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Abstract— The paper introduces a new bidirectional micro-
scopic inviscid Adaptive Cruise Control (ACC) model that uses
only spacing information from the preceding and following
vehicles in order to select the proper control action to avoid
collisions and maintain a desired speed. Class KL estimates that
guarantee uniform convergence of the ACC model to the set of
equilibria are provided. Moreover, the corresponding macro-
scopic model is derived, consisting of a conservation equation
and a momentum equation that contains a nonlinear relaxation
term. It is shown that, if the density is sufficiently small, then the
macroscopic model has a solution that approaches exponentially
the equilibrium speed (in the sup norm) while the density
converges exponentially to a traveling wave.

I. INTRODUCTION

Microscopic traffic models describe the longitudinal (car-
following) and lateral (lane-changing) movement of each
single vehicle in the traffic stream, see [29]. Microscopic
models based on Adaptive Cruise Control (ACC) and Coop-
erative Adaptive Cruise Control (CACC) systems are widely
regarded as the basis of future generations of automated
vehicles since they have the potential of increasing safety,
reduce traffic accidents, and improve traffic flow on high-
ways [13], [22]. Both ACC and CACC systems have been
extensively studied in the literature (see for instance [13],
[17], [22], [26]). The simplest form of interaction between
vehicles, that gives more flexibility, than the typical Follow-
the-Leader scheme [26], [29], is the bidirectional scheme
which monitors the behavior of both the preceding and the
following vehicles, see for instance [2], [7], [11], [21], [31].

Contrary to the microscopic models, macroscopic traffic
models describe the traffic flow as a fluid that is characterized
by macroscopic quantities, such as flow, density, and mean
speed of vehicles. Several first-order models and second-
order traffic flow models have appeared in the related, see
for instance [1], [3], [6], [9], [12], [23], [25], [30], [32],
[34]. Both first-order and second-order models have been
extended to adjust the vehicle speed based on a perception
of downstream density, see for instance [4], [5], [8] and
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references therein. In the era of connected and automated
vehicles, it is possible for vehicles to use backward sensors
or to communicate their presence to other vehicles; hence,
vehicles may adjust their speed based also on upstream
density, in addition to downstream density. In [15], [24] the
effect of the upstream density on the speed adjustment was
termed as “nudging”.

This paper presents a novel bidirectional, microscopic,
inviscid ACC model and its corresponding second-order
macroscopic model. We call the model “inviscid” because it
gives rise to a macroscopic model that contains no viscosity
term. The proposed bidirectional microscopic model is based
on the two-dimensional cruise controller for autonomous
vehicles, recently proposed in [16], and we prove in this work
that it has the following main features: (i) Each vehicle uses
only the distance from its preceding and following vehicles
to select the proper control action (vehicle acceleration); (ii)
the vehicles do not collide with each other; (iii) the speeds
of all vehicles are always non-negative and remain below an
a priori given speed limit; (iv) the ultimate distance between
two consecutive vehicles is guaranteed to be greater than
a pre-specified constant; (v) all vehicle speeds converge to
a given longitudinal speed set-point; and (vi) all the above
features are valid globally.

In addition to the above features, it is shown, by exploiting
LaSalle’s Invariance Principle (see [19]) that, the solutions
of the microscopic inviscid model converge asymptotically
to a set of equilibrium points from any (arbitrary) physically
relevant initial condition (Theorem 2.1). However, since
LaSalle’s Invariance Principle does not guarantee a uniform
attractivity property to the set of equilibria, we construct a
strict Lyapunov function for the closed-loop system (The-
orem 2.2). Using the constructed Lyapunov function, we
establish a KL estimate for the solutions of the microscopic
model that guarantees uniformity of the convergence rate to
the set of equilibrium points (Theorem 2.3). We also show
that, for specific initial conditions, the convergence is ex-
ponential (Proposition 3.1). The main theoretical challenges
stem from the fact that the control system studied in the paper
evolves on a specific set (which is neither open nor closed),
and, in addition, various objectives and constraints must be
satisfied simultaneously and globally (positive speeds within
road speed limits that converge to a specific speed set-
point). Moreover, we prove that the vehicles reach a set
of equilibrium configurations, where the distance between
two consecutive vehicles is guaranteed to be bounded and be
greater than a pre-specified constant. Finally, we (formally)
derive the macroscopic inviscid model that corresponds to the



bidirectional microscopic model, and show that, if the initial
density is sufficiently small, then the macroscopic model
has a solution that approaches exponentially the equilibrium
speed (in the sup norm) while the density converges expo-
nentially to a traveling wave (Theorem 3.2).

