
Optimal Path Planning for Connected and Automated Vehicles in
Lane-free Traffic

Venkata Karteek Yanumula, Panagiotis Typaldos, Dimitrios Troullinos, Milad Malekzadeh,
Ioannis Papamichail, Markos Papageorgiou, Life Fellow, IEEE.

Abstract— This paper develops a path planning algorithm
for Connected and Automated Vehicles (CAVs) driving on
a lane-free highway, according to a recently proposed novel
paradigm for vehicular traffic in the era of CAVs. The ap-
proach considers a simple model of vehicle kinematics, along
with appropriate constraints for control variables and road
boundaries. Appropriate, partly competitive sub-objectives are
designed to enable efficient vehicle advancement, while avoiding
collisions with other vehicles and infeasible vehicle maneuvers.
Based on these elements, a nonlinear Optimal Control Problem
(OCP) is formulated for each ego vehicle, and a Feasible
Direction Algorithm (FDA) is employed for its computationally
efficient numerical solution. The OCP is solved repeatedly for
short time horizons within a Model Predictive Control (MPC)
framework, while the vehicle advances. It is demonstrated via
traffic simulation, involving many such vehicles, on a lane-
free ring-road that the proposed approach delivers promising
results and can be considered as a candidate for use in further
developments related to lane-free CAV traffic.

Index Terms— Lane-free traffic, automated vehicles, optimal
control, path planning, model predictive control.

I. INTRODUCTION

Automation in manufacturing, process control and further
areas increased the productivity and minimized the errors
to a great extent. Similar outcomes of high efficiency and
increased safety are expected with automation in road vehicle
driving. Human driving is limited with perception of senses,
reaction time and decision making quality. Variations in
the driving behaviour from person to person, in addition to
mentioned limitations, may result in accidents and reduced
utilization of the road infrastructure. In fact, the vast majority
of road accidents are attributed to human error on the account
of, e.g., insufficient sensory information, lack of attention,
shortcomings in driving skill or reckless driving. Each year,
road accidents result in approximately 1.35 million fatalities
and leave some 50 million of injured or disabled worldwide.
Road congestion is another major issue, causing excessive
delays, fuel consumption and emissions [1], [2].

Despite some improvements, road accidents and road
congestion persist as major societal problems, even after
decades of research and developments in road safety and
traffic management, and call for comprehensive solutions.
Automated vehicles, aided by Vehicle-to-Vehicle (V2V) and
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Vehicle-to-Infrastructure (V2I) communication, have the po-
tential to substantially improve the road safety and optimize
the traffic flow [3], [4]. Recent developments on sensors
and communications deliver the systems onboard with high-
quality and comprehensive information, which is processed
to enable safer and more efficient driving compared to
manual driving. Several metro lines across the world are
operating automatically for safety, efficiency, and economic
reasons. However, due to the complex nature of road traffic
compared to railways, automation on roads needs more
sophisticated algorithms, such as optimal control methods,
advanced feedback control or reinforcement learning ap-
proaches [5], [6].

Lane-based traffic was introduced to simplify the driving
task for human drivers; when driving on a lane, the driver
needs to monitor only the distance and speed of the front
vehicle, with no need to also monitor the vehicle’s left, right
and rear sides. On the other hand, lane-changing is more
complex and risky, and it is indeed responsible for 10% of
all road accidents [7]. Given the variation of vehicle widths
(cars, vans, trucks, buses, motorcycles), as well as the need
for safety margins, lane-based traffic is necessarily wasting
a part of the available road width, and hence of potentially
achievable capacity. Additional capacity losses occur due to
dynamic phenomena attributed to lane-changing maneuvers,
including the triggering of traffic breakdown at critical traf-
fic conditions, because of the abrupt and space-consuming
lateral displacements required in lane-based traffic.

Lane changing or overtaking is a high-risk and difficult
task even for CAVs [8], [9], where trajectory calculations
may be computationally heavy, with large amount of data,
requiring various simplifications and assumptions. Optimal
control and model predictive control (MPC) have been
proposed to generate trajectories for lane-based traffic [10],
[11], but the discrete character of lane changing calls for the
introduction of corresponding discrete variables, which is a
burden for real-time feasible solutions.

