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Abstract 

 

The growing need to make high-precision real-time decisions from dynamic data creates, the 

need to create modern systems capable of coping with diverse problems. Thus, the demands 

generated by the 4 Vs (volume, variety, velocity, and veracity) make the classical systems 

inefficient, thus creating space for systems that process data only once, without the need to store 

them. Ensemble Systems consist of individual subsystems with different characteristics, 

participating in the voting process in order to make the final decision. These subsystems are 

implemented by the state-of-the-art decision tree algorithm, Hoeffding Tree, due to its simple 

construction and the fewer assumptions it makes. It is important that such models take advantage 

of the available distributed environments in order to effectively speed up the learning process. In 

this dissertation, we create a distributed ensemble learning system for binary classification, 

consisting of Hoeffding Trees, creating a Random Forest. After observations about the response 

time and development space of the specific system, we implemented techniques that 

purposefully solve such problems. The results of the experimental process confirm the proposed 

methodology, when compared with corresponding techniques in the literature. 
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Περίληψη 

 

Η αυξανόμενη ανάγκη λήψης αποφάσεων με υψηλή ακρίβεια σε πραγματικό χρόνο από 

δυναμικά δεδομένα, δημιουργεί την ανάγκη δημιουργίας σύγχρονων συστημάτων, ικανά να  

ανταπεξέλθουν σε όλων των ειδών προβλημάτων. Έτσι, οι απαιτήσεις που παράγονται από 

τον όγκο και τον ρυθμό και την αλλαγή των δεδομένων καθιστούν τα κλασσικά συστήματα 

μη αποδοτικά, με αποτέλεσμα να δημιουργείται χώρος για συστήματα που επεξεργάζονται 

τα δεδομένα μόνο μια φορά, χωρίς την ανάγκη αποθήκευσης τους. Τα συλλογικά συστήματα 

εκμάθησης (Ensemble Systems), αποτελούνται από επιμέρους υποσυστήματα με 

διαφορετικά χαρακτηριστικά, συμμετέχοντας στην διαδικασία ψηφοφορίας με σκοπό την 

λήψη της τελικής απόφασης. Η κορωνίδα αυτών των υποσυστημάτων είναι o state-of-the-art 

αλγόριθμος δένδρων αποφάσεων, Hoeffding Tree, λόγω της απλής κατασκευής τους και των 

λιγότερων υποθέσεων που κάνουν. Σημαντικό είναι τέτοιου είδους μοντέλα να 

εκμεταλλεύονται τα διαθέσιμα κατανεμημένα περιβάλλοντα, έτσι ώστε να επιταχυνθεί 

αποτελεσματικά η διαδικασία εκμάθησης. Στη συγκεκριμένη διπλωματική εργασίας, 

δημιουργούμε ένα κατανεμημένο συλλογικό σύστημα δυαδικών αποφάσεων, αποτελούμενο 

από Hoeffding Trees, δημιουργώντας ένα Random Forest. Ύστερα παρατηρήσεων σχετικά με 

τον χρόνο απόκρισής και χώρο ανάπτυξης του συγκεκριμένου συστήματος, υλοποιήθηκαν 

τεχνικές που στοχευμένα λύνουν τέτοιου είδους προβλήματα. Τα αποτελέσματα της 

πειραματικής διαδικασίας επιβεβαιώνουν την προτεινόμενη μεθοδολογία, όταν 

συγκρίνονται με αντίστοιχες τεχνικές της βιβλιογραφίας. 
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Chapter 1: 

 

Introduction 

1.1 Thesis Contribution 

The following thesis proposes a streaming ensemble system composed of Hoeffding Trees 

(VFDT), forming a Random Forest, implemented in a distributed environment at Apache Flink. 

The thesis is build based on three axes, real time training, anytime output and exact-one state 

consistency. The proposed implementation considers scenarios where the Concept Drift is 

present, proposing an alternative version of the most well-known Drift Detection Method (DDM), 

as well as testing the impact of different combination functions. Also, three optimizations were 

implemented, including the Gaussian Approximation, which is a well-established efficient way 

of handling numeric attributes in a streaming setting, a stricter and memory-efficient version of 

Hoeffding Trees (SVFDT) which guarantees almost the same predictive performance as VFDT, 

resulting higher scalability and lower computational and memory costs and a proposition which 

tackles the problem of building deep Hoeffding Trees in periods of data stagnation during Big 

Data streams. To the best of our knowledge, the proposed combination of algorithms which 

consists of the aforementioned ensemble system, makes the existing thesis unique. 

1.2 Thesis Outline 

In Chapter 2, we present the main concept of Ensemble Learning. We organize our analysis into 

three main components, starting from the base learner, where we explain the basic concept of 

decision trees and we describe the state-of-the art Hoeffding Tree algorithm as long as all its 

extensions. In addition, we formulate the notion of concept drift and all the existing concept drift 

detectors. Moreover, we present the most used combinations functions, as well as we analyze the 

problem of diversity in an ensemble system. In Chapter 3, we introduce the main contribution of 

this thesis. In Chapter 4, we provide a brief overview of all principles that rule Apache Flink 

framework as long with the implementation details of our solution. In Chapter 5, we discuss the 

results obtained, by our systemic analysis of every component of the proposed system, including 

evaluations of accuracy, run-time and memory consumption. Finally, in Chapter 6 we introduce 

our conclusion and propose the future work. 
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Chapter 2: 

 

Background and Related Work 

2.1 Data Stream Ensemble Learning 

An ensemble learner can be described as a combination of multiple (weak) learners which form 

one (strong) learner with expected higher predictive performance. This statement, which may 

now sound logical to someone, was not always the case. In 2001, Nick Street et al [1], who 

proposed a new streaming ensemble algorithm for large-scale classification, concluded that their 

algorithm’s accuracy appeared to be about the same as a single classifier, despite the fact that 

there was room for significant improvement in the future. Ensemble learning can be categorized 

either on the supervised or unsupervised learning. The key difference, is the assumption of the a 

priori knowledge of the true label of each instance. An unbounded data stream S, generated by 

source 𝑆𝑖
𝑡, is a sequence of examples 𝑧𝑡 = (𝑥𝑡 , 𝑦𝑡) for 𝑡 = 1,2, … , 𝑇 where 𝑥𝑡 is a multi-dimensional 

instance observed at time 𝑡 and 𝑦𝑡  ∈ {−1, 1} denotes the corresponding label, in case of binary 

classification. We consider a set of K (distributed) learners, 𝐾 = {1,… . , 𝑘 } where each learner 

observes a different sequence of instances. We denote as 𝑠𝑖
𝑡  ∈ {−1,1} the local prediction of 

learner 𝑘 at time t, resulting to the ensemble local prediction vector 𝑠𝑡  ≜ ( 𝑠1
𝑡 , … , 𝑠𝑘

𝑡 ). For each 

learner 𝑘 we also maintain a weight vector  𝑤𝑡  ≜ ( 𝑤1
𝑡, … , 𝑤𝑘

𝑡)  which is combined linearly with 

the local predictions.  

 

Figure 1. Ensemble Learning: 𝑥𝑖
𝑡= multi-dimensional instance, 𝑠𝑖

𝑡 = local prediction of i classifier, s = local predictions vector, 𝑦̂𝑡= 

global prediction, 𝑦𝑡= true label, 𝑤𝑖
𝑡= local updated weights vector, 𝑢𝑖

𝑡= a local indicator {W: warning, S: signal, F: false alarm} 
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The main motivation for using an ensemble classifier is the no free lunch theorem which is 

formulated by Wolpert [2]. According to it, there is no single classifier that is appropriate for all 

given tasks, thus we are looking to create a pool of diverse and complementary individual 

classifiers in order to compete at any given problem. In addition, based on Cha Zhang [3] who 

mentions that if in fact there was an expert, whose predictions were always true, we would never 

need any other decision maker. Alas, no such expert exists; every decision maker has an imperfect 

past record. The main challenges of every ensemble system are to control five metrics: bias, 

variance, accuracy, precision and diversity over different training sets, which in many cases are 

competing one with each other. Such a challenge is difficult to handle and the goal of ensemble 

systems is to create several classifiers with relatively fixed bias and by combining their outputs 

to reduce the variance.  

In Figure 1.1, the latter forementioned author gives a vivid representation of the notion of an 

ensemble, by depicting three different models with their respective decision-making rules based 

on a two-feature dataset. 

 

Figure 2. Variability reduction using ensemble learning 

Achieving such a state, requires the development of a complete ensemble learner following a 

holistic approach. A complete ensemble classifier has to be designed based on optimizing the 

following axes: Architecture and Voting combination, high Diversity, appropriate selection of 

Base Learner, Concept Drift adaptation and Distributed Implementation. Each one of these are 

thoroughly presented throughout this thesis. 
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2.2 Ensemble Architecture 

The ensemble architecture defines how the 

classifiers interact with each other. There are 

several ways in which an ensemble can be 

formed but the main three ensemble 

arrangements are the following: Parallel, meta-

learner and hierarchical. Briefly, a hierarchical 

ensemble imposes a treelike structure or a strict 

order (cascading) over its members, whereas in a 

meta-learning structure, the combiner (meta-

learner) is trained on meta-data, adding an extra 

layer of base leaner.  In the parallel arrangement, 

the most widely used architecture is the Flat 

Architecture. It is the simplest method, which 

makes the least assumptions about individual classifiers. An ensemble can be composed from 

heterogenous or homogeneous base learners. As S.Kotsiantis [4] mentions, the independence of 

classifier outputs is generally considered to be an advantage for obtaining better multiple 

classifier systems. Therefore, either all classifiers will be different, with or without forming 

coalitions, or it can be the same classifier with different settings. A common approach is to 

generate N classifiers using the same generation algorithm, all with different parameter settings, 

different subsets of attributes and training data. This structural architecture can be easily 

translated to parallel system using a learning algorithm per machine (see Section 2.3). Each 

classifier’s output is aggregated by a combiner 𝑓, which can be a simple linear function such as 

Weighted Voting. Figure 3 shows the abstract Flat Architecture; with the light blue rectangles 

being the classifiers and with the dark blue their respective local prediction. The 𝑓  function is 

responsible for collecting all partial predictions and produce the final one. In the next section we 

will discuss the base learner component. Selecting an appropriate base learner according to the 

classification problem is an important step for obtaining an accurate ensemble. 

 

 

 

 

 

 

Figure 3.  Flat Ensemble Structural Architecture 
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2.2.1 Base Learner 

A base learner can be explicitly constructed for solving many different problems. When a base 

learner is trained for classifying a new instance with a finite discrete number of outcomes, it is 

called classification base learner. Given such a learner, there are two more subcategories where a 

base learner lies between, the first one is when the classification problem is between two possible 

outcomes, so it is further characterized as binary classification base learner, while when there are 

more than two possible discrete outcomes the base learner is called multiclass classification base 

learner. In addition, if the number of possible outcomes ranges between a spectrum of possible 

outcomes (continuous), then we are dealing with a regression problem, therefore the base learner 

becomes a regression base learner. Regardless of the type of its output, a base learner can also be 

further categorized into two categories which are directly associated with the type of data that it 

handles. The first one is when the type of data has numerical or continuous behavior, taking 

values from a subset of real numbers, while the second case is when data follows a categorical 

pattern which take values from a finite number of possible values. 

There are many different base learners for dealing with all kind of problems. Based on the holistic 

research [5] the most popular classifiers within an ensemble (also dealing with concept drift) were 

the Decision Tree, SVM and Naïve Bayes classifier, collecting 23%, 15% and 14% respectively 

among the classifiers used. The SVM classifier, which is the acronym of support-vector machine, 

is a linear model which creates a line or a hyperplane which separates the data into classes. Also, 

the Naïve Bayes classifier belongs to the family of simple "probabilistic classifiers" based on 

applying the Bayes theorem. Decision trees are the most common base learner for ensemble 

learning in a streaming setting for the reason that it is very easy to interpret and visualize them. 

In a decision tree, each internal node corresponds to an attribute that splits into a branch for each 

attribute value, and leaves correspond to classification predictors, usually majority class 

classifiers. 

2.2.1.1 Classification Decision Tree 

The main goal of a classification decision tree is to produce a function 𝑦 = 𝑓(𝑥) such that it maps 

the set of all possible examples into a predefined set of class labels. Given a training set S with input 

attributes set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} and a target attribute 𝑦 from an unknown fixed distribution D over the 

labels instance space, the goal is to induce an optimal classifier with minimum generalization error.[6] A 

decision tree is built from the root to the leaves based on some splitting and stopping criteria. The 

decision tree consists of nodes that form a rooted tree, meaning that it is a directed tree with a 

node called root that has no incoming edges. All other nodes have examples from only one 

incoming edge. A node with outgoing edges is called internal node and its purpose it to redirect 
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incoming instances to the next level. All other nodes are called leaves or decision nodes, where 

new instances are classified by navigating themselves from the root to a leaf, according to the 

outcome of the tests along the path. In the case of decision trees which handles only discrete 

attributes, the number of possible outgoing edges of an internal (-test) node are equal to the 

number of possible outcomes of that specific attribute. On the other hand, decision trees, which 

also handle numerical attributes, are searching for only one point which splits a given data space 

into two subspaces. Considering the latter case, there are two different approaches; the first one 

considers that at every next level of a certain path of the decision tree the set of attributes is 

reduced by one, removing the attribute which was used at the previous level, while the second 

one, uses the same attributes over and over again, regardless of the level. Therefore, considering 

a set of attributes 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and an attribute 𝑥𝑖 used as the splitting attribute at some node 

of level 𝑙, the former approach considers a 𝑋𝑛𝑒𝑤 = 𝑋 − {𝑥𝑖}  and the latter 𝑋𝑛𝑒𝑤 = 𝑋. In practice, 

the first limits the number of possible splits but controls the depth of the tree, while the second 

makes better refinement of the data space, risking of making deep trees. (See Section 2.2.1.5) 

At this point, we can showcase a simple but comprehensive example in order to establish the 

basic concept of a Classification Decision Tree. In Figure 3, we observe a time snapshot of the 

training phase of a supervised base learner, where incoming instances are traversed through the 

tree, resulting to the current state of the tree. The blue node is the root and all the orange ones are 

the internal (-test) nodes, while the green ones are the leaves which hold the final outcome. 

