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Diploma Thesis

MACHINE LEARNING TO DEVELOP A MODEL
THAT WILL PREDICT EARLY IMPENDING SEPSIS
IN NEUROSURGICAL PATIENTS

Georgios Noikos

Abstract

As sepsis, we currently define a “life-threatening organ dysfunction caused by a
dysregulated host response to infection”. Prevention of sepsis, demands its early pre-
diction, a task that has been quite a challenge for the scientific community. With our
study, we attempt contributing to this effort, by taking processed, anonymised data,
which will be used to build a machine learning predictive model that would predict an
upcoming infection, potentially leading to sepsis. Although this model originally takes
into consideration, among others, medical measurements of 5 consecutive days, at the
end of our study we examine the model’s predictive capacity with a more limited span
of days. We even end up predicting based on a single day’s medical measurements, four
days prior to infection, obtaining satisfactory results. This goal’s significance is high,
since achieving it, would provide the doctors and the nursing staff with some valuable
time, constructing an efficient plan to deal with the infection before it causes sepsis.
This interval of time could be proven to be decisive about the life of the patient, since
sepsis is one of the most frequent reasons for an Intensive Care Unit (ICU) admission
and the primary reason for death in the ICU. Data cleaning and pre-processing helped us
to feed the best possible dataset to our model, maximizing its predictive capacity for this
binary classification problem. Moreover, via the important features of our model, con-
clusions could potentially be drawn concerning the relation between some clinical input
features and the occurrence of sepsis, leading to an enhanced, data-driven understand-
ing of this heterogeneous dysfunction. Early findings indicate efficient classification
performance resulting in promising forecasting ability, using various machine learning
models, while leaving considerable scope for extending the time between the prediction

of the infection and its occurrence .
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Chapter 1

1 Introduction

Sepsis, is defined as “life threatening organ dysfunction caused by a dysregulated
host response to infection” [1]. It is the most frequent reason for admission to an inten-
sive care unit (ICU) and the primary reason for ICU deaths [2]. However, it is frequently
not detected in time. [3] From 2009 to 2019, according to 170 studies concerning the
mortality rate of a septic shock (either 30-day or 90-day), they came up with the fol-
lowing results: The average septic shock mortality was about 33.5%. There was a sta-
tistically significant decrease of 30-day septic shock mortality rate between 2009 and
2011, which unfortunately, did not continue decreasing afterwards [4]. This, indicates
a remaining unmet need for improving sepsis management.

Early diagnosis of sepsis can result to earlier initiations of the appropriate treatment
protocols, leading to a significant decrease of sepsis-related mortality, considering that
it increases by approximately 8% for each hour treatment is delayed [5].

In the United States, it is considered to be a major public health concern, since the
cost of its treatment rises up to $20.3 billion, consisting a massive 5.2% of total US hos-
pital costs in 2011, being the most expensive condition treated amongst the expenses
for all hospitalizations [6]. It is easy to see how an early detection of sepsis will help
reduce the above expendutes, even though it is one of the most difficult to solve prob-
lems in modern medicine. However, in this study, we attempt to do it using Machine

Learning.

1.1 Motivation

Several studies have been conducted, aiming at the prediction of downstream events
related to sepsis, like an organ malfunction or any kind of a severe septic shock. Never-
theless, the most important aspect of the sepsis prediction, which is to identify upcoming
infections before the domain experts discover it, remains unsolved [5].

Many researchers have periodically attempted to provide valid solutions to this

problem, conducting researches towards this direction using a variety of machine learn-
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ing techniques [7], constructing their own sepsis early warning algorithms, like InSight
[8], artificial neural networks [9] etc. However, none of these studies has ever been
actually applied, because of sepsis’ heterogeneous nature, due to which each patient
presents different symptoms [5].

The most common issue observed in the existing surveys has to do with the features
used. Many researchers are limited to the use of risk scores [10], but these mainly give
information about the severity of the condition and the probability of mortality, without

including the diversity of sepsis [11].

1.2 Contribution

This study’s main objective is to identify an objective early enough for a septic shock
to be prevented, so that hospitalized patients will have a better chance of survival. The
main idea is to try approaching this as a binary classification problem, where we are
going to use 5 consecutive days’ data of hospitalized patients in order to predict the
appearance of an infection, so that impending sepsis could be prevented. These data,
should be innovative compared to similar attempts, highly associated with infections
according to domain experts. In light of the foregoing, our work’s contributions will
be:

* Our first concern was collecting a very comprehensive set of clinical data to form
our dataset, describing each patient in detail, while of course meeting all ethical
requirements as defined by the law. General University Hospital of Heraklion

provided us with this dataset.