According to a recently proposed novel traffic paradigm
[12], there is no need, in the era of high-level vehicle
automation and connectivity, to mimic the human lane-based
driving task. The future driving on roads is going in the direc-
tion of full automation, which necessitates the nurturing of
novel ideas that simplify or remove unnecessarily restrictive
traffic rules designed for human drivers. Vehicle sensors and
communications enable a CAV to monitor simultaneously,
continuously and reliably its surroundings on a 360◦ basis;
and to make fast (computer-based) and efficient moving



decisions. These superbly increased capabilities, compared
to human driving, allow for a CAV to “float” safely and ef-
ficiently in a stream of other, potentially cooperating, CAVs,
based on appropriate movement strategies. Thus, highways,
motorways, arterials, and even urban roads may attain a lane-
free structure, regaining the lost capacity and also improving
on traffic safety. Vehicle movement strategies for CAVs are
easier to design, safer and more efficient in a lane-free
environment due to smooth 2-D vehicle movement, where
accident-prone, hence conservative, laterally “discontinuous”
displacements to other lanes become obsolete.

This paper proposes a nonlinear constrained Optimal Con-
trol Problem (OCP) for CAV path planning in lane-free
traffic, using only real-valued variables, thanks to the absence
of pre-specified traffic lanes. In view of various possible
unpredictable disturbances and the need for computational
feasibility in real time, relatively short time horizons (8 s) are
considered. Using an efficient Feasible Direction Algorithm
(FDA) [13], the OCP is solved in 12.4 ms on average. This
allows for repeated problem solution, with updated data of
the dynamically changing environment, in the frame of an
MPC approach. MPC has a long history of applications
in control, automation, and chemical industries [14], [15],
among others. One approach is to solve the OCP at each
time step, with corresponding shift of the planning horizon.
An alternative approach is to re-solve the OCP event-based
[16], which is pursued in the current study.

The communication system for connected vehicles is not
completely foolproof, in terms of cyberattacks or loss of
data, but developments are on-going to render it more
robust [17]. In the current study, it is assumed that V2V
communication enables CAVs, within a limited road range,
to share information related to their current state and short-
term future trajectory.

The rest of the article is organized as follows: Section II
presents the dynamics of each ego vehicle, the constraints
and the components of the objective function that lead to the
OCP formulation; it also includes an outline of the numerical
solution algorithm. Section III explains the procedure used
for MPC, along with simulation results for multiple vehicles
driving on a ring-road. Section IV contains concluding
remarks and outlines on-going work.

II. OPTIMAL CONTROL PROBLEM (OPC) AND
NUMERICAL SOLUTION

The considered OCP comprises a dynamic system model,
control bounds and an objective function, whose minimiza-
tion reflects the achievement of a number of pursued objec-
tives and behavioral features. These elements are described
in the present section, concluding with the formulation of the
OCP. Since all data handling in real time is to be executed in
a digital computer onboard each vehicle and is time-discrete
by nature, a discrete-time OCP formulation and model of
vehicle kinematics are considered for the current work.

A. Vehicle Dynamics and Constraints

Each ego vehicle is described by four state equations,
specifically two equations in each of the longitudinal and

lateral directions. The position of the ego vehicle is consid-
ered on a two-dimensional plane. The vehicle is controlled
by the respective accelerations in the longitudinal and lateral
directions. The lane-free concept of [12] allows for the use
of real-valued states and controls, in particular a continuous
positioning of vehicle in the lateral direction within the road
boundaries. The dynamics of the vehicle in discrete time are
described as follows:

x1(k + 1) = x1(k) + Tx3(k) +
1

2
T 2u1(k) (1a)

x2(k + 1) = x2(k) + Tx4(k) +
1

2
T 2u2(k) (1b)

x3(k + 1) = x3(k) + Tu1(k) (1c)
x4(k + 1) = x4(k) + Tu2(k) (1d)

where T is the step size; k is the discrete integer index,
related to time t via t = kT ; the states x1, x2, x3, x4 are
longitudinal position (of the vehicle centre), lateral position
(of the vehicle centre), longitudinal speed, lateral speed re-
spectively; while u1 and u2 are control inputs that correspond
to longitudinal and lateral accelerations, respectively. The use
of the simple model (1) is justified by the fact that vehicles
are essentially moving longitudinally, with very small head-
ing angles, hence longitudinal and lateral movement may be
considered to be decoupled. In addition, an appropriate term
in the objective function discourages vehicle paths that might
be infeasible with vehicle steering.

