
PHYSICAL REVIEW RESEARCH 3, 043027 (2021)

Gradient catastrophe of nonlinear photonic valley-Hall edge pulses
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We derive nonlinear wave equations describing the propagation of slowly varying wave packets formed by
topological valley-Hall edge states. We show that edge pulses break up even in the absence of spatial dispersion
due to nonlinear self-steepening. Self-steepening leads to the previously unattended effect of a gradient catastro-
phe, which develops in a finite time determined by the ratio between the pulse’s nonlinear frequency shift and the
size of the topological band gap. Taking the weak spatial dispersion into account results in the formation of stable
edge quasisolitons. Our findings are generic to systems governed by Dirac-like Hamiltonians and validated by
numerical modeling of pulse propagation along a valley-Hall domain wall in staggered honeycomb waveguide
lattices with Kerr nonlinearity.
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I. INTRODUCTION

The combination of topological band structures with mean-
field interactions not only gives rise to rich nonlinear wave
physics [1,2] but is also anticipated to unlock advanced func-
tionalities, such as magnet-free nonreciprocity [3], tunable
and robust waveguiding [4,5], and novel sources of classi-
cal and quantum light [6–11]. Valley-Hall photonic crystals
[12–24] show great promise for these applications due to their
ability to combine slow-light enhancement of nonlinear ef-
fects with topological protection against disorder, which limits
the performance of conventional photonic crystal waveguides
[25–27].

Accurate modeling of pulse propagation through pho-
tonic crystal waveguides in the slow light regime requires
taking into account the dispersion in the effective non-
linearity strength, which can induce effects such as pulse
self-steepening and supercontinuum generation [28–31]. De-
spite the proven importance of these effects in applications
[32–34], analysis of nonlinear light propagation in topological
photonic structures most often assumes nondispersive nonlin-
earities, in both the underlying material response [35–45] and
the effective models describing the propagation of nonlinear
edge states [46–50]. The simplest effective model is the cubic
nonlinear Schrödinger equation (NLSE), which describes the
self-focusing dynamics of edge wave packets independent of
the properties of the topological band gap, such as its size.

More sophisticated effective models such as nonlinear
Dirac models explicitly include the nontrivial spinlike degrees
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of freedom required to create topological band gaps [51–55].
In the bulk, the nonlinear Dirac model supports self-induced
domain walls and solitons whose stability and degree of lo-
calization are sensitive to the gap size. Infinitely extended
(plane-wave-like) nonlinear edge states can be obtained an-
alytically and exhibit similar features. However, the nonlinear
dynamics of localized edge pulses within the nonlinear Dirac
model framework were not yet considered.

In this paper we study an analytically solvable nonlin-
ear Dirac model (NDM) describing topological edge pulses,
revealing that nonlinear topological edge states exhibit a
self-steepening nonlinearity when the pulse self-frequency
modulation becomes comparable to the width of the topo-
logical band gap. The self-steepening nonlinearity leads to
the formation of a gradient catastrophe of edge wave packets
within a finite propagation time proportional to the pulse
width. Taking the weak spatial dispersion of the topological
edge modes into account regularizes the catastrophe and re-
sults in the formation of stable edge solitons for sufficiently
long pulses. We validate our analysis using numerical sim-
ulations of beam propagation in a laser-written valley-Hall
waveguide lattice, demonstrating that this effect should be ob-
servable even for relatively weak nonlinearities. Our findings
suggest valley-Hall photonic crystal waveguides will provide
a fertile setting for observing and harnessing higher-order
nonlinear optical effects.

II. Nonlinear Dirac Model

We consider a generic continuum Dirac model of
topological photonic lattices with incorporated nonlinear
terms. The evolution of a spinor wave-function �(x, y, t ) =
[�1(x, y, t ); �2(x, y, t )]T in the vicinity of a band cross-
ing point (topological phase transition) is governed by the
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FIG. 1. (a) Dimerized photonic graphene lattice with staggered
sublattice potential. Here κ denotes the tunneling coefficient between
waveguides, a0 is the distance between neighboring waveguides,
and the round arrow g illustrates the nonlinear self-action effect.
(b) Transverse profile I(y) and (c) in-plane intensity distribution
I(x, y) = |ψ1(x, y)|2 + |ψ2(x, y)|2 of the nonlinear edge wave prop-
agating along the x axis and bound to the domain wall located at
y = 0, where the effective mass M(y) changes sign. Parameters are
M0 = 1, g = 0.75.

nonlinear Dirac equation [51,54,55]

i∂t� = (ĤD(δk) + ĤNL )�; (1)

ĤD(δk) = δkxσ̂x + δkyσ̂y + Mσ̂z, (2)

where δk = (δkx, δky) ≡ −i(∂x, ∂y) is the momentum, M
is a detuning between two sublattices or spin states, and
ĤNL = −gdiag[|�1|2; |�2|2] is a local nondispersive Kerr
nonlinearity.

As a specific example, the model (1) can be implemented
in nonlinear photonic graphene with a staggered sublattice
potential as illustrated in Fig. 1(a). A dimerized graphene
lattice is composed of single-mode dielectric waveguides with
local Kerr nonlinearity. The effective mass M characterizes
a detuning between propagation constants in the waveguides
of two sublattices. The form of Hamiltonian operator (2)
assumes normalization of the transverse coordinates x, y and
evolution variable in the propagation direction t ∼ z/vD to the
Dirac velocity vD = 3κa0/2 defined by the lattice parameters,
a coupling constant κ and a distance a0 between two neigh-
boring waveguides [23,55]. This continuum model is valid
provided |κ| � 2|M| [23].