The structure of the paper is as follows. Section 2 is
devoted to the presentation of the bidirectional microscopic
inviscid ACC model and its stability properties. Section 3
presents the corresponding macroscopic inviscid model and
its analogy to the microscopic model. Section 4, is devoted
to simulation examples. Finally, some concluding remarks
are given in Section 5. Due to space constraints, the proofs
of all results and the formal derivation of the macroscopic
model can be found in [18].

Notation. Throughout this paper, we adopt the following
notation. <+ := [0,+∞)denotes the set of non-negative
real numbers. By |x| we denote both the Euclidean norm
of a vector x ∈ <n and the absolute value of a scalar
x ∈ <. By K we denote the class of increasing C0 functions
a : <+ → <+ with a(0) = 0. By K∞ we denote the class
of increasing C0 functions a : <+ → <+ with a(0) = 0
and lim

s→+∞
a(s) = +∞. By KL we denote the set of all

continuous functions σ : <+×<+ → <+ with the properties:
(i) for each t ≥ 0 the mapping σ(·, t) is of class K; (ii)
for each s ≥ 0, the mapping σ(s, ·) is non-increasing with

lim
t→+∞

σ(s, t) = 0. By C0(A,Ω), we denote the class of
continuous functions on A ⊆ <n, which take values in
Ω ⊆ <m. By Ck(A; Ω), where k ≥ 1 is an integer, we
denote the class of functions on A ⊆ <n with continuous
derivatives of order k, which take values in Ω ⊆ <m. For
f ∈ Ck(<), we denote by f ′(x), f ′′(x), ..., f (k)(x) its
derivatives When Ω = < the we write C0(A) or Ck(A).
Let I ⊆ < be a given interval. L∞(I) denotes the set of
equivalence classes of measurable functions f : I → <
for which ‖f‖∞ = ess sup

x∈I
(|f(x)|) < +∞. By W k,∞(I),

where k ≥ 1 is an integer, we denote the Sobolev spaces of
functions f ∈ L∞(I) which have weak derivatives of order
≤ k, all of which belong to L∞(I). For a set S ⊆ <n,
S̄ denotes the closure of S. We denote by dist(x,A) the
Euclidean distance of the point x ∈ <n from the set A ⊂ <n,
i.e., dist(x,A) = inf {|x− y| : y ∈ A}. Let u : <+ × < →
<, (t, x) → u(t, x) be any function differentiable with
respect to its arguments. We use the notation u[t] to denote
the profile at certain t ≥ 0, (u[t])[x] := u(t, x), for all x ∈ <.

II. THE MICROSCOPIC INVISCID ACC MODEL

A. Description of the model
The movement of n identical vehicles on a straight road

under the cruise controller that was proposed in [16], when
the vehicles are constrained to move on a line (longitudinal
motion), is described by the following set of ODEs:

ẋi = vi , i = 1, 2, ..., n
v̇1 = −k1(s2) (v1 − v∗)− V ′(s2)
v̇i = −ki(si, si+1) (vi − v∗) + V ′(si)− V ′(si+1),

i = 2, ..., n− 1
v̇n = −kn(sn) (vn − v∗) + V ′(sn)

(1)

where

si = xi−1 − xi , i = 2, ..., n
k1(s2) = µ+ g (−V ′(s2))
ki(si, si+1) = µ+ g (V ′(si)− V ′(si+1)) , i = 2, ..., n− 1
kn(sn) = µ+ g (V ′(sn))

(2)
µ, v∗ > 0 are constants, V ∈ C2 ((L,+∞);<+) is a
potential function that satisfies

lim
s→L+

(V (s)) = +∞,
V ′′(s) ≥ 0,
V (s) = 0, for s ≥ λ
V ′(s) < 0, for L < s < λ

(3)

where λ > L > 0 are constants, and

g(s) =
vmaxf (s)

v∗(vmax − v∗)
− s

v∗
, (4)

vmax > v∗ is a constant (the road speed limit), and f ∈
C1 (<) is a non-decreasing function that satisfies

max(x, 0) ≤ f(x), for all x ∈ < (5)

