
Microservice Placement
Strategies in Kubernetes for Cost

Optimization

Examination Committee: Professor Euripidis G.M. Petrakis (Supervisor)
 Associate Professor Samoladas Vasileios
 Associate Professor of Birkbeck, University of London, Sotiriadis Stelios

Chania, February 2022

Alkiviadis Aznavouridis

Diploma Thesis

Technical University of Crete
School of Electrical and Computer Engineering
Division of Intelligent Systems Laboratory

Table of Contents

 Conclusion and
Future Work06

 Experimental
Results05

 Theoretical
Background02

 Introduction and
Problem Definition01

Cost Function04

 System Design and
Benchmarks03

2

Introduction and Problem
Definition

01

4

Introduction

❖ Modern applications utilize various innovative technologies (like Kubernetes)

❖ Kubernetes clusters can efficiently host applications and secure the consistency of their run-time

execution

❖ Additionally, Cloud computing provides an alternative for monolithic on-premises data centers

- Cloud providers are responsible for hardware, security, storage and network configuration

❖ How to schedule application’s services efficiently to reduce infrastructure’s costs?

- Service Placement (SP) of services for increasing performance is a well-known problem!

5

Problem Definition

❖ Cloud providers do not apply cost-optimization policies in running applications

❖ Kubernetes can improve run-time costs by increasing the availability, however it does not

automatically apply cost-optimization strategies for running a cluster

❖ Excess supply of resource allocation leads to higher costs for the end-user

❖ Monetary cost is an important factor for the end-users!

6

Goal of the Thesis

Solve the SP problem by minimizing the total monetary cost of a Kubernetes cluster

❖ Minimize the volume of allocated resources (Number of VMs)

❖ Maximize intra-communication (Ingress) and minimize inter-communication (Egress) network traffic

❖ Convert application into a graph G = (V, E)

- V = application’s microservices

- E = communication edges (directed)

❖ Apply:

- Graph-partitioning algorithms to create groups of microservices with high affinity traffic rate

- Heuristic methods to efficiently place each partition to the infrastructure’s VMs

Theoretical Background

02

8

Related Work

❖ In Cloud environments:

- Service deployment strategies in graph-based applications for reducing network latency

- Scheduling of microservices in Multi-Cloud

- Service placement and requests scheduling in Edge Clouds for data-intensive applications

❖ In Cloud environments with Kubernetes:

- Scheduling processes of services to serve the network requirements of a University Campus

- Adaptation mechanism for service placement based on the service affinities to rearrange the

services into the existing cluster

- Service placement using graph-partitioning algorithms and heuristic methods for packing

9

Microservices

❖ Architectural style which structures an application as a

collection of services

❖ Microservices can be independently deployed,

configured and expanded

❖ Easier isolation on problematic services and application

errors

❖ Each microservice can be accessible from Application

Programming Interfaces (APIs)

10

Kubernetes

❖ Platform for managing containerized workloads and services

❖ Facilitates both configuration and automation of services

❖ Provides:

- Efficient handling of application’s containers

- Affinities/Anti-Affinities of services for deploying applications

❖ Handles the scaling of the application and containers and the fail over situations

❖ Cluster consists of set of worker machines, called Nodes, that run containerized application

❖ Nodes host Pods, which are the application’s workloads

❖ Control Plane of Kubernetes is responsible for managing the Nodes and Pods

11

Kubernetes Scheduling Process

❖ A scheduler observes for newly initialized Pods that have not assigned to any of the cluster's Nodes

❖ Scheduling Cycle Locate a “feasible” Node to host the Pod

- Filtering: Find a set of Nodes “feasible” to host the Pod

- Scoring: Ranks the Nodes from the filtering step

- Can be extended for custom Scheduling policies

❖ Binding Cycle Schedule Pod to the selected Node

12

Service Mesh and Istio

❖ Service Mesh is a dedicated infrastructure layer which allows adding capabilities into

application like observability, traffic management and security

❖ Routing application’s requests through sidecar proxies

❖ Easier troubleshooting process and monitoring

❖ Istio is an open-source Service Mesh

❖ Injects Envoy sidecar proxies into each service (Pod)

❖ Consists of:

- Data Plane: Responsible for communication of

application’s microservices

- Control Plane: Monitors network traffic and

dynamically programs the Envoys

13

Metric Tools and Agents

❖ Services connected with Istio Service Mesh for monitoring an application and collecting data

❖ Prometheus:

- Monitoring system and alerting service collecting and storing data as time series data

- Records real-time metrics in a time series database

- Extracts data by applying PromQL queries to an application

- Prometheus Node Exporters can be installed into application’s Nodes and collect their data

