
Technical University of Crete
School of Electrical and Computer Engineering

A platform to benchmark
inference algorithms based on

sensor network data

by Athanasios Rentzepopoulos

A thesis submitted in partial fulfillment of the requirements for the
diploma degree of

Electrical and Computer Engineering

October, 2022

Thesis committee
Supervisor: Professor Aggelos Bletsas
Associate Professor Vasilis Samoladas

Professor George Karystinos



A platform to benchmark inference algorithms
based on sensor network data

ABSTRACT

This work offers a means of accessing a database with sensor network (e.g. soil mois-
ture) measurements/data for use with inference algorithms. The design problem is ap-
proached by creating a web application based on microservices hosting a user interface
(UI), a scalable back-end that runs the algorithms, and database storage. Algorithms
are expected to be Python scripts developed offline and tested either offline or online.
This multi-modal operation poses a compatibility concern. We create a library that
exclusively handles data input and output for the scripts that import it, with differ-
ent implementations depending on the context of the user scripts. We also explored
an efficient way to execute scripts, in the back-end of the web-app, allowing for ro-
bust interruption of running scripts and parallel execution. This service also includes a
queueing platform that handles the input and output of the user scripts and takes care
of graceful process start up and shutdown. The user experience is also accounted for,
with responsive web UI and source code analysis to automatically find out the number
and type of input streams. Finally, we test the system by utilizing the library to parse
and pre-process data and implement an inference algorithm to run on the pre-processed
data.

i



Acknowledgements

First, I would like to thank Professor Aggelos Bletsas for assigning the topic, con-
tinuous guidance, advice and constructive criticism throughout the preparation of the
thesis. I would also like to thank the members of my committee Associate Professor
Vasilis Samoladas and Professor George Karystinos for evaluating my work. The great-
est gratitude I ow to my closest friends, especially Vasilis Papageorgiou and Spyros
Pepas, who stood by me through thick and thin. I also thank, Vaggelis Karatarakis for
his help regarding inference algorithms. Finally, I sincerely thank my family for their
support throughout my studies, and their patience, especially during the difficult times.

ii



Contents

Acknowledgments ii

1 Introduction 1
1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Web APP 3
2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Main programming language . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Libraries used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Development tools created . . . . . . . . . . . . . . . . . . . . . . . 6

3 Data manipulation 8
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Dataset library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 For local use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 For use in the execution service . . . . . . . . . . . . . . . . . . . . 13
3.3.3 For use in the frontend service . . . . . . . . . . . . . . . . . . . . 14

4 Execution service 15
4.1 Queue system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Execution module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Manager process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Child processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Frontend service 26
5.1 Code analyzer module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Flask and Jinja 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 HTML, CSS and JS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Demos 32
6.1 Example 1: Creating a dataset from raw data . . . . . . . . . . . . . . . . 32

iii



Contents

6.2 Example 2: Running LBP on a moisture dataset . . . . . . . . . . . . . . 32

7 Conclusions & future work 36

A Demos’ code reference 37
A.1 Example 1 code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 Example 2 code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Screenshots from key parts of the website 45

Bibliography 52

List of Figures 53

List of Code Snippets 54

iv



Chapter 1

Introduction

Processing of sensor data is at the heart of the Internet of Things (IoT) era. Sensor
data is stored near the sensor network whereas data processing is often performed in
different locations. Bringing sensor network data closer to the centers of processing
requires careful design to ensure data integrity and context maintenance. In parallel,
the evolution of Artificial Intelligence (AI) requires that the performance of inference
algorithms that are being developed can be evaluated based on the same data that are
accessed following a consistent method.

In this project, a tool that facilitates both the above problems was designed, developed,
and tested. This tool is a platform that accepts arbitrary code, which may implement
inference algorithms, data manipulation, reporting, or any other data processing activity.
This code then is provided with access to sensor network data stored independently. The
platform ensures correct data serialization/de-serialization and allows process execution
either in a local or a client-server configuration. The platform is web-based. The web
application is designed using microservices [1] that operate in a Docker [2] environment.
There are three service layers: a front end, the execution service, and the database service
following a classic three-tier application design. The front end layer uses Flask [3]; the
execution layer is written in Python [4] and utilizes several Python standard libraries to
provide input, output and data processing tools to the user scripts. Finally, the storage
layer uses MongoDB [5] that provides document-based access which is suitable for this
type of operation.

An important part of the platform functionality is devoted in data manipulation, which
requires a uniform interface regardless of the implementation mode (local use, as part of
the execution service, or as part of the front-end service). The execution service includes
a queueing platform that handles input and output of the user scripts and takes care
of graceful process start up and shutdown. Finally, the front-end service takes care of
communication between the user and the execution service, as well as analyzing scripts
and data.

1.1 Prior Art
This thesis’s problem overlaps with existing tools, commercial and otherwise. One of
these tools, called RapidMiner [6], uses a Graphical User Interface to combine existing
algorithms visually. One of the most popular tools for this topic is Google Colab [7]. It
is broadly used across different research areas and is a hosted Jupyter notebook service

1



Chapter 1 Introduction

providing access to cloud computing resources. Similar–Jupyter notebook based–tools
are available from Amazon [8] and Microsoft [9]. However, the goal of this thesis was
purely educational and to cater to the specific use case of accessing remote data more
easily and executing code near the data.

1.2 Thesis Outline
This thesis is structured as follows: After this short introduction, the web application
structure and design is presented in Chapter 2. Chapter 3 is devoted to the data ma-
nipulation features of the platform. In Chapter 4 we present the heart of the platform,
i.e., the execution service and in Chapter 5 the frontend service. Chapter 6 we present
a demonstration of the platform using two typical user scripts, one performing data ma-
nipulation activities and the second implementing an Loopy Belief Propagation (LBP)
inference algorithm on moisture datasets created by the first script. Finally, Chapter 7
presents conclusions and suggestions for future work.

2



Chapter 2

Web APP

The concept of this project is rooted on the problem of having data useful for research
purposes, but no way to access it. In this case the data is stored on a remote database
and the means of processing it is through Python scripts. The approach selected was to
create a web application that stores data, datasets and scripts in a database and offers
a cohesive user interface where “members” can run said scripts, whereas “visitors” can
only view the results. This architecture allows for the project to be extensible in terms
of both functionality and visitor’s experience.

2.1 Structure
For the infrastructure of the project a microservices [1] architecture, and more specif-
ically Docker, was chosen over a monolithic one. The actual structure, as shown in
Fig.2.1, includes a service1 responsible for serving the content to the browser (Chapter
5), a service for executing the Python scripts (Chapter 4) and a few containers2 for the
database service for the system (Section 2.2). Communication in this project is handled
by docker’s networking system which allows for networks to be created and containers
to connect to them. Each network can be marked as internal or external which dictates
whether it is connected to the outside world or not. The networks used are, one exter-
nal for the users to connect to the frontend service and one internal for all services to
communicate over, protected from the outside world.

Docker also provides ways for passing vital information like credentials and configu-
rations to the services.

• Non-sensitive information like paths, durations, connections Uniform Resource
Identifiers (URIs), encryption algorithms etc. is passed through environmental
variables. This information is stored in a plain text configuration file and Docker
passes it to the specified container(s) in the form of global variables at the Oper-
ating System (OS) level. This configuration file is subject to version control.

• Sensitive information (secrets) is passed using encrypted files. Docker encrypts se-
crets before passing them to their respective containers. These files are not subject

1Service refers to the functionality that is provided to the rest of the project. A service can be deployed
as a number of containers.

2Container refers to the actual Virtual Machine and the code hosted that implements the functionality
of a service.

3



Chapter 2 Web APP

Frontend Service

Frontend Container

Execution Service

Execution Container

Database Service

MongoDB Containers

Backend NetworkFrontend

Network

Figure 2.1: Docker services structure.

to version control since they describe information like passwords and encryption
keys that should be generated anew by the operator upon system deployment.

Finally, Docker provides persistent storage using the volumes feature. Docker volumes
are used by the databases as their physical layer. They are also used during development
to allow updating the code without the need for the respective container to be restarted.

2.2 Database
For the database of this project MongoDB was chosen for its NoSQL, document-oriented
approach and for opting in for Consistency and Partition tolerance on the CAP theorem
[10]. The CAP theorem states that any distributed data store can provide only two of
the following three guarantees:

• Consistency: Every read receives the most recent write or an error.

• Availability: Every request receives a (non-error) response, without the guarantee
that it contains the most recent write.

• Partition tolerance: The system continues to operate despite an arbitrary number
of messages being dropped (or delayed) by the network between nodes.

To circumvent any Availability shortcomings, it offers a feature called Replication.
MongoDB organizes data in databases, collections and documents and requires au-

thentication per individual database. Table 2.1 presents the rough correspondence to
SQL terms. In MongoDB, a document is a file that uses notation similar to JSON

4



Chapter 2 Web APP

Table 2.1: MongoDB terminology
SQL MongoDB
Database Database
Table Collection
Row Document

(JavaScript Object Notation)3. During initialization, a JavaScript program is run to set
the databases, their credentials, their collections and any indexes needed.

For the needs of this project the nine collections created are organized in four databases
based on the data each holds (see Table 2.2). There is a database for moisture data that
isn’t organized into datasets (retrieved by the remote database), one for data relating
to scripts (scripts, datasets, and other files like figures), one for the execution queue
(see Chapter 4) and one for the users’ credentials. Each service has access only to
the databases necessary based on the collections it needs. This arrangement adds a
layer of security in case a container gets compromised since each database has separate
credentials.

