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ABSTRACT
The paper provides conditions that guarantee existence and uniqueness of classical
solutions for a non-local conservation law on a ring-road with possible nudging (or
“look behind”) terms. The obtained conditions are novel, as they are not covered
by existing results in the literature. The paper also provides results which indicate
that nudging can increase the flow in a ring-road and, if properly designed, can have
a strong stabilizing effect on traffic flow. More specifically, the paper gives results
which guarantee local exponential stability of the uniform equilibrium profile in the
L2 state norm even for cases where the uniform equilibrium profile in a ring-road
without nudging is not asymptotically stable and the model admits density waves.
The efficiency of the use of nudging terms is demonstrated by means of a numerical
example.
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1. Introduction

Non-local traffic flow models with Partial Differential Equations (PDEs) are based
on extensions of the well-known Lighthill-Whitham-Richards model (LWR model, see
(Lighthill & Whitham, 1955; Richards, 1956)), where the speed is given by a non-local
term. These models fall into the class of non-local conservation laws (see (Colombo
& Rossi, 2018)) and possess some different features compared to the LWR model.
Arrhenius “look-ahead” terms were considered in (Lee, 2020; Li & Li, 2011; Sopasakis
& Katsoulakis, 2006) as a result of stochastic microscopic dynamics, and it was shown
that such models can develop shocks (and shock waves) in finite time. On the other
hand, the fact that human drivers and automated vehicles adjust the vehicle speed
based on a perception of downstream density, rather than the local density, motivated
some researchers to express the perceived density by means of non-local (convolution)
terms. Such models were studied in (Berthelin & Goatin, 2019; Blandin & Goatin,
2016; Chiarello, Goatin, & Rossi, 2019; Goatin & Scialanga, 2016; Keimer & Pflug,
2017; Keimer, Pflug, & Spinola, 2018), and it was shown that they may be producing
smooth solutions.

In the era of automated vehicles, the real-time information fed to each vehicle on a
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road is exploited for the appropriate adjustment of the speed of the vehicle. In contrast
to manual driving, this information may include upstream density data, in addition
to downstream density data. Note that human drivers base their driving decisions
only on the perceived downstream traffic state, something that leads to the celebrated
anisotropy principle in traffic flow modeling (Daganzo, 1995). The possible beneficiary
role of the use of upstream density data was pointed out in (Papageorgiou, Mountakis,
Karafyllis, & Papamichail, 2019), where the effect of the upstream density data on the
speed adjustment was termed as “nudging”. Such an effect was also studied in (Lee,
2020) (without reference to automated vehicles), where an Arrhenius “look-behind”
non-local term was used for the mathematical expression of the use of upstream density
data.

The selection of the nudging term for automated vehicles can be considered as a
feedback design problem. Data are fed into the automated vehicles, based on which
the vehicles adjust their speed. In other words, the density profile of the road changes
over time, and this change is fed back to each automated vehicle. From a mathemat-
ically perspective, the use of upstream density data should not be performed in an
arbitrary way, but so as to satisfy conditions for existence and uniqueness of solutions,
together with further requirements for the closed-loop system (e.g., stability, optimal-
ity, etc.). It should be noticed here that the feedback design problem for the expression
of “nudging” or “look-behind” effect can be considered as a special feedback design
problem for non-local, hyperbolic PDEs (see (Coron, Hu, & Olive, 2016; Karafyllis
& Krstic, 2019; Krstic & Smyshlyaev, 2008) ). However, this specific feedback design
problem is different from other traffic control problems studied in the literature (see
(Karafyllis, Bekiaris-Liberis, & Papageorgiou, 2019; Karafyllis & Papageorgiou, 2019;
Yu & Krstic, 2019; Yu, Zhang, Diagne, & Krstic, 2019; Zhang & Prieur, 2017; Zhang,
Prieur, & Qiao, 2019)).

The present paper answers these questions for a ring-road. We first present condi-
tions which guarantee existence and uniqueness of classical solutions for a non-local
conservation law with possible nudging terms (Theorem 2.3 and Theorem 2.4). The
obtained results are novel, as they are not covered by the results in (Berthelin &
Goatin, 2019; Blandin & Goatin, 2016; Chiarello et al., 2019; Goatin & Scialanga,
2016; Keimer & Pflug, 2017; Keimer et al., 2018), where either the use of upstream
density data is not allowed or a ring-road is not studied. In addition, the present paper
studies the effects of nudging and it is shown that:

i) nudging can increase the flow in a ring-road at any density value;
ii) if properly designed, nudging can have a strong stabilizing effect on ring-road

traffic.

Indeed, we present results (Theorem 3.2) which guarantee local exponential sta-
bility of the uniform equilibrium profile in the L2 state norm even for cases where
the uniform equilibrium profile in a ring-road without nudging is not asymptotically
stable and the model admits density waves. The existence of travelling waves for non-
local conservation laws was studied in (Ridder & Shen, 2019), where it is shown that
travelling waves may occur even in non-local conservation laws.

The structure of the paper is as follows. Section 2 of the paper is devoted to the
presentation of the non-local traffic flow models which are studied in the paper; more-
over, the statements of the existence and uniqueness results for non-local traffic flow
models are also given in Section 2. The effects of nudging on ring-road traffic are stud-
ied in Section 3. Illustrative numerical experiments are presented in Section 4, where
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the strong stabilizing effect of nudging is demonstrated. All proofs of the main results
are provided in Section 5. Finally, concluding remarks are given in Section 6, and the
Appendix contains the proof of an auxiliary result.

Notation. Throughout this paper, we adopt the following notation.
(i) <+ := [0,+∞). For a real number x ∈ <, [x] denotes the integer part of x, i.e.,

the greatest integer which is less or equal to x.
(ii) For a vector y ∈ <N , y> denotes its transpose and |y|∞ = max

i=1,...,N
(|yi|) denotes

its infinity norm. For two vectors x, y ∈ <N we write x ≤ y if and only if xi ≤ yi for
i = 1, ..., N . The vector 1N ∈ <N is the vector 1N = (1, ..., 1)> ∈ <N . We also define
y(0) = y = (y1, ..., yN )> ∈ <N , y(1) = (y2, ..., yN , y1)> ∈ <N and y(k) for k ≥ 2 by
means of the recursive formula y(k) = (y(k−1))(1).

(iii) Let S ⊆ <n be an open set and let A ⊆ <n be a set that satisfies S ⊆ A ⊆ cl(S).
By C0(A ; Ω), we denote the class of continuous functions on A, which take values in
Ω ⊆ <m. By Ck(A ; Ω), where k ≥ 1 is an integer, we denote the class of functions on
A ⊆ <n, which takes values in Ω ⊆ <m and has continuous derivatives of order k. In
other words, the functions of class Ck(A; Ω) are the functions which have continuous
derivatives of order k in S = int(A) that can be continued continuously to all points
in ∂S ∩A. When Ω = < then we write C0(A ) or Ck(A ).

(iv) Let T ∈ (0,+∞) and ρ : [0, T ]×I → < be given, where I ⊆ < is an interval. We
use the notation ρ[t] to denote the profile at certain t ∈ [0, T ], i.e., (ρ[t])(x) = ρ(t, x)
for all x ∈ I. Lp(I) with p ≥ 1 denotes the equivalence class of measurable functions

f : I → < for which ‖f‖p =
(∫
I |f(x)|p dx

)1/p
< +∞. L∞(I) denotes the equivalence

class of measurable functions f : I → < for which ‖f‖∞ = ess sup
x∈I

(|f(x)|) < +∞. We

use the notation f ′(x) for the derivative at x ∈ I of a differentiable function f : I → <.
(v) W 2,∞([0, 1]) is the Sobolev space of C1 functions on [0, 1] with Lipschitz deriva-

tive.
(vi) Per(<) denotes the set of continuous, positive mappings ρ : < → (0,+∞) which

are periodic with period 1, i.e., ρ(x+ 1) = ρ(x) for all x ∈ <.
(vii) Let (X, dX) be a compact metric space and let (Y, dY ) be a given metric space.

By C0(X ; Y ) we denote the set of continuous mappings f : X → Y .

2. Non-Local Traffic Flow Models

Many non-local PDE traffic flow models which have appeared in the literature (see
(Berthelin & Goatin, 2019; Blandin & Goatin, 2016; Chiarello et al., 2019; Goatin &
Scialanga, 2016; Keimer & Pflug, 2017; Keimer et al., 2018)) have the form

∂ ρ

∂ t
(t, x) +

∂

∂ x
(ρ(t, x)v(t, x)) = 0, for t ≥ 0, x ∈ < (1)

v(t, x) = f

(∫ x+η

x
ω(s− x)ρ(t, s)ds

)
, for t ≥ 0, x ∈ < (2)

where ρ(t, x) denotes the traffic density, v(t, x) denotes the mean speed, t ≥ 0 is
time, x is the spatial variable, η > 0 is a constant (reflecting the visibility area),
f : <+ → <+ and ω : <+ → <+ are non-increasing functions with

∫ η
0 ω(x)dx = 1.

Model (1), (2) constitutes a generalization of the classical LWR traffic flow model,
where f : <+ → <+ is the function that relates density to speed (fundamental diagram)

3



and
∫ x+η
x ω(s − x)ρ(t, s)ds is the downstream density perceived by the human driver

at spatial position x. Thus, the driver adapts the speed according to (2) on the basis
of the perceived downstream density.

As a farther generalization, when automated vehicles are present on a highway, there
may be a benefit by allowing the vehicle speed to depend on upstream density levels as
well. Such an effect has been termed in the literature as “nudging” (see (Papageorgiou
et al., 2019)) or “look-behind” effect (see (Lee, 2020)). In this case, the speed may be
given by a relation of the form

v(t, x) = f

(∫ x+η

x
ω(s− x)ρ(t, s)ds

)
g

(∫ x

x−ζ
ω̃(x− s)ρ(t, s)ds

)
, for t ≥ 0, x ∈ <

(3)
where ζ > 0 is a constant, g : <+ → <+ is a non-decreasing, bounded function, and
ω̃ : <+ → <+ is a non-increasing function. Even more emphatically, in the era of
automated vehicles, the functions g : <+ → <+ and ω̃ : <+ → <+ may be designed so
that the traffic flow behavior of system (1), (3) has specific characteristics, e.g., so that
the equilibrium point gives maximum flow of vehicles and is globally asymptotically
stable. It is clear that in such a case the design problem for g : <+ → <+ and
ω̃ : <+ → <+ is strongly reminiscent of the feedback design problem for control
systems. Therefore, there is an interest to understand traffic flow models of the form
(1), (3). The first thing that we need to understand is the set of properties that all the
functions described above must possess in order to have a well-defined system with
solutions that have physical meaning (e.g., ρ(t, x), v(t, x) have to be positive).

The very notion of nudging corresponds to adjusting the speed based on upstream
density data. Hence, the consideration of the product in (3), allows us first to directly
adjust the speed based on the upstream density; and second to distinguish the nudging
term g from the “look-ahead” term f . Since using nudging can also be considered
as a (feedback) design problem, having two separate terms for the upstream and
downstream density profile facilitates both the design and the analysis of using nudging
in traffic flow. Certainly, g cannot be arbitrary and has to satisfy certain properties;
for instance, it should satisfy g(s) ≥ 1, s > 0 to have a positive effect on speed. Using
only one non-local term to depend on both upstream and downstream density would
render the design and analysis more involved. Finally, note that f and g express the
effect of density on speed differently, since the integral in f considers the downstream
density levels; whereas the integral in g the upstream density levels.

In this paper, we study traffic flow models on a ring-road; hence we impose the
periodicity condition

ρ(t, x+ 1) = ρ(t, x), for t ≥ 0, x ∈ <. (4)

Moreover, we allow the density-speed relation to be of the form

v(t, x) = (K(ρ[t]))(x), for t ≥ 0, x ∈ <, (5)

where K : Per(<)→C1(<)∩ Per(<) is a mapping of class K ∈ C0(Per(<);Per(<)),
for which there exists a constant vmax > 0 such that the inequality 0 ≤ (K(ρ))(x) ≤
vmax holds for all ρ ∈ Per(<). We assume the existence of a non-decreasing function
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a : <+ → <+ such that for every ρ, ρ̄ ∈ Per(<) the following inequalities hold:∫ 1

0
|ρ(x)− ρ̄(x)| |(K(ρ))(x)− (K(ρ̄))(x)|dx

≤ a (‖ρ‖∞ + ‖ρ̄‖∞)

∫ 1

0
|ρ(x)− ρ̄(x)|2 dx∫ 1

0
|ρ(x)− ρ̄(x)|

∣∣∣ ∂

∂ x
((K(ρ))(x)− (K(ρ̄))(x))

∣∣∣ dx
≤ a (‖ρ‖∞ + ‖ρ̄‖∞)

∫ 1

0
|ρ(x)− ρ̄(x)|2 dx

(6)

Inequalities (6) are technical conditions needed for uniqueness of solutions. It will be
shown (in the proof of Theorem 2.4 below) that inequalities (6) hold when (3) holds,

i.e., when (K(ρ))(x) = f
(∫ x+η

x ω(s− x)ρ(s)ds
)
g
(∫ x

x−ζ ω̃(x− s)ρ(s)ds
)

, under mild

assumptions for the functions f, g.
Given ρ0 ∈ Per(<) we consider the initial-value problem (1), (4), (5) with initial

condition

ρ[0] = ρ0 (7)

For the statement of our first main result we need the following definition.

