
Max-Sum with Quadtrees for Decentralized Coordination in Continuous Domains

Dimitrios Troullinos , Georgios Chalkiadakis , Vasilis Samoladas and Markos Papageorgiou
Technical University of Crete, Chania, Greece

dtroullinos@dssl.tuc.gr, gehalk@intelligence.tuc.gr, vsam@softnet.tuc.gr, markos@dssl.tuc.gr

Abstract

In this paper we put forward a novel extension of
the classic Max-Sum algorithm to the framework
of Continuous Distributed Constrained Optimiza-
tion Problems (Continuous DCOPs), by utilizing a
popular geometric algorithm, namely Quadtrees. In
its standard form, Max-Sum can only solve Con-
tinuous DCOPs with an a priori discretization pro-
cedure. Existing Max-Sum extensions to continu-
ous multiagent coordination domains require addi-
tional assumptions regarding the form of the fac-
tors, such as access to the gradient, or the ability
to model them as continuous piecewise linear func-
tions. Our proposed approach has no such require-
ments: we model the exchanged messages with
Quadtrees, and, as such, the discretization proce-
dure is dynamic and embedded in the internal Max-
Sum operations (addition and marginal maximiza-
tion). We apply Max-Sum with Quadtrees to lane-
free autonomous driving. Our experimental evalua-
tion showcases the effectiveness of our approach in
this challenging coordination domain.

1 Introduction
The framework of Distributed Constraint Optimization Prob-
lems (DCOPs) [Modi et al., 2003] is associated with a broad
range of methodologies for distributed problem solving and
coordination, such as Factor Graphs [Kschischang et al.,
2001] and the Max-Sum message passing algorithm [Farinelli
et al., 2008]. Continuous DCOPs [Stranders et al., 2009;
Sarker et al., 2021; Hoang et al., 2020], in which the con-
trol variables’ domain is continuous, are of particular interest
corresponding as they do to a multitude of real-world set-
tings, and posing several issues and challenges originating
from the continuity of the problem domains. Existing work
on Max-Sum in continuous domains [Stranders et al., 2009;
Voice et al., 2010] makes certain assumptions regarding the
factors, such as the ability to model them in a specific form,
or having access to the gradients. In this paper, we propose
a novel, more flexible extension of the Max-Sum algorithm
for continuous domains: one that lifts such requirements, and
can be easily adapted to any Continuous DCOP.

To this end, we utilize Quadtrees [Finkel and Bentley,
1974], which are among the simplest geometric algorithms
for data representation of a given set of points, but exhibit
in general high efficiency in many applications. Their sim-
plicity makes them more desirable than other existing ap-
proximations tied with Max-Sum, such as Continuous Piece-
wise Linear Functions (CPLFs), which are more restrictive
both in terms of construction (with simplices) and manage-
ment. Specifically, we embed Quadtrees in the Max-Sum al-
gorithm, to effectively achieve a fine-grained discretization of
the continuous domain—the degree of which is determined
by the Quadtree function approximation process itself, in an
“online”, dynamic fashion. The Quadtrees’ embedding in
Max-Sum, is achieved via properly re-defining the necessary
core Max-Sum operations (addition and marginal maximiza-
tion) that are applied on the messages exchanged in order to
achieve DCOP optimization.

Now, an emergent highly complex distributed coordination
domain is the field of autonomous driving [Pendleton et al.,
2017]. The need for coordination is particularly intense when
lane-free vehicle movement is assumed, as is the case in novel
traffic flow paradigms [Papageorgiou et al., 2021]. In lane-
free traffic, vehicles are no longer restricted by specific lane
positioning, thus they do not perform any lane-changing oper-
ation, but rather adjust their lateral placement smoothly. This
inherently continuous domain enables much higher utiliza-
tion of the available road capacity, and gives rise to the design
of novel techniques and methodologies, as evident by the re-
sults of [Papageorgiou et al., 2021; Troullinos et al., 2021a;
Malekzadeh et al., 2021]. A Factor Graph representation with
vehicles in the roles of agents controlling acceleration-related
variables is natural for this challenging dynamic coordina-
tion domain, and allows the use of DCOPs optimization al-
gorithms such as Max-Sum.

Against this background, our main contributions are as fol-
lows: we put forward Max-Sum with Quadtrees (Max-Sum-
Quad), a novel Max-Sum variant appropriate for any Contin-
uous DCOP domain of interest; the proposed approach does
not make use of restrictive assumptions regarding the form of
the factors (e.g., access to their gradient, or modelling them
as CPLFs), and does not require the determination of a fixed
discretized subdomain of the continuous problem at hand; we
apply our approach to the lane-free traffic multiagent coor-
dination domain; our experimental evaluation showcases the

effectiveness and adaptability of Max-Sum-Quad in this chal-
lenging and dynamic domain.

2 Background and Related Work
Consider a Factor Graph [Kschischang et al., 2001] represen-
tation of agents, meaning we have a factored representation
of an objective function F (x) =

∑NF

j=1 Fj(sj), sj ⊆ x, to be
maximized for a given problem. We seek to obtain the con-
figuration vector x∗ = argmaxx

∑NF

j=1 Fj(sj), where NF is
the number of different factors Fj , and each factor j is con-
nected with a subset of control variables sj . The Max-Sum al-
gorithm [Farinelli et al., 2008] provides a solution for this dis-
tributed optimization problem via message-passing. This re-
quires two key operations, namely an addition and a marginal
maximization one, considering a discrete domain for control
variables xi ∈ x. First, let us briefly present and discuss the
standard algorithm of Max-Sum.