The valley-Hall domain wall is created between two insu-
lators characterized by different signs of the mass. We take a
signum distribution,

M(y) =
{

M0, y > 0,

−M0, y < 0,
(3)

and without loss of generality assume M0 > 0 in the upper
half-space. In the lattice model, mass inversion corresponds
to interfacing two honeycomb lattices with opposite parity
breaking [16,23,56]. The domain wall hosts chiral valley edge

states whose origin in the linear case can be traced to the
general principle of bulk-boundary correspondence and a dif-
ference of ±1 between valley Chern numbers across a domain
wall [57,58]. Being defined by bulk properties, such edge
states are robust to relatively small perturbations precluding
intervalley mixing. Modifications of the bulk spectrum in the
nonlinear regime, including the nonlinear Dirac cone bifurca-
tion, are discussed in Refs. [52,59]. The valley Chern number
formally stays the same as its linear counterpart until the upper
band of nonlinear Bloch waves forms a self-crossing loop at
above-threshold bulk intensities gI � 2M0 [52].

In Ref. [55] we derived exact analytic solutions for the
propagating nonlinear valley edge modes bound to the in-
terface y = 0: �(y, x, t ) = [ψ0

1 (y, ω, k); ψ0
2 (y, ω, k)]T eikx−iωt .

These nonlinear edge states originate from their linear coun-
terparts. Based on the close connections between nonlinear
edge states and self-trapped Dirac solitons in topological band
gaps revealed in Ref. [55], the nonlinear edge mode dispersion
can be obtained as

ω + k = −gI1/2, (4)

with the transverse profile of the edge state determined by
the intensity at the interface I1 = |ψ1,2(y = 0)|2 (see Ap-
pendix A). In Figs. 1(b) and 1(c) we show the plane-wave-like
profile of the nonlinear edge mode with fixed wave-number k
parallel to the edge.

III. EDGE PULSE DYNAMICS

Now we consider the dynamics of finite edge pulses con-
structed as a superposition of the valley edge modes. Using
the global parity symmetry with respect to the interface and
analytical solutions for the edge states (see Appendix A), we
calculate two characteristics of the edge states via integration
in the upper half plane y > 0: the power P and the spin Sx,

P =
∫ ∞

0
ψ†ψdy, Sx = 1

2

∫ ∞

0
ψ†σ̂xψdy , (5)

and identify a functional relation Sx(P ) between them:

Sx = −1

g
arcsin

[
1√
2

sin

(
P g√

2

)]
. (6)

Crucially, this relation is independent of the wave-vector k,
which allows us to develop a slowly varying envelope ap-
proximation to describe the nonlinear dynamics of finite edge
wave packets. Using Eq. (1), it can be shown that the integral
characteristics obey the following evolution equation:

∂tP = −2∂xSx(P ). (7)

Next, we assume P (x, t ) and Sx(x, t ) are slowly varying
functions of the local frequency and wave number, such that
Eq. (6) remains valid to a first approximation for smooth
x-dependent field envelopes. Plugging Eq. (6) into Eq. (7),
and using Eq. (4) assuming weak nonlinearity gI1 � M0, we
obtain the simple nonlinear wave equation for the longitudinal
intensity profile I1(x, t ):

∂tI1 − ∂xI1
(
1 − g2I2

1/
(
4M2

0

)) = 0. (8)

Equation (8) suggests that the evolution of finite wave packets
propagating along the x axis is accompanied by steepening of
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FIG. 2. Gradient catastrophe development. The Gaussian pulse
with F0 = 0.5, 	0 = 3.5/

√
2 is launched at t = 0. Slices color code

intensity distributions I(x, y) at the given moments: t = 20 (bottom),
t = 40 (middle), t = 60 (top). Cuts along the domain wall at y = 0
show consistency of the numerical solution (blue curves) with the
solution of the nonlinear simple wave equation (8) for the intensity
(red dotted lines). Parameters are M0 = 1, g = 0.75, gF0 = 0.375M0.
In Figs. 2 and 3, dashed lines trace the domain wall separating spatial
domains with masses of the opposite sign as indicated by shading
with different colors on the top surface. The theoretical estimate of
breakdown time t∗ ≈ 58 according to formula (10) perfectly matches
the numerical scenario.

the trailing wave front up to the development of a gradient
catastrophe. Note that in the linear case g = 0, Eq. (8) shows
that the edge wave packet of any shape does not diffract
and propagates along the domain wall with constant group
velocity v = −1 being granted with topological robustness. If
M0 < 0, the group velocity is positive, and a pulse propagates
in the opposite direction.

Alternatively, Eq. (8) can be derived using asymptotic
methods based on a series expansion of the spinor wave func-
tion [see Appendix B],

�1,2(x, y, t ) = ±a(ξ ; τ1, τ2, . . .)e
−M0|y|

+
∞∑

n=1

μn�
(n)
1,2(y; ξ ; τn), (9)

where we have introduced a small parameter μ ∼ gI1/M0,
a hierarchy of time scales τn = μnt , and assumed a smooth
dependence of the spinor components on t in the moving
coordinate frame (ξ ≡ x + t, y).

To illustrate the key effect of the gradient catastrophe
captured by Eq. (8), we model the time dynamics of an
edge wave packet using a custom numerical code, applying
a split-step scheme and the fast Fourier transform to solve
Eq. (1). Figure 2 shows the evolution of the initial distribution
set in the form of the edge state across the interface with
the Gaussian envelope I0

1 (x, t = 0) = F0e−x2/	2
0 along the x

axis: ψ(y, x, t = 0) = [ψ0
1 (y, ω = −gI0

1 (x)/2, 0); ψ0
2 (y, ω =

−gI0
1 (x)/2, 0)]T . Plugging the Gaussian distribution into

Eq. (8), we may estimate the pulse breakdown time t∗ ana-
lytically by the method of characteristics:

t∗ = 2
√

e	0

(
M0

gF0

)2

. (10)

Thus, pulse breakdown occurs for finite wave packets when
the peak nonlinear frequency shift becomes comparable to the
size of the topological band gap. As the pulse propagates, its
tail becomes increasingly steep, developing a discontinuity
(i.e., a shock) in a finite time. The numerical solution of
Eq. (1) is fully consistent with our analytical considerations;
see Fig. 2.

