
Vasileios Vittis October 2021 1 | P a g e

TECHNICAL UNIVERSITY OF CRETE SCHOOL OF ELECTRICAL AND

COMPUTER ENGINEERING

Online Ensemble Classification Algorithms of

Big Data Streams at Apache Flink

Vasileios Vittis

Thesis Committee:

Professor Antonios Deligiannakis (ECE)

Professor Minos Garofalakis (ECE)

Associate Professor Vasilis Samoladas (ECE)

September 2021

https://www.tuc.gr/index.php?id=5397

Vasileios Vittis October 2021 2 | P a g e

Vasileios Vittis October 2021 3 | P a g e

Abstract

The growing need to make high-precision real-time decisions from dynamic data creates, the

need to create modern systems capable of coping with diverse problems. Thus, the demands

generated by the 4 Vs (volume, variety, velocity, and veracity) make the classical systems

inefficient, thus creating space for systems that process data only once, without the need to store

them. Ensemble Systems consist of individual subsystems with different characteristics,

participating in the voting process in order to make the final decision. These subsystems are

implemented by the state-of-the-art decision tree algorithm, Hoeffding Tree, due to its simple

construction and the fewer assumptions it makes. It is important that such models take advantage

of the available distributed environments in order to effectively speed up the learning process. In

this dissertation, we create a distributed ensemble learning system for binary classification,

consisting of Hoeffding Trees, creating a Random Forest. After observations about the response

time and development space of the specific system, we implemented techniques that

purposefully solve such problems. The results of the experimental process confirm the proposed

methodology, when compared with corresponding techniques in the literature.

Vasileios Vittis October 2021 4 | P a g e

Περίληψη

Η αυξανόμενη ανάγκη λήψης αποφάσεων με υψηλή ακρίβεια σε πραγματικό χρόνο από

δυναμικά δεδομένα, δημιουργεί την ανάγκη δημιουργίας σύγχρονων συστημάτων, ικανά να

ανταπεξέλθουν σε όλων των ειδών προβλημάτων. Έτσι, οι απαιτήσεις που παράγονται από

τον όγκο και τον ρυθμό και την αλλαγή των δεδομένων καθιστούν τα κλασσικά συστήματα

μη αποδοτικά, με αποτέλεσμα να δημιουργείται χώρος για συστήματα που επεξεργάζονται

τα δεδομένα μόνο μια φορά, χωρίς την ανάγκη αποθήκευσης τους. Τα συλλογικά συστήματα

εκμάθησης (Ensemble Systems), αποτελούνται από επιμέρους υποσυστήματα με

διαφορετικά χαρακτηριστικά, συμμετέχοντας στην διαδικασία ψηφοφορίας με σκοπό την

λήψη της τελικής απόφασης. Η κορωνίδα αυτών των υποσυστημάτων είναι o state-of-the-art

αλγόριθμος δένδρων αποφάσεων, Hoeffding Tree, λόγω της απλής κατασκευής τους και των

λιγότερων υποθέσεων που κάνουν. Σημαντικό είναι τέτοιου είδους μοντέλα να

εκμεταλλεύονται τα διαθέσιμα κατανεμημένα περιβάλλοντα, έτσι ώστε να επιταχυνθεί

αποτελεσματικά η διαδικασία εκμάθησης. Στη συγκεκριμένη διπλωματική εργασίας,

δημιουργούμε ένα κατανεμημένο συλλογικό σύστημα δυαδικών αποφάσεων, αποτελούμενο

από Hoeffding Trees, δημιουργώντας ένα Random Forest. Ύστερα παρατηρήσεων σχετικά με

τον χρόνο απόκρισής και χώρο ανάπτυξης του συγκεκριμένου συστήματος, υλοποιήθηκαν

τεχνικές που στοχευμένα λύνουν τέτοιου είδους προβλήματα. Τα αποτελέσματα της

πειραματικής διαδικασίας επιβεβαιώνουν την προτεινόμενη μεθοδολογία, όταν

συγκρίνονται με αντίστοιχες τεχνικές της βιβλιογραφίας.

Vasileios Vittis October 2021 5 | P a g e

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my thesis supervisor Prof.

Antonios Deligiannakis for advising my wisely and supporting me on various problems that I

faced. I also would like to express my admiration to my two committee members Prof. Minos

Garofalakis and Vasilis Samoladas for being a great motivation throughout my studies.

Moreover, I would like to thank my family for their continuous support during all the ups and

downs. I also like to thank my friends from Chania for the experiences we lived together and

especially I want to thank Nikos Tzimos for all the endless nights of study and Giannis Roditis

for being there for me at any time I needed help.

This thesis is a product of

Vasileios Vittis

Vasileios Vittis October 2021 6 | P a g e

Table of Contents

Introduction ... 9

1.1 Thesis Contribution ... 9

1.2 Thesis Outline ... 9

Background and Related Work .. 11

2.1 Data Stream Ensemble Learning .. 11

2.2 Ensemble Architecture .. 13

2.2.1 Base Learner ... 14

2.2.1.1 Classification Decision Tree .. 14

2.2.1.2 Estimating Split Criteria .. 17

2.2.1.3 Streaming Decision Trees .. 18

2.2.1.4 Hoeffding Tree Extensions.. 20

2.2.1.5 Handling Numeric Attributes .. 23

2.2.1.6 Leaf Estimator ... 25

2.2.2 Combination Function ... 25

2.2.3 Diversity .. 29

2.2.4 Concept Drift Detection in Data Streams ... 31

2.2.4.1 Detecting changes with Drift Detectors .. 34

2.3 Distributed Streaming Decision Trees and Random Forest ... 38

Proposed Solution ... 41

Our Approach ... 41

3.1 Project Architecture Function ... 41

3.2 Resampling ... 41

3.3 Base Learner .. 42

3.4 Combination Function ... 44

3.5 Concept Drift Detector .. 45

Implementation ... 47

3.1 Apache Flink Overview .. 47

3.2 Proposed Implementation .. 49

3.2.1 Project Architecture ... 49

Experimental Evaluation ... 59

Vasileios Vittis October 2021 7 | P a g e

5.1 Testing Setup .. 59

5.2 Datasets.. 59

5.3 Performance measures .. 62

5.3.1 Random Forest Evaluation ... 62

5.3.2 Scalability Performance ... 63

5.4 Experimental Results ... 63

5.4.1 SVFDT-II Results .. 63

5.4.2 Base Learner Proposition Results .. 64

5.4.3 Concept Drift Proposition Results ... 66

5.4.4 Ensemble Learning Results ... 68

Conclusions – Future Work ... 71

6.1 Conclusions ... 71

6.2 Future Work .. 71

Appendix .. 72

Bibliography .. 75

List of Tables
Table 1 Description of datasets .. 61

Table 2 Confusion Matrix ... 62

Table 3. SVFDT-II Improvement .. 63

Table 4. Base Learner Proposition Results (Size and Accuracy).. 65

Table 5. Sine dataset. Numerical Representation of HT Switches ... 66

Table 6. RBF 3M dataset. Numerical Representation of HT Switches ... 67

Table 7. Confusion Matrix Ensemble Results .. 68

Table 8. Scalability Results .. 69

Table 9. System with 24M ... 70

List of Figures

Figure 1. Ensemble Learning .. 11

Figure 2. Variability reduction using ensemble learning ... 12

Vasileios Vittis October 2021 8 | P a g e

Figure 3. Basic notion of Classification Decision Tree .. 15

Figure 4 SVFDT diagram. ... 22

Figure 5. Gaussian Approximation of 2 classes ... 24

Figure 6. Poisson Distribution for different values of λ ... 30

Figure 7. (a) Streaming classification problem without concept-drift. (b) Streaming clasification

problem with concept-drift. .. 32

Figure 8. (a) Original Data (b) Virtual Drift (c) Real Drift .. 33

Figure 9. Abrupt and Gradual Concept Drift... 33

Figure 10. Error fluctuation under concept drift ... 35

Figure 11. Level of Drift in DDM ... 36

Figure 12. Error rate in Stagger and Sinire1 using DDM. .. 36

Figure 13. Accuracy comparing the Hoeffding Tree ... 39

Figure 14. Distributed Random Forest Abstraction .. 42

Figure 15. Base Learner proposition .. 44

Figure 16. DDM basic signals concept .. 45

Figure 17. Concept Drift proposition .. 46

Figure 18. Apache Flink Architecture ... 47

Figure 19. Apache Flink State Abstraction ... 48

Figure 20. Apache Kafka Architecture .. 48

Figure 21. System's Architecture .. 49

Figure 22. Source & Sampling Component Abstraction ... 50

Figure 23. Base Learner Component ... 52

Figure 24. Combination Function Component .. 56

Figure 25. Concept Drift Detector Component .. 57

Figure 26. Sine 100k Base Learner Proposition Behavior ... 64

Figure 27. RBF-5M Base Learner Proposition Behavior ... 64

Figure 28. Sine dataset using our concept drift proposition .. 66

Figure 29. RBF 3M dataset using our concept drift proposition ... 67

Figure 30. System's Scalability.. 69

file:///C:/Users/kryst/Desktop/Online%20Ensemble%20Classification%20Algorithms%20of%20Big%20Data%20Streams%20at%20Apache%20Flink.docx%23_Toc83920076
file:///C:/Users/kryst/Desktop/Online%20Ensemble%20Classification%20Algorithms%20of%20Big%20Data%20Streams%20at%20Apache%20Flink.docx%23_Toc83920077
file:///C:/Users/kryst/Desktop/Online%20Ensemble%20Classification%20Algorithms%20of%20Big%20Data%20Streams%20at%20Apache%20Flink.docx%23_Toc83920078
file:///C:/Users/kryst/Desktop/Online%20Ensemble%20Classification%20Algorithms%20of%20Big%20Data%20Streams%20at%20Apache%20Flink.docx%23_Toc83920080

Vasileios Vittis October 2021 9 | P a g e

Chapter 1:

Introduction

1.1 Thesis Contribution

The following thesis proposes a streaming ensemble system composed of Hoeffding Trees

(VFDT), forming a Random Forest, implemented in a distributed environment at Apache Flink.

The thesis is build based on three axes, real time training, anytime output and exact-one state

consistency. The proposed implementation considers scenarios where the Concept Drift is

present, proposing an alternative version of the most well-known Drift Detection Method (DDM),

as well as testing the impact of different combination functions. Also, three optimizations were

implemented, including the Gaussian Approximation, which is a well-established efficient way

of handling numeric attributes in a streaming setting, a stricter and memory-efficient version of

Hoeffding Trees (SVFDT) which guarantees almost the same predictive performance as VFDT,

resulting higher scalability and lower computational and memory costs and a proposition which

tackles the problem of building deep Hoeffding Trees in periods of data stagnation during Big

Data streams. To the best of our knowledge, the proposed combination of algorithms which

consists of the aforementioned ensemble system, makes the existing thesis unique.

1.2 Thesis Outline

In Chapter 2, we present the main concept of Ensemble Learning. We organize our analysis into

three main components, starting from the base learner, where we explain the basic concept of

decision trees and we describe the state-of-the art Hoeffding Tree algorithm as long as all its

extensions. In addition, we formulate the notion of concept drift and all the existing concept drift

detectors. Moreover, we present the most used combinations functions, as well as we analyze the

problem of diversity in an ensemble system. In Chapter 3, we introduce the main contribution of

this thesis. In Chapter 4, we provide a brief overview of all principles that rule Apache Flink

framework as long with the implementation details of our solution. In Chapter 5, we discuss the

results obtained, by our systemic analysis of every component of the proposed system, including

evaluations of accuracy, run-time and memory consumption. Finally, in Chapter 6 we introduce

our conclusion and propose the future work.

Vasileios Vittis October 2021 10 | P a g e

Vasileios Vittis October 2021 11 | P a g e

Chapter 2:

Background and Related Work

2.1 Data Stream Ensemble Learning

An ensemble learner can be described as a combination of multiple (weak) learners which form

one (strong) learner with expected higher predictive performance. This statement, which may

now sound logical to someone, was not always the case. In 2001, Nick Street et al [1], who

proposed a new streaming ensemble algorithm for large-scale classification, concluded that their

algorithm’s accuracy appeared to be about the same as a single classifier, despite the fact that

there was room for significant improvement in the future. Ensemble learning can be categorized

either on the supervised or unsupervised learning. The key difference, is the assumption of the a

priori knowledge of the true label of each instance. An unbounded data stream S, generated by

source 𝑆𝑖
𝑡, is a sequence of examples 𝑧𝑡 = (𝑥𝑡 , 𝑦𝑡) for 𝑡 = 1,2, … , 𝑇 where 𝑥𝑡 is a multi-dimensional

instance observed at time 𝑡 and 𝑦𝑡 ∈ {−1, 1} denotes the corresponding label, in case of binary

classification. We consider a set of K (distributed) learners, 𝐾 = {1,… . , 𝑘 } where each learner

observes a different sequence of instances. We denote as 𝑠𝑖
𝑡 ∈ {−1,1} the local prediction of

learner 𝑘 at time t, resulting to the ensemble local prediction vector 𝑠𝑡 ≜ (𝑠1
𝑡 , … , 𝑠𝑘

𝑡). For each

learner 𝑘 we also maintain a weight vector 𝑤𝑡 ≜ (𝑤1
𝑡, … , 𝑤𝑘

𝑡) which is combined linearly with

the local predictions.

Figure 1. Ensemble Learning: 𝑥𝑖
𝑡= multi-dimensional instance, 𝑠𝑖

𝑡 = local prediction of i classifier, s = local predictions vector, 𝑦̂𝑡=

global prediction, 𝑦𝑡= true label, 𝑤𝑖
𝑡= local updated weights vector, 𝑢𝑖

𝑡= a local indicator {W: warning, S: signal, F: false alarm}

Vasileios Vittis October 2021 12 | P a g e

The main motivation for using an ensemble classifier is the no free lunch theorem which is

formulated by Wolpert [2]. According to it, there is no single classifier that is appropriate for all

given tasks, thus we are looking to create a pool of diverse and complementary individual

classifiers in order to compete at any given problem. In addition, based on Cha Zhang [3] who

mentions that if in fact there was an expert, whose predictions were always true, we would never

need any other decision maker. Alas, no such expert exists; every decision maker has an imperfect

past record. The main challenges of every ensemble system are to control five metrics: bias,

variance, accuracy, precision and diversity over different training sets, which in many cases are

competing one with each other. Such a challenge is difficult to handle and the goal of ensemble

systems is to create several classifiers with relatively fixed bias and by combining their outputs

to reduce the variance.

In Figure 1.1, the latter forementioned author gives a vivid representation of the notion of an

ensemble, by depicting three different models with their respective decision-making rules based

on a two-feature dataset.

Figure 2. Variability reduction using ensemble learning

Achieving such a state, requires the development of a complete ensemble learner following a

holistic approach. A complete ensemble classifier has to be designed based on optimizing the

following axes: Architecture and Voting combination, high Diversity, appropriate selection of

Base Learner, Concept Drift adaptation and Distributed Implementation. Each one of these are

thoroughly presented throughout this thesis.