Using (2), the model can be written in the following form

ṡi = vi−1 − vi , i = 2, ..., n
v̇1 = −k1(s2) (v1 − v∗)− V ′(s2)
v̇i = −ki(si, si+1) (vi − v∗) + V ′(si)− V ′(si+1),

i = 2, ..., n− 1
v̇n = −kn(sn) (vn − v∗) + V ′(sn)

(6)

where si, i = 1, ..., n is the back-to-back distance of the
i-th vehicle from the (i-1)-th vehicle and vi, i = 1, ..., n, is
the speed of the i-th vehicle. The terms k1(s2), ki(si, si+1),
and kn(sn) in (6), are state-dependent gains which guarantee
that the speed of each vehicle will remain positive and less
than the speed limit vmax. The functions V ′(si) are potential
functions that repel vehicles based on their distance with the
force of repulsion being stronger as the distance between two
vehicles becomes smaller, while there is little or no repulsion
when the vehicles are distant, see (3). Since V in (3) is
decreasing, then, the term −V ′(si+1) is positive and this
term represents the effect of nudging, since vehicles that are
close and behind vehicle will exert a “pushing” force towards
it that will increase its acceleration.

Due to various constraints, such as minimum inter-vehicle
distance and speeds within certain speed limits above, the
state space of model (6) is

Ω =(s2, ..., sn, v1, ..., vn) ∈ <2n−1 :
max

i=1,...,n
(vi) ≤ vmax,

min
i=1,...,n

(vi) ≥ 0


(7)

where L is a given positive constant (the minimum distance
between two vehicles for which the vehicles do not collide
with each other). In what follows, we refer to model (6) as the
“microscopic, inviscid ACC model”, since the macroscopic
analogue of (6) does not contain a viscosity term (see Section



3). Clearly, model (6) is nonlinear not only because of the
nonlinearities appearing in the right-hand sides of (6) but
also due to the fact that the state space Ω is not a linear
subspace of <2n−1. It should be also noticed that the state
space is not an open set (see the recent paper [[27] for the
extension of the Input-to-State Stability property to systems
defined on open sets) and it is not a closed set.

B. Stability Analysis

Since v∗ ∈ (0, vmax), it follows by (3), (4), (6), that the
set

S =(s2, ..., sn, v1, ..., vn) ∈ <2n−1 :

min
i=2,...,n

(si) ≥ λ,
vi = v∗,
i = 1, ..., n

 ⊂ Ω

(8)

is the set of equilibrium points for the model. In what
follows, we use the notation

s = (s2, ..., sn) ∈ <n−1, v = (v1, ..., vn) ∈ <n (9)

Moreover, in what follows we omit the arguments of the
functions ki, i = 1, ..., n, defined by (2) (for simplicity).

In this section we show the stability properties of the
invariant set S. However, before we proceed, it is necessary
to state clearly the characteristics of the problem that indicate
the challenge (from a mathematical point of view) of the
performed stability analysis:

1) system (6) is nonlinear,
2) the state space of system (6) is neither a closed set,

nor an open set, and
3) the invariant set whose stability properties are to be

investigated, is not a bounded set (and consequently
not a compact set).

We define the function H : Ω→ <+ by the formula

H(s, v) =
1

2

n∑
i=1

(vi − v∗)2 +

n∑
i=2

V (si) (10)

The function H is nothing else but the mechanical energy of
the system of n vehicles relative to an observer that moves
with constant speed v∗. Using (6) and (10), we obtain the
following equation for all (s, v) ∈ Ω for the time derivative
of the function H along the solutions of (6):

Ḣ(s, v) = −
n∑
i=1

ki (vi − v∗)2 . (11)

It should be noticed that the function H is not a strict
Lyapunov function, because (11) shows that the derivative of
H can be zero for points out of the invariant set S. However,
using (10) and (11) we have the following theorem whose
proof can be found in [18].

