonal matrix, whose diagonal entries are the elements
of x. O denotes the matrix whose all entries are zero. xI denotes a subset of the elements of x
according to the set of indices I, namely xI ⊆ (x1, x2, . . . , xn). Aij denotes the element of matrix
A in its i-th row and j-th column. Given an undirected graph G = (V, E), nbr(a) denotes the
set of vertices that are adjacent to vertex a. N (x;µµµ,C) denotes that a random variable follows
the Gaussian distribution with mean µµµ and covariance matrix C. R(A) and N (A) denote the
rangespace and nullspace of matrix A, respectively. dimV denotes the dimension of vector space
V, namely the number of vectors in any of its bases. ρ(A) denotes the spectral radius of matrix A,
namely ρ(A) = max{|λ1|, |λ2|, . . . , |λm|}, where λ1, . . . , λm are the eigenvalues of A.
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Chapter 2

Asynchrony

In this chapter, we describe the system model and what we refer to as asynchronous operation.
In particular, we describe the fixed point problem that we aim to solve and formulate a specific
asynchronous variant of it. In addition, we describe how the operation of WSNs fits the afore-
mentioned model and suggest a method of assigning different parts of the computation to different
WSN terminals.

2.1 System Model

Let the real vectors x(0), b ∈ Rn and the real rectangular matrix An×n. A vast majority of inference
algorithms, including Gaussian Belief Propagation and Average Consensus that we will discuss in
the sequel, can be formulated as the recursion

x(l) = Ax(l−1) + b, l = 1, 2, . . . . (2.1)

In this work, our goal is to find the fixed point of Eq. 2.1, namely the vector x∗ , liml→+∞ x(l).

2.2 Asynchrony Formulation

Taking a closer look at Eq. 2.1, we can see that at iteration (l) the elements of x(l) are calculated
as

x
(l)
k =

n∑
j=1

akjx
(l−1)
j + bk, l = 1, 2, . . . , k = 1, 2, . . . , n, (2.2)

where x
(l)
k and bk denote the k-th element of x(l) and b, respectively, and aij the element of i-th row

and j-th column of A. We can see that in order to compute the k-th element of x(l), the knowledge

of all x
(l−1)
t from the previous iteration (l − 1) is required, where t ∈ {1, 2, . . . , n} with respective
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akt 6= 0. This requirement leads to synchronous scheduling in the sense that at all iterations, all
the necessary values of the previous iteration are readily available when computing the elements of
x(l).

This strong requirement can be loosened. In particular, we assume that at iteration (l) some
elements of x(l−1) may not be available for the computation of the corresponding elements of the
updated vector x(l); in that case, we allow the latter not to be updated and keep the corresponding

values of the previous iteration. In other words, it is possible for some elements x
(l)
k to either get

updated using Eq. 2.2 or directly keep the previous value x
(l−1)
k . This is what from now on we will

refer to as asynchronous scheduling.

In order to formally formulate the above, we adopt the notation of seminal work in [13]. More

specifically, at iteration (l), we introduce the functions ψ
(l)
k , ∀k ∈ {1, 2 . . . , n} which are defined as

ψ
(l)
k =

{
1, if xk is updated at iteration (l),

0, otherwise.
(2.3)

Let ψψψ(l) denote the binary vector that is created if we stack all ψ
(l)
k at iteration (l) and Ψ(l) ,

diag{ψψψ(l)} the corresponding diagonal matrix withψψψ(l) at its diagonal. As a result, the asynchronous
framework that we previously discussed requires the recursion of Eq. 2.1 to become

x(l) = Ψ(l)
(
Ax(l−1) + b

)
+
(
I−Ψ(l)

)
x(l−1)

=
(
Ψ(l)A + I−Ψ(l)

)
x(l−1) + Ψ(l)b.

(2.4)

Notice that if Ψ(l) = I ∀l, or equivalently ψ
(l)
k = 1 ∀l and k ∈ {1, 2, . . . , n}, the asynchronous

update of Eq. 2.4 reduces to the synchronous one of Eq. 2.1.

In addition, we assume that the aforementioned functions ψ
(l)
k are Bernoulli random variables.

In [13], ψ
(l)
k are assumed independent and identically distributed across both (l) and k with the

same parameter p. In contrast, in this work we assume a more general framework where ψ
(l)
k are

independent across the different iterations (l) but possibly dependent and not identically distributed
Bernoulli random variables across k with parameters pk, ∀k ∈ {1, 2, . . . , n}. As a result, we can
define the expected value of matrices Ψ(l), E[Ψ(l)] , P = diag{p}, where p = E[ψψψ(l)], a quantity
that as we will see plays a major role in the convergence of recursion Eq. 2.4.

2.3 Wireless Sensor Networks (WSN) for Distributed Computa-
tions

Consider an ambiently powered Wireless Sensor Network (WSN) with N physical terminals. Our
goal is to utilize such a network in order to solve the fixed point problem that we previously
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discussed. In particular, following Eq. 2.1, we assume that each terminal i is responsible for

the calculation of a unique subset of the elements of x(l), denoted by x
(l)
Ii , where ∩Ni=1I = ∅ and

∪Ni=1Ii = {1, 2, . . . , n}. In that context, if we take a closer look at Eq. 2.2, we shall point out that
the calculation of an element of x(l) may require access to elements that are allocated to different
WSN terminals. Hence, communication between the aforementioned terminals is required.

Figure 2.1: An update example for x ∈ R4, A =


a11 0 a13 a14
a21 a22 a23 0
0 a32 0 a34
a41 a42 a43 a44

, b =
[
b1 b2 b3 b4

]>
and

a WSN with 2 terminals. We see that x1 and x2 are assigned to the left WSN terminal while x3 and
x4 to the right one. Based on the non zero elements of A, before any calculation is performed, the
left terminal has to transmit its values to the right one and vice versa, something that is presented
in the left part of the Figure; after the transmissions, on the right part of the Figure one can observe
the update of each element of x, as Eq. 2.2 requires.

In order to make this framework clearer, in Figure 2.1 we depict an update example for a WSN
with 2 terminals and x ∈ R4, with A and b of Eq. 2.1 given as

A =


a11 0 a13 a14
a21 a22 a23 0
0 a32 0 a34
a41 a42 a43 a44


and

b =


b1
b2
b3
b4

 .
We can see that x1 and x2 are assigned at the left terminal while x3 and x4 are assigned at the right

one. Based on the choice of A, we observe that the calculation of the updated value of x
(l)
1 requires

x
(l−1)
3 and x

(l−1)
4 , two values that belong to a different WSN terminal; similarly, x

(l)
2 requires x

(l−1)
3 ,
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x
(l)
3 requires x

(l−1)
2 and x

(l)
4 requires x

(l−1)
1 and x

(l−1)
2 . As a result, those required values must firstly

be transmitted from a WSN terminal to another, before any calculation is made; then, after the
completion of all transmissions, every element of x is updated using Eq. 2.2.

In addition, this distributed setting also perfectly fits the asynchronous formulation that we
presented in the previous section. More specifically, since the WSN operates utilizing energy that
directly stems from the environment, the aforementioned procedure may be interrupted due to
energy insufficiency. As a consequence, some elements of x may fail to get updated. This can
be perfectly modeled with Eq. 2.4, with the statistics of the random matrices Ψ(l) being directly
determined by the statistics of energy sufficiency.

2.3.1 Vector Clustering

A natural question that arises is how to assign different parts of vector x to the different WSN
terminals. Although there are many approaches to solve this problem, each satisfying different
criteria, in this work we consider an approach based on k-means algorithm. K-means algorithm
was initially introduced by Macqueen in 1967 [14], and is an algorithm that separates a given set
of points in a metric space to k distinct clusters.

In particular, let X = (x1,x2, . . . ,xm) be a collection of vectors in a metric space (A, d), with
xi ∈ A, ∀i = {1, 2, . . . , n}, where d(·, ·) the associated metric with A. In addition, let C =
{C1,C2, . . . ,Ck} be a clustering partition of X, where Ci ⊆ X, with Ci 6= ∅, ∀i = {1, 2, . . . , k},
∩ki=1Ci 6= ∅ and ∪ki=1Ci = X, where the number of desired clusters k ≤ n is known. The goal of
k-means is to find a clustering partition C, so that the total distances within the same clusters are
minimal. Formally, the objective is to solve the optimization problem

arg min
C

k∑
i=1

∑
x∈Ci

d(x,µµµi)

subject to Ci 6= ∅, ∀i = 1, 2, . . . n,

∩ki=1Ci = ∅,
∪ki=1Ci = X,

(2.5)

where µµµi is the average of all points within Ci, called centroid. In Algorithm 1 we describe the
steps of k-means that solves Problem 2.5. We can see that at each iteration, each set Ci is assigned
with the points of X that are ”closest” to the average µµµi, with the latter being re-calculated; the
procedure is repeated until convergence.

Now, let’s focus on the problem that we described in the previous Sections. Assume that our
WSN has k different terminals. Given A and b of the system model in Eq. 2.1, our goal is to divide
vector x into k disjoint clusters. Afterwards, the elements of each cluster Ci will be assigned to
WSN terminal i.

In particular, consider the update of each element xi described by Eq. 2.2. As we can see, the
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Algorithm 1: K-means algorithm.