Vasileios Vittis October 2021 13 | P a g e

2.2 Ensemble Architecture

The ensemble architecture defines how the

classifiers interact with each other. There are

several ways in which an ensemble can be

formed but the main three ensemble

arrangements are the following: Parallel, meta-

learner and hierarchical. Briefly, a hierarchical

ensemble imposes a treelike structure or a strict

order (cascading) over its members, whereas in a

meta-learning structure, the combiner (meta-

learner) is trained on meta-data, adding an extra

layer of base leaner. In the parallel arrangement,

the most widely used architecture is the Flat

Architecture. It is the simplest method, which

makes the least assumptions about individual classifiers. An ensemble can be composed from

heterogenous or homogeneous base learners. As S.Kotsiantis [4] mentions, the independence of

classifier outputs is generally considered to be an advantage for obtaining better multiple

classifier systems. Therefore, either all classifiers will be different, with or without forming

coalitions, or it can be the same classifier with different settings. A common approach is to

generate N classifiers using the same generation algorithm, all with different parameter settings,

different subsets of attributes and training data. This structural architecture can be easily

translated to parallel system using a learning algorithm per machine (see Section 2.3). Each

classifier’s output is aggregated by a combiner 𝑓, which can be a simple linear function such as

Weighted Voting. Figure 3 shows the abstract Flat Architecture; with the light blue rectangles

being the classifiers and with the dark blue their respective local prediction. The 𝑓 function is

responsible for collecting all partial predictions and produce the final one. In the next section we

will discuss the base learner component. Selecting an appropriate base learner according to the

classification problem is an important step for obtaining an accurate ensemble.

Figure 3. Flat Ensemble Structural Architecture

Vasileios Vittis October 2021 14 | P a g e

2.2.1 Base Learner

A base learner can be explicitly constructed for solving many different problems. When a base

learner is trained for classifying a new instance with a finite discrete number of outcomes, it is

called classification base learner. Given such a learner, there are two more subcategories where a

base learner lies between, the first one is when the classification problem is between two possible

outcomes, so it is further characterized as binary classification base learner, while when there are

more than two possible discrete outcomes the base learner is called multiclass classification base

learner. In addition, if the number of possible outcomes ranges between a spectrum of possible

outcomes (continuous), then we are dealing with a regression problem, therefore the base learner

becomes a regression base learner. Regardless of the type of its output, a base learner can also be

further categorized into two categories which are directly associated with the type of data that it

handles. The first one is when the type of data has numerical or continuous behavior, taking

values from a subset of real numbers, while the second case is when data follows a categorical

pattern which take values from a finite number of possible values.

There are many different base learners for dealing with all kind of problems. Based on the holistic

research [5] the most popular classifiers within an ensemble (also dealing with concept drift) were

the Decision Tree, SVM and Naïve Bayes classifier, collecting 23%, 15% and 14% respectively

among the classifiers used. The SVM classifier, which is the acronym of support-vector machine,

is a linear model which creates a line or a hyperplane which separates the data into classes. Also,

the Naïve Bayes classifier belongs to the family of simple "probabilistic classifiers" based on

applying the Bayes theorem. Decision trees are the most common base learner for ensemble

learning in a streaming setting for the reason that it is very easy to interpret and visualize them.

In a decision tree, each internal node corresponds to an attribute that splits into a branch for each

attribute value, and leaves correspond to classification predictors, usually majority class

classifiers.

2.2.1.1 Classification Decision Tree

The main goal of a classification decision tree is to produce a function 𝑦 = 𝑓(𝑥) such that it maps

the set of all possible examples into a predefined set of class labels. Given a training set S with input

attributes set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} and a target attribute 𝑦 from an unknown fixed distribution D over the

labels instance space, the goal is to induce an optimal classifier with minimum generalization error.[6] A

decision tree is built from the root to the leaves based on some splitting and stopping criteria. The

decision tree consists of nodes that form a rooted tree, meaning that it is a directed tree with a

node called root that has no incoming edges. All other nodes have examples from only one

incoming edge. A node with outgoing edges is called internal node and its purpose it to redirect

Vasileios Vittis October 2021 15 | P a g e

incoming instances to the next level. All other nodes are called leaves or decision nodes, where

new instances are classified by navigating themselves from the root to a leaf, according to the

outcome of the tests along the path. In the case of decision trees which handles only discrete

attributes, the number of possible outgoing edges of an internal (-test) node are equal to the

number of possible outcomes of that specific attribute. On the other hand, decision trees, which

also handle numerical attributes, are searching for only one point which splits a given data space

into two subspaces. Considering the latter case, there are two different approaches; the first one

considers that at every next level of a certain path of the decision tree the set of attributes is

reduced by one, removing the attribute which was used at the previous level, while the second

one, uses the same attributes over and over again, regardless of the level. Therefore, considering

a set of attributes 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and an attribute 𝑥𝑖 used as the splitting attribute at some node

of level 𝑙, the former approach considers a 𝑋𝑛𝑒𝑤 = 𝑋 − {𝑥𝑖} and the latter 𝑋𝑛𝑒𝑤 = 𝑋. In practice,

the first limits the number of possible splits but controls the depth of the tree, while the second

makes better refinement of the data space, risking of making deep trees. (See Section 2.2.1.5)

At this point, we can showcase a simple but comprehensive example in order to establish the

basic concept of a Classification Decision Tree. In Figure 3, we observe a time snapshot of the

training phase of a supervised base learner, where incoming instances are traversed through the

tree, resulting to the current state of the tree. The blue node is the root and all the orange ones are

the internal (-test) nodes, while the green ones are the leaves which hold the final outcome.

Figure 3. Basic notion of Classification Decision Tree

The use case is as follows: there a couple of employees in a big tech company where some of them

requested a promotion. As we can see based on the latest promotions, a decision tree has been

built by categorizing the approved and rejected request based on two numerical attributes: years

Vasileios Vittis October 2021 16 | P a g e

of experience and current salary. It is obvious that the base learner has been trained quite well as

it splits the data space at almost in perfect cut-offs. We can observe that there are cases where the

base learner has classifiers incorrectly two positive outcomes as negative. The main question

posed is: What will base learner answer in the case of a new unknown instance? (Yellow question mark).

The new instance will traverse through the tree and will answer based on its respective values of

attributes on the questions of each internal node. As we can see the unknown instances has a

more than five years of experience and gets below 50k as its main salary, therefore its request will

be approved. In the Section 3.5 we will discuss how we can keep track the correct and incorrect

answers of our model in order to do structural changes.

ID3 and C4.5 Algorithms

The ID3 algorithm [7] by Quinlan, is the base algorithm of building a decision tree using discrete

attributes. Based on ID3, an extension algorithm was constructed, called C4.5 [8] by the same

author. C4.5 builds decision trees from a set of training data in the same way as ID3, using the

concept of information gain. Therefore, in the case of continuous attributes, the split at an internal

node will be binary composed of the following tests 𝑥𝑖 < 𝜃 𝑎𝑛𝑑 𝑥𝑖 > 𝜃. At each node of the tree,

C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets

enriched in one class or the other. The splitting criterion is the normalized information gain. (See

Section 2.2.1.1.5) The attribute with the highest normalized information gain is chosen to make

the decision.

Vasileios Vittis October 2021 17 | P a g e

2.2.1.2 Estimating Split Criteria

Entropy and Information Gain

Choosing the correct statistical measure in the process of repeatedly splitting on attributes is

equivalent to partitioning the initial training set into smaller training sets until the entropy of each

of these subsets is zero and therefore pure. The attribute which minimizes its value at any given

point should be selected as the splitting attribute. Entropy is an information-theoretic measure of

the ‘uncertainty’ contained in a training set, due to the presence of more than one possible

classification.[9] The entropy of the training set is denoted by E. It is measured in ‘bits’ of

information and is defined by the formula:

𝛦 = −∑𝑝𝑖 log2 𝑝𝑖

𝛫

𝑖=1

An important property of entropy is that 𝛦 > 0, 𝑠𝑖𝑛𝑐𝑒 𝑝𝑖 ∈ [0,1] and that the range of 𝛦 = log2 |𝐶|,

where 𝐶 is the number of distinct classes.

In case of a binary classification problems, 𝑝𝑖 can be defined as the probability that an instance

belongs to the respective class {𝑝1, 𝑝2}. So, the general formula can be fitted as follows:

𝛦 = −∑ 𝑝𝑖 log2 𝑝𝑖

𝛫=2

𝑖=1

= −𝑝1 log2 𝑝1 − 𝑝2 log2 𝑝2

Entropy at its own cannot answer the initial question of which attribute is the more appropriate

for splitting the original set into two subsets. Here comes Information Gain as a complement of

Entropy, that gives the answer. This measure was made popular after the C4.5 decision tree

algorithm. Information Gain implies the amount of information gained of a random variable by

observing another random variable. One commonly used method is to select the attribute that

minimizes the value of produced entropy, thus maximizing the information gain. The

Information Gain of an attribute 𝑥𝑖 ∈ 𝛸 at a node 𝑙 is the difference between the entropy of the

class before and after splitting by the attribute.

𝛪𝐺(𝑙, 𝑥𝑖) = 𝐸𝑠𝑡𝑎𝑟𝑡 − 𝐸𝑒𝑛𝑑

The entropy of S after splitting on attribute 𝑥𝑖 is:

𝐸𝑒𝑛𝑑 = 𝐸(𝑆, 𝑥𝑖) =∑
𝐸(𝑆𝛼) |𝑆𝛼|

|𝑆|
𝑖

Where 𝑆𝑖 is the subset of S where 𝑥𝑖 has value α. The chosen attribute and value α are the

threshold that maximizes the value the Information Gain.

Vasileios Vittis October 2021 18 | P a g e

2.2.1.3 Streaming Decision Trees

Streaming Decision Trees, which are also called Incremental Decision Trees are design in order

to meet the streaming standards. Unlabeled instances arrive one at a time and need to be rapidly

classified into one out of a predefined set of labels. The stream is considered infinite and therefore

mining algorithms cannot store many instances into the main memory and consequently can

process them only once. After classification, the true label of the sample is considered to be

available with which the system’s performance can be calculated. As it is mentioned in [10] the

main differences between data streams and conventional static datasets include:

• data items in the stream appear sequentially over time and the arrival rate is very rapid

(relatively high with respect to the processing power of the system)

• there is no control over the order of incoming items and the processing system should be

ready to react at any time

• the size of data may be unbounded

• only one scan of items from a data stream is possible

• data streams are susceptible to change (data distributions generating examples may

change on the fly).

In stream mining, the state-of-the art decision tree classifier is the Hoeffding tree, introduced by

Domingos and Hulten [11]. Traditional decision trees scan the entire dataset to discover the best

attribute to form the initial split of the data. Once this is found, data is split by the value of the

chosen attribute, and the algorithm is applied recursively to the resulting sub data, to build

subtrees. On the other hand, Hoeffding tree is based on the idea that, instead of looking at

previous (stored) instances to decide what splits to do in the trees, we can wait to receive enough

instances and make split decisions when they can be made confidently.

Hoeffding Tree and VFDT Algorithm

The biggest problem in extending decision trees to data streams is that the measures of attribute

importance used to determine the best choice of attributes requires counts or probabilities

computed over all of the training data. Clearly, this is not possible when the data is a stream. One

solution, proposed by Domingos and Hulten, is to use the Hoeffding bound to estimate when the

number of records accumulated at a node is “enough” for a robust decision.

The Hoeffding bound [12] states that, given a random variable 𝑟 in the range 𝐿, and 𝑛 independent

observations of 𝑟 having mean value 𝑟̅, the true mean of r is at least 𝑟̅ − 𝜖 , where

𝜖 = √
𝐿2ln (1/𝛿)

2𝑛

Vasileios Vittis October 2021 19 | P a g e

with probability 1 − 𝛿, where δ is a user-defined threshold probability. The Hoeffding Bound

ensures that no split is made unless there is a confidence of 1 − 𝛿 that a particular attribute is the

best attribute for splitting the current node at a specific value. Based on Domingos and Hulten,

we assume that we have a gain function G that represents the attribute’s importance when

splitting a specific leaf node. When the Hoeffding bound is satisfied, the G function is calculated

for all attributes and both the best and second-best attributes are chosen to calculate, as follows:

Δ𝐺 = 𝐺ℎ𝑖𝑔ℎ𝑒𝑠𝑡 − 𝐺𝑠𝑒𝑐𝑜𝑛𝑑_ℎ𝑖𝑔ℎ𝑒𝑠𝑡 ≥ 0 .The variable Δ𝐺 is recalculated at every satisfaction of the

splitting constraints. Authors also add another dimension to the existing problem by saying that

if a leaf has processed n training examples and if Δ𝐺 > 𝜖 , then Hoeffding Bound guarantees with

confidence 1 − 𝛿 that the attribute with the highest information gain is the correct choice since

Δ𝐺 differs from its true value by 𝜖.

The pseudocode of the Hoeffding Tree is shown below and it is based on the Hoeffding’s bound.

Vasileios Vittis October 2021 20 | P a g e

Moreover, the Hoeffding Tree algorithm maintains in each node the statistics needed for splitting

attributes. For discrete attributes, a count 𝑛𝑖𝑗𝑘 which represent the case where the attribute xi

takes the value j and has the label k. The memory needed depends on the number of leaves of the

tree and not on the length of the data stream. A theoretically appealing feature of the Hoeffding

Tree not shared by other incremental decision tree learners is that it has sound guarantees of

performance. It was shown in [11] that its output is asymptotically nearly identical to that of a

non-incremental learner using infinitely many examples, in the following sense.

2.2.1.4 Hoeffding Tree Extensions

CVFDT

VFDT does not consider the concept drift problem. An improvement for VFDT was proposed by

Hulten et al. [13] called the Concept-adapting Very Fast Decision Tree (CVFDT) algorithm, which

addresses concept drift while maintaining similar efficiency and speed to VFDT. The main idea

behind CVFDT is to grow alternative subtrees for internal nodes. Whenever there is an internal

subtree that poorly reflects the current concept, CVFDT replaces this node with the alternative

subtree that has better performance. Depending on the available memory, CVFDT defines a

maximum limit on the total number of alternative subtrees that can exist at the same time. If there

are alternative subtrees that are not making any progress, CVFDT prunes them to save memory.

So, the main idea behind CVFDT is to grow alternative subtrees for internal nodes.

SVFDT

SVFDT (Strict Very Fast Decision Tree) by V.Costa [14], is an extension of the original VFDT

algorithm which focuses mostly on the memory consumption aspect of the algorithm. It tries to

create more shallow trees reducing traversal times. The main observation of the paper is that

although the VFDT has been widely used in data stream mining, in the last years, several authors

have suggested modifications to increase its performance, putting aside memory concerns by

proposing memory-costly solutions. The main drawback that SVFDT tries to compensate is its

accuracy. Its experiments showed that the proposed algorithm obtained similar predictive

performance and, in some cases, slight less than its competitors, around the ± 1%, while its size

reduced by -65%. Authors also mentioned that according to Krawczyk et al. [10] data stream

researches are shifting their focus to ensemble-based solutions. Ensembles can use only weak

learners as long as their correlation is low. However, the use of several base-learners increases memory

costs, limiting the use of ensembles. They also emphasize that in order to deal with memory cost

restrictions and managing to keep the same predictive performance, they proposed a new base

learner.