 

Figure 3. Basic notion of Classification Decision Tree 

The use case is as follows: there a couple of employees in a big tech company where some of them 

requested a promotion. As we can see based on the latest promotions, a decision tree has been 

built by categorizing the approved and rejected request based on two numerical attributes: years 
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of experience and current salary. It is obvious that the base learner has been trained quite well as 

it splits the data space at almost in perfect cut-offs. We can observe that there are cases where the 

base learner has classifiers incorrectly two positive outcomes as negative. The main question 

posed is: What will base learner answer in the case of a new unknown instance? (Yellow question mark). 

The new instance will traverse through the tree and will answer based on its respective values of 

attributes on the questions of each internal node. As we can see the unknown instances has a 

more than five years of experience and gets below 50k as its main salary, therefore its request will 

be approved. In the Section 3.5 we will discuss how we can keep track the correct and incorrect 

answers of our model in order to do structural changes. 

ID3 and C4.5 Algorithms 

The ID3 algorithm [7] by Quinlan, is the base algorithm of building a decision tree using discrete 

attributes. Based on ID3, an extension algorithm was constructed, called C4.5 [8] by the same 

author. C4.5 builds decision trees from a set of training data in the same way as ID3, using the 

concept of information gain. Therefore, in the case of continuous attributes, the split at an internal 

node will be binary composed of the following tests 𝑥𝑖 < 𝜃 𝑎𝑛𝑑 𝑥𝑖 > 𝜃. At each node of the tree, 

C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets 

enriched in one class or the other. The splitting criterion is the normalized information gain. (See 

Section 2.2.1.1.5) The attribute with the highest normalized information gain is chosen to make 

the decision. 
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2.2.1.2 Estimating Split Criteria  

Entropy and Information Gain 

Choosing the correct statistical measure in the process of repeatedly splitting on attributes is 

equivalent to partitioning the initial training set into smaller training sets until the entropy of each 

of these subsets is zero and therefore pure. The attribute which minimizes its value at any given 

point should be selected as the splitting attribute. Entropy is an information-theoretic measure of 

the ‘uncertainty’ contained in a training set, due to the presence of more than one possible 

classification.[9] The entropy of the training set is denoted by E. It is measured in ‘bits’ of 

information and is defined by the formula: 

𝛦 = −∑𝑝𝑖 log2 𝑝𝑖

𝛫

𝑖=1

 

An important property of entropy is that 𝛦 > 0, 𝑠𝑖𝑛𝑐𝑒 𝑝𝑖 ∈ [0,1] and that the range of 𝛦 = log2 |𝐶|, 

where 𝐶 is the number of distinct classes. 

In case of a binary classification problems, 𝑝𝑖 can be defined as the probability that an instance 

belongs to the respective class {𝑝1, 𝑝2}. So, the general formula can be fitted as follows: 

𝛦 = −∑ 𝑝𝑖 log2 𝑝𝑖

𝛫=2

𝑖=1

= −𝑝1 log2 𝑝1 − 𝑝2 log2 𝑝2 

Entropy at its own cannot answer the initial question of which attribute is the more appropriate 

for splitting the original set into two subsets. Here comes Information Gain as a complement of 

Entropy, that gives the answer. This measure was made popular after the C4.5 decision tree 

algorithm. Information Gain implies the amount of information gained of a random variable by 

observing another random variable. One commonly used method is to select the attribute that 

minimizes the value of produced entropy, thus maximizing the information gain. The 

Information Gain of an attribute 𝑥𝑖 ∈ 𝛸 at a node 𝑙 is the difference between the entropy of the 

class before and after splitting by the attribute. 

𝛪𝐺(𝑙, 𝑥𝑖) =  𝐸𝑠𝑡𝑎𝑟𝑡 − 𝐸𝑒𝑛𝑑 

The entropy of S after splitting on attribute 𝑥𝑖 is: 

      

𝐸𝑒𝑛𝑑 = 𝐸(𝑆, 𝑥𝑖) =∑
𝐸(𝑆𝛼) |𝑆𝛼|

|𝑆|
𝑖

 

Where 𝑆𝑖 is the subset of S where 𝑥𝑖 has value α. The chosen attribute and value α are the 

threshold that maximizes the value the Information Gain. 
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2.2.1.3 Streaming Decision Trees 

Streaming Decision Trees, which are also called Incremental Decision Trees are design in order 

to meet the streaming standards. Unlabeled instances arrive one at a time and need to be rapidly 

classified into one out of a predefined set of labels. The stream is considered infinite and therefore 

mining algorithms cannot store many instances into the main memory and consequently can 

process them only once. After classification, the true label of the sample is considered to be 

available with which the system’s performance can be calculated. As it is mentioned in [10] the 

main differences between data streams and conventional static datasets include:  

• data items in the stream appear sequentially over time and the arrival rate is very rapid 

(relatively high with respect to the processing power of the system) 

• there is no control over the order of incoming items and the processing system should be 

ready to react at any time 

• the size of data may be unbounded 

• only one scan of items from a data stream is possible 

• data streams are susceptible to change (data distributions generating examples may 

change on the fly). 

In stream mining, the state-of-the art decision tree classifier is the Hoeffding tree, introduced by 

Domingos and Hulten [11]. Traditional decision trees scan the entire dataset to discover the best 

attribute to form the initial split of the data. Once this is found, data is split by the value of the 

chosen attribute, and the algorithm is applied recursively to the resulting sub data, to build 

subtrees. On the other hand, Hoeffding tree is based on the idea that, instead of looking at 

previous (stored) instances to decide what splits to do in the trees, we can wait to receive enough 

instances and make split decisions when they can be made confidently. 

Hoeffding Tree and VFDT Algorithm 

The biggest problem in extending decision trees to data streams is that the measures of attribute 

importance used to determine the best choice of attributes requires counts or probabilities 

computed over all of the training data. Clearly, this is not possible when the data is a stream. One 

solution, proposed by Domingos and Hulten, is to use the Hoeffding bound to estimate when the 

number of records accumulated at a node is “enough” for a robust decision. 

The Hoeffding bound [12] states that, given a random variable 𝑟 in the range 𝐿, and 𝑛 independent 

observations of 𝑟 having mean value 𝑟̅, the true mean of r is at least 𝑟̅ − 𝜖 , where  

𝜖 =  √
𝐿2ln (1/𝛿)

2𝑛
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with probability 1 − 𝛿, where δ is a user-defined threshold probability. The Hoeffding Bound 

ensures that no split is made unless there is a confidence of 1 − 𝛿 that a particular attribute is the 

best attribute for splitting the current node at a specific value. Based on Domingos and Hulten, 

we assume that we have a gain function G that represents the attribute’s importance when 

splitting a specific leaf node. When the Hoeffding bound is satisfied, the G function is calculated 

for all attributes and both the best and second-best attributes are chosen to calculate, as follows: 

Δ𝐺 = 𝐺ℎ𝑖𝑔ℎ𝑒𝑠𝑡 − 𝐺𝑠𝑒𝑐𝑜𝑛𝑑_ℎ𝑖𝑔ℎ𝑒𝑠𝑡 ≥ 0 .The variable Δ𝐺 is recalculated at every satisfaction of the 

splitting constraints. Authors also add another dimension to the existing problem by saying that 

if a leaf has processed n training examples and if  Δ𝐺 > 𝜖 , then Hoeffding Bound guarantees with 

confidence 1 − 𝛿 that the attribute with the highest information gain is the correct choice since 

Δ𝐺 differs from its true value by 𝜖.  

The pseudocode of the Hoeffding Tree is shown below and it is based on the Hoeffding’s bound. 
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Moreover, the Hoeffding Tree algorithm maintains in each node the statistics needed for splitting 

attributes. For discrete attributes, a count 𝑛𝑖𝑗𝑘 which represent the case where the attribute xi 

takes the value j and has the label k. The memory needed depends on the number of leaves of the 

tree and not on the length of the data stream. A theoretically appealing feature of the Hoeffding 

Tree not shared by other incremental decision tree learners is that it has sound guarantees of 

performance. It was shown in [11] that its output is asymptotically nearly identical to that of a 

non-incremental learner using infinitely many examples, in the following sense. 

2.2.1.4 Hoeffding Tree Extensions 

CVFDT 

VFDT does not consider the concept drift problem. An improvement for VFDT was proposed by 

Hulten et al. [13] called the Concept-adapting Very Fast Decision Tree (CVFDT) algorithm, which 

addresses concept drift while maintaining similar efficiency and speed to VFDT. The main idea 

behind CVFDT is to grow alternative subtrees for internal nodes. Whenever there is an internal 

subtree that poorly reflects the current concept, CVFDT replaces this node with the alternative 

subtree that has better performance. Depending on the available memory, CVFDT defines a 

maximum limit on the total number of alternative subtrees that can exist at the same time. If there 

are alternative subtrees that are not making any progress, CVFDT prunes them to save memory. 

So, the main idea behind CVFDT is to grow alternative subtrees for internal nodes.  

SVFDT 

SVFDT (Strict Very Fast Decision Tree) by V.Costa [14], is an extension of the original VFDT 

algorithm which focuses mostly on the memory consumption aspect of the algorithm. It tries to 

create more shallow trees reducing traversal times. The main observation of the paper is that 

although the VFDT has been widely used in data stream mining, in the last years, several authors 

have suggested modifications to increase its performance, putting aside memory concerns by 

proposing memory-costly solutions. The main drawback that SVFDT tries to compensate is its 

accuracy. Its experiments showed that the proposed algorithm obtained similar predictive 

performance and, in some cases, slight less than its competitors, around the ± 1%, while its size 

reduced by -65%. Authors also mentioned that according to Krawczyk et al. [10] data stream 

researches are shifting their focus to ensemble-based solutions. Ensembles can use only weak 

learners as long as their correlation is low. However, the use of several base-learners increases memory 

costs, limiting the use of ensembles. They also emphasize that in order to deal with memory cost 

restrictions and managing to keep the same predictive performance, they proposed a new base 

learner.  

The main concept of SVFDT is that despite the fact that a leaf can satisfy the VFDT split conditions 

(according to the Hoeffding Bound and tiebreak value), can still remain a leaf if SVFDT considers 

this split unnecessary. When leaves satisfy the VFDT split condition, statistics corresponding to 
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it are marked with an underscored satisfyVFDT. SVFDT has two versions: SVFDT-I and SVFDT-

II, with each one of them aiming to a different aspect in the process of a Hoeffding Tree. SVFDT-

II is a less strict set of rules that act like a skipping mechanism to speed-up growing. Essentially, 

what SVFDT does it to keep some historical statistics about entropy, information gain and the 

proposed by Domingos variable of nmin. For each version of the algorithm, there is a different 

evaluation function.  

For SVFDT-I, the function used is implemented by the underlying concept of the 3-σ rule. 

𝜑(𝑥, 𝛸) = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑥 ≥  𝑋̅ − 𝜎(𝛸)
 𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (1) 

where 𝑥 is the current variable that we are testing and 𝑋 is the history table of statistics. Based on 

this (1) the follow constraints are employed every time there is a split attempt.  

1. 𝜑(𝐻𝑙 , { 𝐻𝑙0, 𝐻𝑙1, … , 𝐻𝑙𝐿}), where the former parameter is the current entropy of 𝑙 and the 

latter is a set of all entropies of all current leaves 𝐿 in the tree, including 𝑙 (Statement 1) 

2. 𝜑(𝐻𝑙 , { 𝐻𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , 𝐻𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇1 , … , 𝐻𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇𝑆}), where the latter parameter 

corresponds to the entropies computed at all S times that any leaf satisfied the VFDT split 

conditions. (Statement 2) 

3. 𝜑(𝐼𝐺𝑙 , { 𝐼𝐺𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , 𝐼𝐺𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇1 , … , 𝐼𝐺𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇𝑆}), where 𝐼𝐺𝑙 it the 𝐼𝐺 of the best split 

feature at 𝑙 and the latter parameter is a set of the IGs computed all S times that a leaf 

satisfied the VFDT split conditions (Statement 3); 

4. 𝑛𝑙 ≥ { 𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , 𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0 , … , 𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑉𝐹𝐷𝑇0}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , where the former parameter 

corresponds to the number of elements seen at  𝑙 and the latter to the average number of 

elements observed at all S times a leaf satisfied the VFDT split conditions (Statement 4) 

For SVFDT-II, the evaluation function is: 

𝜔(𝑥, 𝛸) = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑥 ≥  𝑋̅ + 𝜎(𝛸)
 𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (2) 

The main difference is that in this case the evaluation function does add as opposed to 

subtraction. At a split attempt, there is a splitting condition, which when it hold true that the 

SVFDT-I does not need to be updated. 

