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Abstract— In this paper, we design decentralized control
strategies for the two- dimensional movement of autonomous
vehicles on lane-free roads. The bicycle kinematic model is
used to model the dynamics of the vehicles, and each vehicle
determines its control input based only on its own speed and on
the distance from other (adjacent) vehicles and the boundary
of the road. Potential functions and Barbălat’s lemma are
employed to prove the following properties, which are ensured
by the proposed controller: (i) the vehicles do not collide
with each other or with the boundary of the road; (ii) the
speeds of all vehicles are always positive, i.e., no vehicle moves
backwards at any time; (iii) the speed of all vehicles remain
below a given speed limit; (iv) all vehicle speeds converge to
a given longitudinal speed set-point; and (v) the accelerations,
lateral speeds, and orientations of all vehicles tend to zero. The
efficiency of the proposed 2-D cruise controllers is illustrated
by means of numerical examples.

I. Introduction

Vehicle automation has made tremendous advances in the
last decades, and the path to full automation of vehicles
in a foreseeable future seems more than likely. An initial
stage of vehicle automation is the standard cruise control
system which maintains the speed of the vehicle at a desired
value to assist the driver. These systems have meanwhile
evolved to Adaptive Cruise Control (ACC) systems, which
automatically adjust the speed to maintain certain distance
from a front vehicle or to maintain a desired speed. Recent
advances of communication technologies have also been used
in vehicle automation to develop Cooperative ACC systems
(CACC) so that vehicles can communicate wirelessly which
may increase their safety, reduce congestion, and improve
traffic flow on highways ([1], [15], [24]) Both ACC and
CACC systems have been extensively studied in the literature
(see for instance [8], [11], [15], [21], [25], [28]).

The vast majority of research effort is focused on studying
lane-based traffic models, where vehicles abide to a lane
discipline, which increases traffic safety, as it simplifies the
task of manual driving. Indeed, all control strategies for ACC
and CACC systems are developed based on information from
the vehicle directly in front or behind (see for instance [8],
[11], [15], [21], [25] and references therein). Apart from the
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car-following task, another necessary driving task is lane-
changing, which is a more complex and riskier maneuver,
since the driver needs to look for an available gap on the
target lane and estimate the speeds of many adjacent vehi-
cles quasi-simultaneously. Modeling lane changes and two-
dimensional movement on lane-based roads is a complicated
problem, and various approaches have been considered, see
for instance [5], [22], [30].

Recently, launched by [19], new principles and research
directions were proposed for autonomous vehicles operating
on lane-free roads ([3], [16], [19]) that may improve traffic
flow and increase capacity of highways. The vehicles move
on the two-dimensional surface of the road without obeying
to a lane discipline as in conventional traffic. Since connected
and automated vehicles use sensors and can communicate
their presence and state to other vehicles, they are suitable
and more efficient in a lane-free environment where they
can use their capabilities to their full extent. For the lane-
free concept, only a few models have been proposed that
can describe vehicle movement on lane-free roads, driven
by human drivers; see [1], [9], [17]. These approaches are
not suitable to describe autonomous vehicles since they are
based on linear systems theory and traditional longitudinal
car-following models, which, however, do not guarantee: (i)
collision avoidance with other vehicles or the boundary of
the road, (ii) positivity of speeds, and (iii) speeds within
road speed limits. In addition to the lane-free traffic, another
concept that can increase the flow of vehicles on a road is the
associated concept of ‘nudging’ (see [19]). Nudging implies
a virtual force that vehicles apply to the vehicles in front of
them, and it has been shown that nudging can increase the
flow in a ring-road and can have a strong stabilizing effect;
see [10] and references therein.