IV. SPATIAL DISPERSION EFFECT
AND ENVELOPE EQUATION

Weak spatial dispersion effects serve as a possible mech-
anism regularizing the gradient catastrophe, resulting in the
formation of solitons. For honeycomb photonic lattices, dis-
persion is accounted for by introducing off-diagonal second-
order derivatives with the coefficient η = 3κa2

0/(8v2
D) =

(6κ )−1 into the Dirac model (1):

Ĥdisp =
(

0 −η(−i∂x + ∂y)2

−η(i∂x + ∂y)2 0

)
. (11)

Assuming ηM0 ∼ μ2 and developing a perturbation theory
with expansion (9), we derive an evolution equation governing
the complex-valued amplitude a(ξ, t ):

i

(
∂t a + g2|a|2

32M2
0

a∂ξ |a|2
)

+ g

4
|a|2a + η

(
∂ξξ a − M2

0 a
) = 0,

(12)
which differs from the conventional cubic NLSE by the sec-
ond higher-order nonlinear term responsible for the phase
modulation and self-steepening.

Equation (12) enables analysis of both the modulational
instability of nonlinear plane-wave-like edge states and the
formation of edge quasisolitons (see Appendix B). Impor-
tantly, earlier works on edge solitons [36,48–50] were limited
to considerations based on reducing dynamics to the effective
one-dimensional NLSE, which exhibits instabilities and bright
solitons in the case of attractive interactions. The standard
NLSE, however, is completely independent of the topological
band-gap properties. In contrast, Eqs. (8) and (12), derived
from the vectorial Dirac equations in full compliance with
each other, show that edge pulses in topological systems can
break even in the absence of spatial dispersion due to nonlin-
ear self-steepening.

In the mathematical aspect, Eqs. (4), (7), (8), and (12),
written for different quantities, are fully consistent with each
other. For instance, bearing in mind

√
2I1 ≡ |a|, Eqs. (4)

and (8) can be straightforwardly recovered from Eq. (12) at
η = 0 in the first and second order of perturbation theory,
respectively (see also Sec. 2 of Appendix B). In turn, plugging
a multiscale expansion for the spinor function (9) into Eq. (7)
yields Eq. (12) at η = 0.

To verify the validity of the modified NLSE (12), we
consider the propagation of a Gaussian pulse in Fig. 3. The
conventional NLSE, which lacks the self-steepening term,
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FIG. 3. Nonlinear pulse transformation in the domain-wall problem with dispersion. Snapshots show intensity distributions in-plane I(x, y)
(top row) and along the domain wall I(x, y = 0) (bottom row) at the given times: (a) t = 110, (b) t = 66, (c) t = 22. Overlaid curves are the
pulse envelopes calculated by using NLSE (green dashed) and Eq. (12) (red dotted). The Gaussian pulse with F0 = 0.18, 	0 = 5/

√
2 is

launched at t = 0. Parameters are M0 = 1, g = 1, η = 0.001.

only exhibits self-focusing and gradual self-compression of
the pulse. On the other hand, the modified Eq. (12) correctly
reproduces the growing asymmetry of the edge pulse as it
propagates. Note also that in Fig. 2, which neglects spatial
dispersion with η = 0, up to the gradient catastrophe the peak
intensity of the pulse stays the same, in agreement with the
nonlinear simple wave equation (8). In contrast, the peak
intensity in Fig. 3 grows due to self-focusing behavior induced
by the spatial dispersion term.

V. PULSE BREAKDOWN AND SOLITON FORMATION

We now consider the dynamics of wide edge pulses beyond
the breakdown time t∗, taking weak spatial dispersion into
account. Figure 4 illustrates the long time propagation dynam-
ics of an edge pulse. The gradient catastrophe is visible in
Fig. 4(b) as a very large intensity derivative at the trailing end
of the pulse. This is accompanied by an increase in the peak

wave-packet intensity, resulting in a violation of the weak
nonlinearity condition gI1 < M0 and the resonant coupling of
energy into bulk modes in Fig. 4(d). The pulse breaks down
into a wave packet comprising multiple peaks.

The wave packet continues to radiate energy until at long
times it relaxes to a single weakly nonlinear edge soliton
which preserves its shape as it continues to propagate along
the domain wall [Figs. 4(a) and 4(b)], as predicted by our per-
turbative analysis. Such solitons can be obtained in Eq. (12);
they exhibit stable propagation and are capable of traversing
sharp bends (see Sec. 3 of Appendix B). We note that even
after the initial pulse breakup, self-steepening terms can influ-
ence the soliton stability and soliton-soliton interactions [32].

VI. WAVEGUIDE ARRAY IMPLEMENTATION

In this section we show how our models can describe
light propagation in nonlinear waveguide arrays governed by

FIG. 4. Formation of solitonic edge pulses. Upper row: Snapshots of the in-plane field distribution |ψ1|2(x, y) at the given times: (a)
t = 300, (b) t = 180, (c) t = 33, (d) t = 22, (e) t = 11, (f) t = 0. Lower row: Field profiles |ψ1|2(x, y = 0) along the domain wall located at
y = 0. The direction of propagation is to the left. Parameters are M0 = 1, g = 1, η = 0.05, F0 = 0.5, 	0 = 3.5/

√
2.
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FIG. 5. Nonlinear dynamics of the optical beam at the valley-
Hall domain wall at a zigzag interface in a honeycomb lattice of
laser-written waveguides. The input beam has a Gaussian envelope
along the domain wall with maximum intensity I0 = 2.5 × 1015

W/m2. (a), (b) Intensity distributions of the nonlinear beam (top
panels, blue line) at propagation distances (a) z = 11 mm (left col-
umn) and (b) z = 22 mm (right column). For comparison, the linear
beam evolution, i.e., with nonlinearity switched off, is shown in the
bottom panels and with dotted red lines. Purple arrows points to
the direction of motion. Dashed gray line depicts the domain wall.
(c) Intensity distribution at the interface obtained in modeling of the
paraxial equation (left) and the corresponding Dirac model (right).
The purple dashed line traces a straight trajectory of the center of
mass of the linear pulse. (d) Breakdown coordinate z∗ as a function
of the input intensity I0 estimated from the Dirac model (green
curve) and paraxial modeling (cyan crosses). The dashed gray lines’
intersection indicates the value of the input beam intensity used for
(a), (b), and (c).

the well-established paraxial equation, without requiring any
tight-binding or continuum Dirac model approximations. As
a possible implementation, we consider a realistic valley-Hall
waveguide array of laser-written waveguides with parameters
similar to those used in the experimental work in Ref. [16].
In this case, the evolution variable t becomes the longitudinal
propagation distance z.