2.1 The Max-Sum Algorithm
Consider a Factor Graph representation as the one in Fig. 1.
Note that factors Fj connect different variables, and may po-
tentially associate more than two (e.g., F4). The correspond-
ing vector sj contains all variables xi that are connected to
factor Fj . For instance, on this figure: s4 = [x2, x3, x4]

T .
Thus, in general, the factors can depend on any subset sj ⊆ x
of the control variables. To avoid confusion, notice that the
indexing of factors and variables is different. The process
involves a message-passing operation, and two types of mes-
sages are required:

From variable i to factor j:

qi→j(xi) = aij +
∑

k∈Mi\j

rk→i(xi) (1)

where Mi is the set of factor indices that variable i is con-
nected to. For example, in Fig. 1, M2 = {2, 3, 4}.

So, qi→j(xi) measures an estimate of each value of xi

which is sent to factor j. Essentially, qi→j(xi) propagates
what is received from all the other factors Mi \ j, and aij is a
normalization constant that satisfies

∑
xi
qi→j(xi) = 0. This

normalization is important when the Factor Graph contains
cycles since message values would accumulate indefinitely.
Convergence in cyclic factor graphs is not guaranteed, but the
use of a normalization factor has proven to be quite effective
in many studies [Kok and Vlassis, 2006; Murphy et al., 1999;
Farinelli et al., 2008].

From factor j to variable i:

rj→i(xi) = max
sj\xi

[
Fj(sj) +

∑
k∈Nj\i

qk→j(xk)
]

(2)

where Nj is the set that contains the variable indices con-
nected to factor j, and the maximization process involves the
all the variables sj connected to factor Fj (besides xi).

For instance, in Fig. 1, N2 = {1, 2}, i.e., variables x1, x2

are connected to factor F2. Now, rj→i(xi) is what each factor
Fj sends to a connected variable xi (for each discrete value
of xi), which is the maximum value considering that all other

Figure 1: An example of a Factor Graph. Each iteration of Max-
Sum involves the message exchange process between factors and
variables.

variables xk of factor Fj will be tuned so as to maximize
both Fj and the corresponding message sent from k to factor
j (qk→j(xi)). The message-passing process is illustrated in
Fig. 1.

The process described above is iterative, where in ev-
ery iteration we utilize the last evaluations for all messages
qi→j(xi), rj→i(xi) (we may initiate the process with neutral
messages). This operation is performed until either a stop-
ping criterion is met (e.g., time, iterations number), or if all
message values converge (given a threshold value).

Finally, each agent can compute the optimal value of x∗
i ,

as: x∗
i = argmaxxi

∑
j∈Mi

rj→i(xi), i.e., each agent se-
lects the value that maximizes the received messages from all
nearby factors.

2.2 Related Work
To the best of our knowledge, there are two distinct method-
ologies to extend Max-Sum to continuous domains. The
first one involves the use of CPLFs to represent the fac-
tors [Stranders et al., 2009] and by extension the messages
that agents exchange. The authors formally define the addi-
tion and marginal maximization operations for CPLFs, and
can therefore apply Max-Sum with such a function represen-
tation. However, the formulation in [Stranders et al., 2009]
requires each factor to be modelled as a CPLF. By con-
trast, in our work factors can have any form; and embedding
Quadtrees in Max-Sum equips the latter with a flexible, dy-
namic discretization ability that is key for effective perfor-
mance in demanding Continuous DCOP settings.

The second line of research involves a hybrid ap-
proach [Voice et al., 2010] that utilizes the standard algorithm
of Max-Sum, relying on discretization of the continuous val-
ues domain; but with the discretized points being updated
in each iteration using non-linear programming techniques.
This process requires access to each factor’s gradient. More
recent literature regarding solving Continuous DCOPs in-
volves different methodologies, such as Local Search [Sarker
et al., 2021], Distributed Pseudo-tree Optimization Proce-
dures tied with analytical solutions when possible [Hoang
et al., 2020], Particle Swarm Algorithms [Choudhury et al.,
2020] and even Bayesian Methods [Fransman et al., 2019].

Regarding the lane-free traffic application domain, many

works already exist that propose relevant vehicle movement
strategies [Papageorgiou et al., 2021; Troullinos et al., 2021a;
Yanumula et al., 2021]. Other work in traffic-related litera-
ture decomposing the multiagent system via a graph structure
includes [Kuyer et al., 2008; van der Pol and Oliehoek, 2016]
that tackle urban traffic lights control problems via a Coordi-
nation Graph [Guestrin et al., 2002] scheme; and [Yu et al.,
2020] that uses coordination graphs for lane-based collabo-
rative autonomous driving.

2.3 Quadtree Representation of a Function
Consider a real function f(x), where f : Rn → R, and
all variables xi ∈ x lie within certain bounds, specifically,
∀xi ∈ x, 0 ≤ xi ≤ 1. If x ∈ R2, the space R2 is a unit
square, and a Quadtree [Har-Peled, 2011] can establish a rep-
resentation f (Qt)(x) of function f(x), meaning that a tree
structure will approximate f(x). This operation is performed
by recursively partitioning a 2-dimensional unit square region
into 4 subregions. Now, if x ∈ RN , a generalized version of
a Quadtree can be utilized, that recursively partitions a N -
dimensional unit hypercube region into 2N subregions. The
same principle applies even to 1-D, by partitioning the space
into 2 subregions each time.

The process initiates from the root node r of the tree to be
constructed, which obtains the value of the center point within
the N -dimensional unit hypercube region Sr, where N =
dim(xm). Then, the root node is partitioned into 2N child
nodes c, corresponding to subregions of the unit hypercube,
and they obtain the value of their respective center point xm;
and recursively perform the same operation.