In this paper, we consider identical autonomous vehicles
described by the bicycle kinematic model, since, it is able to
capture the non-holonomic constraints of the actual vehicle
(see [20], [21]). We design a family of nonlinear decentral-
ized controllers for the safe operation of the vehicles on lane-
free roads. The main features of the proposed approach are:

(i) The proposed nonlinear controllers are fully decentral-
ized, and each vehicle only has access to the distance
from the boundaries of the road and the distance from
adjacent vehicles and does not require any information
or estimates of relative speeds or relative orientation;

(ii) the vehicles do not collide with each other or with the
boundary of the road;

(iii) the speeds of all vehicles are always positive and
remain below a given speed limit;



(iv) all vehicle speeds converge to a given longitudinal
speed set-point; and

(v) the accelerations, lateral speeds, rotation rates, and
orientations of all vehicles tend to zero.

(vi) all the above features are valid globally, i.e., for all
physically relevant initial conditions.

To our knowledge, a cruise controller for a two-
dimensional lane-free road that captures all these properties
simultaneously and globally, is not available in the literature.
To avoid collisions between vehicles and with the boundary
of the road, we employ potential functions, which have
been extensively used to address a variety of problems see
[4], [6], [13], [14], [18], [23], [29]. Finally, we combine
Lyapunov functions with barrier functions (see [2], [11],
[26]) to restrain the movement of the vehicles and exploit
Barbălat’s lemma [13] to globally address the objectives of
speeds, acceleration, and orientation convergence as stated
above. The main theoretical challenges stem from the fact
that the nonlinear control system studied in the paper evolves
on a specific open set, and, in addition, various objectives and
constraints must be satisfied simultaneously and globally.

The structure of the paper is as follows. Section II is de-
voted to the presentation of the problem formulation and the
objectives of the paper. Section III contains the main results.
Section IV presents numerical examples to demonstrate the
efficiency of the proposed decentralized cruise controllers.
Finally, concluding remarks are given in Section V. Due to
space constraints all proofs can be found in [12].

Notation. Throughout this paper, we adopt the following
notation. R+ := [0,+∞) denotes the set of non-negative real
numbers. By |x| we denote both the Euclidean norm of a
vector x ∈ Rn and the absolute value of a scalar x ∈ R. By
x′ we denote the transpose of a vector x ∈ Rn. By |x|∞ =

max{|xi|, i = 1, ..., n} we denote the infinity norm of a vector
x = (x1, x2, ..., xn)′ ∈ Rn. Let A ⊆ Rn be an open set. By
C0(A,Ω), we denote the class of continuous functions on
A ⊆ Rn, which take values in Ω ⊆ Rm. By Ck(A; Ω), where
k ≥ 1 is an integer, we denote the class of functions on
A ⊆ Rn with continuous derivatives of order k, which take
values in Ω ⊆ Rm. When Ω = R the we write C0(A) or Ck(A).

II. Problem Description

Consider n identical vehicles moving on a lane-free road
of width 2a > 0. The movement of the vehicles is described
by the following set of ODEs:

ẋi = vi cos(θi)
ẏi = vi sin(θi)
θ̇i = σ−1vi tan(δi)
v̇i = Fi

(1)

for i = 1, ..., n, where σ > 0 is the length of each vehicle
(a constant). Here, (xi, yi) is the reference point of the i-th
vehicle with i ∈ {1, ..., n} and is placed at the midpoint of
the rear axle, with xi ∈ R being the longitudinal position
and yi ∈ (−a, a) being the lateral position of the vehicle;
vi is the speed of the i-th vehicle at the point (xi, yi), θi ∈(
− π2 ,

π
2

)
is the angular orientation of the i-th vehicle, δi is the

Fig. 1: Each vehicle is modeled by the bicycle kinematic model.

steering angle of the front wheels relative to the orientation
θi of the i-th vehicle, and Fi is the acceleration of the i-th
vehicle. Model (1) is known as the bicycle kinematic model
(see Fig. 1) and has been widely used to represent vehicles
due to its simplicity to capture vehicle motion in normal
driving conditions, see ([14], [20], [21], [22]). To make the
subsequent analysis less cumbersome, we define

ui = σ−1vi tan(δi), i = 1, ..., n (2)

Then, model (1) can be written in the form

ẋi = vi cos(θi)
ẏi = vi sin(θi)
θ̇i = ui

v̇i = Fi

(3)

for i = 1, ..., n, where ui and Fi are the control inputs. Then,
δi can be obtained directly from (2) as a function of ui.