It should be noted that all collections of the Processed Data Storage database handle
file-like data and not data that is just tabular-compliant. This alone would not be a
problem for a document based database, but said files can be too large to efficiently
store in one document. So for these files a MongoDB feature called GridFS is utilized,
which splits the actual data part of the document into chunks, while also allowing storing
metadata.

Table 2.2: The project’s databases and collections
Database Collection description
User
Storage

Users Users’ information
Refresh Tokens Used to refresh the JSON Web Tokens

Raw
Data
Storage

General Info State of other collections in this database
Sensor Info Details for each sensor
Data Soil moisture readings

Processed
Data
Storage

Datasets Datasets used as inputs for scripts
General Data Other data (used for file type outputs of scripts)
Scripts Scripts and metadata

Hot Data Storage Execution Queue Priority queue for script execution

3MongoDB uses a file structure called BSON which is an augmented version of JSON that allows for
Binary data. JSON (JavaScript Object Notation) is an associative container, wherein a string key is
mapped to a value.

5



Chapter 2 Web APP

2.3 Main programming language
The choice of the programming language to use for the user code was based on ease of
use, especially in relation to linear algebra calculations. The most popular choices are
Python and Matlab4; however, the latter is part of a proprietary ecosystem which is
comparatively harder to run and and interface with. For the code base of the back-end
server, there was a much greater variety of languages and frameworks. Since Python
was chosen for the user’s code, it made sense to use it also for the back-end to facilitate
processing of data into datasets5 (see Chapter 3). It should be noted that using Python
was not a strict requirement since other languages could just run simple Python scripts to
handle data and datasets, but choosing Python for the back-end means that everything
can be done in one language.

2.3.1 Libraries used
Python has a selection of frameworks to develop web applications with, the most popular
of which are Django [11], Flask [3] and FastAPI [12] . For this project, Flask was chosen
because it is lightweight, easy to develop for and has strong community support. It is
used in both the frontend service (to serve the user) and the execution service (to allow
communication over HTTP with the frontend service). Front-end development used the
Jinja2 templating engine, which allows to enrich HTML files with data from the calling
code before serving it to the user. Each service that utilizes Flask has a main module
that is called at the beginning which imports the main package and starts the Flask
app. The main package is responsible for creating and describing the functionality of
the Flask app and has modules and sub-packages for each part of the functionality.

Apart from Flask related libraries, the following were also instrumental for this project:

• pymongo was used to connect to the main database of the system.

• pyodbc was used to access the remote database that hosts the original sensor
readings.

• numpy used to handle and process data since it is widely used for linear algebra
calculations.

• matplotlib was used as the plotting tool the scripts use to produce results.

• typeguard was used to enforce type checking–which Python lacks–in key parts of
the code, especially when interfacing with user generated scripts.

2.3.2 Development tools created
In order for the code to interface with the database a subpackage in the main package
of each service was created to handle communication. For this, a class approach was

4To some extend R can also be used, however, it is more commonly used for statistical analysis.
5The datasets are serialized objects containing the data which allows them to be directly deserialized

and used in the scripts.

6



Chapter 2 Web APP

selected for the benefits of inheritance. The abstract base class is responsible for handling
credentials, connecting to the correct database (utilizing the pymongo library), actually
creating a connection instance, and creating a wrapper around communication methods
that ensures atomicity of transactions. So, for each collection only one class with the
necessary logic is created.

Apart from that, each service has a module with debugging tools and one with general
tools. The latter has functions for reading and checking files (for secrets) and globals (for
environmental variables), creating UUIDs6, and handling the different representations
of time (time object, integer and human readable string).

6UUID stands for Universally Unique IDentifier and is used in every ID of anything that is stored in
the database.

7



Chapter 3

Data manipulation

At its core, the project is responsible for the flow of data from the means of storage to the
executing script and vice versa. The data used by the script is stored as a byte sequence,
while the metadata containing the type and characteristics are more complicated. This is
because the greater use that metadata provides to the user, the author of the script, and
the dataset library since it represents the constraints that might pose an incompatibility.
More specifically the metadata is saved as an object of a class that stores the type of
the dataset and any specific constraints based on that type. For example one of the
supported types is an image list, which includes metadata regarding the list length and
the image dimensions. This information is represented internally as key-value pairs,
which MongoDB supports intrinsically (Section 2.2). However, if the dataset is saved on
to a file, then the metadata is first converted to a byte stream and combined with the
data.

3.1 Dataset
The scripts that are compatible with the project are written in Python and are expected
to process multidimensional arrays using a library called numpy. This library is used to
perform mathematical operations and is optimized at a low level (utilizing the ability
to execute computationally expensive tasks in C rather than Python), thus making it
industry standard for its performance. The sensor data that is used for the inference
algorithms refers to soil moisture readings and is organized using numpy’s ndarray data
type, which is a multidimensional array. Additionally, some algorithms use data from
images to augment their calculations with additional information. These images can
be represented also as ndarrays, but if the images differ in size for any reason then
they cannot be combined. This creates a need for an additional data structure utilizing
Python’s list class (which is more commonly known as arrays in other languages) and
numpy’s ndarray, storing each image as an ndarray entry in the list.

Apart from the classes used to handle data, there may be a need to configure script
parameters. For example, one might need to test only part of the code for a demo
and not run parts that create statistics and debug information; this can be managed
by a configuration variable passed on to the script. Finally, any other type of data not
accounted for should also be able to be passed to the script, but marked as such. All
of these classes of data, as seen on Table 3.1, represent different dataset types in the
dataset library (Section 3.2) and serve as inputs and outputs for the scripts.

8



Chapter 3 Data manipulation

Table 3.1: Types of datasets
Class Data type Additional information
numpy array ndarray Dimensions of the array
Image list List of ndarrays Length of list and (opt.) dimensions of array
Command String Type to convert it to
Unspecified Any No extra information

These datasets, as mentioned, can function both as inputs and as outputs of scripts,
but some scripts may require a more visual type of output. More specifically, a lot of the
scripts produce results in the form of graphs, plots and other visual elements that are
not covered by the aforementioned datasets. To tackle this issue, a new type of output
was created which is assumed to be a figure file and is saved in its final, presentable
form, both when stored as a file and in the database. This means that the resulting
file can be viewed as an image, depending on the file type it is saved as. To facilitate
the creation of said figure files, a Python library called matplotlib is used which, like
numpy, is also widely used in this field. The only notable difference to datasets is that
the figure must be prepared by the script before being saved by the dataset library.

3.2 Dataset library
In order for the script to use the data it needs to load it, which normally would be as
easy as:

1 with open(’path\to\file ’) as f:
2 data = f.read ()

However, when the code runs on the server, retrieving data is not as simple. The
programmer would need to know how to retrieve it, what database is used, all the paths
to the dataset and the security details that should never be known in the first place. So
the programmer would need to create a different implementation for running the code
on the server which would be complicated, error prone, and insecure.

To overcome this hurdle, a package was created (referred to as dataset library in
this text), which is imported by the user’s script and handles fetching incoming and
storing outgoing data to the respective storage medium. This package abstracts the
difference in implementation behind the scenes and, in case it runs on the server, it
handles interfacing with the database without exposing the credentials. The differences
between the different implementations are explored in Section 3.3.

3.2.1 Structure
The basic premise of the dataset library is that it should be extendable without needing
refactoring, while the basic functionality of retrieving and storing data should be easy
to alter. To achieve this, a class approach was selected in order to take advantage of

9



Chapter 3 Data manipulation

inheritance and modified with extension classes to augment the behavior. More specifi-
cally, for each dataset type (including the figure file type) and for each valid operation
for it (refer to Table 3.2), a class was created that inherits from the respective abstract
base class, Reader or Writer, and any extension classes in may need (Table 3.3). For
example the reader class for image lists inherits from the reader base class and the list
and nparray extension classes. In turn the reader and writer base classes along with all
the extension classes all inherit from the same base class.

Table 3.2: Operations permitted per data structure
Data type Data structure Read Write

Dataset

numpy array ✓ ✓
Image list ✓ ✓
Command ✓ ✓
Unspecified ✓ ✓

File Figure ✓

Table 3.3: Extension classes each dataset type always inherits from
Dataset
type

Extension classes
nparray List Command

numpy array ✓
Image list ✓ ✓
Command ✓
Unspecified

The base class is responsible for saving the class data type and defining the default
check method that checks that the type of the data–read or to be written–is compatible
with what is expected. Inheriting from the base class, the reader and writer base classes
define the read and write methods, respectively, that interface with the file system or
database and call the check method as needed. The extension classes define extra mem-
ber variables that are used in the overloaded version of check, which verifies compatibility
of the dataset’s metadata. After all the utility classes are created, the final classes are
just a combination of a base class and any necessary extension classes as noted in Ta-
ble 3.2. Finally, functions corresponding to each utility class are created that wrap the
process of creating an object, calling the read or write method, and disposing of it. The
final structure can be seen in Figure 3.1.

3.3 Variations
The library’s main purpose is to handle the data so that the script does not have to,
regardless of the environment. For this reason, even though the library’s interface with
the script is consistent, the underlying functionality has differences in implementation so

10



Chapter 3 Data manipulation

<Abstract>

Base

<Abstract>

Reader Base

<Abstract>

NP Array

<Abstract>

List

<Abstract>

Command

NP Array

Reader

Image List

Reader

Command

Reader

Unspecified

Reader

read image list

read np array

read commands

read unspecified

NP Array

Writer

Image List

Writer

Command

Writer

Unspecified

Writer

write image list

write np array

write commands

write unspecified

Figure

Writer
save figure

<Abstract>

Writer Base

Class

Function

Unidirectional Association

Inheritance (Generalization)

Figure 3.1: Package’s class structure.

as to adapt to the respective environment. The variations of the library depend on the
type of the caller, which means there is a variation for local use, one for the use in the
execution service (see Chapter 4) and one for use in the frontend service (see Chapter
5).