Definition 2.1. Suppose that K ∈ C0(Per(<);Per(<)) is a mapping for which there
exists a constant vmax > 0 such that the inequality 0 ≤ (K(ρ))(x) ≤ vmax holds for
all x ∈ <, ρ ∈ Per(<). Moreover suppose that there exists a parameterized family of
mappings KN : <N → <+ with parameter the integer N > 2, constants L, c, C, S ≥ 0
and non-decreasing functions γ,Γ,W : <+ → <+ with the following property:
(P) For each N > 2 there exists a mapping KN : <N → <+ with KN (ρ) ≤ vmax for
all ρ ∈ <N+ , such that the following inequalities hold for all N > 2, 0 < ρmin ≤ ρmax,

i = 0, ..., N − 1 and ρ, ρ̃ ∈ <N+ with ρmin1N ≤ ρ = (ρ0, ..., ρN−1)> ≤ ρmax1N , ρmin1N ≤
ρ̃ ≤ ρmax1N :

|KN (ρ)−KN (ρ̃)| ≤ L |ρ− ρ̃|∞ (8)∣∣∣KN (ρ)−KN (ρ(1))−KN (ρ̃) +KN (ρ̃(1))
∣∣∣ ≤ (h |ρ− ρ̃|∞ + h2

)
Γ(ρmax) (9)

−ch (ρmax − ρ0) ≤ KN (ρ(1))−KN (ρ) ≤ch (ρ0 − ρmin) (10)∣∣∣2KN (ρ(1))−KN (ρ)−KN (ρ(2))
∣∣∣ ≤h2(γ(ρmax) + C |y|∞) (11)∣∣∣3KN (ρ(1)) +KN (ρ(3))−KN (ρ)− 3KN (ρ(2))
∣∣∣ ≤h3 (W (ρmax + |y|∞) + C |ϕ|∞) (12)∣∣∣(K(PNρ))(ih)−KN

(
ρ(i)
)∣∣∣ ≤hSρmax (13)

where h = 1/N , ρ(i) = (ρi, ..., ρN−1, ρ0, ..., ρi−1) for i = 1, ..., N − 1, y = (y0, ...,
yN−1)> = h−1(ρ(1)−ρ), ϕ = (ϕ0, ..., ϕN−1)> = h−2(ρ(2)−2ρ(1)+ρ) and PNρ ∈ Per(<)
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is the function defined by the equations:

(PNρ)(x) = h−1ρi((i+ 1)h− x) + ρi+1h
−1(x− ih),

for all x ∈ [ih, (i+ 1)h), i = 0, ..., N − 2
(14)

(PNρ)(x) = h−1ρN−1(1− x) + ρ0h
−1(x+ h− 1),

for all x ∈ [(N − 1)h, 1]
(15)

Then we say that the family KN smoothly approximates the mapping K∈C0(Per(<);
Per(<)).

The class of mappings K ∈ C0(Per(<);Per(<)) which can be approximated
smoothly by a parameterized family KN is closed under multiplication and addition.
More precisely, we have the following lemma, which is proved in the Appendix.

Lemma 2.2. Suppose that the mappings K,G ∈ C0(Per(<);Per(<)) can be approx-
imated smoothly by the parameterized families KN , GN . Let λ ≥ 0 be any given real
number. Then the mappings (KG) ∈ C0(Per(<);Per(<)), (K + G) ∈ C0(Per(<);
Per(<)), (λK)∈C0(Per(<);Per(<)) defined by ((KG)(ρ))(x)=(K(ρ))(x)(G(ρ))(x),
((K +G)(ρ))(x) = (K(ρ))(x) + (G(ρ))(x), ((λK)(ρ))(x) = λ(K(ρ))(x) for all x ∈ <,
ρ ∈ Per(<), can be approximated smoothly by the parameterized families KNGN ,
KN +GN , λKN , respectively.

Our first main result is an existence and uniqueness result for the initial-value problem
(1), (4), (5), (7).

Theorem 2.3. Suppose that K : Per(<) → C1(<) ∩ Per(<) is a mapping of class
K ∈ C0(Per(<);Per(<)) for which there exists a constant vmax > 0 such that the
inequality 0 ≤ (K(ρ))(x) ≤ vmax holds for all ρ ∈ Per(<). Moreover, suppose that
there exists a non-decreasing function a : <+ → <+ such that (6) holds for every ρ, ρ̄ ∈
Per(<). Finally, suppose that there exists a parameterized family KN that smoothly
approximates the mapping K ∈ C0(Per(<);Per(<)). Then for every ρ0 ∈W 2,∞(<)∩
Per(<) the initial-value problem (1), (4), (5), (7) has a unique solution ρ ∈ C1(<+×<)
with ρ[t] ∈ W 2,∞(<) ∩ Per(<) for all t ≥ 0. Moreover, the following inequality holds
for all t ≥ 0, x ∈ <:

min
x∈[0,1]

(ρ0(x)) ≤ ρ(t, x) ≤ max
x∈[0,1]

(ρ0(x)) (16)

Remark 1. (i) Theorem 2.3 guarantees the existence of a classical solution for the
initial-value problem (1), (4), (5), (7). This feature differentiates Theorem 2.3 from
other results in the literature (e.g. the results in (Blandin & Goatin, 2016)). Theorem
2.3 shows that the state space for system (1), (4), (5) is the space W 2,∞(<)∩Per(<),
i.e., if ρ0 ∈W 2,∞(<) ∩ Per(<) then ρ[t] ∈W 2,∞(<) ∩ Per(<) for all t ≥ 0.
(ii) The proof of Theorem 2.3 is based on the method of finite differences used in the
book (John, 1982). This feature differentiates Theorem 2.3 from other results in the
literature where fixed-point theorems are employed.

Theorem 2.3 can be used as a tool for the proof of existence and uniqueness of
solutions for system (1), (3), (4). This is achieved by the following theorem, which is
the second main result of the paper.
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Figure 1. The effect of nudging on the fundamental diagram. The blue line is the fundamental diagram with
nudging and the red line is the fundamental diagram without nudging (g(s) ≡ 1).

Theorem 2.4. Suppose that η, ζ ∈ (0, 1], f, g ∈ C3 (<+), f ′(ρ) ≤ 0, g′(ρ) ≥ 0,
f(ρ) ≥ 0, g(ρ) ≥ 1 for all ρ ≥ 0. Moreover, suppose that there exists a constant M ≥ 0
such that

sup
ρ≥0

(
3∑

k=0

∣∣∣f (k)(ρ)
∣∣∣)+ sup

ρ≥0

(
3∑

k=0

∣∣∣g(k)(ρ)
∣∣∣) ≤M (17)

Finally, suppose that the restrictions of ω, ω̃ : <+ → <+ on [0, η], [0, ζ], respectively,
are C1 functions with ω′(x) ≤ 0 for x ∈ [0, η], ω̃′(x) ≤ 0 for x ∈ [0, ζ] and that
ω(x) = 0 for x > η, ω̃(x) = 0 for x > ζ. Then for every ρ0 ∈ W 2,∞(<) ∩ Per(<)
the initial-value problem (1), (3), (4), (7) has a unique solution ρ ∈ C1(<+ × <)
with ρ[t] ∈ W 2,∞(<) ∩ Per(<) for all t ≥ 0. Moreover, inequality (16) holds for all
t ≥ 0, x ∈ <.

Theorem 2.4 is proved in Section 5 by applying Theorem 2.3 to the case (3).

3. Controlling Non-Local Traffic Flow Models

The uniform equilibrium points ρ(x) ≡ ρ > 0 of model (1), (2), (4) satisfy exactly the
same density-flow relation q = ρv = ρf(ρ) of the classical LWR model (the so-called
fundamental diagram). This is not true for the uniform equilibrium points ρ(x) ≡ ρ > 0
of model (1), (3), (4). For this model, the density-flow relation is given by

q = ρf (ρ) g (σρ) (18)

where σ :=
∫ ζ

0 ω̃(s)ds. Since g(ρ) ≥ 1, relation (18) shows that nudging can increase
the flow. Moreover, the critical density, i.e., the density for which the flow becomes
maximum, changes. This is demonstrated in Figure 1 for the particular case of f(ρ) =

exp(−ρ), g(s) = (1 + k) exp(γs)
k+exp(γs) , k = 1/2, ω = η−1, η ∈ (0, 1], ω̃(x) = 1 − x, and

γ > 0 appropriately selected so that for any ζ ∈ (0, 1], we have γσ = 1. It may be
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seen that the flow values are increased, and the critical density is increased as well.
It should be noted that (1) is typical for many combinations of functions f, g with
the characteristics required by the physics of traffic flow, i.e., f ′(ρ) ≤ 0, g′(ρ) ≥ 0,
f(ρ) > 0, g(ρ) ≥ 1, for all ρ ≥ 0, lim

ρ→+∞
(f(ρ)) = 0, lim

ρ→+∞
(g(ρ)) < +∞.

Theorem 2.4 guarantees that the uniform equilibrium points ρ(x) ≡ ρ∗ > 0 are
neutrally stable in the sup norm of the state. However, Theorem 2.4 says nothing
about (local or global) asymptotic stability and convergence to a uniform equilibrium
point. Indeed, there are cases where the uniform equilibrium point ρ(x) ≡ ρ∗ > 0
for model (1), (2), (4) is not locally asymptotically stable, no matter what f is. The
following proposition illustrates this point. Its proof is very simple (direct substitution
in the equations) and is omitted.

Proposition 3.1 (Lack of Local Asymptotic Stability for the Model Without Nudg-
ing). Consider model (1), (2), (4) with ω(x) = η−1 for x ∈ [0, η] and ω(x) = 0
for x > η, where η ∈ (0, 1] is a rational number with η = p

q , p, q > 0 integers and

f ∈ C3 (<+) is any function with f ′(ρ) ≤ 0, f(ρ) ≥ 0 for all ρ ≥ 0. Moreover, suppose
that there exists a constant M ≥ 0 such that inequality (17) holds with g(s) ≡ 1.
Then, for every ρ∗ > 0, b ∈ < with |b| < ρ∗ and for every integer k > 0 the functions
ρ(t, x) = ρ∗ + b sin (2kqπ (x− f(ρ∗)t)) for t ≥ 0, x ∈ < are solutions of (1), (2), (4).

The reader should notice that, if convergence to the uniform equilibrium point
ρ(x) ≡ ρ∗ > 0 is to be studied, then we should restrict our attention to initial condi-

tions ρ0 ∈W 2,∞(<)∩Per(<) with
∫ 1

0 ρ0(x)dx = ρ∗, since only for this set of functions
we can obtain solutions which converge to the uniform equilibrium point ρ(x) ≡ ρ∗ > 0

(notice that
∫ 1

0 ρ(t, x)dx =
∫ 1

0 ρ0(x)dx for all t ≥ 0 for every solution of (1), (2), (4),(7)
or any solution of (1), (3), (4), (7)).

Proposition 3.1 shows that in the important case ω(x) = η−1 for x ∈ [0, η] and
ω(x) = 0 for x > η (case studied in (Lee, 2020)), where η ∈ (0, 1] is a rational number,

there are initial conditions ρ0 ∈ W 2,∞(<) ∩ Per(<) with
∫ 1

0 ρ0(x)dx = ρ∗, which are
arbitrarily close to the uniform equilibrium point ρ(x) ≡ ρ∗ > 0 (in any space Ls(0, 1)
with s ≥ 1), for which the solution of (1), (2), (4), (7) does not converge (in any
space Ls(0, 1) with s ≥ 1) to the uniform equilibrium point ρ(x) ≡ ρ∗ > 0. The
solutions that fail to converge to the uniform equilibrium point ρ(x) ≡ ρ∗ > 0 are
high-frequency density waves which move with constant speed v(t, x) ≡ f(ρ∗). Since
the set of rational numbers is dense within the reals, it follows that we can never
be sure about the existence or not of such solutions (no matter how accurate is the
measurement of η ∈ (0, 1]).

In such cases, if properly designed, nudging can improve the stability properties of
the system. This is shown by the following result.