In what follows, we assume that there is no communication
between the vehicles, and that the only available sensing
among adjacent vehicles concerns the (elliptical) distance
between vehicles, defined by

di, j :=
√

(xi − x j)2 + p(yi − y j)2, for i, j = 1, ..., n (4)

where p > 0 is a weighting factor. For p = 1 we obtain
the standard Euclidean distance, while for larger values of
p > 1, we have an “elliptical” metric which will allow to
approximate more accurately the dimensions of a vehicle
and to place more vehicles across the width of the road. The
optimal selection of the constant p ≥ 1 can be found in [12].

In what follows we use the notation

w = (x1, ..., xn, y1, ..., yn, θ1, ..., θn, v1, ...., vn)′ ∈ R4n (5)

for the stack vector of longitudinal and lateral positions,
orientations and speeds off all n vehicles. We assume that
all vehicles operate on a lane-free road with speed limit
vmax > 0. Moreover, for any given constant ϕ ∈

(
0, π2

)
, we

define the set

S := Rn × (−a, a)n × (−ϕ, ϕ)n × (0, vmax)n. (6)

The set S in (6) represents all possible states of the system
of all n vehicles described by (3) and has the following
interpretation. First, each vehicle should stay within the road,
i.e., (xi, yi) ∈ R × (−a, a) for i = 1, ..., n. Moreover, with
the given constant ϕ ∈

(
0, π2

)
, the vehicles should not be



able to turn perpendicular to the road, as it should hold that
θi ∈ (−ϕ, ϕ) for i = 1, ..., n. The constant ϕ can be understood
as a safety constraint, which restricts the movement of a
vehicle; for instance, for vehicles moving at high speed, ϕ
should take values close to zero. Finally, the speeds of all
vehicles should always be positive, i.e., no vehicle moves
backwards at any time; and respect the road speed limits. One
very important property, that is not captured by the set S ,
is that of collision avoidance between vehicles. This implies
that the distance between the reference points of any pair of
vehicles should always be greater than L > 0, which is a
safety distance that prevents collisions, see [12].

Due to the various constraints explained above, we must
consider system (3) on the open set Ω ⊂ R4n defined by:

Ω :=
{

w ∈ S : di, j > L, i, j = 1, ..., n , j , i
}
. (7)

The set Ω in (7) describes the state-space of the n vehicles
operating on a lane-free road and acts as a basis for the
problem formulation and for expressing the main objectives
of the paper.

Problem Statement: For a group of n vehicles modeled
by (3) and operating on a lane-free road of width 2a > 0,
design decentralized feedback laws for ui and Fi such that
the following objectives hold:

1) the vehicles do not collide with each other or with the
boundary of the road, i.e., di, j(t) > L for all t ≥ 0,
i, j = 1, ..., n, j , i, for a given constant L > 0, and
yi(t) ∈ (−a, a) for all t ≥ 0.

2) the speeds of all vehicles are always positive and remain
below the given speed limit, i.e., vi(t) ∈ (0, vmax) for
t ≥ 0, and converge to a given longitudinal speed set-
point v∗ ∈ (0, vmax), i.e., lim

t→+∞
(vi(t)) = v∗, i = 1, ..., n.

3) the orientation of each vehicle is always bounded by
the given value ϕ ∈

(
0, π2

)
, i.e., θi(t) ∈ (−ϕ, ϕ) for t ≥ 0,

and converges to zero, i.e., lim
t→+∞

(θi(t)) = 0, i = 1, ..., n.
4) the accelerations, angular speeds, and lateral speeds

of all vehicles tend to zero, i.e., lim
t→+∞

(Fi(t)) = 0,
lim

t→+∞
(ui(t)) = 0, and lim

t→+∞
(ẏi(t)) = 0, i = 1, ..., n.