The only assumption made about the library is about how the script imports it.

11



Chapter 3 Data manipulation

Python has different ways to import a package depending on a combination of whether
or not the code is split into different files, where the library is located and preference.
However, when the the code is contained in one file (as is the expected use case in this
project) there is only one acceptable import method for packages that are not installed
using the package manager; the package’s code must be located on the same folder as
the script. Then the code to import it is as follows:

1 import dataseting_lib

Snippet 3.1: Example of absolute import

This type of import, and its equivalents, are referred to as absolute imports and
their difference from their counterparts, relative imports, is the way Python names the
imported package’s internal components. Assuming a development of a package a in
Python that uses a module or package b and a has modules that require b. The absolute
method is to place b in the directory that the main module (which calls the package
a) is placed. Now, all modules of a can import b in the same way as in snippet 3.1.
With this import method all internal components of b will be named as descendants
of the main module. For the relative import method, b should be placed inside the
package a (or even one of the sub-packages). Modules of a that require b would need
to import it knowing their relative location to b (see snippet 3.2). With this import
method all internal components of b will be named relatively to its location compared
to the main module. So, if b is placed at the top level of package a then b will be named
as descendant of a.

1 # In this case the package is place in the parent directory of this
↪→ module

2 from .. import dataseting_lib

Snippet 3.2: Example of relative import

The importance of the import method and Python’s naming mechanisms is realized
when using the module pickle. This module is used to serialize and deserialize Python
objects and uses said naming mechanisms in the process. pickle is used in this project
to serialize objects of dataset classes in order to transmit them between the different
means of accessing them (locally, in the execution service etc.). This allows a dataset
in file format to be uploaded to the website and be deserialized and understood. The
only requirement is for Python to assign the correct names to the dataset in both en-
vironments, which can be guaranteed with absolute imports. In essence, as long as all
variations of the dataset library use the same serialization parameters (same name of
package and module, same serialization library and same import method), then they
can all parse files from one another.

3.3.1 For local use
The variation of the library created to run in a user’s local machine treats datasets as
files. Since the library does not have access to the database, it only serves the purpose
of helping the programmer to test their code before uploading it to run on the server.

12



Chapter 3 Data manipulation

So the implementation of reading and writing simply translates to reading and writing
to disk files, while the only non-trivial part is saving the metadata. However, like data,
metadata is also serializable, which means it can be stored in the same file.

The most notable detail of the local variation is the function that parses the console
arguments when calling the script. The reason of its existence is because of how the
script is called in the server and preserving consistency. More specifically the user
should not specify how to search for the file when writing the code since this information
becomes irrelevant when executed at the server. The solution is to pass the input
files as arguments when executing the script, parse it using a function provided by the
dataset library (parse console arguments) and use these files when read operations
are requested.

1 python -m test_script --idir . --inputs test_dataset .ds

Snippet 3.3: Calling a script that uses the parse console arguments function.

Figure 3.2: Help message for assigning datasets to a script.

3.3.2 For use in the execution service
The execution service (see Chapter 4) is responsible for running user uploaded scripts,
which require the dataset library. When a script is about to be executed it is retrieved
from the database, written to a file and placed in a directory with the dataset library.
However, since data is saved in a database (namely MongoDB, Section 2.2) instead of
the file system, a sub-module was created to handle interfacing with the database and
handling any sensitive information. In this way the read and write methods of the
respective classes make simple calls to this sub-module.

13



Chapter 3 Data manipulation

3.3.3 For use in the frontend service
Apart from user generated scripts, this library is also used in the frontend service of the
web app. One of the most important uses of the frontend service is creating datasets
from raw data provided by the user of the site, e.g. compiling uploaded images into
an image list dataset. For these operations the writer functions of the library are used,
adjusted to utilize the connection to the database created for the frontend service (see
Section 2.2). Note that, since the structure of the code base of the frontend service is
compartmentalized into a package imported by the main module (see Chapter 5), the
position of the dataset library in the folder structure is on the same level as the main
module This means that any sub-module of the main package that requires it must uses
absolute importing. Lastly, the dataset library is used in the code analyzer sub-module
of the frontend service for the tokenizer to work properly (see Sec.5.1).

14



Chapter 4

Execution service

One of the main services of this project is the execution service which handles running
user-uploaded scripts. This functionality is created as a separate service with its own
HTTP-based interface so that its resource needs are addressed directly. This allows to
allocate more CPU power to its container(s), compared to a service like the frontend,
if there is a need for that. This decision also facilitates better behavior of the whole
system in edge cases of downtime like maintenance or unexpected crashes of the execution
module, since the only unavailable part of the system is the execution service, while every
other works as intended (see Section 2.1).

The endpoints of this service are managed by Flask and are the basic actions passed
on to the execution module. These actions are:

• Add script to queue
Inputs: script’s UUID, inputs’ UUIDs

• Stop script
Inputs: script’s UUID

• Execute next task in queue
Inputs: None

In general, the execution module will automatically pick up the next task in queue to
complete, but in certain cases (such as in case there are multiple containers for this
service) a need to manually pick up the next task may arise.

4.1 Queue system
The execution service implements a First In First Out (FIFO) type of queue for the
scripts it needs to execute. Since MongoDB supports ACID transactions1, utilizing it to
implement the queue removes the hustle of managing race conditions between multiple
consumers and producers.

When a script is selected to be executed, an entry in the database is created (managed
by the execution module) representing a task. For this task the information saved is

1ACID stands for Atomicity, Consistency, Isolation, Durability and ensures operations (like insert,
update or delete) meet certain criteria. In this case producers and consumers or the queue cannot
race for their respective operations.

15



Chapter 4 Execution service

the script to be executed (represented by its UUID), the list of inputs for the script
(also represented by their UUIDs), the list of outputs of the script (populated after
the execution), the state of the task (like pending, running etc), and some additional
information that depend on features (a feature may be to include anything written to
stdout). When the module is available to execute a script, it looks for the oldest entry
in the database in state pending and changes it to executing.

4.2 Execution module
The backbone of the execution service is the execution module, responsible for managing
the task queue, managing the processes and everything regarding running the scripts.
The basic structure is a frontier class, a manager process and a number of children
processes as depicted in Figure 4.1.

The frontier class serves the purpose of creating the manager process and creating an
interface for the rest of the service to communicate with said manager through a custom
messaging system. This system is built on top of Python’s queue which is implemented

Main Process

Execution 

class

Communication

system

Manager

process

Child

process

Child

process

Communication

system

Figure 4.1: Structure of the execution module.

16



Chapter 4 Execution service

to be multiprocessing-safe and uses a condition variable2 (cv) to ensure atomicity. It
is also used as a communication path between the manager process and its children
processes, but with separate queues and condition variables. The structure for this
module may appear complicated at first (considering that running an external program
is fairly trivial), but this complexity is necessary.

The main objectives of the execution service is to be able to run scripts, support
parallelization, stop any script if requested and be responsive while scripts run. Simply
running a script is fairly trivial in Python by using the subprocess module:

1 from subprocess import Popen
2

3 process = Popen(’path/to/ script .py’)
4 process . communicate ()

However, calling the method communicate of the process object blocks the normal exe-
cution of the main (and only) thread making the whole service effectively unresponsive
until the process has finished and does not leave any option to stop the execution if
needed.

To achieve responsiveness, running the script (using Popen from the subprocess mod-
ule) was moved to a separate process (the children processes) whose main function is to
monitor the execution and act based on the commands passed on to it. However, the
issue of blocking the main thread of the process remains, so instead of blocking on the
communicate method, the routine3 polls the process to check whether it has finished or
not. This allows the child process to also monitor the messaging system between it and
the manager and process any commands it receives while also notifying the manager if
the script finished running.

Moving the execution of the script into a separate process enables the option to create
multiple child processes to achieve our goal of parallelism without adding more complex-
ity. The only problem is managing the child processes and specifically listening to the
messages they generate and acting on them while also being responsive to any incoming
commands (typically coming from the HTTP endpoints through the proxy class). To
solve this issue, a manager process was created whose main purpose is to coordinate the
messages from the children and from the main process.

The final structure uses a minimum of two generated processes to handle the duties
of controlled execution of Python scripts, but there are alternative approaches that
accomplish the main objectives:

• The first approach involves leveraging the microservices based structure of the
project, to create more containers instead of more processes. This approach is
valid, but by default consumes more resources per child spawned since a container
is a (very stripped down) Linux based virtual machine.

2Condition variables are synchronization primitives that enable threads to wait until a particular con-
dition occurs.

3In this case routine refers to a piece of code that is not necessarily bound to a language structure like
a function, class or module.

17



Chapter 4 Execution service

• Another approach would be using a production environment to run Flask that
supports multiple processes like Gunicorn; however, this creates a dependency to
the production environment that may cause problems in the future when extend-
ing the feature set. Using this approach, would also introduce complications in
managing the processes, making sure they are not underutilized while handling
HTTP requests, and being able to cancel the execution of the correct script.

• Lastly, it should be noted that Python has two more ways to achieve parallelization
of tasks; using threads and the asyncio module. However, both of these options
do not actually utilize the system’s resources to run on multiple CPU threads and
instead run using a single one4.

4.3 Manager process
The manager process was introduced to pass commands from the main process to the
child processes without blocking the main process on conditional variables (e.g. waiting
for possible responses from said children). Apart from the main objective, however, it
also handles creating and killing child processes, consuming the execution queue when
there are idle processes and other similar responsibilities. This Section goes into detail
on how this process works and what it does.