Initialize µµµ
(0)
1 ,µµµ

(0)
2 , . . . ,µµµ

(0)
k

for t=0,1,2. . . do
for i=1,2,. . . ,k do

C
(t+1)
i = {xm : d(xm,µµµ

(t)
i ) ≤ d(xm,µµµ

(t)
j ), ∀j = {1, 2 . . . , k}}

µµµ(t+1) = 1

|C(t+1)
i |

∑
x∈C(t+1)

i

x

end

end

update of xi requires the nonzero elements of the i-th row of matrix A. In view of the above, let

S =

s>1
...

s>n

 ∈ Bn×n (2.6)

denote the binary matrix whose entries are 1 when the corresponding element of A is nonzero and
0 otherwise, namely

Sij =

{
1, Aij 6= 0,

0, otherwise,
(2.7)

where s>i denotes the i-th row of S. For example, the matrix S that is constructed from A of the
example in Fig. 2.1 is

S =


1 0 1 1
1 1 1 0
0 1 0 1
1 1 1 1

 .
Hence, vectors si are indicative of which elements of x the update of xi requires. As a result, it
is natural to conclude that when d(si, sj) is relatively small, for some i, j and metric d(·, ·), then
the updates of the corresponding xi and xj will both require similar subsets of x. Therefore, the
communication requirements between the different WSN terminals become minimal.

Considering all the above, in order to find clusters Ci and as a result the appropriate assignment
to the WSN terminals, we utilize k-means algorithm to the rows of S, (s1, s2, . . . , sn), using the
l1-norm as the distance metric d(·, ·), namely

d(x,y) , ‖x− y‖1, x,y ∈ Bn. (2.8)

Since the vectors si are binary, then l1-norm is equivalent to the Hamming distance, namely the
number of different bits of two vectors. For example, ‖si − sj‖1 = 3 means that si and sj differ
in 3 positions; as a result, the updates of xi and xj require 3 different elements of x, in addition
-perhaps- to some other common entries of x.
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Chapter 3

Algorithms

In this Chapter we firstly introduce the basic types of Probabilistic Graphical Models and what
inference is. We then describe two algorithms that lie into the system model that we presented in
the previous Chapter. More specifically, we initially prove that a particular instance of Gaussian
Belief Propagation results in a linear fixed point problem as described by Eq. 2.1. Afterwards, we
consider its asynchronous variant along with the asynchronous version of the well known consensus
algorithm, Average Consensus.

3.1 Gaussian Belief Propagation

3.1.1 Inference and Probabilistic Graphical Models

Consider the collection of n random variables

x = (x1, x2, . . . , xn) ∈ A1 ×A2 × · · · × An, (3.1)

where each random variable xi takes on a value in the set Ai, with i = 1, 2, . . . , n. With the term
inference we refer to answering specific queries about the distribution of x [15]. In particular,
assume that we have access to the collection of observations

y = (y1, y2, . . . , ym) ∈ B1 × B2 × · · · × Bm, (3.2)

where - again - each yi takes on a value on the set Bi, for i = 1, 2, . . . ,m. Given the aforementioned
setup, the three main inference tasks are:

1. Calculating posterior beliefs:

p (x|y) =
p (x,y)

p (y)

=
p (x,y)∑

x∈A1×···×An
p (x,y)

.

(3.3)

11



2. Calculate the marginal distribution for some subset of variables Xi:

p(Xi) =
∑
x\Xi

p(x). (3.4)

3. Calculating the maximum a posteriori (MAP) estimator:

x̂(y) = argmax
x∈A1×···×An

p (x|y)

= argmax
x∈A1×···×An

p (x,y)

p (y)

= argmax
x∈A1×···×An

p (x,y) .

(3.5)

Regarding the computational complexity of the aforementioned queries, assume for simplicity
that both the spaces of x and y have the same dimensions, namely n = m, and that |Xi| = 1 in
Eq. 3.4. Moreover, assume that Ai and Bi are countable (this assumption leads to discrete random
variables) and Ai = Bi = Z for some set Z (i.e. the set of integers Z, or some finite subset of Z),
for all i = 1, 2, . . . , n. As a result,

Zn = A1 × · · · × An = B1 × · · · × Bn. (3.6)

In that case, the calculation of the denominator of Eq. 3.3,

p(y) =
∑

(x1,x2,...,xn)∈Zn

p(x,y), (3.7)

requires |Z|2n operations, since |Z|n summations are required for each of the |Z|n possible values
of y. With alike arguments, we can see that the marginalization of Eq. 3.4 requires |Z|n oper-
ations. Similarly, if no structure is utilized, the optimization problem of the MAP estimator in
Eq. 3.5 requires searching over the entire space Zn, for each possible value of y, resulting in |Z|2n
calculations.

However, in a different scenario, suppose that (x1, x2, . . . , xn) are independent. In that case,
the calculation of Eq. 3.7 becomes

p(y) =
∑

(x1,x2,...,xn)∈Zn

p(x,y)

=
∑

(x1,x2,...,xn)∈Zn

p(x1, . . . , xn,y)

=
∑
x1∈Z

p(x1,y)
∑
x2∈Z

p(x2,y) · · ·
∑
xn∈Z

p(xn,y),

(3.8)

a calculation that requires n|Z| operation for each of the |Z|n different values of y, resulting in the
total n|Z|n+1 computations. In a similar manner, the calculation of Eq. 3.4 is found to require
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(n− 1)|Z|2 operations and the solution of the optimization problem of Eq. 3.5 becomes separable,
namely

x̂(y) = argmax
x∈Zn

p (x,y)

= argmax
xi∈Z

p(xi,y), i = 1, 2, . . . , n,
(3.9)

while its number of computations can be calculated to be n|Z|n+1.

Hence, one can conclude that enforcing structure to a distribution can heavily benefit the
inference’s computational complexity. Probabilistic graphical models (PGMs) provide an elegant
mechanism for exploiting such structures in complex probability distributions, allowing them to be
constructed and utilized effectively [15]. In particular, they consist of graph-like representations,
where the nodes and their connectivity encapsulate the probabilistic properties of the distribution
of interest and dictate a particular factorization of its distribution function. The three main classes
of PGMs are described below.

Directed Graphical Models

Directed Graphical Models (or Bayesian Networks) consist of a directed acyclic graph G = (V, E),
where V are its vertices, which represent the random variables of the distribution, and E ⊆ V × V
the directed edges between them. The connectivity of G encapsulates conditional independence
properties of the distribution of interest. More specifically, since G is directed and acyclic, a
topological order can be found. Given such a topological order, it holds that [16]

xi ⊥ xpred(i)\ pa(i)|xpa(i), (3.10)

where pa(i) denotes the indices of the parents of node xi and pred(i) its predecessors in the ordering.
In other words, given its parents, xi is independent of all xj that come before it in the topological
ordering, except -of course- for its parents. In order to find all conditional independences of the
given graphical model, algorithms that are based on d-separation can be utilized1.

All things considered, given the graph G = (V, E) of the model, the distribution function that
is to be represented is factorized as

p(x) =

|V|∏
i=1

p(xi|xpa(i)). (3.11)

To give a better insight of Eq. 3.11, consider the graph that is depicted in Fig. 3.1. Based on its
topology, the joint distribution function that is represented by the aforementioned graph is

p(x) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3, x5)p(x5|x3). (3.12)

1A thorough description of those algorithms is beyond the scope of this work. Details can be found in [16], [17].
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Figure 3.1: An example of a directed and acyclic graph that represents a distribution with 5 random
variables.

It should also be highlighted that directed graphical models are considered universal in the
sense that they can represent any distribution, since -based on the chain rule- every joint n-th
dimensional distribution function can be written as

p(x) =
n∏

i=1

p(xi| ∩i−1j=1 xj), (3.13)

a factorization that corresponds to a directed graphical model described by a fully connected
directed and acyclic graph.

Undirected Graphical Models

Undirected Graphical Models (or Markov Random Fields) represent distributions using an undi-
rected graph G = (V, E), where V are its vertices, which represent the random variables, and
E ⊆ V ×V the edges between them. Similarly to the case of Bayesian Networks, the connectivity of
G describes conditional independence properties of the distribution of interest. More specifically, if
X ,Y,Z ⊂ V denote the indices of three disjoint subsets of V, then

xX ⊥ xZ |xY (3.14)

if and only if Y separates X and Z in V. To put it differently, Eq. 3.14 holds if and only if after
the removal of all nodes in Y, there is no path connecting any nodes in X and Z.

Regarding the joint distribution that is described by G, we shall first define what potential
functions are. In particular, a potential function ψc(xc) is a non-negative function over a maximal
clique c ⊆ C of G, where C denotes the set of all maximal cliques of G. Thus, according to
the Hammersley-Clifford theorem [16], a positive distribution p(x) > 0 satisfies the conditional
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independence properties of an undirected graph G if and only if it can be factorized as

p(x) =
1

Z

∏
c∈C

ψc(xc)

∝
∏
c∈C

ψc(xc),
(3.15)

where Z is a normalization constant

Z =
∑
x

∏
c∈C

ψc(xc). (3.16)

It is crucial to highlight that one of the main drawbacks of undirected graphical models is the
presence of Z, since its computational complexity is exponential in the size of the model [17].

