
Technical University of Crete
School of Electrical and Computer Engineering

Development of a Competitive Autonomous
Agent for Smart Grid Energy Markets

Diploma Thesis

Mastorakis Antonios

Thesis Committee:
Advisor: Georgios Chalkiadakis, Professor ECE TUC

Fotios Kanellos, Associate Professor ECE TUC
Vasilis Samoladas, Associate Professor ECE TUC

Chania
May, 2022

Acknowledgments

I would like to especially thank my supervisor Professor Georgios Chalkiadakis as well
as Stavros Orfanoudakis for their consistent support and guidance during the running of
this project. This thesis is dedicated to my parents, for their endless love, support and
encouragement.

1

Abstract

Modern electricity markets require real-time sales and purchases, for which many factors
must be taken into account to keep pace with market growth rates. In this context, the
international Power Trading Agent (PowerTAC) competition simulates a realistic platform
for electricity deals and sales, equivalent to real stock exchanges energy such as Nord Pool
and EEX. On this platform, various intelligent software agents – brokers (developed by
research teams around the globe) compete with each other, with the main purpose of
obtaining the maximum possible profit. Each team creates its agent and through various
strategies in both retail and wholesale markets is trying to achieve a better combination
of buying and selling. Another important part of the competition is that agents aim to
obtain a disproportionately high share of the market, resulting in financial losses due to the
obligation payment of huge fees to the regulatory authorities. Against this background,
this thesis focused on the improvement of an already existing agent, TUC TAC. This
particular agent was created by a research team at the Technical University of Crete
in 2020, and managed to finish first in PowerTAC that year. Two main changes were
carried out to achieve the objective of improving TUC TAC. The first is the addition of a
Predictor (forecast factor) for the competition’s wholesale market. By predicting future
wholesale market prices, TUC TAC will be able increase its overall profits. We tackled
this problem via classical machine learning methods, including Neural Networks. The
second major change is the optimization of a Monte Carlo Tree Search algorithm that
was already used by TUC TAC for bidding in the wholesale market’s double auctions,
via (a) adding the new predictor but also (b) via regulating better the parameters of the
algorithm so that selling the same energy amount in the retail market will lead to smaller
fines due to the fewer losses in the broker’s energy balance sheet. We conducted extensive
simulation experiments to test our modifications and evaluate various versions of our
agent in environments of fluctuating difficulty. Our experiments verify the effectiveness
of the TUC TAC agent enhancements provided in this thesis.

2

Table of Contents

Acknowledgments 1

Abstract 2

Table of Contents 3

List of Tables 5

List of Figures 6

1 Introduction 10

1.1 Motivation . 10

1.2 Thesis Contributions . 11

1.3 Overview of the Thesis . 11

2 Background 12

2.1 Machine Learning . 12

2.2 Deep Learning . 13

2.3 Related Work . 14

3 PowerTAC: The Power Trading Agent Competition 16

3.1 Competition Overview . 16

3.1.1 Simulation Time . 16

3.1.2 Brokers . 17

3.1.3 Weather Reports . 17

3.1.4 Wholesale Market . 18

3.1.5 Trading and time slots available for trade 18

3.1.6 Market clearing . 19

3.1.7 Balancing Markets . 20

3.1.8 Distribution utility . 20

3

3.2 Successful PowerTAC Agents . 20

3.2.1 Predictors in PowerTAC agents . 21

4 Our Approach 23

4.1 Predicting Methods . 23

4.1.1 Linear Regression . 23

4.1.2 Polynomial Regression . 23

4.1.3 RNN and LSTM . 25

4.2 Sockets . 26

4.3 The Wholesale Market Module . 26

4.3.1 Monte Carlo Tree Search . 27

4.3.2 Monte Carlo Tree Search in TUC TAC 27

5 Experimental Results 30

5.1 Preparation and Early Development . 30

5.1.1 Dataset Construction . 30

5.1.2 Dataset Collection . 31

5.2 Predictor Results . 31

5.2.1 Easy Games . 31

5.2.2 Hard Games . 49

5.2.3 Observed Errors . 64

5.3 Wholesale Market Results . 66

5.3.1 Easy Games . 67

5.3.2 Hard Games . 71

6 Conclusions 75

6.1 Future Work . 75

Bibliography 77

4

List of Tables

5.1 MSE for "easy" datasets . 64

5.2 RMSE for "easy" datasets . 64

5.3 MSE for "hard" datasets . 65

5.4 RMSE for "hard" datasets . 65

5.5 Average MSE for "hard" datasets . 65

5.6 Average RMSE for "hard" datasets . 65

5.7 Wholesale Market Results for Game 1 . 67

5.8 Wholesale Market Results for Game 2 . 67

5.9 Wholesale Market Results for Game 3 . 68

5.10 Wholesale Market Results for Game 4 . 68

5.11 Wholesale Market Results for Game 5 . 69

5.12 Average Wholesale Market Results for Easy Games 70

5.13 Wholesale Market Results for Game 6 . 71

5.14 Wholesale Market Results for Game 7 . 71

5.15 Wholesale Market Results for Game 8 . 72

5.16 Wholesale Market Results for Game 9 . 72

5.17 Wholesale Market Results for Game 10 . 73

5.18 Average Wholesale Market Results for Hard Games 73

5

List of Figures

3.1 Basic elements of PowerTAC scenario[1] 17

3.2 Basic actions of an agent broker in a timeslot. 18

3.3 Market clearing example. 19

4.1 Linear Regression example. 24

4.2 Polynomial Regression example. 24

4.3 Typical LSTM model. 26

4.4 Phases of Monte Carlo Tree Search Algorithm. 28

5.1 Linear Regression with the first "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 32

5.2 Linear Regression with the second "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 32

5.3 Linear Regression with the third "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 33

5.4 Linear Regression with the fourth "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 33

5.5 Linear Regression with the fifth "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 34

5.6 Polynomial Regression with the first "easy" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 35

6

5.7 Polynomial Regression with the second "easy" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 36

5.8 Polynomial Regression with the third "easy" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 37

5.9 Polynomial Regression with the fourth "easy" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 38

5.10 Polynomial Regression with the fifth "easy" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 39

5.11 LSTM 1 with the first "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 40

5.12 LSTM 1 with the second "easy" dataset. The green dot shows the predic-
tion while the x depicts the model’s ground truth. 41

5.13 LSTM 1 with the third "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 41

5.14 LSTM 1 with the fourth "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 42

5.15 LSTM 1 with the fifth "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 42

5.16 Auto-regressive feedback loop of the LSTM 2 method. Ideas were modified
from this tutorial[27] . 43

5.17 LSTM 2 with the first "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 44

5.18 LSTM 2 with the second "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 44

5.19 LSTM 2 with the third "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 46

7

5.20 LSTM 2 with the fourth "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 46

5.21 LSTM 2 with the fifth "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 48

5.22 Linear Regression with the first "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 49

5.23 Linear Regression with the second "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 50

5.24 Linear Regression with the third "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 50

5.25 Linear Regression with the fourth "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 51

5.26 Linear Regression with the fifth "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days.
The green dot shows the ground truth while the x depicts the linear model’s
predictions. 51

5.27 Polynomial Regression with the first "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 52

5.28 Polynomial Regression with the second "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 53

5.29 Polynomial Regression with the third "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 54

5.30 Polynomial Regression with the fourth "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 55

8

5.31 Polynomial Regression with the fifth "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three
different exponents. The green dot shows the ground truth while the x
depicts the polynomial model’s predictions. 56

5.32 LSTM 1 with the first "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 57

5.33 LSTM 1 with the second "hard" dataset. The green dot shows the predic-
tion while the x depicts the model’s ground truth. 57

5.34 LSTM 1 with the third "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 58

5.35 LSTM 1 with the fourth "hard" dataset. The green dot shows the predic-
tion while the x depicts the model’s ground truth. 58

5.36 LSTM 1 with the fifth "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth. 59

5.37 LSTM 2 with the first "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 60

5.38 LSTM 2 with the second "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 61

5.39 LSTM 2 with the third "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 62

5.40 LSTM 2 with the fourth "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 62

5.41 LSTM 2 with the fifth "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our
input from the past 24 hours. The four smaller plots compare the ground
truth and the prediction results from different days. 63

9

Chapter 1

Introduction

This chapter describes the motivation behind our study, how we conducted it, and the
major contributions we made. It also provides an overview of the remaining parts of this
thesis.

1.1 Motivation

The energy market has seen significant structural and dynamic changes as a result of
globalization, resulting in a regulated and competitive market environment [1]. Most
traditional power grids are turning into technology for preferable solutions, gradually
evolving into advanced systems known as smart grids. Smart grids provide for more effec-
tive energy use, improved market-level communication, and real-time balancing of energy
supply and demand. Reduced fossil fuel use is also one of the key goals of Smart Grid
systems. This is crucial for the environment not only because future fossil fuel supplies
will eventually run out and we will need an alternative source of energy, but also because
of the coal emissions that are produced due to the burning of fossil fuels [2].

To make this new market feasible, researchers need a tool that will enable them to ex-
plore in new and creative ways. Power Trading Agent Competition (PowerTAC) is an
agent-based competitive simulation that models a modern energy market, like the Euro-
pean and North American wholesale energy markets. Brokers provide energy services to
clients through tariff contracts and are required to serve those customers by trading in a
wholesale market. The PowerTAC simulation platform is equipped with and offers most
functionalities a smart power grid can have, including electric vehicles, renewable energy,
etc, resulting in highly realistic simulations. The team from the school of Electrical and
Computer Engineering at the Technical University of Crete developed TUC TAC, a com-
petitive broker that participated in the PowerTAC 2020 and PowerTAC 2021 competition
[3].

One primary objective in this thesis was to observe data and decide what to keep and
what to discard. The PowerTAC offers a pretty realistic environment with a lot of dif-
ferent variables that also exist in the real world. The ultimate goal of our project was to
develop an optimal predictor that uses the environment’s data and feeds it into machine
learning/deep learning algorithms to forecast the future energy prices of the market, so
our agent can also improve the overall performance of the existing TUC-TAC agent.

10

1.2 Thesis Contributions

The major goal of this thesis is to enhance TUC TAC’s 2020 overall performance by op-
timizing its wholesale market trade and we achieve that with two major improvements.1
The first one is the creation of a predictor for the clearing prices, that will enable the bro-
ker to make informed choices when buying energy at a discount in a day-ahead market.
Numerous strategies were used to achieve that goal. At first, developing the predictor
was approached as a regression problem, starting with linear regression and then with
polynomial regression. Machine Learning algorithms such as LSTM and RNN were also
examined. The second improvement that we made is the modification of the Monte Carlo
Tree Search algorithm in the Wholesale Market of our agent, which is responsible for
buying large amounts of energy. This MCTS algorithm is responsible for consulting the
agent on when is the most profitable time to make a transaction and we aim to sell the
same amounts of kWh in the retail market but with less total charges and kWh imbal-
ance.2 In this way, our agent aims to maximize profits and minimize the losses. The final
outcome was more than satisfying, as we managed to improve the efficiency of our broker
by adding one prediction method and by enhancing the MCTS algorithm.

The methods proposed in this thesis, particularly the MCTS extension we implemented,
contributed to achieving second place in this year’s PowerTAC finals. Compared to last
year’s TUC TAC agent, TUC TAC 2022 extended the MCTS algorithm to effectively
reduce the penalties that had to be paid due to the created energy imbalance. Moreover,
as planned, our method achieved lower average costs per kWh bought in the continuous
double auctions of the competition’s wholesale market.