To spawn child processes in Python, the most streamlined way is to use a module
called multiprocessing which handles creating processes, abstracting OS-level oper-
ations. Using multiprocessing module entails creating a function that runs on the
newly created process and passing a reference to it as an argument to the Process class,
along with any arguments the function would need. As hinted in snippet 4.1, the module
provides a number of synchronization primitives that enable communication between the
different processes in an easy (and pythonic5 for that matter) way6. The primitives used
in this project are;

• The Condition, which is the condition variable processes block to when they need
access to a resource.

• The Queue, which is the primary type of resource used to transmit inter-process
messages.

• The event, which acts as a Boolean flag.

The convention for accessing resources is that each process has a condition variable for
synchronization and a queue from which it only consumes (similar to a consumer in a

4In most languages, threads provide true parallelism, but in C-based Python (the one used in this
project and the most popular implementation of Python) the threading module uses the Global
Interpreter Lock and forces every thread to use it, effectively running in a single thread.

5Pythonic often refers to a coding style that leverages Python’s features to produce code that is clear,
concise and maintainable.

6Note that the threading and asyncio modules also have synchronization primitives, but each module
can only use its own.

18



Chapter 4 Execution service

1 import multiprocessing as mp
2

3 def example_process (process_cv , process_queue , a_number ):
4 with process_cv :
5 # Wait on the condition variable until the queue is not empty.
6 process_cv . wait_for ( lambda : not process_queue .empty ())
7

8 # print something using the item from the queue and one of the
↪→ arguments

9 print(f’Question : { process_queue .get ()}, Answer : { a_number }’)
10 return
11

12 cv = mp. Condition ()
13 q = mp.Queue ()
14 a_number = 42
15

16 process = mp. Process ( target = example_process ,
17 args =(cv , q, a_number ))
18 process .start ()
19 with cv:
20 q.put(’What is the answer to life the universe and everything ’)
21 cv. notify_all ()
22

23 # Prints : " Question : the answer to life the universe and everything ,
↪→ Answer 42"

Snippet 4.1: Creating a process with the multiprocessing module.

pipe). For a process A to transmit a message to process B, it should gain control of the
condition variable of process B and then write to the queue of process B.

The function for the manager process has five arguments that are populated when the
process spawns. Two of the arguments are used for the manager’s condition variable and
queue, two more for the response, and the last one to set the default number of child
processes. Inside the function there is number of other functions, for the various tasks
the manager encounters, along with some variables that are effectively global in the sense
that the aforementioned functions have access to them since they are defined in the same
context. Among these variables there are some responsible for storing information about
the processes, their state and efficiently searching them, two variables to help regulate
the number of child processes and some objects to communicate with the database (using
the service’s database interface sub-package).

19



Chapter 4 Execution service

Initialization

Child cleanup

Enter routine

Exit routine

Process

number

comparison

Task

received

Create

processes

Delete

processes

Create

processes

Change required

process count

Send stop

to child

Cleanup

task

Try to execute

next task

Get all

tasks

Finally block

Less More

Equal

Change process

count

Stop task

Child finished

task

Execute next

task

Get tasks

Unrecognized

Exit

Rerurn or exception

Figure 4.2: Manager process flowchart.

20



Chapter 4 Execution service

The most used function inside the manager function is send response which is re-
sponsible for sending a Python dictionary, accepted as input, as a message to the main
process. These messages are sent as responses to actions inside the manager and even
though are very useful during development, most of them are ignored by the other end
(the main process’s proxy class). send response’s implementation acquires the con-
dition variable, writes to the queue, and notifies the main process (similar to lines 19
through 22 in snippet 4.1). It should be noted that this function is also implemented in
the child processes to transmit messages to the manager, with the only difference being
that the manager actually listens to and acts upon them.

The main routine of the process is encapsulated in a try-finally block7 ensuring that
if any unaccounted for exceptions or deliberate premature returns occur, then the child
processes will be cleaned up properly, along with any remnants of them (like the folders
assigned to said processes). The actual routine running inside the try block is an infinite
loop consisting of two parts; the former is responsible for the number of child processes,
while the latter handles any messages in the manager’s queue.

The reasons for handling the child processes inside the main loop is to be able to
change their number on the fly and in the case a child dies to be able to spawn a new
one. The first step in this part is to clean up any folders (in the designated directory for
child processes’ folders) that are not recognized belonging to its children, which helps
with cleaning up of processes that died unexpectedly. Then the number of children is
compared to the expected and the manager creates or destroys them depending on said
comparison. If there is a need to reduce the number of children, then the routine attempts
to remove and clean up processes marked as available. After that the number of processes
still remaining to be removed is saved in a variable to note how many of the already
occupied processes should be terminated when finished with their respective tasks. If
there is a need to create processes, then, for each child that needs to be added, the
routine attempts to create it for up to a maximum number of attempts. Reaching that
number without successfully spawning a child, prematurely ends the manager process
(calls return), triggering the finally block before exiting.

When the manager process creates a child it must also create the resources it will use.
The first resource is the directory the process will use which should be isolated from other
processes’ directories to improve stability. This directory is created as a sub-directory of
a predefined root folder and then the dataset library is copied to it. This is done because
the script is placed in that directory when it is about to be executed by the specific child
and needs access to the library to function. After the directory becomes available to
the process, the synchronization primitives are created, used to communicate with the
process. Apart from the condition variable and the queue, whose functionality is already
explained, an event8 is also created which, when set, signifies that the child has finished
initializing. Following that, the actual process object is created using as target a function

7A try-finally block refers to normal execution of code occurring in the try block (a block of code that
begins with the try keyword) and in case of exiting that block (either intentionally or due to an
exception) calling the finally block.

8Events are a synchronization primitive in Python that have only two states: set and not-set. At
creation time they are not set.

21



Chapter 4 Execution service

describing the child’s behavior (see Section 4.4) and an argument list comprised of the
aforementioned synchronization primitives, the manager’s condition variable and queue,
and the path to the child’s directory. Afterwards, the process is marked as daemon9,
forcing it to quit if the manager dies, and gets started. Then, the routine acquires the
child’s condition variable and waits for up to 1 second for the child to finish initialization
and set the event, which exists to prevent a race condition between the child initializing
and the manager assigning a task to it. If the initialization is not completed within that
time, then the child is scrapped and, after cleaning up, the routine moves to the next
attempt. The final step is to save this process’s information, mark it as available and
break out of the attempt loop (which signifies successful creation to the routine).

Aside from creating child processes, the manager also needs a way to destroy them,
the functionality of which is split into two functions. The first one is tasked with simply
making sure the child dies by any means necessary, but gracefully if possible. To do that,
the function first sends a command to the child that it should exit and then attempts to
join the process for up to 2 seconds. If the process has not exited by that time, then a kill
signal is sent to it and stops monitoring its state. This function is used only when the
child process fails the initialization step or in the other function, which handles cleaning
up every trace of the child process altogether. The second function accepts as input
only the PID of the child to be terminated and infers the rest of the information, like
the child’s condition variable, queue, process object and folder path, from the manager’s
pseudo-global variables. After that, it calls the previous function to kill the process,
removes any reference to it from the manager’s variables, updates the database if the
process was amidst execution, and deletes the directory assigned to it.

After the child processes are managed, the routine acquires the manager’s condition
variable and waits until the queue receives a message which is a command the manager
should execute (assuming it recognizes it). These commands are expected to come from
either the main process or the child processes. The simplest commands are changing
the number of processes, getting the state of the child processes, and forcing the man-
ager to exit gracefully, all of which are sent by the main process. One more command
recognized by the main process is stopping a specific task which entails retrieving the
child executing it from the ticket’s UUID10 (i.e. retrieve the task ID), retrieving the
child’s communication endpoint and sending a stop command to it. The final command
the main process can send is to initiate searching for tasks to execute in case the child
processes are underutilized, which is handled by a function. This function takes a pro-
cess marked as available (if there are any) and the next ticket from the database (if
there are any), validates the existence of the script and the inputs in their respective
databases described in the ticket, saves the script in the child’s designated directory as
a file (previously saved as raw data in the database), sends a command to the child to
execute the program along with the list of inputs, and marks the process as busy. An
important point to make is that only the manager process is communicating with the

9The term daemon in the context of Python’s multiprocessing module means that if the parent process
dies, then the child dies as well. This ensures that the unexpected exits don’t leave orphan processes.

10The terms ticket and task are used interchangeably and denote a scheduled execution of a script.

22



Chapter 4 Execution service

database, so the transition from byte array in the database to executable Python script
is handled by the manager and not the child.

Child processes send messages that present the result of the script execution attempt.
This result may be:

• Successful execution.

• Error occurred during execution.

• Error occurred during setup.

• Script execution was canceled.

All of these are handled by a single function, which removes the child from the busy
processes, updates the state of the ticket and any errors that may have occurred, and
then either kills the child or marks it as available depending on the number of leftover
processes to remove from the first part of the main routine. As previously stated the
child processes do not communicate with the database so the step of updating the ticket
is handled by the manager.

4.4 Child processes
The child process is a lot simpler in nature than the manager process since its only
two objectives are to listen for commands from the manager and handle the execution of
scripts (see Figure 4.3). To do both at the same time, the process polls every 1 second for
updates from either source, instead of blocking in perpetuity, handles the situation and
then informs the manager. As previously stated, the child process has access to its own
and to its manager’s condition variables and queues as well as an event which by default
is not set. The first steps the function describing the process goes through are retrieving
its PID, changing its directory to the designated one, and setting the event provided to
it, thus signaling to the manager that the initialization step is completed. As with the
manager process there is a dedicated function to send messages to the manager, a main
infinite loop where all the non-initialization code is placed, and the aforementioned loop
is encapsulated in a try-finally block which handles clean-up in the case of uncaught
exceptions or expected premature returns.