Figure 3.2: An example of an undirected graph that represents a distribution with 6 random
variables.

In Fig. 3.2 we depict an example undirected graph that describes the conditional independences
of a joint distribution with 6 random variables. The factorization that it enforces is

p(x) ∝ ψ{1,2,3}(x{1,2,3})ψ{3,4,5}(x{3,4,5})ψ{5,6}(x{5,6}). (3.17)

Factor Graphs

Factor graphs [11], [18] aim not only to unify directed and undirected graphical models’ properties
but also capture distributions’ structures that the aforementioned graphical models fail to express.
In particular, let g : A → R be an n-th dimensional real valued multivariate function of

x , (x1, x2, . . . , xn) ∈ A , A1 ×A2 × · · · × An. (3.18)

Suppose that g can be factorized into a product of functions, each having a subset of {x1, x2, . . . , xn}
as arguments, namely

g(x) =
∏
i∈I

fi(xJi), (3.19)
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where I and Ji are sets of indices, xJi ⊆ {x1, x2, . . . , xn} and fi a real valued function that takes xJi
as input. A factor graph G = (Vx ∪ Vf , E) is an undirected graph that expresses the factorization
Eq. 3.19. More specifically, it contains variable nodes Vx - that represent the variables xi- and
factor nodes Vf -that represent the factors fi of Eq. 3.19; the edges E ⊆ (Vx ∪ Vf )× (Vx ∪ Vf ) only
connect nodes between the sets Vx and Vf , and hence factor graphs are bipartite.

Figure 3.3: An example of a factor graph that corresponds to a function g of 5 variables factored
as g(x1, x2, x3, x4, x5) = f1(x1, x2, x3)f2(x1, x3)f3(x3, x4, x5).

In order to better comprehend what factor graphs are, we provide an example. Let g be a real
valued function of 5 variables that can be factored as

g(x1, x2, x3, x4, x5) = f1(x1, x2, x3)f2(x1, x3)f3(x3, x4, x5). (3.20)

In Fig. 3.3 we depict the factor graph associated with g. The variable nodes are represented with
circles, while the factor nodes with black squares. As we can see, the constructed graph is bipartite,
since there are no edges connecting two variable or two factor nodes.

Factor graphs are particularly useful describing probability distributions. In particular, if we
assume that g refers to a distribution function, comparing Eq. 3.11 and Eq. 3.15 with Eq. 3.19
we observe that factor graphs can be seen as a generalization of both directed and undirected
graphical models. On top of that, there is a variety of inference algorithms that have been developed
taking advantage of the properties of factor graphs, algorithms that often involve message passing
techniques between the graph’s nodes. One of the most famous and widely used algorithms is the
so called sum-product algorithm that we discuss in the next Section.

3.1.2 Belief Propagation Algorithm on Factor Graphs

Sum-product (or belief propagation) algorithm is a message passing algorithm that operates on
undirected graphical models or factor graphs. It was firstly introduced by R. G. Gallager dur-
ing the 1960s [19] and is still one of the most famous inference algorithms. Given a probability
distribution function, sum-product computes -either exactly or approximately- various marginal
distribution functions using message passing between the graph’s nodes and following a few simple
computational rules [11], [18].
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Let x , (x1, x2, . . . , xn) ∈ A , A1×A2×· · ·×An be a random vector and p(x) its distribution
function. Assume that a factor graph G = (Vx ∪ Vf , E) represents p(x) according to the factorization

p(x) =
∏
i∈I

fi(xJi), (3.21)

where I and Ji are sets of indices and xJi ∈ {x1, x2, . . . , xn}, for all i. As we discussed in the
previous Section, factor graphs are bipartite graphs; sum-product involves two different kinds
of messages that are sent between graph’s nodes: variable-to-factor and factor-to-variable mes-
sages. With mxi→fj (xi) we denote the message sent from random variable xi to factor fj and with
mfj→xi

(xi) the message sent from factor fj to random variable xi. According to sum-product, the
computations of the aforementioned messages are

mxi→fj (xi) =
∏

g∈fnbr(xi)
\fj

mg→xi(xi) (3.22)

mfj→xi
(xi) =

∑
xnbr(fj)

\xi

fj(xnbr(fj))
∏

xk∈xnbr(fj)
\xi

mxk→fj (xk), (3.23)

where nbr(a) ⊂ (Vx ∪ Vf ) denotes the set of the neighboring nodes of a in the factor graph, in both
the cases of random variable and factor nodes. Notice how both variable-to-factor and factor-to-
variable messages are functions of the variable that they refer to. Then, the marginal distribution
(or belief ) of each random variable xi of the model is calculated as

p(xi) ∝
∏

g∈nbr(xi)

mg→xi(xi). (3.24)

As we mentioned earlier, sum-product may calculate marginal distributions either exactly or
approximately. We initially consider the case of tree factor graphs. As the name suggests, tree
factor graphs have the structure and properties of the general factor graphs that we discussed in
the previous Section, but in addition, the associated graph is a tree. As a result, sum-product
is executed sequentially ; the messages that correspond to leaf nodes are initialized to units and
the message passing operation starts from the aforementioned nodes to the internal ones. The
algorithm naturally terminates after the messages from the internal nodes are finally passed to the
leaf nodes and the beliefs are calculated; this operation results into the exact calculation of the
marginal distributions.

The aforementioned procedure can be better comprehended with an example. Consider the
tree factor graph that is depicted in Fig. 3.4 and can be found in [11]. Considering what we have
discussed so far, and according to Eqs. 3.22, 3.23, the messages of sum-product are generated as
follows:

1.

mf1→x1(x1) =
∑

xnbr(f1)
\x1=∅

f1(x1) = f1(x1)

mf2→x2(x2) =
∑

xnbr(f2)
\x2=∅

f2(x2) = f2(x2)
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Figure 3.4: An example tree factor graph consisting of 5 random variable and 5 factor nodes [11].

mx4→f4(x4) = 1

mx5→f5(x5) = 1

2.

mx1→f3(x1) = mf1→x1(x1)

mx2→f3(x2) = mf2→x2(x2)

mf4→x3(x3) =
∑
x4

mx4→f4(x4)f4(x3, x4)

mf5→x3(x3) =
∑
x5

mx5→f5(x5)f5(x3, x5)

3.

mf3→x3(x3) =
∑
x1,x2

mx1→f3(x1)mx2→f3(x2)f3(x1, x2, x3)

mx3→f3(x3) = mf4→x3(x3)mf5→x3(x3)

4.

mf3→x1(x1) =
∑
x2,x3

mx3→f3(x3)mx2→f3(x2)f3(x1, x2, x3)

mf3→x2(x2) =
∑
x1,x3

mx3→f3(x3)mx1→f3(x2)f3(x1, x2, x3)

mx3→f4(x3) = mf3→x3(x3)mf5→x3(x3)

mx3→f5(x3) = mf3→x3(x3)mf4→x3(x3)

5.

mx1→f1(x1) = mf3→x1(x1)

mx2→f2(x2) = mf3→x2(x2)
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mf4→x4(x4) =
∑
x3

mx3→f4(x3)f4(x3, x4)

mf5→x5(x5) =
∑
x3

mx3→f5(x3)f5(x3, x5)

6.

p(x1) = mf1→x1(x1)mf3→x1(x1)

p(x2) = mf2→x2(x2)mf3→x2(x2)

p(x3) = mf3→x3(x3)mf4→x3(x3)mf5→x3(x3)

p(x4) = mf4→x4(x4)

p(x5) = mf5→x5(x5).

Conversely, when the factor graph of interest has not a tree structure but contains loops, this
sequential order of computations does not exist, since there is not the concept of leaf nodes.
Therefore, sum-product takes a slightly different shape, called loopy belief propagation. In particu-
lar, loopy belief propagation contains the same message calculations as described in Eqs. 3.22 and
3.23. However, since there is no natural termination step as in the previous case, the aforemen-
tioned calculations are performed iteratively -after initialization- for a certain number of iterations,
namely

m
(t+1)
xi→fj

(xi) =
∏

g∈fnbr(xi)
\fj

m(t)
g→xi

(xi) (3.25)

m
(t+1)
fj→xi

(xi) =
∑

xnbr(fj)
\xi

fj(xnbr(fj))
∏

xk∈xnbr(fj)
\xi

m
(t)
xk→fj

(xk), (3.26)

for t = 1, 2, . . . . After termination, the marginal distributions are calculated using Eq. 3.24. In
contrast to the case of tree factor graphs, loopy belief propagation may fail to converge. On top of
that, the calculation of the beliefs becomes approximate.