Theorem 3.2 (Local Stabilization by Means of Nudging). Consider model (1), (3),
(4) with ζ = 1, ω(x) = η−1 for x ∈ [0, η] and ω(x) = 0 for x > η, ω̃(x) = 1 − x for
x ∈ [0, 1], where η ∈ (0, 1] is a constant and f, g ∈ C3 (<+) are any functions with
f ′(ρ) < 0, g′(ρ) > 0, f(ρ) > 0, g(ρ) ≥ 1 for all ρ ≥ 0. Moreover, suppose that there
exists a constant M ≥ 0 such that inequality (17) holds. Let ρ0 ∈ W 2,∞(<) ∩ Per(<)
with

Fmaxgmax − Fmingmin < 2ηfminGmin (19)
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where

Fmax := max
{ ∣∣f ′(s)∣∣ : ρmin ≤ s ≤ min

(
η−1ρ∗, ρmax

) }
(20)

Fmin := min
{ ∣∣f ′(s)∣∣ : ρmin ≤ s ≤ min

(
η−1ρ∗, ρmax

) }
(21)

fmin :=f
(
min

(
η−1ρ∗, ρmax

))
(22)

gmax :=g

(
1

2
min (2ρ∗ − ρmin, ρmax)

)
(23)

gmin :=g

(
1

2
max (2ρ∗ − ρmax, ρmin)

)
(24)

Gmin := min{ g′(s) : max(2ρ∗ − ρmax, ρmin) ≤ 2s ≤ min (2ρ∗ − ρmin, ρmax)} (25)

ρ∗ =
∫ 1

0 ρ0(s)ds, ρmin := min
x∈[0,1]

(ρ0(x)) and ρmax := max
x∈[0,1]

(ρ0(x)). Then there exists

a constant c̄ > 0 such that the unique solution ρ ∈ C1(<+ × <) of the initial-value
problem (1), (3), (4), (7) satisfies the estimate:∫ 1

0
(ρ(t, x)− ρ∗)2 dx ≤ ρmax

ρmin
exp(−c̄t)

∫ 1

0
(ρ0(x)− ρ∗)2 dx, for t ≥ 0. (26)

Remark 2. (i) When ρmin = ρmax = ρ∗ then (19) holds automatically (by virtue of
the fact that f ′(ρ) < 0, g′(ρ) > 0, f(ρ) > 0, g(ρ) ≥ 1 for all ρ ≥ 0). Due to continuity
of Fmax, Fmin, fmin, gmax, gmin, Gmin with respect to ρmin, ρmax, ρ

∗, for every ρ∗ > 0,
there exist ρmin < ρ∗ < ρmax such that (19) holds. This implies the existence of a
neighborhood of the uniform equilibrium point ρ(x) ≡ ρ∗ > 0 in Per(<) for which the
L2(0, 1) norm of the deviation of the solution from the equilibrium point converges
exponentially to zero.

(ii) Condition (19) is a condition on the maximum deviation ‖ρ0 − ρ∗‖∞ of the
initial condition from the desired uniform equilibrium point ρ(x) ≡ ρ∗ > 0. To see
this, notice that condition (19) takes the following form when f ′′(ρ) ≥ 0 and g′′(ρ) ≤ 0
for all ρ ≥ 0:

f ′
(
min(η−1ρ∗, ρmax)

)
g

(
1

2
max(2ρ∗ − ρmax, ρmin)

)
− f ′(ρmin)g

(
1

2
min(2ρ∗ − ρmin, ρmax)

)
<2ηf(min(η−1ρ∗, ρmax))g′

(
1

2
min(2ρ∗ − ρmin, ρmax)

)
Therefore, for the case f(ρ) = A exp(−bρ), g(s) = 1+as

1+γs , with a > γ, A, b > 0 and

η ≤ 1/2, condition (19) becomes:

b exp (2b ‖ρ0 − ρ∗‖∞)
c1 + a ‖ρ0 − ρ∗‖∞
c2 + γ ‖ρ0 − ρ∗‖∞

<b
c1 − a ‖ρ0 − ρ∗‖∞
c2 − γ ‖ρ0 − ρ∗‖∞

+
8η(a− γ)

(c2 + γ ‖ρ0 − ρ∗‖∞)2

where c1 = 2 + aρ∗ > c2 = 2 + γρ∗. The above inequality provides a bound R > 0
on ‖ρ0 − ρ∗‖∞ such that (19) (and consequently the exponential stability estimate
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(26)) holds for all ρ0 ∈ W 2,∞(<) ∩ Per(<) with ‖ρ0 − ρ∗‖∞ < R. However, it should
be remarked at this point that simulations indicate that condition (19) provides a
conservative estimate of the bound R > 0 (see Section 4).

(iii) The proof of Theorem 3.2 shows that c̄ := η−1ρmin(2ηfminGmin − Fmaxgmax +
Fmingmin).

(iv) The nudging term with ζ = 1, ω̃(x) = 1−x for x ∈ [0, 1], depends on the whole
density profile of the ring-road. Such a term has no meaning when the vehicles are
driven by human drivers. However, when automated vehicles are present in a highway,
then such a term can be implemented by providing continuously information for the
density profile to each vehicle. In such a case, the effect of nudging is not only the
increase of the flow, but also the elimination of the well-known stop-and-go waves (see
(Belletti, Huo, Litrico, & Bayen, 2015)). Notice also that the effect of the upstream
density on speed is reduced along the length of the road due to the weight ω̃(x) = 1−x
for x ∈ [0, 1].

(v) The proof of Theorem 3.2 makes use of estimate (16) and the functional V (ρ) =∫ 1
0

(
ρ(x) ln

(
ρ(x)
ρ∗

)
+ ρ∗ − ρ(x)

)
dx. This functional, defined on the set of functions

ρ ∈ Per(<) with ρ∗ =
∫ 1

0 ρ(x)dx, is a non-coercive Control Lyapunov Functional for

the control system (1), (4) with v[t] ∈ Per(<) ∩ C1(<) as input. Indeed, for classical

solutions of (1), (4) we get d
dtV (ρ[t]) =

∫ 1
0 (ρ∗ − ρ(t, x)) ∂ v∂ x(t, x)dx. For non-coercive

Lyapunov functionals, the reader can consult (Jacob, Mironchenko, Partington, &
Wirth, 2019; Mironchenko & Wirth, 2019). It is possible that the use of other Lyapunov
functionals can give less demanding conditions than (19) for exponential convergence
to the uniform equilibrium point ρ(x) ≡ ρ∗ > 0.

4. Illustrative Examples

In this section we present some numerical examples that demonstrate the advantages
and the stabilizing effects of nudging, model (1), (3), in comparison with the “look-
ahead” model (1), (2) and the LWR model (1) with v(t, x) = f(ρ(t, x)). Hence, we
consider the three models displayed in Table 1 on a ring-road (4) with initial density

Table 1. The three models of the simulation examples.

Speed v(t, x) ω ω̃

Model 1
LWR Model (1) with
v(t, x) = f(ρ(t, x)) N/A N/A

Model 2

Model (1) with

v(t, x) = f
(∫ x+η

x ω(s− x)ρ(t, s)ds
)

η−1 N/A

Model 3

Model (1) with

v(t, x) =f

(∫ x+η

x
ω(s− x)ρ(t, s)ds

)
× g

(∫ x

x−ζ
ω̃(x− s)ρ(t, s)ds

) η−1 1− x

g(ρ) = 1.6
exp

(
2

ζ(2−ζ)ρ
)

0.6+exp
(

2

ζ(2−ζ)ρ
) f(ρ) = exp(−ρ)
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profile

ρ0(x)

 = 2.35, 0.5 < x < 0.75
∈ [0.55, 2.35] x ∈ [0.5− ε, 0.5] ∪ [0.75, 0.75 + ε], ε > 0
= 0.55 else

(27)
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Figure 2. Density profiles of Model 1 (LWR), Model 2, Model 3 with ζ = 1 and Model 3 with ζ = 0.154.

Notice that on the interval [0.5 − ε, 0.5] ∪ [0.75, 0.75 + ε] for sufficiently small ε >
0, the initial condition ρ0(x) is smoothly extended to satisfy the requirement ρ ∈
W 2,∞(<) ∩ Per(<). Notice also that the initial condition (27) contains a congestion

belt at [0.5, 0.75] with the uniform equilibrium given by ρ∗ =
∫ 1

0 ρ0(x)dx = 1. We
have used two different values for the upstream horizon: ζ = 1 and ζ = 0.154. While
Theorem 3.2 guarantees local exponential stabilization for ζ = 1, it is important for
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Figure 3. Evolution of the L2 norm ‖ρ[t]− ρ∗‖2 =
(∫ 1

0 (ρ(t, x)− ρ∗)2 dx
)1/2

and its logarithm for Model 1

(LWR), Model 2, Model 3 with ζ = 1 and Model 3 with ζ = 0.154.
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Figure 4. Density profiles at various time instants for the initial condition ρ0(x) = 1 + 0.2 sin (20πx).

implementation purposes to consider small values for the upstream horizon (which do
not require knowledge of the whole density profile of the ring-road). The value of the
downstream horizon in all experiments was set to η = 0.1.

While the numerical results for the LWR model (Model 1) are obtained by means
of the Godunov numerical scheme, for the non-local PDEs we have used the numerical
scheme (30)-(40), (87) with h = 1/500, λ = 0.25. Figure 2 shows the density profiles
at different times. Notice that the rate of convergence of Model 3 for both values ζ = 1
and ζ = 0.154 is faster compared to the other models. This feature can also be verified
in Figure 3, which depicts the evolution of the L2 norm of the deviation from the

equilibrium ‖ρ[t]− ρ∗‖2 =
(∫ 1

0 (ρ(t, x)− ρ∗)2 dx
)1/2

. Figure 3 also shows the evolution

of the logarithm of the L2 norm ‖ρ[t]− ρ∗‖2 indicating exponential convergence.
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Figure 5. Evolution of the L2 norm ‖ρ[t]− ρ∗‖2 =
(∫ 1

0 (ρ(t, x)− ρ∗)2 dx
)1/2

and its logarithm for Model 1

(LWR), Model 2, Model 3 with ζ = 1 and Model 3 with ζ = 0.154. Initial condition ρ0(x) = 1 + 0.2 sin (20πx).

Finally, we consider again Model 1 (LWR), and Model 2 and Model 3 shown
in Table 1, this time with initial condition ρ0(x) = 1 + 0.2 sin (20πx). In this
case, Proposition 3.1 holds, and the solution for Model 2 is given by the formula
ρ(t, x) = ρ∗ + b sin (2kqπ (x− f(ρ∗)t)) with ρ∗ = 1, b = 0.2, k = 1 and q = 10. The
density waves for Model 2 and the density profiles for all other models are displayed
in Figure 4. Figure 5 depicts again the evolution of the L2 norm of the deviation from

the equilibrium ‖ρ[t]− ρ∗‖2 =
(∫ 1

0 (ρ(t, x)− ρ∗)2 dx
)1/2

. Figure 5 also shows the evo-

lution of the logarithm of the L2 norm ‖ρ[t]− ρ∗‖2 indicating exponential convergence
for Model 3 with ζ = 1 and Model 3 with ζ = 0.154.

5. Proofs of Main Results

The proof of Theorem 2.3 requires a technical result, whose proof is simple and is
omitted.

Lemma 5.1. Suppose that there exist constants a > 0, b ≥ 0 such that the sequence
{x(k) ≥ 0}∞k=0 satisfies the inequality:

x(k + 1) ≤ (1 + a )x(k) + b, for all k = 0, 1, ...,m− 1. (28)

Then the following estimate holds:

x(k) ≤ exp(ka)

(
x(0) +

b

a

)
, for all k = 0, 1, ...,m. (29)

We are now ready to give the proof of Theorem 2.3.

Proof of Theorem 2.3. Let N > 2 and T > 0 be given. Consider the parameterized
infinite-dimensional, discrete-time system

ρi((k + 1)δ) = (1− λvi+1(kδ)) ρi(kδ) + λvi(kδ)ρi−1(kδ),

for i = 0,±1,±2, ..., k = 0, 1, ...,m
(30)

ρi(0) := ρ0(ih), for i = 0,±1,±2, ... (31)
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where

h := 1/N, δ := λh (32)

vi(kδ) = KN ((Qρ(kδ))(i)), for i = 0,±1,±2, ..., k = 0, 1, ...,m+ 1 (33)

λ :=
T

[T (vmax + cρmax)] + 1
(34)

m :=N ([T (vmax + cρmax)] + 1) (35)

Qρ(kδ) = (ρ0(kδ), ..., ρN−1(kδ))> ∈ <N , k = 0, 1, ...,m (36)

ρmin := min
x∈[0,1]

(ρ0(x)) , ρmax := max
x∈[0,1]

(ρ0(x)) (37)

Notice that the above definitions guarantee that

T = mδ (38)

λ vmax + δ cρmax ≤ 1. (39)

We next prove by induction that

ρmin ≤ ρi(kδ) ≤ ρmax, for i = 0,±1,±2, ..., k = 0, 1, ...,m+ 1 (40)

Indeed, by virtue of definitions (31), (37), it follows that (40) holds for k = 0. Suppose
that (40) holds for some k = 0, 1, ...,m. Definition (36) and property (10) imply that

hc (ρi(kδ)− ρmin) ≥ vi+1(kδ)− vi(kδ) ≥ −hc (ρmax − ρi(kδ)) , for i = 0,±1,±2, ...
(41)

Using (30), (32), (39), (40), (41) and the fact that 0 ≤ vi(kδ) ≤ vmax for all i =
0,±1,±2, ..., k = 0, 1, ...,m+ 1 (a consequence of (33)), we get:

ρi((k + 1)δ) =(1− λvi(kδ))ρi(kδ) + λvi(kδ)ρi−1(kδ)− λ(vi+1(kδ)− vi(kδ))ρi(kδ)
≤(1− λvi(kδ))ρi(kδ) + λvi(kδ)ρi−1(kδ) + cδ ρi(kδ) (ρmax − ρi(kδ))
≤(1− λvi(kδ)− cδ ρi(kδ))ρi(kδ) + (λvi(kδ) + cδ ρi(kδ)) ρmax ≤ ρmax

ρi((k + 1)δ) =(1− λvi(kδ))ρi(kδ) + λvi(kδ)ρi−1(kδ)− λ(vi+1(kδ)− vi(kδ))ρi(kδ)
≥(1− λvi(kδ))ρi(kδ) + λvi(kδ)ρi−1(kδ)− cδ ρi(kδ) (ρi(kδ)− ρmin)

≥(1− λvi(kδ)− cδ ρi(kδ))ρi(kδ) + (λvi(kδ) + cδ ρi(kδ)) ρmin ≥ ρmin

Consequently, (40) holds for k + 1 and this completes the induction step. Next define

yi(kδ) := h−1 (ρi+1(kδ)− ρi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m (42)

gi(kδ) := δ−1 (ρi((k + 1)δ)− ρi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m (43)

and notice that (31) and definition (42) imply that max
j=...−1,0,1,...