1.3 Overview of the Thesis

The work described in this thesis represents a module that is responsible for trading elec-
trical energy efficiently, in a continuous double auction representing the modern energy
wholesale markets of Europe and North America. The main modifications involve creating
an effective predictor to forecast future clearing prices and make profitable transactions
while alternating the wholesale market strategy of the agent to make more profitable
transactions. The remaining sections of this thesis are arranged as follows: Chapter 2
provides some background information on areas essential to our project, namely Machine
Learning, Deep Learning as well as papers related to these fields. Following, in Chapter
3 we provide a thorough explanation of the competition’s guidelines and elements and
we cite some successful agents that have won the PowerTAC in previous years. Next,
we represent in Chapter 4 the major development of our agent along with each method
that was used for our predictor, how we employed them and how we created the datasets.
Chapter 5 contains our experimental results with comparisons between them and a dis-
cussion about the overall performance of TUC-TAC. Finally, in Chapter 6 we review our
project focusing on what we achieved and what could be improved in the future.

1TUC TAC 2021 was essentially identical with TUC TAC 2020 baring minimal tweaks.
2When the broker’s balance is negative, the broker is charged interest on a daily basis and when the

broker’s balance is positive, the broker is paid a daily interest. The balance is updated daily (once every
24 hours) [1]

11

Chapter 2

Background

Predictive analytics is the foundation of this thesis, therefore our background studies con-
sisted mainly of predicting method-based papers, which we studied in order to understand
better the way that we should approach our problem. Moreover, terms such as Machine
Learning and Deep Learning are going to be spoken about and explained, since these were
the main tools that helped us come to a result.

2.1 Machine Learning

Machine learning is an area of computer science and artificial intelligence (AI) that focuses
on utilizing data and algorithms learn with continuously increasing accuracy. Machine
learning is a crucial part of the rapidly expanding discipline of data science. Algorithms
are trained to generate classifications or predictions using statistical approaches. These
insights drive decision-making within applications and enterprises, with the goal of influ-
encing important growth key performance indicator. KPIs are a quantifiable measure of
performance over time for a specific objective and provide targets for teams to shoot for,
milestones to gauge progress, and insights that help people make better decisions. There
are three main aspects to machine learning [4]:

• A Decision Process: Machine learning algorithms are used to produce predictions
or classifications in general. The algorithm will generate an estimate about a pattern
in the data based on some input data, which can be labeled or unlabeled.

• An Error Function: The model’s prediction is evaluated using an error function.
If there are known examples, an error function can be used to compare the model’s
accuracy.

• An Model Optimization Process: If the model can match the data points in
the training set better, weights are adjusted to reduce the distance between the
known example and the model prediction. The algorithm will repeat this assess and
optimize method, updating weights on its own until a particular level of accuracy
is achieved.

Machine learning is divided into three primary categories [4]:

12

• Supervised learning: Supervised learning, often known as supervised machine
learning, is the process of using labeled datasets to train algorithms that reliably
classify data or predict outcomes. The weights are changed when new data is added
to the model until it is well fitted. This occurs during the cross validation phase,
which ensures that the model does not overfit or underfit the data. Supervised
learning can be used to solve a variety of real-world problems at scale, such as spam
classification in a separate folder from your email. In supervised learning, neural
networks, naive Bayes, linear regression, logistic regression, random forest, support
vector machine (SVM), and other methods are employed [5].

• Unsupervised Learning: Supervised learning, often known as supervised ma-
chine learning, is the process of using labeled datasets to train algorithms that can
consistently classify data or predict outcomes. The weights are changed when new
data is added to the model until it is well suited. This occurs during the cross
validation process, which is used to ensure that the model does not overfit or under-
fit. Organizations can utilize supervised learning to scale up a variety of real-world
challenges, such as spam classification in a separate folder from email. In supervised
learning, techniques such as neural networks, naive Bayes, linear regression, logistic
regression, random forest, support vector machine (SVM), and others are utilized.

• Semi-supervised learning: Semi-supervised learning is a suitable compromise
between supervised and unsupervised learning. During training, it uses a smaller
labeled data set to assist categorization and feature extraction from a larger, unla-
beled data set. When there isn’t enough labeled data to train a supervised learning
algorithm, semi-supervised learning can help (or not being able to afford to label
enough data) [5].

• Reinforcement learning: Reinforcement learning is a paradigm for learning that
develops the ability to maximize sequential decisions, under uncertainty, using trial
and error. To put it more specifically, it aims to develop the optimum method for
making repeated sequential decisions over time in a dynamic system under uncer-
tainty. Reinforcement Learning agents commonly interact with a simulator of the
relevant stochastic dynamic system, also known as an environment, aiming to de-
velop an optimal policy, a method for making repeated, sequential decisions over
time in a dynamic system. The goal of reinforcement learning is to discover the best
course of action to take in various stages of a dynamic system. To put it otherwise,
Reinforcement Learning agents aim to control a Markov Decision Process with un-
known dynamics. Reinforcement learning works in a mathematical framework that
consists of a state space, an action space, and a reward signal [5].

2.2 Deep Learning

Deep learning is a subset of machine learning, which employs learning the neural network
with three or more layers. These neural networks make an effort to mimic how the human
brain operates so that it may "learn" from vast volumes of data. While a neural network
with a single layer may still produce approximations, more hidden layers can assist to
improve and optimize for accuracy [4].

13

Deep neural networks are made up of several layers of connected neurons, each of which
improves upon the prediction or classification made by the one underneath it. This
method is called forward propagation. A deep neural network’s visible layers are its input
and output layers. The deep learning model ingests the data for processing in the input
layer, and the final prediction or classification is performed in the output layer.

Gradient descent [5] is an iterative first-order optimisation algorithm used to find a local
minimum/maximum of a given function. This method is commonly used in machine
learning (ML) and deep learning (DL) to minimise a cost/loss function. In machine
learning, a gradient is a derivative of a function that has more than one input variable.
Known as the slope of a function in mathematical terms, the gradient simply measures
the change in all weights with regard to the change in error.

Backpropagation [5] is an automatic differentation and neural network training algorithm
that employs techniques like gradient descent to calculate prediction errors before chang-
ing the function’s weights and biases by iteratively going back through the layers in an
effort to train the model. A neural network can generate predictions and make necessary
corrections for any faults thanks to forward propagation and backpropagation working
together. The algorithm continuously improves in accuracy over time.

2.3 Related Work

We now briefly list some works on time series predictions, as these are relevant to our
work in this thesis.

As we mentioned above, Neural Networks are the key component of every time series
forecasting. Mohammed and Mahmud et al. [6] enumerate a wide list of Deep Learning-
Based Time Series Previous Work that used to a great degree Artificial Neural Networks,
such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Deep Autoencoders (AE),
Restricted Boltzmann Machines (RBM) and Deep Belief Networks (DBN).

Moreover, Ismail and Gunady et al.[7] describe a time series classification problem that
they approached with saliency methods and came to the conclusion that they fail to pro-
duce high-quality interpretations when applied to multivariate time series data, however,
they can produce accurate maps when multivariate time series are represented as either
images or univariate time series.

Using a wavelet de-noising-based backpropagation neural network, Wang et al.[8] sug-
gested a unique method for predicting stock prices. Using monthly closing price data
from the Shanghai Composite Index from 1993 to 2009, they demonstrate noticeably
better performance when compared to a traditional multi-layer perceptron. They credit
wavelet-based de-noising and preprocessing for the increased performance.

In Lago et al.[9], a new modeling framework is proposed to forecast electricity prices.
The topic of deep learning algorithms has various prediction models that have already
been suggested for this job. The Deep Neural Network (DNN) model, the Long-Short-

14

Term Memory (LSTM) model, and the Gated Recurrent Unit (GRU) model are three of
the four suggested DL forecasts that are demonstrated to have statistically considerably
higher prediction accuracy than all other models.

Fisher and Krauss et al.[10] modified LSTM and evaluated its effectiveness against memory-
free algorithms like random forest, logistic regression classifier, and deep neural network.
They did that to assess LSTM’s capacity in financial market predictions. LSTM outper-
formed other algorithms, however during the 2008 financial crisis, random forests outper-
formed LSTM. Overall, they have successfully shown that an LSTM network is capable
of effectively extracting useful information from noisy financial time series data.

More related work on PowerTAC and prediction methods will be provided in Chapter 3.

15

Chapter 3

PowerTAC: The Power Trading Agent
Competition

After our discussion in the previous Chapter about prediction techniques and their theo-
retical background, we now present the PowerTAC platform and its components. Ketter
and Collins [2] aspired to creating this innovative, realistic, economically competitive sim-
ulation of the future energy markets that includes a number of smart grid elements. By
building competing agents and comparing their individual tactics against one another,
this simulator allows academics to experiment with retail and wholesale market decision-
making, as well as better comprehend the behavior of future consumer models.

3.1 Competition Overview

PowerTAC is a power trading agent competition that began in 2012 and is conducted every
year since then. Competing teams create trading agents that act as self-interested “bro-
kers” and aggregate energy supply and demand with the purpose of earning a profit. Bro-
kers buy and sell energy through contracts with retail customers such as households,owners
of electric vehicles or small and medium enterprises. They can also trade energy in a
wholesale market that models a real-world market such as the European or North Amer-
ican wholesale energy markets.As the competition founders mention, this simulation is
designed to model the energy trading environment mainly from an economic and not an
especially technical viewpoint. So broker agents must operate effectively by scheduling
and carrying out tasks over a range of timelines in three markets: a customer market, a
wholesale market, and a market for balancing resources.

3.1.1 Simulation Time

For a simulation to work, the game time needs to be discrete, thus some discrete time-
blocks are created.These are referred to as "time-slots," and each one represents an hour
of simulated time while only taking up about 5 milliseconds of actual time. There are at
least 1440 time-slots in each game (two months of simulated time and at least 2 hours of
real-time per game). As a result, there is always a time-slot in a PowerTAC game that is
active, as well as a set of future times lots that the brokers can reserve and trade energy
for. In order to avoid financial gain, the brokers’ primary goal is to balance supply and
demand in each of the future time periods.

16

Figure 3.1: Basic elements of PowerTAC scenario[1]

3.1.2 Brokers

Broker-agents are the real-life analogy to energy retailers and have similar actions in their
activity book.In each time-slot, every agent can decide and perform any of the following
actions:

• Adjust tariff prices, if tariff terms allow it.

• Design and submit new tariffs for publication to customers.

• Change tariff terms for existing customers by replacing a superseded tariff with a
new one.

• Offer controllable capacities for real-time balancing, to the extent allowed by tariff
terms.

• Create asks and bids to sell or procure energy for future time slots. See Section 5
for details.

3.1.3 Weather Reports

Another significant feature of PowerTAC is the weather reports. In each time-slot,a
weather report for the current time is sent to the brokers along with a weather forecast
about the next 24 time-slots. Given that the weather has a direct impact on customer
models, the agents use this information to make predictions. In particular, weather data
is derived from real-world weather reports, thus throughout the competition, agents aren’t
aware of the game’s location for obvious reasons.

17

Figure 3.2: Basic actions of an agent broker in a timeslot.