3.1.3 Gaussian Belief Propagation under High-Order Factorization and Asyn-
chronous Scheduling

Consider a Gaussian vector x ∈ Rn; its probability density function can be written as

p(x) ∝ exp

{
−1

2
(x−µµµ)>Λ−1 (x−µµµ)

}
(3.27)

where µµµ = E[x] its expected value and Λ = E[(x−µµµ) (x−µµµ)>] its covariance matrix. A partic-
ularly useful representation of Gaussian distributions is the so called information form, where we
can write
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p(x) ∝ exp

{
−1

2
x>Jx + h>x

}
(3.28)

where J = Λ−1 � O its information (or precision) matrix and h = Jµµµ its potential vector. It is
obvious that p(x) can also be written as

p(x) ∝
n∏

i=1

fi(xi)

m∏
j=1

gj(Xj), (3.29)

where fi(xi) are functions of xi, ∀i ∈ {1, 2, . . . , n}, and gj(Xj) functions of the sets Xj ⊆ {x1, x2,
. . . , xn}, ∀j ∈ {1, 2, . . . ,m} (we assume that there exist m such sets). If any of Xj contains more
than two elements of x, then we refer to Eq. 3.29 as a high-order factorization of the joint Gaussian
PDF.

Following [13], in this work we consider a particular factorization of the information matrix
and potential vector of Eq. 3.29. More specifically, we consider a high-order factorization with
J = Λ + Ξ>ΣΞ and h = Λξξξ + Ξ>Σu, where Λ , diag {η1, η2, . . . , ηn}, Σ , diag {ζ1, ζ2, . . . , ζm}
with ηi ≥ 0, ∀i ∈ {1, 2, . . . , n}, ζj > 0, ∀j ∈ {1, 2, . . . ,m}, Ξ ∈ Rm×n, ξξξ ∈ Rn and u ∈ Rm. Under
this factorization, the Gaussian PDF Eq. 3.28 takes the form

p(x) ∝ exp

{
−1

2
x>
(
Λ + Ξ>ΣΞ

)
x +

(
Λξξξ + Ξ>Σu

)>
x

}
∝ exp

{
−1

2
(x− ξξξ)>Λ (x− ξξξ)

}
exp

{
−1

2
(Ξx− u)>Σ (Ξx− u)

}
∝

n∏
i=1

exp

{
−1

2
ηi (xi − ξi)2

} m∏
j=1

exp

{
−1

2
ζi (Ξj,:x− uj)2

}
,

(3.30)

where Ξj,: denotes the j-th row of matrix Ξ. Comparing Eq. 3.30 with Eq. 3.29, one can observe
that

fi(xi) = exp

{
−1

2
ηi (xi − ξi)2

}
(3.31)

gj(Xj) = exp

−1

2
ζi

∑
k∈Vj

Ξj,k − uj

2 (3.32)

where Xj = {xk|Ξj,k 6= 0} and Vj = {k|xk ∈ Xj}. As we discussed in the previous Sections, if we
take a closer look at Eqs. 3.30, 3.31 and 3.32 we can see that a factor graph can be constructed, with
fi and gj as factor nodes and xi as random variable nodes, ∀j ∈ {1, 2, . . . ,m} and ∀i ∈ {1, 2, . . . , n},
respectively; as we examined, since factor graphs are bipartite graphs, sum-product algorithm -
which in the case of Gaussian distributions is called Gaussian Belief Propagation - involves the
iterative update of two types of nodal messages: factor-to-variable and variable-to-factor messages.
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Withm
(l)
gj→xi(xi) we denote the message sent from factor gj to random variable xi andm

(l)
xi→gj (xi)

the one sent from random variable xi to factor gj , both at iteration (l). According to sum-product,
the expressions of the aforementioned messages are

m(l)
gj→xi

(xi) ∝
∫ +∞

−∞
gj(Xj)

∏
k∈Vj\i

m(l−1)
xk→gj (xk) dXj\xi (3.33)

m(l)
xi→gj (xi) ∝ fi(xi)

∏
k∈Gi\j

m(l)
gk→xi

(xi), (3.34)

where Gi denotes the set of indices of factors gj , connected directly to random variable xi in the
factor graph. Using Eq. 3.34 into Eq. 3.33, the expression of factor-to-variable messages becomes

m(l)
gj→xi

(xi) ∝
∫ +∞

−∞
gj(Xj)

∏
k∈Vj\i

fk(xk)
∏

k′∈Gk\j

m(l)
gk′→xi

(xk)

 dXj\xi. (3.35)

Notice how the expression Eq. 3.35 is only parametrized by factor-to-variable messages. Without

loss of generality, we assume that the factor-to-variable messages m
(l−1)
gk′→xi(xk) are of Gaussian form

with m
(l−1)
gk′→xi(xk) ∼ N

(
xk;µ

(l−1)
gk′→xi ,

1

v
(l−1)
gk′→xi

)
, where µ

(l−1)
gk′→xi and v

(l−1)
gk′→xi their mean and precision,

respectively. Thus, substituting the expressions of fi(xi) and gj(Xj) presented in Eq. 3.31 and

3.32 and the Gaussian form of m
(l−1)
gk′→xi(xk) in Eq. 3.35 we get that the analytical expression of

factor-to-variable nodes

m(l)
gj→xi

(xi) ∝
∫ +∞

−∞
exp

−1

2
ζj

∑
k∈Vj

Ξjkxk − uj

2
∏

k∈Vj\i

exp

−1

2

ηk +
∑

k′∈Gk\k

v(l−1)gk′→xk

x2k +

ηkξk +
∑

k′∈Gk\j

v(l−1)gk′→xk
µ(l−1)gk′→xk

xk

 dXj\xi.

(3.36)

It can be proven [13] that the messages m
(l)
gj→xi(xi) are maintained Gaussian at iteration (l), with

their mean and precision given by

µ(l)gj→xi
=



Ξ−1ji uj −
∑

k∈Vj\i

Ξ−1ji Ξjk

(
ηkξk +

∑
k′∈Gk\j v

(l−1)
gk′→xkµ

(l−1)
gk′→xk

)
ηk +

∑
k′∈Gk\k v

(l−1)
gk′→xk

,

if ηk +
∑

k′∈Gk\k

v(l−1)gk′→xk
> 0,∀k ∈ Vk\i

0, otherwise

(3.37)
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v(l)gj→xi
=

Ξ2
ji

ζ−1j +
∑

k∈Vj\i Ξ2
jk

(
ηk +

∑
k′∈Gk\k v

(l−1)
gk′→xk

)−1 , (3.38)

respectively.

To continue, we can use the updated messages m
(l)
gj→xi and fi(xi) in order to calculate the belief

propagation belief b(l)(xi) of xi at iteration (l) as

b(l)(xi) ∝ fi(xi)
∏
k∈Gi

m(l)
gk→xi

(xi). (3.39)

Again, we can substitute the expressions of fi(xi) and m
(l)
gk→xi(xi) into Eq. 3.39 and get

b(l)(xi) ∝ exp

−1

2

ηi +
∑
k∈Gi

v(l)gk→xi

x2i +

ηiξi +
∑
k∈Gi

v(l)gk→xi
µ(l)gk→xi

xi

 . (3.40)

It is proven in [13] that b(l)(xi) are valid Gaussians with b(l)(xi) ∼ N
(
xi; ε

(l)
i , σ

(l)
i

)
, where the mean

and variance are given by

ε
(l)
i =

ηiξi +
∑

k∈Gi v
(l)
gk→xiµ

(l)
gk→xi

ηi +
∑

k∈Gi v
(l)
gk→xi

(3.41)

σ
(l)
i =

1

ηi +
∑

k∈Gi v
(l)
gk→xi

, (3.42)

respectively.

With v(l) and µµµ(l) we denote the vectors constructed if we stack all v
(l)
gj→xi and µ

(l)
gj→xi , ∀(i, j) ∈

E , {(i, j)|i ∈ {1, 2, . . . , n}, j ∈ Gi}, respectively, with the order of (i, j) ascending first on i then

on j. Additionally, we define Θ ,
{
θθθ|θgj→xi ≥ Ξ2

jiζj , ∀(i, j) ∈ E
}

, where θθθ is a vector containing

the elements θgj→xi , ∀(i, j) ∈ E with the same order as in v(l) and µµµ(l). As shown in [13], if v(0) is

chosen in a way that v(0) ∈ Θ, then v(l) converges to a unique non-negative fixed point v∗, with
either a synchronous or asynchronous scheduling, as described in Chapter 2.

Once the precision v(l) converges, the update of belief propagation message means follows the

expression Eq. 3.37, with the values v
(l−1)
gk′→xk being replaced by the converged values v∗gk′→xk

. Taking

a closer look at Eq. 3.37, we can see that the update of vector µµµ(l) is a linear function. In particular,
it holds that

µµµ(l) = Aµµµ(l−1) + c, l = 1, 2, . . . , (3.43)
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where A ∈ R|E|×|E| is a matrix such that Aµµµ(l−1) is a column vector containing elements αi,j , ∀(i, j) ∈
E arranged in the same manner as in v(l) and µµµ(l), with

αi,j =


−
∑

k∈Vj\i

Ξ−1ji Ξjk

(
ηkξk +

∑
k′∈Gk\j v

∗
gk′→xk

µ
(l−1)
gk′→xk

)
ηk +

∑
k′∈Gk\k v

∗
gk′→xk

, if ηk +
∑

k′∈Gk\k

v∗gk′→xk
> 0,∀k ∈ Vk\i

0, otherwise

(3.44)

and

ci,j =


Ξ−1ji uj −

∑
k∈Vj\i

Ξ−1ji Ξjkηkξk

ηk +
∑

k′∈Gk\k v
∗
gk′→xk

, if ηk +
∑

k′∈Gk\k

v∗gk′→xk
> 0, ∀k ∈ Vk\i

0, otherwise.