+ After reading many relevant papers and trying different machine learning algo-
rithms, we ended up examining 3 different classifiers, evaluating their perfor-

mance in predicting upcoming infection in the given dataset.

+ Additional experimentation on various preprocessing techniques concerning fill-

ing of missing values, normalization etc.

+ Testing a time-related representation of some features appropriate for this analy-

sis in our dataset.

* Identifying the medical measurements which influenced our model’s predictions

the most.
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+ Attempting to extend the time interval between the prediction and the occurrence
of an infection. Managed to efficiently predict an infection 4 days prior to its

appearance.

Summarizing, our survey focuses on both finding the best possible predictive ma-
chine learning model for our problem and creating the most innovative and inclusive

dataset.

1.3 Structure of Paper

Here we are going to present some important parts of our thesis. To begin with,
In Chapter 2 we explain some basic terms used in our study and we proceed with pre-
senting some similar studies stating some noteworthy points about them that could help
understanding where our study differs. The entirety of Chapter 3 is dedicated to our
dataset, thoroughly analysing it, explaining how we gathered it and all the necessary
changes made. In Chapter 4, we start by defining the problem we are trying to solve,
then continue with analyzing our approach to solve it. Next, all the experiments made
until we conclude to our model, alongside their results and discussion upon them are
displayed in Chapter 5. Finally, in Chapter 6 we present the conclusions we made over

this study and some suggestions for potential future work in this direction.



Chapter 2

2 Background and Related Work

In this section, we are going to discuss anything that has to be explained or simpli-
fied, that contributed to our work. We will try to do that in a way that every possible
reader can get the idea of our analysis, even if he is not relevant to this research field.
Our work can be seen as two parts of research, with the first one concerning necessary
medical terms and the other one being about the selection of an appropriate methodol-
ogy to train an efficient predictive machine learning model. Last but not least, in this
chapter we are going to deal with some other relevant studies, the methods they used,

the conclusions they drew and how our work compares to theirs.

2.1 Basic Terms and Concepts

We are now going to explain some necessary theoretical definitions concerning ei-
ther medical or computer science terms. This knowledge is necessary for someone to

understand what is going to be discussed further on.

2.1.1 Infection and Sepsis

Over the years, there have been many tries to define infection and sepsis. However,
none of them managed to do so satisfactorily. Currently they are defined as shown

below:

* Infection: “Infection is the term that defines the entrance and development of
an infectious agent in a human or animal body, whether or not it develops into a
disease.” [12]

+ Sepsis: As sepsis, we currently define a “life-threatening organ dysfunction caused

by a dysregulated host response to infection”. [1]

* Organ dysfunction: An organ dysfunction, that was mentioned above, can be

identified as an acute change in total SOFA (Sequential [Sepsis-related] Organ
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Failure Assessment) score > 2 points consequent to the infection. It is worth
noting that the baseline SOFA score for someone that did not have an organ dys-
function in the past, is equal to zero and SOFA score > 2 represents a mortality
risk around 10%. [1]

2.1.2 Machine Learning

In this section, we are going to explain some important terms in the field of Machine

Learning models, that are going to be used later on our study.

Supervised Learning: Training data consists of a collection of labeled examples,

based on which the model is trained in order to make a prediction.

Unsupervised Learning: Training data consists of unlabeled examples, which

the learner uses to get trained and then attempts to provide a forecast.

Labels & Classes: By the term label, we refer to a category which allows us to
appropriately differentiate (label) our data. As class, we define the target field
of our problem. In our case, we have a multi-label (e.g. demographic data, each

medical measurement etc), multi-class (positive and negative) classification.

Classification: Supervised machine learning method, where the model, after be-
ing appropriately trained, tries to predict the correct class for each example of
the data. In the event of having just two classes to classify the data, as happens
in our problem where we have to distinguish the data between infected and non-

infected, this is called “binary classification”.

Clustering: Unsupervised learning technique is used to divide data points based

on their similarities or differences into different groups.

Instances: An instance is an observation from our domain of study. In our case,
as instances we have patients of the neurosurgical clinic of the University General

Hospital of Heraklion.