It should be noted that, in mathematical terms, we require
the closed-loop system to be well-posed on the state space
Ω ⊂ R4n defined by (7), i.e., for every initial condition w(0) ∈
Ω, the closed-loop system (3), under the feedback laws ui

and Fi for i = 1, ..., n, has a unique solution w(t) ∈ Ω defined
for all t ≥ 0. Moreover, we require that, for every initial
condition w(0) ∈ Ω, the solution w(t) ∈ Ω of the closed-loop
system (3), under the effect of all feedback laws for ui and
Fi for i = 1, ..., n, satisfies lim

t→+∞
(vi(t)) = v∗, lim

t→+∞
(θi(t)) = 0,

lim
t→+∞

(Fi(t)) = 0, lim
t→+∞

(ui(t)) = 0 for all i = 1, ..., n. It should
also be noticed that the lateral speed of each vehicle also
tends to zero, i.e., lim

t→+∞
(ẏi(t)) = 0 for i = 1, ..., n.

III. Main Results

In this section, we design a novel decentralized control
strategy in order to achieve the various objectives discussed
in Section II. First and foremost, we want to design the

control inputs ui and Fi in such a way that vehicles operating
on a lane-free road do not collide with each other or with
the boundary of the road. A typical approach for collision
avoidance between vehicles is the use of repulsive potential
functions (see for instance [4], [6], [7], [14], [23], [27], [29]).
Repulsive potential functions are continuously differentiable
functions, which repel vehicles based on their distance, with
the force of repulsion being stronger as the distance between
two vehicles becomes smaller, while there is little or no
repulsion when the vehicles are distant. To that end, let
V : (L,+∞)→ R+ be a C2 function that satisfies:

lim
d→L+

(V(d)) = +∞ (8)

V(d) = 0, for all d ≥ λ (9)

where λ > L is a constant. Let also U : (−a, a) → R+ be a
C2 function that satisfies:

lim
y→(−a)+

(U(y)) = +∞, lim
y→a−

(U(y)) = +∞ (10)

U(0) =0. (11)

The potential function U(y) in (10), (11) is designed so as
to exert a repulsive force when the vehicles approach the
boundary of the road.

To design feedback control laws that address objectives
(1)-(4) in the Problem Statement, we apply a control Lya-
punov function methodology, where the feedback laws are
selected appropriately to render the derivative of a Lyapunov
function negative semi-definite. An appropriate function for
this task is the following. Define, for all w ∈ Ω,

H(w) :=
1
2

n∑
i=1

(vi cos(θi) − v∗)2
+

1
2

n∑
i=1

v2
i sin2(θi)

+

n∑
i=1

U(yi) +
1
2

n∑
i=1

∑
j,i

V(di, j)

+ A
n∑

i=1

(
1

cos(θi) − cos(ϕ)
−

1
1 − cos(ϕ)

)
(12)

where A > 0 is a parameter of the controller and the
Lyapunov function, v∗ ∈ (0, vmax) is a given longitudinal
speed set-point, and ϕ ∈

(
0, π2

)
is any constant that satisfies

the inequality

cos (ϕ) ≥
v∗

vmax
. (13)

The function H in (12), is inspired by the total energy
of the system of n vehicles and will allow us to exploit
certain properties of the state space Ω in (7). The first two
terms ( 1

2
∑n

i=1 (vi cos(θi) − v∗)2 + 1
2
∑n

i=1 v2
i sin2(θi)) represent

the kinetic energy of the system of n vehicles relative to
an observer moving along the x−direction with speed equal
to v∗. The sum of the third and fourth term (

∑n
i=1 U(yi) +

1
2
∑n

i=1
∑

j,i V(di, j)), which are based on the potential func-
tions (10) and (11), is the potential energy of the system.
Finally, the last term of (12) (A

∑n
i=1

(
1

cos(θi)−cos(ϕ) −
1

1−cos(ϕ)

)
)

is a penalty term that blows up when θi → ±ϕ. Inequality
(13) is a technical assumption that restricts the movement



of the vehicle when the desired speed is close to the road
speed limit. Notice also that H is not only a Lyapunov
function, but possesses also certain characteristics of barrier
functions, (see for instance [2], [11], [26]). Indeed, H(w)
grows unbounded on certain parts of the boundary of Ω in
(7), i.e., when yi → ±a or θi → ±ϕ or di, j → L for some
i, j = 1, ..., n with i , j (recall (8) and (10)).