To simulate the evolution, we solve the paraxial equation
numerically in a periodic potential by propagating an optical
wave packet (see Appendix C). For realistic laser input pow-
ers, we observe a rapidly developing self-steepening of the
beam envelope in Figs. 5(a) and 5(b). Figure 5(c) additionally
shows the intensity map in the xz interface plane. Note that
here the catastrophe itself is smoothed out due to the spatial
dispersion.

To compare the paraxial dynamics against the self-
steepening time scale Eq. (10) predicted by the simple
nonlinear wave equation, we use the time required for the peak

derivative of the pulse envelope to double in magnitude as an
estimate of the self-steepening time. This peak derivative dou-
bling time is plotted as a function of the peak input intensity as
blue crosses in Fig. 5(d). The pulse breakdown time provided
by the simple wave equation (solid line) provides a good
approximation of this self-steepening time scale. Moreover,
this time scale is clearly much smaller than the time required
for regular modulational instability to develop, given that the
pulse profile remains smooth.

Thus, our theory predicts that the dominant nonlinear effect
for valley Hall edge pulses is self-steepening, rather than
modulational instability, which was previously assumed based
on analysis of plane-wave-like edge states. This is our key
result. We also checked numerically that linear and nonlinear
evolution of the edge beam depicted in Figs. 5(a) and 5(b)
does not significantly change upon introducing a defect cre-
ated by a missing waveguide, which hints at the robustness
of the self-steepening dynamics of pulses constructed from
topological edge states.

VII. CONCLUSION

In conclusion, we have described the gradient catastro-
phe of the nonlinear edge wave packets in the spinor-type
Dirac equation and the formation of edge solitons at the
valley-Hall domain walls. We have derived a higher-order
self-steepening NLSE describing these effects. Spatiotempo-
ral numerical modeling confirmed that pulse self-steepening
can manifest already in the framework of paraxial optics in
weakly nonlinear media, such as topological waveguide lat-
tices, and will likely play a key role in future experiments
with topological photonic crystal waveguides. Beyond the
specific valley-Hall example we considered, our findings are
instructive for other emerging experimental studies of non-
linear dynamic phenomena in topological systems, such as
the Chern insulators and their implementations in a variety of
physical platforms spanning from metamaterials [4] to optical
lattices [43,44] and exciton-polariton condensates [60].
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APPENDIX A: NONLINEAR EDGE STATES

In Ref. [55], we derived analytical solutions for gap soli-
ton stripes of the form �1,2 = ψ1,2(y, t )eikx in the continuum
nonlinear (2 + 1) Dirac model (1) with a uniform mass dis-
tribution M(x, y) = M0 = const. The transverse structure of
the standing soliton is expressed through spin angle αs(y) and
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intensity �s(αs(y)),(
ψ1(y, t )
ψ2(y, t )

)
=

√
2�s(y)

(
cos αs(y)

− sin αs(y)

)
e−iωt . (A1)

The spin angle αs(y) ≡ αn − δ/2 is defined through auxiliary
variables αn, δ, �:

αn(y) = tan−1

[
� − ω√
�2 − ω2

tanh(
√

�2 − ω2 y)

]
,

δ = tan−1 k

M0
, � =

√
M2

0 + k2,

sin δ = k

�
, cos δ = M0

�
.

(A2)

With the use of formulas (A2), the intensity �s is found as

�s(αs(y)) = 2(� cos 2αn − ω)

g(1 + cos2 2αs)
= 2

g

dαs/dy

(1 + cos2 2αs)

= 2(−k sin 2αs − ω + M0 cos 2αs)

g(1 + cos2 2αs)
. (A3)

Note, due to translational invariance, replacement of y with
(y + y0), where y0 is an arbitrary coordinate shift, in expres-
sions (A2), (A3) also yields a solution.

The gap soliton stripe solution can be used to construct
nonlinear modes supported by topological interfaces formed
by domain walls of the mass (3), where the interface at
y = 0 separates two half-spaces. Based on the global parity
symmetry of the system with respect to the interface, the ef-
fective boundary condition relates the two components of the
spinor as

ψ1(y = 0) = ∓ψ2(y = 0), (A4)

where the sign −/+ corresponds to the positive/negative M0.
We rewrite the boundary condition (A4) in terms of the spin
angle:

αs(0) = ±π/4. (A5)

In the linear case, Eq. (A5) yields antisymmetric or symmetric
spinors, [1,−1] or [1,1], of edge states with the linear disper-
sion ω = ∓k.

The nonlinear edge states can then be retrieved from the
gap stripe soliton solutions, as illustrated in Fig. 6. The dis-
persion relation for edge solitons (4) follows from Eq. (A3)
and the boundary condition Eq. (A5). By contrast to the linear
case, it depends on the intensity. The boundary coordinate
y0 is determined from the boundary condition using Eq. (A2),
where y → (y + y0):

tanh(
√

�2 − ω2 y0) =
√

� + ω

� − ω
tan

(
±π

4
+ δ

2

)

≡
√

� + ω

� − ω

(±1 + tan δ
2

1 ∓ tan δ
2

)
.