Features: As features of our dataset, we basically mean individual measurable

piece of data, which act like the model’s input for the desired analysis to happen.



2.1 Basic Terms and Concepts 6

In our dataset, the features represent various demographic data (such as age, gen-
der), 5 days of each medical measurement where every day constitutes a different

feature etc.

¢ Numerical Features: Features that contain discrete values with no numerical
relationship between the different categories, (such as Comordibities, Disease,
ICD 10 etc).

* Nominal Features: Features that can only take real numeric values (all the med-

ical measurements, age and days of hospitalization in ICU among others).

+ Feature Importances: Scores, used to determine the relative importance of the

features to the final prediction of a predictive ML model.

* Training Set: A split of the given dataset, used to train the model to make a

prediction.

+ Test Set: The rest of the dataset, that does not belong to the training set. An
unseen, by the ML model, set of examples, used for prediction. A model is eval-

uated based on these predictions.

* Cross Validation: Method used to test and train ML models, based on train-test

splits (training set and test set) of the given dataset, on different iterations.

* Leave-One-Out Cross Validation (LOOCYV): Exhaustive Cross Validation method
where each instance is used as a test set exactly once. It is particularly useful for
small datasets but can be computationally expensive for larger ones. In particu-
lar, this method, provides a robust estimate of a model’s performance by training
on all data except one instance (training set) and testing on that one instance (test
set), repeating this process for all instances and then calculating the average per-

formance metric.
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2.1.3 Classifiers

In this study, after some research that is going to be analysed in Section 4.2.2, we
ended up testing three different classifiers. These are presented and explained right

below.

* Logistic Regression:

Logistic Regression is a popular machine learning model used mainly for binary
classification problems, where the goal is to predict one of two possible outcomes
or classes. By default, the model predicts that an instance belongs to a certain
class if the probability estimation (prediction confidence) is greater than 50%,
otherwise this instance belongs to the other class. Some key points concerning

Logistic Regression are:

— Model Representation: Logistic Regression models the relationship between

the input features (also known as independent variables or predictors) and
the binary target variable (also known as the dependent variable or response)

using a logistic function.

— Logistic Function (Sigmoid Function): The logistic function, also called

the sigmoid function, maps any real-valued number to the range [0, 1]. It

is defined as follows:

1

O'(Z) = 71 + e(—Z)

where:

z @ is the linear combination of the input features and their corresponding weights.

— Hypothesis Function: The hypothesis function in logistic regression is the

sigmoid function applied to the linear combination of input features and

their respective weights:

he(x) = (8T - x)
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where:

he(x) : predicted probability that the target variable is 1 given x.
0: weights that need to be learned during training.

x: is the input feature vector.

— Loss Function: In order to learn the best set of parameters 8, logistic regres-
sion uses the maximum likelihood estimation (MLE) as the loss function.
The most common loss function for logistic regression is the log-loss (also

known as cross-entropy loss):

N
7O) = =3 ly-log(h-6@)) + (1~ y) - log(1 — h- 6(a))]

i=1

where:

hg(x) : is the predicted probability of the positive class.
m: is the number of training examples.

Y is the true target label (0 or 1).

— Training: The goal of training is to find the optimal values of the parameter
vector 0 that minimize the loss function. This is usually achieved using

optimization algorithms like gradient descent or its variants.

— Decision Boundary: As stated before, assuming the two classes we have

are the positive and the negative, the decision boundary is the boundary
that separates these two classes. In logistic regression, the decision bound-
ary is a linear function of the input features. When the sigmoid function’s
output is greater than or equal to 0.5, the predicted class is the positive class;

otherwise, it is the negative class.

Finally, it is worth mentioning that even though logistic regression is originally
designed for binary classification, it can be extended to handle multi-class prob-
lems using techniques like one-vs-all (OvA) or one-vs-one (OvO) strategies.