3.1.4 Wholesale Market

The wholesale market functions as a short-term spot market for buying and selling en-
ergy commitments in specific time-slots, where each time-slot represents a simulated
hour.There are always 24 ongoing auctions since agents can participate in auctions to
trade energy at any time during the simulation.These auctions, which are periodic dou-
ble auctions, are comparable to those held in wholesale energy markets in Europe or
North America.Each simulation starts with 14 days’ worth of preliminary information
(also known as "bootstrap data"), which includes customer information, wholesale mar-
ket information, and weather information depending on the default broker.Brokers can
submit bids (orders to buy energy) and asks (orders to sell energy),represented by a quan-
tity and an optional limit price. By matching buy and sell orders, the simulation clears
the bids and establishes the daily clearing price for each auction. The market does not
clear if the minimum ask price is higher than the highest bid price.

3.1.5 Trading and time slots available for trade

Brokers can submit orders to the wholesale market for delivery between one and 24 hours
in the future.The time slots that are open for trading are marked as "enabled," and brokers
are informed when a time slot’s status changes.Orders placed for time slots that are not
enabled (either deactivated or not yet enabled) are cancelled. The market continuously
gathers submitted orders and those that are taken into consideration for clearing are
exactly those that have come since the beginning of the last clearing. Each order is
represented by 4 variables (b, s, e, p). A broker b, a time slot s, an amount of energy e in
megawatt-hours, and optionally a limit price per megawatt-hour p. Quantities of energy
and prices are viewed as suggested debits (negative values) and credits (positive values)
to the broker’s accounts for energy and cash.Limit orders are orders that include a limit
price p, whereas market orders are orders that do not include a limit price.

18

3.1.6 Market clearing

The wholesale market clears the orderbook for each of the enabled time slots when the
simulation clock advances to a new time slot. Each broker receives an updated list of
the available time slots at the same time. This reduces the amount of time that the
set of enabled time slots from the perspective of the broker and the set of enabled time
slots from the perspective of the market are different.Demand and supply curves are built
using bids and asks in the clearing process to establish the clearing price for each enabled
time slot. The supply and demand curves’ point of junction is the clearing price.It is
important to remember that asks have negative energy and positive cash, whereas bids
propose positive energy and negative cash. Also, market orders(those without a price)
are ranked first, just as if they had the highest or lowest asking prices.

Figure 3.3: Market clearing example.

In the example above,we have asks arranged by growing price and bids sorted by decreasing
(negative) price.There is no price specified in either the bid 1 or the ask 1; these are
unrestricted "market orders" and are always given priority. Bids 1-8 are all matched by
lower-priced asks, and asks 1-6 are all matched by higher-priced bids, although only the
first 2 MWh of ask 6 is matched.Ask 7 and bids 9-10 cannot be matched.The clearing
price, which is the average of the prices in ask 6 and bid 8, is 16, and the cleared volume
is 27 MWh.

19

3.1.7 Balancing Markets

The Balancing Market’s only responsibility is to exercise capacity controls on behalf of
the agents in order to balance supply and demand in each time-slot. In this approach,
the balancing utility arrives and imposes a penalty on the broker by charging the broker
for the lost energy at a considerably higher price.

3.1.8 Distribution utility

The Distribution Utility (DU) is primarily responsible for 3 different operations.As its
name implies, the first one distributes electricity to each client while also charging each
broker distribution costs related to the energy sent through the grid.Additionally, DU is
in charge of charging the Transmission Capacity Fees (TSF). A broker should pay these
fees in exchange for their clients’ participation in demand peaks. This implies that each
broker will be required to pay for a percentage of the excess energy during times of peak
demand. After 168 time-slots, TSF bill the three demand peaks with the highest prices (1
week of simulated time). In the current PowerTAC competition these fees are the main
problem an agent faces when it tries to dominate in the retail market. The Distribution
Utility’s final duty is to post some default tariffs for the situations where no other broker
has published any tariffs.

3.2 Successful PowerTAC Agents

PowerTAC has been held for 10 years as we mentioned before. Having such a long history
of competitive activity suggests that there are already many innovative agent techniques
that are being used. In this section, we decided to cite some PowerTAC agents imple-
mentations that have won the competition and are worth to be mentioned.

TUC TAC 2020
TUC TAC 2020 is an autonomous agent developed by a team led by professor Georgios
Chalkiadakis and his students at the Technical University of Crete [3]. Its main strategy
is based on the principle that acquiring half of the market share will give TUC TAC half
of the total profits, but also only half of the inevitable transmission capacity fees. From
the beginning, it became obvious that greedy strategies were not the right way to work,
so the team turned to other methods such as decision trees combined with heuristic and
non-heuristic algorithms. The basic principle of this technique came from the Lemonade
Stand Game tournament [11]. The core objective of TUC TAC’s strategy, which is to take
half the available market share and leave the other half to competitors, is pretty similar
to that one. By so doing, TUC TAC anticipates always earning the most money while
splitting all commissions with the other agents.

The Wholesale Market module is TUC TAC’s second and equally significant component.
In the wholesale market’s double auctions, its primary duties are to purchase and sell en-
ergy. However, for it to be successful, the best bids must be identified so that consumers
do not have to use balancing utility to obtain their energy, in which case TUC-TAC would
be paid more for every KWh that was not reserved by the agent. For that reason, TUC
TAC implements a Monte Carlo Tree Search algorithm for bidding in the double auctions
of the wholesale market, adapting it to this setting. The basic algorithm consists of four

20

stages: Selection, Expansion, Simulation, and Backpropagation. Monte Carlo Tree Search
is an adaptable technique that can be used in a wide range of decision-making situations.

Mertacor
Another agent developed by a Greek team, and which won the PowerTAC 2019 compe-
tition, is Mertacor2019. Despite the agent continuously ranking among the best players
in the competition, the team is not concentrating on the consumption predictor module.
Instead, they calculated consumers’ consumption with a simple classification method.
Mertacor2020 finished second in PowerTAC 2020, and used Q-Learning techniques in
order to maximize the profits from the retail market.

3.2.1 Predictors in PowerTAC agents

The predictor module of the PowerTAC agent is the focus of this thesis, as already men-
tioned. The brokers must make trades in multiple markets and to be successful, brokers
must make many good predictions about future supply, demand, and prices. Clearing
price prediction is an important part of the broker’s wholesale market strategy because
it helps the broker to make intelligent decisions when purchasing energy at low cost in
a day-ahead market [12]. Below we present some of the most note-worthy agents that
applied different kinds of prediction techniques in order to be effective.

TUC TAC 2020
TUC TAC had a predictor that estimated the net demand of the customers for the next
24 timeslots, based on the given weather forecast and the past net demand values. There
was an attempt to improve this predictor in the thesis of Stefanos Kontos [13]. To this
purpose, data was collected from the 2019 PowerTAC final games and the variables that
were taken into consideration for forecasting were time slot, temperature, wind speed,
wind direction, cloud cover, and net usage. At first, the predictor was approached as
a regression problem, using linear regression and kernel regression but the experimental
results were not so positive, suggesting that this algorithm was not appropriate for the
problem. Consequently, Deep Learning methods were examined, such as Feed Forward
Neural Networks, Recurrent Neural Networks, and k Nearest Neighbors. This approach
was also not so desirable but had a more positive outcome since the experimental results of
the Deep Learning Methods were better compared to the results of the Machine Learning
techniques. Even if the project’s goal wasn’t entirely met, valuable insights and intuitions
might still be drawn from the process. The research indicates that Neural Networks are
superior to the other regression techniques [13].

AgentUDE17
From 2016 to 2019, Agent UDE [14] continuously finished in the top 3 spots and more
specifically won the tournament in 2017 and 2018. Their forecasting methods relied ba-
sically on linear regression, with the main focus being on customer type and capabilities
to predict future demands. In the wholesale market, AgentUDE predicts market trends
regardless of weather conditions by tracking historical market data [15].

Crocodile Agent
Crocodile Agent [16] is another note-worthy agent, as it finishes repeatedly in the third
place from 2018 until 2021. This agent implemented the Erev-Roth reinforced learning

21

method [17] for its bidding tactics in order to determine the best course of action for low-
ering the cost function. The main sub-module consists of (i) bidding strategies module,
(ii) reward module and (iii) weighted randomizer module. Bidding strategies are picked
based on the reward module during the optimization cycle, and the likelihood of their
selection is determined by a weighted randomizer drawn from the probability distribution.

Vidyut Vanika
Vidyut Vanika [18] is 2021’s year winner and has used many predictors to accomplish
that achievement. First of all, it has a Customer Usage Predictor that uses a Neural
Network with two hidden layers of size 7 each, and 10 epochs of training over the training
data. The input data includes the weather report, time of day (0–23), and day of the
week (1–7). During prediction, the weather forecast is used in place of the weather report
to predict the usage for the next 24 hours. Moreover, Vidyut Vanika uses a Limit Price
Predictor based on the previous work of Urieli and Stone 2014 [19] on Markov Decision
Process based wholesale bidding strategy.

22

Chapter 4

Our Approach

This project’s main goal was to develop a predictor module and improve the Monte Carlo
Tree Search Algorithm. Numerous strategies were used to achieve the prediction, with the
main ones being Regression and Deep Learning algorithms. In this chapter, we explain
these different methods, why we chose them and we also provide a theoretical background
of our Monte Carlo Tree Search implementations, as well as the modifications that we
have made.

4.1 Predicting Methods

In this section we cite the predictive techniques that we utilized in order to find the most
optimal and appropriate one for our agent. Four main methods and their theoretical
background will be presented below.

4.1.1 Linear Regression

Linear regression is a typical method of predictive analysis [20]. It predicts the future
of a target by using linear relationships between a dependent variable (target) and one
or more independent variables (predictors). The prediction is based on the premise that
the target and predictors have a dependent or causal relationship Y = aX +b, where a
is the intercept and b is the slope of the line. Based on a given predictor variable, this
equation can be used to predict the value of a target variable(s). Linear-regression models
are straightforward and provide a basic mathematical method for generating predictions
and can be used in a variety of corporate and academic study.

In our linear predictor, we used the values of ’Execution Price’ and the values of ’Timeslots’
in order to train the data-set and make predictions. We took 1200 values from each
variable for training and the rest 253 for testing.

4.1.2 Polynomial Regression

Another frequently used algorithm for predictive analysis is polynomial regression, which
is a form of linear regression, as is consists of multiple linear regressions, that estimates
the relationship as a nth degree polynomial.
The general equation of polynomial regression is written in the following form:

y = β0 + β1x+ β2x
2 + β3x

3 + ...++βnx
n (4.1)

23

Figure 4.1: Linear Regression example.

• β1 = linear effect parameter.

• β2 = quadratic effect parameter.

• βo = a constant parameter, which is determined according to the polynomial func-
tion when x = O.

Figure 4.2: Polynomial Regression example.

Linear regression requires the relation between the dependent variable and the indepen-
dent variable to be linear but in this regression technique, the best fit line is not a straight
line,it is rather a curve that fits into the data points.

Any climatic data is expected to behave in a nonlinear manner, so it will be too difficult
to visualize or predict the data using the linear regression model. Polynomial regression
is expected to have a lower error rate.

In our polynomial predictor, we worked the same way we did with the Linear one. We
used the values of ’Execution Price’ and the values of ’Timeslots’ in order to train the
data-set and make predictions. We took 1200 values from each variable for training and
the rest 253 for testing.

24

4.1.3 RNN and LSTM

Recurrent neural networks (RNNs) [21] are effective learning models that allow temporal
information to be conveyed through several time steps by incorporating recurrent con-
nections on the hidden layers. As a result, they may be able to model time-dependent
aspects in sequential series. Theoretically, RNN can handle any length of sequence data.
However, as more layers using certain activation functions are added to neural networks,
the gradients of the loss function approaches zero, making the network hard to train. This
is called the gradient vanishing problem [5] and it affects RNNs.