Both accelerations are bounded, whereby the longitudinal
upper bound is constant, while the longitudinal lower bound
and the lateral bounds are state-dependent, as follows

umin1(x3) ≤u1(k) ≤ umax1 (2a)
umin2(x2, x4) ≤u2(k) ≤ umax2(x2, x4) (2b)

The constant upper bound umax1 of the longitudinal ac-
celeration may be set with consideration of the vehicle
capabilities and the passenger convenience. Furthermore, a
vehicle, having a non-negative speed x3(k), should not have
negative longitudinal speed at the next time step, i.e.

x3(k + 1) ≥ 0 (3)

should hold. To avoid state constraints that may complicate
the numerical solution of the OCP, we replace the state
equation (1c) in (3) and we obtain, after rearrangement,

u1(k) ≥ − 1

T
x3(k) (4)

This bound may be unrealistically low (negative) at higher
speeds, due to the magnitude of the coefficient −1/T , which
can be a cause of discomfort for the passengers. Note that
the equation-version of (4) may be interpreted as a dead-beat
controller that drives the speed x3 to zero in exactly one
time step. However, we can mitigate the magnitude of the
resulting acceleration bounds by choosing a more moderate
“controller” coefficient 0 < Klong ≤ 1/T , which would drive
x3 to zero asymptotically. This way, we obtain accordingly
moderate lower acceleration bounds, while guaranteeing that
the constraint (3) is always satisfied. In conclusion, the lower
bound on longitudinal acceleration is selected to be,



umin1(x3(k)) = −Klongx3(k) (5)

and (2a) is replaced by the following state-dependent con-
straint to be considered in OCP,

h1 = [u1(k)− umax1][u1(k)− umin1] ≤ 0 (6)

Regarding the lateral constraints (2b), the ego vehicle must
stay within the lateral road boundaries, which, for the present
study, are assumed to be straight lines. The vehicle, posi-
tioned within road boundaries laterally at x2(k) and x2(k+1)
should not cross the road boundaries at time step k + 2 i.e.
we must have,

ew ≤ x2(k + 2) ≤ rw − ew (7)

where rw is the road width, and ew is half of the ego vehicle
width. To avoid complications with state constraints in the
numerical solution of the OCP, we prefer again to consider
appropriate state-dependent control constraints. Note that, if
the vehicle actually reaches the left or right road boundary,
i.e. if the left or right constraint above is activated, then we
must have for the lateral speed x4(k + 2) = 0, as otherwise
the vehicle would eventually exit the road. By replacing
state equations (1b) and (1d) in (7), it may be seen, after
some rearrangements that the above constraints are satisfied
via the following state-dependent inequalities for the lateral
acceleration,

− 1

T 2
[x2(k)−ew]− 3

2T
x4(k) ≤ u2(k) ≤

− 1

T 2
[x2(k)− rw + ew]− 3

2T
x4(k) (8)

Similar to (4) above, the state-dependent bounds in (8)
may take very high magnitudes, which could be unrealistic
or cause discomfort to the passengers. Note here also, that
either part of (8), taken as equalities, may be interpreted as a
respective dead-beat controller (depending on lateral position
and speed) that drives the lateral position x2 to the respective
road boundary and the lateral speed x4 to zero in exactly two
time steps. However, we can mitigate the magnitude of the
resulting acceleration bounds by choosing more moderate
“controller” gains, so as to keep lateral acceleration within
a comfortable range. Specifically the state-dependent bounds
on lateral control may be generalized as,

umin2(x2(k), x4(k)) =−Klat1[x2(k)− ew]

−Klat2x4(k) (9a)
umax2(x2(k), x4(k)) =−Klat1[x2(k)− rw + ew]

−Klat2x4(k) (9b)

where 0 < Klat1 ≤ 1/T 2 and 0 < Klat2 ≤ 3/(2T ) are feed-
back controller gains for the system (1b) and (1d) that may
be chosen appropriately to prevent road departures by the ego
vehicle via asymptotic approaching of the road boundaries.
Specifically, by setting Klat2 = 2

√
Klat1 −Klat1T/2, we get

two identical poles of the closed-loop system, which may be
placed, by the choice of Klat1 within the above range, any-
where on the positive real axis, so as to have an asymptotic
behavior with accordingly moderate lateral acceleration. This
way, we obtain moderate lateral acceleration bounds, while
guaranteeing that the constraint (7) is always satisfied. In

conclusion, the following single inequality constraint, based
on (9), is replacing (2b) in the OCP formulation,

h2 = [u2(k)− umax2][u2(k)− umin2] ≤ 0 (10)

B. Objective Function

The objective function is designed to consider a number of
different and partly competitive aspects regarding the moving
behavior of the vehicle, such as driving at a desired longitudi-
nal speed, considering passenger comfort, avoiding obstacles,
and more. Each aspect is reflected in a corresponding sub-
objective, and the overall objective is a weighted sum of the
sub-objectives. Each sub-objective is a function of problem
variables and possibly external variables and is required to
be continuous and differentiable for good performance of
the numerical solution algorithm used to solve the OCP.
More specifically, the overall objective reflects the following
aspects.