Theorem 2.1: For every initial condition (s(0), v(0)) ∈ Ω,
the solution (s(t), v(t)) ∈ Ω of (6) is defined for all t ≥ 0
and satisfies for i = 2, ..., n

si(t) ≤ max (λ, si(0)) + µ−1vmax, for all t ≥ 0 (12)

Moreover, lim
t→+∞

(vi(t)) = v∗ for all i = 1, ..., n and

lim
t→+∞

(V (si(t))) = 0 for all i = 2, ..., n.
It should be noticed that Theorem 2.1 is not a specializa-

tion of Theorem 1 in [16] for vehicles moving on a straight
line. Indeed, an application of Theorem 1 in [16] does not
guarantee that the distance of two consecutive vehicles (i.e.,
si) is bounded from above. In other words, an application of
Theorem 1 in [14] does not give us estimates (12). Notice that
since lim

t→+∞
(V (si(t))) = 0 for all i = 2, ..., n, properties (3)

guarantee that lim inf
t→+∞

(si(t)) ≥ λ for all i = 2, ..., n and that

lim
t→+∞

(dist ((s(t), v(t)), S)) = 0 (recall definition (8)). The
proof of Theorem 2.1 relies on LaSalle’s principle. However,
LaSalle’s principle does not guarantee uniform attraction
to the set S. In order to be able to show uniform global
attractivity properties for the set S we need to provide a
strict Lyapunov function for system (6). This is done by the
following theorem.

Theorem 2.2: For every β > 0 there exist non-decreasing
functions R ∈ C1 (<+; (0,+∞)), κ ∈ C0 (<+; (0,+∞))
such that the following inequalities hold for all (s, v) ∈ Ω:

H(s, v) ≤W (s, v) ≤ κ (H(s, v))H(s, v) (13)

Ẇ (s, v) ≤ −βµ
n∑
i=1

(vi − v∗)2 −
1

8

n∑
i=2

4i (V ′(si))
2 (14)

where W : Ω→ <+ is defined by the equation

W (s, v) := R (H(s, v))H(s, v)−
n∑
i=2

4iV ′(si) (vi − v∗) ,

for all (s, v) ∈ Ω (15)

and Ẇ (s, v) denotes the time derivative of W along the
solutions of (6).

Remark: Notice that W (s, v) > 0, Ẇ (s, v) < 0 when
(s, v) ∈ Ω\S and W (s, v) = Ẇ (s, v) = 0 when (s, v) ∈ S.
Thus, the function W defined by (15) is a strict Lyapunov
function for the microscopic inviscid ACC model (6).

Using Theorem 2.2 we are in a position to prove that a
KL estimate holds for the solutions of (6). This estimate is
important, because it guarantees uniformity of the conver-
gence rate to the set S and useful robustness properties (see
the discussion in [28]; uniform global asymptotic stability
with respect to two measures).

Theorem 2.3: There exists a function σ ∈ KL and
a function a ∈ K∞ such that for every initial condition
(s(0), v(0)) ∈ Ω the solution (s(t), v(t)) ∈ Ω of (6) is
defined for all t ≥ 0 and satisfies

a(dist((s(t), v(t)), S)) ≤W (s(t), v(t))

≤ σ (W (s(0), v(0)) , t ) , for all t ≥ 0
(16)

Remarks: (i) While estimate (16) implies a uniform rate
of convergence to the invariant set S, it does not imply
an exponential rate of convergence. A special case for
exponential convergence to the set S and its relation to the
macroscopic inviscid model that corresponds to model (6)
will be discussed in the following section (Proposition 3.1).



(ii) It should be noticed that Theorem 2.1, Theorem 2.2
and Theorem 2.3 show global convergence of the solutions
of the model (6) to the invariant set of equilibrium points
S. However, this does not mean that every solution of
(6) converges to an equilibrium point. In fact, we cannot
conclude that the limits lim

t→+∞
(si(t)) exist for i = 2, ..., n.

However, Theorem 2.1 shows that every solution of (6)
satisfies the following estimates for i = 2, ..., n:

λ ≤ lim inf
t→+∞

(si(t)) ≤ lim sup
t→+∞

(si(t))

≤ max (λ, si(0)) + µ−1vmax

(17)

(iii) It should be noticed that the stability estimate (16) does
not establish Uniform Global Asymptotic Stability of the
invariant set S, i.e., we do not show an estimate of the form
dist ((s(t), v(t)), S) ≤ σ̄ ( dist ((s(0), v(0)), S) , t ), for all
t ≥ 0 for a KL function σ̄. Instead, the stability estimate (16)
establishes Uniform Global Asymptotic Stability with respect
to the measures ω1(s, v) = dist ((s, v), S) and ω2(s, v) =
W (s, v), (see [28]).

III. THE MACROSCOPIC INVISCID ACC MODEL

In this section we focus on the macroscopic traffic model
that corresponds to the microscopic model (1).Various ap-
proaches have been suggested to derive macroscopic models
for conventional traffic from microscopic models, see for
instance [5], [9], [10], [25], [35], and references therein.