To tackle the vanishing gradient problem, gated recurrent neural networks (GRNNs), such
as the long short-term memory (LSTM) and gated recurrent unit (GRU), use carefully
constructed recurrent units with set unit weight [22]. The most popular and successful
GRNN model is long short-term memory (LSTM). It adds the memory cell, a compu-
tational unit that substitutes typical nodes in the network’s hidden layer, allowing it to
overcome the training issues that plagued earlier recurrent networks. The usual LSTM
architecture has three gates and a hidden state [22].

RNN algorithm
Recurrent neural network (RNN) [21] is an extension of conventional feedforward neural
network with dynamic input. An RNN is characterized by introducing recurrent connec-
tions on the hidden layers,which makes modeling sequence data possible. The RNN uses
index t to represent the different positions in the input sequence and suppose a hidden
state ht to represent the state of the system at time t. At time t, the RNN accepts input
xt, and the recurrent hidden state ht is activated by the former hidden state ht-1 and
current input xt, and updated in real time by a nonlinear activation function:

ht = tan(h)(W [xt, ht−1] + b) = tan(h)([Wxxt +Whht−1] + b) (4.2)

where Wx is the weight matrix for the input xt, Wh is the weight matrix for the recurrent
input ht-1, and the b term is the bias vector. By fitting the parameters W and b, the
sequence data can be learned well.

Typical LSTM model
The RNN can be considered as a neural network that passes through time, which means
the length of time sequence is the depth of RNN network. Once length of time sequence is
very long, the problems of vanishing and exploding gradients occur when back propagat-
ing errors across many time steps. The LSTM model is proposed to overcome the problem
of vanishing gradient from RNN by introducing gating mechanism in recurrent units to
control how information flows. In addition to three multiplicative gates (forget gate ft,
input gate it, output gate ot) and hidden state ht, the recurrent unit includes a memory
state St, in which St is used to help maintaining long-term memory. The gates are sigmoid
units that take activation from the current input xt as well as from the hidden layer at
the previous time step. At time t, new memory state St is formed by its self-connected
recurrent edge St-1 and Gt, the Ground-truth Trajectory. The associated equations are as
follows:

25

ft = σ(Wf•[xt, ht−1] + bf)

it = σ(Wi•[xt, ht−1] + bi)

ot = σ(Wo•[xt, ht−1] + bo)

Gt = σ(Wg•[xt, ht−1] + bg)

St = ft ∗ St−1 + it ∗Gt

ht = ot ∗ tan(h)(St)

where • denotes matrix multiplication and * is pointwise multiplication, σ is a sigmoid
function, Wf , Wi,Wo,Wg are weight matrices of ft,it,ot,Gt and bf ,bi,bo,bg are the corre-
sponding bias terms [23].

Figure 4.3: Typical LSTM model.

4.2 Sockets

In a network, a socket is a communication’s connection point that may be named and
addressed. Socket programming demonstrates how to create communication channels
between remote and local processes using socket APIs. Socket-using processes can be on
the same system or on other systems on different networks. Sockets can be used in both
single-user and network applications. Sockets make it possible to share data between
processes on the same system or across a network, transfer work to the most efficient
machine, and gain quick access to centralized data. TCP/network IP’s standard is socket
application program interfaces (APIs). Socket APIs are supported by a wide range of
operating systems. Multiple transport and networking protocols are supported by i5/OS
sockets.Thread safety is provided via socket system and socket network functions. In this
thesis, we used sockets to connect the Python predictors to our Java-based agent TUC
TAC.

4.3 The Wholesale Market Module

The second basic part of this thesis was the improvement of the Wholesale Market Module
of 2021 TUC-TAC. Its primary duties are to purchase and sell energy during the Whole-
sale’s Market double auction. Finding the finest bids is necessary for it to be effective, so

26

that customers won’t have to turn to Balancing Utility to obtain their energy. The Bal-
ancing utility will charge more for every single KWh that was not reserved by TUC-TAC
if this module fails to obtain the energy that the subscribing consumers need, leading to
many fines. The aforementioned goal is achieved by implementing the Monte Carlo Tree
Search algorithm.

4.3.1 Monte Carlo Tree Search

Monte Carlo tree search is a probabilistic search algorithm that has a unique decision
making technique and it is very efficient in solving the game tree,a graph representing all
possible game states within a game. It is based on random sampling of game states, it does
not need to brute force its way out of each possibility. Additionally, it is not necessary
for us to create effective heuristics or evaluations. The main stages of the Monte Carlo
Tree Search consists of four stages:

• Selection: The method chooses a child node in this initial step by starting with a
root node and choosing the node with the highest win rate. Additionally, we want
to guarantee that each node has an equal chance. The idea is to keep selecting
optimal child nodes until we reach the leaf node of the tree. The algorithm achieves
that by using the UCT (Upper Confidence Bound) formula:

wi

ni

+ c

√
ln t

ni

(4.3)

Where wi is the number of wins after the i-th move, ni is the number of simulations
after the ith move, c is the exploration parameter and t is the total number of
simulations for the parent node.

• Expansion: When UCT is no longer able to be used to locate the successor node,
the game tree is expanded by the addition of all potential states from the leaf node.

• Simulation: After Expansion, the algorithm randomly selects a child node, simu-
lating a randomized game from that node until it reaches the game’s final state.

• Backpropagation: When the game has ended, the algorithm assesses the current
situation to determine who has won. All visited nodes have their visit scores in-
creased as it moves up to the root. It also updates win score for each node if the
player for that position has won the playout.

Monte Carlo Tree Search algorithm keeps repeating these four phases until some fixed
number of iterations or some fixed amount of time. With this method, we estimate
each node’s winning score based on random moves. Therefore, the estimate gets more
trustworthy when more iterations are executed. The algorithm estimations will be less
precise at the beginning of a search and get better over time. A graphic representation of
the algorithm is shown at figure 4.4.

4.3.2 Monte Carlo Tree Search in TUC TAC

The main algorithm that was implemented in this module was a variant of the Monte
Carlo Tree Search method used by TUC TAC 2020 which in turn was a variant of the

27

Figure 4.4: Phases of Monte Carlo Tree Search Algorithm.

method developed by Chowdhury[24]. In general, Monte Carlo Tree Search (MCTS) is
a search method used in artificial intelligence. It is a probabilistic and heuristic-driven
search method that blends traditional tree search implementations with principles from
machine learning and reinforcement learning.
The double auction of the wholesale market, in the PowerTAC competition is a complex
action-space that necessitates quick and exact actions in order to be profitable.In order
to quickly navigate through massive decision trees and determine the optimal course of
action, MCTS algorithm was chosen.
We can see the pseudo-code for our bidding technique in Algorithm 1. The root node and
its children are initially generated. The values for each child are created by adding the
anticipated limit price and a standard observed variance. Each child represents a distinct
bid in the double auction. The limit price predictor that existed in a previous TUC
TAC implementation is now replaced by an effective predicting algorithm. The MCTS
algorithm then proceeds to iterate over the tree by growing the nodes and simulating a
few auction results. Here we added the action of "HALF BID" that did not exist in the
previous implementation of TUC TAC 2020. In this action, our broker instead of bidding
for the whole price, make half the amount of the bid. By adding this action, we make our
agent more competitive as he enters more bids than before and therefore buys amounts of
energy at a better price. All nodes that were a part of the current path are updated after
each iteration, and we preserve data on visit count and average unit cost so that we can
later calculate the UCT value for each node. Furthermore, we fine-tuned the parameters
of the algorithm to work better with the new predictor and tested it in various games to
see the results.

28

Algorithm 1 Calculate Bids for wholesale Market using MCTS
energyToBuy = neededMWH(t)
for i < NUMBEROFITERATIONS do

curNode = root
curNode.GenerateKids()
while energyToBuy > 0 do

if curNode.hasUnexploredKids() then
curNode ≥ GetRandomUnvisitedChild()
while energyToBuy > 0 do

if action = BID then
limitPrice = predictions[t]
clearingPrice = GetRandomGaussianNumber()
if limitPrice > clearingPrice then

Csim = energyToBuy · clearingPrice
end if

else if action = HALFBID then
limitPrice = predictions[t]
clearingPrice = GetRandomGaussianNumber()
if limitPrice > clearingPrice then

Csim = energyToBuy · clearingPrice/2
end if

end if
end while
break

else
curNode ≥ GetBestUCTChild()
energyToBuy ≥ Simulate(curNode)

end if
end while
Cavg = Csim/energyToBuy
Bacpropagate(Cavg)

end for
bid = GetBestRootChild().bid
BidInAuction(bid, t)

29

Chapter 5

Experimental Results

In this section, we present the results originating from the experiments that we deducted.
The results concern both the predictive methods and the Monte Carlo Tree Search algo-
rithm. The type of algorithm utilized will be used to show and explain every experiment’s
outcome. The following step is to compare the outcomes of each algorithm. Tables about
the errors of every predictor are presented in order to demonstrate which technique fits our
problem better. Consequently, we present the results from the Monte Carlo Tree Search
Algorithm modification, compared to other agents. In that way, we will be able to verify
weather our modified MCTS version had a positive impact on our agent’s performance.

5.1 Preparation and Early Development

5.1.1 Dataset Construction

The PowerTAC competition is a very realistic simulator that uses real life weather data
from selected cities around the globe. More specifically, the simulation is made up of
many costumer models that vary in key areas. There are three basic groups of clients
based on the power type: consumers, who only buy energy from our broker, producers,
who only sell energy to our broker, and prosumers that are a hybrid of the first two.

In addition to the data from the customer model, the simulator depicts us how much
energy each client uses throughout each time window. Moreover, weather forecasts and
weather reports are offered for each time slot, and we also store this information because
we view it as important information for building models. The features that we used for
our predictors are the following:

• Timeslot: A timeslot instance describes an interval of time (slot) for which power
may be traded in the wholesale market.

• Hour: The current timeslot’s hour.

• Day: The current timeslot’s day.

• Month: The current timeslot’s month.

• Year: The current timeslot’s year.

30

• Temperature: The current timeslot’s temperature.

• Wind Speed: The current timeslot’s wind speed.

• Wind Direction: The current timeslot’s wind direction.

• Cloud Cover: The current timeslot’s cloud cover.

• Execution Price: The current timeslot’s clearing price of the trade.

• Execution MWh: The current timeslot’s traded quantity in MWh of the specified
product.

5.1.2 Dataset Collection

In order to have solid results we test the effectiveness of our predictors using data from
the 2021 PowerTAC finals, while also dividing them into two main categories based on
their difficulty level. The first one is the "hard" games, where due to extreme weather
phenomena there was a huge net demand, leading to a rise in the price of kWh. The other
category is the "easy" games, where the weather is good in general so the price of kWh
fluctuates to normal levels. The results were saved in a ".state" file, so I created a parser
in Python that extracted all the information that we needed and created 10 JSON files,
5 from each category.

5.2 Predictor Results

5.2.1 Easy Games

In this section, we present the results of our predictors for the "easy" datasets.

Predictor 1 (Linear Regression) Results

In Linear Regression we have illustrated 4 plots from 4 different days. The results are
shown below:

31

Figure 5.1: Linear Regression with the first "easy" dataset. The four smaller plots com-
pare the ground truth and the prediction results from different days. The green dot shows
the ground truth while the x depicts the linear model’s predictions.

In figure 5.1 we observe our first try for prediction. Besides the first graph which has
better results compared to the other three ones, a great deviation between the predicted
values and the ground truth exists.