The main concept of SVFDT is that despite the fact that a leaf can satisfy the VFDT split conditions

(according to the Hoeffding Bound and tiebreak value), can still remain a leaf if SVFDT considers

this split unnecessary. When leaves satisfy the VFDT split condition, statistics corresponding to

Vasileios Vittis October 2021 21 | P a g e

it are marked with an underscored satisfyVFDT. SVFDT has two versions: SVFDT-I and SVFDT-

II, with each one of them aiming to a different aspect in the process of a Hoeffding Tree. SVFDT-

II is a less strict set of rules that act like a skipping mechanism to speed-up growing. Essentially,

what SVFDT does it to keep some historical statistics about entropy, information gain and the

proposed by Domingos variable of nmin. For each version of the algorithm, there is a different

evaluation function.

For SVFDT-I, the function used is implemented by the underlying concept of the 3-σ rule.

𝜑(𝑥, 𝛸) = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑥 ≥ 𝑋̅ − 𝜎(𝛸)
 𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

where 𝑥 is the current variable that we are testing and 𝑋 is the history table of statistics. Based on

this (1) the follow constraints are employed every time there is a split attempt.

1. 𝜑(𝐻𝑙 , { 𝐻𝑙0, 𝐻𝑙1, … , 𝐻𝑙𝐿}), where the former parameter is the current entropy of 𝑙 and the

latter is a set of all entropies of all current leaves 𝐿 in the tree, including 𝑙 (Statement 1)

2. 𝜑(𝐻𝑙 , { 𝐻𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , 𝐻𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇1 , … , 𝐻𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇𝑆}), where the latter parameter

corresponds to the entropies computed at all S times that any leaf satisfied the VFDT split

conditions. (Statement 2)

3. 𝜑(𝐼𝐺𝑙 , { 𝐼𝐺𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , 𝐼𝐺𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇1 , … , 𝐼𝐺𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇𝑆}), where 𝐼𝐺𝑙 it the 𝐼𝐺 of the best split

feature at 𝑙 and the latter parameter is a set of the IGs computed all S times that a leaf

satisfied the VFDT split conditions (Statement 3);

4. 𝑛𝑙 ≥ { 𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , 𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , … , 𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0}
̅̅ , where the former parameter

corresponds to the number of elements seen at 𝑙 and the latter to the average number of

elements observed at all S times a leaf satisfied the VFDT split conditions (Statement 4)

For SVFDT-II, the evaluation function is:

𝜔(𝑥, 𝛸) = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑥 ≥ 𝑋̅ + 𝜎(𝛸)
 𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

The main difference is that in this case the evaluation function does add as opposed to

subtraction. At a split attempt, there is a splitting condition, which when it hold true that the

SVFDT-I does not need to be updated.

𝜔(𝐻𝑙 , { 𝐻𝑠𝑝𝑙𝑖𝑡0 , 𝐻𝑠𝑝𝑙𝑖𝑡1 , … , 𝐻𝑠𝑝𝑙𝑖𝑡𝑠}) 𝑂𝑅 𝜔(𝐼𝐺𝑙 , { 𝐼𝐺𝑠𝑝𝑙𝑖𝑡0 , 𝐼𝐺𝑠𝑝𝑙𝑖𝑡1 , … , 𝐼𝐺𝑠𝑝𝑙𝑖𝑡𝑠})

A note that is posed to SVFDT is that all the forementioned statistics need memory space. What

are the extra memory costs? The memory costs added to VFDT to compute the constraints 2,3,4 is

𝑂(1). Complementary, the memory cost of constraint 1 is 𝑂(𝐿𝑚𝑎𝑥) , where 𝐿𝑚𝑎𝑥 is the maximum

number of leaves observed during the tree induction. Also, the time complexity of the first

statement of also 𝑂(𝐿𝑚𝑎𝑥), while the other have 𝑂(1) complexity. SVFDT-II, we have an

additional time cost of 𝑂(𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑉𝐹𝐷𝑇), where 𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑉𝐹𝐷𝑇 is the number of times a leaf satisfied

the VFDT split conditions.

Vasileios Vittis October 2021 22 | P a g e

The main flowchart of SVFDT algorithm is shown in the follow figure.

Figure 4 SVFDT diagram. Parts colored in blue denote modifications in the traditional VFDT algorithm

Vasileios Vittis October 2021 23 | P a g e

2.2.1.5 Handling Numeric Attributes

Gaussian Approximation

Handling numeric attributes in a data stream classifier, is much more difficult than in a non-

streaming setting. Also, continuing in the same context as SVFDT, we are trying to embed smart

modifications that have the same functionality as the original VFDT algorithm but in a more

efficient manner. For that reason, we implemented Gaussian Approximation for efficiently

storing splitting statistics as a further optimization.

This method, presented in [15] by B. Pfahringer, approximates a numeric distribution in small

constant space, using a Gaussian (commonly known as normal) distribution. Such a distribution

can be incrementally maintained by storing only four numbers in memory, and is completely

insensitive to data order. A Gaussian distribution is essentially defined by its mean value, which

is the center of the distribution, its standard deviation or variance, which is the spread of the

distribution, as long its min and max values for quicker calculation of cumulative density

function. The shape of the distribution is a classic bell-shaped curve that is known by scientists

and statisticians to be a good representation of certain types of data. For each numeric attribute

the numeric approximation procedure maintains a separate Gaussian distribution per class label.

The main thing that we should not forget is that we are under a streaming context and we are not

able to do multiple passes over data. Therefore, we are searching for an incremental way that can

guarantee at any time the correct statistics of the stream.

Vasileios Vittis October 2021 24 | P a g e

The method is similar to this which was described by Gama et al. in the UFFT system[16]. The

part of the UFFT system that handles numeric attributes has small differences because it uses the

quadratic discriminant which splits the X-axis into three intervals (−∞,𝑑1), (𝑑1, 𝑑2), (𝑑2,∞),

where 𝑑1 and 𝑑2 are the possible roots of the equation 𝑝(−)𝜑{(𝑥̅−, 𝜎−)} = 𝑝(+)𝜑{(𝑥̅+, 𝜎+)} where

𝑝(−) denotes the estimated probability that an example belongs to class (–) and the 𝜑{(𝑥̅−, 𝜎−)}

function is the normal distribution of class (–). UFFT selects the 𝑑𝑖 that it is closer to the sample

means of both classes. The problem of UFFT is that it does not consider that there is a high chance

a given attribute will not follow a normal distribution or the means of normal distributions of

both classes are so close that there is no root. So, B. Pfahringer extends their approach by searching

a set of points spread equally across the range between the minimum and maximum values

observed, are evaluated as potential split points. The number of points is determined by a

parameter, so the search for split points is parametric. For each candidate point the weight of

values to either side of the split can be approximated for each class, using their respective

Gaussian curves, and the information gain is computed from these weights.

Figure 5. Gaussian Approximation of 2 classes

For example, the class shown to the left has a lower mean, higher variance and higher example

weight (larger area under the curve) than the other class. Below the curves the range of values

has been divided into ten split points, labeled A to J. The horizontal bars show the proportion of

values that are estimated to lie on either side of each split, and the vertical bar at the bottom

displays the relative amount of information gain calculated for each split. For the two-class

example (the left figure), the split point that would be chosen as the best is point E, which

according to the evaluation has the highest information gain.

Vasileios Vittis October 2021 25 | P a g e

2.2.1.6 Leaf Estimator

Continuing our analysis, our next stop is the leaf estimator, which plays an important role to the

whole system. Here, there two already established classification methods. Majority Voting and

Naïve Bayes classifier. In order to classify an unlabeled example, it must traverse through the tree

from the root to a leaf. It follows the path based on the answer it gives to every test node at the

appropriate attribute and value combination. The simplest classification method is the Majority

Voting, where the example is classified with the most representative class of training examples

that have reached the leaf. The second classification method uses a naïve-Bayes classifier. The use

of the naïve-Bayes classifier at the tree leaves does not enter any overhead in the training phase,

because at each leaf we already maintain sufficient statistics to compute the information gain.

2.2.2 Combination Function

A research area, which has not seen a tantamount attention is the Combination Function (CF). It

constitutes a key component in the construction of a complete Ensemble Learner, as a least

thoughtful combination function can have serious repercussions on the performance. With the

term of the Combination Function, we essentially mean how outputs from ensemble members

are used during prediction. There are many different forms of Combination Functions and each

of them has to be selected based on the given problem. The first two categories, which are not

widely used because either they have a too specific use case or they provide little performance

improvement are the Rank and Relational combination functions. Rank is used when the base

learner can produce a list of predictions at the same time for more than one class label with the

respective probability or count. On the other hand, Relational system allows a group of learners

to indirectly predict the class label of hard to classify instances by translating base learners’

predictions in order to reflect the class label that they most likely represent.

Moreover, another category of combination functions which has the most straight-forward logic

among all, is the Majority Voting. Despite its admittable simplicity, Majority Voting is a very

common strategy [1,17], used as the main combination function by many important algorithms

in the ensemble area [18], and often its error rate, Majority Voting Error (MVE), has been set as a

performance bases for the assessment of different performance measures when testing multiple

algorithms [19].

Based on D.Ruta [19,20], we formulate the MVE and we make it clear that throughout our analysis

we refer to a simple combination method on top of binary inputs by assigning 1 to correct

classified instance and 0 to an incorrect classified instance.

Vasileios Vittis October 2021 26 | P a g e

Given a system of M classifiers: 𝐷 = {𝐷1, … , 𝐷𝑀}, let 𝑦𝑗(𝑥𝑖), where 𝑖 = 1,… ,𝑁 and 𝑗 = 1,… ,𝑀 be

the binary output of the 𝑗𝑡ℎ classifier for the 𝑖𝑡ℎ multidimensional input sample 𝑥𝑖. Let the error

rate of such an ensemble member be:

𝑒𝑗 =
1

𝑁
 ∑𝑦𝑗(𝑥𝑖)

𝑁

𝑖=1

 (1)

We can extend the (1) by introducing the weighted error-rate which punishes each classifiers

incorrect answer by a factor of β.

𝑒𝑗 =
1

𝑁
 ∑𝛽 ∙ 𝑦𝑗(𝑥𝑖)

𝑁

𝑖=1

 (2)

Also, we can express the ensemble’s Mean Error rate (ME) as following:

𝑒̅ =
1

𝑀
 ∑𝑒𝑗

𝑀

𝑖= 1

 (3)

This measure (2) takes the average from individual classifier error rates within the ensemble.

So, given the binary outputs from M classifiers for a single input sample, the final decision

extracted from the Majority Voting system is defined as 𝑦𝑖 which can be obtained according to

the following formula:

𝑦𝑖 =

{

 0, 𝑖𝑓 ∑ 𝑦𝑗(𝑥𝑖) ≤ ⌊

𝑀

2
⌋

𝑀

𝑗=1

 1, 𝑖𝑓 ∑ 𝑦𝑗(𝑥𝑖) > ⌊
𝑀

2
⌋

𝑀

𝑗=1

 (4)

The MVE can then be formulated as:

𝑀𝑉𝐸 =
1

𝑁
 ∑𝑦𝑖

𝑁

𝑖= 1

 (5)

An important issue is when ∑ 𝑦𝑖(𝑥𝑖) =
𝑀

2
𝑀
𝑗=1 and the M is an even number. However, in this work

we are not consider it as a problem and without any loss of generality, we assume an odd number

for the number of total classifiers. The above analysis serves the purpose of establishing a base

threshold with which our implemented Weighted Majority Voting will be compared error wise.

Vasileios Vittis October 2021 27 | P a g e

The last two categories which complete the spectrum of the most well-known combination

functions are the Weighted Majority and the Classifier Selection systems.

Weighted Majority is a sound concept of a combination function, which weights classifiers’

prediction based on some given criteria. There are many evaluation functions with which weights

can be fluctuated during a data streaming context and they are mainly affected based on the given

problem. Such a category suits best with evolving data characteristics where the combination

function has to react to a number of changes. A basic criterion, used in Weighted Majority, which

has a wide range of application in ensemble learning, is based on base learner’s latest performance

either on the most recent chunk of data in case of batch processing or on the latest instances in

case of streaming processing. Here, we have to point out two assumptions that are taking place

by us in such situations, firstly, we consider that recency is strongly corelated with relevancy and

that we are dealing in a supervised environment. The former is a result of only checking the

relative performance based on the latest received instances and the latter due to the prior

knowledge of the class or label of the testing instance. In order to judge the base learner’s

correctness for a given instance, we need to know immediately its true class.

The performance of a base learner, can be interpreted in many different ways and has strong

correlation with the quantification of ensemble’s pairwise diversity. (See Section 2.2.3). Despite

all the proposed metrics which belong to a more sophisticated aspect of a classifier’s performance

measurement, Error Rate, as formulated in (1), is usually preferred. As we previously discussed,

it solely depends on the ratio between the number of classified incorrectly instances and the total

instances seen. Some more worth mentioning techniques are about updating the classifier’s

weight based on whether or not its prediction is agreed with the potential correct prediction of

the Majority Vote. Some other techniques are using diversity as a measure in order to remove

classifiers having repeatedly the same answers from the ensemble.

Across the last few decades, many papers have been proposed new ways and perspectives for

Weighted Majority. One of the firsts were both Littlestone and Warmuth in 1994 who created the

well know setting of Weighted Majority (MW) Algorithm. To construct their compound

algorithm, a positive weight is given to each of the algorithms (ensemble members) in the pool.

The compound algorithm then collects weighted votes from all the algorithms in the pool, and

gives the prediction that has a higher vote. Each algorithm begins with a weight of one and if the

compound algorithm makes a mistake, the algorithms in the pool that contributed to the wrong

predicting will be discounted by a certain ratio 𝛽 where 0 < 𝛽 < 1. They have proved that there

is an upper bound on the number of mistakes made in a given sequence of predictions from a

pool of algorithms A is 𝑂(log|𝐴| +𝑚) if one algorithm makes at most m mistakes. There are many

variations of the weighted majority algorithm to handle different situations, like shifting targets,

infinite pools, or randomized predictions. The core mechanism remains similar, with the final

performances of the compound algorithm bounded by a function of the performance of the

Vasileios Vittis October 2021 28 | P a g e

specialist (best performing algorithm) in the pool. Winnow is a similar algorithm, but also

increases the weights of experts that predict correctly (Littlestone, 1991). Other equally

established algorithms are Online Accuracy Update Ensemble (OAUE) [Brzezinski and

Stefanowski 2014] and Adaptive Classifiers-Ensemble (ACE) [Nishida et al. 2005].

There are a number of strategies that can be used to combine different classifiers. The simplest

strategy is to select the best performing one. Although the simplest approach may seem like a

good idea, it does not guarantee the optimal performance of a given classifier. Instead, it should

be designed to select the optimal subset of classifiers and combine them if necessary. Classifier

selection techniques are split into two categories, the static classifier selection (SCS) and dynamic

classifier selection (DCS). The former finds the optimal selection combination during the validation

set and then uses it during the whole training and testing phases, while the latter selects them

online, during classification based on training performance of the unlabeled instances. After the

first steps of Woods [5] who proposed the forementioned simplest approach of selecting the best

performance member, Giacinto and Roli incorporated classifiers outputs produced during

classifications. For reasons of completeness, we have to mention two issues that we have to take

into consideration when we select to implement such an algorithm. Firstly, the fact that a

hypothetical selection algorithm is able to select the optimal combination and improve the overall

performance, does not guarantee that it will remain as it is for future unseen concepts. Secondly,

another issue that many faces is that the algorithm’s complexity can be exponentially increased

especially when choosing complex evaluation criteria and on top of that, if those require checking

all the possible subsets of classifiers, then the problem can be more cost-effective than helpful

performance wise.