Inside the main infinite loop, the routine acquires the process’s condition variable
and blocks on it for periods of 1 second until either the script has finished executing
or the queue is not empty. If the script has finished executing then the routine sends
the appropriate response to the manager and cleans up the resources used. Then, any
messages from the manager are handled, the only noteworthy of which are those about
starting or stopping the execution of a script. To initiate execution, the manager needs
to send the UUID of the ticket, the input list and the module name (i.e. the name of
the file the code was placed in after it was retrieved by the database), along with the
actual command. After that, the files absorbing anything written in stdout and stderr
are created which are then passed on to the Popen class of the subprocess module,

23



Chapter 4 Execution service

1 from subprocess import Popen
2 import sys
3

4 stdout_ = open(’path/to/ stdout .txt ’ ’w’)
5 stderr_ = open(’path/to/ stderr .txt ’ ’w’)
6

7 sub_process = Popen(
8 [sys. executable . ’-m’, module_name , ticket_id , * input_list ],
9 stdout =stdout_ ,

10 stderr = stderr_ )

Snippet 4.2: Creation of a subprocess to run a script.

along with the executable details (see snippet 4.2). If any exception may occur, then the
execution is concluded and the appropriate error response is passed on to the manager. It
should be noted that even though the file handlers for the files of stdout and stderr are
not closed in the snippet 4.2, they are in the actual implementation when the program
finishes (or is forced to finish) execution. Lastly, if the manager or the finally block
request the premature completion of the script, then the appropriate signal is sent to
the process, using the subproces’s object, any resources used are cleaned up and then
a response is sent to the manager.

24



Chapter 4 Execution service

Initialization

Stop script

Enter routine

Exit routine

Did the

script

finish

Task

received

Cleanup

Create

subprocess

Check for

Stop script

Finally block

Yes

No

Execute

Stop execution

Unrecognized / No command

Exit

Rerurn or exception

Figure 4.3: Child process flowchart.

25



Chapter 5

Frontend service

The frontend service refers to the code running on the server responsible for commu-
nicating with the browser and doing any work required before either responding or
communicating with the local database, the remote database or the execution service.
More specifically, the duties of this service include:

• Communicating with the remote database to retrieve data.

• Processing data into datasets.

• Saving datasets.

• Tokenizing and saving scripts.

• Sending commands to the execution service.

• Serving the pages to the browser.

• Responding to the AJAX endpoints (that ususally require metadata from the
database).

5.1 Code analyzer module
The dataset library organizes data in types incompatible with one another. This means
that, when running a script, a user must already know the input dataset types and their
order of appearance, or it will fail before it even gets to process the data. To circumvent
this issue, a module was created that inspects the script when it is uploaded, detects calls
to reader (and writer) functions, and saves the findings as part of the script metadata.
This is used to create suggestions of the inputs for the user to know what datasets to
pair it with before executing it (see Figure 5.1).

To extract the information from the script a Python module was used called ast which
stands for Abstract Syntax Trees. This module provides tools for creating a traversable
tree based on the input and the current abstract grammar [13]. This tree consists of
nodes of predetermined types, as shown in the example snippet 5.1, where the simple
print(’hello world’) command is analyzed. To use the module effectively a visitor
class needs be created defining methods called on specific nodes. For example, if there
was a need to detect calls to the print function, then a method called visit Call would

26



Chapter 5 Frontend service

Figure 5.1: The menu for running a script with suggestion for the inputs.

need to be created that detects that the func field is a node of type Name with fields
id=’print’ and ctx=Load().

1 code = "print (’hello world !’)"
2

3 import ast
4 print(ast.dump(ast.parse(code), indent =4)
5

6 # prints :
7 # Module (
8 # body =[
9 # Expr(

10 # value=Call(
11 # func=Name(id=’print ’, ctx=Load ()),
12 # args =[
13 # Constant (value=’hello world !’)],
14 # keywords =[]))],
15 # type_ignores =[])

Snippet 5.1: Analyzing code with Abstract Syntax Trees.

For the purposes of this project the only node types useful were Import, ImportFrom
and Call. Call is used to detect calls to the reader and writer functions and the import
node types to detect how the calls are formatted. More specifically depending on how
the dataset library was imported there Call node has different inner structure because
it has different grammar (see snippet 5.2).

27



Chapter 5 Frontend service

1 # === Package based imports ===
2

3 # Only importing the pakcage
4 import a_package
5 a_package . a_module . a_function ()
6

7 # === Module based imports ===
8

9 # Simple module import
10 from a_package import a_module
11 a_module . a_function ()
12

13 # Importing the module with alias
14 from a_package import a_module as my_module
15 my_module . a_function ()
16

17 # Problematic , but valid importing of the module
18 import a_package . a_module
19 a_package . a_module . a_function ()
20

21 # Also importing the module with alias
22 import a_package . a_module as my_module
23 my_module . a_function ()
24

25 # === Function based imports ===
26

27 # Simple and specific
28 from a_package . a_module import a_function
29 a_function ()
30

31 # Simple , but general (not recommended )
32 from a_package . a_module import *
33 a_function ()
34

35 # Alias for function name
36 from a_package . a_module import a_function as my_func
37 my_func ()

Snippet 5.2: Different ways to call the same function based on import method.

5.2 Flask and Jinja 2
As mentioned in Section 2.3.1, Flask is the framework of choice used with its default
templating processor to enrich the HTML pages served, Jinja2. Developing for this
framework requires creating an object of the Flask class and applying certain properties
to it, like adding a login manager and defining the secret key used for form-related
security reasons. After that, the endpoints are defined and the application is started.

The structure of the main package is modeled after one of the recommendations. It
consists of a modules for Flask functionality, along with folders for the Jinja2 templates
and the static files (like images, CSS and JavaScript). The most notable module for

28



Chapter 5 Frontend service

Flask of the main package is views.py in which the endpoints are described. The main
package also contains code unrelated to the framework, these being the code analyzer
module, the remote database connection module, and the local database connection
sub-package.

5.2.1 Endpoints
An endpoint refers to a link that the frontend service makes accessible to others that can
communicate with it. These endpoints are described in the file views.py which is part
of the main package. The Flask application object provides a decorator1 that creates
an association of the specified URL to a function describing the code that gets executed
before the response is calculated. In snippet 5.3 for example, when the user types the
Uniform Resource Locator (URL) www.this site.com/example page (or gets redirected
to it), then the function endpoint example page is called which in turn renders the
template example page.html. In this project there are endpoints for the pages a user
can access and for URLs that are meant to be reached by the JavaScript code running
on the browser using the AJAX2 pattern. The latter is data that is requested after the
page loads that would be too expensive to send at once or depends on the actions of the
user.

1 from . import app
2

3 @app.route(’/ example_page ’)
4 def endpoint_example_page ():
5 return render_template (’templates / example_page .html ’)

Snippet 5.3: Example of creating an endpoint using flask.

5.2.2 Forms
Pages that require input from the user, like sign-up, are most commonly implemented
using HTML forms. Flask provides tools assisting the creation of pages that use HTML
forms and processing resulting data with the module wtforms. With this module it is
possible to create a class whose class variables are entries in the form with the desired
constraints described by validators. These are classes that express a limitation the field
should have. For example, in snippet 5.4 the username is a field of type string that is
required and has a specific length.

1By definition, a decorator is a function that takes another function and extends the behavior of the
latter function without explicitly modifying it. In this case when the URL in the decorator is called
then Flask calls the function decorated with it.

2AJAX stands for Asynchronous JavaScript and XML. It is a set of web development techniques that
uses various web technologies on the client-side to create asynchronous web applications. Ajax, web
applications can send and retrieve data from a server asynchronously (in the background) without
interfering with the display and behavior of the existing page.

29



Chapter 5 Frontend service

1 from flask_wtf import FlaskForm
2 from wtforms import StringField , PasswordField , SubmitField , BooleanField
3

4 class LoginForm ( FlaskForm ):
5 username = StringField (’Username ’,
6 validators =[ DataRequired (), Length (min =2, max =30) ])
7 password = PasswordField (’Password ’, validators =[ DataRequired ()])
8 remember_me = BooleanField (’Remember me’)
9 submit = SubmitField (’Log in’)

Snippet 5.4: Example of a log-in form class.

Classes describing forms can be used in the endpoint functions to create either the
HTML code when combined with the Jinja2 template, or retrieve the data of the form
and validate it against the constraints. Using Flask forms simplifies the backend code
that checks the form, the frontend code by using the much more laconic Jinja2 template
syntax, and security since it is handled entirely by Flask3.

5.2.3 Login
To manage access to pages based on whether the user is logged in or not, Flask’s login
manager is used. This system abstracts restricted access behind a decorator to the
functions of endpoints that require it. However, there is some setup required in the form
of a class that represents a logged in user with member variables any useful information
the endpoints may need to access. Then the endpoint function that handles logging-in
creates an instance of this class and passes it on to the login manager so that, when a
restricted page is requested by that user, it enables them to access it.

5.3 HTML, CSS and JS
The pages of the site are written in HTML enriched with Jinja2 for the markup, CSS
for the styling and JavaScript for the client-side logic. There are seven pages:

• Home

• About

• Sign-up

• Log-in

• Results

• Datasets

3Flask provides the option of handling the security ascpect of forms by simply using a hidden tag in
the template, provided that the SECRET KEY configuration variable is set.