(A6)

Besides, from (A2) we can express y(αs) as a function of the
spin angle:

y = 1√
�2 − ω2

tan−1

(√
� + ω

� − ω
tan

(
αs + δ

2

))
− y0.

(A7)

-6 -4 -2 0 2 4 6

-2

0

2

-6 -4 -2 0 2 4 6

-2

0

2

FIG. 6. (a) Profiles of the nonlinear edge state’s components ψ1e

(solid black) and ψ2e (solid brown) confined to the domain wall at
y = 0. The transverse structure of the standing soliton (A1) shifted
by (−/ + y0 ) with components ψ1s (dashed/dotted violet) and ψ2s

(dashed/dotted green) determines the structure of the nonlinear edge
state in the positive/negative half-space. (b) Spin angle αs(y) (pink
curve) and intensity �s(αs(y)) (green curve) for the soliton shifted by
(−y0 ) to the left of the domain wall. Purple line depicts the steplike
mass distribution M(y). Parameters are M0 = 1, I1 ≡ |ψ1e(0)|2 =
|ψ2e(0)|2 = 0.5, g = 0.5, k = 0.

In the semi-infinite interval, y = [0,∞], αs monotonously
changes from αs(0) to

αs(∞) = − δ

2
+ tan−1

[√
� − ω√
� + ω

]
. (A8)

Next, according to Eq. (5), we define the integral charac-
teristics of nonlinear edge states—power 2P and spin 2Sx. In
the upper half-space, y > 0, the total power is calculated as

P =
∫ ∞

y0

2ρ(αs(y))dy =
∫ αs (∞)

αs (0)
ρ(αs)

∂y

∂αs
dαs, (A9)

where we substitute the expression for ρs ∝ dαs/dy from
Eq. (A3). As a result of integration we get

P = π

g
√

2
+

√
2

g
tan−1

( −kω + M0

√
�2 − ω2

√
2[M0ω + k

√
�2 − ω2]

)
.

(A10)
Thus, the edge state’s power depends on both its intensity via
the intensity dependence of the nonlinear dispersion Eq. (4)
and its profile along the edge via the wave-number k. Simi-
larly, we calculate the integral spin:

Sx = −
∫ ∞

0
�s sin(2αs)dy

= 1

g
tan−1

(
M0ω + k

√
�2 − ω2

�2

)
.

(A11)

Remarkably, there exists a k-independent functional connec-
tion between these two integral characteristics:

cos

((
P − π

g
√

2

)
g√
2

)
=

√
2| sin gSx|. (A12)
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For relatively weak nonlinearity, Eq. (A12) is simplified to:

P = π

g
√

2
−

√
2

g
arccos(−

√
2 sin gSx ), (A13a)

Sx = −1

g
arcsin

[
1√
2

sin

(
P g√

2

)]
. (A13b)

In the case gP → 0, we recover an asymptotic transition to
the case of a linear edge state:

P = I1

M
, (A14a)

Sx = −1

2
P . (A14b)

In the linear limit M0y0 � 1 (M0 > 0), the edge state solu-
tion is converted to the conventional form—an antisymmetric
spinor with ω = −k:(

�1(x, y, t )
�2(x, y, t )

)
=

√
2M0

g
e−M0|y+y0|

(
1

−1

)
e−iωt−iωx.

(A15)
To obtain explicit approximate expressions for the integral

characteristics in the limit of weak nonlinearity, we use the
perturbation theory developed in Appendix B, Sec. 2. In the
perturbative limit, the edge state profile of amplitude a0 =√

2I1 for y > 0 is

ψ1 ≈ 1√
2

a0

[
e−M0y − ga2

0

8M0
(e−M0y − e−3M0y)

]
, (A16a)

ψ2 ≈ − 1√
2

a0

[
e−M0y + ga2

0

8M0
(e−M0y − e−3M0y)

]
, (A16b)

corresponding to the power

P ≈ a2
0

2M0

[
1 + 1

3

(
ga2

0

8M0

)2
]

(A17)

and integral spin

Sx ≈ −1

2

(
a2

0

2M0

)[
1 − 1

3

(
ga2

0

8M0

)2
]

. (A18)

We can also obtain the edge state’s mean displacement from
the edge 〈y〉, which is related to its transverse localization
length Y = ∫ ∞

0 ψ†ψydy:

Y ≈ 1

2M0

(
a2

0

2M0

)[
1 + 11

18

(
ga2

0

8M0

)2
]

, (A19a)

〈y〉 = Y/P ≈ 1

2M0

[
1 + 5

18

(
ga2

0

8M0

)2
]

. (A19b)

APPENDIX B: NONLINEAR DYNAMICS OF EDGE PULSES

1. Derivation of the nonlinear simple wave equation

We write out the NDM (1) for the evolution of the spinor
wave-function �(x, y, t ) = [�1(x, y, t ); �2(x, y, t )]T together
with its complex conjugate pair:

i
∂�1

∂t
= (−i∂x − ∂y)�2 + M�1 − g|�1|2�1, (B1a)

i
∂�2

∂t
= (−i∂x + ∂y)�1 − M�2 − g|�2|2�2, (B1b)

−i
∂�∗

1

∂t
= (i∂x − ∂y)�∗

2 + M�∗
1 − g|�1|2�∗

1 , (B1c)

−i
∂�∗

2

∂t
= (i∂x + ∂y)�∗

1 − M�∗
2 − g|�2|2�∗

2 . (B1d)

Multiply (B1a) by �∗
1 , (B1b) by �∗

2 , (B1c) by �1, and
(B1d) by �2. Then we subtract the third (fourth) of the ob-
tained relations from the first (second) one, sum up the two
resultant expressions, and integrate over y in infinite limits.
The left-hand side of the integral equation is transformed to
a derivative of the power i∂tP (x, t ). The right side contains
a derivative of the spin and equals −2i∂xSx(x, t ). The rest
of the terms in the right-hand side do not contribute to the
integral for localized solutions �1,2, such as edge states bound
to the domain wall at y = 0. This can be shown integrating
by parts. As a result of the above transformations, we obtain
the evolution equation for the integral characteristics of the
transversely localized solutions Eq. (7).