❖ Kiali:

- Management console for Istio Service Mesh

- Visualizes the application’s graph by collecting data from Prometheus

- Provides information about services, health status, traffic rates and protocols of communication

❖ Grafana:

- Analytics and interactive visualization service

- Visualizes Prometheus Data in graphs

14

Microservice Placement Strategies

❖ Single-step execution strategies:

- Heuristic First Fit (HFF)

❖ Two-step execution strategies:

- Binary Partition - Heuristic Packing (BP - HP)

- K-Partition - Heuristic Packing (KP - HP)

- Bisecting K-Means - Heuristic Packing (BKM - HP)

Heuristic Packing is essential to:

- Verify the successful placement of each partition

- Decrease the volume of resources needed to host each application

15

Related Algorithms (1/4) - Heuristic First Fit (HFF)

❖ Heuristic approach to optimize service placement in a current infrastructure

- Relocating microservices with high affinity traffic rate into the same host

❖ Input: Initial microservice placement, Microservice affinities, Pod resource demands, Node available

resources

❖ Output: Optimized microservice placement solution

❖ Basic idea:

- Sort the microservice affinities in descending order

- For each affinity examine whether source node can relocate to destination’s host node or vice

versa

- If applicable or microservices are already at the same host mark them as moved

➔ Marked microservices can not be moved for the next iterations

- Recalculate the Node available resources according to the moved Pod resource demands

16

Related Algorithms (2/4) - Binary Partition (BP) and K-Partition (KP)

❖ Input: Application’s graph G = (V, E), Resource demands of each microservice

❖ Output: Group of microservices (partitions) that can be placed into infrastructure’s host machines

❖ Process:

➔ Initial partition P = {S}, S = microservice-based application

➔ Repeat until: Each partition contains at least one service and does not exceed threshold α

- Threshold α: Upper bound of the partition’s resource demands (in percentage)

➔ At each iteration:

- Create the partition’s graph Gpart = (Vpart, Epart)

- Apply the Contraction algorithm in total n = |Vpart| times

- Create K sub-partitions according to the best result of Contraction algorithm and insert them

into P (K=2 for BP)

- For KP algorithm created sub-partitions are increased by 1 at each iteration (initial value = 2)

17

Related Algorithms (2/4) - Contraction Algorithm (Karger’s Algorithm)

❖ Randomized algorithm to compute the minimum K-cut of a connected graph

❖ K=2 for BP and for KP the value of K is respective to the iteration’s produced sub-partitions

❖ Basic idea:

- Randomly choose an edge from the graph

- Merge the Nodes connected to this edge (edge contraction)

- Recalculate all the traffic rates connected to the selected Nodes according to the edge

contraction

18

Related Algorithms (3/4) - Bisecting K-Means (BKM)

❖ Graph-partitioning algorithm based on a variant of K-Means algorithm

❖ Create K clusters (groups of microservices) with high intra-affinity and low inter-affinity traffic rates

❖ Input: Application’s graph G = (V, E), K value

❖ Output: K clusters (partitions) that can be placed into infrastructure’s host machines

❖ Basic idea:

- Iteratively split a cluster into two sub-clusters until K clusters are created

- Initial Cluster: Application’s graph G

- At each iteration:

➔ Select a cluster to be split according to the minimum sum of traffic rates among the

cluster’s microservices

➔ Select two microservices as centroids with no communication edge or the with the

lowest traffic rate among the others

➔ Assign the rest microservices between these two centroids according to their affinity

19

Related Algorithms (4/4) - Heuristic Packing (HP)

❖ Adaptive Placement and post-processing algorithm

❖ Attempts to pack of the given application’s partitions into the infrastructure’s host machines

❖ Input: Application’s partitions, Node available and allocated resources, Resource demands of each

Pod

❖ Output: Placement solution for the utilized infrastructure

❖ Basic Idea: Each partition must be packed in at least one Node

❖ Uses two greedy heuristic metrics to evaluate each partition:

- Traffic Awareness (tf): Sum of traffic rates between partition’s microservices and microservices

already located in the processed Node

- Most-Loaded Situation (ml): Scalar value of the load situation between the resource demands

of partition’s microservices and the available resource in the processed Node

System Design and
Benchmarks

03

21

System Architecture (1/2)

❖ Each Pod contains one Envoy sidecar proxy handling

inbound and outbound traffic

❖ Each newly created Pod (new Envoy proxy) sends a

discovery configuration certificate to Istio’s Control Plane

❖ Envoys communicate with all the cluster’s Pods through

Istio’s Data Plane

❖ Prometheus Node exporter collects Node and Pod data

❖ Prometheus pulls metrics from Node exporters, stores

them and sends them to Kiali and Grafana services

22

System Architecture (2/2)