A threshold value ϵq dictates the finalization of this op-
eration. Any given node p with center point (of its re-
gion Sp) xp will stop further partitioning, if the condition
|f(xp)− f(xc)| ≤ ϵq is met for the center point (xc), which
in turn is associated with the partitioned subregion Sc of a
child node c. This criterion essentially provides us the dy-
namic aspect of the algorithm, determining both the posi-
tion of the discrete points and the number of them according
to the granularity of the approximating function f().1 The
process outlined above is used for image compression with
Quadtrees [Shusterman and Feder, 1994]. Figure 2 exhibits
a simple example of a Quadtree approximation for a given
function in a 2-dimensional surface. In this Figure, (a) show-
cases the actual function and a projection of the Quadtree
approximation that shows the discrete points selected along
with the regions, while (b) visualizes the tree depth of each
region and the respective points. Finally, (c) indicates how
the Quadtree is actually formed, and can be easily traversed.

Algorithm 1 lists the entire procedure [Shusterman and
Feder, 1994], as outlined above. Notice that additional vari-
ables are included, namely minD,maxD corresponding to
the minimum and maximum tree depth respectively, i.e., the
resulting Quadtree function’s leaf nodes are bounded within
a predefined range of depths. In more detail, the leaf nodes’
depth indicates the size of the subregion, and thus the resolu-
tion of the approximated function, meaning that as the depth

1As we discuss in Sec. 3, this translates to the computation of the
messages in Max-Sum, using this dynamic discretization procedure.

Figure 2: Example of Quadtree Function Approximation.

Algorithm 1 Construct a Quadtree Function

1: function QT(f(), reg, curD,minD,maxD, ϵq)
2: xp ← getCenterPointOfRegion(reg)
3: curNode← newNode(curD, reg, f(xp))
4: QTNodes(curD)← QTNodes(curD)∪curNode
5: if curD ≥ maxD then
6: return curNode
7: end if
8: for each chReg ∈ partition(reg) do
9: xc ← getCenterPointOfRegion(chReg)

10: conv ← |f(xp)− f(xc)| ≤ ϵq
11: if (conv ∧ (curD ≥ minD)) then
12: continue
13: end if
14: chNode←QT(f(), chReg, curD + 1, . . .)
15: curNode→ADDCHILD(chNode)
16: end for
17: return curNode
18: end function

of the tree increases, the function’s resolution becomes bet-
ter. However, this constitutes a trade-off with respect to time
and memory needed for this operation. Hence the reason we
wish to have control over the minimum and maximum depth
of the tree, guaranteeing a minimum resolution of the approx-
imating function, and upper bounding the time and memory
required for the approximation procedure.

Provided with a Quadtree representation f (Qt)(x), obtain-
ing the value of any point x within the available region
is equivalent to performing a search operation on a B-tree,
where we start from the root node, and traverse the tree based
on the corresponding subregions that contain x. Essentially,
we obtain the value f(xc) of the closest center point xc from
the available tree nodes (not necessarily a leaf node).

Thus, given a function f(x), we can use Algorithm 1 to
construct an approximate function f (Qt)(x), and then we can
obtain an approximation of y = f (Qt)(x) for every x.

3 Max-Sum with Quadtrees
Messages in Max-Sum, i.e., the qi→j(xi), rj→i(xi) func-
tions, are 1-D, since they are associated with a single scalar
variable xi (which is discrete) [Farinelli et al., 2008]. How-
ever, in most multiagent settings of interest, agents have more
than one variables under their control—and in many cases
the variables are continuous. For instance, consider the ap-
plication domain of interest in our work here, that is,lane-
free autonomous driving, where vehicles need to coordinate
their movement. In such an environment, each vehicle (agent)
needs to control two continuous valued variables, one for the
longitudinal (gas/break) movement, and one for the lateral
(steering wheel) axis. As such, the message functions can
entail more information via having a vector xi as input.

So, to utilize Max-Sum in continuous domains requires us
to represent a continuous function of multiple variables; we
do not restrict to pairwise factors [Stranders et al., 2009], thus
the messages can have a high dimensionality. Thus, the use of
Quadtrees for calculating these messages adds much desired
flexibility regarding the dimensionality of variables and mes-
sages. We should mention here that a trade-off emerges from
this flexibility, since having N -dimensional variables adds
to the complexity of performing the (addition and marginal
maximization) operations needed in Max-Sum. However, this
trade-off is relevant to the problem at hand, therefore having
such flexibility is not in any way limiting. To this end, given
a Factor Graph representation of agents, we now model each
agent i controlling a set of variables xi ⊆ x, and thus all func-
tions corresponding to the messages are now sent between
factors j and agents i with dimension Xi = |xi|.

Moreover, we need to define appropriately how the addi-
tion and the marginal maximization operations [Stranders et
al., 2009] are carried out given the Quadtrees representation
and the vector input of the messages. To begin, let us refor-
mulate the Max-Sum equations [Farinelli et al., 2008] using
a vector input xi for all messages. Consider a factor Fj(sj)
that depends on |Mj | variables, and one of the two core Max-
Sum equations—the one corresponding to the messages sent
from a factor j to a connected agent i:

r
(Qt)
j→i (xi) = max

sj\xi

[
Fj(sj) +

∑
k∈Nj\i

q
(Qt)
k→j(xk)

]
(3)

where (Qt) indicates that these functions have the form of
a Quadtree representation of a real multivariate function f :
RN → R.