1) Fuel Consumption and Passenger Comfort: Fuel con-
sumption, and hence also emissions, are reduced if longi-
tudinal acceleration maneuvers are mitigated. A quadratic
cost term of longitudinal acceleration acts as an excellent
proxy for minimizing the fuel consumption, as demonstrated
in [18]. Thus, this sub-objective is considered by minimizing
the quadratic terms (u1(k))

2. Moreover, the quadratic terms
lead to smooth acceleration and deceleration over time
in both longitudinal and lateral directions, which benefits
passenger comfort, hence we also include a quadratic term
(u2(k))

2 for the lateral acceleration.
2) Desired Speed: The ego vehicle is expected to drive, if

the traffic conditions allow, at pre-specified desired speeds on
both longitudinal and lateral directions. This is achieved by
penalising the quadratic terms (x3(k)− vd1)

2 and (x4(k)−
vd2)2, where vd1 and vd2 are the desired speeds on longi-
tudinal and lateral directions. In the current study, vd1 has
a positive value, while vd2 is set to zero to minimize the
lateral movement on straight roads. Obviously, the efficiency
of advancing for the vehicle depends on its capability to drive
with longitudinal speed close to the desired one, something
that may of course be hindered in cases of dense traffic
conditions around the vehicle.

3) Avoidance of Obstacles: An ego vehicle treats other
vehicles in its neighbourhood as obstacles. To this end,
an interaction zone around the ego vehicle is specified,
comprising two parts, one downstream and another upstream
of the ego vehicle. Both parts have the same length, which
equals the product of the longitudinal desired speed times the
planning horizon; and all vehicles included in the interaction
zone are treated as obstacles by the ego vehicle. It is assumed
that vehicles communicate and share their decisions. Thus,
each ego vehicle knows about the latest decided future
trajectories of all its obstacles, though this prediction may
not be accurate, as decisions of the obstacles may have to
be updated according to MPC (see Section III-A)

The distance of an automated vehicle from the preceding
vehicle, in lane-based driving, follows commonly the con-
stant time-gap (CTG) policy, whereby the distance is a linear



function of the follower’s speed, and the proportionality fac-
tor is a design parameter, known as the time-gap. Time-gap-
like design parameters (ωx1 , ωx2), now in both longitudinal
and lateral directions, are used also in this work, along with
the vehicles’ physical dimensions, to specify safe distances
for all speed ranges in both moving directions in lane-free
traffic. Consider there are n obstacles inside the interaction
zone of an ego vehicle, and ith obstacle’s relative position
(of obstacle centre) and speed are (oi1, oi2) and (oi3, oi4)
respectively. The ego vehicle considers the safe distance
around the obstacle based on a cost function in the form
of a positive-valued ellipsoid, appropriately designed.

The basis to construct the ellipsoid is the design of an
ellipse surrounding the obstacle. The dimensions and posi-
tioning of the ellipse in longitudinal direction are specified
based on the following requirements:

• A safe space-gap, equal to ωx1
x3, should be maintained

between ego vehicle and obstacle when the ego vehicle
is behind the obstacle.

• A safe space-gap, equal to ωx1
oi3, should be maintained

between ego vehicle and obstacle when the ego vehicle
is in front of the obstacle. This gap prevents the ego
vehicle from moving dangerously close in front of the
obstacle (cut-in). It is interesting to note that this gap
acts as “nudging” of the ego vehicle by the obstacle in
the sense of [12].

• Physical dimensions of both ego and obstacle vehicles
along with some safety margins, should be considered
at zero speed. To this end, we define Li = le + loi,
where le and loi are 1.8 times the lengths of ego and
obstacle vehicles, respectively.

These requirements are fulfilled, if the longitudinal ellipse
axis is set sd1 = Li + ωx1x3 + ωx1oi3, while the ellipse’s
longitudinal center is positioned at

δo1 = oi1 − ωx1
(x3 − oi3) /2 (11)

The handling of obstacles in lateral direction is slightly
different, as time-gaps and safe distances depending on
lateral speeds are considered only when the vehicles are
approaching each other. Since lateral speeds may be positive
or negative, the safe space-gap is ωx2

|x4−oi4| and it applies
only when the vehicles are approaching each other; else it
is zero. A smoothified function of the lateral ellipse axis,
including the vehicle widths, reads

sd2 = Wi+ωx2

[
tanh(oi2 − x2) (x4 − oi4) +√

[tanh(oi2 − x2) (x4 − oi4)]
2

+ εw

]
(12)

where Wi = we +woi, with we and woi being 1.3 times the
respective widths of ego and obstacle vehicles, respectively.
The lateral midpoint of the ellipse coincides with the center
of the obstacle in lateral direction. The safety factors 1.8 and
1.3 on longitudinal and lateral directions, respectively, are
chosen to ensure that the physical dimensions, in particular
also the corners, of the rectangular-shaped vehicles are fully
covered by the ellipse.
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Fig. 1: Illustration of obstacle avoidance function
The ellipsoid function, used to construct a sort of potential