However, this is not an issue in this research.
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* Gaussian Naive-Bayes:

Gaussian Naive Bayes is a supervised machine learning model used for classifica-
tion tasks, particularly when dealing with continuous or real-valued features. It’s
a probabilistic algorithm that applies Bayes’ theorem with the “naive” assump-
tion of feature independence given the class. Despite its simplifying assumptions,
Gaussian Naive Bayes can perform surprisingly well in various real-world sce-

narios. Right below, follows an overview of Gaussian Naive Bayes:

— Bayes’ Theorem: At its core, Gaussian Naive Bayes relies on Bayes’ theo-
rem, which is a fundamental concept in probability theory. It calculates the

conditional probability of a class given the observed features:

(P(wla L2y ey L | y) ) P(y) )
P(wlawla"'vwn)

p (y | L1y L2y eeey :En) =

where:

P(y| x1,x9,...,x,) : is the probability of class y given features
x1 through z,,.

P(x1,xo,...,2y, | y) : is the joint probability of observing features
x1 through z,, given class y.

Py) : is the prior probability of class y.

P(z1,x0,...;Ty) : is the evidence or marginal likelihood.

— Naive Assumption: The “naive” assumption in Gaussian Naive Bayes is

that the features are conditionally independent given the class. This means
that the presence or value of one feature does not affect the presence or

value of another feature, given the class.

— Gaussian Distribution: Gaussian Naive Bayes assumes that the continuous

features follow a Gaussian (normal) distribution within each class. This

assumption simplifies the estimation of probabilities.

— Training: During training, Gaussian Naive Bayes estimates the mean and
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variance of each feature for each class. These estimates are used to calculate

the probability density function of each feature given a class.

— Prediction: To make predictions for a new instance, Gaussian Naive Bayes
calculates the posterior probabilities for each class using Bayes’ theorem

and chooses the class with the highest probability.

— Scalability and Interpretability: Gaussian Naive Bayes is computationally

efficient and scales well to high-dimensional data. It’s particularly useful
when the number of features is large compared to the number of instances.
Additionally, the model provides interpretability, allowing you to under-

stand the importance of each feature for classification.

— Strengths and Limitations: Gaussian Naive Bayes is simple, easy to im-

plement, and efficient when the naive assumption holds reasonably well.
However, the assumption of feature independence might not always be met

in real-world scenarios, which can lead to suboptimal performance.

Last bun not least, as also mentioned in logistic regression, although the “naive”
assumption is primarily designed for binary classification, Gaussian Naive Bayes
can be extended to handle multi-class classification using techniques like one-vs-
all (Ova).

* XGBoost Classifier: XGBoost (Extreme Gradient Boosting) is a powerful and
widely used machine learning algorithm for both classification and regression
tasks. It is an ensemble learning method that builds a strong predictive model
by combining the predictions of multiple weak models, typically decision trees,
in an additive manner. XGBoost is known for its high performance, scalability,
and ability to handle complex relationships in data. Here are the key features and

concepts of the XGBoost Classifier:

— Gradient Boosting: XGBoost is based on the gradient boosting framework,

which involves sequentially adding new models to correct the errors made
by the previous ones. It focuses on minimizing a loss function by optimizing

the model’s predictions.

10



2.1 Basic Terms and Concepts 11

Decision Trees as Base Learners: XGBoost uses decision trees as its base

learners. These trees are shallow (usually with a limited number of nodes)
to prevent overfitting. Decision trees are added iteratively, and each new

tree tries to minimize the errors of the previous ensemble.

— Regularization: XGBoost includes regularization techniques to prevent over-
fitting. It has parameters for controlling the complexity of individual trees,

as well as the overall complexity of the ensemble.

— Gradient-Based Optimization: XGBoost employs gradient-based optimiza-

tion techniques to efficiently minimize the loss function. It uses a combina-
tion of first-order gradient and second-order gradient information to make

optimization more accurate.

— Handling Missing Values: XGBoost has built-in support for handling miss-

ing values in the dataset during training and prediction. This process is

going to be analyzed in depth in Section 2.1.4

— Training: During training, the XGBoost Classifier goes through several it-
erative steps to build an ensemble of decision trees that collectively form a

strong predictive model.

— Prediction: To predict a new instance, the trained XGBoost Classifier uses
the ensemble of decision trees it has built to make predictions on new, un-

seen instances.

2.1.4 Filling of Missing Values

Machine Learning Algorithms’ knowledge is based on the quality of the data in-
duced. Therefore, since in the majority of clinical studies, missing data issue is very
common, we must deal with it efficiently so that the quality of MLA’s knowledge is
as good as possible. Usually, the filling of the missing data is implemented in the pre-
processing of the dataset. Nevertheless, this is not always the case. In our project, there
were some missing values in the features that represent medical measurements in the
5-day interval. In order to deal with that, we tested a variety of different approaches on
the 3 aforementioned classifiers. Now we are going to explain these methods of filling

the missing data.