Proposition 1: Let constants A > 0, vmax > 0, v∗ ∈
(0, vmax), λ > L > 0, ϕ ∈

(
0, π2

)
that satisfies (13), and define

the function H : Ω → R+ by means of (12), where Ω is
given by (7). Then, there exist a non-decreasing function
κ : R+ → [0, a), a non-increasing function ρ : R+ → (L, λ]
and a non-decreasing function ω : R+ →

[
0, ϕ) such that the

following implication holds:

w ∈ Ω⇒|θi| ≤ ω (H(w)) , |yi| ≤ κ (H(w)) ,
di, j ≥ ρ (H(w)) , for i, j = 1, ..., n , j , i. (14)

Implication (14) suggests that for any w ∈ Ω, the orienta-
tions θi and the lateral positions yi of all vehicles i = 1, ..., n,
as well as the distances di, j, i, j = 1, ..., n , j , i, are bounded
by the energy of the system, see (12).

The feedback laws for each vehicle i = 1, ..., n can
be designed using (12), in terms of their own speed and
orientation and the gradient of the potential functions Vi and
Ui that satisfy (8), (9) and (10), (11), respectively:

ui = −

(
v∗ +

A

vi (cos(θi) − cos(ϕ))2

)−1

×

µ1vi sin(θi) + U′(yi) + p
∑
j,i

V ′(di, j)
(yi − y j)

di, j
+ sin(θi)Fi


(15)

Fi = −
ki(w)

cos(θi)
(vi cos(θi) − v∗) −

1
cos(θi)

∑
j,i

V ′(di, j)
(xi − x j)

di, j

(16)

ki(w) = µ2 +
1
v∗

∑
j,i

V ′(di, j)
(xi − x j)

di, j

+
vmax cos(θi)

v∗ (vmax cos(θi) − v∗)
f

−∑
j,i

V ′(di, j)
(xi − x j)

di, j

 (17)

where µ1, µ2 > 0 are constants (controller gains) and f ∈
C1 (R) is any function that satisfies

max(x, 0) ≤ f (x) for all x ∈ R. (18)

The term ki(w) in the acceleration Fi(t), given by (16), is
a state-dependent controller gain which guarantees that the
speed of each vehicle will remain positive and less than the
speed limit. The second term that appears in (16), is the
summation of repelling forces (V ′(d)) from vehicles that are
in close proximity to vehicle i. If V in (8), (9) is decreasing,
then, the second term of (16) is positive if vehicle j is behind
vehicle i, i.e., (xi− x j) > 0. Indeed, in this case, we have that
−V ′(di, j)

(xi−x j)
di, j

> 0, which represents the effect of nudging,
since vehicles that are close and behind vehicle i will exert a
“pushing” force towards it that will increase its acceleration.
It should be noticed that the control laws above are designed

in such a way that the nudging force will not jeopardize
traffic safety in terms of collisions, speeds exceeding desired
bounds or vehicles departing from the road.

Remark 1: (i) Property (9) guarantees that the feedback
laws (15), (16), (17) depend only on information from
adjacent vehicles, namely from vehicles that are located at a
distance less than λ > 0. Notice also that the control inputs
(15), (16), (17) only require the distance from neighboring
vehicles and not additional information, such as relative
speeds (vi − v j) or relative orientations (θi − θ j).

(ii) Any function f ∈ C1 (R) that satisfies (18) can be used
in (17). For example, the function f (x) = ε

2 + 1
2ε x2 for every

ε > 0 satisfies (18), since max(x, 0) ≤ |x| ≤ ε
2 + 1

2ε x2 for all
x ∈ R. Another function that satisfies (18) is the function

f (x) =
1
2ε


0 i f x ≤ −ε

(x + ε)2 i f − ε < x < 0
ε2 + 2εx i f x ≥ 0

(19)

for every ε > 0. This generic design for the function f will
allow to regulate the longitudinal acceleration as desired.