𝜔(𝐻𝑙 , { 𝐻𝑠𝑝𝑙𝑖𝑡0 , 𝐻𝑠𝑝𝑙𝑖𝑡1 , … , 𝐻𝑠𝑝𝑙𝑖𝑡𝑠}) 𝑂𝑅 𝜔(𝐼𝐺𝑙 , { 𝐼𝐺𝑠𝑝𝑙𝑖𝑡0 , 𝐼𝐺𝑠𝑝𝑙𝑖𝑡1 , … , 𝐼𝐺𝑠𝑝𝑙𝑖𝑡𝑠})  

A note that is posed to SVFDT is that all the forementioned statistics need memory space. What 

are the extra memory costs? The memory costs added to VFDT to compute the constraints 2,3,4 is 

𝑂(1).  Complementary, the memory cost of constraint 1 is 𝑂(𝐿𝑚𝑎𝑥) , where 𝐿𝑚𝑎𝑥 is the maximum 

number of leaves observed during the tree induction. Also, the time complexity of the first 

statement of also 𝑂(𝐿𝑚𝑎𝑥), while the other have 𝑂(1)  complexity. SVFDT-II, we have an 

additional time cost of 𝑂(𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑉𝐹𝐷𝑇), where 𝑡𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑𝑉𝐹𝐷𝑇  is the number of times a leaf satisfied 

the VFDT split conditions. 
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The main flowchart of SVFDT algorithm is shown in the follow figure. 

 

 

Figure 4 SVFDT diagram. Parts colored in blue denote modifications in the traditional VFDT algorithm 
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2.2.1.5 Handling Numeric Attributes 

Gaussian Approximation 

Handling numeric attributes in a data stream classifier, is much more difficult than in a non-

streaming setting. Also, continuing in the same context as SVFDT, we are trying to embed smart 

modifications that have the same functionality as the original VFDT algorithm but in a more 

efficient manner. For that reason, we implemented Gaussian Approximation for efficiently 

storing splitting statistics as a further optimization. 

This method, presented in [15] by B. Pfahringer, approximates a numeric distribution in small 

constant space, using a Gaussian (commonly known as normal) distribution. Such a distribution 

can be incrementally maintained by storing only four numbers in memory, and is completely 

insensitive to data order. A Gaussian distribution is essentially defined by its mean value, which 

is the center of the distribution, its standard deviation or variance, which is the spread of the 

distribution, as long its min and max values for quicker calculation of cumulative density 

function. The shape of the distribution is a classic bell-shaped curve that is known by scientists 

and statisticians to be a good representation of certain types of data. For each numeric attribute 

the numeric approximation procedure maintains a separate Gaussian distribution per class label.  

The main thing that we should not forget is that we are under a streaming context and we are not 

able to do multiple passes over data. Therefore, we are searching for an incremental way that can 

guarantee at any time the correct statistics of the stream. 
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The method is similar to this which was described by Gama et al. in the UFFT system[16]. The 

part of the UFFT system that handles numeric attributes has small differences because it uses the 

quadratic discriminant which splits the X-axis into three intervals (−∞,𝑑1), (𝑑1, 𝑑2), (𝑑2,∞), 

where 𝑑1 and 𝑑2 are the possible roots of the equation 𝑝(−)𝜑{(𝑥̅−, 𝜎−)} = 𝑝(+)𝜑{(𝑥̅+, 𝜎+)} where 

𝑝(−) denotes the estimated probability that an example belongs to class (– ) and the 𝜑{(𝑥̅−, 𝜎−)}  

function is the normal distribution of class (– ). UFFT selects the 𝑑𝑖 that it is closer to the sample 

means of both classes. The problem of UFFT is that it does not consider that there is a high chance 

a given attribute will not follow a normal distribution or the means of normal distributions of 

both classes are so close that there is no root. So, B. Pfahringer extends their approach by searching 

a set of points spread equally across the range between the minimum and maximum values 

observed, are evaluated as potential split points. The number of points is determined by a 

parameter, so the search for split points is parametric. For each candidate point the weight of 

values to either side of the split can be approximated for each class, using their respective 

Gaussian curves, and the information gain is computed from these weights. 

 

Figure 5. Gaussian Approximation of 2 classes 

For example, the class shown to the left has a lower mean, higher variance and higher example 

weight (larger area under the curve) than the other class. Below the curves the range of values 

has been divided into ten split points, labeled A to J. The horizontal bars show the proportion of 

values that are estimated to lie on either side of each split, and the vertical bar at the bottom 

displays the relative amount of information gain calculated for each split. For the two-class 

example (the left figure), the split point that would be chosen as the best is point E, which 

according to the evaluation has the highest information gain. 
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2.2.1.6 Leaf Estimator 

Continuing our analysis, our next stop is the leaf estimator, which plays an important role to the 

whole system. Here, there two already established classification methods. Majority Voting and 

Naïve Bayes classifier. In order to classify an unlabeled example, it must traverse through the tree 

from the root to a leaf. It follows the path based on the answer it gives to every test node at the 

appropriate attribute and value combination. The simplest classification method is the Majority 

Voting, where the example is classified with the most representative class of training examples 

that have reached the leaf. The second classification method uses a naïve-Bayes classifier. The use 

of the naïve-Bayes classifier at the tree leaves does not enter any overhead in the training phase, 

because at each leaf we already maintain sufficient statistics to compute the information gain. 

2.2.2 Combination Function 

A research area, which has not seen a tantamount attention is the Combination Function (CF). It 

constitutes a key component in the construction of a complete Ensemble Learner, as a least 

thoughtful combination function can have serious repercussions on the performance. With the 

term of the Combination Function, we essentially mean how outputs from ensemble members 

are used during prediction. There are many different forms of Combination Functions and each 

of them has to be selected based on the given problem. The first two categories, which are not 

widely used because either they have a too specific use case or they provide little performance 

improvement are the Rank and Relational combination functions. Rank is used when the base 

learner can produce a list of predictions at the same time for more than one class label with the 

respective probability or count. On the other hand, Relational system allows a group of learners 

to indirectly predict the class label of hard to classify instances by translating base learners’ 

predictions in order to reflect the class label that they most likely represent. 

Moreover, another category of combination functions which has the most straight-forward logic 

among all, is the Majority Voting. Despite its admittable simplicity, Majority Voting is a very 

common strategy [1,17], used as the main combination function by many important algorithms 

in the ensemble area [18], and often its error rate, Majority Voting Error (MVE), has been set as a 

performance bases for the assessment of different performance measures when testing multiple 

algorithms [19].  

Based on D.Ruta [19,20], we formulate the MVE and we make it clear that throughout our analysis 

we refer to a simple combination method on top of binary inputs by assigning 1 to correct 

classified instance and 0 to an incorrect classified instance.  
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Given a system of M classifiers:  𝐷 = {𝐷1, … , 𝐷𝑀}, let 𝑦𝑗(𝑥𝑖), where 𝑖 = 1,… ,𝑁 and 𝑗 = 1,… ,𝑀  be 

the binary output of the 𝑗𝑡ℎ classifier for the 𝑖𝑡ℎ multidimensional input sample 𝑥𝑖. Let the error 

rate of such an ensemble member be: 

𝑒𝑗 =
1

𝑁
 ∑𝑦𝑗(𝑥𝑖)

𝑁

𝑖=1

               (1) 

We can extend the (1) by introducing the weighted error-rate which punishes each classifiers 

incorrect answer by a factor of β. 

  

𝑒𝑗 =
1

𝑁
 ∑𝛽 ∙ 𝑦𝑗(𝑥𝑖)

𝑁

𝑖=1

               (2) 

 

Also, we can express the ensemble’s Mean Error rate (ME) as following: 

𝑒̅ =
1

𝑀
 ∑𝑒𝑗

𝑀

𝑖= 1

               (3) 

 

This measure (2) takes the average from individual classifier error rates within the ensemble. 

So, given the binary outputs from M classifiers for a single input sample, the final decision 

extracted from the Majority Voting system is defined as 𝑦𝑖 which can be obtained according to 

the following formula: 

𝑦𝑖 =

{
 
 

 
  0, 𝑖𝑓 ∑ 𝑦𝑗(𝑥𝑖) ≤  ⌊

𝑀

2
⌋

𝑀

𝑗=1

 1, 𝑖𝑓 ∑ 𝑦𝑗(𝑥𝑖) >  ⌊
𝑀

2
⌋

𝑀

𝑗=1

                (4) 

The MVE can then be formulated as: 

𝑀𝑉𝐸 =
1

𝑁
 ∑𝑦𝑖

𝑁

𝑖= 1

                (5) 

An important issue is when ∑ 𝑦𝑖(𝑥𝑖) =
𝑀

2
𝑀
𝑗=1  and the M is an even number. However, in this work 

we are not consider it as a problem and without any loss of generality, we assume an odd number 

for the number of total classifiers. The above analysis serves the purpose of establishing a base 

threshold with which our implemented Weighted Majority Voting will be compared error wise. 
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The last two categories which complete the spectrum of the most well-known combination 

functions are the Weighted Majority and the Classifier Selection systems.  

Weighted Majority is a sound concept of a combination function, which weights classifiers’ 

prediction based on some given criteria. There are many evaluation functions with which weights 

can be fluctuated during a data streaming context and they are mainly affected based on the given 

problem. Such a category suits best with evolving data characteristics where the combination 

function has to react to a number of changes. A basic criterion, used in Weighted Majority, which 

has a wide range of application in ensemble learning, is based on base learner’s latest performance 

either on the most recent chunk of data in case of batch processing or on the latest instances in 

case of streaming processing. Here, we have to point out two assumptions that are taking place 

by us in such situations, firstly, we consider that recency is strongly corelated with relevancy and 

that we are dealing in a supervised environment. The former is a result of only checking the 

relative performance based on the latest received instances and the latter due to the prior 

knowledge of the class or label of the testing instance. In order to judge the base learner’s 

correctness for a given instance, we need to know immediately its true class.  

The performance of a base learner, can be interpreted in many different ways and has strong 

correlation with the quantification of ensemble’s pairwise diversity. (See Section 2.2.3). Despite 

all the proposed metrics which belong to a more sophisticated aspect of a classifier’s performance 

measurement, Error Rate, as formulated in (1), is usually preferred. As we previously discussed, 

it solely depends on the ratio between the number of classified incorrectly instances and the total 

instances seen. Some more worth mentioning techniques are about updating the classifier’s 

weight based on whether or not its prediction is agreed with the potential correct prediction of 

the Majority Vote. Some other techniques are using diversity as a measure in order to remove 

classifiers having repeatedly the same answers from the ensemble.  

Across the last few decades, many papers have been proposed new ways and perspectives for 

Weighted Majority. One of the firsts were both Littlestone and Warmuth in 1994 who created the 

well know setting of Weighted Majority (MW) Algorithm. To construct their compound 

algorithm, a positive weight is given to each of the algorithms (ensemble members) in the pool. 

The compound algorithm then collects weighted votes from all the algorithms in the pool, and 

gives the prediction that has a higher vote. Each algorithm begins with a weight of one and if the 

compound algorithm makes a mistake, the algorithms in the pool that contributed to the wrong 

predicting will be discounted by a certain ratio 𝛽 where 0 < 𝛽 < 1. They have proved that there 

is an upper bound on the number of mistakes made in a given sequence of predictions from a 

pool of algorithms A is 𝑂(log|𝐴| +𝑚) if one algorithm makes at most m mistakes. There are many 

variations of the weighted majority algorithm to handle different situations, like shifting targets, 

infinite pools, or randomized predictions. The core mechanism remains similar, with the final 

performances of the compound algorithm bounded by a function of the performance of the 
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specialist (best performing algorithm) in the pool.  Winnow is a similar algorithm, but also 

increases the weights of experts that predict correctly (Littlestone, 1991). Other equally 

established algorithms are Online Accuracy Update Ensemble (OAUE) [Brzezinski and 

Stefanowski 2014] and Adaptive Classifiers-Ensemble (ACE) [Nishida et al. 2005]. 

There are a number of strategies that can be used to combine different classifiers. The simplest 

strategy is to select the best performing one. Although the simplest approach may seem like a 

good idea, it does not guarantee the optimal performance of a given classifier. Instead, it should 

be designed to select the optimal subset of classifiers and combine them if necessary.  Classifier 

selection techniques are split into two categories, the static classifier selection (SCS) and dynamic 

classifier selection (DCS). The former finds the optimal selection combination during the validation 

set and then uses it during the whole training and testing phases, while the latter selects them 

online, during classification based on training performance of the unlabeled instances. After the 

first steps of Woods [5] who proposed the forementioned simplest approach of selecting the best 

performance member, Giacinto and Roli incorporated classifiers outputs produced during 

classifications. For reasons of completeness, we have to mention two issues that we have to take 

into consideration when we select to implement such an algorithm. Firstly, the fact that a 

hypothetical selection algorithm is able to select the optimal combination and improve the overall 

performance, does not guarantee that it will remain as it is for future unseen concepts. Secondly, 

another issue that many faces is that the algorithm’s complexity can be exponentially increased 

especially when choosing complex evaluation criteria and on top of that, if those require checking 

all the possible subsets of classifiers, then the problem can be more cost-effective than helpful 

performance wise.   