After considering all the above, in our effort to formally present the Classifier Selection issue, we

should consult Dymitr Ruta [19] who has properly formulated the given problem. Again, same

as our respective analysis for the Majority Voting we consider a system of M classifiers where

𝐷 = {𝐷1, … , 𝐷𝑀} and assigning as: 𝑦𝑖 = [𝑦𝑖1, … , 𝑦𝑖𝑀} the joint output of a system for the 𝑖𝑡ℎ

multidimensional input sample 𝑥𝑖. Assuming that the binary output is available, we denote as

𝑦𝑖𝑗 = 0 the correct prediction of the 𝑗
𝑡ℎ classifier for a given 𝑥𝑖 and respectively yij = 1 in case of

error.

Vasileios Vittis October 2021 29 | P a g e

2.2.3 Diversity

Diversity is often identified as one of the building blocks of ensemble-based classifiers. The

motivation for the importance of diversity can be intuitively explained using the

anthropomorphic example of a group of individuals, such that their opinions are always

homogeneous. This group can safely be replaced by any of its members if its only purpose is

decision making [21]. But unfortunately, it is not as simple as “augment diversity measure d and

the overall accuracy will improve proportionally”. In an ensemble system there are two main

ways with which diversity can be induced; the first one called input manipulation and second

one is called output manipulation. In case of input manipulation, there also two different

strategies that boost the system’s diversity. The first one is to train different classifiers with

different chunks of data (horizontal partitioning) or with different subsets of features (vertical

partitioning). The vertical partitioning is more a base learner’s structural way to increase diversity

while the horizontal partitioning can be achieved through external methodologies, such that we

will discuss below.

Decision trees are one of the most suitable classifiers and they are famous because they score

higher diversity than all other classifiers. As Breiman [40] mentioned: “Injecting the right kind of

randomness, makes RF more accurate”. More precisely, the benefits of using randomly selection

a subset of the input features is (1) useful when dealing with high dimensional inputs because it

reduces the computational cost of finding the best-split feature at each node on every decision

tree of Random Forest. On the other hand, this called right randomness also produce some

problems that lurk in a first read of the problem. A striking problem is that during the random

selection of features among all base learners of an ensemble there is a small probability of a feature

not to be selected, while it is unknown whether or not this particular attribute could have the best

splitting ability.

Online Bagging

In data stream learning it is infeasible to perform multiple passes over input data and the entire

stream cannot be stored. Thus, an adaptation of an ensemble system to streaming data depends

on an appropriate online bootstrap aggregating process. In order to implement this application

on a streaming context, first we have to understand how bagging works in non-streaming. In

non-streaming bagging [13], each of the n base models is trained in a bootstrap sample of size Z

created by drawing random samples with replacement from the training set. Each bootstrapped

sample contains an original training instance K times, where P(K = k) follows a binomial

distribution. For large values of Z this binomial distribution adheres to a Poisson (λ = 1)

distribution. Based on that, authors in Oza (2005) [14] proposed the online bagging algorithm,

Vasileios Vittis October 2021 30 | P a g e

which approximates the original random sampling with replacement by weighting instances

according to a Poisson (λ = 1) distribution.

𝑃(𝑥 = 𝑘) (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 = (

𝑛

𝑘
)
1𝑘

𝑛
 (1 −

1

𝑛
)
𝑛−𝑘

Figure 6. Poisson Distribution for different values of λ

As we can see from the above figure there is approximately 36% of a sample not to be selected, a

fact that is not always desirable. Therefore, there are many modern models that can handle more

samples and they use Poisson (λ = 6). The original algorithm of online bagging has the practical

effect of increasing the probability of assigning higher weights to instances while training the

base models, thus we managed to increase the diversity of the weights and modify the input

space of the classifiers inside the Random Forest. However, the optimal value of λ may be

different for each dataset.

We can see that even the online bagging algorithm follows a test-then-train concept. As we can

see the new example will enter the system and will have as weight the result of the respective λ

value.

Vasileios Vittis October 2021 31 | P a g e

Again, same as the vertical partitioning, there are couple of problems that they are not obvious at

first. The problem hears to the name of Out-Of-Bag Error. With bagging, some instances may be

sampled several times for some given predictor, while others may not be sampled at all. When

used a Poisson (λ = 1) distribution, this means that only about 63% of the training instances are

sampled on average for each predictor. The remaining 37% of the training instances that are not

sampled are called out-of-bag (OOB) instances. Note that they are not the same 37% for all

predictors. This problem should not scare systems which deal with unbounded data streams but

make the system lose some momentum when its sole purpose is to be as adaptive and ready as

possible.

All in all, either vertical or horizontal partitioning, both provide higher diversity which can only

help the system in higher variance of ensemble’s member predictions and lower bias as it

minimizes the risk of identical base learners. Also, at the same page we can find the use of a

concept drift detector, as it always tries to be ahead of the incoming stream and be ready to react

to any unexpected changes

2.2.4 Concept Drift Detection in Data Streams

Our last key component in the road of making a complete ensemble-based system is its concept

drift detection. From the concept drift component is the ability to learn new concepts (plasticity)

while retaining previous learned knowledge (stability), which is also referred as the stability-

plasticity dilemma. Before formulating the problem of concept drifting, it is very important to

mention the main assumption that a system makes during its effort for adaptation. Most stream

classifiers assume that recency is analogous to relevance. It is supposed that old instances are

associated with previously outdated concepts, while new instances are committed to the most

current concept. In addition, another assumption that a system has to make is that the change

happens unexpectedly and is unpredictable, although in some particular real-world situations

the change can be known ahead of time in correlation the occurrence of particular environmental

events. But solutions for the general case of drift entail the solutions for the particular case. In

order to formally define the concept drift notion we will use the analysis of J. Gama et al. [23].

Formally concept drift between a time point 𝑡0 and a time point 𝑡1 can be define as

∃ 𝑋 ∶ 𝑝𝑡0(𝑋, 𝑦) ≠ 𝑝𝑡1(𝑋, 𝑦)

where 𝑝𝑡0 denotes the joint probability distribution at time 𝑡0 between the set of input variables

𝑋 and the target variable 𝑦. Changes in data can be characterized as changes in the relation of

those two components.

Vasileios Vittis October 2021 32 | P a g e

Therefore, system’s change is produced after identifying one or more of the following changes:

1. the prior probabilities of classes 𝑝(𝑦) may change,

2. the class conditional probabilities 𝑝(𝑋|𝑦) may change

3. the posterior probabilities of classes 𝑝(𝑦|𝑋) may change affecting the prediction.

We are interest to know two implication of these changes (i) whether the data distribution 𝑝(𝑦|𝑋)

changes and affects the predictive decision and (ii) whether the changes are visible from the data

distribution without knowing the true labels (change of 𝑝(𝑋)).

In order to complete our analysis on what exactly is concept drift and how we can formally

identify it, we have to give a visual representation. For that purpose, we can use the work of

I.Katakis [24]. In the follow figure we will give an example of an extreme change in order to fully

understand the notion of concept drift.

Figure 7. (a) Streaming classification problem without concept-drift. (b) Streaming clasification problem with concept-drift.

In Figure 7(a), we can observe a streaming classification problem where the blue squares are of

the same class and the red rectangles are of the opposite class. We can see that even with a simple

linear classifier data are separated into two perfect regions. This is not the case with Figure 7(b)

which represents a stream classification problem with concept drift in two successive time

periods. In the first case before drift time point (𝑡𝑑) items can easily be separated. However, after

time point the concepts of class blue square and red triangle change making difficult for the

existing classifier which was trained from previous data to classify incoming instances.

In the above figure we show an extreme paradigm of concept drift. This example lies in the real

concept drift subcategory. In general, there are two general types of drift: real drift and virtual drift.

The first one is associated with the change of 𝑝(𝑦|𝑋), which essentially means that not only the

new data moved in new regions of data space but also their respective classed explored new areas

different from the already defined class territories. On the other hand, virtual drift is happening

Vasileios Vittis October 2021 33 | P a g e

when only the 𝑝(𝑋) while the 𝑝(𝑦|𝑋) remains the same. The latter case means that new data

explored new data regions respecting the already established class regions. Figure 8 show a visual

representation of real (c) and virtual drift (b).

Figure 8. (a) Original Data (b) Virtual Drift (c) Real Drift

After, establishing the concept of data drift during a stream, we now are able to examine the

distinction among different types of drift that an ensemble system has to be able to identify and

for that reason we have to introduce the extra dimension of time between two different concepts.

We will approach the problem similarly as A. S. Iwashita [5] et al. who presented the different

types in a compact and representative way. Let 𝐶1 and 𝐶2 be two different concepts generated by

two different data sources, and 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑑 , … , 𝑖𝑛} a sequence of instance. Instances prior of 𝑖𝑑

have draw from a stable source creating 𝐶1 which does not change. After 𝛥𝑥 instances, the concept

stabilized once more, but in another target concept 𝐶2. The concept among instances 𝑖𝑑 + 1 and

𝑖𝑑 + 𝛥𝑥 is drifting from 𝐶1 to 𝐶2. According to 𝛥𝑥 length, the drift can be called gradual or abrupt.

In gradual drift, the two concepts slowly swap; whereas in abrupt drift occurs suddenly.

Figure 9. Abrupt and Gradual Concept Drift

Vasileios Vittis October 2021 34 | P a g e

2.2.4.1 Detecting changes with Drift Detectors

There are several methods in machine learning to deal with changing concepts. In machine

learning drifting concepts are often handled by time windows or weighted examples according

to their age or utility. In general, approaches to cope with concept drift can be classified into two

categories:

• approaches that adapt a learner at regular intervals without considering whether changes

have really occurred;

• approaches that first detect concept changes, and next, learner is adapted to these changes.

Examples of the former approaches are weighted examples and time windows of fixed

size

Therefore, the main concept of detecting changes during a stream is that after receiving an

instance, the online approach updates the classifier; whereas the batch approach waits to receive

plenty of instances to start learning. Regardless of the way the system will receive data,

incremental learning behaves like online learning with the model update as instances arrive;

whereas non-incremental reuses data on learning phase. At the end, active drift detection

observes the stream to search for changes and determine whether and when a drift occurs, it

warns the learner to take the correct action, while passive drift detection considers drift may occur

constantly or occasionally, therefore continually updates the learner as data arrive. [17]

Based on the vast categories of concept drift detectors, in this thesis we will do a special mention

to the active ones which means that a system uses an external component while it does not do

occasionally structural changes. More precise, when the system’s base learner is a decision tree

which has adaptive techniques on its own, then the combination of such classifier with a powerful

concept drift detector promises both high accuracy but also quick adaptability to changes. So, we

are looking for such a detector that is well-established with the minimum distance of detection

from the real drift and the higher detection accuracy. The majority of concept drift detectors use

the performance of the base learner as an indicator of change. The main assumption is that if a

classifier is trained with data from one source, then asymptotically reaches an ideal classifier. But

when the source of data changes over time then it has a hard time to cope with the next concept

and at some point, is loses its predictive power. Such methods have to be very careful in order to

be able to distinguish the change produces by noisy data and the real drift of data. Also, most of

those methods use a mechanism of warning and drift signals informing the base learner in order

to take the appropriate actions.

The basic idea of drift detection based on tracking classifier’s error rate is shown in Figure 10. So,

we can see that at first due to the fact that the base learner is immature and it has not given enough

time to train the error-rate skyrockets to nearly the 1.0 mark, which means that the classifier is

wrong around all the time, but as time passes and the learner manages to adapt to the data the

Vasileios Vittis October 2021 35 | P a g e

error rate has a downside trajectory which almost reaches the perfect classifier. From a point and

then which is denoted with the term real drift point the concept changes and the learner finds it

hard to keep up with the new instance which means that it wrongly classifies new data. All this

period of time, the drift detector component monitors the base learner’s error-rate and when some

error-rate value satisfies its evaluation function send a warning signal. It is base learner’s business

to take advantage to this info and unravel its strategy for such scenarios. After a while, when the

error-rate still rises the detector confirms the undergoing drift and again sends a signal.

Figure 10. Error fluctuation under concept drift

DDM

DDM (Drift Detection Method) [25] is the most well-known representative of that strategy. It

estimates classifier error (and its standard deviation), which (assuming the convergence of the

classifier training method) has to decrease as more training examples are received. If the classifier

error is increasing with the number of training examples, then this suggests a concept drift, and

the current model should be rebuilt. More technically, DDM generates a warning signal if the

estimated error plus twice its deviation reaches a warning level. If the warning level is reached,

new incoming examples are remembered in a special window. If afterwards the error falls below

the warning threshold, this warning is treated as a false alarm and this special window is

dropped. However, it the error increases with time and reaches the drift level, the current

classifier is discarded and a new one is learned from the recent labeled examples stored in the

window. For both levels we keep track the error-rate 𝑝𝑖 and its standard deviation 𝑠𝑖 = √
𝑝𝑖(1−𝑝𝑖)

𝑖

Vasileios Vittis October 2021 36 | P a g e

Its warning level and signal criteria are:

Warning Level:

𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 2 ∙ 𝑠𝑚𝑖𝑛

Drift Level:

𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3 ∙ 𝑠𝑚𝑖𝑛

The values of constants multiplied with 𝑠𝑚𝑖𝑛 in the warning and drift level respectively are not

randomly selecting. The denote the level of drift, if the new concept satisfies the drift constraints

means that by 99.73% is different from the previous concept.

Figure 11. Level of Drift in DDM

The expected result from employing DDM as a concept drift detector in the system is the

following:

Figure 12. Error rate in Stagger and Sinire1 using DDM.

In Fig.12 we can see two different experiments using DDM in the main system. In both subfigures

we see a solid black, a blue dashed line and horizontal lines, which represent the error-rate

behavior with and without using DDM and the time points of real drifts respectively. We can

Vasileios Vittis October 2021 37 | P a g e

immediately conclude that the error-rate system without DDM always increases as the time

passes by. Someone could say that is almost linearly getting worse, whereas when using DDM

the error-rate manages to stay relatively low independently of the time. The main problem that

this thesis pays more attention is the spikes of error-rate immediately after each real drift. These

spikes represent an underlying problem concerning that the adaptive mechanism is not mature

enough to handle the new concept. The base algorithm takes into consideration this case by

setting an extra constraint which says that the monitoring will start again after n > 30 examples.

This number takes an arbitrary value which is not supported by somehow, because does not

include the type of drift. For abrupt changes 30 examples maybe enough but for gradual drifts

may be very little.

DDM was introduces in 2004 and showed the path to other researchers of how to deal efficiently

a concept drift scenario. A problem with the most research papers of that era, is that almost none

of them test the behavior of their algorithm with big data. So, for a while, it was unknown if their

good predictive performance of detecting drifts would remain the same with more data.