(3.45)

As we can see, the belief propagation message mean update in Eq. 3.43 is an instance of the
system model that we discussed in Chapter 2. Hence, as it was initially introduced in [13] and
analyzed in the aforementioned Chapter, we can solve the fixed point problem of Eq. 3.43 in an
asynchronous manner utilizing Eq. 2.4. This will lead to the asynchronous belief propagation
message mean update

µµµ(l) =
(
Ψ(l)A + I−Ψ(l)

)
µµµ(l−1) + Ψ(l)c. (3.46)

3.1.4 Solving a linear system of equations

Suppose that our goal is to solve the linear system of equations

Mx = s, (3.47)

where M ∈ Rm×n with m ≥ n a full rank matrix and s ∈ Rm a real vector. As we know, the
least-squares solution of Eq. 3.47 yields the vector

x =
(
M>M

)−1
M>s. (3.48)

The aforementioned system can be solved using Gaussian Belief Propagation. More specifically, if
we set Λ = O, Ξ = M, Σ = I, ξξξ = 0 and u = s in Eq. 3.30 then Gaussian Belief Propagation can
be utilized for the following distribution
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p(x) = N
(

x;
(
M>M

)−1
M>s,

(
M>M

)−1)
∝ exp

{
−1

2
x>M>Mx + s>Mx

}
,

(3.49)

whose inference of expected value will yield the desired solution.

3.1.5 Linear Minimum Mean Square Error (LMMSE) Estimator

Let x ∈ Rn a real Gaussian vector such that x ∼ N (x; 0,W), where W � O. Consider the system
model

y = Ax + z, (3.50)

where A ∈ Rm×n a real matrix and z ∈ Rm a Gaussian vector independent of x, with z ∼ N (z; 0,R)
and R � O. Then, assuming that we only have access to the noisy measurements Eq. 3.50, the
Linear Minimum Mean Square Error (LMMSE) estimator of x is given by [20], [16], [21]

x̂ =
(
W−1 + A>R−1A

)−1
A>R−1y. (3.51)

Similarly to the case of the linear system of equations of the previous Section, if we set Λ = W−1,
Ξ = A, Σ = R−1, ξξξ = 0 and u = y in Eq. 3.30 we get the distribution

p(x) = N
((

W−1 + A>R−1A
)−1

A>R−1y,W−1 + A>R−1A

)
∝ exp

{
−1

2
x>
(
W−1 + A>R−1A

)
x + y>

(
R−1

)>
Ax

}
.

(3.52)

Utilizing Gaussian Belief Propagation, we can infer the expected value of p(x), which will ultimately
yield the desired estimate x̂.

3.2 Average Consensus

Decentralized consensus algorithms involve a large number of agents that, using a distributed
message passing approach, reach a converged agreement value [22], [23]. One of them is the so
called Average Consensus algorithm. As the name suggests, this algorithm’s agreement value is
the average of all the initial values of the agents. In other words, after the algorithm converges, all
agents have converged to the same value which is the average of all the initial ones.
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In particular, the algorithm’s iterations in matrix form are given by

x(l) = Wx(l−1), l = 1, 2, . . . , (3.53)

where W is a weight matrix that encapsulates both the connectivity and the weights of the network.
It can be shown that Eq. 3.53 reaches the fixed point

x∗ = lim
l→+∞

x(l) = lim
l→+∞

Wlx(0) =
11>

n
x(0) =

1

n

n∑
i=1

x
(0)
i , (3.54)

or equivalently

lim
l→+∞

Wl =
11>

n
, (3.55)

where 1 denotes the n-nth dimensional vector whose all entries are 1, if and only if 1>W = 1>,

W>1 = 1 and ρ
(
W − 11>

n

)
< 1 [24].

Let G = (V, E) the graph that stems from the topology of the network of agents, where V its
vertices and E its edges. Then, the matrices that contain the max-degree weights of G,

Wij =


1

d+ 1
, i 6= j, {i, j} ∈ E ,

1− di
d+ 1

, i = j,

0, i 6= j, {i, j} /∈ E ,

(3.56)

where d is the degree of G and di the degree of vertex i, is a family of matrices that satisfy the
conditions above and hence guarantee convergence [25]. On the other hand, it is straightforward
to observe that Eq. 3.53 falls into the system model that we discussed in Chapter 2, with A = W
and b = 0. As a result, its asynchronous variant

x(l) =
(
Ψ(l)W + I−Ψ(l)

)
x(l−1) (3.57)

can be considered.
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Chapter 4

Convergence Analysis

In this Chapter, we provide some results regarding the convergence of the linear fixed point problem,
for both the cases of synchronous and asynchronous scheduling.

4.1 General results for the synchronous case

Assume the synchronous linear update of Eq. 2.1. It is straightforward to see that

x(l) = Ax(l−1) + b

= A
[
Ax(l−2) + b

]
+ b

= A2x(l−2) + (I + A) b

= A2
[
Ax(l−3) + b

]
+ (I + A) b

= A3x(l−3) +
(
I + A + A2

)
b.

(4.1)

Therefore, if we continue the calculations recursively, we can show that

x(l) = Alx(0) +
l∑

j=1

Al−jb

= Alx(0) +
(
I + A + A2 + · · ·+ Al−1

)
b.

(4.2)

As a result, the existence and calculation of the fixed point of Eq. 2.1, x∗ = liml→+∞ x(l), is based
on the existence of the limits

lim
l→+∞

Al and lim
l→+∞

(
I + A + A2 + · · ·+ Al−1

)
. (4.3)

In the literature, the series of matrices I + A + A2 + . . . is called Neumann Series and is the
matrix generalization of the power series. According to [26], the following theorems hold.
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Theorem 1. For A ∈ Rn×n, liml→+∞Al = O if and only if ρ (A) < 1.

Theorem 2. For A ∈ Rn×n, the following three statements are equivalent.

• The Neumann series I + A + A2 + . . . converges.

• ρ (A) < 1.

• lim
l→+∞

Al = O.

In such a case, (I−A)−1 exists and

+∞∑
l=0

Al = (I−A)−1 .

As a result, based on Eq. 4.2 and the Theorems above, the fixed point of Eq. 2.1 exists if and
only if ρ (A) < 1, in which case it holds that

x∗ = lim
l→+∞

x(l)

= lim
l→+∞

[
Alx(0) +

(
I + A + A2 + · · ·+ Al−1

)
b
]

= lim
l→+∞

Alx(0) + lim
l→+∞

(
I + A + A2 + · · ·+ Al−1

)
b

= (I−A)−1 b.

(4.4)

Now, consider a different scenario, where we assume that in particular, b = 0 in Eq. 2.1; namely
the linear update is homogenous. In that case, Eq. 4.2 becomes

x(l) = Alx(0). (4.5)

As we can see, the term that corresponds to the Neumann series is not existent in the particular
case of b = 0. As a result, the convergence conditions are slightly different. In that case, we
observe that the fixed point is now only dependent on the liml→+∞Al, a limit that, in contrast to
the case where b 6= 0, may not be equal to the zero matrix O. In order to discuss this, we firstly
have to introduce some definitions from [26].

Definition 1. Let A ∈ Rn×n. The spectrum of A, denoted by σ(A), corresponds to the set of the
distinct eigenvalues of A, namely σ(A) = {λ1, λ2, . . . , λk}.
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Definition 2. Let A ∈ Rn×n and λ ∈ σ(A) = {λ1, λ2, . . . , λk}.

• The algebraic multiplicity of λ is the number of times it is repeated as a root of the charac-
teristic polynomial det(sI−A).

• The geometric multiplicity of λ is equal to dimN (A− λI). In other words, it is the maximal
number of linearly independent eigenvectors associated with λ.

• If the algebraic multiplicity of λ is equal to the geometric multiplicity of λ, then λ is called a
semisimple eigenvalue of A.

In addition, the following theorem holds [26].

Theorem 3. For A ∈ Rn×n, liml→+∞Al exists if and only if

ρ(A) < 1, or else

ρ(A) = 1, where λ = 1 is the only eigenvalue on the unit circle, and λ = 1 is semisimple.

In both cases, when it exists, it holds that

lim
l→+∞

Al = the projector onto N (I−A) along R(I−A).

As a result, according to Theorem 3, we conclude that when b = 0, the fixed point of the linear
iterations of Eq. 2.1,

x(l) = Ax(l−1), (4.6)

exists if and only if ρ(A) < 1 or ρ(A) = 1, where λ = 1 is semisimple and the only eigenvalue with
unitary magnitude, and it is equal to the projector onto N (I−A) along R(I−A).

4.2 Results in special cases of asynchronous scheduling

4.2.1 Gaussian Belief Propagation

Consider Gaussian Belief Propagation, as we discussed it in Section 3.1.3. We will prove the
following.
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Theorem 4 ([13]). With high-order decomposition and v(0) ∈ Θ, the expectation of Belief Prop-
agation message mean E[µµµ(l)] converges under the stochastic asynchronous scheduling that we
presented in Chapter 2 if and only if ρ (P(A− I) + I) < 1, where E[Ψ(l)] , P, ∀(l).