We can solve Eq. (7) by considering an edge pulse with
an envelope that is slowly varying in time and space. In
such pulses, over sufficiently long propagation distances the
transverse wave structure locally is weakly deviated from the
edge mode profile described in Appendix A. Therefore, we
may approximately employ expressions (A10), (A11) for P
and Sx, considering them as functions of the local instanta-
neous frequency ω(t, x) and local instantaneous wave number
k(t, x), defined as

ω = −∂ϕ

∂t
, k = ∂ϕ

∂x
, (B2)

where ϕ(t, x) is a distribution of the phase in the pulse over
the domain wall located at y = 0. Definitions (B2) yield the
relation

∂xω = −∂t k. (B3)

Using formulas from Appendix A, we calculate the deriva-
tives ∂tP (ω(t, x), k(t, x)), ∂xSx(ω(t, x), k(t, x)) entering (7)
and substitute them into Eq. (7) to get

∂αs(∞)

∂ω

(
∂ω

∂t
− ∂ω

∂x
sin 2αs(∞)

)

+ ∂αs(∞)

∂k

(
∂k

∂t
− ∂k

∂x
sin 2αs(∞)

)
= 0 . (B4)

Taking into account Eq. (A2), three quantities in Eq. (B4) can
be expressed through ω and k:

∂αs(∞)

∂ω
= −1

2

1√
M2

0 + k2 − ω2
, (B5a)

∂αs(∞)

∂k
=

ωk − M0

√
M2

0 + k2 − ω2√
M2

0 + k2 − ω2
, (B5b)

sin 2αs(∞) =
M0

√
M2

0 + k2 − ω2 − ωk

M2
0 + k2

. (B5c)
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Eq. (B4) is then transformed to

∂ω

∂t
+

⎛
⎝M0

√
M2

0 + k2 − ω2 − ωk

M2
0 + k2

⎞
⎠

×
⎛
⎝−∂ω

∂x
+ ∂k

∂t
− ∂k

∂x

M0

√
M2

0 + k2 − ω2 − ωk

M2
0 + k2

⎞
⎠ = 0 .

(B6)

In the weakly nonlinear regime, k2, ω2 � M2
0 , Eq. (B6)

can be simplified by expanding the coefficients into the Tay-
lor series of k/M0 and ω/M0. Using the relation (B3), this
decomposition up to the quadratic order gives the equation
of the nonlinear simple wave for the intensity-dependent
dispersion (4):

∂t (ω + k) −
(

1 − (ω + k)2

M2
0

)
∂x(ω + k) = 0, (B7)

or equivalently, Eq. (8). Thus, we have shown that the dynam-
ics of the edge pulse in the case of weak focusing (g > 0)
Kerr nonlinearity is described by the nonlinear simple wave
equation (8). The key feature of this equation is an intensity-
dependent wave speed; the brighter parts of the pulse travel
more slowly. Therefore, in the course of propagation, the pulse
tail steepens and develops a gradient catastrophe.

The solution of Eq. (8) is the function I1 = f (x − v( f )t ),
where profile f is found from the initial condition f (x, t =
0) = f0(x). This solution is applicable up to the gradient
catastrophe that occurs when the characteristics overlap.
The characteristics constitute a family of curves x = x′ +
v( f0(x′)), where the prime coordinates x′ are the points where
the initial distribution was set. On the characteristics the am-
plitude is constant. Since the velocity v = v(x′) is coordinate
dependent, there exists a point where the characteristics inter-
sect. Taking the initial distribution I1(x, t = 0) = f0(x), we
determine the rupture time t∗:

t∗ = min
x

[
− 1

(∂I1v)(∂x f0)

]
. (B8)

Using the expression for the group velocity v = 1 −
g2I2

1/(4M2
0 ), which follows form Eq. (8), we calculate a

derivative ∂I1v = g2I1/(2M2
0 ) and substitute it into Eq. (B8):

t∗ = min
x

[
− 2M2

0

g2 f0(x)(∂x f0)

]
. (B9)

Assuming the initial pulse envelope has a Gaussian profile,
we obtain Eq. (10). The rupture time diverges in the limits of
weak nonlinearity (gF0/M0 → 0) or broad pulses (	 → ∞).

2. Asymptotic approach

Equation (8) can be alternatively derived using the asymp-
totic methods in the case of weak nonlinearity. In what
follows, we also take into account spatial dispersion effects
for a staggered graphene model (see Ref. [55]) by adding off-
diagonal second-order derivatives in the spatial coordinates
Eq. (11),

i∂t�= (ĤD + ĤNL + Ĥdisp)�, (B10)

and develop a perturbation theory for the problem (B10). In
the linear dispersionless case (g = η = 0), the domain wall (3)
supports edge modes exponentially localized in the transverse
direction, with linear dispersion ω = −k (assume M0 > 0).
Accordingly, the edge pulse propagating along the domain
wall does not diffract and has the form:

� =
(

�
(0)
1

�
(0)
2

)
= a0(x + t )e−M0|y|e−iω(x+t )

(
1

−1

)
, (B11)

where polarization column vector is antisymmetric.
To simplify our derivations, we introduce the functions,

�1 = �1 + �2√
2

, �2 = �1 − �2√
2

. (B12)

and rewrite the system (B10) in terms of new variables (x +
t ≡ ξ, t ),

i∂t�1 + 2i∂ξ�1 = ∂y�2 + M�2 − g

2
F�1 − g

2
G�2

+ η(−∂yy�1 + ∂ξξ�1 − 2i∂ξy�2), (B13a)

i∂t�2 = −∂y�1 + M�1 − g

2
F�2 − g

2
G�1

+η(∂yy�2 − ∂ξξ�2 + 2i∂ξy�1), (B13b)

where F = |�1|2 + |�2|2 and G = �1�
∗
2 + �∗

1�2. At g =
η = 0, according to Eq. (B11), at ω = 0 the solution of
Eq. (B13) is a column vector(

�
(0)
1

�
(0)
2

)
=

(
0

√
2
√
I1e−M0|y|

)
≡

(
0

a(ξ )e−M0|y|

)
.