After considering all the above, in our effort to formally present the Classifier Selection issue, we 

should consult Dymitr Ruta [19] who has properly formulated the given problem. Again, same 

as our respective analysis for the Majority Voting we consider a system of M classifiers where  

𝐷 = {𝐷1, … , 𝐷𝑀} and assigning as:  𝑦𝑖 = [𝑦𝑖1, … , 𝑦𝑖𝑀} the joint output of a system for the 𝑖𝑡ℎ 

multidimensional input sample 𝑥𝑖. Assuming that the binary output is available, we denote as  

𝑦𝑖𝑗 = 0 the correct prediction of the 𝑗
𝑡ℎ classifier for a given 𝑥𝑖 and respectively yij = 1 in case of 

error. 
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2.2.3 Diversity 

Diversity is often identified as one of the building blocks of ensemble-based classifiers. The 

motivation for the importance of diversity can be intuitively explained using the 

anthropomorphic example of a group of individuals, such that their opinions are always 

homogeneous. This group can safely be replaced by any of its members if its only purpose is 

decision making [21]. But unfortunately, it is not as simple as “augment diversity measure d and 

the overall accuracy will improve proportionally”. In an ensemble system there are two main 

ways with which diversity can be induced; the first one called input manipulation and second 

one is called output manipulation. In case of input manipulation, there also two different 

strategies that boost the system’s diversity. The first one is to train different classifiers with 

different chunks of data (horizontal partitioning) or with different subsets of features (vertical 

partitioning). The vertical partitioning is more a base learner’s structural way to increase diversity 

while the horizontal partitioning can be achieved through external methodologies, such that we 

will discuss below.  

Decision trees are one of the most suitable classifiers and they are famous because they score 

higher diversity than all other classifiers. As Breiman [40] mentioned: “Injecting the right kind of 

randomness, makes RF more accurate”. More precisely, the benefits of using randomly selection 

a subset of the input features is (1) useful when dealing with high dimensional inputs because it 

reduces the computational cost of finding the best-split feature at each node on every decision 

tree of Random Forest. On the other hand, this called right randomness also produce some 

problems that lurk in a first read of the problem. A striking problem is that during the random 

selection of features among all base learners of an ensemble there is a small probability of a feature 

not to be selected, while it is unknown whether or not this particular attribute could have the best 

splitting ability.  

 

Online Bagging 

In data stream learning it is infeasible to perform multiple passes over input data and the entire 

stream cannot be stored. Thus, an adaptation of an ensemble system to streaming data depends 

on an appropriate online bootstrap aggregating process. In order to implement this application 

on a streaming context, first we have to understand how bagging works in non-streaming. In 

non-streaming bagging [13], each of the n base models is trained in a bootstrap sample of size Z 

created by drawing random samples with replacement from the training set. Each bootstrapped 

sample contains an original training instance K times, where P(K = k) follows a binomial 

distribution. For large values of Z this binomial distribution adheres to a Poisson (λ = 1) 

distribution. Based on that, authors in Oza (2005) [14] proposed the online bagging algorithm, 
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which approximates the original random sampling with replacement by weighting instances 

according to a Poisson (λ = 1) distribution. 

𝑃(𝑥 = 𝑘) (
𝑛

𝑘
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1

𝑛
)
𝑛−𝑘

 

 

 

Figure 6. Poisson Distribution for different values of λ 

As we can see from the above figure there is approximately 36% of a sample not to be selected, a 

fact that is not always desirable. Therefore, there are many modern models that can handle more 

samples and they use Poisson (λ = 6). The original algorithm of online bagging has the practical 

effect of increasing the probability of assigning higher weights to instances while training the 

base models, thus we managed to increase the diversity of the weights and modify the input 

space of the classifiers inside the Random Forest. However, the optimal value of λ may be 

different for each dataset.  

 

We can see that even the online bagging algorithm follows a test-then-train concept. As we can 

see the new example will enter the system and will have as weight the result of the respective λ 

value. 
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Again, same as the vertical partitioning, there are couple of problems that they are not obvious at 

first. The problem hears to the name of Out-Of-Bag Error. With bagging, some instances may be 

sampled several times for some given predictor, while others may not be sampled at all. When 

used a Poisson (λ = 1) distribution, this means that only about 63% of the training instances are 

sampled on average for each predictor. The remaining 37% of the training instances that are not 

sampled are called out-of-bag (OOB) instances. Note that they are not the same 37% for all 

predictors. This problem should not scare systems which deal with unbounded data streams but 

make the system lose some momentum when its sole purpose is to be as adaptive and ready as 

possible.  

All in all, either vertical or horizontal partitioning, both provide higher diversity which can only 

help the system in higher variance of ensemble’s member predictions and lower bias as it 

minimizes the risk of identical base learners. Also, at the same page we can find the use of a 

concept drift detector, as it always tries to be ahead of the incoming stream and be ready to react 

to any unexpected changes  

2.2.4 Concept Drift Detection in Data Streams 

Our last key component in the road of making a complete ensemble-based system is its concept 

drift detection. From the concept drift component is the ability to learn new concepts (plasticity) 

while retaining previous learned knowledge (stability), which is also referred as the stability-

plasticity dilemma. Before formulating the problem of concept drifting, it is very important to 

mention the main assumption that a system makes during its effort for adaptation.  Most stream 

classifiers assume that recency is analogous to relevance. It is supposed that old instances are 

associated with previously outdated concepts, while new instances are committed to the most 

current concept. In addition, another assumption that a system has to make is that the change 

happens unexpectedly and is unpredictable, although in some particular real-world situations 

the change can be known ahead of time in correlation the occurrence of particular environmental 

events. But solutions for the general case of drift entail the solutions for the particular case. In 

order to formally define the concept drift notion we will use the analysis of J. Gama et al. [23]. 

Formally concept drift between a time point 𝑡0 and a time point 𝑡1 can be define as 

∃ 𝑋 ∶ 𝑝𝑡0(𝑋, 𝑦)  ≠ 𝑝𝑡1(𝑋, 𝑦) 

where 𝑝𝑡0 denotes the joint probability distribution at time 𝑡0 between the set of input variables 

𝑋 and the target variable 𝑦. Changes in data can be characterized as changes in the relation of 

those two components. 
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Therefore, system’s change is produced after identifying one or more of the following changes: 

1. the prior probabilities of classes 𝑝(𝑦) may change, 

2. the class conditional probabilities 𝑝(𝑋|𝑦) may change 

3. the posterior probabilities of classes 𝑝(𝑦|𝑋) may change affecting the prediction. 

We are interest to know two implication of these changes (i) whether the data distribution 𝑝(𝑦|𝑋) 

changes and affects the predictive decision and (ii) whether the changes are visible from the data 

distribution without knowing the true labels (change of 𝑝(𝑋)). 

In order to complete our analysis on what exactly is concept drift and how we can formally 

identify it, we have to give a visual representation. For that purpose, we can use the work of 

I.Katakis [24]. In the follow figure we will give an example of an extreme change in order to fully 

understand the notion of concept drift. 

 

Figure 7.  (a) Streaming classification problem without concept-drift. (b) Streaming clasification problem with concept-drift. 

In Figure 7(a), we can observe a streaming classification problem where the blue squares are of 

the same class and the red rectangles are of the opposite class. We can see that even with a simple 

linear classifier data are separated into two perfect regions. This is not the case with Figure 7(b) 

which represents a stream classification problem with concept drift in two successive time 

periods. In the first case before drift time point (𝑡𝑑) items can easily be separated. However, after 

time point the concepts of class blue square and red triangle change making difficult for the 

existing classifier which was trained from previous data to classify incoming instances. 

In the above figure we show an extreme paradigm of concept drift. This example lies in the real 

concept drift subcategory. In general, there are two general types of drift: real drift and virtual drift. 

The first one is associated with the change of 𝑝(𝑦|𝑋), which essentially means that not only the 

new data moved in new regions of data space but also their respective classed explored new areas 

different from the already defined class territories. On the other hand, virtual drift is happening 
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when only the 𝑝(𝑋) while the 𝑝(𝑦|𝑋) remains the same. The latter case means that new data 

explored new data regions respecting the already established class regions. Figure 8 show a visual 

representation of real (c) and virtual drift (b). 

 

Figure 8. (a) Original Data (b) Virtual Drift (c) Real Drift 

After, establishing the concept of data drift during a stream, we now are able to examine the 

distinction among different types of drift that an ensemble system has to be able to identify and 

for that reason we have to introduce the extra dimension of time between two different concepts. 

We will approach the problem similarly as A. S. Iwashita [5] et al. who presented the different 

types in a compact and representative way. Let 𝐶1 and 𝐶2 be two different concepts generated by 

two different data sources, and 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑑 , … , 𝑖𝑛} a sequence of instance. Instances prior of 𝑖𝑑 

have draw from a stable source creating 𝐶1 which does not change. After 𝛥𝑥 instances, the concept 

stabilized once more, but in another target concept 𝐶2. The concept among instances 𝑖𝑑 + 1 and 

𝑖𝑑 + 𝛥𝑥 is drifting from 𝐶1 to 𝐶2. According to 𝛥𝑥 length, the drift can be called gradual or abrupt. 

In gradual drift, the two concepts slowly swap; whereas in abrupt drift occurs suddenly. 

 

 

Figure 9. Abrupt and Gradual Concept Drift 
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2.2.4.1 Detecting changes with Drift Detectors  

There are several methods in machine learning to deal with changing concepts. In machine 

learning drifting concepts are often handled by time windows or weighted examples according 

to their age or utility. In general, approaches to cope with concept drift can be classified into two 

categories:  

• approaches that adapt a learner at regular intervals without considering whether changes 

have really occurred;  

• approaches that first detect concept changes, and next, learner is adapted to these changes. 

Examples of the former approaches are weighted examples and time windows of fixed 

size 

Therefore, the main concept of detecting changes during a stream is that after receiving an 

instance, the online approach updates the classifier; whereas the batch approach waits to receive 

plenty of instances to start learning. Regardless of the way the system will receive data, 

incremental learning behaves like online learning with the model update as instances arrive; 

whereas non-incremental reuses data on learning phase. At the end, active drift detection 

observes the stream to search for changes and determine whether and when a drift occurs, it 

warns the learner to take the correct action, while passive drift detection considers drift may occur 

constantly or occasionally, therefore continually updates the learner as data arrive. [17] 

Based on the vast categories of concept drift detectors, in this thesis we will do a special mention 

to the active ones which means that a system uses an external component while it does not do 

occasionally structural changes. More precise, when the system’s base learner is a decision tree 

which has adaptive techniques on its own, then the combination of such classifier with a powerful 

concept drift detector promises both high accuracy but also quick adaptability to changes. So, we 

are looking for such a detector that is well-established with the minimum distance of detection 

from the real drift and the higher detection accuracy. The majority of concept drift detectors use 

the performance of the base learner as an indicator of change. The main assumption is that if a 

classifier is trained with data from one source, then asymptotically reaches an ideal classifier. But 

when the source of data changes over time then it has a hard time to cope with the next concept 

and at some point, is loses its predictive power. Such methods have to be very careful in order to 

be able to distinguish the change produces by noisy data and the real drift of data. Also, most of 

those methods use a mechanism of warning and drift signals informing the base learner in order 

to take the appropriate actions. 

 

The basic idea of drift detection based on tracking classifier’s error rate is shown in Figure 10. So, 

we can see that at first due to the fact that the base learner is immature and it has not given enough 

time to train the error-rate skyrockets to nearly the 1.0 mark, which means that the classifier is 

wrong around all the time, but as time passes and the learner manages to adapt to the data the 
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error rate has a downside trajectory which almost reaches the perfect classifier. From a point and 

then which is denoted with the term real drift point the concept changes and the learner finds it 

hard to keep up with the new instance which means that it wrongly classifies new data. All this 

period of time, the drift detector component monitors the base learner’s error-rate and when some 

error-rate value satisfies its evaluation function send a warning signal. It is base learner’s business 

to take advantage to this info and unravel its strategy for such scenarios. After a while, when the 

error-rate still rises the detector confirms the undergoing drift and again sends a signal. 

 

Figure 10. Error fluctuation under concept drift 

 

DDM 

DDM (Drift Detection Method) [25] is the most well-known representative of that strategy. It 

estimates classifier error (and its standard deviation), which (assuming the convergence of the 

classifier training method) has to decrease as more training examples are received. If the classifier 

error is increasing with the number of training examples, then this suggests a concept drift, and 

the current model should be rebuilt. More technically, DDM generates a warning signal if the 

estimated error plus twice its deviation reaches a warning level. If the warning level is reached, 

new incoming examples are remembered in a special window. If afterwards the error falls below 

the warning threshold, this warning is treated as a false alarm and this special window is 

dropped. However, it the error increases with time and reaches the drift level, the current 

classifier is discarded and a new one is learned from the recent labeled examples stored in the 

window. For both levels we keep track the error-rate 𝑝𝑖 and its standard deviation 𝑠𝑖 = √
𝑝𝑖(1−𝑝𝑖)

𝑖
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Its warning level and signal criteria are: 

Warning Level: 

𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 2 ∙ 𝑠𝑚𝑖𝑛 

 

Drift Level: 

𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3 ∙ 𝑠𝑚𝑖𝑛 

The values of constants multiplied with 𝑠𝑚𝑖𝑛  in the warning and drift level respectively are not 

randomly selecting. The denote the level of drift, if the new concept satisfies the drift constraints 

means that by 99.73% is different from the previous concept. 

 

Figure 11. Level of Drift in DDM 

The expected result from employing DDM as a concept drift detector in the system is the 

following: 

 

Figure 12. Error rate in Stagger and Sinire1 using DDM. 