Proof. As we derived in Section 3.1.3, the Belief Propagation message means are updated linearly
according to the iteration

µµµ(l) =
(
Ψ(l)A + I−Ψ(l)

)
µµµ(l−1) + Ψ(l)c, (4.7)

where A and c are known. The fixed point of Eq. 4.7, µµµ∗, must satisfy 1

µµµ∗ =
(
Ψ(l)A + I−Ψ(l)

)
µµµ∗ + Ψ(l)c. (4.8)

Hence, it holds that

µµµ(l) −µµµ∗ = B(l)
(
µµµ(l−1) −µµµ∗

)
, (4.9)

where B(l) ,
(
Ψ(l)A + I−Ψ(l)

)
. As a result,

E[µµµ(l) −µµµ∗] = E
[
B(l)

(
µµµ(l−1) −µµµ∗

)]
= E[B(l)]E

[(
µµµ(l−1) −µµµ∗

)]
,

(4.10)

due to statistical independence. As we can see, the update of Eq. 4.10 is a linear equation.
Thus, E[µµµ(l) − µµµ∗] converges to zero if and only if ρ

(
E[B(l)]

)
= ρ

(
E
[
Ψ(l)A + I−Ψ(l)

])
< 1.

Therefore, if we assume that µµµ∗ is constant, we conclude that E[µµµ(l)] converges to µµµ∗ if and only if
ρ
(
E
[
Ψ(l)A + I−Ψ(l)

])
= ρ (P(A− I) + I) < 1 . �

4.2.2 Average Consensus

We firstly introduce what convergence in expectation is [27], [28].

Definition 3. A sequence of random vectors x(0),x(1),x(2), . . . converges to x∗ in expectation, if
liml→+∞ E[x(l)] = x∗.

In this work, we derive the following Theorem.

1Eq. 4.8 holds if we assume that µµµ∗ is independent of all the scheduling matrices Ψ(l).
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Theorem 5. Let W ∈ Rn×n be a rectangular stochastic matrix, namely

1>W = 1> (4.11)

W>1 = 1. (4.12)

Suppose in addition that E[Ψ(l)] = pI, for p ∈ (0, 1] and ∀l. Then, the asynchronous variant of
Average Consensus in Eq. 3.57 converges in expectation to the Average Consensus fixed point
x∗ = 11>

n x(0) if

ρ

(
pW + (1− p)I− 11>

n

)
< 1.

Proof. Let W ∈ Rn×n satisfy 4.11 and 4.12 and B(l) , Ψ(l)W+I−Ψ(l), where Ψ(l) the scheduling
matrix as described in Chapter 2. Then, if P , E[Ψ(l)] = pI, p ∈ (0, 1], the matrix E[B(l)] =
pW + (1− p)I also satisfies the conditions above, since

1>(pW + (1− p)I) = p1>W + (1− p)1>I = 1> (4.13)

(pW + (1− p)I)>1 = pW>1 + (1− p)I>1 = 1. (4.14)

As a result, consider the asynchronous variant of Average Consensus in Eq. 3.57,

x(l) =
(
Ψ(l)W + I−Ψ(l)

)
x(l−1). (4.15)

Then, it follows that

E[x(l)] = E[
(
Ψ(l)W + I−Ψ(l)

)
x(l−1)]

= E[
(
Ψ(l)W + I−Ψ(l)

)
]E[x(l−1)]

= (PW + I−P)E[x(l−1)],

(4.16)

since at iteration (l), Ψ(l) and x(l−1) are statistically independent. Then, since E[Ψ(l)] = pI, p ∈
(0, 1], ∀l, we get

E[x(l)] = (pW + (1− p)I)E[x(l−1)]. (4.17)

Therefore, if the statistics of the independent matrices Ψ(l) result in ρ
(
pW + (1− p)I− 11>

n

)
< 1,

then the iteration Eq. 4.15 converges in expectation to the Average Consensus fixed point x∗ =
11>

n x(0) [28]. �

We will now present a result regarding the convergence rate of Average Consensus from relevant
work in [27]. In particular, in this work it is additionally assumed that all B(l) in the average
consensus iterations

x(l) = B(l)x(l−1) (4.18)
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are symmetric and stochastic matrices, namely 1>B(l) = 1> and B(l)>1 = 1, ∀l. Hence, we
introduce the following definition.

Definition 4 ( (α, γ)-convergence Time [27]). For a sequence of random vectors x(0),x(1),x(2), . . . ,

given any γ ∈ [0, 1] and α ∈ R+, suppose that ‖x(0) − 11>

n x(0)‖ 6= 0, where ‖ · ‖ some norm. Then,
the sequence’s (α, γ)-convergence time Tk is defined as

Tk = inf

{
k : Pr

(
‖x(k) − 11>

n x(0)‖
‖x(0) − 11>

n x(0)‖
≤ α

)
≥ γ

}
,

and indicates the least iterations needed for x(k) to be α close to 11>

n x(0) with probability at least
γ.

Since B(l) are stochastic matrices, it holds that

11>

n
x(l) =

11>

n

l∏
k=1

B(l−k+1)x(0)

=
11>

n
x(0).

(4.19)

Therefore, we get

x(l) − 11>

n
x(0) = B(l)x(l−1) − 11>

n
x(0)

4.19
=

(
B(l) − 11>

n

)
x(l−1)

=
l∏

k=1

(
B(l−k+1) − 11>

n

)
x(0)

(4.20)

and as a result

E
[
x(l) − 11>

n
x(0)

]
=

l∏
k=1

(
E
[
B(l−k+1)

]
− 11>

n

)
x(0), (4.21)

where E
[
B(l−k+1)

]
is constant across all the independent iteration and known. Hence, the following

Theorem holds.

Theorem 6 ([27]). If ρ(C) < 1 and ρ(E
[
B(l−k+1)

]
− 11>

n ) < 1, then the (α, γ)-convergence time
Tk of Average Consensus is upper bounded by

Tku =

⌈
log
(
α2(1− γ)

)
log ρ(C)

⌉
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and there exists an x(0) such that Tk is lower bounded by

Tkl =

 log(1− γ + γα2)

2 log ρ
(
E
[
B(l−k+1)

]
− 11>

n

)
 ,

where C = E
[(

B(l) − 11>

n

)> (
B(l) − 11>

n

)]

Proof. [27]. �

Although those results are not directly applicable to our framework, since in our case, the
matrices Ψ(l)W − I + Ψ(l) are rarely column stochastic, they give us a better insight on not only
how to evaluate the efficiency of algorithms like Average Consensus, but also on the parameters
that affect their convergence speed the most; as expected, the statistics of the random matrices
B(l) play the greatest role.
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Chapter 5

Simulations

In this Chapter, we present the experimental results of the asynchronous variants of Gaussian
Belief Propagation and Average Consensus. In particular, we provide simulations studying the
convergence of the aforementioned algorithms and their comparison with their synchronous cases.

5.1 Gaussian Belief Propagation

5.1.1 Linear System Solution

In this Section we present numerical results regarding the convergence of Gaussian Belief Propaga-
tion with synchronous and asynchronous schedulings. Following Section 3.1.4, our task is to solve
the linear system of equations

Mx = s. (5.1)

In all the experiments, we assume that [13]

M =



3.63 −6.12 0 0 0 −2.61 0 0
0 −10.65 7.59 0 0 0 0 0
0 0 −1.92 7.05 0 0 −10.46 0
0 0 0 0.18 3.27 0 0 0

−2.01 0 0 0 −0.97 0 0 0
0 0 0 0 0 0 8.01 0.37

5.18 −1.86 0 4.63 0 0 0 0
0 0 0.91 0 0 0 0 0.13


(5.2)

and

s =
[
1 1 1 1 1 1 1 1

]>
. (5.3)

As we described in the aforementioned Section, it is possible to find the solution of Eq. 5.1,

x =
(
M>M

)−1
M>s, (5.4)

33



inferring the expected value of the distribution

p(x) ∝ exp

{
−1

2
x>M>Mx + s>Mx

}
, (5.5)

using Gaussian Belief Propagation.

The loopy factor graph that is associated with the given M and s and represents the distribution
function p(x) can be seen in Fig. 5.1. As we described in Section 3.1.3, at iteration (l), the
message means µgj→xi of Gaussian Belief Propagation are updated linearly, according to Eq. 3.43.
Therefore, our goal is to assign different edges of the factor graph to different WSN nodes, in order
to distribute the computations, according to the system model that we discussed in Chapter 2.

Figure 5.1: The factor graph that corresponds to p(x) in Eq. 5.5, for M and s that are given in
Eq. 5.2 and 5.3 , respectively. Note that factors fi are not depicted, for the sake of simplicity.

In all the experiments, we consider three different kinds of schedules:

1. A synchronous scheduling, where the whole vector µµµ is assigned to a single WSN node, that
is assumed to always have sufficient energy to operate. As a result, at each iterations (l) of
Gaussian Belief Propagation, all elements of µµµ(l−1) are updated.

2. An i.i.d. asynchronous scheduling [13], where essentially every element of µµµ is assigned to a

different WSN terminal. On top of that, the scheduling variables ψ
(l)
i (refer to Eq. 2.3) are

assumed i.i.d. Bernoulli random variables, with the same parameter p. In other words, the
probability that at iteration (l), a WSN node will have sufficient energy in order to update
the corresponding element of µµµ is p and is independent of all the other terminals or previous
iterations.