(B14)
We assume that nonlinearity is weak (gI1 � M0) and intro-
duce a small parameter μ ∼ gI1/M0. Starting from the known
linear solution (B14), we look for the solution of Eqs. (B13)
in the form of an asymptotic expansion in μ. The influence
of spatial dispersion will be accounted in the order ∼μ2,
(ηM0 ∼ μ2).

�1 =
∞∑

n=1

μn�
(n)
1 (y; ξ ; τ1, τ2, . . .), (B15a)

�2 = a(ξ ; τ1, τ2, . . .)e
−M0|y| +

∞∑
n=1

μn�
(n)
2 (y; ξ ; τ1, τ2, . . .),

(B15b)

where we used a hierarchy of time scales, τn = μnt , according
to which ∂t a = μ∂τ1 a + μ2∂τ2 a + . . ..

In the first order, ∼μ Eq. (B13a) at y > 0 gives

∂y�
(1)
1 − M0�

(1)
1 = − g

2
a|a|2e−3M0y − ie−M0y∂τ1 a. (B16)

This is a linear inhomogeneous differential equation of the
first order. Applying the method of variation of an arbitrary
constant, its solution is written as [here, we also use the
boundary condition �

(1)
1 (y = 0) = 0)]:

�
(1)
1 = eM0y

∫ y

0
dy′

(
− g

2
a|a|2e−4M0y′ − i

∂a

∂τ1
e−2M0y′

)
.

(B17)
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The condition of existence of the localized solution (B17),
�

(1)
1 (y → ±∞) → 0,∫ ∞

0
dy′

(
− g

2
a|a|2e−4M0y′ − i

∂a

∂τ1
e−2M0y′

)
= 0 ,

leads to the equation for the amplitude a:

i
∂a

∂τ1
= −g

4
|a|2a , (B18)

which recovers the self-phase modulation arising from the di-
agonal nonlinear terms. Substituting Eq. (B18) into Eq. (B17)
and integrating over y, we obtain the correction �

(1)
1 to the

transverse profile of the first order of smallness:

�
(1)
1 = − g

8M0
|a|2a(e−M0y − e−3M0y) . (B19)

This intensity-dependent correction results in the uniform
y-independent spin of the linear edge state becoming y-
dependent.

Next, we consider the second equation (B13b) in the order
∼μ1,

∂y�
(1)
2 + M0�

(1)
2 = 2i∂ξ�

(1)
1 . (B20)

The solution of this inhomogeneous equation is as follows:

�
(1)
2 = e−M0y

∫ y

0
dy′

(
2i

∂�
(1)
1

∂ξ

)
eM0y′

= ig

8M2
0

(
∂|a|2a

∂ξ

)
(e−M0y − e−3M0y − 2M0ye−M0y) .

(B21)

In the second order ∼μ2, the second equation of the system
(B13) leads to

∂y�
(2)
1 − M0�

(2)
1 = q(y), (B22)

where we denote the right-hand side by q(y),

q(y) = − ie−M0y∂τ2 a − i∂τ1�
(1)
2 − g

2

(
2|a|2�(1)

2

+ a2�
(1)∗
2

)
e−2M0y − η

(
∂ξξ a − M2

0 a
)
e−M0y, (B23)

and substitute there �
(1)
2 from Eq. (B21). The solution

of Eq. (B22) is �
(2)
1 = eM0y

∫ y
0 dy′q(y′)e−M0y′

. After some
transformations, from the condition of localization for the
correction �

(2)
1 (y → ±∞) → 0, i.e.,

∫ ∞
0 dy′q(y′)e−M0y′ = 0,

we find

i
∂a

∂τ2
+ i

g2

32M2
0

a|a|2 ∂|a|2
∂ξ

+ η
∂2a

∂ξ 2
− ηM2

0 a = 0. (B24)

Neglecting spatial dispersion η = 0, Eq. (B24) for the magni-
tude |a| takes a compact form,

∂|a|
∂τ2

+ g2

16M2
0

|a|4 ∂|a|
∂ξ

= 0, (B25)

that, bearing in mind
√

2I1 ≡ |a| and ξ ≡ x + t , fully coin-
cides with Eq. (8).

Summing up Eqs. (B18) and (B24) and replacing μ∂τ1 +
μ2∂τ2 → ∂t , we obtain the evolution equation (12) for the edge
pulse with accuracy ∼μ2.

By substituting approximate expansions �1,2 = �
(0)
1,2 +

�
(1)
1,2 with the use of expressions (B14), (B19), (B21) into the

definitions of the integral characteristics (5) rewritten through
�1,2,

P =
∫ ∞

0
(|�1|2 + |�2|2)dy , (B26a)

Sx = 1

2

∫ ∞

0
(|�1|2 − |�2|2)dy . (B26b)

Eq. (B25) is recovered directly from Eq. (7), which consti-
tutes the the exact property of transversely localized solutions
in the NDM at η = 0.

3. Edge solitons

Equation (12) is invariant with respect to Galilean transfor-
mation a(ξ, t ) → ã(ζ , t ) exp (i v

2η
ξ + i v2

4η
t ), where ζ = ξ −

vt :

i
∂ ã

∂t
≈ −g

4
|ã|2ã − i

g2

32M2
0

|ã|2 ∂|ã|2
∂ζ

ã − η
∂2ã

∂ζ 2
+ M2

0ηã.