In Fig.12 we can see two different experiments using DDM in the main system. In both subfigures 

we see a solid black, a blue dashed line and horizontal lines, which represent the error-rate 

behavior with and without using DDM and the time points of real drifts respectively. We can 
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immediately conclude that the error-rate system without DDM always increases as the time 

passes by. Someone could say that is almost linearly getting worse, whereas when using DDM 

the error-rate manages to stay relatively low independently of the time. The main problem that 

this thesis pays more attention is the spikes of error-rate immediately after each real drift. These 

spikes represent an underlying problem concerning that the adaptive mechanism is not mature 

enough to handle the new concept. The base algorithm takes into consideration this case by 

setting an extra constraint which says that the monitoring will start again after n > 30 examples. 

This number takes an arbitrary value which is not supported by somehow, because does not 

include the type of drift. For abrupt changes 30 examples maybe enough but for gradual drifts 

may be very little. 

DDM was introduces in 2004 and showed the path to other researchers of how to deal efficiently 

a concept drift scenario. A problem with the most research papers of that era, is that almost none 

of them test the behavior of their algorithm with big data. So, for a while, it was unknown if their 

good predictive performance of detecting drifts would remain the same with more data. 

RDDM 

RDDM which was introduced by R.Barros in 2017 [26],  had as its original proposal to overcome 

deficiencies and thus improve the detections and accuracy results of DDM. This includes their 

motivation and heuristic assumptions. The main idea behind RDDM is to periodically shorten 

the number of instances of very long stable concepts to tackle a known performance loss problem 

of DDM. It is assumed that such a drop is caused by decreased sensitivity to concepts drifts as 

many thousand instances, it takes a fairly error rate and trigger the drifts. Another symptom of 

the same problem that the authors noticed is that DDM tends to stay at the warning level for a 

very large number of instances of the base learner running in parallel, this behavior might also 

make DDM fail to detect some of the existing gradual drifts, as the base learner is slowly adapting 

itself to the new concept without a drift detection.  

RDDM is essentially a better version of DDM, having less distance between real drift and 

detecting drift, greater sensitivity (true positive rate) and greater false negatives, but it has much 

worse false positives. False positives indicate that it detects drifts that they are not happening. 

Focusing on the biggest in size datasets on their experimental evaluation we can observe that 

RDDM has on average 17.6 ( ±10.8) times more false alarms than DDM. So, in systems that is 

expensive to create a new strategy every time that a new concept is detected, RDDM is not a 

viable choice. 
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2.3 Distributed Streaming Decision Trees and Random Forest 

In the Section 2.2, we presented an ensemble system from different perspectives in a streaming 

context. In this Section, we add another dimension, the distributed computing. In 2019 A. Bifet et 

al. [27] mentioned that when dealing with large quantities of data, an important trend will be 

how to do online learning using distributed streaming engines, as Apache Spark, Apache Flink, 

Apache Storm and others. Algorithms have to be distributed in an efficient way, so that the 

performance of the distributed algorithms does not suffer from the network cost of distributing 

the data. One of the most used and well-known platforms is SAMOA [28] which provides a 

collection of distributed streaming algorithms for the most common data mining and machine 

learning tasks such as classification, clustering, and regression, as well as programming 

abstractions to develop new algorithms that run on top of distributed stream processing engines 

(DSPEs). On top of SAMOA is there is the MOA [29] which is the most popular open source 

framework for data stream mining, with a very active growing community. Both SAMOA and 

MOA provide solutions at a higher level in relation to the purpose of this thesis and despite the 

fact there is a selection of open-source code, is not helping at any way thesis’s desire to solve at a 

lower-level problems of already existing algorithms in Apache Flink.  

Here, we have to bring one important difference in order to avoid unnecessary 

misinterpretations. There is a massive difference of a distributed computation and a computation 

in a distributed environment. A computation in a distributed environment is closer to parallel 

implementation rather than in distributed computation. This work implements an improved 

version of Hoeffding Tree under concept drift in a distributed environment. This is totally 

different with propositions that implement a Hoeffding Tree in a distributed way. Some examples 

of a distributed implementation of Hoeffding Tree are [30] and [31]. The first one distributes the 

decision tree’s nodes in a distributed environment and manages the information of the best and 

second-best attribute’s information gain using Geometric Method for monitoring a fragmented 

continuous skyline over distributed streams. [32] 

It must also be mentioned that parallel and distributed computing is very important for Machine 

Learning (ML) practitioners because taking advantage of a parallel or a distributed execution a 

ML system may: (i) increase its speed; (ii) increase the range of applications where it can be used 

(because it can process more data, for example). As [33] mentions, Random Forests is a very 

powerful ensemble method combining a set of decision trees; the Random Forest usually 

outperforms the single best classifier in the ensemble. More interestingly, the Random Forest 

classifier outperforms both, confirming that it is an extremely good method for classifying data 

streams. 
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Figure 13. Accuracy comparing the Hoeffding Tree, Hoeffding Adaptive Tree and Random Forest based on the Forest Covertype 

dataset 

Adaptive Random Forest (ARF) 

The motivation of ARF by H.Gomes et al. [34] was that there was no random forest algorithms 

that could be considered state-of-the art in comparison to bagging and boosting based algorithms 

in the challenging context of evolving data streams. The advantage of ARF is that through their 

tests they showed that they use feasible number of computational resources while maintain high 

predictive ability. ARF includes an effective resampling method and an adaptive operator that 

can cope with different types of concept drift. Their drift adaptation strategy that does not simply 

reset base models whenever a drift is detected. In fact, it starts training a background tree after a 

warning has been detected and only replace the primary model if the drift occurs. This strategy 

can be adapted to other ensembles as it is not dependent on the base model. One of the main 

points that they emphasize is their parallel version (ARF[M]) of implementation. As they 

explicitly mention “Anticipating the results presented in the experiments section, the parallel version is 

around 3 times faster than the serial version and since we are simply paralleling independent operations 

there is no loss in classification performance”. In addition, authors drew the following conclusion 

“Since ARF[M] distributes the training and drift detection among several threads it is unsurprisingly the 

most efficient in terms of CPU time and memory used.” All in all, one small problem with ARF is that 

their system was not tested with big data, while the maximum number of instances used, were 

below the 1M mark. But, on their future work proposal they mention that there is a possibility is 

to implement a big data stream version of ARF. 
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Chapter 3: 

Proposed Solution 

Our Approach 

3.1 Project Architecture  

In this thesis we are considering that we have immediately knowledge of the corresponding class 

of each input of our system, therefore our ensemble learner lies under the supervised learning 

framework. Those assumptions make our system vulnerable to real world problems, but 

implementing more algorithms for dealing with all kind of possible problems will result in a 

project out of the context of a thesis. What exactly are we implementing? 

Firstly, we will have a fixed size Ensemble of homogeneous incremental learning classifiers using 

the main principles of Hoeffding Tree and Hoeffding Bound. This ensemble is essentially a 

Random Forest and is implemented in parallel in a distributed environment, at Apache Flink. We 

further implement two improvements on top of the base model. The first one is associated with 

handling numerical attributes using Gaussian Approximation of maintaining the necessary 

statistics for finding the best splitting attribute-value pair. So, instead of keeping instances, which 

can be proved fatal and definitely is unfeasible in a streaming context with unbounded data, we 

are making a Gaussian approximation for each attribute. Τhe second optimization serves the 

purpose of handling the potential limited resources. In a distributed environment where decision 

trees are implemented in parallel there is a high chance that more than one base learner will end 

up in the same machine sharing both computational and memory resources. This is inevitable, 

when the number of models is greater than the cores and machines of the available cluster.  

Therefore, here comes a challenge that thesis has considered; situations were multiple models are 

deployed with lower parallelism. For that purpose, we also implemented the second version of 

Strict Very Fast Decision Tree (SVFDT-II) in order to reduce the memory consumption of our 

system. 

3.2 Resampling 

Secondly, this thesis has noticed a problem that is produced by the parallel execution of models. 

We have to mention here that in this thesis we are using the original methodology of Online 

Bagging. As we have already mentioned only 63% of the original data, has a returned probability 

different to zero. Suppose the following scenario; in a parallel implementation, the same incoming 
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instance has to be distributed to all available classifiers for either training or testing. This process 

of distribution in Apache Flink is performed using hashing, which generally is a very expensive 

function. So, instead of sending the same instance to all base learners and each one of those deploy 

the online bagging locally, we have moved the online bagging outside of the internal of every 

classifier into a separate module which repeatedly calls the Poisson distribution based on the 

ensemble’s size. Hence, we have saved a good amount of unnecessary data transactions.  

 

Figure 14. Distributed Random Forest Abstraction 

3.3 Base Learner 

Thirdly, in our background analysis we mentioned a problem that the majority of proposed 

algorithm ignore. Big data are usually referred to as data that is so large or complex that it’s 

difficult to process using traditional methods. The last couple of years we are working in an era 

that every proposed system has to consider big data scenarios. Most of the algorithms had tested 

their system from around 100k to 3M instances. We further noticed that it is unfeasible to have 

an incremental base learner whose size increases proportionally to the size of incoming data. 

Despite the fact that we implemented SVFDT-II and we managed to reduce the size and rate of 

base learner’s growth, we did not succeed to disengage its growth from the amount of incoming 

data. If some of the proposed implementations tested their systems with data more than 50M 

(relatively big data), they will also conclude to the fact that while the base learner does not become 
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better, its size increases almost linearly. So, we propose a new variation of the base learner for 

periods of “data drought”. Data drought indicates that data fed to the system don’t “carry” enough 

information for the base learner to get better and increase its predictive ability.  Τhe main point 

of our proposition is that we periodically check the accuracy of the base learner. If we notice that 

the base learner is not getting better or worse, we create a window; if the window’s size is greater 

than a user-defined threshold, then we stop the splitting process while we continue to update the 

internal nodes of the base learner by inserting new instances. Once the accuracy changes 

behavior, the window is dropped. We can conclude that the base learner’s performance remains 

stationary when its accuracy fluctuates around its mean value for a long window size. 

In order to formulate our proposition, we need to consider a vector 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} of incoming 

instances. Because we are implementing the test-then-train methodology, there is continuous 

update of its classification performance. As each new instance is fed to the system, it contributes 

to the cumulative weight. We define as an answering vector 𝑜 = {𝑜1, 𝑜2, … , 𝑜𝑛} where 𝑜 ∈ {0,1}. 

Then the weight of a base learner at a time point 𝑡𝑛𝑜𝑤 is 

𝑤𝑡𝑛𝑜𝑤 =
1

𝑡𝑛𝑜𝑤
 ∑ 𝑜𝑡

𝑡𝑛𝑜𝑤

𝑡=0

 

which denotes the ratio of correctly classified instances to the total number of instances seen. We 

denote as 𝑤𝑡 the produced weight of the base learner at timepoint 𝑡 after seen the instance 𝑖𝑡    

We also keep the approximate mean value (𝑤̅) and the standard deviation 𝜎(𝑤) of the weight 

vector with time and memory complexity of 𝑂(1). Therefore, the constraint used is: 

𝑤̅ − 𝜎(𝑤) ≤ 𝑤𝑡 ≤ 𝑤̅ + 𝜎(𝑤)  

This constraint is loose enough not to trap the base learner into a continuous pipeline, but too 

strong to guarantee that if its weight is fluctuating inside area defined by the upper and lower 

bounds then there is no reason to consider any splitting process. So, what exactly are we expecting 

to happen with our proposition? Firstly, we need to understand the power of data. All, modern 

machine learning models are data driven, which means that the structural process is adapted on 

the behavior of data. Although, a base learner’s goal is to create the best possible splitting criteria 

there are numerous occasions which it is impossible to do so, because data are distributed in the 

data space in such a way that there is always room for improvement. This is exactly the problem 

that we are trying to tackle; scenarios where a decision tree is trying to find the ideal criteria by 

continually splitting its nodes (deeper tree) when at the same time data are not able to be further 

separated. Such a scenario can be evident with numerous ways, we selected to monitor the base 

learner’s performance because it was the most simple and straightforward. Consider the 

following scenario, which is depicted in the following figure. At first the error-rate is relatively 

high because the base learner is not mature enough as it has not been trained with enough data. 

After some relatively little time the error-rate drops in some acceptable level. Due to the kind of 

data, the learner does not manage to get better. If the length of its incapability is proportionally 
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great to length from the start of its training, then system detects that there is time to start a 

window where the splitting process has to stop. We have to mention that the training is still active 

and new instances are still traversing the existing tree and update the necessary statistics. 

 

Figure 15. Base Learner proposition 

We can support our proposition through some extensive experiments performed in a single base 

learner based on the most well-known datasets. (See Section 5.4.2) 

3.4 Combination Function 

In addition, we will keep tracking the classifiers performance by assigning them a weight. This 

weight we be calculated based on each learner’s error rate during both the training and testing 

phase. (Error rate = 1 – Accuracy). We will conduct Weighted Voting over Selected Classifiers. We are 

selecting only the top-k classifiers, where again k is a user defined parameter. 

The reason we have extensively explained the different categories of Combination Function in 

Section 2.2.2 has to do with the fact that we are implementing an approach coming from the union 

of Weighted Voting and Classifier Selection category. Also, we use the basic Majority Voting error 

rate as a comparison base of our algorithm. 
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3.5 Concept Drift Detector 

Last but not least, we will consider that our data distribution is changing during the stream, 

hence, in order to manage that, we are implementing a Concept Drift Detection system. Our 

system consists of one well-established concept drift detector (DDM). DDM provides a twostep 

detection points. The first one is the warning signal and the second one is the concept drift signal. 