3. A non i.i.d. asynchronous scheduling, where µµµ is partitioned into k distinct WSN terminals.
Each terminal is responsible for the update of the elements that it encloses, and as a result, its
energy sufficiency affects their update. In contrast to the previous case, the scheduling vari-

ables ψ
(l)
i are assumed Bernoulli random variables, all independent across different iterations,
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but possibly dependent across the different elements of µµµ. More specifically, we assume that
there exist k distinct scheduling variables; the elements of µµµ that are part of the same WSN

node are also assigned with the same scheduling variables. Hence, all ψ
(l)
t that correspond

to µ
(l)
gj→xi which belong to the same WSN terminal, are fully dependent and in fact exactly

the same. To put it differently, at each iteration, k independent -and possibly non identically
distributed- Bernoulli random variables (each for every node) are sampled, and -according to
their result- the elements that correspond to each WSN terminal are updated.
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(d) Experiment 4

Figure 5.2: Convergence of asynchronous Gaussian Belief Propagation for different experiments, in
the case of solving a linear system of equations. In particular, we present results for WSNs with dif-
ferent number of terminals, different vector-to-terminal assignments, different outage probabilities
and different schedulings.

In Fig. 5.2, we present 4 different experimental results for the aforementioned framework. In
particular, we plot the estimation of the per iteration expected value E[‖e(l)‖2] using 20 independent
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experiments; at iteration (l), the error e is defined as

e(l) , εεε(l) − x̂, (5.6)

where εεε(l) is the vector that is constructed if we stack all belief means, according to Eq. 3.41, and x̂ ,(
M>M

)−1
M>s, the least squares solution of the system Eq. 5.1. Moreover, particularly for the

case of the non i.i.d. asynchronous scheduling that we previously discussed, in each experiment we
considered two cases where the WSN that we simulate has k = 3 and k = 4 terminals, respectively.
In addition, the different elements ofµµµ where randomly assigned to each WSN terminal in every case.
Finally, in Tables 5.1, 5.2, 5.3 and 5.4, we present the parameters that were used in each experiment,
along with the necessary convergence metrics. Note that with pi we denote the probability of
the successful update of the elements that are assigned to WSN terminal i. Also notice that in
Experiment 4, we assume that all the involved WSN terminals are identical, in the sense that the
probability that their enclosed values are updated at iteration (l) is constant for all of them.

Table 5.1: Experiment 1.

Scheduling Probability of update ρ(A) ρ(P(A− I) + I)

synchronous p = 1 1.02231 1.02231

i.i.d. asynchronous p = 0.4025 1.02231 0.89954

non i.i.d. asynchronous
(k = 3)

p1 = 0.3576
p2 = 0.3453
p3 = 0.2699

1.02231 0.9153

non i.i.d. asynchronous
(k = 4)

p1 = 0.8355
p2 = 0.7947
p3 = 0.4941
p4 = 0.8390

1.02231 0.92293

Table 5.2: Experiment 2.

Scheduling Probability of update ρ(A) ρ(P(A− I) + I)

synchronous p = 1 1.02231 1.02231

i.i.d. asynchronous p = 0.4709 1.02231 0.88245

non i.i.d. asynchronous
(k = 3)

p1 = 0.7343
p2 = 0.7147
p3 = 0.4417

1.02231 0.86944

non i.i.d. asynchronous
(k = 4)

p1 = 0.4958
p2 = 0.8295
p3 = 0.7512
p4 = 0.4456

1.02231 0.84002

Taking a closer look at the aforementioned Figures and Tables, one can make some useful
observations. First of all, we can see that ρ(A) = 1.02231 > 1. Therefore, as we derived in Chapter
4, we expect that the linear iterations of Eq. 3.43 diverges [29], something that one can verify
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Table 5.3: Experiment 3.

Scheduling Probability of update ρ(A) ρ(P(A− I) + I)

synchronous p = 1 1.02231 1.02231

i.i.d. asynchronous p = 0.5922 1.02231 0.85218

non i.i.d. asynchronous
(k = 3)

p1 = 0.6503
p2 = 0.2540
p3 = 0.8426

1.02231 0.87051

non i.i.d. asynchronous
(k = 4)

p1 = 0.6271
p2 = 0.5314
p3 = 0.7938
p4 = 0.8454

1.02231 0.85743

Table 5.4: Experiment 4.

Scheduling Probability of update ρ(A) ρ(P(A− I) + I)

synchronous p = 1 1.02231 1.02231

i.i.d. asynchronous p = 0.5122 1.02231 0.87214

non i.i.d. asynchronous
(k = 3)

p1 = 0.5122
p2 = 0.5122
p3 = 0.5122

1.02231 0.87214

non i.i.d. asynchronous
(k = 4)

p1 = 0.5122
p2 = 0.5122
p3 = 0.5122
p4 = 0.5122

1.02231 0.87214

in Fig. 5.2. In addition, we should predict that all the different asynchronous schedulings should
converge, since ρ(P(A− I) + I) < 1 in all the cases, something that is also experimentally proved
in the simulations.

To continue, we see that choosing different number of WSN terminals k, different probabilities pi
and different partitions of the calculated vector can heavily change the behaviour of the algorithm.
For instance, notice how utilizing an non i.i.d. asynchronous scheduling with k = 4 WSN terminals
becomes from the fastest in Experiment 1 to the slowest possible scheduling in Experiment 3, when
the involved parameters are altered. Moreover, taking a thorough look at the Figure of Experiment
4, we see that even if the energy statistics of each WSN terminal are the same, the difference in
the number of the aforementioned nodes along with the different vector partitioning can heavily
impact the convergence speed.

Besides all the above -however-, perhaps the most important conclusion that one would make is
that in this particular instance, the unreliability of the WSN terminals is not -really- a limitation.
In contrast, it becomes a key feature, since in a different scenario when the WSN would allow
synchronous calculations, Gaussian Belief Propagation would diverge.
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5.1.2 Linear Minimum Mean Square Error (LMMSE) Estimator

In the next experiments, our goal is to calculate the Linear Minimum Mean Square Error (LMMSE)
estimator of a Gaussian vector. More specifically, let Rn 3 x ∼ N (x; 0,W) and Rm 3 z ∼
N (z; 0,R), where W � O and R � O. Then, assuming the linear model

y = Ax + z, (5.7)

where A ∈ Rm×n, the LMMSE estimator of x,

x̂ =
(
W−1 + A>R−1A

)−1
A>R−1y, (5.8)

can be calculated by inferring the expected value of the distribution

p(x) = ∝ exp

{
−1

2
x>
(
W−1 + A>R−1A

)
x + y>

(
R−1

)>
Ax

}
. (5.9)

using Gaussian Belief Propagation, as described in Section 3.1.5,

In our experiments, we assume that W = I, R = 0.1I,

A =



0 0 0 0 0 0 0 0.411
−1.709 0 0 0 0 −0.084 0 −0.876
0.399 0 −0.439 −1.753 0 0 0 −0.232

0 0.641 0 0 1.679 −0.266 0 1.869
0 0 1.365 0 0.508 0 0 −3.006

−0.458 0.320 0 −0.141 0.651 0 0 −0.299
0 0 0 0 0 0 0 −0.379

0.261 0 0.546 0.205 −0.174 0 0 −0.328


, (5.10)

and we test the same schedulings as in the case of the Linear System in the previous section;
especially for the case of non i.i.d. asynchronous scheduling, we test two different WSNs with k = 2
and k = 4 terminals, respectively, and different update probabilities. In addition, in order to assign
the different parts of x to different WSN nodes, we utilize k-means algorithm, as we presented it
in Chapter 2.

Table 5.5: Experiment 2.

Scheduling Probability of update ρ(A) ρ(P(A− I) + I)

synchronous p = 1 0.5476 0.5476

i.i.d. asynchronous p = 0.7712 0.5476 0.64932

non i.i.d. asynchronous
(k = 2)

p1 = 0.7776
p2 = 0.5088

0.5476 0.71418

non i.i.d. asynchronous
(k = 4)

p1 = 0.3415
p2 = 0.8605
p3 = 0.7642
p4 = 0.4201

0.5476 0.75346
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Figure 5.3: Convergence of Gaussian Belief Propagation for calculating the LMMSE estimator of
a Gaussian vector, under different WSNs and schedulings.

Table 5.6: Experiment 2.

Scheduling Probability of update ρ(A) ρ(P(A− I) + I)

synchronous p = 1 0.5476 0.5476

i.i.d. asynchronous p = 0.3670 0.5476 0.83215

non i.i.d. asynchronous
(k = 2)

p1 = 0.3909
p2 = 0.2286

0.5476 0.86542

non i.i.d. asynchronous
(k = 4)

p1 = 0.6049
p2 = 0.7654
p3 = 0.4822
p4 = 0.8205

0.5476 0.73958

In Figs. 5.3a, 5.3b and in Tables 5.5, 5.6 we show the convergence plots (similarly to the previous
case, we plot the mean E[‖εεε(l) − x̂‖2] at every iteration) along the parameters that were used in
each experiment. First of all, we notice that ρ(A) = 0.5476 < 1; as a result, in contrast to the
previous set of experiments, we expect Gaussian Belief Propagation to converge under a synchronous
scheduling, something we can verify from the plots. In addition, we see that ρ(P(A−I)+I) < 1 for
all the different asynchronous schedulings, something that -as we can derive from the plots- implies
convergence, in all the cases.