(|yj(0)|) ≤ ‖ρ′0‖∞. Using
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(30) and definitions (42), (43), we obtain the following equations:

yi((k + 1)δ) = (1− λvi+2(kδ))yi(kδ) + λvi(kδ)yi−1(kδ)

+ λh−1 (2vi+1(kδ)− vi+2(kδ)− vi(kδ)) ρi(kδ)
for i = 0,±1,±2, ..., k = 0, 1, ...,m− 1

(44)

gi(kδ) = h−1(vi(kδ)− vi+1(kδ))ρi(kδ)− vi(kδ)yi−1(kδ),

for i = 0,±1,±2, ..., k = 0, 1, ...,m− 1
(45)

Using (11), (33) and (40), we obtain the following estimate for i = 0,±1,±2, ...,
k = 0, 1, ...,m:

|2vi+1(kδ)− vi(kδ)− vi+2(kδ)| ≤ h2γ (ρmax) + h2C max
j=...,−1,0,1,...

(|yj(kδ)|) (46)

It follows from (32), (44), (46), (39), (40) and (10) (which in conjunction with (33), (40)
implies that |vi+1(kδ)− vi(kδ)| ≤ hcρmax for all i = 0,±1,±2, ..., k = 0, 1, ...,m + 1)
that the following inequality holds for k = 0, 1, ...,m− 1:

max
j=...,−1,0,1,...

(|yj((k + 1)δ)|)

≤ (1 + δ(2c+ C)ρmax) max
j=...,−1,0,1,...

(|yj(kδ)|) + δρmaxγ(ρmax)
(47)

Using Lemma 5.1, it follows that inequality (47) in conjunction with (38) and the fact
that max

j=...−1,0,1,...
(|yj(0)|) ≤ ‖ρ′0‖∞, implies the following estimate for k = 0, 1, ...,m:

max
j=...,−1,0,1,...

(|yj(kδ)|) ≤ Y := exp (T (2c+ C)ρmax)
(∥∥ρ′0∥∥∞ + (2c+ C)−1γ(ρmax)

)
(48)

Moreover, we obtain from (8), (40), (43), (45), (48) and the facts that |vi+1(kδ) −
vi(kδ)| ≤ hcρmax, vi(kδ) ≤ vmax for all i = 0,±1,±2, ...:

max
i=...,−1,0,1,...

(|gi(kδ)|) ≤ G := cρ2
max + vmaxY, for k = 0, 1, ...,m (49)

|vi((k + 1)δ)− vi(kδ)| ≤ GLδ, for i = 0,±1,±2, ..., k = 0, 1, ...,m (50)

We define the functions ρ(t, x;N), v(t, x;N) for (t, x) ∈ [0, T ]×< and for every integer
N > 2 (recall that h = N−1, δ = λh, mδ = T ):

ρ(kδ, x;N) = (i+ 1− xN) ρi(kδ) + (xN − i) ρi+1(kδ),

v(kδ, x;N) = (i+ 1− xN) vi(kδ) + (xN − i) vi+1(kδ)

with i = [xN ], for x ∈ <, k = 0, ...,m, (51)

ρ(t, x;N) =
(
k + 1− λ−1tN

)
ρ(kδ, x;N) +

(
λ−1tN − k

)
ρ((k + 1)δ, x;N)

v(t, x;N) =
(
k + 1− λ−1tN

)
v(kδ, x;N) +

(
λ−1tN − k

)
v((k + 1)δ, x;N)

with k = [λ−1tN ], for x ∈ <, t ∈ [0, T ). (52)

15



It follows from (30), (31) and (33) that ρi+N (kδ) = ρi(kδ), vi+N (kδ) = vi(kδ) for all
i = 0,±1,±2, ..., k = 0, 1, ...,m. Therefore, definitions (51), (52) imply that for each
t ∈ [0, T ] the functions ρ(t, · ;N), v(t, · ;N) are periodic with period 1. Estimate (40),
definition (33) and the fact that 0 ≤ KN (ρ) ≤ vmax for all ρ ∈ <N+ , in conjunction with
definitions (51), (52) imply that the following estimates hold for every integer N > 2:

ρmin ≤ ρ(t, x;N) ≤ ρmax for (t, x) ∈ [0, T ]×<. (53)

0 ≤ v(t, x;N) ≤ vmax for (t, x) ∈ [0, T ]×<. (54)

Definitions (42), (43) in conjunction with estimates (48), (49), (50) and the fact that
|vi+1(kδ)− vi(kδ)| ≤ hcρmax for all i = 0,±1,±2, ..., imply the existence of a constant
L̄ > 0 independent of N > 2 for which the following estimate holds for all i, j =
0,±1,±2, ..., k, l = 0, 1, ...,m:

|ρi(kδ)− ρj(lδ)|+ |vi(kδ)− vj(lδ)| ≤ L̄(h |i− j|+ δ |k − l| ). (55)

Estimate (55) in conjunction with definitions (51), (52) implies that there exists a
constant L1 > 0 (independent of N > 2) such that the following Lipschitz inequality
holds for every integer N > 2:

|ρ(t, x;N)−ρ(τ, z;N)|+ |v(t, x;N)− v(τ, z;N)| ≤ L1 (|x− z|+ |t− τ |) ,
for all t, τ ∈ [0, T ] and x, z ∈ <.

(56)

It follows from (53), (54), (56) that the sequences of functions {v( · ;N)}∞N=3,
{ρ( · ;N)}∞N=3 are uniformly bounded and equicontinuous. Therefore, compactness of
[0, T ] × [0, 1] and the Arzela-Ascoli theorem implies that there exist Lipschitz func-
tions v : [0, T ] × [0, 1] → <, ρ : [0, T ] × [0, 1] → < and subsequences {v( · ;Nq)}∞q=1,

{ρ( · ;Nq)}∞q=1 for an increasing index sequence {Nq}∞q=1, which converge uniformly

on [0, T ] × [0, 1] to v, ρ, respectively. Moreover, the functions v, ρ satisfy the same
bounds with v( · ;N), ρ( · ;N), i.e., ρmin ≤ ρ(t, x) ≤ ρmax, 0 ≤ v(t, x) ≤ vmax, for
(t, x) ∈ [0, T ]× [0, 1].

Since the functions ρ(t, · ;N), v(t, · ;N) are periodic with period 1, it follows that
ρ(t, 1) = ρ(t, 0) and v(t, 1) = v(t, 0) for all t ∈ [0, T ]. Therefore, the subsequences {v( · ;
Nq)}∞q=1, {ρ( · ;Nq)}∞q=1 converge uniformly on [0, T ]×< to the periodic extensions with
respect to x (with period 1) of v, ρ, respectively. We will denote by v, ρ the periodic
extensions with respect to x (with period 1) of v, ρ (a slight abuse of notation).

We show next that (5) holds for (t, x) ∈ [0, T ]×<. By virtue of (13), (40) and (33)
the following inequality holds for i = 0,±1,±2, ..., k = 0, 1, ...,m:

|(K(PNQρ(kδ)))(ih)− vi(kδ)| ≤ hSρmax (57)

Definitions (14), (15),(36), (51), (52) imply that

(PNQρ(kδ))(x) = ρ(kδ, x;N), for all k = 0, 1, ...,m and x ∈ <, N > 2 (58)

It follows from (51), (52), and (57) that the following equality holds for i = 0,±1,±2,
..., k = 0, 1, ...,m:

|(K(ρ(kδ, · ;N)))(ih)− v(kδ, ih;N)| ≤ hSρmax (59)
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Let (t, x) ∈ [0, T ]×< be given (arbitrary). Let k = [λ−1tN ], i = [xN ] and notice that
|x− ih| ≤ h = N−1, |t− kδ| ≤ δ = λN−1. We get:

|(K(ρ[t]))(x)− v(t, x)| ≤ |(K(ρ[t]))(x)− (K(ρ[t]))(ih)|
+ |(K(ρ[t]))(ih)− (K(ρ[kδ]))(ih)|
+ |(K(ρ[kδ]))(ih)− (K(ρ(kδ, · ;N)))(ih)|
+ |(K(ρ(kδ, · ;N)))(ih)− v(kδ, ih;N)|
+ |v(kδ, ih;N)− v(kδ, ih)|+ |v(kδ, ih)− v(t, x)|

Since

• the subsequences {v( · ;Nq)}∞q=1, {ρ( · ;Nq)}∞q=1 converge uniformly on [0, T ]×<
to v, ρ, respectively,
• K(ρ[t]) ∈ C1(<)∩Per(<), which implies the existence of a constant M > 0 such

that |(K(ρ[t]))(x)− (K(ρ[t]))(y)| ≤M |x− y|,
• K ∈ C0(Per(<);Per(<)),
• v, ρ are Lipschitz functions,

it follows from (59) that all terms in the right hand side of the above inequality
can become arbitrarily small for sufficiently large q. Therefore, (5) holds for (t, x) ∈
[0, T ]×<. Next define

ϕi(kδ) =h−1 (yi+1(kδ)− yi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m (60)

ψi(kδ) =δ−1 (yi((k + 1)δ)− yi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m− 1 (61)

ηi(kδ) =h−1 (gi+1(kδ)− gi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m (62)

µi(kδ) =δ−1 (gi((k + 1)δ)− gi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m− 1 (63)

θi(kδ) =h−1 (vi+1(kδ)− vi(kδ)) , for i = 0,±1,±2, ..., k = 0, 1, ...,m (64)

and notice that (31) and definitions (42), (60) imply that max
j=...−1,0,1,...

(|ϕj(0)|) ≤ ‖ρ′′0‖∞.
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Using definitions (60), (61), (62), (63), (42), (43), we get:

ϕi((k + 1)δ) = (1− λvi+1(kδ))ϕi(kδ) + λvi+1(kδ)ϕi−1(kδ)

+ λh−2 (3vi+2(kδ)− vi+3(kδ)− 3vi+1(kδ) + vi(kδ)) ρi(kδ)

+ λh−1 (2vi+2(kδ)− vi+3(kδ)− vi+1(kδ)) (yi(kδ) + yi−1(kδ))

+ λh−1 (2vi+1(kδ)− vi(kδ)− vi+2(kδ)) yi−1(kδ)

+ λ (vi+1(kδ)− vi+2(kδ))ϕi(kδ)

+ λ (vi+2(kδ)− vi+3(kδ)) (ϕi(kδ) + ϕi−1(kδ))

for i = 0,±1,±2, ..., k = 0, 1, ...,m (65)

ψi(kδ) =− vi+2(kδ)ϕi−1(kδ) + h−1 (vi(kδ)− vi+2(kδ)) yi−1(kδ)

+ h−2 (2vi+1(kδ)− vi+2(kδ)− vi(kδ)) ρi(kδ)
for i = 0,±1,±2, ..., k = 0, 1, ...,m− 1 (66)

ηi(kδ) =h−2 (2vi+1(kδ)− vi+2(kδ)− vi(kδ)) ρi(kδ)− vi+1(kδ)ϕi−1(kδ)

+ h−1 (vi+1(kδ)− vi+2(kδ)) yi(kδ) + h−1 (vi(kδ)− vi+1(kδ)) yi−1(kδ)

for i = 0,±1,±2, ..., k = 0, 1, ...,m (67)

µi(kδ) =h−1δ−1 (vi((k + 1)δ)− vi(kδ) + vi+1(kδ)− vi+1((k + 1)δ)) ρi(kδ)

+ δ−1 (vi((k + 1)δ)− vi+1((k + 1)δ))λgi(kδ)

− δ−1 (vi((k + 1)δ)− vi(kδ)) yi−1((k + 1)δ)− vi(kδ)ψi−1(kδ)

for i = 0,±1,±2, ..., k = 0, 1, ...,m− 1 (68)

Using (11), (12), (32), (33), (39), (40), (48) and the facts that 0 ≤ vi(kδ) ≤ vmax,
|vi+1(kδ)− vi(kδ)| ≤ hcρmax for all i = 0,±1,±2, ..., k = 0, 1, ...,m, we get for i =
0,±1,±2, ..., k = 0, 1, ...,m− 1:

max
j=...,−1,0,1,...