Now, the whole process initiates from factor Fj(sj), which
is a real multivariate function Fj : Rn → R, with n being the
size of vector sj . The union of vectors {xk : k ∈ Nj \ i} is
in fact the vector sj \ xi, i.e., ∪k∈Nj\ixk = sj \ xi, meaning
that a function that depends on sj entails all variables within
this union. Therefore, the following summation process:

Q(Qt)
sum(sj) =

∑
k∈Nj\i

q
(Qt)
k→j(xk) (4)

also approximates (with a Quadtree) a real multivariate func-
tion Qsum : Rn → R. Consequently, the operation of ad-
dition needs to be defined for Quadtrees in order to calculate

Eq. 4, along with the following:

R
(Qt)
j→i (sj) = Fj(sj) +Q(Qt)

sum(sj) (5)

where R
(Qt)
j→i (sj) is again a Quadtree, and depends on the

same vector (set of variables) sj as the two addend functions.
The final step in Eq. 3 is to maximize R(Qt)

j→i (sj) w.r.t. vari-
ables xi, thus the operation of a marginal maximization needs
to be defined:

r
(Qt)
j→i (xi) = max

sj\xi

[
R

(Qt)
j→i (sj)

]
(6)

which yields the final result for the message function to be
exchanged r

(Qt)
j→i (xi), in the form of a Quadtree. Likewise,

for messages sent from an agent i to a connected factor j, we
have from [Farinelli et al., 2008]:

q
(Qt)
i→j (xi) = aij +

∑
k∈Mi\j

r
(Qt)
k→i(xi) (7)

Here, we need to perform a summation of:

R(Qt)
sum(xi) =

∑
k∈Mi\j

r
(Qt)
k→i(xi) (8)

involving many variable representations of r(Qt)
k→i , but they all

depend on the same variables xi. So, the summation here
results also in a two variable representation R

(Qt)
sum(xi), and

we obtain the final result q(Qt)
i→j (xi) by adding a normalization

constant aij to it.
Evidently, in the case where xi is actually in a continuous

domain, and not discretized, this summation process is not
quite clear, as we do not have a specific set of values for xi,
but rather a range of values. Therefore, this issue depends
on the representation of real functions that is chosen, hence
this choice dictates the calculation of aij . We show how to
estimate aij in Sec. 3.3.

Example 1 (Illustration on a simple Factor Graph). We use
the Factor Graph representation in Fig. 3 to showcase the use
of Quadtrees within Max-Sum. We have agents {1, 2}, and a
factor F1 connected only to agent 1, while F2 is connected
to both agents. We initialize all messages to 0, therefore the
first calculation of all q(Qt)

i→j (xi) messages (Eq. 7) is again 0,
which is depicted as a Quadtree covering the whole region,
with a single point with 0 value at its center. Then, r(Qt)

j→i (xi)
messages are calculated (Eq. 3), and a respective Quadtree is
constructed according to connected factor j of each message.
Notice the dynamic discretization process, with the point se-
lection (and size) decided in an online fashion.

Moving on to the second iteration, q(Qt)
i→j (xi) messages are

updated, essentially propagating the received messages of the
corresponding agent i, meaning that the resulting Quadtrees
in fact directly propagate messages, i.e., q(Qt)

1→2(x1) at the sec-
ond iteration propagates r

(Qt)
1→1(x1), and similarly q

(Qt)
1→1(x1)

propagates r
(Qt)
2→1(x1). Accordingly, q(Qt)

2→2(x2) remains zero,

Figure 3: Message passing operations within Max-Sum-Quad.

since no other factor is connected to agent 2, thus no other
messages are there to be propagated.

Finally, we update r
(Qt)
j→i (xi) messages. Now, r(Qt)

1→1(x1)
message remains the same since F1 is not connected to other
agents, and consequently there is no other incoming message
to be propagated. Similarly for r(Qt)

2→1(x1). While F2 is con-
nected also to x2, q(Qt)

2→2(x2) = 0 across all region, therefore
this will not affect the resulting Quadtree for this message.
However, this is not the case for r

(Qt)
2→2(x2), since message

q
(Qt)
1→2(x1) is now updated, and consequently it will result in

a Quadtree with a potentially different set of points to ac-
count for the different granularity of the approximated mes-
sage, stemming from the operations needed to calculate it.

3.1 Addition Operation for Quadtree Functions
Consider two Quadtree representations f

(Qt)
1 (x) and

f
(Qt)
2 (x). We are interested to construct a Quadtree represen-

tation g(Qt)(x) that approximates: g(x) = f1(x) + f2(x).
The simplest way to do that is to start constructing the
tree of g(Qt)(x), as one would do for a real function
(see Algorithm 1), but instead of using a real function
f(x) to obtain values for each node, one can use the
Quadtree search operation (see Sec. 2.3) to obtain the
values of v1 = f

(Qt)
1 (x), v2 = f

(Qt)
2 (x) and add these to

obtain the value vnode = v1 + v2 of each node. There-
fore, we utilize Algorithm 1, and set as input function:
f(x) = f

(Qt)
1 (x) + f

(Qt)
2 (x). By so doing, the resulting

Quadtree would indeed approximate the addition operation
between two Quadtree representations. In a similar manner,
we can perform addition between a quadtree representation
and a real function (a process that is imposed by Eq. 5).

3.2 Marginal Maximization for Quadtrees
The Marginal Maximization operation is vital in the process
of Max-Sum. Let us revisit equation Eq. 6 that imposes the

need of this operation. As mentioned, R(Qt)
j→i (sj), depends

on all variables of factor j. Yet, for the maximization pro-
cedure, variables xi are bounded each time, so we need to
maximize for all the remaining ones, i.e., we need the value:
maxsj\xi

[
R

(Qt)
j→i ({sj \ xi}|xi)

]
given the provided bounded

values of xi. Thus, to attain a Quadtree function of r(Qt)
j→i (xi)

(see Eq. 6), we again construct it via Alg. 1, and set:

f(xi) = max
sj\xi

[
R

(Qt)
j→i

(
{sj \ xi}|xi

)]
(9)

where for every function call required within the algorithm
(i.e., given a set of values for xi corresponding to a dis-
crete point and a tree node), we construct in turn a Quadtree
for variables sj \ xi to obtain the max value of the term

R
(Qt)
j→i

(
{sj \ xi}|xi

)
. While constructing the tree, we keep

track of the node with the maximum value observed, there-
fore we have direct access to the requested value as soon as
the tree construction process is terminated.