Figure 5.2: Linear Regression with the second "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

We can see a significant difference between the projected values and the actual values in
figure 5.2. Linear regression predicts a straight line at approximately 40 euros, while the
ground truths have a range from 0 to 60 euros.

32

Figure 5.3: Linear Regression with the third "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

In figure 5.3 we notice that the two upper graphs show better results compared to the
other two graphs, as the prediction line and the ground truth line are more compatible.
However, there is still a significant difference between the anticipated values and the actual
ones.

Figure 5.4: Linear Regression with the fourth "easy" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

As we can observe from the image 5.4 also, linear regression is not a very effective way of
prediction, as the predicted values are not coinciding with the actual ones. Our predic-
tion line ranges from 30 to 45 euros, while the ground truth line ranges from 20 to 75 euros.

33

Figure 5.5: Linear Regression with the fifth "easy" dataset. The four smaller plots com-
pare the ground truth and the prediction results from different days. The green dot shows
the ground truth while the x depicts the linear model’s predictions.

Figure 5.5 illustrates a great deviation between the predicted values and the ground truth.
A significant difference occurs between the projected values and the actual values, with
the exception of the final graph, which performs better than the other three.

Linear Regression is not a very effective predictive method and this happens for multi-
ple reasons. Firstly, it demands the relationship between our dependent and predictor
variables to be linear, however, in our case and in general, the behavior of any climate
data is set to be a nonlinear way. In addition, linear regression assumes there is no mul-
ticollinearity between the variables and this makes the model unstable. For the reasons
above-mentioned we had to advance to a more functional method for our predictions.

34

Predictor 2 (Polynomial Regression) Results

We now present results for each figure has 3 subplots, one for each exponent of our poly-
nomial experiments. The first one has exponent n = 4, the second one n = 6, and the
third one n = 8. We present them in this way, to ease their comparisons and decide which
exponent fits better every time.

Figure 5.6: Polynomial Regression with the first "easy" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.6 we can see that we have better results compared to the linear regression
predictor, however, the result is not the desirable one, as the actual values differ from our
predictions. For instance, the error of the predicted values is around 10 euros. Between
the three exponents, the most efficient one is n = 8, with a slight lead against the other two.

35

Figure 5.7: Polynomial Regression with the second "easy" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.7 we observe that we have worse results than the linear regression predictor
ones. The error of the predicted values is around 20 euros. Between the three exponents,
the most efficient one is n = 8, with a slight lead against the other two.

36

Figure 5.8: Polynomial Regression with the third "easy" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.8 we can see that we have again worse results compared to the linear regression
predictor, as the ground truth values differ from our predictions. For instance, here the
error of the predicted values is around 40 euros. Between the three exponents, the most
efficient one is n = 4.

37

Figure 5.9: Polynomial Regression with the fourth "easy" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

As we can see in Figure 5.9, the predicted values have smaller differences with the ground
truth compared to the linear case. The error of the predicted values is around 40 euros.
Between the three exponents, the most efficient one is n = 4, with a slight lead against
the others.

38

Figure 5.10: Polynomial Regression with the fifth "easy" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.10 we can see that we have almost the same results as the linear regression
predictor. Still, the actual values differ from our predictions, as the error of the predicted
values is around 30 euros. Between the three exponents, the most efficient one is n = 4.

It seems that polynomial regression cannot deal with big data. The polynomial regres-
sion’s inability to handle extremely sensitive data, such as weather, should be noted as a
significant downside. Original data curves cannot even be kept up with by high orders.
As a result, the polynomial model will not consider many samplers (points), which will
have an impact on how the expected weather results are projected [25].

39

Predictor 3 (LSTM 1) Results

In order to implement the predictor we constructed a Recurrent NN using the LSTM
algorithm with specific architecture:

• 4x Hidden Layers with 32 Neurons each

• Dropout rate: 0.2

• Batch size: 16

• Epochs: 12

• Loss function: Mean Square Error (MSE)

• Optimizer: Adam

We present 5 different plots, one for each "easy" dataset. They present 24 timeslots of
the game, thus we have 24 predicted values and 24 ground truth points.

Figure 5.11: LSTM 1 with the first "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.11 we can observe a deviation between the predicted values and the actual
ones. The predicted line ranges from 70 to 80 euros, while the ground truth line ranges
from 0 to 130 euros.

40

Figure 5.12: LSTM 1 with the second "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.12 the results are obviously better than the previous dataset. Here the line of
the predicted values ranges from 30 to 35 euros and the line of the real values varies from
0 to 60 euros.

Figure 5.13: LSTM 1 with the third "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

Figure 5.13 depicts the least effective prediction of our first LSTM method. The devia-
tion between the two lines is great and the result is not the desired one. The error of the
predicted values ,in this figure, is around 50 euros.

41

Figure 5.14: LSTM 1 with the fourth "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.14 we see the best prediction so far for the first LSTM model. We can notice
that the actual values and the predicted ones are quite close, with some even matching
exactly with their corresponding values.

Figure 5.15: LSTM 1 with the fifth "easy" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

Figure 5.15 also represents a descent try of prediction as there is not much divergence
between the predicted values and the ground-truth ones. The error of the predicted values
is again around 50 euros.

Our first LSTM predictor is not effective at all, as we understand by looking the figures
above. The best prediction was made with the fourth dataset, however, our predicted
values had great divergence from the ground truth. Linear Regression and Polynomial
Regression seem to have better results than this method, however, we have to see the
metrics of each one and compare them for the most accurate conclusion.

42

Predictor 4 (LSTM 2) Results

For the second LSTM method, the models learn to predict 24 hours into the future, given
24 hours of the past. The blue line depicts the 24 inputs that we gave our predictor, the
green labels are the future actual values for the next 24 hours and the orange marks are
our 24 predictions. The main difference between the second is that the LSTM 1 model
predicts the entire output sequence in a single step, while LSTM 2 decomposes the pre-
diction into individual time steps. In that way, the output of each model can be fed back
into itself at each stage, and predictions can be generated based on the results of the step
before, as in Generating Sequences With Recurrent Neural Networks [26]. This type of
model has the advantage that it can be set up to produce output with a varying length.
LSTM’s 2 architecture is :

• Hidden Layers with 32 Neurons each

• Batch size: 32

• Epochs: 20

• Loss function: Mean Square Error (MSE)

• Optimizer: Adam

Figure 5.16: Auto-regressive feedback loop of the LSTM 2 method. Ideas were modified
from this tutorial[27]

43

Figure 5.17: LSTM 2 with the first "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

In figure 5.17 we observe a great result as the 24 ground truths and our predictions coin-
cide and the error of the predicted values is less than 5 euros.

Figure 5.18: LSTM 2 with the second "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

The 24 ground truths and our predictions are in perfect agreement, and the inaccuracy
of the predicted values is less than 5 euros, as shown in figure 5.18.

44

45

Figure 5.19: LSTM 2 with the third "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

Another very satisfying execution of our predictor is shown in figure 5.19. The predictions
and the actual values are very close to each other and the prediction error is approximately
4 euros.

Figure 5.20: LSTM 2 with the fourth "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

We can see a fantastic result in figure 5.20, where the 24 ground truths and our predictions

46

match up perfectly and the predicted values are off by less than 5 euros.

47

Figure 5.21: LSTM 2 with the fifth "easy" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

Figure 5.21 represents the best performance of our agent, since the predicted error is
below 3 euros.

The figures above prove that our second LSTM predictor is a very accurate one, since
ground truths and predicted values are almost in the same position. The deviation be-
tween them is very low and we have finally come to a desirable result at least for the
"easy" games in our settings.

48

5.2.2 Hard Games

In this section we present the results of the predictors for the "hard" datasets.

Predictor 1 (Linear Regression) Results

Figure 5.22: Linear Regression with the first "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

Figure 5.22 illustrates a great deviation between the predicted values and the ground
truth. A significant difference occurs between the projected values and the actual values,
meaning that in the first hard dataset our linear predictor did not perform as we expected.

Here in figure 5.23, we perceive the best outcome of our linear predictor with the hard
datasets. There exist a deviation between the ground truth and our predictions but it is
quite small compared to the other datasets.

Here at figure 5.24 we notice the second best try of our linear predictor. The deviation
between the predicted values and the real ones is small compared to the other datasets.
The error of the predicted values is around 40 euros.

Figure 5.25 also represents a quite big divergence between the predicted values and the
actual ones. The first line lies at 200 euros while the other ranges from 150 to 325 euros.

Figure 5.26 shows the greatest deviation of our try with the linear predictor. The pre-
dicted values and the actual ones do not coincide at all, meaning that our predictor is not
effective.

By watching the graphs above, we conclude that Linear Regression is not a compelling
method for predictions when it comes to "hard" datasets. Actual values have great di-

49

Figure 5.23: Linear Regression with the second "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

Figure 5.24: Linear Regression with the third "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

vergence from the predicted ones, showcasing the incompetence of this method for this
problem.

50

Figure 5.25: Linear Regression with the fourth "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

Figure 5.26: Linear Regression with the fifth "hard" dataset. The four smaller plots
compare the ground truth and the prediction results from different days. The green dot
shows the ground truth while the x depicts the linear model’s predictions.

51

Predictor 2 (Polynomial Regression) Results

Figure 5.27: Polynomial Regression with the first "hard" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.27 we notice that we have unsuccessful results compared to the linear regres-
sion predictor. The line of the predicted values and the line of the actual ones deviate a
lot, as the first one lies on 100 euros, while the second one ranges from 100 to 300 euros.
Between the three exponents, the most efficient one is n = 4, with a slight lead against
the others.

52

Figure 5.28: Polynomial Regression with the second "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three different expo-
nents. The green dot shows the ground truth while the x depicts the polynomial model’s
predictions.

In figure 5.28 we observe the best result of our polynomial regression predictor. The pre-
dicted values and the real ones come to a very satisfying deviation and between the three
exponents, the most efficient one is n = 6. The error of the predicted values is around 50
euros.

53

Figure 5.29: Polynomial Regression with the third "hard" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.29 we notice that the results are quite good compared to the other datasets,
using polynomial regression. The predicted line and the actual line do not deviate a lot
compared to the linear case. Between the three exponents, the most efficient one is n =
8.

54

Figure 5.30: Polynomial Regression with the fourth "hard" dataset. The three smaller
plots compare the ground truth and the prediction results for the three different expo-
nents. The green dot shows the ground truth while the x depicts the polynomial model’s
predictions.

In figure 5.30 we observe that we have not desirable results, as the predicted line and the
actual line do not coincide. For instance, the error of the predicted values is around 150
euros. Between the three exponents, the most efficient one is n = 6.

55

Figure 5.31: Polynomial Regression with the fifth "hard" dataset. The three smaller plots
compare the ground truth and the prediction results for the three different exponents. The
green dot shows the ground truth while the x depicts the polynomial model’s predictions.

In figure 5.31 we observe that we have the worst results of the polynomial regression pre-
dictor. The deviation between the real values and the predicted values is huge. Between
the three exponents, the most efficient one is n = 8, with a slight lead against the other two.

Polynomial Regression here does not give us a desirable outcome, as we detect that pre-
dicted values deviate to a great extent from ground truths. One of the main reasons that
deviation happens is overfitting. When a model fits too closely to the training dataset, it
is considered overfitted. The model captures noise in the data and not just the underlying
trends. This has the effect of making the model perform better on a training dataset than
on a testing dataset. Overfitting typically happens when a model has too many features
or is overly complex.