(|ϕj((k + 1)δ)|) ≤ (1 + δ (3c+ C) ρmax) max
j=...,−1,0,1,...

(|ϕj(kδ)|)

+ δ
(
ρmaxW (ρmax + Y ) + 3Y γ(ρmax) + 3CY 2

) (69)

Using Lemma 5.1, it follows that inequality (69) in conjunction with (38) and the fact
that max

j=...−1,0,1,...
(|ϕj(0)|) ≤ ‖ρ′′0‖∞, gives the following estimate for k = 0, 1, ...,m:

max
j=...,−1,0,1,...

(|ϕj(kδ)|) ≤ Φ := exp (T (3c+ C) ρmax)

×
(∥∥ρ′′0∥∥∞ +

ρmaxW (ρmax + Y ) + 3Y γ(ρmax) + 3CY 2

(3c+ C) ρmax

) (70)

Equalities (66), (67), (68) in conjunction with (9), (11), (32), (40), (43), (48), (49),
(50), (70) and the facts that 0 ≤ vi(kδ) ≤ vmax, |vi+1(kδ) − vi(kδ)| ≤ hcρmax for all
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i = 0,±1,±2, ..., k = 0, 1, ...,m, give the following estimates:

max
i=...,−1,0,1,...

(|ψi(kδ)|) ≤ Ψ :=vmaxΦ + (γ(ρmax) + (2c+ C)Y ) ρmax,

for k = 0, 1, ...,m− 1
(71)

max
i=...,−1,0,1,...

(|ηi(kδ)|) ≤ H := (γ(ρmax) + (2c+ C)Y ) ρmax + vmaxΦ,

for k = 0, 1, ...,m
(72)

max
i=...,−1,0,1,...

(|µi(kδ)|) ≤M :=ρmax

(
cG+ (λ−1 +G)Γ(ρmax)

)
+GLY + vmaxΨ,

for k = 0, 1, ...,m− 1
(73)

Using (64), (46), (48), we obtain for i = 0,±1,±2, ..., k = 0, 1, ...,m:

|θi+1(kδ)− θi(kδ)| ≤ h (γ(ρmax) + CY ) (74)

Using (64), (9), (32), (33), (43), (49), we obtain i = 0,±1,±2, ..., k = 0, 1, ...,m− 1:

|θi((k + 1)δ)− θi(kδ)| ≤ δ Γ(ρmax)
(
λ−1 +G

)
(75)

We define the functions y(t, x;N), g(t, x;N) for (t, x) ∈ [0, T ]×< and for every integer
N > 2 (recall that h = N−1, δ = λh, mδ = T ):

y(kδ, x;N) = (i+ 1− xN) yi(kδ) + (xN − i) yi+1(kδ),

g(kδ, x;N) = (i+ 1− xN) gi(kδ) + (xN − i) gi+1(kδ),

θ(kδ, x;N) = (i+ 1− xN) θi(kδ) + (xN − i) θi+1(kδ)

with i = [xN ], for x ∈ <, k = 0, ...,m, (76)

y(t, x;N) =
(
k + 1− λ−1tN

)
y(kδ, x;N) +

(
λ−1tN − k

)
y((k + 1)δ, x;N),

g(t, x;N) =
(
k + 1− λ−1tN

)
g(kδ, x;N) +

(
λ−1tN − k

)
g((k + 1)δ, x;N),

θ(t, x;N) =
(
k + 1− λ−1tN

)
θ(kδ, x;N) +

(
λ−1tN − k

)
θ((k + 1)δ, x;N)

with k = [λ−1tN ], for x ∈ <, t ∈ [0, T ). (77)

It follows from (42), (43) and the fact that ρi+N (kδ) = ρi(kδ), vi+N (kδ) = vi(kδ) for
all i = 0,±1,±2, ..., k = 0, 1, ...,m + 1, that yi+N (kδ) = yi(kδ), gi+N (kδ) = gi(kδ),
θi+N (kδ) = θi(kδ) for all i = 0,±1,±2, ..., k = 0, 1, ...,m. Therefore, definitions (76),
(77) imply that for each t ∈ [0, T ] the functions y(t, · ;N), g(t, · ;N), θ(t, · ;N) are
periodic with period 1. Estimates (48), (49) and the fact that |vi+1(kδ)− vi(kδ)| ≤
hcρmax for all i = 0,±1,±2, ..., k = 0, 1, ...,m, in conjunction with definitions (76),
(77) imply that the following estimates hold for every integer N > 2:

|y(t, x;N)| ≤Y, for (t, x) ∈ [0, T ]×< (78)

|g(t, x;N)| ≤G, for (t, x) ∈ [0, T ]×< (79)

|θ(t, x;N)| ≤cρmax, for (t, x) ∈ [0, T ]×< (80)

Definitions (60), (64), (61), (62), (63) in conjunction with estimates (70), (71), (72),
(73), (74), (75) imply the existence of a constant L̃ > 0 independent of N > 2 for
which the following estimate holds for all i, j = 0,±1,±2, ..., k, l = 0, 1, ...,m:

|yi(kδ)− yj(lδ)|+ |gi(kδ)− gj(lδ)|+ |θi(kδ)− θj(lδ)| ≤ L̃(h |i− j|+ δ |k − l| )
(81)
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Estimate (81) in conjunction with definitions (76), (77) implies that there exists a
constant L2 > 0 (independent of N > 2) such that the following Lipschitz inequality
holds for every integer N > 2:

|y(t, x;N)− y(τ, z;N)|+ |g(t, x;N)− g(τ, z;N)|+ |θ(t, x;N)− θ(τ, z;N)|
≤ L2 (|x− z|+ |t− τ |) ,

for all t, τ ∈ [0, T ] and x, z ∈ <.
(82)

It follows from (78), (79), (82) that the sequences of functions {y( · ;N)}∞N=3,
{g( · ;N)}∞N=3, {θ( · ;N)}∞N=3 are uniformly bounded and equicontinuous. Therefore,
compactness of [0, T ] × [0, 1] and the Arzela-Ascoli theorem implies that there exist
Lipschitz functions y : [0, T ]× [0, 1]→ <, g : [0, T ]× [0, 1]→ <, θ : [0, T ]× [0, 1]→ <
and subsequences {v( · ;Nq)}∞q=1, {ρ( · ;Nq)}∞q=1, {y( · ;Nq)}∞q=1, {g( · ;Nq)}∞q=1, {θ( · ;
Nq)}∞q=1 for an increasing index sequence {Nq}∞q=1, which converge uniformly on

[0, T ]× [0, 1] to v, ρ, y, g, θ, respectively. Moreover, the functions y, g, θ satisfy the same
bounds with y( · ;N), g( · ;N), i.e., |y(t, x)| ≤ Y , |g(t, x)| ≤ G, |θ(t, x)| ≤ cρmax, for
(t, x) ∈ [0, T ]× [0, 1]. 1 Since the functions y(t, · ;N), g(t, · ;N), θ(t, · ;N) are periodic
with period 1, it follows that y(t, 1) = y(t, 0), θ(t, 1) = θ(t, 0) and g(t, 1) = g(t, 0) for
all t ∈ [0, T ]. Therefore, the subsequences {y( · ;Nq)}∞q=1, {g( · ;Nq)}∞q=1, {θ( · ;Nq)}∞q=1

converge uniformly on [0, T ] × < to the periodic extensions with respect to x (with
period 1) of y, g, θ, respectively. We will denote by y, g, θ the periodic extensions with
respect to x (with period 1) of y, g, θ (again a slight abuse of notation).

We next show that y(t, x) = ∂ ρ
∂ x(t, x) for all (t, x) ∈ [0, T ]×<. Equivalently, we show

that ρ(t, x)−ρ(t, 0) =
∫ x

0 y(t, z)dz, for all (t, x) ∈ [0, T ]×[0, 1]. Let (t, x) ∈ [0, T ]×[0, 1]
be given (arbitrary). Using definitions (32), (51), (76), (42), inequalities (56), (82),
(78), we obtain for k = [λ−1tN ] and i = [xN ]:∣∣∣ ρ(t, x;N)− ρ(t, 0;N)−

∫ x

0
y(t, z;N)dz

∣∣∣≤ |ρ(t, x;N)− ρ(kδ, x;N)|

+ |ρ(kδ, x;N)− ρ(kδ, ih;N)|+ |ρ(kδ, 0;N)− ρ(t, 0;N)|

+

∣∣∣∣∫ x

ih
y(t, z;N)dz

∣∣∣∣+

∣∣∣∣ρi(kδ)− ρ0(kδ)−
∫ ih

0
y(t, z;N)dz

∣∣∣∣
≤L1(2t− 2kδ + x− ih) + Y (x− ih) +

∣∣∣∣∣h
i−1∑
s=0

ys(kδ)−
∫ ih

0
y(t, z;N)dz

∣∣∣∣∣
≤L1(2λ+ 1)h+ Y h+

∣∣∣∣∣
i−1∑
s=0

∫ (s+1)h

sh
y(kδ, sh;N)dz −

∫ ih

0
y(t, z;N)dz

∣∣∣∣∣
≤ (L1(2λ+ 1) + Y )h+

∣∣∣∣∣
i−1∑
s=0

∫ (s+1)h

sh
(y(kδ, sh;N)− y(t, z;N)) dz

∣∣∣∣∣
≤ (L1(2λ+ 1) + Y )h+

i−1∑
s=0

∫ (s+1)h

sh
|y(kδ, sh;N)− y(t, z;N)| dz

≤ (L1(2λ+ 1) + Y )h+ (L2(t− kδ) + L2h) ih

≤ (L1(2λ+ 1) + Y + L2 (λ+ 1))N−1

In the above derivation, we have used the facts that t − kδ ≤ δ and x − ih ≤ h.
Since {y( · ;Nq)}∞q=1, {ρ( · ;Nq)}∞q=1 converge uniformly to y and q as q → +∞ (and
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Nq → +∞), the above inequality shows that ρ(t, x) − ρ(t, 0) =
∫ x

0 y(t, z)dz for all

(t, x) ∈ [0, T ] × [0, 1]. A similar procedure shows that g(t, x) = ∂ ρ
∂ t (t, x) and θ(t, x) =

∂ v
∂ x(t, x) for all (t, x) ∈ [0, T ]×<.

We next show that g(t, x) + v(t, x)y(t, x) + θ(t, x)ρ(t, x) = 0 for all (t, x) ∈ [0, T ]×
<. Let (t, x) ∈ [0, T ] × [0, 1] be given (arbitrary). Since gi(kδ) = −θi(kδ)ρi(kδ) −
vi(kδ)yi−1(kδ) for i = 0,±1,±2, ..., k = 0, 1, ...,m (a consequence of (45) and (64)),
we obtain using (32), (56), (51), (53), (54), (76), (78) for k = [λ−1tN ] and i = [xN ]:

|g(t, x;N) + v(t, x;N)y(t, x;N) + θ(t, x;N)ρ(t, x;N)| ≤ |g(t, x;N)− gi(kδ)|
+ |v(t, x;N)y(t, x;N)− vi(kδ)yi−1(kδ)|+ |θ(t, x;N)ρ(t, x;N)− θi(kδ)ρi(kδ)|
≤ (L2(1 + ρmax + vmax) + L1(Y + cρmax)) (t− kδ + x− ih) + L2vmaxh

≤ (L2(1 + ρmax + vmax) + L1(Y + cρmax)) (δ + h) + L2vmaxh

≤ ((L2(1 + ρmax + vmax) + L1(Y + cρmax)) (λ+ 1) + L2vmax)N−1

In the above derivation, we have used the facts that t− kδ ≤ δ and x− ih ≤ h. Since
{v( · ;Nq)}∞q=1, {ρ( · ;Nq)}∞q=1, {y( · ;Nq)}∞q=1, {g( · ;Nq)}∞q=1, {θ( · ;Nq)}∞q=1 converge

uniformly to v, ρ, y, g, θ as q → +∞ (and Nq → +∞), the above inequality shows that
g(t, x) + v(t, x)y(t, x) + θ(t, x)ρ(t, x) = 0 for all (t, x) ∈ [0, T ] × [0, 1]. Periodicity of
v, ρ, y, g, θ implies that the equality g(t, x) + v(t, x)y(t, x) + θ(t, x)ρ(t, x) = 0 for all
(t, x) ∈ [0, T ]×<.