(B27)
Note, considering the applicability of the approximations em-
ployed for derivation of Eq. (12), the velocity in the Galilean
transformation is small, v � μ2.

We look for the soliton solution of Eq. (B27) of the
form ã = A(ζ )e−iωst+iϕ(ζ ), where A(ζ → ±∞) → 0 is a
real-valued localized function, and separate imaginary and
real parts of Eq. (B27),

g2

16M2
0

A4 ∂A
∂ζ

+ η(2∂ζA∂ζϕ + A∂ζζ ϕ) = 0 , (B28a)

ωsA − ηM2
0A + g

4
A3 + η(∂ζζA − (∂ζϕ)2A) = 0 . (B28b)

Next, we multiply Eq. (B28a) by A and integrate over y
from −∞ to ζ :

∂ϕ

∂ζ
= − g2A4

96M2
0η

. (B29)

Hence, we find the phase

ϕ = − g2

96M2
0η

∫ ζ

−∞
A4(ζ ′)dζ ′ (B30)

and substitute its derivative (B29) into Eq. (B28b):

A′′ = −
(

ωs

η
− M2

0

)
A − g

4η
A3 + g4

962η2M4
0

A9. (B31)

Eq. (B31) can be integrated, since it obeys the form A′′ =
− ∂U (A)

∂A with potential U given by

U =
(

ωs

η
− M2

0

)A2

2
+ g

4η

A4

4
− g4

962η2M4
0

A10

10
. (B32)

The soliton solution corresponds to a separatrix of the sad-
dle steady state located at the point (0,0) in the phase plane
(A′,A), which exists at (ωs/η − M2

0 ) < 0. Note, under our
approximations which warrant applicability of Eq. (B31), the
last nonlinear term in Eq. (B31) should be small compared to
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FIG. 7. Edge soliton propagating along the domain wall and
bypassing corners. Slices show snapshots of the intensity distribu-
tion I(x, y) at t = 50 (bottom), t = 80 (middle), t = 150 (top). The
shifted initial soliton envelope of maximum intensity 1.2 at ωs =
0.02 is overlaid with red dots at (at the bottom slice). Parameters
are M0 = 1, g = 0.125, η = 0.05.

the cubic one. Therefore, the soliton of Eq. (B31) is topologi-
cally close to the soliton of the conventional NLSE, obtained
by omitting the last term ∝ g4, i.e.,

A′′ = −
(

ωs

η
− M2

0

)
A − g

4η
A3, (B33)

which has a well-known analytical solution:

A =
√

8
(
M2

0η − ωs
)
/g

cosh
(
ζ

√
M2

0 − ωs/η
) . (B34)

Stable soliton propagation and its ability to traverse corners
is illustrated in Fig. 7.

APPENDIX C: PARAXIAL MODELING

To model a realistic lattice of laser-written waveguides, we
employ the paraxial equation for the electric field E ,

i
∂E
∂z

+ 1

2k0
�⊥E + k0(nL(x, y) + n2|E |2)

n0
E = 0, (C1)

where z is the propagation coordinate, (x, y) are the transverse
coordinates, λ is the vacuum wavelength, k0 = 2πn0/λ is
the wavenumber, and n0 is the background refractive index.
The staggered graphene lattice is imprinted in distribution of
the linear refractive index nL(x, y) = nA

∑
n,m S(x − xn, y −

ym) + nB
∑

n,m S(x − xn, y − ym), where summation is per-
formed over the the lattice sites with coordinates xn, ym.
Two triangular sublattices are indexed with subscripts A and
B; nA and nB refer to perturbations of the refractive index
in waveguides. The elliptical waveguides have the Gaussian
shape with semiaxes ax, ay, described by function S(x, y) =
e−x2/a2

x−y2/a2
y . The nonlinear term ∝ n2|E |2E is responsible for

a focusing cubic nonlinearity. A schematic of the lattice stripe

FIG. 8. (a) Band structure β(k) for a supercell of the staggered graphene lattice, composed of 20 dielectric elliptical waveguides with
semiaxes ax, ay, as illustrated in (b). Normalization length parameters are w0 = 10 μm, z0 = 2k0w

2
0 . Dark green and light green colors in

(b) correspond to two different perturbations of the refractive index nA, nB, respectively, in a bipartite lattice. (c) Profile of the stationary edge
state E (x, y), with the wave number spotted with a red asterisk in (a). Gray dashed line in (c) locates the interfacial domain wall.
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TABLE I. Parameters of the waveguide lattice used in modeling.

Parameter Value

ax 3.2 μm
ay 4.9 μm
a0 19 μm
n0 1.47
nA 2.6 × 10−3

nB 2.8 × 10−3

n2 3 × 10−20 m2/W
λ 1650 nm
I0 1016 W/m2

incorporating zigzag domain walls is shown in Fig. 8 with
parameters listed in Table I.

Linear modes (at n2 = 0), being Bloch states
E = u(x, y)eiβz+ikx , are obtained from the eigenvalue

problem

βu = 1

2k0

(
(∂x + ik)2 + ∂2

y

)
u + k0

n0
nL(x, y)u, (C2)

which is solved numerically for spectrum β(k) in the configu-
ration of Fig. 8(b) by using the plane-wave expansion method.
Periodic boundary conditions are applied to the stripe in the
lateral directions. The valley edge states, which localize at the
domain walls, exhibit Dirac-like dispersion crossings at two
valleys; see Fig. 8(a). The calculated edge mode profile 8(c)
is then used in setting the initial field distribution for the beam
evolution modeling displayed in Fig. 5.

Paraxial equation can be mapped onto the tight-binding
model [16,61,62] with effective parameters κ = 3.47 cm−1,
M0 = 1.73 cm−1 reconstructed from matching the band
structures in different models and nonlinear coefficient g =
n2k0/n0. The transition to the continuum limit from the valley-
Hall lattice model we used to substantiate the Dirac model is
described in detail in Refs. [23,55,56].
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