56

Predictor 3 (LSTM) Results

Figure 5.32: LSTM 1 with the first "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.32 we observe the results of our first LSTM predictor using the first hard
dataset. A deviation between the predicted values and the actual ones exists and the
error of the predicted values is around 30 euros.

Figure 5.33: LSTM 1 with the second "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

We can see a significant difference between the anticipated and real values in figure 5.32.
The line of the predicted values and the line of the actual ones deviate, as the first one
lies on 30 euros, while the second one ranges from 300 to 70 euros.

57

Figure 5.34: LSTM 1 with the third "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.3 we can observe a divergence between the predicted values and the actual
ones. The predicted line ranges from 50 to 60 euros, while the ground truth line ranges
from 40 to 90 euros. The error of the predicted values is around 35 euro.

Figure 5.35: LSTM 1 with the fourth "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.35 we can observe a deviation between the predicted values and the actual
ones. The predicted line lies at 40 euros, while the ground truth line ranges from 0 to 50
euros.

58

Figure 5.36: LSTM 1 with the fifth "hard" dataset. The green dot shows the prediction
while the x depicts the model’s ground truth.

In figure 5.36 we see the best prediction so far for the second LSTM model. We can notice
that the actual values and the predicted ones are quite close, with some even matching ex-
actly with their corresponding values. The error of the predicted values is around 30 euros.

The figures above indicate that, contrary to the "easy" datasets, our LSTM 1 predictor
gives us more accurate results. It seems to work better than both Linear and Polynomial
Regression and the metrics will confirm this statement.

59

Predictor 4 (LSTM) Results

Now we will present the experimental results from our best working predictor since it is
the most accurate of all the other methods that we experimented with. The blue line
depicts prices from 24 hours of the past, the green dots are the actual values and the
orange marks are our predictions.

Figure 5.37: LSTM 2 with the first "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

In figure 5.37 we observe a great result as the 24 ground truths and our predictions coin-
cide and the error of the predicted values is less than 5 euros.

The 24 ground truths and our predictions are in perfect agreement, and the inaccuracy
of the predicted values is less than 5 euros, as shown in figure 5.38.

60

Figure 5.38: LSTM 2 with the second "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

61

Figure 5.39: LSTM 2 with the third "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

Figure 5.39 represents the best performance of our agent, since the predicted error is
below 3 euros.

Figure 5.40: LSTM 2 with the fourth "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

We can see a fantastic result in figure 5.40, where the 24 ground truths and our predictions
match up perfectly and the predicted values are off by less than 5 euros.

62

Figure 5.41: LSTM 2 with the fifth "hard" dataset. The green dot shows the ground
truth, the x depicts the model’s predictions and the blue line represents our input from
the past 24 hours. The four smaller plots compare the ground truth and the prediction
results from different days.

In figure 5.41 the 24 ground facts and our predictions are in perfect agreement, and the
inaccuracy of the predicted values is approximately below 3 euros.

As we expected, LSTM 2 is again the most efficient method for predictions. We can
clearly see in the aforementioned figures, our predicted values are very close to the actual
ones, meaning that our predictor works ideally with both "easy" and "hard" datasets.

63

5.2.3 Observed Errors

A coherent way to evaluate every predictor’s efficiency is to calculate two metrics, the
Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE), related to the
deviation of our predictions from the actual results. MSE is a metric that tells us the
average squared difference between the predicted values and the actual values in a dataset.
The lower the MSE, the better a model fits a dataset.

MSE =
1

n
Σ(yi

real − yi
pred)2

Correspondingly RMSE is a metric that tells us the square root of the average squared
difference between the predicted values and the actual values in a dataset. The lower the
RMSE, the better a model fits a dataset.

RMSE =
√
MSE =

√
1

n
Σ(yireal − yipred)2

"Easy" Games Errors

MSE Linear Poly(4) Poly(6) Poly(8) LSTM 1 LSTM 2

dataset 1 143.02 139.38 139.02 139.42 786.11 0.4288
dataset 2 294.85 337.25 335.20 335.05 236.88 0.3488
dataset 3 137.05 198.25 200.71 202.53 2200.45 0.4086
dataset 4 269.91 228.31 230.93 229.84 155.42 0.3147
dataset 5 193.79 177.99 189.27 188.32 167.10 0.2864

Table 5.1: MSE for the "easy" datasets

Table 5.1 shows the Mean Squared Error of every prediction method that we have im-
plemented. We can easily detect that LSTM 2 is the most accurate method, as we have
already seen from the graphs, as it has by far the lowest MSE compared to the other
methods. LSTM 1 appears to have the greatest MSE, therefore it is the least effective
method. To assess the performance of the other two methods, we have to calculate the
averages because no clear answer can be deduced from these results.

RMSE Linear Poly(4) Poly(6) Poly(8) LSTM 1 LSTM 2

dataset 1 11.95 11.8 11.79 11.8 28.03 0.6531
dataset 2 11.70 18.36 18.30 18.30 15.39 0.5905
dataset 3 27.46 14.08 14.16 14.23 46.90 0.6392
dataset 4 16.42 15.11 15.19 15.16 12.46 0.5609
dataset 5 13.92 13.34 13.75 13.72 12.92 0.5351

Table 5.2: RMSE for the "easy" datasets

Table 5.2 shows the Root Mean Squared Error of our predictors. It is obvious again LSTM
2 has the lowest RMSE. Therefore this corroborates the findings of Table 5.2 and section
5.2.1 is the most preferable method in order to predict future values and correspondingly
LSTM 1 is the least accurate one.

64

"Hard" Games Errors

MSE Linear Poly(4) Poly(6) Poly(8) LSTM 1 LSTM 2

dataset 1 7,877 12,864 12,985 13,019 439.97 0.2840
dataset 2 226.21 171.86 169.09 170.67 321.87 0.3075
dataset 3 754.55 751.73 750.96 748.47 331.96 0.2606
dataset 4 4,430 9,034 8,989 9,131 346.13 0.9221
dataset 5 12,395 13,927 13,871 13,840 308.78 0.3741

Table 5.3: MSE for the "hard" datasets

Here at 5.3 we have the Mean Squared Error of every prediction method for the "hard"
datasets. LSTM 2 is the most accurate method, no matter the difficulty of the dataset,
as it has again the lowest MSE compared to the other methods. Contrary to the "easy"
datasets, LSTM 1 here is very accurate and it comes second to our ranking list. Linear
and Polynomial Regression are not desirable at all with these datasets, as the MSE’s of
both methods are massive.

RMSE Linear Poly(4) Poly(6) Poly(8) LSTM 1 LSTM 2

dataset 1 88.75 113.42 113.95 114.10 20.97 0.5329
dataset 2 15.04 13.10 13.00 13.06 17.94 0.5545
dataset 3 27.46 27.41 27.40 27.35 18.21 0.5104
dataset 4 66.56 95.04 94.81 95.54 18.60 0.9602
dataset 5 111.33 118.01 117.77 117.64 17.57 0.6116

Table 5.4: RMSE for the "hard" datasets

Table 5.4 shows us the Root Mean Squared Error of our predictors. LSTM 2 has the lowest
RMSE, therefore this verifies it as the most preferable method for predicting future values
while Linear and Polynomial Regression are the least accurate ones.

Averages

MSE Linear Poly(4) Poly(6) Poly(8) LSTM 1 LSTM 2

Easy 207.724 216.236 219.026 219.032 709.192 0.3574
Hard 5,136 7,349 7,352 7,381 349.67 0.4296

Table 5.5: Average MSE for the "hard" datasets

RMSE Linear Poly(4) Poly(6) Poly(8) LSTM 1 LSTM 2

Easy 16.29 14.53 14.74 14.64 23.14 0.59576
Hard 41.82 73.39 73.386 73.538 18.658 0.63392

Table 5.6: Average RMSE for the "hard" datasets

In Tables 5.5 and 5.6 we have calculated the average MSE and RMSE of every predictor
for both easy and hard datasets. We can deduce by the results that all predictors except

65

from LSTM 1 performed much better with the easy datasets as the divergence between
the numbers is huge. The same, but with a lower order of magnitude, applies to the
RMSE metrics. All except for the first LSTM method were accurate as they presented
lower error rates.

The results from both easy and hard datasets indicate that our model works better with
the LSTM 2 predictor. It is the most accurate method according to our experimental
results, as it has the lowest error rates and in its graphs, ground truths and prediction
values in many cases almost coincide.

5.3 Wholesale Market Results

As discussed previously, we have implemented some improvements in the Monte Carlo Tree
Search Algorithm of 2020’s TUC-TAC and we tested its effectiveness by comparing it with
multiple other agent variations. The first one is the Sample Broker, the default agent that
PowerTAC gives us to start with. Sample Broker has a very simple implementation in its
wholesale market and it does not include an MCTS algorithm. Furthermore, we conducted
experiments with TUC-TAC 2020 (LSTM2), which is the TUC-TAC 2020 agent that has
incorporated an LSTM2 predictor for more accurate results. To have a solid comparison
of the results between the agents we also had to include a version of the TUC-TAC
agent without the new predictor, so we can see that there have been actual improvements
to the Monte Carlo Tree Search Algorithm. For this particular reason, we also tested
the agent TUC-TAC 2020 (new MCTS), which has the old prediction method but the
improved MCTS algorithm. Sample Broker is the basic agent that we discussed before,
TUC-TAC 2020 is the first version of our agent that has a simple predictor and an MCTS
implementation but not the improved one. Then we have TUC-TAC 2020 (LSTM2), which
retains the optimal predictor and the old version of MCTS. TUC-TAC 2020 (new MCTS)
consists of the old prediction method, but the improved MCTS algorithm. Lastly, we
have TUC-TAC 2022 which uses the LSTM2 prediction method and the improved Monte
Carlo Tree Search algorithm. The metrics that we took into consideration for comparing
these three agents are the following:

• Total Retail Balance: The earnings our agent made from selling energy to con-
sumers through tariffs. We want this value to be as high as possible.

• Total Retail kWh: The amount of kWh our agent sold to consumers. We want
this value to be as high as possible.

• Total Wholesale Balance: The amount our agent paid or earned from buying or
selling energy in wholesale’s market double auction. We want this value to be as
high as possible.

• Total Wholesale kWh: The amount of kWh our agent bought/sold in wholesale’s
market double auction. We want this value to be as high as possible.

• Total Imbalance Penalty: A penalty fee that we have to pay if we are not able
to buy all the energy that we need and we “owe energy to our clients. We want this
value to be as low as possible.

• Total kWh Imbalance: The total amount of kWh that had to be bought but were
not. We want this value to be as low as possible.

66

• Total Average Selling Price: The average price our agent sells energy (per kWh).
We want this value to be as high as possible.

In this section, we present the results from 10 Games, 5 with the "easy" datasets and 5
with the "hard" ones, for 1500 timeslots each. For each dataset, we have plotted 4 different
images, from 4 different days. Highlighted numbers represent the best-performing agent
in a specific evaluation metric category.

5.3.1 Easy Games

Game 1
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,161,082 684,251 712,233 569,046 627,775
Retail kWh 15,319,242 17,331,504 17,714,986 18,014,346 17,368,024
Wholesale Balance 261,806 251,013 227,310 189,789 181,647
Wholesale kWh 56,211,71 50,305,171 41,136,075 54,723,331 49,169,192
Imbalance Penalty 3,228,110 3,404,894 3,549,583 3,354,726 2,179,554
kWh Imbalance 10,089,637 15,623,575 16,835,411 15,517,659 8,779,922
Avg Selling Price 22.99 30.84 28.66 33.33 39.48

Table 5.7: Wholesale Market Results for Game 1

In Table 5.7 we can notice that TUC TAC 2022 performs better at all the categories that
we aimed to optimize. The average sale per kWh has risen, while the kWh imbalance and
the total charge have declined. As we can see from the data above, the inclusion of the
LSTM 2 predictor as well as the integration of the Monte Carlo Tree Search Algorithm
has helped with all the areas that we intended to improve.