3.3 Normalization Constant Estimation
We have a Quadtree q

(Qt)
i→j (xi) that approximates the real

function qi→j : Rn → R. A normalization constant is impor-
tant when the Factor Graph contains cycles (as in our domain
of interest). As [Farinelli et al., 2008] suggests, aij is set so
as to satisfy

∑
xi

q
(Qt)
i→j (xi) = 0.

Starting from Eq. 7, and using a Quadtree approximation,
we define an auxiliary function for convenience:

q
(Qt)
i→j,n(xi) =

∑
k∈Mi\j

r
(Qt)
k→i(xi) (10)

where q
(Qt)
i→j,n(xi) is simply q

(Qt)
i→j (xi) but without the nor-

malization constant. Therefore, the normalization constant
should satisfy: ∑

xi

q
(Qt)
i→j (xi) = 0 (11)

where: ∑
xi

[aij + q
(Qt)
i→j,n(xi)] = 0 (12)

In the standard/discrete Max-Sum algorithm we would nor-
mally sum over all the possible combinations and solve for
aij , but this is not straightforward in our case. If we at-
tempted an analytical solution, we would probably replace
the sum with an integral [Kschischang et al., 2001]. Here,
we should properly define this process for a Quadtree func-
tion. We remind the reader that we have a tree structure that
approximates the actual function for a unit hybercube space,
and each leaf node of the tree represents the value of the func-
tion for a specific subregion. Consequently, this summation
could be approximated by summing over all leaf node values
and multiply them with the corresponding area.

Thus, we define the set of all leaf nodes Lq for a Quadtree
function q

(Qt)
i→j (xi), and the two functions s(l), v(l) that re-

turn the surface area and the function value of a leaf node l
respectively.

Therefore, we define:

∑
xi

q
(Qt)
i→j (xi)

∆
=

∑
∀l∈Lq

s(l) · v(l) (13)

where
∑

∀l∈Lq
s(l) = 1, since the total surface is a unit hy-

percube. Thus, in the context of Max-Sum, we can employ
the Quadtree of q(Qt)

i→j,n(xi), without normalization, and then,
using the definition above we can obtain a value for aij . In the
equation below, Lq is the set of all leaf nodes for q(Qt)

i→j,n(xi).∑
xi,1,xi,2

[aij + q
(Qt)
i→j,n(xi,1, xi,2)] = 0

∑
∀l∈Lq

s(l)[aij + v(l)] = 0

aij
∑

∀l∈Lq

s(l) +
∑

∀l∈Lq

s(l)v(l) = 0

aij +
∑

∀l∈Lq

s(l)v(l) = 0

which yields:

aij = −
∑

∀l∈Lq

s(l)v(l) (14)

After the Quadtree function is constructed for q(Qt)
i→j,n(xi),

then the normalization constant is calculated and incorporated
accordingly.

3.4 Variable Configuration
Finally, after the optimization process is carried out, each
agent i needs to select the configuration of xi that maximizes:

x∗
i = argmax

xi

∑
j∈Mi

r
(Qt)
j→i (xi) (15)

We obtain the sum of
∑

j∈Mi
r
(Qt)
j→i (xi) by simply con-

structing a Quadtree function, meaning that we gain direct
access to the maximization node, and consequently to the
subregion that has the maximum value observed. Finally, we
assign the center point of the appointed region to x∗

i .

4 Experimental Evaluation
In this section we present our lane-free traffic application do-
main, and our experimental evaluation results.2

We consider a highway populated with many vehicles en-
tering from an origin point, where each vehicle possesses a
desired speed parameter vd, chosen at random within a spec-
ified speed region [vd,low, vd,high]. The induced speed devi-
ations among nearby vehicles, along with heavier traffic in a
lane-free environment, constitute a complex multi-agent en-
vironment appropriate for the application of our method.

2The source code for Max-Sum-Quad implementation can be
found in: https://bit.ly/3MLRVLk

Figure 4: An instance of a Factor Graph on the lane-free traffic en-
vironment.

Here we follow the methodology of [Troullinos et al.,
2021a], since, to the best of our knowledge, this is the only
work tackling Continuous DCOPs in the lane-free traffic
domain—albeit using discretization. Specifically, we model
each vehicle as an agent that controls two acceleration pa-
rameters, one longitudinal and one lateral. [Troullinos et al.,
2021a] define a set of 5 actions per agent, discretizing the
joint action space of the two acceleration, i.e., converting the
actual 2-D action space into a vector of 5 different combina-
tions for agents. While this coarse-grained discretization may
be adequate up to a certain point, heavier traffic (induced ei-
ther by larger traffic flows, or larger vehicles) may require a
finer discretization, i.e., better resolution with respect to the
available actions of the agents. In this case, there is the is-
sue of properly pre-defining the points in the 2-dimensional
control space, as vehicles may face various traffic conditions,
and therefore a predefined set of points could be potentially
large, and adjusted through a meticulous experimental pro-
cess. Max-Sum-Quad lifts the need of pre-selecting this set
of points.