Let p ≥ 1, and consider two concentric ellipses with semi-
major axes L and λ, with L < λ, and semi-minor axes L

√
p

and λ
√

p , respectively. Let m ≥ 2 be the maximum number
of points that can be placed within the area bounded by the
two concentric ellipses, so that each point has distance (in
the metric given by (4)) at least L from every other point.
The following proposition presents certain properties of the
control laws (15), (16), (17).

Proposition 2: Let constants λ > L > 0, a > 0, p ≥ 1, and
let V : (L,+∞) → R+, U : (−a, a) → R+ be C2 functions
that satisfy (8), (9) and (10), (11), respectively, and define

b1(s) := max
{ ∣∣∣V ′(d)

∣∣∣ : s ≤ d ≤ λ
}

for s ∈ (L, λ] (20)

b2(s) := max
{ ∣∣∣U′(y)

∣∣∣ : |y| ≤ s
}

for s ∈ [0, a) . (21)

Define the set Ω by means of (7). Then, for any w ∈ Ω, there
exist a non-decreasing function κ : R+ → [0, a) and a non-
increasing function ρ : R+ → (L, λ] such that the functions
ui, Fi and ki in (15), (16), and (17), respectively, satisfy the
following inequalities

ki(w)v∗ ≥
∑
j,i

V ′(di, j)
(xi − x j)

di, j
≥ −ki(w) (vmax cos(θi) − v∗) ,

i = 1, ..., n; (22)

µ2 ≤ ki(w) ≤ R(H(w)), i = 1, ..., n; (23)
ki(w)vmax ≥ki(w) (vmax − vi) ≥ Fi ≥ −ki(w)vi ≥ −ki(w)vmax;

(24)

|ui| ≤
1
v∗

((µ1 + ki(w)) vmax + b2 (κ (H(w))))

+
m
v∗
√

pb1 (ρ (H(w))) (25)

where R : R+ → R+ is the increasing function defined by

R(s) := µ2 +
m
v∗

b1 (ρ (s))

+ vmax
(A + s cos(ϕ) (1 − cos(ϕ))) max { f (z) : |z| ≤ mb1 (ρ (s))}

Av∗ (vmax − v∗) + v∗ (vmax cos(ϕ) − v∗) (1 − cos(ϕ)) s
.

(26)



Inequality (23) suggests that the magnitude of ki(w)
depends on the “energy” of the system defined by the
Lyapunov-like function H and the maximum number of
neighboring vehicles m ≥ 2. Moreover, ki(w) plays an impor-
tant role, since it provides certain bounds on the acceleration
Fi in (24) and the maximum “nudging” effect that each
vehicle i = 1, ..., n experiences from neighboring vehicles
as described in (22). We are now in a position to state the
main result.

Theorem 1: Suppose that there exist constants a > 0,λ >
L > 0, p ≥ 1 and C2 functions V : (L,+∞) → R+, U :
(−a, a)→ R+ that satisfy (8), (9), and (10), (11), respectively.
In addition, for given constants vmax > 0, v∗ ∈ (0, vmax),
and ϕ ∈

(
0, π2

)
that satisfies (13), define the function H :

Ω → R+ by means of (12) where Ω is given by (7). Then,
for every w0 ∈ Ω there exists a unique solution w(t) ∈ Ω

of the initial-value problem (3), (15), (16), (17) with initial
condition w(0) = w0. The solution w(t) ∈ Ω is defined for all
t ≥ 0 and satisfies for i = 1, ..., n

lim
t→+∞

(vi(t)) = v∗, lim
t→+∞

(θi(t)) = 0 (27)

lim
t→+∞

(ui(t)) = 0, lim
t→+∞

(Fi(t)) = 0. (28)

Moreover, there exist a non-decreasing function κ : R+ →

[0, a) and a non-increasing function ρ : R+ → (L, λ] such
that

|Fi(t)| ≤ R(H(w0))vmax for all t ≥ 0, (29)

|ui(t)| ≤
1
v∗

((µ1 + R(H(w0))) vmax + b2 (κ (H(w0))))

+
m
√

p
v∗

b1 (ρ (H(w0))) for all t ≥ 0.
(30)

where b1, b2,R are defined by (20), (21) and (26), respec-
tively.