Game 2
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,106,423 601,448 678,724 623,781 576,504
Retail kWh 14,623,269 18,918,778 19,092,581 18,519,559 17,832,905
Wholesale Balance 300,337 293,313 268,789 197,775 233,503
Wholesale kWh 60,834,628 54,137,711 43,565,037 58,483,312 52,377,660
Imbalance Penalty 4,299,771 4,759,642 4,930,928 4,304,485 3,314,501
kWh Imbalance 15,608,123 23,780,158 25,283,043 21,300,039 14,879,724
Avg Selling Price 25.46 31.09 29.54 33.44 42.75

Table 5.8: Wholesale Market Results for Game 2

Table 5.8 shows that TUC TAC 2022 performs better in every area where we tried to
improve it. While the kWh imbalance and the overall charge have decreased, the average
sale per kWh has increased. The incorporation of the LSTM 2 predictor along with the
integration of the Monte Carlo Tree Search Algorithm has assisted with all the categories

67

that we aimed to improve as we can clearly see from the numbers above.

Game 3
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,018,929 712,464 641,607 606,284 642,429
Retail kWh 13,418,713 16,148,729 16,446,728 16,076,478 15,621,780
Wholesale Balance 296,762 299,344 238,494 206,626 212,977
Wholesale kWh 51,886,476 45,137,603 39,378,367 56,856,636 50,613,704
Imbalance Penalty 6,537,826 7,894,708 5,452,547 4,260,570 3,144,003
kWh Imbalance 21,278,426 31,273,478 23,488,415 17,413,045 13,288,216
Avg Selling Price 24.57 31.84 29.59 38.22 46.38

Table 5.9: Wholesale Market Results for Game 3

TUC TAC 2022 performs better in every area where we attempted to make improvements,
as seen in Table 5.9. The average sale per kWh has increased while the kWh imbalance
and total charge have reduced. As we can see from the data above, the inclusion of the
LSTM 2 predictor as well as the integration of the Monte Carlo Tree Search Algorithm
has helped with all the areas that we intended to improve.

Game 4
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,259,756 759,530 664,093 696,765 675,111
Retail kWh 16,645,615 19,716,246 19,939,754 19,608,000 18,988,996
Wholesale Balance 220,217 196,754 200,956 139,062 178,562
Wholesale kWh 62,250,876 52,932,244 43,561,435 54,451,878 48,570,076
Imbalance Penalty 1,153,622 2,659,475 2,343,957 2,156,683 1,415,395
kWh Imbalance 414,088 11,666,555 9,446,477 7,634,207 2,879,205
Avg Selling Price 21.21 28.81 28.58 28.36 34.05

Table 5.10: Wholesale Market Results for Game 4

We can see from Table 5.10 that TUC TAC 2022 performs better in every area where
we tried to enhance it. kWh imbalance and total charge have decreased, but the average
sale per kWh has increased. As we can see from the data above, the LSTM 2 predictor
and Monte Carlo Tree Search Algorithm have helped in all the areas where we wanted to
make improvements.

68

Game 5
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,045,170 570,335 597,333 798,332 653,401
Retail kWh 13,805,294 17,586,837 16,887,005 19,775,841 16,085,445
Wholesale Balance 283,567 293,045 298,991 336,467 209,644
Wholesale kWh 65,480,217 53,623,015 44,565,535 47,569,245 51,982,762
Imbalance Penalty 1,454,595 4,185,356 3,726,703 6,107,284 2,429,584
kWh Imbalance 1,793,111 19,052,757 16,237,154 27,833,945 9,157,177
Avg Selling Price 22.42 30.40 29.31 31.69 34.87

Table 5.11: Wholesale Market Results for Game 5

In Table 5.11 we can notice that TUC TAC 2022 performs better at all the categories that
we aimed to optimize. The average sale per kWh has risen, while the kWh imbalance and
the total charge have declined. As we can see from the data above, the inclusion of the
LSTM 2 predictor as well as the integration of the Monte Carlo Tree Search Algorithm
has helped with all the areas that we intended to improve.

69

Average
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,118,272 665,605 668,492 658,841 635,044
Retail kWh 14,762,426 14,392,418 18,016,210 18,398,844 17,179,430
Wholesale Balance 271,737 266,693 246,908 213,944 203,266
Wholesale kWh 59,332,793 51,227,148 42,441,290 54,416,880 50,542,679
Imbalance Penalty 3,334,784 4,580,815 4,000,743 4,036,750 2,496,607
kWh Imbalance 9,836,677 20,279,304 18,258,100 17,939,780 9,796,849
Avg Selling Price 23.33 30.59 29.13 33 39.50

Table 5.12: Average Wholesale Market Results for Easy Games

Table 5.12 shows the averages of every agent from the 5 easy dataset games.

From the tables above we can notice that TUC-TAC 2022 is the best performing agent
of all four. It sells energy at a higher price than Sample Broker, TUC-TAC 2020, TUC-
TAC 2020 (LSTM2), and TUC-TAC 2020 (new MCTS) do and it has decreased the Total
Charge compared to the other agents, meaning that our agent satisfies our client’s needs
and does not owe energy to them. This also leads to a lower kWh imbalance and we can
also conclude that by looking at the Tables. This makes sense not only because it has an
improved version of the MCTS algorithm but also because it has the LSTM2 predictor
implemented, making its buying and selling actions much more profitable. TUC-TAC
2020 (LSTM2) does not work as expected since it has a higher amount of Total Charge
and kWh imbalance compared to TUC-TAC 2020. TUC-TAC 2020 (LSTM2) also under-
performs compared to TUC-TAC 2020 (new MCTS) as we can see, since the second one
sells energy at a higher price and has a lower Total Charge and kWh Imbalance. This
means that our improvement has made a difference and combined with the right predic-
tion method can lead to a desirable result.

70

5.3.2 Hard Games

Game 6
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,385,510 962,072 1,031,247 856,236 925,307
Retail kWh 18,302,992 22,016,266 21,860,860 21,113,038 22,431,176
Wholesale Balance 245,823 161,626 202,862 183,074 210,602
Wholesale kWh 47,407,940 50,874,266 39,482,092 57,017,501 51,141,310
Imbalance Penalty 5,103,532 4,127,445 4,843,460 1,994,133 2,241,592
kWh Imbalance 11,292,632 8,223,403 12,333,559 969,432 2,048,637
Avg Selling Price 24.15 29.09 28.80 39.12 46.1

Table 5.13: Wholesale Market Results for Game 6

In Table 5.13 we notice different results compared to the other tables. Here, TUC TAC
2020 new MCTS performs better, as it has less Total Charge and kWh Imbalance com-
pared to the other agents. However, TUC TAC 2022 has again achieved to rise the average
sale of the kWh.

Game 7
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,069,176 718,684 670,174 726,264 632,113
Retail kWh 14,124,094 18,275,306 17,309,926 17,066,679 16,231,280
Wholesale Balance 240,934 245,248 158,373 146,221 178,721
Wholesale kWh 61,701,900 53,490,969 48,661,490 58,976,059 53,950,690
Imbalance Penalty 3,204,016 4,359,164 3,202,315 2,740,855 2,115,002
kWh Imbalance 9,548,288 19,450,364 13,328,501 13,662,065 8,380,753
Avg Selling Price 21.80 30.99 28.81 32.16 39.35

Table 5.14: Wholesale Market Results for Game 7

Table 5.14 shows that TUC TAC 2022 performs better in every area where we tried to
improve it. While the kWh imbalance and the overall charge have decreased, the average
sale per kWh has increased. The incorporation of the LSTM 2 predictor along with the
integration of the Monte Carlo Tree Search Algorithm has assisted with all the categories
that we aimed to improve as we can clearly see from the numbers above.

71

Game 8
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,302,000 798,332 670,863 689,551 616,236
Retail kWh 17,195,805 19,775,841 20,236,817 20,523,285 18,984,145
Wholesale Balance 401,902 336,467 302,034 278,056 260,470
Wholesale kWh 49,284,366 47,569,245 35,215,605 58,715,303 49,470,299
Imbalance Penalty 7,389,105 6,107,284 6,219,380 4,798,049 3,185,106
kWh Imbalance 22,560,475 27,833,945 25,709,010 19,318,039 11,710,998
Avg Selling Price 27.59 31.69 29.74 38.33 43.35

Table 5.15: Wholesale Market Results for Game 8

In Table 5.15 we can notice that TUC TAC 2022 performs better at all the categories that
we aimed to optimize. The average sale per kWh has risen, while the kWh imbalance and
the total charge have declined. As we can see from the data above, the inclusion of the
LSTM 2 predictor as well as the integration of the Monte Carlo Tree Search Algorithm
has helped with all the areas that we intended to improve.

Game 9
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,379,664 984,276 833,737 997,119 831,435
Retail kWh 18,252,226 26,152,775 22,263,002 23,395,772 22,825,668
Wholesale Balance 224,228 207,034 65,190 428,057 340,495
Wholesale kWh 35,345,213 37,086,738 11,122,206 52,280,195 46,459,272
Imbalance Penalty 12,789,434 12,306,536 9,485,572 6,364,038 4,617,453
kWh Imbalance 23,871,158 22,666,119 12,431,486 5,064,049 3,167,264
Avg Selling Price 24.26 30.8 29.03 71.51 72.71

Table 5.16: Wholesale Market Results for Game 9

TUC TAC 2022 performs better in every area where we attempted to make improvements,
as seen in Table 5.16. The average sale per kWh has increased while the kWh imbalance
and total charge have reduced. As we can see from the data above, the inclusion of the
LSTM 2 predictor as well as the integration of the Monte Carlo Tree Search Algorithm
has helped with all the areas that we intended to improve.

72

Game 10
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,365,339 1,464,437 1,420,079 864,916 834,367
Retail kWh 18,054,485 24,632,508 24,726,180 20,957,228 22,002,045
Wholesale Balance 266,538 303,487 248,553 362,956 380,487
Wholesale kWh 46,423,086 41,573,614 34,698,296 56,852,168 50,071,344
Imbalance Penalty 10,209,012 11,357,822 9,299,839 3,784,663 4,442,230
kWh Imbalance 17,318,530 21,605,974 19,777,612 37,864 2,894,616
Avg Selling Price 22.75 31.46 29.16 59.56 71.16

Table 5.17: Wholesale Market Results for Game 10

We see distinct outcomes in Table 5.17 in comparison to the other tables. Since TUC
TAC 2020 new MCTS has lower Total Charge and kWh Imbalance compared to the other
agents, it performs better in this situation. However, TUC TAC 2022 has once more
succeeded in increasing the average sale of kWh.