With the former, the system will create a Background Tree and with the latter it will replace the 

existing one, such as ARF. (See Section 2.3) In case of a false alarm, which happens when the 

warning signal cannot hold its value, the Background Tree is deleted. The main thing that we are 

noticing is that there is no actual drift phase. If we assume that we are in a stable phase and a 

warning signal comes, then we are entering in a warning phase and subsequently when a drift 

signal comes, we are back at a stable phase, this time newer’s one.  

 

Figure 16. DDM basic signals concept 

Recall in Section 2.2.4.1 that we made a special reference in the DDM’s error-rate “spikes”. For 

that reason, we are introducing a drift phase. During the drift phase we will replace the existing 

decision tree with the background one only when the latter has greater accuracy (or lower error-

rate), otherwise we will keep the same base learner. As we have already discussed, DDM has an 

arbitrary number of 30 examples to deal with such a problem which does not take into account 

the length and magnitude of change.  

Therefore, the proposed concept is:  



Vasileios Vittis                                              October 2021                                               46 | P a g e  

 

Figure 17. Concept Drift proposition 

Opposed to DDM signaling system, in our case when we encounter a drift signal, we start 

comparing the performance of the rival trees. When the performance of the background tree is 

greater than the already existing one then we generate a switch signal which means that the 

replacement method is now ready to be executed. With such a proposition we tackle the problem 

that DDM can be replaced with a random generator in its transitional phases. We, as a system 

observer, care only for the overall system’s performance and we want to be ensured that our any 

time testing will have a guaranteed high subsistence. Please, consult Section 5.4.3 where we 

analyze the results of our proposition. 
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Chapter 4: 

Implementation 

4.1 Apache Flink Overview 

Apache Flink [35] is a framework and distributed processing engine for stateful computations 

over unbounded and bounded data streams. Flink has been designed to run in all common cluster 

environments, perform computations at in-memory speed and at any scale. The Flink runtime consists 

of two types of processes: a JobManager and one or more TaskManagers (also called workers). The 

Client (our implementation) is not part of the runtime and program execution, but is used to 

prepare and send a dataflow to the JobManager. 

 

Figure 18. Apache Flink Architecture 

For distributed execution, Flink chains operator subtasks together into tasks. Each task is executed 

by one thread. Chaining operators together into tasks is a useful optimization: it reduces the 

overhead of thread-to-thread handover and buffering, and increases overall throughput while 

decreasing latency 

State 

The most powerful concept of Apache Flink is its state. Every non-trivial streaming application 

is stateful. At a high level of abstraction, we can consider state as a snapshot of an application 

(operator) at any particular time which remembers information about past inputs/events, which 
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can affect the future output. A system using state will know everything to what has happened in 

the application till a particular point of time. 

 

Figure 19. Apache Flink State Abstraction 

A saved state can be used in any of the following ways. 

• To search for certain event patterns happened so far. 

• To train a Machine Learning model over a stream of data points. In this case state will 

hold the current version of model parameters. 

• To achieve fault-tolerance through checkpointing. A state helps in restarting the system 

from the failure point. In case of any failures, if our system is fault tolerant and if we have 

saved a state of that application, the we can restart processing exactly from the same 

checkpoint where the system got corrupted. 

• To rescale the jobs and to increase parallelism in a job. 

Kafka Connector 

Apache Kafka [36] is an open-source distributed event streaming platform. 

 

Figure 20. Apache Kafka Architecture 
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Apache Kafka provides: 

• Hight Throughput: Deliver messages at network limited throughput using a cluster of 

machines with latencies as low as 2ms.  

• Scalability: Scale production clusters up to a thousand brokers, trillions of messages per 

day, petabytes of data, hundreds of thousands of partitions. Elastically expand and 

contract storage and processing.  

• Permanent Storage: Store streams of data safely in a distributed, durable, fault-tolerant 

cluster.  

• High availability: Stretch clusters efficiently over availability zones or connect separate 

clusters across geographic regions.  

4.2 Proposed Implementation 

4.2.1 Project Architecture 

Our implementation consists of an Apache Kafka Source and Sink as the basic components to 

read and write data. There is a separate component of Data Sampling which implements the 

Online Bagging. Data are distributed based on the Hoeffding Tree id and end up to the each 

responding machine and therefore to each pair of learner and concept drift detector. Each learner 

is trained or tested by incoming data while on the same time the Concept Drift Detector monitors 

its performance. Testing data are distributed to every learner component and their prediction are 

aggregated by a given rule in order extract the final prediction. In the Appendix Section you can 

further see our system’s flowchart (parts of it, will be used across our presentation of the proposed 

implementation. 

 

Figure 21. System's Architecture 
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Source and Sampling Component 

 

Figure 22. Source & Sampling Component Abstraction 

Source Component 

Source Component is responsible for preprocessing data by changing its format and making them 

ready for consumption from our system. In this implementation we can handle only numerical 

data with either distinct or continuous data. Each tuple of data has to be comma separated with 

the class label at the end. We do not restrict data for their number of feature or the type of 

representing their class label. A sample data can be of the following structure. 

< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 > 

Considering that our system is running continually, we have implemented such as system that 

receives only training data and some periodical tests from the user. More precisely, we consider 

that the user quires our system an unknown number of times at arbitrarily time intervals. In order 

to create such a scenario, we distinguish incoming data by assigning one unique identical 

number. In the current implementation we read from input files but the source can be of any kind 

(real-time events). If an instance is considered a training one, we assign to it the number 5 

otherwise -5. Also, in order to simulate user’s queries, we randomly select along our input data 

random instances that have as their purpose to test our system. We are implementing an 

ensemble system, so we need an aggregate id in order to perform our combination function. We 

achieve that by assigning to each incoming instance an incremental id number (𝑖𝑖𝑑 − 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑑) 

Training instance: 

< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 , 5, 𝑖𝑖𝑑 > 

Testing instance: 

< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2, … , 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑛, 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑢𝑒 , −5, 𝑖𝑖𝑑 > 

Finally, the Source component is responsible to a unique internal Kafka Topic from which the 

main implementation will receive data. 
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Sampling Component 

The Sampling Component is responsible for identifying the input data and implementing the 

algorithm of Online Bagging. We can observe that in line 2 if the purpose of the incoming instance 

is testing then we distribute it to all available member of the ensemble as we need the opinion of 

each one of them. In addition, we see in line 5 that if an incoming instance is a training, then we 

iterate through all member by extracting a sample from the Poisson distribution. The Sampling 

Component distributes training data to a subset of the ensemble based on whether or not its w 

value is greater than 0. Based on the m value each instance is distribute to the corresponding Base 

Learner Component. We take advantage the property of the keyBy operator that the Apache Flink 

provides us. KeyBy operate guarantees that every instance grouped by the same key will enter to 

a KeyedStream that has its own computation. 

 

Algorithm 5: Sampling Component 

Input:    stream                           String type stream of pairs (x, y)                                     

   M                            ensemble size  

Output:  <stream, m, w>         a stream of predictions for each x 

1. Extract purpose id from stream 

2. if purpose id equals -5  then 

3.  for every member m in M do 

4.   output stream ← <stream, m, 0> //0 denotes to No-Weight 
5. if purpose id equals 5  then 

6.  for every member m in M do 

7.   w ← Poisson(1) 

8.   if w > 0  then 

9.    output stream ← <stream, m, w> // w for Gaussian Approx. 

10. return output stream 

Base Learner Component 

The Base Learner Component is essentially our machine learning model1 and is incubated by a 

StatefulMap function, or otherwise by a state. This component is responsible for creating, 

updating (training) and testing our base learner as long as its background base learner (in case of 

concept drift).  Initially, the state and therefore the Base Learner Component is empty. In this case 

we create the main Hoeffding Tree (HT). Moreover, we have adopted the notion of “age of 

maturity”. It is a user defined value and it serves the purpose of giving the HT some time in order 

 

1 Please note that the Hoeffding Tree component is basically a separate model in a unique machine, while the ensemble 

is distributed implemented. 
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to enter to a stable phase. In this phase we only 

accept training instances as we assume that we are 

not ready to answer to testing queries. Our 

Hoeffding Tree creating follows the exact same 

parameters as the original algorithm. In case the 

period of “age of maturity” is completed, we enter 

to the next phase. In this phase we are accepting 

both training and testing instances. We also have 

adopted the Test-then-Train methodology which 

firstly traverses the tree until the target leaf, asks 

the majority class of this particular node and 

updates the HT’s weight based on the correctness 

of the answer. Secondly, it takes again the same 

path and updates all the necessary statistics of the 

target node.2 The only time we collect the output is 

in case we have received a testing instance. 

Algorithm 6 showcases the above analysis. 

 

Algorithm 6: Hoeffding Tree Component 

Input:    (x, y, id, w)          a tuple of features, true label, HT id and its weight                          

                grace_period      is the user defined parameter for age of maturity                                     

Output:  output stream  a tuple of instance id with the corresponding prediction, the HT id and its weight  

1. if state is empty  then 

2.  Create Hoeffding Tree()  

3. else:  

4.  if age of maturity < grace_period  then 

5.   if instance is Training  then 

6.    Test-then-Train Hoeffding Tree()                // Update HT weight 

7.   if instance is Testing  then 

8.    Skip instance 

9.  else: 

10.   if instance is Training  then  

11.    Test-then-Train Hoeffding Tree() 

12.   if instance is Testing  then 

13.    Test Hoeffding Tree() 

14.    output stream ← <instance id, prediction, HT id, weight>  

15. return output stream 

 

2 In the first traversal, beyond the returned prediction (majority class), we return the target Node in order to save an 

extra second traversal. 

Figure 23. Base Learner Component 
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The output needed from the Combination Function Component must contain the instance id with 

which we will aggregate our predictions, the actual prediction a long side Hoeffding Tree’s 

weight and id. Now, as we discussed in Section 3.3,  we have made some modifications in the 

basic VFDT algorithm. Therefore, we will present both Create, Training and Testing pseudocodes. 

Create Hoeffding Tree 

During the creation of the Hoeffding Tree we make some assumptions correlated to the problem 

we solve. Firstly, we have prior knowledge of the number of attributes with a result to create as 

many HashMaps as the number of attributes. Secondly, we know that we are dealing only with 

a binary problem so in both cases of maintaining the required statistics and the label counts we 

need only two. (0: Class0, 1: Class1). Thirdly, in order to select the required random features, we 

use the algorithm of Reservoir Sampling, instead of using some specific strategy. 

 

Algorithm 7: Create Hoeffding Tree 

Input:    Max:    is the number of how many features we have to select from 

 m_features:   is the number of the size of the random subset of Max 

 max_examples_seen:  is the number of examples between checks for split 

 delta:    one minus the desired probability of choosing the correct feature at any   

      given node 

 tie_threshold:   is the number between splitting values of selected feature for split 

Output:  root of Hoeffding Tree 

1. for each attribute in m_features then 

2.  Create a HashMap for statistics 

3.  Create a HashMap for label counts 

4. instances_seen ← 0 

5. correctly classified ← 0 

6. weight ← 0  

7. InitializeRoot (m_features, max_examples_seen, delta, tie_threshold) 

8. Reservoir Sampling (m_features, Max) 

 

As we have already mentioned we have implemented the Gaussian Approximation for keeping 

in track with the feature’s changes. The HashMap structure used is the following: for each feature 

and for each class we maintain four values (sum of weights, mean, sum of the variance, min and 

max value) 
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Test Hoeffding Tree 

A Hoeffding Tree has to keep track with its progress and have to broadcast its information to the 

State. In order to do that it needs to contain the number of correctly classified tuples, the weight 

and the number of seen instances. For defining at each Hoeffding Tree (ℎ) the weight (𝑤ℎ) we 

have to take the ratio between the correctly classified tuples (𝑐ℎ) and the total tuples seen (𝑛ℎ), 

𝑤ℎ =
𝑐ℎ

𝑛ℎ
, 𝑤ℎ𝑒𝑟𝑒 𝑐ℎ < 𝑛ℎ. 

Algorithm 8: Test  Hoeffding Tree 

Input:      node:   is the root of the Hoeffding Tree 

   input_sample:   is an array of values of the corresponding attribute 

   purpose_id:  is the id for identifying the different tuples  

Output:   predicted_value                 is the prediction from the Hoeffding Tree 

                  targetNode                          is the node after the traversal. Used by the training algorithm 

 

1. filtered_input ←Filter input_sample based on m_features 

2. if  purpose_id is a testing  then 

3.  predicted_value, targetNode ← TestHT(node, filtered_input) 

4. else: 

5.  instances_seen ← instances_seen + 1 

6.  predicted label, targetNode ← TestHT (node, filtered_input) 

1.   if predicted label is equal to true label  then 

2.    correctly_classified ← correctly_classified  + 1 

3.   UpdateWeight(correctly_classified, instances_seen) 

4. return predicted_value, targetNode 

As we have discussed previously, we need to use the instance id for distinction between    

testing and training ones. In Line 3, TestHT function traverses through the HT by comparing its 

corresponding splitting attribute, value pair until in sorts itself to a leaf node. Then it returns the 

label of the target node. In Line 10, UpdateWeight just update the existing HT’s tree with the new 

values. 