❖ Istio’s Services are placed into cluster’s Nodes according

to Kubernetes Scheduling decision

❖ Each Node contains an instance of a Prometheus Node

Exporter and is associated with a VM

❖ Cluster monitors and handles all application’s Nodes and

Pods

❖ Cloud providers are responsible for managing the

clusters and the utilized VMs

23

Performance Measures (1/2) - Requests per Second (RPS)

❖ The amount of search traffic a system receives in one second

❖ Calculated by the application’s graph, which is collected by

Kiali service

❖ Mean value is located for a specific time frame (i.e. specific

timestamp)

Symbol Description

i Source service

j Destination service

t time (second) of the time frame

Tsec total amount of time of the frame
(seconds)

Rt
total number of requests per

second

➢ Performance measures are utilized by the placement strategies to calculate the microservices

affinity traffic rates

24

Performance Measures (2/2) - Weighted Bidirectional Affinity (WBA)

Symbol Description

Aa,b
affinity metric between edge

connecting a and b

m total number of messages
exchanged

ma,b
messages exchanged between a

and b

d total data exchanged in bytes

da,b
data exchanged in bytes between

a and b

w weight of significance of each
affinity variable

❖ Metric which exploits the size of exchanged messages in bytes

and the total number of messages

❖ A more accurate performance measure than the RPS

❖ Weight factor is selected according to the importance of the

function’s variables

❖ There is no strong preference between the variables

- w = 0.5 for our implementation

25

Benchmark Applications (1/2) - iXen

❖ Software architecture for an IoT scenario

❖ Based on Service Oriented Architecture (SOA)

principles

❖ Converted from SOA architecture to

microservice-based in Kubernetes

❖ Communication via TCP and HTTP protocol

❖ 15 Microservices - 30 communication edges

26

Benchmark Applications (2/2) - Google’s OnlineBoutique eShop

❖ Google’s Benchmark application - Mock eShop

❖ Communication via gRPC and HTTP protocol

❖ gRPC provides better support for load

balancing, tracing and health monitoring

❖ Load Generator microservice applies stressing

into the application with random generated

requests

❖ 12 Microservices - 16 communication edges

27

Kiali Graph (1/2) - iXen

Symbol/Color Explanation

Grey Rectangle Kubernetes Workload (Pod) for a
Microservice

Grey Triangle Kubernetes Service for a
Microservice

Green Edge HTTP Communication

Blue Edge TCP Communication

Purple Arrow Symbol Module applying HTTP request

28

Kiali Graph (2/2) - OnlineBoutique

Symbol/Color Explanation

Grey Rectangle Kubernetes Workload (Pod) for a
Microservice

Grey Triangle Kubernetes Service for a
Microservice

Green Edge HTTP/ gRPC Communication

Purple Arrow Symbol Module applying HTTP request

29

Grafana Visualization (OnlineBoutique)

Cost Function

04

30

31

Cost Function (1/2) - Cost Estimation

❖ Total monetary cost of a cluster is affected by

the volume of resource allocation and the

network traffic

❖ Factors that can vary this cost function:

- Machine Types

- Hours of operation

- Storage volume

- Respective cost of resources

Symbol Description

N Node

M Machine type

h Time of usage (hours)

ten Egress Traffic (bytes)

tin Ingress Traffic (bytes)

s Storage size (GB)

❖ Additional charges:

- GPU usage

- Optimization tools for each infrastructure (i.e. load

balancing of workloads and requests)

32

Cost Function (2/3) - Kubernetes charges in GCP

❖ Each machine type is associated with a specific volume of CPU and RAM allocation

❖ Resources for each VM are charged per hour of usage (same amount of fee)

❖ Ingress Traffic is not charged

❖ Egress Traffic is charged according to the Region of each VM (total requests per GB)

- Responded messages from different VMs are regarded as Ingress communication

❖ Cluster’s storage is not charged

- There is no additional volumes attached

33

Cost Function (3/3) - Cluster cost in GCP

❖ Each Node (VM) allocates 2vCPU and 8GB RAM

❖ Implementation in a homogeneous environment

- Same volume of resources per each utilized VM

Symbol Description

n Number of Nodes

h Time of usage (hours)

te Egress Traffic (bytes)

Description Monthly Cost (USD)

Predefined
vCPU

20.2342 /vCPU

Predefined
RAM

2.711/GB

Egress Traffic 0.01/GB

Experimental Results

05

34

35

Infrastructure

❖ Google Cloud Platform (GCP) as Cloud provider

❖ Kubernetes cluster in Google Kubernetes Engine (GKE)