Average
Metrics (Total) Sample

Broker
TUC-TAC
2020

TUC-TAC
2020 LSTM2

TUC-TAC
2020 new
MCTS

TUC-TAC
2022

Retail Balance 1,300,337 985,560 925,220 826,817 767,892
Retail kWh 17,185,920 22,170,539 21,279,357 20,611,200 20,494,863
Wholesale Balance 275,885 250,772 195,402 279,673 274,155
Wholesale kWh 48,034,101 37,556,366 33,835,937 56,768,245 50,218,583
Imbalance Penalty 7,739,019 7,651,650 6,610,113 3,936,347 3,320,277
kWh Imbalance 16,918,261 19,955,961 16,716,033 7,810,290 5,640,454
Avg Selling Price 24.11 30.80 29.11 48.36 54.53

Table 5.18: Average Wholesale Market Results for Hard Games

In Table 5.18 we can see the averages of every agent from the 5 hard dataset games.

73

In these experiments, the tables show us that we get better results than what we ex-
pected. We can notice again that TUC-TAC 2020 (new_MCTS) carries out almost all
experiments better than TUC-TAC 2020 and TUC-TAC 2020 (LSTM2) in all aspects
compared. It sells energy at a higher price, whereas is charged less and has a lower kWh
imbalance. Running the games with the hard datasets makes it more difficult for Sample
Broker and TUC-TAC 2020 to buy and sell energy, in opposition to TUC-TAC 2022 which
sells energy at a very high price, almost two times the value of TUC-TAC’s 2020. Total
Charge and Total kWh Imbalance have been reduced a lot compared to the other two
brokers and in general, TUC-TAC 2022 is performing better. Again we can see that agent
TUC-TAC 2020 (new_MCTS) performs better than TUC-TAC 2020, meaning that our
changes were useful and made an actual improvement to the broker. On the contrary,
TUC-TAC 2020 (LSTM2) performs better with the hard datasets, as it has less Total
Charge and less kWh imbalance compared to TUC-TAC 2020.

In general, from the experiments conducted we can tell with absolute certainty that
TUC-TAC 2022, which consists of the LSTM2 predictor and the improved version of
the Monte Carlo Tree Search algorithm, is the optimal agent compared to the other four
brokers. We have to mention that our work on MCTS was efficient since TUC-TAC 2020
(new_MCTS) performed better than TUC-TAC 2020 and TUC-TAC 2020 (LSTM2) in all
of the categories of comparison that we tested it. The addition of the prediction method
was the combination that we needed to have even better results than before.

74

Chapter 6

Conclusions

Our main target was to improve the performance of agent TUC TAC 2020 with the ac-
tions that were mentioned above and to participate in PowerTAC 2022. The problem was
approached with Machine Learning Techniques mostly and we can say that the results
were desirable ones. Our current agent performs better, as it sells energy more profitably
and pays far fewer penalties.
As far as it concerns the prediction methods, we concluded that Linear and Polynomial
Regression were not suitable for our problem, in contrast to the LSTM method that fitted
perfectly and helped us complete our work. In Wholesale Market, many variations of the
Monte Carlo Tree Search Algorithm were tested, from changing the strategy to alternat-
ing the algorithm’s parameters and we came to an end with the current implementation.

6.1 Future Work

Despite the fact that a variety of techniques were used for this project, there is still
an opportunity for enhancements and additions. To begin with, the wholesale market
module can become even better than it currently is and bring fewer penalty fees and
kWh imbalance. Our current numbers are already low compared to TUC TAC 2020,
but they can be reduced further. This can be achieved by improving our current Monte
Carlo Tree Search Algorithm by adding more iterations or using a better bidding strategy.

Moreover, besides the clearing price predictor, a net demand predictor can be added
to our module. This will result in having fewer Transmission Capacity Fees and will make
our agent more efficient, as we will be informed about future high risk demand peaks.
More tariff types can also lead to a significant upgrade of our agent, as we will have
increased profits compared to that of the other competitors.

We could also experiment with other artificial intelligence methods that are either tested
by successful PowerTAC brokers or are celebrated in related research fields. As it concerns
the predictive methods, Gated recurrent units (GRU), a gating mechanism in recurrent
neural networks similar to LSTM, could be a very accurate method for our forecast pre-
dictions. Moreover, Belief Networks, which describe the database structure using a tree
format, could also be used to provide valid prediction results. Regarding the bidding
strategies of our agent, besides the Monte Carlo Tree Search Algorithm, we could im-

75

plement other methods such as the Cournot quantity model or Nash equilibrium for the
bids that our agent has to make at double auction [28]. Finally, we could also experiment
with an interruptible demand auction model for congestion relief in hour-ahead bilateral
contracts dominating the electricity market. [28].

76

Bibliography

[1] W. Ketter, J. Collins, and M. de Weerdt, “The 2020 power trading agent competi-
tion,” Environmental Economics eJournal, 2020.

[2] W. Ketter, J. Collins, and P. P. Reddy, “Power tac: A competitive economic simu-
lation of the smart grid,” Energy Economics, vol. 39, pp. 262–270, 2013.

[3] S. Orfanoudakis, S. Kontos, C. Akasiadis, and G. Chalkiadakis, “Aiming for half gets
you to the top: Winning powertac 2020,” in In Proc. of the 18th European Conference
on Multi-Agent Systems (EUMAS-2021), pages 144-159, A Virtual Conference -
Online, June 2021., 2021.

[4] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion
detection systems: A survey,” Applied Sciences, 2019.

[5] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” IEEE
Transactions on Neural Networks, vol. 16, 2005.

[6] B. Lim and S. Zohren, “Time-series forecasting with deep learning: A survey,” Philo-
sophical Transactions of the Royal Society A, vol. 379, 2021.

[7] A. A. Ismail, M. K. Gunady, H. C. Bravo, and S. Feizi, “Benchmarking deep learning
interpretability in time series predictions,” ArXiv, vol. abs/2010.13924, 2020.

[8] J. Wang, J. Wang, Z. G. Zhang, and S.-P. Guo, “Forecasting stock indices with back
propagation neural network,” Expert Syst. Appl., vol. 38, pp. 14 346–14 355, 2011.

[9] J. Lago, F. D. Ridder, and B. D. Schutter, “Forecasting spot electricity prices: Deep
learning approaches and empirical comparison of traditional algorithms,” Applied
Energy, 2018.

[10] T. G. Fischer and C. Krauss, “Deep learning with long short-term memory networks
for financial market predictions,” Eur. J. Oper. Res., vol. 270, pp. 654–669, 2018.

[11] A. M. Sykulski, A. C. Chapman, E. M. de Cote, and N. R. Jennings, “Ea2: The
winning strategy for the inaugural lemonade stand game tournament,” in ECAI,
2010.

[12] M. M. P. Chowdhury, “Predicting prices in the power tac wholesale energy market,”
in AAAI, 2016.

[13] K. Stefanos, "energy consumption prediction via machine learning algorithms", se-
nior undergraduate diploma thesis, school of ece, technical university of crete, 2021.

[14] S. Özdemir and R. Unland, “Agentude 17 : Imbalance management of a retailer
agent to exploit balancing market incentives in a smart grid ecosystem,” 2018.

[15] ——, “Wholesale bidding approaches of an autonomous trading agent in electricity
markets,” in SmartER Europe, 2016.

77

[16] D. Grgić, H. Vdovic, J. Babic, and V. Podobnik, “Crocodileagent 2018: Robust
agent-based mechanisms for power trading in competitive environments,” Comput.
Sci. Inf. Syst., vol. 16, pp. 105–129, 2019.

[17] J. Babic and V. Podobnik, “Adaptive bidding for electricity wholesale markets in a
smart grid,” 2014.

[18] S. Ghosh, E. Subramanian, S. P. Bhat, S. Gujar, and P. Paruchuri, “Vidyutvanika:
A reinforcement learning based broker agent for a power trading competition,” in
AAAI, 2019.

[19] D. Urieli and P. Stone, “An mdp-based winning approach to autonomous power
trading: Formalization and empirical analysis,” in AAAI Workshop: AI for Smart
Grids and Smart Buildings, 2016.

[20] A. K. Laha, “Linear regression for predictive analytics,” Advances in Analytics and
Applications, 2018.

[21] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-
term memory (lstm) network,” ArXiv, vol. abs/1808.03314, 2018.

[22] N. K. Manaswi, “Rnn and lstm,” in Deep Learning with Applications Using Python
: Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras.
Berkeley, CA: Apress, 2018, pp. 115–126, isbn: 978-1-4842-3516-4. doi: 10.1007/
978-1-4842-3516-4_9. [Online]. Available: https://doi.org/10.1007/978-1-
4842-3516-4_9.

[23] Y. Zhang, X. Hao, and Y. Liu, “Simplifying long short-term memory for fast training
and time series prediction,” Journal of Physics: Conference Series, 2019.

[24] M. M. P. Chowdhury, C. Kiekintveld, S. Tran, and W. G. S. Yeoh, “Bidding in
periodic double auctions using heuristics and dynamic monte carlo tree search,” in
IJCAI, 2018.

[25] O. Weslati, S. Bouaziz, and M. M. Serbaji, “The efficiency of polynomial regression
algorithms and pearson correlation (r) in visualizing and forecasting weather change
scenarios,” in Recent Advances in Polynomials, K. Shah, Ed., Rijeka: IntechOpen,
2022, ch. 7. doi: 10.5772/intechopen.102726. [Online]. Available: https://doi.
org/10.5772/intechopen.102726.

[26] A. Graves, “Generating sequences with recurrent neural networks,” ArXiv, vol. abs/1308.0850,
2013.

[27] Tensorflow, Time series forecasting, https://www.tensorflow.org/tutorials/
structured_data/time_series#advanced_autoregressive_model.

[28] M. Prabavathi and R. Gnanadass, “Energy bidding strategies for restructured elec-
tricity market,” International Journal of Electrical Power Energy Systems, vol. 64,
pp. 956–966, 2015, issn: 0142-0615. doi: https://doi.org/10.1016/j.ijepes.
2014.08.018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0142061514005444.

78

https://doi.org/10.1007/978-1-4842-3516-4_9
https://doi.org/10.1007/978-1-4842-3516-4_9
https://doi.org/10.1007/978-1-4842-3516-4_9
https://doi.org/10.1007/978-1-4842-3516-4_9
https://doi.org/10.5772/intechopen.102726
https://doi.org/10.5772/intechopen.102726
https://doi.org/10.5772/intechopen.102726
https://www.tensorflow.org/tutorials/structured_data/time_series##advanced_autoregressive_model
https://www.tensorflow.org/tutorials/structured_data/time_series##advanced_autoregressive_model
https://doi.org/https://doi.org/10.1016/j.ijepes.2014.08.018
https://doi.org/https://doi.org/10.1016/j.ijepes.2014.08.018
https://www.sciencedirect.com/science/article/pii/S0142061514005444
https://www.sciencedirect.com/science/article/pii/S0142061514005444

	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis Contributions
	Overview of the Thesis

	Background
	Machine Learning
	Deep Learning
	Related Work

	PowerTAC: The Power Trading Agent Competition
	Competition Overview
	Simulation Time
	Brokers
	Weather Reports
	Wholesale Market
	Trading and time slots available for trade
	Market clearing
	Balancing Markets
	Distribution utility

	Successful PowerTAC Agents
	Predictors in PowerTAC agents

	Our Approach
	Predicting Methods
	Linear Regression
	Polynomial Regression
	RNN and LSTM

	Sockets
	The Wholesale Market Module
	Monte Carlo Tree Search
	Monte Carlo Tree Search in TUC TAC

	Experimental Results
	Preparation and Early Development
	Dataset Construction
	Dataset Collection

	Predictor Results
	Easy Games
	Hard Games
	Observed Errors

	Wholesale Market Results
	Easy Games
	Hard Games

	Conclusions
	Future Work

	Bibliography