30



Chapter 5 Frontend service

• Run

Out of these, Datasets and Run are restricted since they provide enough control to the
user to severely hinder the experience for other users. The Results page shows completed
runs along with any files produced, allowing to view and download said files. Datasets
is a composite page that entails all aspects that can be associated with them. In it there
is a sub-page to view existing datasets and upload a new one (created using the local
variant of the dataset library–see Section 3.3), one to view the soil moisture data and
create a dataset out of them, and one to help create a dataset out of images uploaded.
The Run page is also composite and has a sub-page with all the uploaded scripts allowing
to upload a new one or simply select one and pair it with datasets to add to the execution
queue (see Chapter 4). It also has a sup-page with every entry in the execution queue
along with their status allowing to stop any tickets running or pending.

As previously mentioned JavaScript is part of the frontend stack used to dynamically
change the content of the site. One of the most notable uses of it is AJAX, which is
used to load content from the server after the page has finished loading. This, can allow
for larger data to be loaded after the base page has, allowing for a more responsive
experience. In some cases it can also prevent content that is not required from being
loaded, thus reducing the amount of data sent to the user

31



Chapter 6

Demos

In order to test the functionality of this project two scripts are created, each testing a
different aspect. These scripts simulate a real use case of this thesis by implementing an
inference algorithm and running it on data from a sensor network. The full code for the
following examples can be found on appendix A.

6.1 Example 1: Creating a dataset from raw data
The first script handles preprocessing a moisture dataset from NASA into a usable
table which simulates creating a dataset and uploading it to the website for use by the
uploaded scripts. The original dataset is parsed into Python using the library netCDF4
and the result is a masked array, a type of NumPy array. Additionally the area the
original dataset represents is an extensive region of Europe meaning that the grid of
sensors is quite large. This means that the two operations needed to be completed by
the preprocessing script is to select a smaller area to work with and convert the data into
a compatible NumPy array. After that, the dataset library becomes useful for saving
the resulting dataset into a file to be uploaded to the website. As seen in snippet A.1
the code for that is quite simple.

6.2 Example 2: Running LBP on a moisture dataset
The second script uses the previous dataset, runs an inference algorithm, and plots
its performance as a result. The problem tackled in this script is inferring the value of
sensors when they occasionally do not function. The algorithm used is called Loopy Belief
Propagation (LBP) and combines historical data from the, at times, malfunctioning
sensor and their neighbors to create an estimation of their values that have the highest
probability.

LBP works by propagating beliefs between neighboring nodes based on distributions
for each node which, in this case, are estimated using previous readings of the sensors.
More specifically when a node i passes a message (i.e. propagates a belief) to node j, the
calculation of said message involves the distribution of node i, called self potential, the
correlation of the two nodes, called edge potential, and the messages that i has already
”received”. The formula for message passing can be seen in Eq. 6.1 in which ϕ denotes
the self potential, ψ the edge potential and N(i) the neighbors of i.

32



Chapter 6 Demos

mi→j(xj) =
∑
xi

ϕi(xi)ψij(xi, xj)
∏

k∈N(i)\{j}
mk→i(xi) (6.1)

This calculation is done for each message possible from any node to any of its neighbors
and for each state (xi) said neighbor can be in.

If the set of states all nodes can take is S = {s1, . . . , sn} and there are n total states,
then the Eq. 6.1 can be vectorized as follows:

mi→j = ψijϕi ⊙
k∈N(i)\{j}

mk→i (6.2)

where ⊙ denotes element-wise multiplication. By this approach every message mi→j

and self potential ϕi are vectors of length n whose value of states that are impossible
is 0. In the same way ψij is a n by n, zero-padded matrix. This changes are necessary
for more efficient calculations when implementing the algorithm. These messages are
passed multiple times, hence the ”loopy” in the name, and are used at the final step to
calculate the belief for each node–Eq. 6.3.

pxi(xi) ∝ ϕi(xi)
∏

j∈N(i)
mj→i(xi) (6.3)

This can also be vectorized in the same way as in Eq. 6.1.

pxi ∝ ϕi ⊙
j∈N(i)

mj→i (6.4)

The script for this example (snippet A.2) reads the data, creates the state set, creates
the self and edge potentials, runs LBP for different percentages of broken sensors, cal-
culates the error metrics for each test, plots the results, and saves them to a figure. The
self potential for each node is calculated as the distribution observed by the samples of
states. The edge potential of a pair of nodes is the joint distribution of the respective
nodes and, in order to calculate it, the IPF algorithm is used [14, 15].

For this example the graph’s structure is assumed to be a lattice which means that
messages are passed to four directions on each node. With this assumption edge nodes
accept messages from virtual non-existent nodes that transmit a message that does not
affect the outcome of the calculations. In the same manner the outgoing messages of
the edge nodes to them are ignored. This means that the 3-dimensional tensors holding
the messages for each direction all have the same size and, with careful planning, can be
combined in parallel, which is the source of the optimization.

Calculating an outgoing message towards a direction requires the incoming messages
from the same direction and the two from the perpendicular orientation as shown in
Figure 6.1. This means that for a m by n lattice the effective messages for the two
horizontal directions are m by n − 1 and for the vertical m − 1 by n. However, if
these messages are saved in matrices and their inward-most row or column is padded

33



Chapter 6 Demos

Figure 6.1: Messages required for belief propagation.

with neutral messages, as shown in Figure 6.2, then these matrices all have the same
m by n dimensions. Moreover, the node in position (i, j) accepts messages from the
position (i, j) of each message matrix, which means that calculating the beliefs can be
parallelized by element wise matrix multiplication (similar to the Eq. 6.4). It should be
noted that messages are stored in 3-dimensional tensors instead of matrices because for
each message the information stored is the likelihood of each state.

In a similar fashion, calculating the messages for the LBP can also be parallelized by
combining the messages the transmitting node receives. So a message transmitted from
node (i, j) to (i, j + 1) requires the messages from the directions up, down and right
for the node (i, j), which are in the (i, j) position of the matrices. Again, referring to
the structures that hold the messages as matrices is done to convey that their whole
state is used, which is a vector. It should be noted that only the effective messages are
calculated, meaning that the left message from node (0, 0) is not calculated since there
is no use doing so.

34



Chapter 6 Demos

(a) Messages towards right. (b) Messages towards left.

(c) Messages towards up. (d) Messages towards down.

Figure 6.2: All messages passed.

35



Chapter 7

Conclusions & future work

We designed, developed, and tested a platform that can be used to benchmark inference
algorithms working on sensor network data. The platform operates as a standard web
application with separate UI, logic and storage tiers. The platform advantages include
scalability, ease of deployment in different IT environments and clean separation between
the algorithms’ code and sensor data. A robust metadata handling process ensures
consistent operation of the user scripts for local use and as part of the execution service
of the platform.

There are several aspects of the platform that could be improved. First and foremost,
the security of the platform is basic and in many cases to facilitate development we
designed aspects of the platform considering that the provided scripts are not malicious.
Another improvement would be to compact data saved on the database, since in the
current form little effort has gone into avoiding redundances. Additionally, the entirety
of the systems are created without utilizing unit testing which, for the scale of the
project, is quite important.

Finally, some thoughts about future work include:

• Automation to support batch operations: to carry out several benchmarks a script-
ing engine could be used to facilitate the repeatable execution of test script suites.

• Decentralized design: When sensor network data are in the TB range, it may make
more sense to implement the platform as a distributed system, where, instead of
copying the data from their initial location to the place where the script lives, we
send the script to be executed where the data is and send back only the script
output.

• Black-box abstraction layer: One of the greatest augmentations to the website
portion of this project would be to create an environment allowing for users to
directly experiment with different algorithms. This would allow for appeal to
a greater audience and demonstrate in real time some of the most interesting
algorithms.

• Integration of the implementation of various inference algorithms to the python
library, which can be used for rapid prototyping and research purposes.

36



Appendix A

Demos’ code reference

This appendix is just for the code referenced by 6.

A.1 Example 1 code

1 # Import the dataset library
2 from dataseting_lib import writers , parse_console_arguments
3 # Import the parser for the data
4 import netCDF4 as nc
5

6 parse_console_arguments ()
7

8 file_path = ’./ EU_ESSMRA_daily_ensmean_CLM - PDAF_3Km_v1 .200001. nc’
9

10 # Read the data from the file
11 dataset = nc. Dataset ( file_path )
12 humidity_data_variable = dataset [’H2OSOI ’]
13

14 # Pick a subset of it
15 humidity_data_np_masked = humidity_data_variable [:, :100 , :100]
16

17 # Convert data into a usable values
18 humidity_data_np_masked_normalized = humidity_data_np_masked * 100
19 humidity_data_np_array = humidity_data_np_masked_normalized . filled (

↪→ fill_value =1)
20

21 # Write data as dataset
22 writers . write_np_array ( humidity_data_np_array , ’humidity1 .ds’,

↪→ if_file_exists =’overwrite ’)

Snippet A.1: Create an np-array dataset from data.