Remark 2: (i) It is important to notice that due to technical
constraints, an inequality of the form |Fi(t)| ≤ K must be
satisfied for all t ≥ 0, where K > 0 is a constant that depends
on the technical characteristics of the vehicles and the road.
Inequality (29) allows us to determine the set of initial
conditions w0 ∈ Ω for which the inequality |Fi(t)| ≤ K holds:
it includes the set of all w0 ∈ Ω with R(H(w0))vmax ≤ K.

(ii) Although we cannot predict the “ultimate”
arrangement of the vehicles on the road (and we
cannot even show that a final configuration of the
vehicles on the road is attained; see remark below),
the limits (27), (28) and definitions (16) allow
us to predict that lim

t→+∞

(∑
j,i V ′(di, j(t))

(xi(t)−x j(t))
di, j(t)

)
=

lim
t→+∞

(
U′(yi(t)) + p

∑
j,i V ′(di, j(t))

(yi(t)−y j(t))
di, j(t)

)
= 0 for

i = 1, ..., n. Consequently, the “ultimate” arrangement of the
vehicles in the road (if such a thing exists) must satisfy the
equations

∑
j,i V ′(di, j)

(xi−x j)
di, j

= U′(yi) + p
∑

j,i V ′(di, j)
(yi−y j)

di, j
=

0 for i = 1, ..., n as well as the constraints |yi| < a,
di, j > L for i, j = 1, ..., n , j , i. Despite the fact that the
constrained system of 2n equations has infinite solutions, not
every arrangement of vehicles satisfies the aforementioned
constrained system.

(iii) The proof of Theorem 1 relies on Barbălat’s lemma
[13] and does not use LaSalle’s invariance principle. The
reason that LaSalle’s invariance principle cannot be used for
the proof of Theorem 1 is the fact that the state components
xi(t), i = 1, ..., n, do not take values in a bounded set.
Moreover, we cannot show that the relative positions of the
vehicles, i.e., the quantities xi(t)− x j(t) for i, j = 1, ..., n , j ,
i, take values in a bounded set. Thus, we cannot show that
the limits lim

t→+∞
(yi(t)), lim

t→+∞

(
xi(t) − x j(t)

)
, lim

t→+∞

(
di, j(t)

)
for

i, j = 1, ..., n , j , i, exist. Consequently, we cannot ensure
that a final configuration of the vehicles on the road will
be attained. However, the proof of Theorem 1 shows that
lim

t→+∞
(ẏi(t)) = 0, lim

t→+∞

(
ẋi(t) − ẋ j(t)

)
= 0, lim

t→+∞

(
ḋi, j(t)

)
= 0 for

i, j = 1, ..., n , j , i (a consequence of (3), (27) and inequality
(5.29) in the proof of Theorem 1, see [12]). Therefore, it is
expected that the vehicles on the road will approach a final
configuration.

IV. Illustrative Examples
In the simulation results below, we demonstrate the appli-

cation and effectiveness of the proposed nonlinear decentral-
ized cruise controllers for autonomous vehicles driving on
lane-free roads. Specifically, we consider a group of n = 10
vehicles on a lane-free road of width 2a > 0, modeled as in
(2) with the feedback laws (15), (16), (17), and f (x) given
by means of (19). The vehicle-repulsive potential function V
and the boundary-repulsive potential function U are given by

V(d) =

{
q (λ−d)3

d−L , L < d ≤ λ
0 , d > λ

, (31)