function that penalizes the vehicle’s approach to the obstacle
and acts as a collision avoidance term, is as follows

ci(x, oi) =
1[(

x1−δo1
0.5sd1

)p1
+
(
x2−oi2
0.5sd2

)p2]p3
+ 1

(13)

where p1 and p2 are positive even integers and p3 is a positive
integer. Thus, the ego vehicle “sees” each obstacle as an
ellipsoid hemisphere, based on the specified longitudinal axis
sd1 , lateral axis sd2 and unity value height. The sub-objective
function to avoid n obstacles is then

∑n
i=1[ci(x, oi)].

As an illustrative example, a contour plot of penalty
functions related to obstacle avoidance is shown in Fig. 1.
One ego vehicle and two obstacles are considered, and all
vehicles are 5 m long and 2 m wide. The ego vehicle is
positioned at (10, 5.5) m with speeds (30.0, 1.5) m/s and
is marked with a green box. Two obstacles 1 and 2 are
positioned at (50, 2.5) m and (60, 7.5) m with speeds (25.0,
0.0) m/s and (25.0, 0.0) m/s, respectively, and are marked
with cyan boxes. The time-gaps (ωx1 , ωx2) are (0.5, 0.25) s.
The augmented dimensions, including the ego and obstacle
vehicles’ dimensions are depicted by black boxes, and the
ellipsoid dimensions are represented by red boxes. Note that
the red boxes of both obstacles are shifted towards the ego
vehicle due to difference in longitudinal speeds. The width
of the red box of obstacle 1 coincides with that of the black
box, because both vehicles are laterally diverging. In contrast,
the red box of obstacle 2 has increased width, compared to
the black box, because the ego vehicle is approaching the
obstacle laterally. The figure displays the space-dependent
height of the ellipsoid with parameters p1 = 2, p2 = 2, p3 =
6. Notice the fading width of the ellipsoid, which facilitates
ego vehicle movement around the obstacle at higher ego
vehicle speeds.

4) Coupling of Longitudinal and Lateral Speeds: The
vehicle dynamics in (1) describe decoupled longitudinal and
lateral movements. In extreme cases, particularly at very
low longitudinal speeds, this simplified model may lead to
unrealistic or infeasible maneuvers for the real vehicle, e.g. a
vehicle moving only laterally (x3(k) = 0 and x4(k) 6= 0). In
order to prevent such situations, the following sub-objective
with some small β > 0 is considered,

fc =


(βx3(k)− x4(k))

2 if x4(k) > βx3(k)

(βx3(k) + x4(k))
2 if x4(k) < −βx3(k)

0 otherwise
(14)

The magnitude of fc increases quadratically if the magnitude
of lateral speed is greater than β times the magnitude of



longitudinal speed. Minimization of the sub-objective (14)
couples indirectly the vehicle movements in longitudinal and
lateral directions, when needed.
C. Optimal Control Problem Formulation

Considering all sub-objectives, the OCP is defined as
minimization of the following objective criterion, subject to
state equations (1) and control constraints (6) and (10),

J =

K−1∑
k=0

[
w1 (u1(k))

2
+ w2 (u2(k))

2
+ w3 (x3(k)− vd1)

2

+ w4(x4(k)− vd2)2 + w5

n∑
i=1

[ci(x,oi)] + w6fc

]
(15)

where w1 to w6 are weighting factors to be chosen appro-
priately; and K is the planning horizon. The general form
of the objective function is given by

J =

K−1∑
k=0

Φ[x(k),u(k)] (16)

The general form of (1) is

x(k + 1) = f [x(k),u(k)] (17)

The Hamiltonian function is defined as

H[x(k),u(k),λ(k + 1),µ(k)] = λ(k + 1)Tf [x(k),u(k)]

+ Φ[x(k),u(k)] + µ(k)Th[x(k),u(k)] (18)

where λ(k) are the co-states, associated with the state
equations, and µ(k) are multipliers, associated with the
constraints. Based on these, the necessary conditions of
optimality, to be used in the numerical solution algorithm,
are given here. We have the state equation

x(k + 1) =
∂H

∂λ(k + 1)
= f [x(k),u(k)] (19)

We have the control condition

∂H/∂u(k) = 0 (20)

The co-state equation is given by

λ(k) = ∂H/∂x(k) (21)

Finally, the boundary conditions are given by

x(0) = x0 (22a)
λ(K) = 0 (22b)

D. Numerical Solution Algorithm

The solution of the described OCP must be obtained
through an efficient numerical solver that enables real-
time feasibility. A very efficient feasible direction algorithm
(FDA) [13], [19] is employed to solve the present OCP. The
algorithm utilizes the explicit structure of the state equations
and exploits the necessary conditions of optimality to map
the OCP into a Nonlinear Programming (NLP) problem in
the reduced space of control variables. Thus, the algorithm
attempts to reach a control trajectory u(k), k = 0, ...,K−1,
which corresponds to a local minimum of the cost function
in the mK-dimensional space, where m is the number of
control variables. This marks a substantial reduction of the
problem dimension, as the state variables are eliminated.