4.1 Formulation of the Problem
For a given instance of the traffic environment, we define
a Factor Graph representation of vehicles, as illustrated in
Fig. 4. The graph contains two types of factors. The first
factor type Fs(ax, ay) is connected with a single vehicle (the
two variables of each vehicle) and accounts for the vehicle’s
desired speed, while the second one Fp(ax,1, ay,1, ax,2, ay,2)
is pairwise, in the sense that it connects two vehicles at a time,
i.e., 4 variables. This type of factor aims to properly adjust the
vehicles’ movement so as to avoid collisions. The factors’ pa-
rameters reflect the vehicles’ control variables, i.e., the longi-
tudinal and lateral acceleration ax, ay respectively (in m/s2).
The form of the first type of factor is:

Fs(ax, ay) = ws,1 · rx(v′x, vd) + ws,2 · ry(v′y) (16)

where:

rx(vx, vd) =

{
vx
vd
, (vx < vd)

2·vd−vx
vd

, else
(17)

and:

ry(vy) =

{
vy

vy,max
, (vy < 0)

−vy
vy,max

, else
(18)

Essentially, Fs is responsible for ‘motivating’ the vehicle to
follow its desired speed vd (due to rx), and also to have a lat-
eral speed close to 0 (due to ry). Notation ′ in Eq.16 denotes

https://bit.ly/3MLRVLk

ac vlength + 0.8m ϵq 0.05
bc vwidth + 0.8m vlength,1 3.2m

τx, τy 0.3s, 0.45s vwidth,1 1.6m
px, py, pt 2, 4, 2 vlength,2 3.9m
ws,1 1 vwidth,2 1.8m
ws,2 0.1 roadlength 2km
minD 1 roadwidth 10.2m
maxD 2 sim. time 1hr

ax,max (QT) 3.5 m
s2 time-interval 0.25s

ax,min (QT) -3.5 m
s2 vd range [25, 35]ms

ay,max (QT) 1.5 m
s2 vinit 25m

s

Table 1: Factor Graph, Quadtree & simulation parameters

that these variables have the value as a result of the input vari-
ables, e.g., v′x is the longitudinal speed in the next time-step
based on ax. Moving on to the pairwise factor Fp:

Fp(ax,1, ay,1, ax,2, ay,2) =Ec(dx
′, dy′)

+ Eb(dx
′, dy′, dv′x, dv

′
y) (19)

where it depends on the accelerations of two connected vehi-
cles (1, 2), therefore it has 4 input parameters. The form of
Ec and Eb is adopted from [Troullinos et al., 2021a], but we
included some minor adjustments relevant to Eb, which per-
form better specifically in denser traffic. Both Ec and Eb are
ellipsoid fields, with the form:

E(dx, dy) =
m((

|dx|
a

)px

+
(

|dy|
b

)py

+ 1

)pt
(20)

where parameters a, b dictate the ellipses’ stretch in each di-
mension. Specifically for Eb field, that captures a broader
region, we provide with some small adjustments regarding
the relevant parameters ab, bb dictating the ellipses’ reach:

ab =
(dv′x)

2

2 · |ud,max
x |

+ τx ·
vx,1 + vx,2

2
+ ac (21)

bb =
(dv′y)

2

2 · |ud,max
y |

+ τy · (|vy,1|+ |vy,2|) + bc (22)

where the speeds variables vx,1, vx,2, vy,1, vy,2 for the terms
relevant to τx, τy are not the resulting ones based on the ac-
celeration input, but rather the current ones, hence the lack
of notation (′). This choice appears to diminish instabilities
caused in heavier traffic scenarios. We refer the interested
reader to [Troullinos et al., 2021a] for more details regarding
the ellipsoid functions used.

4.2 Implementation Details
As mentioned, we consider a unit hypercube space for
Quadtrees, meaning that all control variables should reside
within the range [0, 1]. Therefore, we perform a normal-
ization, so that 0 corresponds to the minimum acceleration
(ax∨y,min) and 1 to the maximum value (ax∨y,max), for both

acceleration axes. We have ay,min = −ay,max in all cases,
since it is sensible that the available values for acceleration
towards the left (ay > 0) or right (ay < 0) should be symmet-
ric. Note that due to the Quadtree function approximation, the
control values that can be obtained always correspond to the
center point of a maximizing subregion of the whole space.
Essentially, this means that the values ax,max, ax,min, ay,max

are not attainable, and the actual maximum and minimum
control values are determined by the maximum tree depth
(maxD). For example, in the longitudinal axis, we have
ax : [ax,min, ax,max] = [−3.5, 3.5], and a maximum tree
depth of maxD = 2. Consequently, the length for each
subregion at depth 2 is ax,max−ax,min

2maxD = 1.75, and thus the
actual minimum and maximum values are within the range
ax : [−3.5 + 1.75

2 , 3.5 − 1.75
2] = [−2.625, 2.625], since the

corresponding center points lie in the middle of each subre-
gion. The same principle applies for the lateral axis as well.

An important aspect is the fact that the traffic environ-
ment is dynamic, hence we need to revise the control vari-
ables in every instance, meaning that the Factor Graph is up-
dated in every time-step, and then Max-Sum(-Quad) performs
one iteration so that each agent can obtain a new solution.
In this manner, the computed Quadtree message functions
are retained after each time-step (provided that the correlated
agents preserve their existing connection), so that we do not
start computing a new solution from scratch every time.

Parameter choices regarding the traffic environment, tun-
ing of the algorithm, the factors, and Quadtrees can be found
in Table 1.

4.3 Experiments and Results
A primary objective in our experiments is to demonstrate
the efficiency of our approach for intensified traffic condi-
tions, contrasting its performance with that of [Troullinos et
al., 2021a], and to showcase the dynamic discretization of
Quadtrees experimentally. Experimental evaluation is con-
ducted using the simulation tool of [Troullinos et al., 2021b],
which is an extension of the SUMO microscopic simulation
platform [Lopez et al., 2018] for lane-free traffic environ-
ments. To this end, we set the factors’ safety parameters so
that vehicles employ a much more aggressive driving style
(smaller reaction times and safety distances); and by exam-

Figure 5: Average speed of vehicles for each case.