A. The PDE model

Let ρmax, vmax > 0 and v∗ ∈ (0, vmax), ρ̄ ∈ (0, ρmax) be
constants and let Φ : (0, ρmax) → <+ be a C3 ((0, ρmax))
non-negative function that satisfies:

lim
ρ→ρ−max

(Φ(ρ)) = +∞, Φ(ρ) = 0, for all ρ ∈ (0, ρ̄] (18)

Φ′(ρ) > 0, for all ρ ∈ (ρ̄, ρmax) (19)
Φ′′(ρ) ≥ 0, for all ρ ∈ (0, ρmax) (20)

The macroscopic model that corresponds to the micro-
scopic model (1), as the number of vehicles n tends to
infinity and the potential function is given by V (s) = Φ

(
m
ns

)
with m

n being the mass of every single vehicle, is the
following nonlinear system of PDEs for (t, x) ∈ (0,+∞)×<

ρt(t, x) + v(t, x)ρx(t, x) + ρ(t, x)vx(t, x) = 0
vt(t, x) + v(t, x)vx(t, x)− Ξ(t, x) =

− (µ+ g (Ξ(t, x))) (v(t, x)− v∗)
. (21)

where ρ(t, x) is the traffic density, v(t, x) is the mean speed,
and

Ξ(t, x) := − 1

ρ(t, x)

(
ρ2(t, x)Φ′ (ρ(t, x))

)
x

(22)

with constrained values

0 < ρ(t, x) < ρmax, 0 ≤ v(t, x) ≤ vmax (23)

for all (t, x) ∈ <+ ×<
Four things should be noticed about the nonlinear model

(21)-(22):

1) there are no non-local terms in the model, despite the
fact that the cruise controller proposed in [16] induces
“nudging”,

2) there are infinite equilibrium points for the model,
namely the points where v ≡ v∗ and ρ(x) ≤ ρ̄ for
all x ∈ <,

3) it is a second-order model,
4) the model is highly nonlinear (it is not semilinear as the

ARZ model [1], [35] or the PW model [25], [30]), due
to the presence of a highly nonlinear relaxation term
− (µ+ g (Ξ(t, x))) (v(t, x)− v∗) in the speed PDE.

B. An analogy between the microscopic and the macroscopic
model

For the microscopic model (6), the following statement
holds: When the vehicles have large initial distances between
them, then, they simply adjust their speeds without affecting
each other. This is shown by the following proposition,
whose proof is very simple and is omitted.

Proposition 3.1: Suppose that for each i = 2, ..., n,
si(0) ≥ max

(
λ− ω−1 (vi−1(0)− vi(0)) , λ

)
where ω =

µ + g(0). Then the solution of the model (6) is given by
the equations:

vi(t) = v∗ + exp (−ω t) (vi(0)− v∗) , i = 1, ..., n
si(t) = si(0) + ω−1 (vi−1(0)− vi(0)) (1− exp (−ω t)),

i = 2, ..., n
(24)

In this case we have exponential convergence to the set S.
Similarly with Proposition 3.1, if the initial density is

sufficiently small then the macroscopic model (21)-(22) has
a solution that approaches the equilibrium speed (in the
sup norm) while the density remains small. The following
theorem guarantees this fact.

Theorem 3.2: Consider the initial-value problem

ρt + vρx + ρvx = 0
vt + vvx = −ω (v − v∗) for t ≥ 0, x ∈ < (25)

ρ(0, x) = ρ0(x)
v(0, x) = v0(x)

for x ∈ < (26)

where ρ0 ∈ C1 (<) ∩W 1,∞ (<) , v0 ∈ C2 (<) ∩W 2,∞ (<)
ω = µ + g(0), with inf

x∈<
(v′0(x)) > −ω and ρ0(x) > 0 for

all x ∈ <. Then, the initial-value problem (25), (26) has a
unique solution that satisfies the estimates:

sup
x∈<

(ρ (t, x)) ≤
ω sup
x∈<

(ρ0 (x))

ω + (1− exp(−ωt)) inf
x∈<

(v′0 (x))

for all t ≥ 0

(27)

sup
x∈<

(|v(t, x)− v∗|) ≤ exp(−ωt) sup
x∈<

(|v0 (x)− v∗|)

for all t ≥ 0
(28)