GKE manages the cluster

❖ Each cluster creates a node pool responsible for handling the cluster’s Nodes (VMs)

Compute Engine service handles VMs in GCP

❖ 4 Nodes with 2 vCPU and 8GB RAM each

- The node pool is responsible for resizing the cluster Nodes

❖ Nodes in europe-west-3b Zone (Homogeneous environment)

❖ Vertical and Horizontal auto scaling and load balancing tools are disabled

36

Application Stressing (1/3) - Apache JMeter

❖ Designed to load test functional behavior and measure performance

❖ Can simulate heavy loads on systems to test and analyze the overall performance under different load

types and distributions

❖ Applies stressing by applying requests via HTTP protocol

❖ Extracts data from responses in various types of response formats

❖ Full multi-threading framework that allows concurrent and simultaneous sampling

❖ Highly extensible

37

Application Stressing (2/3) - iXen Stressing

❖ 100 threads applying randomly requests

❖ Various application’s endpoints for applying requests

❖ Stressing is required to produce network traffic and in

order for the application’s graph to be created

❖ Equally distributed requests

❖ 15 minutes of stressing

❖ 1-2 requests per second

- Small volume of stress testing

Requests
Description

Type Requests
Distribution

Login into the App POST 12.5%

Access device measures POST 12.5%

Access device subscriptions POST 12.5%

Deploy a new Mashup App POST 12.5%

Search an App GET 12.5%

Search for subscriptions GET 12.5%

Make a new subscription POST 12.5%

Access Mashup App GET 12.5%

38

Application Stressing (3/3) - OnlineBoutique Stressing

❖ Frontend microservice is the single application endpoint

❖ Two stressing techniques:

- Load Generator microservice

- Apache JMeter stressing

❖ Load Generator microservice:

- Applies randomly generated requests into the app

- 2-3 requests per second

❖ Apache JMeter stressing:

- 10 minutes of stressing

- Not equally distributed requests

- Nearly 30 requests per second

Requests
Description

Type Requests
Distribution

Access Index Page GET 25.0%

Submit an order POST 41.66%

Show cart products GET 19..44%

Change currency POST 13.88%

Note: Submit order request contains 3 types of requests
for multi-products:

- Show a product (GET)
- Add product to cart (POST)
- Submit order (POST)

39

K-value selection for BKM algorithm (OnlineBoutique)

Number of Nodes

Egress Traffic

Initial
Placement =
Solution of
Kubernetes
Scheduler

40

Execution time of each placement strategy

WBA / RPS =
Performance

Measures

41

Number of utilized Nodes (VMs)

42

Egress Traffic (1/2) - Microservice requested size between Nodes in bytes

43

Egress Traffic (2/2) - Monthly Egress variation in GB

44

Total monetary monthly cost of cluster

Original
Placement =
Solution of
Kubernetes
Scheduler

WBA / RPS =
Performance

Measures

45

Discussion

❖ Comparison of applications:

- Small scaled applications, easily comparable, can be hosted efficiently in 2 VMs

- Different Pod resource requirements:

➔ iXen: 2% of each Node for CPU and 4% for RAM

➔ OnlineBoutique: 5-15% of each Node for CPU and 1-4% for RAM

- Load stressing and size of messages in OnlineBoutique are greater than iXen

❖ Comparison of performance measures:

- RPS is collected from the Kiali graph and WBA is calculated from the Prometheus metrics

- WBA is a more accurate performance metric for measuring the affinity traffic rates

❖ Comparison of microservice placement strategies:

- BKM is overall the best microservice placement strategy in terms of cost

- HFF reduces Egress traffic to the minimum

- BP and KP may produce a non-optimal application’s partitioning result

Conclusion and Future work

06

46

47

Conclusion

❖ Microservice-based applications to graph representation

❖ Combination of graph-partitioning algorithms with heuristic methods

❖ Implementation of microservice placement strategies in Kubernetes on GCP

❖ Homogeneous environment with 4 Nodes (VMs) as initial number of Hosts

Reduction in the volume of utilized Resources

Reduction in the Egress (between VMs) network traffic

Minimization of the monthly monetary cost of the Kubernetes cluster

25% - 50%

50% - 90%

25% - 50%

48

Future work

❖ Trade-off random methods (reducing time complexity) with more accurate graph-partitioning

algorithms (increasing partitioning efficiency)

❖ Apply microservice placement strategies in:

- Large scaled applications

- Heterogeneous environments Greater impact of Egress traffic

- Multi-Cloud

❖ Implementation of:

- A placement strategy that adapts to workload changes dynamically

- Strategies in Kubernetes reducing network latency

Thank you!

Questions?

49