Figure 6: Average number of points selected by Quadtrees.

ining two different configurations of vehicle dimensions (Ta-
ble 1) as they contribute to traffic density in lane-free traffic.

Experimental results are provided in Figs. 5, 6, where we
compare each method and vehicle configuration, for various
inflow rates [5400 − 12000] vehhr at the origin point of the
highway. In total, we compare four different cases, as evi-
dent in the relevant figures, where QT-3.2 & QT-3.9 corre-
spond to the Max-Sum-Quad approach, with the relevant pa-
rameters tuning provided in Table 1. The numbers “3.2” &
“3.9” simply indicate the associated vehicles’ length dimen-
sions. Moreover, DISCR-5-3.9 & DISCR-21-3.9 adopt the
standard Max-Sum algorithm, with a discretization of the 2-
dimensional acceleration space of 5 and 21 different points
respectively. DISCR-5-3.9 corresponds to the equivalent of
a fully partitioned Quadtree with maximum depth of 1, i.e.,
1 point at the center and the 4 center points of the respective
subregions, and DISCR-21-3.9 is the discretization of a fully
partitioned Quadtree at depth of 2, containing all points of
DISCR-5-3.9, along with 16 more points at tree depth of 2.

As evident in Fig. 5, the induced aggressive behaviour
of vehicles, stemming from the parameter choices regarding
safety distances and reaction time, substantially improves the
performance of all examined scenarios with respect to the for-
mulation of [Troullinos et al., 2021a] with safer parameter
choices, where average speeds are ranging from 28.61m

s to
27.64m

s (and only up to 9000 veh
hr). It is noticeable also that

the size of the vehicles affects performance, especially as the
inflow increases. Now, in order to properly assess the perfor-
mance of Max-Sum-Quad, we focus on more intense condi-
tions, with larger vehicle dimensions. DISCR-5-3.9, due to
its coarse discretization, is not collision-free at higher inflow
rates (we observe 3 collision occurrences at 9000 veh

hr), mean-
ing that the selection of 5 points is not adequate. DISCR-21-
3.9 manages to improve upon DISCR-5-3.9 due to the finer
discretization, and without any observed collisions. However,
our approach manages to provide an intermediate solution,
but now with a “dynamic discretization” procedure, one that
does not require the user to discretize the domain beforehand.
With Max-Sum-Quad, we did not observe any collisions in
our experiments.

In Fig. 6 we showcase the associated average number of
points selected by Quadtrees in this domain, and we ob-

serve that in the most demanding scenario, the constructed
Quadtrees on average result in 11.6 points—i.e., Max-Sum-
Quad achieves similar performance with 56% of the standard
Max-Sum Algorithm with 21 points. This also showcases
that the dynamic discretization process automatically adapts
to more intense traffic conditions, since we have a noticeable
increase on the size of Quadtree nodes on average (cf. Fig. 6).
Evidently, smaller vehicles require more refined partitioning
on average, in more intense traffic conditions. This result is
non-intuitive, in the sense that the scenario with larger vehi-
cles is more demanding in terms of collision avoidance. How-
ever, this might be an indication that the resolution level of
Quadtrees is affected by the fact that for the same inflow rate,
the vehicles operate with slightly higher speed (on average).

Summing up, the imposed challenging traffic scenarios,
populated as they are with vehicles driving aggressively, ne-
cessitate a more refined selection of available actions to han-
dle the more demanding cases that now frequently arise—
e.g., when many vehicles are nearby and some attempt over-
taking. Our results show that our approach offers vehicles a
dynamic selection of available actions, affected by messages
in the form of Quadtrees. Evidently, Max-Sum-Quad adapts
to the problem at hand without requiring a manual discretiza-
tion process by the user, and it also adjusts automatically the
level of discretization for each message in an online fashion.

5 Conclusions and Future Work
In this work, we presented an extension of the well-known
Max-Sum algorithm for Continuous DCOPs, with applica-
tion in the novel lane-free autonomous driving domain. Our
results confirm that embedding Quadtrees in Max-Sum, ren-
der the latter appropriate for demanding Continuous DCOPs.

In future work, we plan to explore different domains of ap-
plication, such as Random Graphs which are commonly used
in related work (see Sec. 2.2), and compare the efficiency
of the proposed method with other approaches in the litera-
ture. Another direction is to establish theoretical guarantees
for Max-Sum-Quad and consider alternative function approx-
imation techniques.

Acknowledgements
The research leading to these results has received funding
from the European Research Council under the European
Union’s Horizon 2020 Research and Innovation programme/
ERC Grant Agreement n. [833915], project TrafficFluid.

References
[Choudhury et al., 2020] M. Choudhury, S. Mahmud, and

M. M. Khan. A particle swarm based algorithm for
functional distributed constraint optimization problems.
Proc. of the AAAI Conference on Artificial Intelligence,
34:7111–7118, 2020.

[Farinelli et al., 2008] A. Farinelli, A. Rogers, A. Petcu, and
N. R. Jennings. Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In Sev-
enth International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 639–646, 2008.

[Finkel and Bentley, 1974] R. A. Finkel and J. L. Bentley.
Quad trees a data structure for retrieval on composite keys.
Acta informatica, 4(1):1–9, 1974.

[Fransman et al., 2019] J. Fransman, J. Sijs, H. Dol, E. The-
unissen, and B. De Schutter. Bayesian-dpop for con-
tinuous distributed constraint optimization problems. In
Proc. of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), page
1961–1963, 2019.

[Guestrin et al., 2002] C. Guestrin, D. Koller, and R. Parr.
Multiagent planning with factored mdps. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neu-
ral Information Processing Systems, volume 14, 2002.