Train Hoeffding Tree 

While we train the Hoeffding Tree we deploy both the SVFDT-II constraints and ours. We have 

already mentioned that there is a case that Hoeffding Tree’s constraints are satisfied by the 

SVFDT-II ones not. Essentially, with both implementations we have enclose the basic VFDT 

constraints. In the Appendix Section there is a flowchart that represents the following 

pseudocode. 
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Algorithm 9: Train Hoeffding Tree 

Input:      node (𝑙):  is the target Node of the Hoeffding Tree from Testing 

   input_sample:   is an array of values of the corresponding attribute 

   w                                            is the instance weight from Online Bagging 

   DS                                          is the value that indicates data stagnation 

Output:   rootNode                             is the HT’s root 

 

1. filtered_input ←Filter input_sample respectively to m_features 

2. weight ← get Hoeffding Tree’s weight 

3. if  𝑤𝑒𝑖𝑔ℎ𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡) < 𝑤𝑒𝑖𝑔ℎ𝑡 <  𝑤𝑒𝑖𝑔ℎ𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡) then 

4.  window_size ← window_size + 1 

5. else: 

6.  window_size ← 0 

7. if window_size / instances_seen > DS  then                                            

8.  InsertNewSample =  {

Update Gaussian Approximation metrics using w
Update label counts

Update 𝑛𝑚𝑖𝑛
 

9. else: 

10.  𝑛𝑙  ← number of elements in node 𝑙 

11.  𝑛𝑙 𝑙𝑎𝑠𝑡 𝑐ℎ𝑒𝑐𝑘  ← number of elements in node 𝑙 from the last check 

12.  if class at  𝑙 is impure and 𝑛𝑙 − 𝑛𝑙 𝑙𝑎𝑠𝑡 𝑐ℎ𝑒𝑐𝑘 > max examples seen  then 

13.   𝐼𝐺𝑏𝑒𝑠𝑡 , 𝐼𝐺𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡  ← the highest and second highest IG (.) 

14.   if (𝐼𝐺𝑏𝑒𝑠𝑡  −  𝐼𝐺𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡) > 𝐻𝐵 𝑜𝑟 𝐻𝐵 < 𝜏 then 

15.    𝐻 and 𝜎(𝛨) using 𝐻𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠  

16.    𝐼𝐺̅̅ ̅ and 𝜎(𝐼𝐺) using 𝐼𝐺𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠  

17.    𝑠𝑣𝑓𝑑𝑡_𝑖𝑖_𝑐𝑜𝑛𝑠𝑡𝑎𝑖𝑛𝑡𝑠 ← 𝐻𝑙  ≥  𝐻 +  𝜎(𝛨) 𝑜𝑟 𝐼𝐺𝑏𝑒𝑠𝑡 ≥ 𝐼𝐺̅̅ ̅ +  𝜎(𝐼𝐺)  

18.    if (𝑠𝑣𝑓𝑑𝑡_𝑖𝑖_𝑐𝑜𝑛𝑠𝑡𝑎𝑖𝑛𝑡𝑠) then 

19.     Split node 𝑙 into 𝑙𝑙𝑒𝑓𝑡  and 𝑙𝑟𝑖𝑔ℎ𝑡  

20.     InsertNewSample in node the correct child node 

21.    else: 

22.     InsertNewSample in node 𝑙 

23.   else: 

24.    InsertNewSample in node 𝑙 

25.  else: 

26.   InsertNewSample in node 𝑙 

27. return rootNode 

We can see in Line 3 that if the weight fluctuates around its mean value then we create a window. 

If at any point this condition is not satisfied then the window is dropped. In Line 17 and 18 we 

see the exact same functionality presented in the SVFDT-II proposition. It evident enough that at 

any case we insert the new sample in the target node in order to keep up with the stream. 
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Combination Function Component 

Combination Function Component is 

responsible for grouping incoming predictions 

bases on the instance id and perform the 

aggregation function. We have implemented 

three different methods; Majority Voting, 

Weighted Voting using only the top k 

predictions and Weighted Voting using a cut-off 

threshold which accepts predictions which have 

its respective weight above that threshold. After 

our Experimental Evaluation, we concluded that 

using Weighted Voting using top-k was the 

better choice. Therefore, the following 

pseudocode is based on this. Here, we want to 

mention that we took advantage of Apache 

Flink’s countWindow operator. This operator 

creates a window based on a user defined value. 

It waits until the current instances received 

matches the predefined value. In practice, we 

waiting until we have collected as many 

predictions as the number of Hoeffding Trees. 

The following code shows the functionality after 

the forementioned process. 

 

Algorithm 10: Combination Function 

Input:      listpredictions  is a list of each Hoeffding Tree’s predictions 

   listweights   is a list with the corresponding weights 

   k                                             is the value for selecting the top-k weights 

Output:   final prediction                  is the system’s prediction 

 

1. sorted ←Sort weights in an ascending order 

2. for all positions until k do 

3.  if weight equals to 0 then 

4.   class0_weight ← class0_weight + weight 

5.  else: 

6.   class1_weight ← class1_weight + weight 

7. if class0_weight > class1_weight  then 

8.  final prediction ← 0  

9. else:  

10.  final prediction ← 1 

11. return final prediction 

Figure 24. Combination Function Component 



Vasileios Vittis                                              October 2021                                               57 | P a g e  

Drift Detector Component 

The Drift Detector Component is responsible for 

monitoring the Base Learner Component’s 

performance and more precisely its error-rate. 

This component considers only training 

instances and is connected with the Base Learner 

Component after the latter updates its weight, as 

shown in Figure 25. The component implements 

the basic algorithm of DDM alongside our 

proposition. After the train process has been 

completed, we extract the corresponding 

accuracy metric. In case that the DDM warning 

constraints hold true then we enter in a warning 

phase. Our goal is to create a Hoeffding Tree in 

case there is not already one or test and then 

train it in case it has been initialized. So, in this 

case we have two parallel decision trees that are 

trained by the same input data using different 

characteristics. The main idea is that recency is 

relevancy and the new background tree will be 

trained only from the newest instances and 

consequently it will perform better. Being in a 

warning phase, there are two possibilities, either 

we go back to stable phase given a false alarm 

signal, or we enter in a drift phase given a drift 

signal. By entering in the drift phase, we wait 

until the background tree’s accuracy is greater 

that the already existing one. If this happens,  

then we perform the switch process which 

concludes the removal of the existing tree and its replacement from the background tree. 

 

 

 

 

 

         Figure 25. Concept Drift Detector Component 



Vasileios Vittis                                              October 2021                                               58 | P a g e  

Algorithm 11: Concept Drift Detection 

Input:     error rate                 is the misclassification performance of the Hoeffding Tree 

 

Output:  signal                        can take three values: W for warning, D for drift and F for false alarm 

1. Find New Drift Status using error rate 

2. warning phase ← DDM warning constraints  

3. if warning phase holds true then 

4.  signal ← warning 

5.  state ← get current background Ht’s state 

6.  if state is empty  then 

7.   Create Hoeffding Tree()                                                           // Background Tree 

8.  else: 

9.   state ← not empty 

10.   Test-then-Train Background Hoeffding Tree()                // Update HT weight 

11.  drift phase ← DDM drift constraints  

12.  if drift signal holds true then 

13.   signal ← drift 

14.   accbackgroundHT ← get Background Tree’s accuracy 

15.   accHT ← get Tree’s accuracy 

16.   if accbackgroundHT >  accHT then 

17.    Reset Concept Drift Detector 

18.    Switch positions of HT and Background HT 

19.   else: 

20.    Stay at Drift Phase 

21.  else: 

22.   Stay at Warning Phase 

23. else if signal equals to warning and warning phase does not hold true the 

24.  signal ← false alarm  

25.  

26. else: 

27.  signal ← stable phase 

28.  Stay at Stable Phase 

29. return signal 
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Chapter 5: 

Experimental Evaluation 
The experimental analysis is designed based on two different tracks. The first one is to prove the 

functionality of our propositions. The second track is to prove how our system scales and how it 

copes with different number of decision trees and big data. Hence, we need a variety of 

experiments with different characteristics and lengths. 

5.1 Testing Setup 

The experiments associated with the scalability of this thesis presented were performed on the 

SoftNet Cluster of the SoftNet lab [37] with twelve Quad Core Xeon X3323 2.5GHz, 8GB. The 

Apache Flink version is 1.10.0 with Scala 2.11 and the Apache Flink Kafka Connector’s version is 

1.9.3. The experiments associated with the functionality of all the base learner and concept drift 

detector were performed in a local machine with i7-4720HQ CPU 2.60GHz, 16GB due to cluster 

unavailability at the time of these experiments. 

5.2 Datasets 

One purpose of our experimental evaluation is to generate evolving data streams that possess 

diverse concept changes (abrupt or gradual) with different drift duration. The included datasets 

are divided into two categories: artificial and real-world. In most cases, it is considered to test a 

proposed algorithm with only a few thousand instances, such as DDM and RDDM, where the 

evaluation was conducted based on a range between 50K and 3M instances while real-world 

datasets (ELEC, Airlines) are products of a real-world situations and their length cannot be 

changed. For both cases, we have selected the most well-known datasets in order to achieve an 

all-round evaluation. All the artificial datasets were previously used in the area and they are 

already included in the MOA framework [38]. MOA gives the choice to select, among others, the 

underling stream, the concept drift (the dataset which will replace the initial one after the drift), 

the position and duration of the drift, as long as the number of drifts and the choice of balanced 

dataset, in order to cover different scenarios. In our setup, we will produce streams with multiple 

concept drifts at regular intervals. Having such a powerful tool in our disposal, the evaluation 

process becomes more systematic.  
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An issue that rises in the case of artificial datasets is how we can quantify the different types of 

concept drifts. What makes a drift abrupt or gradual? Does the dataset’s length influence the 

significance of the drift? One way to answer some of these questions, is to conduct multiple 

experiments and evaluate their results. Another way is to use the most common practices that are 

already performed in the same context. In [4] and [5], a drift length of 50 in 100.000 instances is 

considered as an abrupt drift type, whereas 500 as gradual. On the other hand, in [6] they do not 

distinguish concepts drifts in abrupt or gradual but they try to keep proportional the drift width 

and the total instances. Finally, in a comparative study on concept drift detectors [6] they define 

as fast gradual concept drift, the case when the width is 200 in 4000 instances and a gradual one 

when it is 1000.  

Sine: Sine dataset consists from two numeric attributes with two additional (optional) 

irrelevant attributes. The attributes are uniformly distributed between [0,1] and follow 

the alternation of the 𝒚 = 𝐬𝐢𝐧 (𝒙) . 

RandomTree  

This generator, which was introduced in [19], makes a decision tree by choosing the attributes at 

random to split, and assigns a random class label to each leaf. After the tree is built, new examples 

are generated by assigning uniformly distributed random values to the attributes and the class 

label is determined via the tree. It has predefined parameters to control the number of classes, 

attributes and depth of a tree. Concept drift is created by changing the tree Random parameter: 

Agrawal: 

This generator, which was introduced in [39], consists of six numeric attributes and three 

categorical attributes to describe the hypothetical loan applications. For the numeric attributes, 

there is a perturbation factor that makes to shift the true value by adding an offset. It can produce 

ten different functions to determine whether the loan should be approved or not. The concept 

drift happens by changing the functions. For our experiment, we use the six functions referring 

as function 2 to 7 with 5% perturbation noise 

SEA: 

The SEA dataset [1] produces data streams with three continuous attributes (𝑓1, 𝑓2, 𝑓3). The range 

of values that each attribute can assume is between 0 and 10. Only the first two attributes (𝑓1, 𝑓2) 

are relevant, i.e. 𝑓3 does not influence the class value determination.  
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Airlines:  

The Airlines dataset contains 539,383 records with 7 attributes (3 numeric and 4 nominal) and the 

goal is to predict whether or not a given flight will be delayed given information on the scheduled 

departure. 

Electricity: 

The Electricity Market dataset was used by Gama [25]. This data was collected from the 

Australian New South Wales Electricity Market. In this market, the prices are not fixed and are 

affected by demand and supply of the market. The prices in this market are set every five minutes. 

The ELEC2 dataset contains 45,312 instances. The class label identifies the change of the price 

related to a moving average of the last 24 hours. The class level only reflects deviations of the 

price on a one-day average and removes the impact of longer-term price trends 

The detail numerical information of drift sizes and dataset used are described in Table 1. 

 

Table 1  

Description of datasets 

Dataset Total instances No. of attributes No. of classes No. of drifts Drift width 

Sine-100k 100.000 4 2 4 100 

Sine-3M 3.000.000 4 2 4 500 

RBF-100k 100.000 10 2 5 100 

RBF-5M 5.000.000 10 2 5 500 

Agrawal-100k 100.000 9 2 4 100 

Agrawal-3M 3.000.000 9 2 5 100 

Agrawal-24M 24.000.000 9 2 10 1.000 

SEA-100k 100.000 3 2 4 100 

SEA-3M 3.000.000 3 2 5 1.000 

Airlines 539,383 7 2 - - 

Electricity 45,312 8 2 - - 
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5.3 Performance measures 

5.3.1 Random Forest Evaluation 

Confusion Matrix  

Several indices were employed to monitor our classification method. Apart from the accuracy 

score, which is calculated as the ratio of correctly classified samples by the total number of 

samples, showing the overall accuracy of the method, other metrics of classification performance 

were also used for the evaluation of the algorithm. In order to calculate these metrics, the number 

of True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN) samples 

were computed. 