ρ(t, x) > 0 for all t ≥ 0, x ∈ < (29)

Moreover, there exists a function f : < → (0,+∞) of class
C1 (<) ∩ L∞ (<) for which the following estimate holds:

sup
x∈<,t≥0

(|ρ(t, x)− f(x− v∗t)| exp(ωt)) < +∞. (30)



By virtue of (18) and (22), it follows that Ξ(t, x) ≡ 0 when
sup
x∈<

(ρ (t, x)) ≤ ρ̄ for all t ≥ 0. Therefore, in this case the

PDE model (21)-(22) becomes identical to the PDE model
(25). Consequently, Theorem 3.2 guarantees that if the initial
conditions satisfy the requirements

inf
x∈<

(v′0(x)) > −ω (31)

sup
x∈<

(ρ0 (x)) ≤ ρ̄
(

1 + ω−1 min

(
0, inf
x∈<

(v′0 (x))

))
(32)

then the macroscopic model (21)-(22) has a solution that
satisfies the estimates:

sup
x∈<

(ρ (t, x)) ≤ ρ̄ for all t ≥ 0 (33)

sup
x∈<

(|v(t, x)− v∗|) ≤ exp(−ωt) sup
x∈<

(|v0 (x)− v∗|)

for all t ≥ 0
(34)

ρ(t, x) > 0 for all t ≥ 0, x ∈ < (35)

and there exists a function f : < → (0, ρ̄] of class C1 (<) ∩
L∞ (<) for which the following estimate holds:

sup
x∈<,t≥0

(|ρ(t, x)− f(x− v∗t)| exp(ωt)) < +∞.

Notice that the solution converges exponentially (in the sup
norm) to the set of equilibrium points of the macroscopic
model (but not necessarily to one equilibrium point). This is
due to the fact that the whole profile ultimately moves with
speed v∗ and thus we have a traveling wave.

IV. SIMULATION EXAMPLES

Example 1: (Exponential convergence to the set S)
As indicated by Proposition 3.1, for the exponential con-
vergence to the set of equilibrium points S, the ini-
tial spacing needs to satisfy the condition si(0) ≥
max

(
λ− ω−1 (vi−1(0)− vi(0)) , λ

)
for each i = 1, ..., n,

where ω = µ + g(0) and g is given by (4). Values of
L = 5m,λ = 20m, v∗ = 30m/s, vmax = 35m/s , and
µ = 0.5 were used. The speeds and inter-vehicle distances
are shown in Figure 1. The exponential convergence to the set
S is demonstrated by Figure 2, which shows the evolution of
the Lyapunov function H(s, v) and its logarithm ln(H(s, v)).

Example 2: (Travelling waves of the macroscopic model
(25) To illustrate the results of Theorem 3.1, we consider a
road with initial density and initial speed given by

ρ0(x) = 0.1 +

{
5x2(x− 1)2, x ∈ (0, 1)

0 else

v0(x) = 1 +

{
8x3(x− 1)3, x ∈ (0, 1)

0 else

These initial conditions indicate that there is a congestion belt
on the interval x ∈ (0, 1) where vehicles are moving at lower
speed and and accelerate again to a speed of v∗ = 1 as the
density decreases to a constant value. Values of v∗ = 1 and
ω = 1.2 were used. In Figure 3 displays the speed profiles
v[t] (left) and the density profiles ρ[t] (right) at different
time instants t = 0, 1, ..., 5. This example illustrates the
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Fig. 1. Exponential convergence to the set S.
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results of Theorem 3.1 which show that the speed converges
exponentially to the speed set-point v∗; while the density
converges to a travelling wave.

V. CONCLUSION

The paper introduces a new bidirectional microscopic
inviscid Adaptive Cruise Control (ACC) model that uses
only spacing information from the preceding and following
vehicles. KL estimates that guarantee uniform convergence
properties of the ACC model to the set of equilibria are
provided. Moreover, the corresponding macroscopic model
is derived, consisting of the continuity equation and a mo-
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Fig. 3. Exponential convergence of speed profiles v[t] (left) and conver-
gence of density profiles ρ[t] to a traveling wave (right).

mentum equation that contains a highly nonlinear relaxation
term. It is shown that, if the density is sufficiently small
then the solution of the macroscopic model approaches
the equilibrium speed (in the sup norm) while the density
converges exponentially to a traveling wave.
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