RDDM

RDDM which was introduced by R.Barros in 2017 [26], had as its original proposal to overcome

deficiencies and thus improve the detections and accuracy results of DDM. This includes their

motivation and heuristic assumptions. The main idea behind RDDM is to periodically shorten

the number of instances of very long stable concepts to tackle a known performance loss problem

of DDM. It is assumed that such a drop is caused by decreased sensitivity to concepts drifts as

many thousand instances, it takes a fairly error rate and trigger the drifts. Another symptom of

the same problem that the authors noticed is that DDM tends to stay at the warning level for a

very large number of instances of the base learner running in parallel, this behavior might also

make DDM fail to detect some of the existing gradual drifts, as the base learner is slowly adapting

itself to the new concept without a drift detection.

RDDM is essentially a better version of DDM, having less distance between real drift and

detecting drift, greater sensitivity (true positive rate) and greater false negatives, but it has much

worse false positives. False positives indicate that it detects drifts that they are not happening.

Focusing on the biggest in size datasets on their experimental evaluation we can observe that

RDDM has on average 17.6 (±10.8) times more false alarms than DDM. So, in systems that is

expensive to create a new strategy every time that a new concept is detected, RDDM is not a

viable choice.

Vasileios Vittis October 2021 38 | P a g e

2.3 Distributed Streaming Decision Trees and Random Forest

In the Section 2.2, we presented an ensemble system from different perspectives in a streaming

context. In this Section, we add another dimension, the distributed computing. In 2019 A. Bifet et

al. [27] mentioned that when dealing with large quantities of data, an important trend will be

how to do online learning using distributed streaming engines, as Apache Spark, Apache Flink,

Apache Storm and others. Algorithms have to be distributed in an efficient way, so that the

performance of the distributed algorithms does not suffer from the network cost of distributing

the data. One of the most used and well-known platforms is SAMOA [28] which provides a

collection of distributed streaming algorithms for the most common data mining and machine

learning tasks such as classification, clustering, and regression, as well as programming

abstractions to develop new algorithms that run on top of distributed stream processing engines

(DSPEs). On top of SAMOA is there is the MOA [29] which is the most popular open source

framework for data stream mining, with a very active growing community. Both SAMOA and

MOA provide solutions at a higher level in relation to the purpose of this thesis and despite the

fact there is a selection of open-source code, is not helping at any way thesis’s desire to solve at a

lower-level problems of already existing algorithms in Apache Flink.

Here, we have to bring one important difference in order to avoid unnecessary

misinterpretations. There is a massive difference of a distributed computation and a computation

in a distributed environment. A computation in a distributed environment is closer to parallel

implementation rather than in distributed computation. This work implements an improved

version of Hoeffding Tree under concept drift in a distributed environment. This is totally

different with propositions that implement a Hoeffding Tree in a distributed way. Some examples

of a distributed implementation of Hoeffding Tree are [30] and [31]. The first one distributes the

decision tree’s nodes in a distributed environment and manages the information of the best and

second-best attribute’s information gain using Geometric Method for monitoring a fragmented

continuous skyline over distributed streams. [32]

It must also be mentioned that parallel and distributed computing is very important for Machine

Learning (ML) practitioners because taking advantage of a parallel or a distributed execution a

ML system may: (i) increase its speed; (ii) increase the range of applications where it can be used

(because it can process more data, for example). As [33] mentions, Random Forests is a very

powerful ensemble method combining a set of decision trees; the Random Forest usually

outperforms the single best classifier in the ensemble. More interestingly, the Random Forest

classifier outperforms both, confirming that it is an extremely good method for classifying data

streams.

Vasileios Vittis October 2021 39 | P a g e

Figure 13. Accuracy comparing the Hoeffding Tree, Hoeffding Adaptive Tree and Random Forest based on the Forest Covertype

dataset

Adaptive Random Forest (ARF)

The motivation of ARF by H.Gomes et al. [34] was that there was no random forest algorithms

that could be considered state-of-the art in comparison to bagging and boosting based algorithms

in the challenging context of evolving data streams. The advantage of ARF is that through their

tests they showed that they use feasible number of computational resources while maintain high

predictive ability. ARF includes an effective resampling method and an adaptive operator that

can cope with different types of concept drift. Their drift adaptation strategy that does not simply

reset base models whenever a drift is detected. In fact, it starts training a background tree after a

warning has been detected and only replace the primary model if the drift occurs. This strategy

can be adapted to other ensembles as it is not dependent on the base model. One of the main

points that they emphasize is their parallel version (ARF[M]) of implementation. As they

explicitly mention “Anticipating the results presented in the experiments section, the parallel version is

around 3 times faster than the serial version and since we are simply paralleling independent operations

there is no loss in classification performance”. In addition, authors drew the following conclusion

“Since ARF[M] distributes the training and drift detection among several threads it is unsurprisingly the

most efficient in terms of CPU time and memory used.” All in all, one small problem with ARF is that

their system was not tested with big data, while the maximum number of instances used, were

below the 1M mark. But, on their future work proposal they mention that there is a possibility is

to implement a big data stream version of ARF.

Vasileios Vittis October 2021 40 | P a g e

Vasileios Vittis October 2021 41 | P a g e

Chapter 3:

Proposed Solution

Our Approach

3.1 Project Architecture

In this thesis we are considering that we have immediately knowledge of the corresponding class

of each input of our system, therefore our ensemble learner lies under the supervised learning

framework. Those assumptions make our system vulnerable to real world problems, but

implementing more algorithms for dealing with all kind of possible problems will result in a

project out of the context of a thesis. What exactly are we implementing?

Firstly, we will have a fixed size Ensemble of homogeneous incremental learning classifiers using

the main principles of Hoeffding Tree and Hoeffding Bound. This ensemble is essentially a

Random Forest and is implemented in parallel in a distributed environment, at Apache Flink. We

further implement two improvements on top of the base model. The first one is associated with

handling numerical attributes using Gaussian Approximation of maintaining the necessary

statistics for finding the best splitting attribute-value pair. So, instead of keeping instances, which

can be proved fatal and definitely is unfeasible in a streaming context with unbounded data, we

are making a Gaussian approximation for each attribute. Τhe second optimization serves the

purpose of handling the potential limited resources. In a distributed environment where decision

trees are implemented in parallel there is a high chance that more than one base learner will end

up in the same machine sharing both computational and memory resources. This is inevitable,

when the number of models is greater than the cores and machines of the available cluster.

Therefore, here comes a challenge that thesis has considered; situations were multiple models are

deployed with lower parallelism. For that purpose, we also implemented the second version of

Strict Very Fast Decision Tree (SVFDT-II) in order to reduce the memory consumption of our

system.

3.2 Resampling

Secondly, this thesis has noticed a problem that is produced by the parallel execution of models.

We have to mention here that in this thesis we are using the original methodology of Online

Bagging. As we have already mentioned only 63% of the original data, has a returned probability

different to zero. Suppose the following scenario; in a parallel implementation, the same incoming

Vasileios Vittis October 2021 42 | P a g e

instance has to be distributed to all available classifiers for either training or testing. This process

of distribution in Apache Flink is performed using hashing, which generally is a very expensive

function. So, instead of sending the same instance to all base learners and each one of those deploy

the online bagging locally, we have moved the online bagging outside of the internal of every

classifier into a separate module which repeatedly calls the Poisson distribution based on the

ensemble’s size. Hence, we have saved a good amount of unnecessary data transactions.

Figure 14. Distributed Random Forest Abstraction

3.3 Base Learner

Thirdly, in our background analysis we mentioned a problem that the majority of proposed

algorithm ignore. Big data are usually referred to as data that is so large or complex that it’s

difficult to process using traditional methods. The last couple of years we are working in an era

that every proposed system has to consider big data scenarios. Most of the algorithms had tested

their system from around 100k to 3M instances. We further noticed that it is unfeasible to have

an incremental base learner whose size increases proportionally to the size of incoming data.

Despite the fact that we implemented SVFDT-II and we managed to reduce the size and rate of

base learner’s growth, we did not succeed to disengage its growth from the amount of incoming

data. If some of the proposed implementations tested their systems with data more than 50M

(relatively big data), they will also conclude to the fact that while the base learner does not become

Vasileios Vittis October 2021 43 | P a g e

better, its size increases almost linearly. So, we propose a new variation of the base learner for

periods of “data drought”. Data drought indicates that data fed to the system don’t “carry” enough

information for the base learner to get better and increase its predictive ability. Τhe main point

of our proposition is that we periodically check the accuracy of the base learner. If we notice that

the base learner is not getting better or worse, we create a window; if the window’s size is greater

than a user-defined threshold, then we stop the splitting process while we continue to update the

internal nodes of the base learner by inserting new instances. Once the accuracy changes

behavior, the window is dropped. We can conclude that the base learner’s performance remains

stationary when its accuracy fluctuates around its mean value for a long window size.

In order to formulate our proposition, we need to consider a vector 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} of incoming

instances. Because we are implementing the test-then-train methodology, there is continuous

update of its classification performance. As each new instance is fed to the system, it contributes

to the cumulative weight. We define as an answering vector 𝑜 = {𝑜1, 𝑜2, … , 𝑜𝑛} where 𝑜 ∈ {0,1}.

Then the weight of a base learner at a time point 𝑡𝑛𝑜𝑤 is

𝑤𝑡𝑛𝑜𝑤 =
1

𝑡𝑛𝑜𝑤
 ∑ 𝑜𝑡

𝑡𝑛𝑜𝑤

𝑡=0

which denotes the ratio of correctly classified instances to the total number of instances seen. We

denote as 𝑤𝑡 the produced weight of the base learner at timepoint 𝑡 after seen the instance 𝑖𝑡

We also keep the approximate mean value (𝑤̅) and the standard deviation 𝜎(𝑤) of the weight

vector with time and memory complexity of 𝑂(1). Therefore, the constraint used is:

𝑤̅ − 𝜎(𝑤) ≤ 𝑤𝑡 ≤ 𝑤̅ + 𝜎(𝑤)

This constraint is loose enough not to trap the base learner into a continuous pipeline, but too

strong to guarantee that if its weight is fluctuating inside area defined by the upper and lower

bounds then there is no reason to consider any splitting process. So, what exactly are we expecting

to happen with our proposition? Firstly, we need to understand the power of data. All, modern

machine learning models are data driven, which means that the structural process is adapted on

the behavior of data. Although, a base learner’s goal is to create the best possible splitting criteria

there are numerous occasions which it is impossible to do so, because data are distributed in the

data space in such a way that there is always room for improvement. This is exactly the problem

that we are trying to tackle; scenarios where a decision tree is trying to find the ideal criteria by

continually splitting its nodes (deeper tree) when at the same time data are not able to be further

separated. Such a scenario can be evident with numerous ways, we selected to monitor the base

learner’s performance because it was the most simple and straightforward. Consider the

following scenario, which is depicted in the following figure. At first the error-rate is relatively

high because the base learner is not mature enough as it has not been trained with enough data.

After some relatively little time the error-rate drops in some acceptable level. Due to the kind of

data, the learner does not manage to get better. If the length of its incapability is proportionally

Vasileios Vittis October 2021 44 | P a g e

great to length from the start of its training, then system detects that there is time to start a

window where the splitting process has to stop. We have to mention that the training is still active

and new instances are still traversing the existing tree and update the necessary statistics.

Figure 15. Base Learner proposition

We can support our proposition through some extensive experiments performed in a single base

learner based on the most well-known datasets. (See Section 5.4.2)

3.4 Combination Function

In addition, we will keep tracking the classifiers performance by assigning them a weight. This

weight we be calculated based on each learner’s error rate during both the training and testing

phase. (Error rate = 1 – Accuracy). We will conduct Weighted Voting over Selected Classifiers. We are

selecting only the top-k classifiers, where again k is a user defined parameter.

The reason we have extensively explained the different categories of Combination Function in

Section 2.2.2 has to do with the fact that we are implementing an approach coming from the union

of Weighted Voting and Classifier Selection category. Also, we use the basic Majority Voting error

rate as a comparison base of our algorithm.

Vasileios Vittis October 2021 45 | P a g e

3.5 Concept Drift Detector

Last but not least, we will consider that our data distribution is changing during the stream,

hence, in order to manage that, we are implementing a Concept Drift Detection system. Our

system consists of one well-established concept drift detector (DDM). DDM provides a twostep

detection points. The first one is the warning signal and the second one is the concept drift signal.

With the former, the system will create a Background Tree and with the latter it will replace the

existing one, such as ARF. (See Section 2.3) In case of a false alarm, which happens when the

warning signal cannot hold its value, the Background Tree is deleted. The main thing that we are

noticing is that there is no actual drift phase. If we assume that we are in a stable phase and a

warning signal comes, then we are entering in a warning phase and subsequently when a drift

signal comes, we are back at a stable phase, this time newer’s one.

Figure 16. DDM basic signals concept

Recall in Section 2.2.4.1 that we made a special reference in the DDM’s error-rate “spikes”. For

that reason, we are introducing a drift phase. During the drift phase we will replace the existing

decision tree with the background one only when the latter has greater accuracy (or lower error-

rate), otherwise we will keep the same base learner. As we have already discussed, DDM has an

arbitrary number of 30 examples to deal with such a problem which does not take into account

the length and magnitude of change.

Therefore, the proposed concept is:

Vasileios Vittis October 2021 46 | P a g e

Figure 17. Concept Drift proposition

Opposed to DDM signaling system, in our case when we encounter a drift signal, we start

comparing the performance of the rival trees. When the performance of the background tree is

greater than the already existing one then we generate a switch signal which means that the

replacement method is now ready to be executed. With such a proposition we tackle the problem

that DDM can be replaced with a random generator in its transitional phases. We, as a system

observer, care only for the overall system’s performance and we want to be ensured that our any

time testing will have a guaranteed high subsistence. Please, consult Section 5.4.3 where we

analyze the results of our proposition.

Vasileios Vittis October 2021 47 | P a g e

Chapter 4:

Implementation

4.1 Apache Flink Overview

Apache Flink [35] is a framework and distributed processing engine for stateful computations

over unbounded and bounded data streams. Flink has been designed to run in all common cluster

environments, perform computations at in-memory speed and at any scale. The Flink runtime consists

of two types of processes: a JobManager and one or more TaskManagers (also called workers). The

Client (our implementation) is not part of the runtime and program execution, but is used to

prepare and send a dataflow to the JobManager.

Figure 18. Apache Flink Architecture

For distributed execution, Flink chains operator subtasks together into tasks. Each task is executed

by one thread. Chaining operators together into tasks is a useful optimization: it reduces the

overhead of thread-to-thread handover and buffering, and increases overall throughput while

decreasing latency

State

The most powerful concept of Apache Flink is its state. Every non-trivial streaming application

is stateful. At a high level of abstraction, we can consider state as a snapshot of an application

(operator) at any particular time which remembers information about past inputs/events, which

Vasileios Vittis October 2021 48 | P a g e

can affect the future output. A system using state will know everything to what has happened in

the application till a particular point of time.

Figure 19. Apache Flink State Abstraction

A saved state can be used in any of the following ways.

• To search for certain event patterns happened so far.

• To train a Machine Learning model over a stream of data points. In this case state will

hold the current version of model parameters.

• To achieve fault-tolerance through checkpointing. A state helps in restarting the system

from the failure point. In case of any failures, if our system is fault tolerant and if we have

saved a state of that application, the we can restart processing exactly from the same

checkpoint where the system got corrupted.