More specifically, FDA exploits the fact that g(k) =
[∂f/∂u(k)]

T
λ(k + 1) + ∂Φ/∂u(k) equals the reduced

gradient in the mK-dimensional reduced space of the
control, if the states and co-states involved in the partial
derivative satisfy the state and co-state equations. Having
this possibility to calculate reduced gradients, FDA is an
iterative procedure, starting with a feasible initial-guess con-
trol trajectory specified by the user. The algorithm can be
readily extended, to consider bounds on the control variables
[13], [19]. The multipliers of the inequality constraints (for
i = 1, 2) that define bounds are calculated using (20), as,
µi(k) = −gi(k)/[∂hi/∂ui(k)] for active constraints and
µi(k) = 0 for inactive constraints. Each iteration employs
an appropriate descent direction (e.g. conjugate gradients
or quasi-Newton direction), to specify an improved control
trajectory that reduces the objective function value, while
satisfying the state equations and constraints. The improved
control trajectory is the starting point of the next iteration,
and so forth. The algorithm stops at a local minimum,
when the gradient approaches sufficiently a zero value. It
should be noted that an initial-guess trajectory that is closer
to the optimal one may reduce the required number of
iterations. The algorithmic steps are presented at Algorithm 1
(superscripts (l) indicate the iteration index).

Among several conjugate gradients and Quasi-Newton
methods, the Fletcher-Reeves method was found most ef-
ficient for this OCP and is used for calculating search
directions inside FDA. The approach is fast enough to
be considered for real-time applications. With appropriate
tuning of some algorithm parameters, the algorithm’s runtime
to generate vehicle paths, for a planning horizon of 8 s with
a time-step size of T = 250 ms, is 12.4 ms on average (less
than 100 ms in 99.9% plans, less than 250 ms in 99.99%
plans) on a machine powered by Intel Core i5-8500 CPU
operating at a maximum of 3.00 GHz frequency.

It should also be noted that FDA iterations may be stopped
at any time, even before convergence, delivering a control
trajectory that may not be the optimal one, but is feasible,
i.e. satisfies all state equations and constraints. Last not least,
as the OCP at hand is non-convex, FDA may converge to a
local minimum. Although it is not possible to know, for any
delivered minimum, whether it is a local or global one, we
never identified in the extensive simulation investigations of
Section III, any awkward ego vehicle maneuvers that might
correspond to a bad local minimum.

Algorithm 1 Feasible Direction Algorithm

1: Receive initial values.
2: Guess an initial feasible control u(0)(k), k = 0, ..,K−1.
3: Compute states x(0)(k), k = 0, ..,K − 1.
4: In a unique loop: compute g(0)(k), µ(0)(k) and co-states
λ(0)(k) for k = K − 1, ..., 0 starting with λ(0)(K).

5: Set iteration index l = 0.
6: while l < maximum iterations do
7: Compute a search direction s(l)(k), k = 0, ..,K − 1.
8: Compute a scalar step ξ(l) through line optimization.



9: Compute u(l+1)(k) = u(l)(k) + ξ(l)s(l)(k) and
x(l+1)(k) for k = 0, ..,K − 1 (apply bounds on
control).

10: In a unique loop: compute g(l+1)(k), µ(l+1)(k), and
co-states λ(l+1)(k) for k = K−1, ..., 0 starting with
λ(l+1)(K).

11: Compute projected gradient when the control bounds
are applied.

12: if not converged then
13: index increment, l := l + 1
14: continue
15: else
16: break
17: end if
18: end while
19: Generate control input u(k), k = 0, ...,K − 1.

III. SIMULATION RESULTS WITH MODEL PREDICTIVE
CONTROL (MPC)

A. Model Predictive Control (MPC)
The FDA algorithm is run to solve the OCP for finite

time horizons of 8 s in an MPC framework. MPC is
applied in emulated real time to all vehicles in the simulated
scenario described below. Each ego vehicle receives, in an
asynchronous mode, the decisions of all other vehicles in
its neighborhood (its obstacles), as described in Section II-
B.3, as well as their current states. If the currently available
decision of an obstacle does not extend up to the whole
planning horizon of the ego vehicle, then the ego vehicle
extrapolates the received decision on the assumption of zero
accelerations (longitudinally and laterally). The obstacle tra-
jectories are used by the ego vehicle in the obstacle avoidance
sub-objective of OCP. The MPC framework triggers a path
re-planning, with updated initial state and obstacle movement
prediction, event-based, as explained later.