37



Appendix A Demos’ code reference

A.2 Example 2 code

1 # Optional imports
2 from time import perf_counter
3 from typing import TypeVar
4

5 # Imports for computation and results
6 import numpy as np
7 import matplotlib . pyplot as plt
8 # For type checking
9 from typeguard import check_argument_types

10

11 # For reading and writing datasets
12 from dataseting_lib import readers , writers , parse_console_arguments
13

14

15

16 # Globals
17 num_iters_lbp = 10
18 eps = 1e-8
19

20 wsn_size_1 = 100
21 wsn_size_2 = 99
22 numberOfFiles = 6
23

24 T = TypeVar (’T’)
25

26 # Functions for part 1
27

28 def get_files_and_samples ( soil_moist_data : np. ndarray ):
29 """ Reads the dataset and picks the train and test data."""
30

31 # Train data
32 samples = [np.ceil( soil_moist_data [i, :wsn_size_1 , : wsn_size_2 ]) for

↪→ i in range( numberOfFiles )]
33

34 # Test data
35 beliefs_opt = np.ceil( soil_moist_data [ numberOfFiles , :wsn_size_1 , :

↪→ wsn_size_2 ])
36

37 return samples , beliefs_opt
38

39

40 def build_the_lattice_graph ( samples : list[np. ndarray ]):
41 """ Rearranges data into a one numpy array."""
42

43 moisture = np.zeros (( wsn_size_1 , wsn_size_2 , len( samples ) ,))
44

45 for i in range( numberOfFiles ):
46 s = samples [i]
47 for j in range(s.shape [0]):
48 for k in range(s.shape [1]):
49 moisture [j, k, i] = samples [i][j, k]

38



Appendix A Demos’ code reference

50

51 return moisture
52

53

54 def get_classes (moist: np. ndarray ):
55 """ Returns the unique values and the number of them."""
56 classes = np. unique (moist)
57 count = classes .shape [0]
58 return classes , count
59

60

61 def get_f_prob ( unique_values , num_of_values , moisture ):
62 """ Creates the self potentials for each sensor ."""
63

64 # Initialization
65 f_prob = 1e-8 * np.ones (( wsn_size_1 , wsn_size_2 , num_of_values ))
66

67 # Lookup table for each value of the " unique_values " variable
68 uv_dict = {
69 value: index for index , value in enumerate ( unique_values . tolist ()

↪→ )
70 }
71

72 for i in range( wsn_size_1 ):
73 for j in range( wsn_size_2 ):
74 values = moisture [i, j]
75 uniques = np. unique ( values )
76 percents = np. histogram (values , bins=np. append (uniques , np.

↪→ inf))[0] / numberOfFiles
77

78 # Overwrite the default value with the percentage
79 for v, p in zip(uniques , percents ):
80 f_prob [i, j, uv_dict [v]] = p
81 pass
82 pass
83 return f_prob
84

85

86 # Functions for part 2
87

88 def ipf(T: np. ndarray [T, T],
89 R: np. ndarray [T, 1],
90 C: np. ndarray [1, T],
91 num_of_values , epsilon =1e-3, max_it =100):
92 """ Iterative Proportional Fitting . Used in edge potential calculation

↪→ ."""
93 check_argument_types ()
94

95 n = num_of_values
96 m = num_of_values
97

98 total_error = np.sum(np.abs(np.sum(T, 1) - R)) + np.sum(np.abs(np.sum
↪→ (T, 0) - C))

99

39



Appendix A Demos’ code reference

100 S = np.ones ((n, m))
101 errors = []
102 for count in range( max_it ):
103 errors . append ( total_error )
104 if total_error <= epsilon :
105 break
106

107 for i in range(n):
108 S[i, :] = S[i, :] * R[i] / np.sum(S[i, :])
109

110 for j in range(m):
111 S[:, j] = S[:, j] * C[j] / np.sum(S[:, j])
112

113 total_error = np.sum(np.abs(np.sum(S, 1) - R)) + np.sum(np.abs(np
↪→ .sum(S, 0) - C))

114 pass
115 return S
116

117

118 def get_edge_potentials (f_prob , num_of_values ):
119 """ Calculate the edge potentials ."""
120

121 # Initialization matrix for IPF.
122 T = np.ones (( num_of_values , num_of_values ))
123

124 # Horizontal edge potentials
125 horizontal_psi = np.zeros (( wsn_size_1 , wsn_size_2 - 1, num_of_values ,

↪→ num_of_values ))
126 for i in range( wsn_size_1 ):
127 for j in range( wsn_size_2 - 1):
128 C = f_prob [i, j, :] #

↪→ Node 1 of edge
129 R = f_prob [i, j + 1, :] #

↪→ Node 2 of edge
130 horizontal_psi [i, j, :, :] = ipf(T, R, C, num_of_values ) #

↪→ edge potential
131 pass
132

133 pass
134

135 # Vertical edge potentials
136 vertical_psi = np.zeros (( wsn_size_1 - 1, wsn_size_2 , num_of_values ,

↪→ num_of_values ))
137 for i in range( wsn_size_1 - 1):
138 for j in range( wsn_size_2 ):
139 C = f_prob [i, j, :] #

↪→ Node 1 of edge
140 R = f_prob [i + 1, j, :] #

↪→ Node 2 of edge
141 vertical_psi [i, j, :, :] = ipf(T, R, C, num_of_values ) #

↪→ edge potential
142 pass
143 pass
144

40



Appendix A Demos’ code reference

145 return horizontal_psi , vertical_psi
146

147

148 # Functions for part 3:
149 def loopy_belief_propagation ( test_sample , f_prob , horizontal_psi ,

↪→ vertical_psi , unique_values , num_of_values , terrain , ):
150 """ Runs LBP and estimates the values of the marked sensors . Then

↪→ calculates the error of said estimations ."""
151

152 # Self potential * edge potential . Used for each direction of message
↪→ in message passing .

153 comb_left = np. einsum ("ijk , ijkl -> ijl", f_prob [:, :-1, :],
↪→ horizontal_psi )

154 comb_right = np. einsum ("ijk , ijkl -> ijl", f_prob [:, 1:, :],
↪→ horizontal_psi )

155 comb_up = np. einsum ("ijk , ijkl -> ijl", f_prob [:-1, :, :],
↪→ vertical_psi )

156 comb_down = np. einsum ("ijk , ijkl -> ijl", f_prob [1:, :, :],
↪→ vertical_psi )

157

158 # Initializations
159

160 row = wsn_size_1
161 col = wsn_size_2
162

163 right = np.ones ((row , col , num_of_values ))
164 left = np.ones ((row , col , num_of_values ))
165 up = np.ones ((row , col , num_of_values ))
166 down = np.ones ((row , col , num_of_values ))
167

168 right_new = np.ones ((row , col , num_of_values ))
169 left_new = np.ones ((row , col , num_of_values ))
170 up_new = np.ones ((row , col , num_of_values ))
171 down_new = np.ones ((row , col , num_of_values ))
172

173 # Belief propagation
174 for t in range( num_iters_lbp ):
175 # Message passing
176 up_new [:-1, :, :] = comb_up [:, :, :] * up[1:, :, :] *

↪→ left [1:, :, :] * right [1:, :, :] + eps
177 down_new [1:, :, :] = comb_down [:, :, :] * down [:-1, :, :] *

↪→ left [:-1, :, :] * right [:-1, :, :] + eps
178 left_new [:, 1:, :] = comb_left [:, :, :] * left [:, :-1, :] * up

↪→ [:, :-1, :] * down [:, :-1, :] + eps
179 right_new [:, :-1, :] = comb_right [:, :, :] * right [:, 1:, :] * up

↪→ [:, 1:, :] * down [:, 1:, :] + eps
180

181 # Normalization
182 for i in range( wsn_size_1 ):
183 for j in range( wsn_size_2 ):
184 up[i, j, :] = up_new [i, j, :] / np.sum( up_new [i, j,

↪→ :])
185 down[i, j, :] = down_new [i, j, :] / np.sum( down_new [i,

↪→ j, :])

41



Appendix A Demos’ code reference

186 left[i, j, :] = left_new [i, j, :] / np.sum( left_new [i,
↪→ j, :])

187 right[i, j, :] = right_new [i, j, :] / np.sum( right_new [i,
↪→ j, :])

188 pass
189 pass
190 pass
191

192 # Compute beliefs
193 beliefs = f_prob * left * right * up * down
194

195 # Create final map of moisture
196 sens_off_idxs = np.where( terrain == False)
197 sens_off_beliefs = unique_values [np. argmax ( beliefs [ sens_off_idxs ], 1)

↪→ ]
198 estimated_sample = test_sample .copy ()
199 estimated_sample [ sens_off_idxs ] = sens_off_beliefs
200

201 # Error measurements
202 sample_difference = estimated_sample - test_sample
203 num_sensors = row * col
204 sum_mse = np.sum(np.power( sample_difference , 2))
205 sum_mae = np.sum(np.abs( sample_difference ))
206

207 mse_lat = sum_mse / num_sensors
208 mae_lat = sum_mae / num_sensors
209 rmse_lat = np.sqrt( mse_lat )
210

211 return mse_lat , mae_lat , rmse_lat , beliefs
212

213

214 def generate_graphs ( beliefs_opt : np.ndarray , f_prob , horizontal_psi ,
↪→ vertical_psi , unique_values , num_of_values ):

215 """ Runs LBP for different percentages of broken sensors and generates
↪→ the graph values of the errors metrics ."""