• To rescale the jobs and to increase parallelism in a job.

Kafka Connector

Apache Kafka [36] is an open-source distributed event streaming platform.

Figure 20. Apache Kafka Architecture

Vasileios Vittis October 2021 49 | P a g e

Apache Kafka provides:

• Hight Throughput: Deliver messages at network limited throughput using a cluster of

machines with latencies as low as 2ms.

• Scalability: Scale production clusters up to a thousand brokers, trillions of messages per

day, petabytes of data, hundreds of thousands of partitions. Elastically expand and

contract storage and processing.

• Permanent Storage: Store streams of data safely in a distributed, durable, fault-tolerant

cluster.

• High availability: Stretch clusters efficiently over availability zones or connect separate

clusters across geographic regions.

4.2 Proposed Implementation

4.2.1 Project Architecture

Our implementation consists of an Apache Kafka Source and Sink as the basic components to

read and write data. There is a separate component of Data Sampling which implements the

Online Bagging. Data are distributed based on the Hoeffding Tree id and end up to the each

responding machine and therefore to each pair of learner and concept drift detector. Each learner

is trained or tested by incoming data while on the same time the Concept Drift Detector monitors

its performance. Testing data are distributed to every learner component and their prediction are

aggregated by a given rule in order extract the final prediction. In the Appendix Section you can

further see our system’s flowchart (parts of it, will be used across our presentation of the proposed

implementation.

Figure 21. System's Architecture

Vasileios Vittis October 2021 50 | P a g e

Source and Sampling Component

Figure 22. Source & Sampling Component Abstraction

Source Component

Source Component is responsible for preprocessing data by changing its format and making them

ready for consumption from our system. In this implementation we can handle only numerical

data with either distinct or continuous data. Each tuple of data has to be comma separated with

the class label at the end. We do not restrict data for their number of feature or the type of

representing their class label. A sample data can be of the following structure.

< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 >

Considering that our system is running continually, we have implemented such as system that

receives only training data and some periodical tests from the user. More precisely, we consider

that the user quires our system an unknown number of times at arbitrarily time intervals. In order

to create such a scenario, we distinguish incoming data by assigning one unique identical

number. In the current implementation we read from input files but the source can be of any kind

(real-time events). If an instance is considered a training one, we assign to it the number 5

otherwise -5. Also, in order to simulate user’s queries, we randomly select along our input data

random instances that have as their purpose to test our system. We are implementing an

ensemble system, so we need an aggregate id in order to perform our combination function. We

achieve that by assigning to each incoming instance an incremental id number (𝑖𝑖𝑑 − 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑑)

Training instance:

< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 , 5, 𝑖𝑖𝑑 >

Testing instance:

< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 , −5, 𝑖𝑖𝑑 >

Finally, the Source component is responsible to a unique internal Kafka Topic from which the

main implementation will receive data.

Vasileios Vittis October 2021 51 | P a g e

Sampling Component

The Sampling Component is responsible for identifying the input data and implementing the

algorithm of Online Bagging. We can observe that in line 2 if the purpose of the incoming instance

is testing then we distribute it to all available member of the ensemble as we need the opinion of

each one of them. In addition, we see in line 5 that if an incoming instance is a training, then we

iterate through all member by extracting a sample from the Poisson distribution. The Sampling

Component distributes training data to a subset of the ensemble based on whether or not its w

value is greater than 0. Based on the m value each instance is distribute to the corresponding Base

Learner Component. We take advantage the property of the keyBy operator that the Apache Flink

provides us. KeyBy operate guarantees that every instance grouped by the same key will enter to

a KeyedStream that has its own computation.

Algorithm 5: Sampling Component

Input: stream String type stream of pairs (x, y)

 M ensemble size

Output: <stream, m, w> a stream of predictions for each x

1. Extract purpose id from stream

2. if purpose id equals -5 then

3. for every member m in M do

4. output stream ← <stream, m, 0> //0 denotes to No-Weight
5. if purpose id equals 5 then

6. for every member m in M do

7. w ← Poisson(1)

8. if w > 0 then

9. output stream ← <stream, m, w> // w for Gaussian Approx.

10. return output stream

Base Learner Component

The Base Learner Component is essentially our machine learning model1 and is incubated by a

StatefulMap function, or otherwise by a state. This component is responsible for creating,

updating (training) and testing our base learner as long as its background base learner (in case of

concept drift). Initially, the state and therefore the Base Learner Component is empty. In this case

we create the main Hoeffding Tree (HT). Moreover, we have adopted the notion of “age of

maturity”. It is a user defined value and it serves the purpose of giving the HT some time in order

1 Please note that the Hoeffding Tree component is basically a separate model in a unique machine, while the ensemble

is distributed implemented.

Vasileios Vittis October 2021 52 | P a g e

to enter to a stable phase. In this phase we only

accept training instances as we assume that we are

not ready to answer to testing queries. Our

Hoeffding Tree creating follows the exact same

parameters as the original algorithm. In case the

period of “age of maturity” is completed, we enter

to the next phase. In this phase we are accepting

both training and testing instances. We also have

adopted the Test-then-Train methodology which

firstly traverses the tree until the target leaf, asks

the majority class of this particular node and

updates the HT’s weight based on the correctness

of the answer. Secondly, it takes again the same

path and updates all the necessary statistics of the

target node.2 The only time we collect the output is

in case we have received a testing instance.

Algorithm 6 showcases the above analysis.

Algorithm 6: Hoeffding Tree Component

Input: (x, y, id, w) a tuple of features, true label, HT id and its weight

 grace_period is the user defined parameter for age of maturity

Output: output stream a tuple of instance id with the corresponding prediction, the HT id and its weight

1. if state is empty then

2. Create Hoeffding Tree()

3. else:

4. if age of maturity < grace_period then

5. if instance is Training then

6. Test-then-Train Hoeffding Tree() // Update HT weight

7. if instance is Testing then

8. Skip instance

9. else:

10. if instance is Training then

11. Test-then-Train Hoeffding Tree()

12. if instance is Testing then

13. Test Hoeffding Tree()

14. output stream ← <instance id, prediction, HT id, weight>

15. return output stream

2 In the first traversal, beyond the returned prediction (majority class), we return the target Node in order to save an

extra second traversal.

Figure 23. Base Learner Component

Vasileios Vittis October 2021 53 | P a g e

The output needed from the Combination Function Component must contain the instance id with

which we will aggregate our predictions, the actual prediction a long side Hoeffding Tree’s

weight and id. Now, as we discussed in Section 3.3, we have made some modifications in the

basic VFDT algorithm. Therefore, we will present both Create, Training and Testing pseudocodes.

Create Hoeffding Tree

During the creation of the Hoeffding Tree we make some assumptions correlated to the problem

we solve. Firstly, we have prior knowledge of the number of attributes with a result to create as

many HashMaps as the number of attributes. Secondly, we know that we are dealing only with

a binary problem so in both cases of maintaining the required statistics and the label counts we

need only two. (0: Class0, 1: Class1). Thirdly, in order to select the required random features, we

use the algorithm of Reservoir Sampling, instead of using some specific strategy.

Algorithm 7: Create Hoeffding Tree

Input: Max: is the number of how many features we have to select from

 m_features: is the number of the size of the random subset of Max

 max_examples_seen: is the number of examples between checks for split

 delta: one minus the desired probability of choosing the correct feature at any

 given node

 tie_threshold: is the number between splitting values of selected feature for split

Output: root of Hoeffding Tree

1. for each attribute in m_features then

2. Create a HashMap for statistics

3. Create a HashMap for label counts

4. instances_seen ← 0

5. correctly classified ← 0

6. weight ← 0

7. InitializeRoot (m_features, max_examples_seen, delta, tie_threshold)

8. Reservoir Sampling (m_features, Max)

As we have already mentioned we have implemented the Gaussian Approximation for keeping

in track with the feature’s changes. The HashMap structure used is the following: for each feature

and for each class we maintain four values (sum of weights, mean, sum of the variance, min and

max value)

Vasileios Vittis October 2021 54 | P a g e

Test Hoeffding Tree

A Hoeffding Tree has to keep track with its progress and have to broadcast its information to the

State. In order to do that it needs to contain the number of correctly classified tuples, the weight

and the number of seen instances. For defining at each Hoeffding Tree (ℎ) the weight (𝑤ℎ) we

have to take the ratio between the correctly classified tuples (𝑐ℎ) and the total tuples seen (𝑛ℎ),

𝑤ℎ =
𝑐ℎ

𝑛ℎ
, 𝑤ℎ𝑒𝑟𝑒 𝑐ℎ < 𝑛ℎ.

Algorithm 8: Test Hoeffding Tree

Input: node: is the root of the Hoeffding Tree

 input_sample: is an array of values of the corresponding attribute

 purpose_id: is the id for identifying the different tuples

Output: predicted_value is the prediction from the Hoeffding Tree

 targetNode is the node after the traversal. Used by the training algorithm

1. filtered_input ←Filter input_sample based on m_features

2. if purpose_id is a testing then

3. predicted_value, targetNode ← TestHT(node, filtered_input)

4. else:

5. instances_seen ← instances_seen + 1

6. predicted label, targetNode ← TestHT (node, filtered_input)

1. if predicted label is equal to true label then

2. correctly_classified ← correctly_classified + 1

3. UpdateWeight(correctly_classified, instances_seen)

4. return predicted_value, targetNode

As we have discussed previously, we need to use the instance id for distinction between

testing and training ones. In Line 3, TestHT function traverses through the HT by comparing its

corresponding splitting attribute, value pair until in sorts itself to a leaf node. Then it returns the

label of the target node. In Line 10, UpdateWeight just update the existing HT’s tree with the new

values.

Train Hoeffding Tree

While we train the Hoeffding Tree we deploy both the SVFDT-II constraints and ours. We have

already mentioned that there is a case that Hoeffding Tree’s constraints are satisfied by the

SVFDT-II ones not. Essentially, with both implementations we have enclose the basic VFDT

constraints. In the Appendix Section there is a flowchart that represents the following

pseudocode.

Vasileios Vittis October 2021 55 | P a g e

Algorithm 9: Train Hoeffding Tree

Input: node (𝑙): is the target Node of the Hoeffding Tree from Testing

 input_sample: is an array of values of the corresponding attribute

 w is the instance weight from Online Bagging

 DS is the value that indicates data stagnation

Output: rootNode is the HT’s root

1. filtered_input ←Filter input_sample respectively to m_features

2. weight ← get Hoeffding Tree’s weight

3. if 𝑤𝑒𝑖𝑔ℎ𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡) < 𝑤𝑒𝑖𝑔ℎ𝑡 < 𝑤𝑒𝑖𝑔ℎ𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡) then

4. window_size ← window_size + 1

5. else:

6. window_size ← 0

7. if window_size / instances_seen > DS then

8. InsertNewSample = {

Update Gaussian Approximation metrics using w
Update label counts

Update 𝑛𝑚𝑖𝑛

9. else:

10. 𝑛𝑙 ← number of elements in node 𝑙

11. 𝑛𝑙 𝑙𝑎𝑠𝑡 𝑐ℎ𝑒𝑐𝑘 ← number of elements in node 𝑙 from the last check

12. if class at 𝑙 is impure and 𝑛𝑙 − 𝑛𝑙 𝑙𝑎𝑠𝑡 𝑐ℎ𝑒𝑐𝑘 > max examples seen then

13. 𝐼𝐺𝑏𝑒𝑠𝑡 , 𝐼𝐺𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 ← the highest and second highest IG (.)

14. if (𝐼𝐺𝑏𝑒𝑠𝑡 − 𝐼𝐺𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡) > 𝐻𝐵 𝑜𝑟 𝐻𝐵 < 𝜏 then

15. 𝐻 and 𝜎(𝛨) using 𝐻𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

16. 𝐼𝐺̅̅ ̅ and 𝜎(𝐼𝐺) using 𝐼𝐺𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

17. 𝑠𝑣𝑓𝑑𝑡_𝑖𝑖_𝑐𝑜𝑛𝑠𝑡𝑎𝑖𝑛𝑡𝑠 ← 𝐻𝑙 ≥ 𝐻 + 𝜎(𝛨) 𝑜𝑟 𝐼𝐺𝑏𝑒𝑠𝑡 ≥ 𝐼𝐺̅̅ ̅ + 𝜎(𝐼𝐺)

18. if (𝑠𝑣𝑓𝑑𝑡_𝑖𝑖_𝑐𝑜𝑛𝑠𝑡𝑎𝑖𝑛𝑡𝑠) then

19. Split node 𝑙 into 𝑙𝑙𝑒𝑓𝑡 and 𝑙𝑟𝑖𝑔ℎ𝑡

20. InsertNewSample in node the correct child node

21. else:

22. InsertNewSample in node 𝑙

23. else:

24. InsertNewSample in node 𝑙

25. else:

26. InsertNewSample in node 𝑙

27. return rootNode

We can see in Line 3 that if the weight fluctuates around its mean value then we create a window.

If at any point this condition is not satisfied then the window is dropped. In Line 17 and 18 we

see the exact same functionality presented in the SVFDT-II proposition. It evident enough that at

any case we insert the new sample in the target node in order to keep up with the stream.

Vasileios Vittis October 2021 56 | P a g e

Combination Function Component

Combination Function Component is

responsible for grouping incoming predictions

bases on the instance id and perform the

aggregation function. We have implemented

three different methods; Majority Voting,

Weighted Voting using only the top k

predictions and Weighted Voting using a cut-off

threshold which accepts predictions which have

its respective weight above that threshold. After

our Experimental Evaluation, we concluded that

using Weighted Voting using top-k was the

better choice. Therefore, the following

pseudocode is based on this. Here, we want to

mention that we took advantage of Apache

Flink’s countWindow operator. This operator

creates a window based on a user defined value.

It waits until the current instances received

matches the predefined value. In practice, we

waiting until we have collected as many

predictions as the number of Hoeffding Trees.

The following code shows the functionality after

the forementioned process.

Algorithm 10: Combination Function

Input: listpredictions is a list of each Hoeffding Tree’s predictions

 listweights is a list with the corresponding weights

 k is the value for selecting the top-k weights

Output: final prediction is the system’s prediction

1. sorted ←Sort weights in an ascending order

2. for all positions until k do

3. if weight equals to 0 then

4. class0_weight ← class0_weight + weight

5. else:

6. class1_weight ← class1_weight + weight

7. if class0_weight > class1_weight then

8. final prediction ← 0

9. else:

10. final prediction ← 1

11. return final prediction

Figure 24. Combination Function Component

Vasileios Vittis October 2021 57 | P a g e

Drift Detector Component

The Drift Detector Component is responsible for

monitoring the Base Learner Component’s

performance and more precisely its error-rate.

This component considers only training

instances and is connected with the Base Learner

Component after the latter updates its weight, as

shown in Figure 25. The component implements

the basic algorithm of DDM alongside our

proposition. After the train process has been

completed, we extract the corresponding

accuracy metric. In case that the DDM warning

constraints hold true then we enter in a warning

phase. Our goal is to create a Hoeffding Tree in

case there is not already one or test and then

train it in case it has been initialized. So, in this

case we have two parallel decision trees that are

trained by the same input data using different

characteristics. The main idea is that recency is

relevancy and the new background tree will be

trained only from the newest instances and

consequently it will perform better. Being in a

warning phase, there are two possibilities, either

we go back to stable phase given a false alarm

signal, or we enter in a drift phase given a drift

signal. By entering in the drift phase, we wait

until the background tree’s accuracy is greater

that the already existing one. If this happens,

then we perform the switch process which

concludes the removal of the existing tree and its replacement from the background tree.