Since T > 0 is arbitrary, we conclude that there exists a solution ρ ∈ C1(<+×<) of
the initial-value problem (1), (4), (5), (7) with ρ[t] ∈W 2,∞(<) ∩ Per(<) for all t ≥ 0,
which satisfies inequality (16) for all t ≥ 0, x ∈ <.
Uniqueness follows by defining

E(t) :=
1

2

∫ 1

0
e2(t, x)dx (83)

where e(t, x) := ρ(t, x)− ρ̄(t, x) and ρ, ρ̄ ∈ C1(<+×<) are solutions of the initial-value
problem (1), (4), (5), (7) with ρ[t], ρ̄[t] ∈ W 2,∞(<) ∩ Per(<) for all t ≥ 0. Let T > 0
be given (arbitrary) and define

µ̄ := max
t∈[0,T ]

(∥∥∥∥∂ v∂ x [t]

∥∥∥∥
∞

)
+2a

(
max
t∈[0,T ]

(‖ρ[t]‖∞) + max
t∈[0,T ]

(‖ρ̄[t]‖∞)

)
×
(

max
t∈[0,T ]

(∥∥∥∥∂ ρ̄∂ x [t]

∥∥∥∥
∞

)
+ max
t∈[0,T ]

(‖ρ̄[t]‖∞)

) (84)

where a : <+ → <+ is the non-decreasing function involved in (6). Using (6) and (83),
(84), we have for all t ∈ [0, T ]:

Ė(t) =−
∫ 1

0
e(t, x)

∂

∂ x
(ρ(t, x)v(t, x)− ρ̄(t, x)v̄(t, x)) dx

=− 1

2

∫ 1

0
e2(t, x)

∂ v

∂ x
(t, x)dx−

∫ 1

0
e(t, x) (v(t, x)− v̄(t, x))

∂ ρ̄

∂ x
(t, x)dx

−
∫ 1

0
e(t, x)ρ̄(t, x)

∂

∂ x
(v(t, x)− v̄(t, x)) dx ≤ µ̄E(t)

(85)
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The differential inequality (85) implies that E(t) ≤ exp (µ̄t)E(0) for all t ∈ [0, T ].
Since E(0) = 0, we get E(t) = 0 for all t ∈ [0, T ]. Since e[t] is periodic with period 1
for all t ≥ 0 and since T > 0 is arbitrary, we conclude that ρ(t, x) ≡ ρ̄(t, x). The proof
is complete.

Proof of Theorem 2.4. It suffices to show that (6) holds for the mapping

(K(ρ))(x) = f

(∫ x+η

x
ω(s− x)ρ(s)ds

)
g

(∫ x

x−ζ
ω̃(x− s)ρ(s)ds

)
,

for ρ ∈ Per(<), x ∈ <
(86)

and that the parameterized family

KN (ρ) = f

(
N−1∑
i=0

ρi

∫ (i+1)h

ih
ω(s)ds

)
g

(
N−1∑
i=1

ρi

∫ 1−(i−1)h

1−ih
ω̃(s)ds

)
, for ρ ∈ <N+ (87)

where h = N−1, smoothly approximates the mapping K ∈ C0(Per(<);Per(<)) de-
fined by (86).

First we show the validity of (6) for certain non-decreasing function a : <+ → <+.
For every ρ, ρ̄ ∈ Per(<) and x ∈ <, definition (86) implies the existence of θ, ϑ ≥ 0
such that

(K(ρ))(x)−(K(ρ̄))(x) =

f ′(θ)

(∫ x+η

x
ω(s− x) (ρ(s)− ρ̄(s)) ds

)
g

(∫ x

x−ζ
ω̃(x− s)ρ(s)ds

)
+ f

(∫ x+η

x
ω(s− x)ρ̄(s)ds

)
g′(ϑ)

(∫ x

x−ζ
ω̃(x− s) (ρ(s)− ρ̄(s)) ds

)
The above equation in conjunction with (17) and the facts that η, ζ ∈ (0, 1] and that
ω, ω̃ are non-increasing functions, allow us to obtain by using the Cauchy-Schwarz
inequality, the following estimate for all ρ, ρ̄ ∈ Per(<) and x ∈ <:

|(K(ρ))(x)− (K(ρ̄))(x)|

≤M2ω(0)

∫ x+η

x
|ρ(s)− ρ̄(s)|ds+M2ω̃(0)

∫ x

x−ζ
|ρ(s)− ρ̄(s)| ds

≤M2(ω(0) + ω̃(0))

∫ 1

0
|ρ(s)− ρ̄(s)| ds

≤M2(ω(0) + ω̃(0))

(∫ 1

0
|ρ(s)− ρ̄(s)|2 ds

)1/2

Using the above estimate we obtain for all ρ, ρ̄ ∈ Per(<) and x ∈ <

|ρ(x)− ρ̄(x)| |(K(ρ))(x)− (K(ρ̄))(x)| ≤ 1

2
|ρ(x)− ρ̄(x)|2

+
1

2
M4 (ω(0) + ω̃(0))2

∫ 1

0
|ρ(s)− ρ̄(s)|2 ds
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which directly implies the following estimate for all ρ, ρ̄ ∈ Per(<):∫ 1

0
|ρ(x)− ρ̄(x)| |(K(ρ))(x)− (K(ρ̄))(x)| dx

≤ 1

2

(
1 +M4 (ω(0) + ω̃(0))2

)∫ 1

0
|ρ(s)− ρ̄(s)|2 ds (88)

Notice that definition (86) implies the following equation for all ρ ∈ Per(<) and x ∈ <:

∂

∂ x
(K(ρ))(x) =

(
ω(η)ρ(x+ η)− ω(0)ρ(x)−

∫ x+η

x
ω′(s− x)ρ(s)ds

)
× f ′

(∫ x+η

x
ω(s− x)ρ(s)ds

)
g

(∫ x

x−ζ
ω̃(x− s)ρ(s)ds

)
+

(
ω̃(0)ρ(x)− ω̃(ζ)ρ(x− ζ) +

∫ x

x−ζ
ω̃′(x− s)ρ(s)ds

)
× f

(∫ x+η

x
ω(s− x)ρ(s)ds

)
g′
(∫ x

x−ζ
ω̃(x− s)ρ(s)ds

)
(89)

The Cauchy-Schwarz inequality and the fact that η ∈ (0, 1] gives the following estimate
for all ρ, ρ̄ ∈ Per(<) and x ∈ <

A(x) :=
∣∣∣ ω(η) (ρ(x+ η)− ρ̄(x+ η))− ω(0) (ρ(x)− ρ̄(x))

−
∫ x+η

x
ω′(s− x) (ρ(s)− ρ̄(s)) ds

∣∣∣
≤ ω(η) |ρ(x+ η)− ρ̄(x+ η)|+ ω(0) |ρ(x)− ρ̄(x)|

+

∫ x+η

x

∣∣ω′(s− x)
∣∣ |ρ(s)− ρ̄(s)| ds

≤ ω(η) |ρ(x+ η)− ρ̄(x+ η)|+ ω(0) |ρ(x)− ρ̄(x)|

+

(∫ η

0

∣∣ω′(s)∣∣2 ds)1/2(∫ x+η

x
|ρ(s)− ρ̄(s)|2 ds

)1/2

≤ ω(η) |ρ(x+ η)− ρ̄(x+ η)|+ ω(0) |ρ(x)− ρ̄(x)|

+

(∫ η

0

∣∣ω′(s)∣∣2 ds)1/2(∫ 1

0
|ρ(s)− ρ̄(s)|2 ds

)1/2

which implies that

A(x) |ρ(x)− ρ̄(x)| ≤1

2
ω2(η) |ρ(x+ η)− ρ̄(x+ η)|2 + (1 + ω(0)) |ρ(x)− ρ̄(x)|2

+
1

2

(∫ η

0

∣∣ω′(s)∣∣2 ds)(∫ 1

0
|ρ(s)− ρ̄(s)|2 ds

)
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and consequently∫ 1

0
A(x) |ρ(x)− ρ̄(x)| dx

≤
(

1

2
ω2(η) + 1 + ω(0) +

1

2

∫ η

0

∣∣ω′(s)∣∣2 ds)(∫ 1

0
|ρ(s)− ρ̄(s)|2 ds

)
Obtaining a similar estimate for the term

B(x) :=∣∣∣∣ω̃(0) (ρ(x)− ρ̄(x))− ω̃(ζ) (ρ(x− ζ)− ρ̄(x− ζ)) +

∫ x

x−ζ
ω̃′(x− s) (ρ(s)− ρ̄(s)) ds

∣∣∣∣
and noticing that there exists a constant Θ > 0 such that |ω(η)ρ(x+ η)− ω(0)ρ(x)−∫ x+η
x ω′(s − x)ρ(s)ds| ≤ Θ ‖ρ‖∞, |ω̃(0)ρ(x) − ω̃(ζ)ρ(x − ζ) +

∫ x
x−ζ ω̃

′(x − s)ρ(s)ds| ≤
Θ‖ρ‖∞ for all x ∈ < and ρ ∈ Per(<), we conclude from (89), by using the same
arguments as above (for the derivation of (88)), that there exists a constant Θ̄ > 0
which satisfies the following estimate for all ρ, ρ̄ ∈ Per(<):∫ 1

0
|ρ(x)− ρ̄(x)|

∣∣∣∣ ∂∂ x ((K(ρ))(x)− (K(ρ̄))(x))

∣∣∣∣ dx
≤ Θ̄ (1 + ‖ρ‖∞ + ‖ρ̄‖∞)

∫ 1

0
|ρ(x)− ρ̄(x)|2 dx.

(90)

Inequality (6) with an appropriate (linear) non-decreasing function a : <+ → <+ is a
direct consequence of estimates (88) and (90).

By virtue of 2.2, in order to show that the parameterized family KN defined by
(87) smoothly approximates the mapping K ∈ C0(Per(<);Per(<)) defined by (86),
it suffices to show that the parameterized families

FN (ρ) = f (BNρ) , for ρ ∈ <N+ (91)

GN (ρ) = g
(
B̄Nρ

)
, for ρ ∈ <N+ (92)

where

BNρ =

N−1∑
i=0

ρi

∫ (i+1)h

ih
ω(s)ds, for ρ ∈ <N+ (93)

B̄Nρ =

N−1∑
i=1

ρi

∫ 1−(i−1)h

1−ih
ω̃(s)ds, for ρ ∈ <N+ (94)

h = N−1, smoothly approximate the mappings

(F (ρ))(x) = f

(∫ x+1

x
ω(s− x)ρ(s)ds

)
, for ρ ∈ Per(<), x ∈ < (95)

(G(ρ))(x) = g

(∫ x

x−1
ω̃(x− s)ρ(s)ds

)
, x ∈ <, for ρ ∈ Per(<), x ∈ <. (96)
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Using the facts that h = 1/N , ρ(i) = (ρi, ..., ρN−1, ρ0, ..., ρi−1) for i = 1, ..., N − 1,
y = (y0, ..., yN−1)> = h−1(ρ(1) − ρ) and ϕ = (ϕ0, ..., ϕN−1)> = h−2(ρ(2) − 2ρ(1) + ρ),
we establish the following useful identities hold for the linear mappings BNρ, B̄Nρ
defined by (93), (94) for all ρ ∈ <N+ :

BNρ
(1)−BNρ =

N−1∑
i=1

ρi

∫ ih

(i−1)h
(ω(s)− ω(s+ h)) ds− ρ0

(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
(97)

B̄Nρ
(1)−B̄Nρ =

ρ0

∫ 2h

h
ω̃(s)ds−

N−1∑
i=2

ρi

∫ 1−(i−1)h

1−ih
(ω̃(s)− ω̃(s+ h)) ds− ρ1

∫ 1

1−h
ω̃(s)ds

(98)

2BNρ
(1) −BNρ−BNρ(2) =

hy0

(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
− h

N−1∑
i=1

yi

∫ ih

(i−1)h
(ω(s)− ω(s+ h)) ds

(99)

2B̄Nρ
(1) − B̄Nρ− B̄Nρ(2) =

h

N−1∑
i=2

yi

∫ 1−(i−1)h

1−ih
(ω̃(s)− ω̃(s+ h)) ds+ hy1

∫ 1

1−h
ω̃(s)ds− hy0

∫ 2h

h
ω̃(s)ds

(100)

3BNρ
(1) +BNρ

(3) −BNρ− 3BNρ
(2) =

h2
N−1∑
i=1

ϕi

∫ ih

(i−1)h
(ω(s)− ω(s+ h)) ds− h2ϕ0

(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
(101)

3B̄Nρ
(1) + B̄Nρ

(3) − B̄Nρ− 3B̄Nρ
(2) =

h2ϕ0

∫ 2h

h
ω̃(s)ds− h2ϕ1

∫ 1

1−h
ω̃(s)ds− h2

N−1∑
i=2

ϕi

∫ 1−(i−1)h

1−ih
(ω̃(s)− ω̃(s+ h)) ds.

(102)

Notice that since ω, ω̃ are non-negative and non-increasing functions, it follows from
identities (10), (98) that the following estimates hold for every 0 < ρmin ≤ ρmax and
ρ ∈ <N+ with ρmin1N ≤ ρ ≤ ρmax1N :(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
(ρmin − ρ0) ≤ BNρ(1) −BNρ

≤
(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
(ρmax − ρ0) (103)

(ρ0 − ρmax)

∫ 2h

h
ω̃(s)ds ≤ B̄Nρ(1) − B̄Nρ ≤ (ρ0 − ρmin)

∫ 2h

h
ω̃(s)ds (104)
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∣∣∣ BNρ(1) −BNρ
∣∣∣≤ hω(0)ρmax, (105)∣∣∣ B̄Nρ(1) − B̄Nρ
∣∣∣≤ hω̃(0)ρmax. (106)

Inequalities (10) for FN (ρ) and GN (ρ) (with appropriate c) are consequences of es-
timates (103), (104), definitions (91), (92), the fact that f ′(ρ) ≤ 0, g′(ρ) ≥ 0 for all
ρ ≥ 0, inequality (17) and the mean value theorem for f and g.