U(y) =


(

1
a2−y2 −

c
a2

)4
,

 −a < y < − a
√

c−1
√

c and
a
√

c−1
√

c < y < a

0 − a
√

c−1
√

c ≤ y ≤ a
√

c−1
√

c

where c ≥ 1, q > 0 are design parameters. Notice that V
and U above, satisfy (8), (9) and (10), (11), respectively.
More specifically, for c = 1 we have that U(y) = 0 if y = 0,
which will force the vehicles to form a single platoon in the
middle of the road. For c > 1, we have that U(y) = 0 in
a neighborhood around y = 0, and the vehicles’ converged
lateral positions in this case will be within the strip − a

√
c−1
√

c ≤

y ≤ a
√

c−1
√

c .
To verify numerically and illustrate the results of Theorem

1, we assume that all vehicles have length σ = 5m and
operate on a road with speed limit v max = 35m/s and
width 2a = 14.4m, which corresponds to a road with 4
conventional lanes of width 3.6m. We set the longitudinal
set-point v∗ = 30m/s and select ϕ = 0.25 in order to satisfy
condition (13). Using [12], we select the optimal eccentricity
and safety distance p = 5.11 and L = 5.59m, respectively.
This choice allows us to effectively use the full width of the
road and increases the lateral occupancy by 45%. We set
ε = 0.2, µ1 = 0.5, µ2 = 0.1, q = 3 ∗ 10−3, λ = 25m, A = 1,
and c = 1.5.

Fig. 2 displays the longitudinal speed ẋi and acceleration
Fi of each vehicle. The speeds of all vehicles are seen to
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Fig. 2: The longitudinal speed of each vehicle where all speeds
converge to the speed set-point v∗ on the top; and the acceleration
Fi of each vehicle on the bottom.

remain within the bounds (0, vmax) and to converge to the
longitudinal set-point v∗. It can be seen from Fig. 3, that
the speed and acceleration of vehicle 9 is increased, as the
distance from vehicle 7 decreases. This is exactly the effect
of nudging, i.e., vehicle 7 exerts a pushing force on vehicle
9, which, as a result, increases its acceleration and speed.
On the other hand, it can be seen in Fig. 3, that vehicle 7
decelerates (is repulsed) to avoid collision with vehicle 9.

The lateral speeds ẏi and lateral accelerations ÿi of the
vehicles are shown in Fig. 4; both converge to zero, indi-
cating that eventually the vehicles move parallel to the road.
Fig. 5 shows the rotation rates ui and the orientations θi,
all converging to zero as suggested by Theorem 1. Finally,
Fig. 6 depicts the minimum inter-vehicle distance dmin(t) :=
min

{
di, j(t), i, j = 1, ..., n, i , j

}
(blue line), showing that the

vehicles do not collide with each other, since di, j(t) > L,
i, j = 1, ..., n, i , j, at any time. Moreover, Fig. 6 also shows
the minimum inter-vehicle distance using the same initial
conditions with λ = 40m (yellow line).

V. Concluding Remarks
The present work proposed decentralized control strategies

for the two-dimensional movement of autonomous vehicles
described by the bicycle kinematic model on lane-free roads.
By leveraging appropriate tools, such as potential functions,
Lyapunov functions, and barrier functions, we developed
decentralized controllers that ensure that: the vehicles do not
collide with each other or with the boundary of the road;
the speeds of all vehicles are always positive and remain
below a given speed limit; all vehicle speeds converge to a
given longitudinal speed set-point; and, finally, the acceler-
ations, lateral speeds, and orientations of all vehicles tend
to zero. Future work will address the effects of nudging and
appropriate notions of string-stability for vehicles operating
on lane-free roads. We will also study the effect of different
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Fig. 3: The effect of nudging. Vehicle 9 accelerates, and vehicle 7
decelerates, as the (elliptical) distance between them decreases.
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Fig. 4: The lateral speed (top) and lateral acceleration (bottom) of
each vehicle.
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Fig. 5: The rotation rate ui and orientation θi converge to zero as
indicated by Theorem 1.
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Fig. 6: The minimum inter-vehicle distance for λ = 25m (blue)
and for λ = 40m (yellow), which verify that there are no collisions
among vehicles.

potential functions and the possible use of non-monotone
potential functions.
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