 Figure 25. Concept Drift Detector Component

Vasileios Vittis October 2021 58 | P a g e

Algorithm 11: Concept Drift Detection

Input: error rate is the misclassification performance of the Hoeffding Tree

Output: signal can take three values: W for warning, D for drift and F for false alarm

1. Find New Drift Status using error rate

2. warning phase ← DDM warning constraints

3. if warning phase holds true then

4. signal ← warning

5. state ← get current background Ht’s state

6. if state is empty then

7. Create Hoeffding Tree() // Background Tree

8. else:

9. state ← not empty

10. Test-then-Train Background Hoeffding Tree() // Update HT weight

11. drift phase ← DDM drift constraints

12. if drift signal holds true then

13. signal ← drift

14. accbackgroundHT ← get Background Tree’s accuracy

15. accHT ← get Tree’s accuracy

16. if accbackgroundHT > accHT then

17. Reset Concept Drift Detector

18. Switch positions of HT and Background HT

19. else:

20. Stay at Drift Phase

21. else:

22. Stay at Warning Phase

23. else if signal equals to warning and warning phase does not hold true the

24. signal ← false alarm

25.

26. else:

27. signal ← stable phase

28. Stay at Stable Phase

29. return signal

Vasileios Vittis October 2021 59 | P a g e

Chapter 5:

Experimental Evaluation
The experimental analysis is designed based on two different tracks. The first one is to prove the

functionality of our propositions. The second track is to prove how our system scales and how it

copes with different number of decision trees and big data. Hence, we need a variety of

experiments with different characteristics and lengths.

5.1 Testing Setup

The experiments associated with the scalability of this thesis presented were performed on the

SoftNet Cluster of the SoftNet lab [37] with twelve Quad Core Xeon X3323 2.5GHz, 8GB. The

Apache Flink version is 1.10.0 with Scala 2.11 and the Apache Flink Kafka Connector’s version is

1.9.3. The experiments associated with the functionality of all the base learner and concept drift

detector were performed in a local machine with i7-4720HQ CPU 2.60GHz, 16GB due to cluster

unavailability at the time of these experiments.

5.2 Datasets

One purpose of our experimental evaluation is to generate evolving data streams that possess

diverse concept changes (abrupt or gradual) with different drift duration. The included datasets

are divided into two categories: artificial and real-world. In most cases, it is considered to test a

proposed algorithm with only a few thousand instances, such as DDM and RDDM, where the

evaluation was conducted based on a range between 50K and 3M instances while real-world

datasets (ELEC, Airlines) are products of a real-world situations and their length cannot be

changed. For both cases, we have selected the most well-known datasets in order to achieve an

all-round evaluation. All the artificial datasets were previously used in the area and they are

already included in the MOA framework [38]. MOA gives the choice to select, among others, the

underling stream, the concept drift (the dataset which will replace the initial one after the drift),

the position and duration of the drift, as long as the number of drifts and the choice of balanced

dataset, in order to cover different scenarios. In our setup, we will produce streams with multiple

concept drifts at regular intervals. Having such a powerful tool in our disposal, the evaluation

process becomes more systematic.

Vasileios Vittis October 2021 60 | P a g e

An issue that rises in the case of artificial datasets is how we can quantify the different types of

concept drifts. What makes a drift abrupt or gradual? Does the dataset’s length influence the

significance of the drift? One way to answer some of these questions, is to conduct multiple

experiments and evaluate their results. Another way is to use the most common practices that are

already performed in the same context. In [4] and [5], a drift length of 50 in 100.000 instances is

considered as an abrupt drift type, whereas 500 as gradual. On the other hand, in [6] they do not

distinguish concepts drifts in abrupt or gradual but they try to keep proportional the drift width

and the total instances. Finally, in a comparative study on concept drift detectors [6] they define

as fast gradual concept drift, the case when the width is 200 in 4000 instances and a gradual one

when it is 1000.

Sine: Sine dataset consists from two numeric attributes with two additional (optional)

irrelevant attributes. The attributes are uniformly distributed between [0,1] and follow

the alternation of the 𝒚 = 𝐬𝐢𝐧 (𝒙) .

RandomTree

This generator, which was introduced in [19], makes a decision tree by choosing the attributes at

random to split, and assigns a random class label to each leaf. After the tree is built, new examples

are generated by assigning uniformly distributed random values to the attributes and the class

label is determined via the tree. It has predefined parameters to control the number of classes,

attributes and depth of a tree. Concept drift is created by changing the tree Random parameter:

Agrawal:

This generator, which was introduced in [39], consists of six numeric attributes and three

categorical attributes to describe the hypothetical loan applications. For the numeric attributes,

there is a perturbation factor that makes to shift the true value by adding an offset. It can produce

ten different functions to determine whether the loan should be approved or not. The concept

drift happens by changing the functions. For our experiment, we use the six functions referring

as function 2 to 7 with 5% perturbation noise

SEA:

The SEA dataset [1] produces data streams with three continuous attributes (𝑓1, 𝑓2, 𝑓3). The range

of values that each attribute can assume is between 0 and 10. Only the first two attributes (𝑓1, 𝑓2)

are relevant, i.e. 𝑓3 does not influence the class value determination.

Vasileios Vittis October 2021 61 | P a g e

Airlines:

The Airlines dataset contains 539,383 records with 7 attributes (3 numeric and 4 nominal) and the

goal is to predict whether or not a given flight will be delayed given information on the scheduled

departure.

Electricity:

The Electricity Market dataset was used by Gama [25]. This data was collected from the

Australian New South Wales Electricity Market. In this market, the prices are not fixed and are

affected by demand and supply of the market. The prices in this market are set every five minutes.

The ELEC2 dataset contains 45,312 instances. The class label identifies the change of the price

related to a moving average of the last 24 hours. The class level only reflects deviations of the

price on a one-day average and removes the impact of longer-term price trends

The detail numerical information of drift sizes and dataset used are described in Table 1.

Table 1

Description of datasets

Dataset Total instances No. of attributes No. of classes No. of drifts Drift width

Sine-100k 100.000 4 2 4 100

Sine-3M 3.000.000 4 2 4 500

RBF-100k 100.000 10 2 5 100

RBF-5M 5.000.000 10 2 5 500

Agrawal-100k 100.000 9 2 4 100

Agrawal-3M 3.000.000 9 2 5 100

Agrawal-24M 24.000.000 9 2 10 1.000

SEA-100k 100.000 3 2 4 100

SEA-3M 3.000.000 3 2 5 1.000

Airlines 539,383 7 2 - -

Electricity 45,312 8 2 - -

Vasileios Vittis October 2021 62 | P a g e

5.3 Performance measures

5.3.1 Random Forest Evaluation

Confusion Matrix

Several indices were employed to monitor our classification method. Apart from the accuracy

score, which is calculated as the ratio of correctly classified samples by the total number of

samples, showing the overall accuracy of the method, other metrics of classification performance

were also used for the evaluation of the algorithm. In order to calculate these metrics, the number

of True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN) samples

were computed.

Table 2

Confusion Matrix

 Actual Value

P
re

d
ic

te
d

V
al

u
e

 Positive (1) Negative (0)

Positive (1) True Positive False Positive

Negative (0) False Negative True Negative

Based on the Confusion Matrix

• Recall (or Sensitivity) of a tuple is its ability to determine a positive instance as such

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. As a result, the False Negative Rate 𝐹𝑃𝑅 = 1 − 𝑇𝑃𝑅

• Specificity is the True Negative Rate 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 and is the model’s ability to

determine a negative case as such

• Precision (positive predictive value) is calculated by: 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. Precision can be

interpreted as the ability of the classifier not to label as positive a sample that is

negative.

• Last but not least, is the F1 score which is defined by the combination of Sensitivity

and Precision as it is calculated using those two metrics

𝐹1 =
𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Vasileios Vittis October 2021 63 | P a g e

5.3.2 Scalability Performance

In order to test the scalability of a system we track the execution time according to the size of data

for different values of parallelism (throughput). In an ideal system, we have to witness the

following result; as the parallelism is increasing, throughput has to have the exact opposite

behavior. If we double the parallelism then the throughput has to decrease in half.

5.4 Experimental Results

5.4.1 SVFDT-II Results

The following table compares the SVFDT-II impact a long side to the original algorithm of VFDT.

In this case it is not necessary to have concept drift datasets, therefore the tests were based on 3

artificial datasets of 1M instances (Sine, RBF, Agrawal) and the Electricity (ELEC) real world

dataset. In order to see how significant is the integration of SVFDT-II is our system, we will keep

track not only the number of nodes but also the accuracy and time elapsed. The following results

are the mean value of 30 outputs. (See the Appendix Table for the Extensive Table)

Table 3.

SVFDT-II Improvement

Datasets without SVFDT-II with SVFDT-II Performance Improvement

Dataset

Name

Size

(nodes)

Acc. Time

elapsed

(sec)

Size

(nodes)

Acc. Time

elapsed

(sec)

Size

(nodes)

Acc. Time

elapsed

(sec)

Sine 558.00 0.993 11.512 254.00 0.983 9.871 -54.48% -1.01% -14.25%

RBF 3.155 0.907 16.991 1.080 0.894 13.132 -65.77% -1.43% -22.71%

Agrawal 2.566 0.949 19.402 946.00 0.949 19.981 -63.13% 0.00% 2.98%

ELEC 221.00 0.77 7.249 127.00 0.777 6.179 -42.53% 0.91% -14.76%

We can see that the size of the Hoeffding Tree is reduced on average by 56.4% while its downside

is that the predictive ability (translated by its accuracy) has dropped 0.38%. We can strongly

support that this trade-off is more than acceptable and proves our right call to include it.

Vasileios Vittis October 2021 64 | P a g e

5.4.2 Base Learner Proposition Results

In order to test our proposition, we have to create such scenarios that prove our concept. In the

following figures we have three different datasets under concept drift of different lengths. So, we

created on purpose such periods that we called “data drought”. We will monitor the number of

nodes as well as the accuracy. We will compare the original VFDT with the SVFDT-II

improvement using the original algorithm of DDM, with the same setup plus our proposition. In

both cases the tree parameters are exactly the same. In order to completely understand its

functionality, we will present our results both visually and numerically.

Sine-100k

In Fig.23 we can observe that our

proposition does not interfere in

short and frequent concept drifts.

As Method1 we denote the VFDT

plus SVFDT-II. In this particular

experiment our proposition is not

deployed.

 Figure 26. Sine 100k Base Learner Proposition Behavior

RBF-5M

On the other hand, in Fig.24 we see that we full potential of our proposition. In this experiment

it is shown the combination of VFDT, SVFDT-II and our proposition with and without any

concept drift detector. The two vertical red lines denote the two observation points. In first

checkpoint, we start for both

implementation from different

points, having our proposition

with the respective opposite

around 1067 and 1605 nodes. In

the second checkpoint we have

1067 and 4977 and for the

implementation with and

without our proposition

respectively.

Figure 27. RBF-5M Base Learner Proposition Behavior

Vasileios Vittis October 2021 65 | P a g e

We additional tested in more two datasets Sine and Agrawal having both 3M data. Their Figures

are in the Appendix Section. We can conclude that our proposition responds to scenarios where

is the so called “data drought” as it reduces drastically the size and achieves to disengage the

growth of the base learner according to number of inputs. The price it pays is the reduced

accuracy which in some cases is almost 10% and in others is even.

Table 4.

Base Learner Proposition Results (Size and Accuracy)

 Size (Nodes) Error Rate Performance Difference

Datas

ets

Detection

Points

VFDT +

SVDT-II

VFDT +

SVDT-II +

Proposition

VFDT +

SVDT-II

VFDT +

SVDT-II +

Proposition

Size

(Nodes)

Error Rate

S
in

e-
3M

 #1 (500k) 167 47 0.024 0.039 -71.86% 1.5%

#2 (1.9M) 461 47 0.01 0.039 -89.80% 2.9%

#3 (2.9M) 427 81 0.041 0.041 -81.03% 0%

R
B

F
-5

M

#1 (1M) 1605 1067
0.192 0.207

-33.52%
1.5%

#2 (5M) 4977 1067 0.184 0.198 -78.56% 1.4%

A
g

ra
w

al
-3

M

#1 (200k) 205 183 0.057 0.136 -10.73% 7.9%

#2 (400k) 395 183 0.052 0.138 -53.67% 8.6%

#3 (750k) 469 197 0.129 0.129 -58.00% 0%

#4 (1M) 883 197 0.113 0.076 -77.69% -3.7%

#5 (1.5M) 301 101 0.073 0.082 -66.45% 0.9%

#6 (2.5M) 1149 101 0.055 0.082 -91.21% 2.7%

Vasileios Vittis October 2021 66 | P a g e

5.4.3 Concept Drift Proposition Results

In this part of our experimental evaluatio we test our proposition for the Concept Drift Detector.

In the following two figures we see two different scenarios of frequent and not frequent concept

drifts. In the following figures with the blue line we have denoted the system using the DDM

cocnept drift detector while with the green line the system with our proposed drift detector. The

red dots show the error rate that we save by implementing our system. The interval of the changes

are every 20k instances but we assume that we have not such prior knowledge of them. At each

transition point the error rate skyrockets (red dots) which results that our system could have been

replaced by a random classifier. The duration of such inability is around the one tenth of the total

dataset.

Figure 28. Sine dataset using our concept drift proposition

Table 5. Sine dataset. Numerical Representation of HT Switches

We can easily come to two conclusions. Firstly, our proposition is always better or equal better

than the base learner using DDM concept drift detector. Secondly, we wait until our background

tree becomes better than the existing one.

Vasileios Vittis October 2021 67 | P a g e

In the following figure we see the full functionality of our proposition while dealing with both

vast periods between changes. The total instances of improvement are 5% of the total stream,

which means that our proposition gives better answers during this 5% than the original DDM.

Figure 29. RBF 3M dataset using our concept drift proposition

Table 6. RBF 3M dataset. Numerical Representation of HT Switches

In Table 6, we can see that with the previous implementation of DDM we will have a huge drop

in the performance from 0.94 to 0.61 by switching earlier that the ideal. While by our modification,

we postpone this switch by 150k instances with a result of a smoother transition.

Vasileios Vittis October 2021 68 | P a g e

5.4.4 Ensemble Learning Results

In this part of the experimental evaluation, we treat our thesis as a complete machine learning

model. We want to test its predictive ability in different scenarios. Therefore, we will use dataset

with and without concept drift. The system has as its base learner the VFDT with the two

Gaussian Approximation, SVFDT-II alongside our base learner proposition and our concept drift

proposition. We have guaranteed that the tests are equally distributed in the dataset. The

following datasets are also balanced.

Table 7.