[Har-Peled, 2011] S. Har-Peled. Geometric approximation
algorithms. American Mathematical Soc., 2011.

[Hoang et al., 2020] K. D. Hoang, W. Yeoh, M. Yokoo, and
Z. Rabinovich. New algorithms for continuous distributed
constraint optimization problems. In Proc. of the 19th In-
ternational Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’20, page 502–510, 2020.

[Kok and Vlassis, 2006] J. R. Kok and N. Vlassis. Col-
laborative multiagent reinforcement learning by payoff
propagation. Journal of Machine Learning Research,
7(65):1789–1828, 2006.

[Kschischang et al., 2001] F. R. Kschischang, B. J. Frey, and
H. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Trans. on information theory, 47(2):498–519, 2001.

[Kuyer et al., 2008] L. Kuyer, S. Whiteson, B. Bakker, and
N. Vlassis. Multiagent reinforcement learning for ur-
ban traffic control using coordination graphs. In Machine
Learning and Knowledge Discovery in Databases, pages
656–671, 2008.

[Lopez et al., 2018] Pablo Alvarez Lopez, Michael
Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken,
Johannes Rummel, Peter Wagner, and Evamarie Wießner.
Microscopic traffic simulation using sumo. In 21st IEEE
International Conference on Intelligent Transportation
Systems (ITSC), 2018.

[Malekzadeh et al., 2021] M. Malekzadeh, I. Papamichail,
M. Papageorgiou, and K. Bogenberger. Optimal internal
boundary control of lane-free automated vehicle traffic.
Transportation Research Part C: Emerging Technologies,
126:103060, 2021.

[Modi et al., 2003] P. J. Modi, W. Shen, M. Tambe, and
M. Yokoo. An asynchronous complete method for dis-
tributed constraint optimization. In Proc. of the Second In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), page 161–168, 2003.

[Murphy et al., 1999] K. P. Murphy, Y. Weiss, and M. I. Jor-
dan. Loopy belief propagation for approximate inference:
An empirical study. In Proc. of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, UAI’99, page
467–475, San Francisco, CA, USA, 1999.

[Papageorgiou et al., 2021] M. Papageorgiou, K. Mountakis,
I. Karafyllis, I. Papamichail, and Y. Wang. Lane-free
artificial-fluid concept for vehicular traffic. Proc. of the
IEEE, 109(2):114–121, 2021.

[Pendleton et al., 2017] S. D. Pendleton, H. Andersen,
X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus, and
M. H. Ang. Perception, planning, control, and coordina-
tion for autonomous vehicles. Machines, 5(1), 2017.

[Sarker et al., 2021] A. Sarker, M. Choudhury, and M. M.
Khan. A local search based approach to solve continu-
ous dcops. In Proc. of the 20th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS),
page 1127–1135, 2021.

[Shusterman and Feder, 1994] E. Shusterman and M. Feder.
Image compression via improved quadtree decomposition
algorithms. IEEE Trans. on Image Processing, 3(2):207–
215, 1994.

[Stranders et al., 2009] R. Stranders, A. Farinelli, A. Rogers,
and N. R. Jennings. Decentralised coordination of contin-
uously valued control parameters using the max-sum al-
gorithm. In Proc. of The 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) -
Volume 1, page 601–608, 2009.

[Troullinos et al., 2021a] D. Troullinos, G. Chalkiadakis,
I. Papamichail, and M. Papageorgiou. Collaborative mul-
tiagent decision making for lane-free autonomous driv-
ing. In Proc. of the 20th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS),
pages 1335–1343, 2021.

[Troullinos et al., 2021b] Dimitrios Troullinos, Georgios
Chalkiadakis, Diamantis Manolis, Ioannis Papamichail,
and Markos Papageorgiou. Lane-free microscopic sim-
ulation for connected and automated vehicles. In 2021
IEEE International Intelligent Transportation Systems
Conference (ITSC), pages 3292–3299, 2021.

[van der Pol and Oliehoek, 2016] E. van der Pol and F. A.
Oliehoek. Coordinated deep reinforcement learners for
traffic light control. In NIPS’16 Workshop on Learning,
Inference and Control of Multi-Agent Systems, 2016.

[Voice et al., 2010] T. Voice, R. Stranders, A. Rogers, and
N. R. Jennings. A hybrid continuous max-sum algorithm
for decentralised coordination. In Proc. of the 2010 Con-
ference on ECAI 2010: 19th European Conference on Ar-
tificial Intelligence, page 61–66, 2010.

[Yanumula et al., 2021] Venkata K. Yanumula, P. Typaldos,
D. Troullinos, M. Malekzadeh, I. Papamichail, and M. Pa-
pageorgiou. Optimal path planning for connected and au-
tomated vehicles in lane-free traffic. In 2021 IEEE In-
ternational Intelligent Transportation Systems Conference
(ITSC), pages 3545–3552, 2021.

[Yu et al., 2020] C. Yu, X. Wang, X. Xu, M. Zhang, H. Ge,
J. Ren, L. Sun, B. Chen, and G. Tan. Distributed mul-
tiagent coordinated learning for autonomous driving in
highways based on dynamic coordination graphs. IEEE
Trans. on Intelligent Transportation Systems, 21(2):735–
748, 2020.

	Introduction
	Background and Related Work
	The Max-Sum Algorithm
	Related Work
	Quadtree Representation of a Function

	Max-Sum with Quadtrees
	Addition Operation for Quadtree Functions
	Marginal Maximization for Quadtrees
	Normalization Constant Estimation
	Variable Configuration

	Experimental Evaluation
	Formulation of the Problem
	Implementation Details
	Experiments and Results

	Conclusions and Future Work