Thus, each ego vehicle’s OCP is solved based on its
current initial state; the current states of the neighboring
vehicles; and the available decided paths of the neighboring
vehicles. To avoid unreasonable values of longitudinal accel-
eration at lower speeds due to the high cost resulting from
a big difference between the current vehicle speed and the
desired speed in longitudinal direction, the “running” desired
speed vd1 considered within the objective function at each
planning is limited to 1.5 m/s above the current longitudinal
speed. In addition, in cases of high vehicle density Dd

(in veh/km) downstream of the ego vehicle, where fast
advancing or overtaking is not possible, the running desired
speed, is set equal to the average downstream longitudinal
speed Dv added with 0.5 m/s. As a safety measure, the
running desired speed is limited to an additional 1.5 m/s
above current longitudinal speed even in high vehicle density
cases. In summary, we have for the running desired speed

vd1 =

{
x3 + 1.5 if Dd ≤ Dmin

min {x3 + 1.5, Dv + 0.5} if Dd > Dmin
(23)

This running desired speed vd1 is truncated if it exceeds the
actual desired speed of the corresponding ego vehicle.

The produced 8-s path of each ego vehicle is updated,
according to the designed MPC procedure, i.e. the vehicle’s
OCP is re-solved online, if any of the following happens:

• The vehicle has been driving for 4 s according to the
last generated trajectory; note that application of the
full-horizon decisions may lead to myopic actions.

• Any of the dynamic obstacles (other vehicles) deviates
substantially (0.2 m longitudinally or 0.1 m laterally)
from its communicated or predicted path; note that this
corresponds to inaccurate obstacle movement prediction
that could lead to collisions.

• A new obstacle enters the interaction zone of the ego
vehicle.

In any of these cases, the unused rest of the last ego vehicle
control trajectory is used to obtain a good initial guess for
the next FDA application, so as to reduce the algorithm’s
required iterations to converge; while for the rest of the
guess trajectory, zero accelerations are used. Note that, in
case of possible convergence difficulties, the FDA algorithm
may be stopped at any time, since the trajectories produced at
each iteration may be non-optimal, if convergence is not yet
achieved, but are feasible, i.e. they satisfy the state equations
and control bounds.

B. Simulation Environment

Simulations are performed using a custom extension of
the SUMO (Simulation of Urban MObility) simulator [20],
namely TrafficFluid-Sim [21], which extends the open-source
codebase of SUMO to fit the need for lane-free simulation
environments. Vehicle control was performed through an
external application programming interface (API), that is
integrated with TrafficFluid-Sim. As such, custom lane-
free controllers are supported, with unified control over the
longitudinal and lateral dimension, since the default SUMO
car-following and lane-changing models are not appropriate
for lane-free vehicle movement strategies.

Relevant functionalities include but are not limited to:
initialization of the vehicles, support for multiple types
of vehicles, controllers and parametrized penetration rates
(when needed), online monitoring of loop detectors. The
MPC framework is incorporated into the API and invokes
the FDA algorithm when needed.

C. Simulated Scenario and Results

Eight classes of vehicles are considered, each class with
its own dimensions (length, width) in m: (3.2, 1.6), (3.4, 1.7),
(3.9, 1.7), (4.25, 1.8), (4.55, 1.82), (4.6, 1.77), (5.15, 1.84),
and (5.2, 1.88). The desired speeds are assigned randomly
with a uniform distribution between 25 m/s and 35 m/s.

A ring road of 1.0 km length, 10.2 m width, and, of
course, a lane-free structure is considered for simulation. All
the vehicles start from zero speed and strive to reach their
longitudinal desired speed and a zero lateral desired speed.
The following parameters are used for the simulations:

• In (16), {w1, w2, w3, w4, w5, w6} = {0.05, 0.05, 0.025,
0.05, 2, 0.1}.



Fig. 2: Simulation environment of SUMO

• Longitudinal safety time gap ωx1 = 0.5 s and lateral
safety time gap ωx2 = 0.25 s, εw = 0.001 in (12).

• In (13), p1 = p2 = 2 and p3 = 6.
• In (14), β = 0.03.
• The discrete sample size is T = 250 ms. Time horizon

is 8 s, hence K = 32.
• The distance range used for downstream density calcu-

lation in (23) is 150 m with Dmin = 100 veh/km.
Fig. 2 displays a snapshot from the related simulation

video, where the ring-road is unfolded as a straight segment
for simplicity. Various scenarios with different densities of
up to 300 veh/km are considered and the related statistics
are given in Table I.