216

217 # Percentage of sensors turned off
218 sens_off = list(range (5, 80, 5))
219 num_tests = len( sens_off )
220

221 # Error metrics (lines)
222 mae_list = np.zeros (( num_tests , 1))
223 mse_list = np.zeros (( num_tests , 1))
224 rmse_list = np.zeros (( num_tests , 1))
225 x_axis = np. asarray ( sens_off )
226

227 for i in range( num_tests ):
228 perc_off = sens_off [i]
229

230 test_sample = beliefs_opt .copy ()
231 terrain = np.full (( wsn_size_1 , wsn_size_2 ), True)
232

233 num_broken_sensors = wsn_size_1 * wsn_size_2 * perc_off // 100

42



Appendix A Demos’ code reference

234 broken_sensors = np. random . choice ( wsn_size_1 * wsn_size_2 ,
↪→ num_broken_sensors )

235

236 # Terrain is a map of which sensors are functional or not.
237 for broken_sensor in broken_sensors :
238 x, y = divmod ( broken_sensor , wsn_size_2 )
239 terrain [x, y] = False
240 pass
241

242 # Run LBP
243 mse_list [i], mae_list [i], rmse_list [i], beliefs_est =

↪→ loopy_belief_propagation (
244 test_sample , f_prob , horizontal_psi , vertical_psi ,

↪→ unique_values , num_of_values , terrain )
245 pass
246

247 return x_axis , mse_list , mae_list , rmse_list
248

249

250

251 def main ():
252 global unique_values , num_of_values
253

254 # For local use
255 parse_console_arguments ()
256

257 t1_start = perf_counter ()
258

259 # Execution part 1: getting the useful information
260

261 orig_moist_data = readers . read_np_array (shape =(31 , 100, 100))
262 samples , beliefs_opt = get_files_and_samples ( orig_moist_data )
263 moist = build_the_lattice_graph ( samples )
264 unique_values , num_of_values = get_classes (moist)
265

266 # Execution part 2: Calculating the parts for the algorithms
267

268 f_prob = get_f_prob ( unique_values , num_of_values , moist)
269 horizontal_psi , vertical_psi = get_edge_potentials (f_prob ,

↪→ num_of_values )
270

271 # Execution part 3: Applying the algorithms
272

273 x_axis , mse_list , mae_list , rmse_list = generate_graphs (
274 beliefs_opt , f_prob , horizontal_psi , vertical_psi , unique_values ,

↪→ num_of_values )
275

276 # Create the plot
277 plt.plot(x_axis , mse_list , label="MSE")
278 plt.plot(x_axis , rmse_list , label="RMSE")
279 plt.plot(x_axis , mae_list , label="MAE")
280 plt. xlabel (" Percentage of broken sensors ")
281 plt.title("Loopy Belief Propagation on Lattice ")
282 plt. legend ()

43



Appendix A Demos’ code reference

283

284 # Save the plot
285 writers . write_plt_fig ( file_name =" lbp_nasa ", if_file_exists =" overwrite

↪→ ", fig_format ="svg")
286

287 print(f’Done , time elapsed : {round( perf_counter () - t1_start )}s’)
288

289

290 if __name__ == ’__main__ ’:
291 main ()

Snippet A.2: Run LBP over on a dataset.

44



Appendix B

Screenshots from key parts of the website

Figure B.1: The home page.

45



Appendix B Screenshots from key parts of the website

Figure B.2: Signup. Note that to add a pseudo security measure, to register a user must
know the ”Entry Code”.

Figure B.3: Login.

46



Appendix B Screenshots from key parts of the website

Figure B.4: Datasets page.

Figure B.5: Uploading datasets to the web app.

47



Appendix B Screenshots from key parts of the website

Figure B.6: Programs’ page. In here all scripts uploaded to the database are presented.
Clicking on one opens a dialog to run it.

Figure B.7: Preparing a script to be run. The top table shows the suggested inputs
as infered by the code analyzer. The bottom one holds the actual inputs
selected.

48



Appendix B Screenshots from key parts of the website

Figure B.8: The UI portion of how a command block dataset gets created and to be
passed to a script.

Figure B.9: The execution queue. Notice that programs that can be interrupted have a
button for that next to them.

49



Appendix B Screenshots from key parts of the website

Figure B.10: Results page. Successful runs are denoted with green and unsuccessful with
red. Each button represents one of the outputs of the script.

Figure B.11: Viewing a result.

50



Bibliography

[1] martinfowler.com. Microservices. https://martinfowler.com/articles/
microservices.html. [Online; accessed 16-October-2022].

[2] Docker Inc. Use containers to build, share and run your applications. https:
//www.docker.com/resources/what-container/. [Online; accessed 16-October-
2022].

[3] The Pallets Projects. Flask. https://palletsprojects.com/p/flask/. [Online;
accessed 16-October-2022].

[4] Python 3.10.8 documentation. What is Python. https://docs.python.org/3/
faq/general.html#what-is-python, . [Online; accessed 16-October-2022].

[5] MongoDB. Introduction to MongoDB. https://www.mongodb.com/docs/v6.0/
introduction/. [Online; accessed 16-October-2022].

[6] RapidMiner. RapidMiner. https://rapidminer.com/. [Online; accessed 16-
October-2022].

[7] Google. Colaboratory. https://research.google.com/colaboratory/faq.html.
[Online; accessed 16-October-2022].

[8] Amazon. Get Started with Amazon SageMaker Notebook Instances. https:
//docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html. [Online; ac-
cessed 16-October-2022].

[9] Microsoft. Learn more about all the notebooks experiences from Mi-
crosoft and GitHub. https://visualstudio.microsoft.com/vs/features/
notebooks-at-microsoft/. [Online; accessed 16-October-2022].

[10] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, jun 2002.
ISSN 0163-5700. doi: 10.1145/564585.564601. URL https://doi.org/10.1145/
564585.564601.

[11] Django Software Foundation. Django at a glance. https://docs.djangoproject.
com/en/4.1/intro/overview/#django-at-a-glance. [Online; accessed 16-
October-2022].

[12] tiangolo. FastAPI. https://github.com/tiangolo/fastapi. [Online; accessed
16-October-2022].

51

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://palletsprojects.com/p/flask/
https://docs.python.org/3/faq/general.html#what-is-python
https://docs.python.org/3/faq/general.html#what-is-python
https://www.mongodb.com/docs/v6.0/introduction/
https://www.mongodb.com/docs/v6.0/introduction/
https://rapidminer.com/
https://research.google.com/colaboratory/faq.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-console.html
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://docs.djangoproject.com/en/4.1/intro/overview/#django-at-a-glance
https://docs.djangoproject.com/en/4.1/intro/overview/#django-at-a-glance
https://github.com/tiangolo/fastapi


Bibliography

[13] Python documentation. Abstract Syntax Trees. https://docs.python.org/3/
library/ast.html, . [Online; accessed 16-October-2022].

[14] Wei Zhao and Yao Liang. A systematic probabilistic approach to energy-efficient
and robust data collections in wireless sensor networks. IJSNet, 7:162–175, 05 2010.
doi: 10.1504/IJSNET.2010.033118.

[15] N. Friedman D. Koller. Probabilistic Graphical Models: Principles and Techniques.
The MIT Press, 2009.

52

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html


List of Figures

2.1 Docker services structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Package’s class structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Help message for assigning datasets to a script. . . . . . . . . . . . . . . . 13

4.1 Structure of the execution module. . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Manager process flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Child process flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 The menu for running a script with suggestion for the inputs. . . . . . . . 27

6.1 Messages required for belief propagation. . . . . . . . . . . . . . . . . . . . 34
6.2 All messages passed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.1 The home page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.2 Signup. Note that to add a pseudo security measure, to register a user

must know the ”Entry Code”. . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.3 Login. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.4 Datasets page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.5 Uploading datasets to the web app. . . . . . . . . . . . . . . . . . . . . . . 47
B.6 Programs’ page. In here all scripts uploaded to the database are pre-

sented. Clicking on one opens a dialog to run it. . . . . . . . . . . . . . . 48
B.7 Preparing a script to be run. The top table shows the suggested inputs

as infered by the code analyzer. The bottom one holds the actual inputs
selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B.8 The UI portion of how a command block dataset gets created and to be
passed to a script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.9 The execution queue. Notice that programs that can be interrupted have
a button for that next to them. . . . . . . . . . . . . . . . . . . . . . . . . 49

B.10 Results page. Successful runs are denoted with green and unsuccessful
with red. Each button represents one of the outputs of the script. . . . . . 50

B.11 Viewing a result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

53



List of Code Snippets

3.1 Example of absolute import . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Example of relative import . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Calling a script that uses the parse console arguments function. . . . . 13

4.1 Creating a process with the multiprocessing module. . . . . . . . . . . . . 19
4.2 Creation of a subprocess to run a script. . . . . . . . . . . . . . . . . . . . 24

5.1 Analyzing code with Abstract Syntax Trees. . . . . . . . . . . . . . . . . . 27
5.2 Different ways to call the same function based on import method. . . . . . 28
5.3 Example of creating an endpoint using flask. . . . . . . . . . . . . . . . . 29
5.4 Example of a log-in form class. . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 Create an np-array dataset from data. . . . . . . . . . . . . . . . . . . . . 37
A.2 Run LBP over on a dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

54


	Acknowledgments
	1 Introduction
	1.1 Prior Art
	1.2 Thesis Outline

	2 Web APP
	2.1 Structure
	2.2 Database
	2.3 Main programming language
	2.3.1 Libraries used
	2.3.2 Development tools created


	3 Data manipulation
	3.1 Dataset
	3.2 Dataset library
	3.2.1 Structure

	3.3 Variations
	3.3.1 For local use
	3.3.2 For use in the execution service
	3.3.3 For use in the frontend service


	4 Execution service
	4.1 Queue system
	4.2 Execution module
	4.3 Manager process
	4.4 Child processes

	5 Frontend service
	5.1 Code analyzer module
	5.2 Flask and Jinja 2
	5.2.1 Endpoints
	5.2.2 Forms
	5.2.3 Login

	5.3 HTML, CSS and JS

	6 Demos
	6.1 Example 1: Creating a dataset from raw data
	6.2 Example 2: Running LBP on a moisture dataset

	7 Conclusions & future work
	A Demos' code reference
	A.1 Example 1 code
	A.2 Example 2 code

	B Screenshots from key parts of the website
	Bibliography
	List of Figures
	List of Code Snippets