 

Table 2  

Confusion Matrix  

 Actual Value 

P
re

d
ic

te
d

 

V
al

u
e 

 Positive (1) Negative (0) 

Positive (1) True Positive False Positive 

Negative (0) False Negative True Negative 

Based on the Confusion Matrix 

• Recall (or Sensitivity) of a tuple is its ability to determine a positive instance as such 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. As a result, the False Negative Rate 𝐹𝑃𝑅 = 1 − 𝑇𝑃𝑅 

• Specificity is the True Negative Rate 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 and is the model’s ability to 

determine a negative case as such 

• Precision (positive predictive value) is calculated by: 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. Precision can be 

interpreted as the ability of the classifier not to label as positive a sample that is 

negative. 

• Last but not least, is the F1 score which is defined by the combination of Sensitivity 

and Precision as it is calculated using those two metrics  

𝐹1 =
𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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5.3.2 Scalability Performance 

In order to test the scalability of a system we track the execution time according to the size of data 

for different values of parallelism (throughput). In an ideal system, we have to witness the 

following result; as the parallelism is increasing, throughput has to have the exact opposite 

behavior. If we double the parallelism then the throughput has to decrease in half. 

5.4 Experimental Results 

5.4.1 SVFDT-II Results  

The following table compares the SVFDT-II impact a long side to the original algorithm of VFDT. 

In this case it is not necessary to have concept drift datasets, therefore the tests were based on 3 

artificial datasets of 1M instances (Sine, RBF, Agrawal) and the Electricity (ELEC) real world 

dataset. In order to see how significant is the integration of SVFDT-II is our system, we will keep 

track not only the number of nodes but also the accuracy and time elapsed. The following results 

are the mean value of 30 outputs. (See the Appendix Table for the Extensive Table) 

 

Table 3.  

SVFDT-II Improvement 

Datasets without SVFDT-II with SVFDT-II Performance Improvement 

Dataset 

Name 

Size 

(nodes) 

Acc. Time 

elapsed 

(sec) 

Size 

(nodes) 

Acc. Time 

elapsed 

(sec) 

Size 

(nodes) 

Acc. Time 

elapsed 

(sec) 

Sine 558.00 0.993 11.512 254.00 0.983 9.871 -54.48% -1.01% -14.25% 

RBF 3.155 0.907 16.991 1.080 0.894 13.132 -65.77% -1.43% -22.71% 

Agrawal 2.566 0.949 19.402 946.00 0.949 19.981 -63.13% 0.00% 2.98% 

ELEC 221.00 0.77 7.249 127.00 0.777 6.179 -42.53% 0.91% -14.76% 

 

We can see that the size of the Hoeffding Tree is reduced on average by 56.4% while its downside 

is that the predictive ability (translated by its accuracy) has dropped 0.38%. We can strongly 

support that this trade-off is more than acceptable and proves our right call to include it. 
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5.4.2 Base Learner Proposition Results 

In order to test our proposition, we have to create such scenarios that prove our concept. In the 

following figures we have three different datasets under concept drift of different lengths. So, we 

created on purpose such periods that we called “data drought”. We will monitor the number of 

nodes as well as the accuracy. We will compare the original VFDT with the SVFDT-II 

improvement using the original algorithm of DDM, with the same setup plus our proposition. In 

both cases the tree parameters are exactly the same. In order to completely understand its 

functionality, we will present our results both visually and numerically.  

Sine-100k 

In Fig.23 we can observe that our 

proposition does not interfere in 

short and frequent concept drifts. 

As Method1 we denote the VFDT 

plus SVFDT-II. In this particular 

experiment our proposition is not 

deployed.  

 

 

                                        Figure 26. Sine 100k Base Learner Proposition Behavior 

RBF-5M 

On the other hand, in Fig.24 we see that we full potential of our proposition. In this experiment 

it is shown the combination of VFDT, SVFDT-II and our proposition with and without any 

concept drift detector. The two vertical red lines denote the two observation points. In first 

checkpoint, we start for both 

implementation from different 

points, having our proposition 

with the respective opposite 

around 1067 and 1605 nodes. In 

the second checkpoint we have 

1067 and 4977 and for the 

implementation with and 

without our proposition 

respectively. 

 

 

Figure 27. RBF-5M Base Learner Proposition Behavior 
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We additional tested in more two datasets Sine and Agrawal having both 3M data. Their Figures 

are in the Appendix Section. We can conclude that our proposition responds to scenarios where 

is the so called “data drought” as it reduces drastically the size and achieves to disengage the 

growth of the base learner according to number of inputs. The price it pays is the reduced 

accuracy which in some cases is almost 10% and in others is even. 

 

Table 4.  

Base Learner Proposition Results (Size and Accuracy) 

 Size (Nodes) Error Rate  Performance Difference 

Datas

ets 

Detection 

Points 

VFDT + 

SVDT-II 

VFDT + 

SVDT-II + 

Proposition 

VFDT + 

SVDT-II 

VFDT + 

SVDT-II + 

Proposition 

Size 

(Nodes) 

Error Rate 

S
in

e-
3M

 #1 (500k) 167 47 0.024 0.039 -71.86% 1.5% 

#2 (1.9M) 461 47 0.01 0.039 -89.80% 2.9% 

#3 (2.9M) 427 81 0.041 0.041 -81.03% 0% 

R
B

F
-5

M
 

#1 (1M) 1605 1067 
0.192 0.207 

-33.52% 
1.5% 

#2 (5M) 4977 1067 0.184 0.198 -78.56% 1.4% 

A
g

ra
w

al
-3

M
 

#1 (200k) 205 183 0.057 0.136 -10.73% 7.9% 

#2 (400k) 395 183 0.052 0.138 -53.67% 8.6% 

#3 (750k) 469 197 0.129 0.129 -58.00% 0% 

#4 (1M) 883 197 0.113 0.076 -77.69% -3.7% 

#5 (1.5M) 301 101 0.073 0.082 -66.45% 0.9% 

#6 (2.5M) 1149 101 0.055 0.082 -91.21% 2.7% 
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5.4.3 Concept Drift Proposition Results 

In this part of our experimental evaluatio we test our proposition for the Concept Drift Detector. 

In the following two figures we see two different scenarios of frequent and not frequent concept 

drifts. In the following figures with the blue line we have denoted the system using the DDM 

cocnept drift detector while with the green line the system with our proposed drift detector. The 

red dots show the error rate that we save by implementing our system. The interval of the changes 

are every 20k instances but we assume that we have not such prior knowledge of them. At each 

transition point the error rate skyrockets (red dots) which results that our system could have been 

replaced by a random classifier. The duration of such inability is around the one tenth of the total 

dataset. 

 

Figure 28. Sine dataset using our concept drift proposition 

 

Table 5. Sine dataset. Numerical Representation of HT Switches 

We can easily come to two conclusions. Firstly, our proposition is always better or equal better 

than the base learner using DDM concept drift detector. Secondly, we wait until our background 

tree becomes better than the existing one.  
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In the following figure we see the full functionality of our proposition while dealing with both 

vast periods between changes. The total instances of improvement are 5% of the total stream, 

which means that our proposition gives better answers during this 5% than the original DDM. 

 

Figure 29. RBF 3M dataset using our concept drift proposition 

 

Table 6. RBF 3M dataset. Numerical Representation of HT Switches 

In Table 6, we can see that with the previous implementation of DDM we will have a huge drop 

in the performance from 0.94 to 0.61 by switching earlier that the ideal. While by our modification, 

we postpone this switch by 150k instances with a result of a smoother transition. 
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5.4.4 Ensemble Learning Results 

In this part of the experimental evaluation, we treat our thesis as a complete machine learning 

model. We want to test its predictive ability in different scenarios. Therefore, we will use dataset 

with and without concept drift. The system has as its base learner the VFDT with the two 

Gaussian Approximation, SVFDT-II alongside our base learner proposition and our concept drift 

proposition. We have guaranteed that the tests are equally distributed in the dataset. The 

following datasets are also balanced. 

 

Table 7.  

Confusion Matrix Ensemble Results 

Datasets TP FP FN TN Recall Accuracy Specificity Precision F1 score 

Sine-100k 658 167 187 677 0.790 0.778 0.802 0.797 0.788 

RBF-1M 1611 249 219 1601 0.872 0.880 0.865 0.866 0.873 

Agrawal-

1M 
912 14 98 1003 0.944 0.902 0.986 0.984 0.942 

Electricity 296 80 190 396 0.719 0.609 0.831 0.787 0.686 

Titanic 5 3 3 5 0.625 0.625 0.625 0.625 0.625 

Scalability Results 

Other than approaching this thesis from a mathematical point of view and treating it as machine 

learning model, we have to consider its scalability and evaluate its behavior in a distributed 

environment. In order to fully depict how efficient our proposition scales, we have to make two 

different tests.  

The first has to be a scenario where we have a given dataset and a constant number of Hoeffding 

Trees, while changing the parallelism. Hence, we have to decide which dataset should be using 

and how many HTs are enough. We have to use such a dataset that its computational time is 

significantly larger than cluster’s deployment time. We have decided to use Agrawal with 3M 

instances, which has 9 features. As for the number of HTs, we have decided to go with 32 of them. 

Don’t forget that at the worst case we will have simultaneously deployed 64 of them. (32 main 

and 32 background) which are more than enough to showcase the scalability capability of our 

system. A more typical number of trees used in a random forest is perhaps 50 to 200 trees 

(according to Breiman’s experiments [40] ). Therefore, we are using only 2 out of 9 features in 

each of the 32 base learners in order to fully unravel the functionality of a Random Forest. 

Secondly, it is necessary to do better than many others and consider a test with Big Data. In this 

approach we have tested our system with 50 Hoeffding Trees and parallelism of 32 using 24M 

instances. (24M instances of 9 numerical features is more than 3Gb) 
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Table 8. 

Scalability Results 

 

 

Figure 30. System's Scalability 
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Run 1 Run 2 Run 3 Run 4 Mean 

Exec. 

Time 

Throughp

ut 

Min. Sec Min. Sec Min. Sec Min. Sec Sec Instances / 

sec 

32 4 2 1 >3h - - - - - - - - - 

32 4 2 2 2h 2m 7320 1h48m 6480 2h 27m 8820 - - 7320 409.836 

32 4 8 4 28m 40s 1720 29m 2s 1742 32m 2s 1922 29m 4s 1744 1782 1683.501 

32 4 8 8 17m 52s 1072 11m 8s 668 15m 6s 906 20m 1200 961.5 3120.124 

32 4 8 12 13m 34s 814 18m52 1132 21m34s 1294 17m53s 1073 1078.25 2782.2861 

32 4 8 16 12m 35s 755 9m 40s 580 8m 47s 527 10m 12s 612 618.5 4850.444 

32 4 8 32 5m 21 s 321 4m 14s 254 5m 03s 303 4m 54s 294 293 10238.907 
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Figure 30 can be considered as an expected result. Given the 32 Hoeffding Trees, in case of the 

small values of parallelism, the number of HTs that we are trying to fit in a tight space, seems to 

be a proper challenge, in which our system underperforms. For example, in parallelism of 2, 

Apache Flink tries to distribute the trees equally, 16 at each subtask, which means that the total 

number of instances coming at the same node, are destined for 16 different trees. Whereas, in the 

case of parallelism of 32 with 32 trees, each node receives instances for only one tree, a fact that 

increases the throughput. 

Table 9.  

System with 24M 

 

Based on the above table, we can clearly see that our system is competent to handle a significant 

amount of Big Data. As we have already mentioned, the purpose of our proposition is to be any 

time query system that can handle an unbounded stream of data, deployed for such a scenario 

that there is no need of stopping it. Therefore, this experiment serves the purpose of showcasing 

that the system can handle rapid incoming instances. The rate with which we tested our system, 

may be a slightly extreme version of a use case. 
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Run 1 Run 2 Run 3 Mean 

Exec. 

Time 

Throughput 

Min. Sec Min. Sec Min. Sec Sec Instances / 

sec 

50 4 32 32  21m 41s  1301  14m 16s  856  17m 43s  1063  1073 22,367.19 



Vasileios Vittis                                              October 2021                                               71 | P a g e  

Chapter 6: 

Conclusions – Future Work 

6.1 Conclusions 

In this thesis, we proposed a distributed implementation of Random Forest at Apache Flink that 

detects concept drifts in evolving data streams. We implemented such optimizations, both on the 

base learner and the concept drift detectors in order to tackle problems that emerge in the Big 

Data world. We observed that we efficiently maintained the necessary statistics under the 

Gaussian Approximation and we managed to reduce each decision tree’s size in return of not 

much significant loss of accuracy using the SVDFT-II algorithm alongside our proposition. At the 

same time, we observed that the proposed solution based on the Drift Detection Method achieved 

better overall accuracy throughout the input stream. 

6.2 Future Work 

The current work can be extended in many different ways. First of all, we would like in the future 

to develop a system that tracks all member’s prediction and use some disagreement metric in 

order to find how many and which groups are formed. With such a useful information we can 

easily delete members of the ensemble that have the same recent history and add a new one only 

if we guarantee that its recent answers are a lot different from all other member. Therefore, we 

want to transition our fixed-size ensemble to a dynamic one by boosting its diversity. Diversity 

in general is not much tested in the ensemble systems and we think that it is a good opportunity. 

Finally, we could examine if the proposed solutions can have the same behavior in different 

datasets. 
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Appendix 
 

 

Figure used in Table 4 in Base Learner Proposition Results Section 

 

Figure used in Table 4 in Base Learner Proposition Results Section 
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Flowchart of System's Architecture used in Proposed Implementation Section 
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Flowchart of Training Method used in Train Hoeffding Tree Section 
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