Confusion Matrix Ensemble Results

Datasets TP FP FN TN Recall Accuracy Specificity Precision F1 score

Sine-100k 658 167 187 677 0.790 0.778 0.802 0.797 0.788

RBF-1M 1611 249 219 1601 0.872 0.880 0.865 0.866 0.873

Agrawal-

1M
912 14 98 1003 0.944 0.902 0.986 0.984 0.942

Electricity 296 80 190 396 0.719 0.609 0.831 0.787 0.686

Titanic 5 3 3 5 0.625 0.625 0.625 0.625 0.625

Scalability Results

Other than approaching this thesis from a mathematical point of view and treating it as machine

learning model, we have to consider its scalability and evaluate its behavior in a distributed

environment. In order to fully depict how efficient our proposition scales, we have to make two

different tests.

The first has to be a scenario where we have a given dataset and a constant number of Hoeffding

Trees, while changing the parallelism. Hence, we have to decide which dataset should be using

and how many HTs are enough. We have to use such a dataset that its computational time is

significantly larger than cluster’s deployment time. We have decided to use Agrawal with 3M

instances, which has 9 features. As for the number of HTs, we have decided to go with 32 of them.

Don’t forget that at the worst case we will have simultaneously deployed 64 of them. (32 main

and 32 background) which are more than enough to showcase the scalability capability of our

system. A more typical number of trees used in a random forest is perhaps 50 to 200 trees

(according to Breiman’s experiments [40]). Therefore, we are using only 2 out of 9 features in

each of the 32 base learners in order to fully unravel the functionality of a Random Forest.

Secondly, it is necessary to do better than many others and consider a test with Big Data. In this

approach we have tested our system with 50 Hoeffding Trees and parallelism of 32 using 24M

instances. (24M instances of 9 numerical features is more than 3Gb)

Vasileios Vittis October 2021 69 | P a g e

Table 8.

Scalability Results

Figure 30. System's Scalability

2 4 8 12 16 32

0

2000

4000

6000

8000

10000

12000

Th
ro

u
gh

p
u

t

Parallelism

Scalability Test - Agrawal 3M

N
o

. o
f

H
o

ef
fd

in
g

T
re

es

K
af

k
a

B
ro

k
er

s

K
af

k
a

P
ar

ti
ti

o
n

s

P
ar

al
le

li
sm

Run 1 Run 2 Run 3 Run 4 Mean

Exec.

Time

Throughp

ut

Min. Sec Min. Sec Min. Sec Min. Sec Sec Instances /

sec

32 4 2 1 >3h - - - - - - - - -

32 4 2 2 2h 2m 7320 1h48m 6480 2h 27m 8820 - - 7320 409.836

32 4 8 4 28m 40s 1720 29m 2s 1742 32m 2s 1922 29m 4s 1744 1782 1683.501

32 4 8 8 17m 52s 1072 11m 8s 668 15m 6s 906 20m 1200 961.5 3120.124

32 4 8 12 13m 34s 814 18m52 1132 21m34s 1294 17m53s 1073 1078.25 2782.2861

32 4 8 16 12m 35s 755 9m 40s 580 8m 47s 527 10m 12s 612 618.5 4850.444

32 4 8 32 5m 21 s 321 4m 14s 254 5m 03s 303 4m 54s 294 293 10238.907

Vasileios Vittis October 2021 70 | P a g e

Figure 30 can be considered as an expected result. Given the 32 Hoeffding Trees, in case of the

small values of parallelism, the number of HTs that we are trying to fit in a tight space, seems to

be a proper challenge, in which our system underperforms. For example, in parallelism of 2,

Apache Flink tries to distribute the trees equally, 16 at each subtask, which means that the total

number of instances coming at the same node, are destined for 16 different trees. Whereas, in the

case of parallelism of 32 with 32 trees, each node receives instances for only one tree, a fact that

increases the throughput.

Table 9.

System with 24M

Based on the above table, we can clearly see that our system is competent to handle a significant

amount of Big Data. As we have already mentioned, the purpose of our proposition is to be any

time query system that can handle an unbounded stream of data, deployed for such a scenario

that there is no need of stopping it. Therefore, this experiment serves the purpose of showcasing

that the system can handle rapid incoming instances. The rate with which we tested our system,

may be a slightly extreme version of a use case.

N
o

. o
f

H
o

ef
fd

in
g

T
re

es

K
af

k
a

B
ro

k
er

s

K
af

k
a

P
ar

ti
ti

o
n

s

P
ar

al
le

li
sm

Run 1 Run 2 Run 3 Mean

Exec.

Time

Throughput

Min. Sec Min. Sec Min. Sec Sec Instances /

sec

50 4 32 32 21m 41s 1301 14m 16s 856 17m 43s 1063 1073 22,367.19

Vasileios Vittis October 2021 71 | P a g e

Chapter 6:

Conclusions – Future Work

6.1 Conclusions

In this thesis, we proposed a distributed implementation of Random Forest at Apache Flink that

detects concept drifts in evolving data streams. We implemented such optimizations, both on the

base learner and the concept drift detectors in order to tackle problems that emerge in the Big

Data world. We observed that we efficiently maintained the necessary statistics under the

Gaussian Approximation and we managed to reduce each decision tree’s size in return of not

much significant loss of accuracy using the SVDFT-II algorithm alongside our proposition. At the

same time, we observed that the proposed solution based on the Drift Detection Method achieved

better overall accuracy throughout the input stream.

6.2 Future Work

The current work can be extended in many different ways. First of all, we would like in the future

to develop a system that tracks all member’s prediction and use some disagreement metric in

order to find how many and which groups are formed. With such a useful information we can

easily delete members of the ensemble that have the same recent history and add a new one only

if we guarantee that its recent answers are a lot different from all other member. Therefore, we

want to transition our fixed-size ensemble to a dynamic one by boosting its diversity. Diversity

in general is not much tested in the ensemble systems and we think that it is a good opportunity.

Finally, we could examine if the proposed solutions can have the same behavior in different

datasets.

Vasileios Vittis October 2021 72 | P a g e

Appendix

Figure used in Table 4 in Base Learner Proposition Results Section

Figure used in Table 4 in Base Learner Proposition Results Section

Vasileios Vittis October 2021 73 | P a g e

Flowchart of System's Architecture used in Proposed Implementation Section

Vasileios Vittis October 2021 74 | P a g e

Flowchart of Training Method used in Train Hoeffding Tree Section

Vasileios Vittis October 2021 75 | P a g e

Bibliography
[1] Street W N and Kim Y 2001 A streaming

ensemble algorithm (SEA) for large-scale

classification Proceedings of the seventh ACM

SIGKDD international conference on Knowledge

discovery and data mining - KDD ’01 the

seventh ACM SIGKDD international

conference (San Francisco, California: ACM

Press) pp 377–82

[2] Wolpert D H 1992 Stacked generalization

Neural Networks 5 241–59

[3] Zhang C and Ma Y 2012 Ensemble Machine

Learning (Boston, MA: Springer US)

[4] Kotsiantis S, Patriarcheas K and Xenos M

2010 A combinational incremental ensemble

of classifiers as a technique for predicting

students’ performance in distance education

Knowledge-Based Systems 23 529–35

[5] Iwashita A S and Papa J P 2019 An Overview

on Concept Drift Learning IEEE Access 7

1532–47

[6] Rokach L and Maimon O 2005 Top-Down

Induction of Decision Trees Classifiers—A

Survey IEEE Trans. Syst., Man, Cybern. C 35

476–87

[7] Quinlan J R 1986 Induction of decision trees

Mach Learn 1 81–106

[8] Salzberg S L 1994 C4.5: Programs for

Machine Learning by J. Ross Quinlan.

Morgan Kaufmann Publishers, Inc., 1993

Mach Learn 16 235–40

[9] Bramer M 2013 Principles of Data Mining

(London: Springer London)

[10] Krawczyk B, Minku L L, Gama J,

Stefanowski J and Woźniak M 2017 Ensemble

learning for data stream analysis: A survey

Information Fusion 37 132–56

[11] Domingos P and Hulten G 2000 Mining high-

speed data streams Proceedings of the sixth

ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD ’00

the sixth ACM SIGKDD international

conference (Boston, Massachusetts, United

States: ACM Press) pp 71–80

[12] Hoeffding W 1963 Probability inequalities

for sums of bounded random variables.

Journal of American Statistical Association

58(1):13-30

[13] Hulten G, Spencer L and Domingos P 2001

Mining time-changing data streams

Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery

and data mining - KDD ’01 the seventh ACM

SIGKDD international conference (San

Francisco, California: ACM Press) pp 97–106

[14] da Costa V G T, de Carvalho A C P de L F and

Junior S B 2018 Strict Very Fast Decision Tree:

a memory conservative algorithm for data

stream mining arXiv:1805.06368 [cs]

[15] Pfahringer B, Holmes G and Kirkby R 2008

Handling Numeric Attributes in Hoeffding

Trees Advances in Knowledge Discovery and

Data Mining Lecture Notes in Computer

Science vol 5012, ed T Washio, E Suzuki, K M

Ting and A Inokuchi (Berlin, Heidelberg:

Springer Berlin Heidelberg) pp 296–307

[16] Gama J, Medas P and Rocha R 2004 Forest

trees for on-line data Proceedings of the 2004

ACM symposium on Applied computing - SAC

’04 the 2004 ACM symposium (Nicosia,

Cyprus: ACM Press) p 632

[17] Ditzler G and Polikar R 2013 Incremental

Learning of Concept Drift from Streaming

Imbalanced Data IEEE Trans. Knowl. Data

Eng. 25 2283–301

[18] Oza N C Online Bagging and Boosting 7

[19] Ruta D and Gabrys B 2005 Classifier selection

for majority voting Information Fusion 6 63–81

[20] Ruta D and Gabrys B Analysis of the

correlation between majority voting error and

Vasileios Vittis October 2021 76 | P a g e

the diversity measures in multiple classifier

systems 7

[21] Kolter J Z and Maloof M A Dynamic

Weighted Majority: An Ensemble Method for

Drifting Concepts 36

[22] Gomes H M, Barddal J P, Enembreck F and

Bifet A 2017 A Survey on Ensemble Learning

for Data Stream Classification ACM Comput.

Surv. 50 1–36

[23] Gama J, Žliobaitė I, Bifet A, Pechenizkiy M

and Bouchachia A 2014 A survey on concept

drift adaptation ACM Comput. Surv. 46 1–37

[24] Katakis I, Tsoumakas G and Vlahavas I 2010

Tracking recurring contexts using ensemble

classifiers: an application to email filtering

Knowl Inf Syst 22 371–91

[25] Gama J, Medas P, Castillo G and Rodrigues P

2004 Learning with Drift Detection Advances

in Artificial Intelligence – SBIA 2004 Lecture

Notes in Computer Science vol 3171, ed A L

C Bazzan and S Labidi (Berlin, Heidelberg:

Springer Berlin Heidelberg) pp 286–95

[26] Barros R S M, Cabral D R L, Gonçalves P M

and Santos S G T C 2017 RDDM: Reactive

drift detection method Expert Systems with

Applications 90 344–55

[27] Bifet A, Hammer B and Schleif F-M 2019

Recent trends in streaming data analysis,

concept drift and analysis of dynamic data

sets Computational Intelligence 10

[28]

https://incubator.apache.org/projects/samoa.

html SAMOA Incubation Status Page -

Apache Incubator

[29] https://moa.cms.waikato.ac.nz/ MOA

[30] Moumoulidou Z 2018 Dynamic Decision

Trees in a Distributed Environment 73

[31] Ziakas C Implementation of decision trees

for data streams in the Spark Streaming

platform 52

[32] Papapetrou O and Garofalakis M 2014

Continuous fragmented skylines over

distributed streams 2014 IEEE 30th

International Conference on Data Engineering

2014 IEEE 30th International Conference on

Data Engineering (ICDE) (Chicago, IL, USA:

IEEE) pp 124–35

[33] Bifet A, Zhang J, Fan W, He C, Zhang J, Qian

J, Holmes G and Pfahringer B 2017 Extremely

Fast Decision Tree Mining for Evolving Data

Streams Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining KDD ’17: The 23rd

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining

(Halifax NS Canada: ACM) pp 1733–42

[34] Gomes H M, Bifet A, Read J, Barddal J P,

Enembreck F, Pfharinger B, Holmes G and

Abdessalem T 2017 Adaptive random forests

for evolving data stream classification Mach

Learn 106 1469–95

[35] https://flink.apache.org/ Apache Flink:

Stateful Computations over Data Streams

[36] https://kafka.apache.org/ Apache Kafka

[37] https://www.softnet.tuc.gr/en/ Software

Technology and Network Applications

Laboratory | SoftNet

[38]

https://www.cs.waikato.ac.nz/~abifet/MOA/

API/namespacemoa_1_1streams_1_1generat

ors.html MOA: Package

moa.streams.generators

[39] Agrawal R, Imielinski T and Swami A 1993

 Database mining: a performance perspective

 IEEE Trans. Knowl. Data Eng. 5 914–25

[40] Breiman, L. Random Forests. Machine

 Learning 45, 5–32 (2001).

 https://doi.org/10.1023/A:1010933404324

	Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	Background and Related Work
	2.1 Data Stream Ensemble Learning
	2.2 Ensemble Architecture
	2.2.1 Base Learner
	2.2.1.1 Classification Decision Tree
	ID3 and C4.5 Algorithms

	2.2.1.2 Estimating Split Criteria
	Entropy and Information Gain

	2.2.1.3 Streaming Decision Trees
	2.2.1.4 Hoeffding Tree Extensions
	CVFDT
	SVFDT

	2.2.1.5 Handling Numeric Attributes
	Gaussian Approximation

	2.2.1.6 Leaf Estimator

	2.2.2 Combination Function
	2.2.3 Diversity
	Online Bagging

	2.2.4 Concept Drift Detection in Data Streams
	2.2.4.1 Detecting changes with Drift Detectors
	DDM
	RDDM

	2.3 Distributed Streaming Decision Trees and Random Forest
	Adaptive Random Forest (ARF)

	Proposed Solution
	Our Approach
	3.1 Project Architecture
	3.2 Resampling
	3.3 Base Learner
	3.4 Combination Function
	3.5 Concept Drift Detector

	Implementation
	4.1 Apache Flink Overview
	State
	Kafka Connector

	4.2 Proposed Implementation
	4.2.1 Project Architecture
	Source and Sampling Component
	Source Component
	Sampling Component

	Base Learner Component
	Create Hoeffding Tree
	Test Hoeffding Tree
	Train Hoeffding Tree

	Combination Function Component
	Drift Detector Component

	Experimental Evaluation
	5.1 Testing Setup
	5.2 Datasets
	Sine: Sine dataset consists from two numeric attributes with two additional (optional) irrelevant attributes. The attributes are uniformly distributed between [0,1] and follow the alternation of the 𝒚=𝐬𝐢𝐧⁡(𝒙) .
	RandomTree
	Agrawal:
	SEA:
	Airlines:
	Electricity:

	5.3 Performance measures
	5.3.1 Random Forest Evaluation
	Confusion Matrix

	5.3.2 Scalability Performance

	5.4 Experimental Results
	5.4.1 SVFDT-II Results
	5.4.2 Base Learner Proposition Results
	Sine-100k
	RBF-5M

	5.4.3 Concept Drift Proposition Results
	5.4.4 Ensemble Learning Results
	Scalability Results

	Conclusions – Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendix
	Bibliography