TABLE I: Density (veh/km) and flow (veh/h) results

Density 50 100 150 200 250 300

Flow 5125 9592 12843 15478 14634 13728

βmax 0.049 0.038 0.033 0.035 0.043 0.041

For a density of 100 veh/km (i.e. 100 vehicles driving
on the ring-road of 1 km length) and a simulation time
horizon of 20 min, an average flow of 9592 veh/h is achieved.
Note that the road width suffices barely for 3 conventional
traffic lanes, hence this flow is significantly higher than a
conventional lane-based traffic capacity, which would not
exceed 2,500 veh/h/lane. Note that, at 200 veh/km density,
the flow reaches its highest value (capacity) at 14634 veh/h,
before decreasing at higher density values. There no colli-
sions reported in densities up to 300 veh/km.

The readings of βmax in Table I correspond to the maxi-
mum value of the ratio of the magnitudes of lateral speed and
longitudinal speed, excluding the very first planning horizon.
Note that, due to the stochastic placement of vehicles and
their zero speed at the start of simulation, the very first
planning horizon can have artificially higher β values, but
they were observed to be always less than 0.07.

Trajectories of two representative vehicles in the simu-
lation are depicted in Figs. 3 to 6, corresponding vehicle
movements in the SUMO simulator are available as videos
at https://bit.ly/2PvNCMb . Note that, in the videos, the
camera is tracking the particular vehicle of interest, whose
movement can be matched with the trajectories presented in
the figures. The surrounding vehicles appear to move forward
if their relative longitudinal speed is greater than the one of
the ego vehicles being tracked. Similarly, the surrounding
vehicles appear to move back if their relative longitudinal
speed is less than the one of the ego vehicles being tracked.

Recall that, at each path planning, the running desired lon-
gitudinal speed used in the OCP is limited by an additional
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Fig. 3: Longitudinal movement in 100 veh/km density
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Fig. 4: Lateral movement in 100 veh/km density

1.5 m/s to the current longitudinal speed in accordance with
(23). Figs. 3 and 5 display the desired longitudinal speed
(green dashed line), the running desired longitudinal speed
(blue dashed line) and the actual speed (red line). The vehicle
starts form zero speed and reaches the desired longitudinal
speed when there is sufficient space for safe manoeuvres
(Fig. 3) or it reaches some “steady state” speed depending
on the obstacles around (Fig. 5). The accelerations are limited
in magnitude and fairly smooth, which is good for passenger
convenience and fuel consumption. In conclusion, actual
longitudinal speed does not always reach or constantly stay
at the desired speed due to fairly dense traffic conditions and
other vehicles ahead, with lower desired speeds, that need to
be overtaken.

The lateral movement is also seen to be influenced by
surrounding density and space availability, as visible from
the trajectories shown in Figs. 4 and 6. Specifically, at lower
density (Fig. 4), the ego vehicle is seen to vividly change
its lateral position, occasionally over the complete width of
the road, in order to avoid or overtake other slower vehicles
in front and advance faster; something that is not equally
possible in higher density conditions (Fig. 6). In any case,
the corresponding lateral speed and acceleration trajectories
are moderate in magnitude and fairly smooth, which is good
for the passenger convenience.
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Fig. 5: Longitudinal movement in 200 veh/km density
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Fig. 6: Lateral movement in 200 veh/km density

IV. CONCLUSION

An optimal path-planning approach is developed for use
in an event-triggered MPC mode for CAV in lane-free road
environment. In the proposed approach, an appropriate OCP
is formulated, taking into account efficiency, safety and
convenience aspects, as well as road boundary and further
constraints. The OCP is solved numerically with NLP tech-
niques using an efficient FDA algorithm, which converges
to a local minimum in polynomial time. The approach is
applied simultaneously to multiple communicating vehicles,
which share information about their states and movement
decisions. MPC is run with a planning horizon of 8 s and is
updated when significant deviations occur or when half of the
horizon time has expired. It is demonstrated via simulation
on a ring-road with hundreds of driving vehicles that the
proposed approach leads to very efficient traffic flow, while
preserving safety and passenger convenience.

Current and future work is focussed on:

• Improving the efficiency in terms of road utilization and
flow maximization.

• Application of the algorithm in even further higher
traffic densities.

• Introduction of state-dependent bounds on longitudinal
control in emergency situations at high densities to
avoid collisions.

• Introducing on-ramps, off-ramps and variable road
widths.
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