Thus, taking a closer look to the aforementioned parameters and plots, we draw similar con-
clusions to the case of solving a Linear System. More specifically, we see that when a vector is
clustered with a different set of update probabilities and different number of WSN terminals k, the
convergence speed at which asynchronous Gaussian Belief Propagation converges changes. Notice
-for example- how an asynchronous scheduling with k = 4 changes from being the slowest to the
fastest scheduling, along the asynchronous ones with different p’s and k’s, if we alter the update
probabilities of the network. Therefore, it is particularly interesting to study the clustering methods

39



in greater depth, since they play a key role at the convergence rate.

5.2 Average Consensus

In this Section we provide numerical results regarding both the synchronous and asynchronous
variants of the Average Consensus algorithm.

Firstly, we consider an example of a network with n = 10 agents. In particular, let

x(0) =



0.4477
0.0278
1.3360
−0.5996
−0.9013
−1.7324
−0.8797
0.7707
−0.6157
−1.4005


. (5.11)

We then randomly generate an adjacency matrix for a graph with n = 10 nodes and generate the
matrix W that contains its max-degree weights, as per Eq. 3.56

W =



0.5000 0.1250 0 0 0 0.1250 0 0 0.1250 0.1250
0.1250 0.1250 0.1250 0.1250 0.1250 0 0.1250 0.1250 0 0.1250

0 0.1250 0.7500 0.1250 0 0 0 0 0 0
0 0.1250 0.1250 0.5000 0 0.1250 0 0.1250 0 0
0 0.1250 0 0 0.7500 0.12500 0 0 0 0

0.1250 0 0 0.1250 0.1250 0.2500 0 0.1250 0.1250 0.1250
0 0.1250 0 0 0 0 0.7500 0.1250 0 0
0 0.1250 0 0.1250 0 0.1250 0.1250 0.5000 0 0

0.1250 0 0 0 0 0.1250 0 0 0.6250 0.1250
0.1250 0.1250 0 0 0 0.1250 0 0 0.1250 0.5000


.

(5.12)

As expected, it holds that 1>W = 1>, W>1 = 1 and ρ
(
W − 11>

n

)
= 0.8385 < 1. Therefore, we

would predict that the synchronous iteration of Eq. 3.53,

x(l) = Wx(l−1), (5.13)

reaches the fixed point

x∗ =
11>

n
x(0) = −0.3547 1. (5.14)

As a matter of fact, this prediction is verified, taking a look at Fig. 5.4. As we can see, after
about 20 iterations, the synchronous linear iterations of Eq. 5.13 reach consensus and converge to
a vector whose all entries are the true average of the elements of x(0).
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Figure 5.4: Convergence of Average Consensus with a synchronous scheduling, where W and x(0)

are given in Eqs. 5.12 and 5.11, respectively.

Now, we focus on the asynchronous variant of Average Consensus algorithm, given in Eq. 3.57,
and below

x(l) =
(
Ψ(l)W + I−Ψ(l)

)
x(l−1). (5.15)

In particular, we study an i.i.d. asynchronous scheduling (as described in the previous Section),
with E[Ψ(l)] = pI, ∀l, and p = 0.7. In Fig. 5.5a, we depict how the per iteration value of each agent
behaves for 500 independent experiments. As we can see, in all the cases, the algorithm converges
to an agreement which is not always identical with the true average. However, it holds that

ρ

(
p(W + (1− p)I− 11>

n

)
= 0.8869 < 1. (5.16)

Therefore, since W satisfies the conditions 4.11, 4.12, as described in the Section 4.2.2, we should
expect that Eq. 5.15 converges to 11>

n x(0) in expectation. This is actually something that we verify,
since the average of the converged values of the experiments presented in Fig. 5.5a yields the vector
x∗ = −0.3540 1, which is fairly close to 11>

n x(0) = −0.3547 1.

To continue, in Fig. 5.5b we depict the behaviour of the algorithm when an asynchronous
scheduling is utilized. More specifically, we assume that the entries of the diagonal matrix E[Ψ(l)] =
P are not identical. As a result, although the agents reach agreement in all experiments, the
conditions that we described in Section 4.2.2 are not all satisfied. As a result, we should not expect
in expectation convergence, something that we also observe in Fig. 5.5b, since the average of the
converged values of the algorithm is considerable far from the true average.
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(a) i.i.d. asynchronous scheduling (b) non i.i.d. asynchronous scheduling

Figure 5.5: The behaviour of Average Consensus algorithm under: (a) an i.i.d. asynchronous
scheduling, where E[Ψ(l)] = 0.7 I, ∀l, (b) a non i.i.d. asynchronous scheduling.

Considering all the above, the most important conclusion that one could draw is that imple-
menting Average Consensus in a distributed and partially reliable network is possible, if we insert
asynchrony to the computation. However, since the agreement value may differ from the desired
one, this comes at the expense of increased overall delay; in order to calculate an accurate estimate
of the average of the vector, the algorithm must be repeated multiple times.

5.3 A “counterexample”

Let the matrix A ∈ R4 with

A =


−1.1187 1.2697 −1.3414 −1.0726
−0.5487 0.0458 −0.5795 −1.1289
0.0038 0.2531 −0.3476 0.2019
0.5467 −1.7122 0.4240 −0.8038

 , (5.17)

and assume that we want to solve the fixed point problem that we have discussed so far, utilizing
both a synchronous and asynchronous scheduling (Eqs 2.1, 2.4). In other words, we want to find
the fixed point of the iterations

x(l) = Ax(l−1) + b (5.18)

and

x(l) = (Ψ(l)A + I−Ψ(l))x(l−1) + Ψ(l)b, (5.19)

respectively, where b ∈ R4 and E[Ψ(l)] = 0.1I, ∀l.
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We can verify that ρ(A) = 1.814246 > 1 and ρ(P(A − I) + I) = 0.888649 < 1. As a result,
based on what we have discussed so far, one would expect that the synchronous iterations would
diverge, whilst the asynchronous once would converge. Taking a look at Fig. 5.6, although the
former is verified, we see that the linear iterations with an asynchronous scheduling diverge, despite
the fact that the condition that we derived in Section 4.2.1 regarding Gaussian Belief Propagation
is satisfied. As a result, we conclude that the aforementioned condition -probably- does not hold
under the assumption that the fixed point of Eq. 5.19 is not independent of the scheduling matrices
Ψ(l). Therefore, the exact conditions under which Eq. 5.19 converge without this assumption of
independence is a topic of research.

0 2000 4000 6000 8000 10000

Time (iteration number)

10 0

10 100

10 200

10 300

Synchronous Scheduling

Asynchronous Scheduling

Figure 5.6: Behaviour of linear synchronous and asynchronous iterations for a case where ρ(A) > 1
and ρ(P(A− I) + P) < 1.
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Chapter 6

Conclusions and Future Work

In this work, our goal was to find the fixed point of

x(l) = Ax(l−1) + b (6.1)

in a distributed manner, utilizing a Wireless Sensor Network (WSN) that is solely powered by the
environment. In particular, since at some point of time the ambient power may not be sufficient for
the computations, some nodes of the network may fail to operate, at some iterations. As a result,
stochastic asynchrony is inserted to the computations, in the sense that at some iteration (l), some
nodes of the WSN may fail to perform computations and hence, different elements of x(l−1) that
are assigned to different WSN nodes may (randomly) not be updated.

We considered two particularly famous inference algorithms that can be modeled with Eq. 6.1,
Gaussian Belief Propagation and Average Consensus, and described some of their convergence
properties, for both the cases of synchronous and asynchronous operations. Based on our analysis
and providing some numerical results, we drew the following conclusions. Fistly, for the case
of Gaussian Belief Propagation, we showed that asynchrony is not really a bug but a feature. In
particular, we showed that it can determine whether Gaussian Belief Propagation will converge and
that it plays a major role in its convergence rate. Afterwards, for the case of Average Consensus,
we showed that if the stochastic asynchrony has a certain statistical property, then the algorithm
converges in expectation. As a result, it is possible to be executed in an ambiently powered WSN.
However, this comes at the cost of increased delay, since in order to get a good estimate of the
average consensus fixed point, the algorithm must be repeated multiple times.

One interesting future direction of this work is to study the convergence properties of the
aforementioned framework more thoroughly. In particular, since -as we saw- the convergence of
the algorithms is in good part dependent on how the elements of the vector are assigned to each
WSN node and on the statistics of matrix P, an interesting question that arises is how to optimaly
balance the computations in order to achieve faster and more robust convergence. In addition, this
work would be enhanced by studying a more general fixed point problem than the one of Eq. 6.1,
namely

x(l) = f(x(l−1)), (6.2)
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where f : X → X a mapping. Considering what was discussed in this work, the asynchronous
variant of Eq. 6.2 would be

x(l) = Ψ(l)f(x(l−1)) + (I−Ψ(l))x(l−1). (6.3)

Hence, it would be of great interest to analyze and study the conditions under which Eq. 6.3
converges.
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