Inequality (17) implies the following estimates for all x1, x2, z1, z2 ∈ <+:

|f(x2)− f(x1)− f(z2) + f(z1)| ≤M |x2 − x1 − z2 + z1|+M |x2 − x1| |x1 − z1|
+M |x2 − x1| |z2 − z1|+M |x2 − x1|2

(107)

|g(x2)− g(x1)− g(z2) + g(z1)| ≤M |x2 − x1 − z2 + z1|+M |x2 − x1| |x1 − z1|
+M |x2 − x1| |z2 − z1|+M |x2 − x1|2

(108)

Indeed, by virtue of the mean value theorem for all x1, x2, z1, z2 ∈ <+ there exist
λ, µ ∈ (0, 1) such that

f(x2)− f(x1)− f(z2) + f(z1) =f ′(θ)(x2 − x1)− f ′(ϑ)(z2 − z1)

=f ′(ϑ)(x2 − x1 − z2 + z1) + f ′′(r)(θ − ϑ)(x2 − x1)

where θ = x1 +λ(x2−x1), ϑ = z1 +µ(z2−z1) and r ∈ <. A similar relation holds for g
as well. Inequalities (107), (108) are consequences of the above equality and estimate
(17).
Let 0 < ρmin ≤ ρmax be given and let arbitrary vectors ρ, ρ̃ ∈ <N+ with ρmin1N ≤
ρ ≤ ρmax1N , ρmin1N ≤ ρ̃ ≤ ρmax1N be also given. Using (107), (108) with x2 = BNρ,
x1 = BNρ

(1), z2 = BN ρ̃, z1 = BN ρ̃
(1) for f and x2 = B̄Nρ, x1 = B̄Nρ

(1), z2 =
B̄N ρ̃, z1 = B̄N ρ̃

(1) for g in conjunction with (105), (106), (91), (92) and the following
inequalities

|BNρ−BN ρ̃| ≤ |ρ− ρ̃|∞
∫ 1

0
ω(s)ds (109)

∣∣B̄Nρ− B̄N ρ̃∣∣ ≤ |ρ− ρ̃|∞ ∫ 1

0
ω̃(s)ds (110)∣∣∣BNρ(1) −BNρ−BN ρ̃(1) +BN ρ̃

∣∣∣ ≤2 |ρ− ρ̃|∞

(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
∣∣∣B̄Nρ(1) − B̄Nρ− B̄N ρ̃(1) + B̄N ρ̃

∣∣∣ ≤2 |ρ− ρ̃|∞
∫ 2h

h
ω̃(s)ds

which are direct consequences of (93), (94) , (97), (98) as well as the fact that ω, ω̃
are non-negative and non-increasing functions, we obtain:∣∣∣FN (ρ)− FN (ρ(1))− FN (ρ̃) + FN (ρ̃(1))

∣∣∣ ≤Mhω(0) |ρ− ρ̃|∞

(
2 + ρmax

∫ 1

0
ω(s)ds

)
+ 2Mh2ω2(0)ρ2

max∣∣∣GN (ρ)−GN (ρ(1))−GN (ρ̃) +GN (ρ̃(1))
∣∣∣ ≤Mhω̃(0) |ρ− ρ̃|∞

(
2 + ρmax

∫ 1

0
ω̃(s)ds

)
+ 2Mh2ω̃2(0)ρ2

max
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The above estimates directly imply the validity of (9) for FN (ρ), GN (ρ) and for
an appropriate non-decreasing function Γ : <+ → <+. Moreover, inequalities (109),
(110) in conjunction with the mean value theorem and (17) imply the validity of (8)
for FN (ρ), GN (ρ) and for an appropriate constant L > 0.
Inequality (17) implies that for every b ≥ a ≥ 0 and x1, x2, x3, x4 ∈ [a, b], the following
inequalities hold:

|2f(x2)− f(x1)− f(x3)| ≤M |2x2 − x1 − x3|+M(b− a)2 (111)

|2g(x2)− g(x1)− g(x3)| ≤M |2x2 − x1 − x3|+M(b− a)2 (112)

|3f(x2)− 3f(x3) + f(x4)− f(x1)| ≤M |3x2 + x4 − 3x3 − x1|+
7

6
M(b− a)3

+3M(b− a) |2x3 − x2 − x4|+M |2x2 − x1 − x3|2 +M |2x3 − x2 − x4|2

(113)

|3g(x2)− 3g(x3) + g(x4)− g(x1)| ≤M |3x2 + x4 − 3x3 − x1|+
7

6
M(b− a)3

+3M(b− a) |2x3 − x2 − x4|+M |2x2 − x1 − x3|2 +M |2x3 − x2 − x4|2
(114)

Indeed, Taylor’s theorem implies the existence of θ, ϑ, r ∈ [a, b] so that

3f(x2)− 3f(x3) + f(x4)− f(x1) = f ′(x1)(3x2 + x4 − 3x3 − x1)

+
1

2
f ′′(x1)

(
3(x2 − x1)2 − 3(x3 − x1)2 + (x4 − x1)2

)
+

1

2
f ′′′(θ)(x2 − x1)3 − 1

2
f ′′′(ϑ)(x3 − x1)3 +

1

6
f ′′′(r)(x4 − x1)3

Using the above equality in conjunction with (17), the fact that 3(x2 − x1)2 − 3(x3 −
x1)2 +(x4−x1)2 = −6κ(x3−x2)+(s−κ)2, where s = 2x2−x1−x3, κ = 2x3−x2−x4

and the fact that x1, x2, x3, x4 ∈ [a, b], we obtain (113). A similar derivation gives
inequalities (111), (112), (114).

Inequalities (99), (100), (111), (112) allow us to conclude the validity of (11) for
FN (ρ), GN (ρ) with C = 2M (ω̃(0) + ω(0)) and for an appropriate non-decreasing
function γ : <+ → <+. Indeed, using (99) and the fact that ω is a non-negative and
non-increasing function, we get:∣∣∣2BNρ(1) −BNρ−BNρ(2)

∣∣∣ ≤ 2h2ω(0) |y|∞ (115)

Applying (111) with x2 = BNρ
(1), x1 = BNρ, x3 = BNρ

(2) and definition (91) in
conjunction with the above inequality, we get:∣∣∣2FN (ρ(1))− FN (ρ)− FN (ρ(2))

∣∣∣ ≤ 2Mh2ω(0) |y|∞ +M(b− a)2 (116)

where b ≥ a ≥ 0 are any numbers for which BNρ,BNρ
(1), BNρ

(2) ∈ [a, b]. Since
(105) implies that

∣∣BNρ(1) −BNρ
∣∣ ≤ hω(0)ρmax,

∣∣BNρ(2) −BNρ(1)
∣∣ ≤ hω(0)ρmax,

it follows that there exist numbers b ≥ a ≥ 0 with b − a ≤ 2hω(0)ρmax such that
BNρ,BNρ

(1), BNρ
(2) ∈ [a, b]. It follows from (116) that∣∣∣2FN (ρ(1))− FN (ρ)− FN (ρ(2))

∣∣∣ ≤ 2Mh2ω(0)
(
|y|∞ + 2ω(0)ρ2

max

)
(117)
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A similar procedure allows us to show that∣∣∣2GN (ρ(1))−GN (ρ)−GN (ρ(2))
∣∣∣ ≤ 2Mh2ω̃(0)

(
|y|∞ + 2ω̃(0)ρ2

max

)
(118)

Inequalities (117), (118) show the validity of (11) for FN (ρ), GN (ρ) with C =
2M(ω̃(0) + ω(0)) and for an appropriate non-decreasing function γ : <+ → <+. In-
equalities (101), (102), (113), (114) allow us to conclude the validity of (12) for FN (ρ),
GN (ρ) with C = 2M (ω̃(0) + ω(0)) and for an appropriate non-decreasing function
W : <+ → <+. Indeed, using (101) and the fact that ω is a non-negative and non-
decreasing function, we get:

∣∣∣3BNρ(1) +BNρ
(3) −BNρ− 3BNρ

(2)
∣∣∣ ≤ 2h2 |ϕ|∞

(∫ h

0
ω(s)ds−

∫ 1

1−h
ω(s)ds

)
Applying (111) with x2 = BNρ

(1), x1 = BNρ, x3 = BNρ
(2), x4 = BNρ

(3) and definition
(91) in conjunction with the above inequality, we get:

|3FN (ρ(1))+FN (ρ(3))− FN (ρ)− 3FN (ρ(2))| ≤ 2Mh3ω(0) |ϕ|∞

+
7

6
M(b− a)3 + 3M(b− a)

∣∣∣2BNρ(2) −BNρ(1) −BNρ(3)
∣∣∣

+M
∣∣∣2BNρ(1) −BNρ−BNρ(2)

∣∣∣2 +M
∣∣∣2BNρ(2) −BNρ(1) −BNρ(3)

∣∣∣2
(119)

where b ≥ a ≥ 0 are any numbers for which BNρ,BNρ
(1), BNρ

(2), BNρ
(3) ∈ [a, b].

Using (115) and its direct consequence |2BNρ(2)−BNρ(1)−BNρ(3)| ≤ 2h2ω(0)|y(1)|∞ =
2h2ω(0)|y|∞ in conjunction with (119), we get:

|3FN (ρ(1))+FN (ρ(3))− FN (ρ)− 3FN (ρ(2))| ≤ 2Mh3ω(0) |ϕ|∞

+
7

6
M(b− a)3 + 6M(b− a)h2ω(0) |y|∞ + 8Mh4ω2(0) (|y|∞)2

(120)

Since (105) implies that
∣∣BNρ(1) −BNρ

∣∣ ≤ hω(0)ρmax, |BNρ(2)−BNρ(1)| ≤ hω(0)ρmax,

|BNρ(3) − BNρ(2)| ≤ hω(0)ρmax, it follows that there exist numbers b ≥ a ≥ 0 with
b − a ≤ 3hω(0)ρmax such that BNρ,BNρ

(1), BNρ
(2), BNρ

(3) ∈ [a, b]. It follows from
(120) and the fact that h ≤ 1 that∣∣∣ 3FN (ρ(1)) + FN (ρ(3))− FN (ρ)− 3FN (ρ(2))

∣∣∣≤
2Mh3ω(0)

(
|ϕ|∞ +

63

4
ω2(0)ρ3

max + 9ω(0)ρmax |y|∞ + 4ω(0) (|y|∞)2

)
(121)

A similar procedure allows us to show that∣∣∣ 3GN (ρ(1)) +GN (ρ(3))−GN (ρ)− 3GN (ρ(2))
∣∣∣≤

2Mh3ω̃(0)

(
|ϕ|∞ +

63

4
ω̃2(0)ρ3

max + 9ω̃(0)ρmax |y|∞ + 4ω̃(0) (|y|∞)2

)
(122)
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Inequalities (121), (122) show the validity of (12) for FN (ρ), GN (ρ) with C =
2M(ω̃(0) + ω(0)) and for an appropriate non-decreasing function W : <+ → <+.

Finally, we show the validity of (13) for FN (ρ), GN (ρ) for an appropriate constant
S > 0. Definitions (14), (15) imply that

(PNρ)(x) = h−1
N−1∑
i=0

ρiφ(x− ih) for x ∈ < (123)

where φ : < → < is the periodic extension (with period 1) of the function

φ(x) =

 h− x, x ∈ [0, h]
x− 1 + h, x ∈ [1− h, 1]

0, x /∈ [0, h] ∪ [1− h, 1]
for x ∈ [0, 1] (124)

Formula (123) and periodicity of φ : < → < in conjunction with definitions (95), (96)
imply that

(F (PNρ))(ih) = (F (PNρ
(i)))(0), (G(PNρ))(ih) = (G(PNρ

(i)))(0),

for i = 0, ..., N − 1
(125)

Therefore, it suffices to show that there exists a constant S > 0 so that (13) holds
for FN (ρ) and GN (ρ) with i = 0. Definitions (91), (92), (93), (94) , (95), (96) in
conjunction with (123) and inequality (17) imply the inequalities:

|(F (PNρ))(0)− FN (ρ)| ≤

Mh−1

∣∣∣∣∣∣
N−1∑
j=0

ρj

∫ 1

0
ω(s)φ(s− jh)ds−

N−1∑
j=0

ρjh

∫ (j+1)h

jh
ω(s)ds

∣∣∣∣∣∣ (126)

|(G(ρ))(0)−GN (ρ)| ≤

h−1M

∣∣∣∣∣∣
N−1∑
j=0

ρj

∫ 1

0
ω̃(s)φ(−s− jh)ds−

N−1∑
j=1

ρjh

∫ 1−(j−1)h

i−jh
ω̃(s)ds

∣∣∣∣∣∣ (127)

Using (124) and the fact that φ : < → < is periodic with period 1, we get from (126)
and (127):

|(F (PNρ))(0)− FN (ρ)| ≤Mh−1

∣∣∣∣∣∣
N−1∑
j=1

ρj

∫ (j+1)h

jh
(ω(s)− ω(s− h)) (jh− s)ds

+ρ0

∫ 1

1−h
ω(s)(s− 1 + h)ds− ρ0

∫ h

0
sω(s)ds

∣∣∣∣
(128)

|(G(ρ))(0)−GN (ρ)| ≤ h−1M

∣∣∣∣∣∣
N−1∑
j=1

ρj

∫ 1−(j−1)h

1−jh
(ω̃(s− h)− ω̃(s)) (s+ jh− 1)ds

+ρ0

∫ 1

1−h
ω̃(s)(h− 1 + s)ds+ ρ0

∫ h

0
ω̃(s)(h− s)ds

∣∣∣∣
(129)
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Since ω, ω̃ are non-negative and non-increasing functions, it follows from inequalities
(128), (129) that the following estimates hold for every 0 < ρmin ≤ ρmax and ρ ∈ <N+
with ρmin1N ≤ ρ ≤ ρmax1N :

|(F (PNρ))(0)− FN (ρ)| ≤Mh−1ρmax

N−1∑
j=1

∫ (j+1)h

jh
(ω(s− h)− ω(s)) (s− jh)ds

+

∫ 1

1−h
ω(s)(s− 1 + h)ds+

∫ h

0
sω(s)ds

)
(130)

|(G(ρ))(0)−GN (ρ)|≤ h−1Mρmax

N−1∑
j=1

∫ 1−(j−1)h

1−jh
(ω̃(s− h)− ω̃(s)) (s+ jh− 1)ds

+

∫ 1

1−h
ω̃(s)(h− 1 + s)ds+

∫ h

0
ω̃(s)(h− s)ds

)
(131)

Using the fact that
∫
I p(x)q(x)dx ≤ sup

x∈I
(q(x))

∫
I p(x)dx, for every pair of piecewise

continuous, non-negative functions p, q : I → < and for every interval I ⊂ <, we obtain
from (130), (131):

|(F (PNρ))(0)− FN (ρ)| ≤

Mρmax

N−1∑
j=1

∫ (j+1)h

jh
(ω(s− h)− ω(s)) ds+

∫ 1

1−h
ω(s)ds+

∫ h

0
ω(s)ds


(132)

|(G(ρ))(0)−GN (ρ)| ≤

Mρmax

N−1∑
j=1

∫ 1−(j−1)h

1−jh
(ω̃(s− h)− ω̃(s)) ds+

∫ 1

1−h
ω̃(s)ds+

∫ h

0
ω̃(s)ds


(133)

Evaluating the integrals in the right hand sides of (132), (133) and using the fact that
ω, ω̃ are non-negative and non-increasing functions, we get:

|(F (PNρ))(0)− FN (ρ)| ≤ 2Mhρmaxω(0) (134)

|(G(ρ))(0)−GN (ρ)| ≤ 2Mhρmaxω̃(0) (135)

Inequalities (134), (135) show the validity of (12) for FN (ρ), GN (ρ) with S = 2M(ω̃(0)
+ ω(0)). The proof is complete.

Proof of Theorem 3.2: Let ρ0 ∈ W 2,∞(<) ∩ Per(<) be a given function that sat-
isfies condition (19). Let ρ ∈ C1(<+ × <) with ρ[t] ∈ W 2,∞(<) ∩ Per(<) for all t ≥ 0
be the unique solution of (1), (3), (4), (7). We define for t ≥ 0:

V (t) =

∫ 1

0

(
ρ(t, x) ln

(
ρ(t, x)

ρ∗

)
+ ρ∗ − ρ(t, x)

)
dx (136)

30



The time derivative of V (t) can be computed using (1), (3), (4), (136) and the facts

that ρ[t] is periodic with period 1, ρ∗ =
∫ x+1
x ρ(t, s)ds for all t ≥ 0, x ∈ <, ζ = 1,

ω(x) = η−1 for x ∈ [0, η] and ω(x) = 0 for x > η, ω̃(x) = 1 − x for x ∈ [0, 1] and
f ′(ρ) ≤ 0 for all ρ ≥ 0:

V̇ (t) =

∫ 1

0
(ρ∗ − ρ(t, x))

∂ v

∂ x
(t, x)dx = η−1

∫ 1

0
(ρ∗ − ρ(t, x)) (ρ(t, x+ η)− ρ∗)

× f ′
(
η−1

∫ x+η

x
ρ(t, s)ds

)
g

(
ρ∗ −

∫ x

x−1
(x− s) ρ(t, s)ds

)
dx

− η−1

∫ 1

0
(ρ∗ − ρ(t, x))2

∣∣∣∣f ′(η−1

∫ x+η

x
ρ(t, s)ds

)∣∣∣∣
× g

(
ρ∗ −

∫ x

x−1
(x− s) ρ(t, s)ds

)
dx

−
∫ 1

0
(ρ(t, x)− ρ∗)2 f

(
η−1

∫ x+η

x
ρ(t, s)ds

)
g′
(
ρ∗ −

∫ x

x−1
(x− s)ρ(t, s)ds

)
dx

(137)
Using the facts that g(ρ) ≥ 1 for all ρ ≥ 0 and |ρ∗ − ρ(t, x)| |ρ(t, x+ η)− ρ∗| ≤
1
2(ρ(t, x)− ρ∗)2 + 1

2(ρ∗ − ρ(t, x+ η))2, we obtain from (137) for all t ≥ 0:

V̇ (t) ≤ 1

2η

∫ 1

0
(ρ(t, x+ η)− ρ∗)2

∣∣∣∣f ′(η−1

∫ x+η

x
ρ(t, s)ds

)∣∣∣∣
× g

(
ρ∗ −

∫ x

x−1
(x− s) ρ(t, s)ds

)
dx

− 1

2η

∫ 1

0
(ρ∗ − ρ(t, x))2

∣∣∣∣f ′(η−1

∫ x+η

x
ρ(t, s)ds

)∣∣∣∣ g(ρ∗ −∫ x

x−1
(x− s) ρ(t, s)ds

)
dx

−
∫ 1

0
(ρ(t, x)− ρ∗)2 f

(
η−1

∫ x+η

x
ρ(t, s)ds

)
g′
(
ρ∗ −

∫ x

x−1
(x− s) ρ(t, s)ds

)
dx

(138)

Using (16) and the fact that ρ∗ =
∫ x+1
x ρ(t, s)ds for all t ≥ 0, x ∈ <, we obtain the

following estimates for all t ≥ 0, x ∈ <:

max
(
ρ∗ − ρmax

2
,
ρmin

2

)
≤ρ∗ −

∫ x

x−1
(x− s)ρ(t, s)ds ≤ min

(
ρ∗ − ρmin

2
,
ρmax

2

)
(139)

ρmin ≤η−1

∫ x+η

x
ρ(t, s)ds ≤ min

(
η−1ρ∗, ρmax

)
(140)

Consequently, using the fact that
∫ 1

0 (ρ(t, x+ η)− ρ∗)2dx =
∫ 1

0 (ρ(t, x+ η)− ρ∗)2dx
(a consequence of periodicity of ρ[t]), we obtain from (138), (139), (140), (20), (21),
(22), (23), (24), (25) for all t ≥ 0:

V̇ (t) ≤
(

1

2η
Fmaxgmax −

1

2η
Fmingmin − fminGmin

)∫ 1

0
(ρ(t, x)− ρ∗)2 dx (141)

Notice that the inequality 1
2ρmax

(ρ− ρ∗)2 ≤ ρ ln
(
ρ
ρ∗

)
+ ρ∗ − ρ ≤ 1

2ρmin
(ρ− ρ∗)2 holds

for all ρ ∈ [ρmin, ρmax] with 0 < ρmin ≤ ρ∗ ≤ ρmax. Therefore, definition (136) implies

31



the estimate:

1

2ρmax

∫ 1

0
(ρ(t, x)− ρ∗)2 dx ≤ V (t) ≤ 1

2ρmin

∫ 1

0
(ρ(t, x)− ρ∗)2 dx (142)

Combining (141) and (142), obtain the following differential inequality for all t ≥ 0:

V̇ (t) ≤ −c̄V (t) (143)

where c̄ := η−1ρmin (2ηfminGmin − Fmaxgmax + Fmingmin). The differential inequality
(143) implies that V (t) ≤ exp(−c̄t)V (0) for all t ≥ 0. The previous inequality in
conjunction with (142) implies estimate (26). The proof is complete.

6. Concluding Remarks

The paper provided indications about the stabilizing effect of nudging in a ring-road
when nudging is expressed by means of (3). However, Lemma 2.2 and the proof of The-
orem 2.4 indicate that it is also possible to study more complicated speed adjustment
feedback laws of the form

v(t, x) =

m∑
j=1

fj

(∫ x+ηj

x
ωj(s− x)ρ(t, s)ds

)
gj

(∫ x

x−ζj
ω̃j(x− s)ρ(t, s)ds

)
,

for t ≥ 0, x ∈ <

where ζj , ηj > 0 (j = 1, ...,m) are constants, gj : <+ → <+ (j = 1, ...,m) are non-
decreasing, bounded functions, and fj : <+ → <+, ωj : <+ → <+, ω̃j : <+ → <+

(j = 1, ...,m) are non-increasing functions. Such a research direction may allow the
development of global stabilization results for ring-roads. This development has to be
combined with the construction of appropriate Lyapunov functionals for the system.
Another research direction is the study of the effect of boundary conditions in non-
local conservation laws on bounded domains. It is (in principle) possible to combine
boundary feedback stabilization approaches with nudging and obtain even better re-
sults.
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Proof of Lemma 2.2. The proof for (K+G) ∈ C0(Per(<);Per(<)) and (λK) ∈ C0

(Per(<);Per(<)) is trivial. We focus on the proof of (KG) ∈ C0(Per(<);Per(<)).
Inequalities (8), (10), (13) can be shown easily. Inequality (9) for KN (ρ)GN (ρ) is a
direct consequence of the following equality

KN (ρ)GN (ρ)−KN (ρ(1))GN (ρ(1))−KN (ρ̃)GN (ρ̃) +KN (ρ̃(1))GN (ρ̃(1))

=
(
KN (ρ)−KN (ρ(1))−KN (ρ̃) +KN (ρ̃(1))

)
GN (ρ)

+
(
KN (ρ(1))−KN (ρ̃(1))

)(
GN (ρ)−GN (ρ(1))

)
+
(
KN (ρ̃)−KN (ρ̃(1))

)
(GN (ρ)−GN (ρ̃))

+KN (ρ̃(1))
(
GN (ρ̃(1)) +GN (ρ)−GN (ρ(1))−GN (ρ̃)

)
inequalities (8), (9) (10) forKN (ρ), GN (ρ) and the fact thatKN (ρ), GN (ρ) are bounded
mappings. Similarly, inequality (11) for KN (ρ)GN (ρ) is a consequence of the following
equality

2KN (ρ(1))GN (ρ(1))−KN (ρ)GN (ρ)−KN (ρ(2))GN (ρ(2))

=KN (ρ(1))
(

2GN (ρ(1))−GN (ρ)−GN (ρ(2))
)

+GN (ρ(2))
(

2KN (ρ(1))−KN (ρ(2))−KN (ρ)
)

+
(
KN (ρ)−KN (ρ(1))

)(
GN (ρ(2))−GN (ρ)

)
as well as inequalities (10), (11) for KN (ρ), GN (ρ) and the fact that KN (ρ), GN (ρ) are
bounded mappings. Finally, inequality (12) for KN (ρ)GN (ρ) is a consequence of the
following equality

3KN (ρ(1))GN (ρ(1)) +KN (ρ(3))GN (ρ(3))−KN (ρ)GN (ρ)− 3KN (ρ(2))GN (ρ(2))

=
(

3KN (ρ(1)) +KN (ρ(3))−KN (ρ)− 3KN (ρ(2))
)
GN (ρ(1))

+
(
KN (ρ(3))− 2KN (ρ(2)) +KN (ρ(1))

)(
GN (ρ(3))−GN (ρ(1))

)
+
(
KN (ρ(2))−KN (ρ(1))

)(
GN (ρ(3))− 2GN (ρ(2)) +GN (ρ(1))

)
+2
(
KN (ρ(2))−KN (ρ(1))

)(
GN (ρ(2))− 2GN (ρ(1)) +GN (ρ)

)
+
(
KN (ρ(2))− 2KN (ρ(1)) +KN (ρ)

)(
GN (ρ(1))−GN (ρ)

)
+KN (ρ(2))

(
3GN (ρ(1)) +GN (ρ(3))−GN (ρ)− 3GN (ρ(2))

)
as well as inequalities (10), (11), (12) for KN (ρ), GN (ρ) and the fact that KN (ρ),
GN (ρ) are bounded mappings. The proof is complete.
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