11



2.1 Basic Terms and Concepts 12

* kNN Imputation:
k-Nearest Neighbour (kNN), is an imputation method widely used in Machine
Learning, which contributes to handling missing values from a dataset. kNN has
the ability to predict both discrete (most common value amongst the neighbours)
and continuous (mean value amongst the neighbours) attributes. In the same
time, it is not necessary to create a predictive model for each missing data, as
it is in other methods. It is the best applicable method when there is zero prior
knowledge regarding data distribution. kNN method can work with any kind of
attributes as a class, just by modifying the attributes we want to be considered
in the distance metric. For example, picking for a distance metric Euclidean or
Minkowski distance, our algorithm searches for the k closest neighbours, finds
them and replaces the missing value with either the mean or the mode of the
neighbours. In general, KNN imputation method handles pretty well multiple
missing values. Its main disadvantage is that in every loop that the kNN looks
for similar instances, the algorithm searches through the entire dataset, so if the

database is vast, it will inevitably be time consuming.

* Column-Wise Mean:
This method cannot be furtherly explained. We just computed the mean value of

each feature and filled all feature’s missing data with this value.

* XGBoost’s built-in “sparsity-aware split finding algorithm”:
First of all, XGBoost classifier is consisted of multiple decision trees. When
deciding how to split a node during the tree construction, XGBoost considers
missing values as a possible direction for the split. It compares the quality of
the split with and without the missing values and chooses whichever yields the
highest gain in the objective function. For example, in the event of a binary
classification, the objective function could be a log-loss function. Afterwards,
missing values from parent node are assigned to the respective child node, ac-
cording to the learnt splitting rule, so that the missing value is handled properly
as the tree grows. The final prediction is based on the learned rules and XGBoost

determines the appropriate path. But how does this splitting rule works?

The process of finding the optimal split for each feature, could be described in

a few steps. First, it makes an initial prediction for all training instances, based

12
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on whom it constructs the first decision tree. Then, XGBoost computes the gra-
dient of the log-loss function, which is basically the difference between the pre-
dicted probability and the target variable. XGBoost iteratively grows the tree by
adding new nodes. It searches for the best split points for each feature evaluating
different thresholds and decides the optimal ones based on the improvement of
the objective function. Next, it applies regularisation and feature sub-sampling
along with pruning to avoid over-fitting and to reduce the tree’s complexity. Once
again, the decision whether to prune a node or not is based on the improvement of
the objective function. Finally, XGBoost repeats this process by calculating new
gradients, growing additional trees, and optimizing the objective function until
a predefined stopping criterion is met (e.g., a maximum number of iterations or
reaching a specific level of performance). So, by optimizing the objective func-
tion through iterative tree construction, XGBoost learns the optimal split points
that maximize the model’s predictive performance. The learning process allows

the algorithm to capture complex relationships and make accurate predictions.

In general, it is safe to say that XGBoost treats missing values as a separate cate-
gory and incorporates them in the tree construction and prediction processes, so

it can handle them effectively. [13]

2.1.5 Scaling

In machine learning, scaling refers to the process of transforming features or vari-
ables to a specific range or distribution. Scaling is an important preprocessing step as
it can help improve the performance of various machine learning algorithms. The tech-
nique we decided to use in our project, is a commonly used scaling technique, called

Min-Max scaling, also known as normalization.

Min-Max scaling involves transforming the original features of a dataset into a new
range, typically between 0 and 1. This is achieved by using the following formula for

each feature:

X — Xmin

Xscaled E
Xmam - Xmin

13
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where:

Xscaled - 18 the scaled value of the feature X

X is the original value of the feature X
Xomin - is the minimum value of the feature X in the dataset.
Xmaz is the maximum value of the feature X in the dataset.

2.1.6 Evaluation Tools

+ Confusion Matrix: A confusion matrix is a fundamental concept in machine
learning that is used to evaluate the performance of a classification model. It
provides a comprehensive way of understanding the effectiveness of a classifica-
tion algorithm by breaking down the predictions made by the model into various
categories. It is typically represented as a table with rows and columns, where
each row represents the instances in an actual class, and each column represents

the instances predicted to be in a specific class by the model.

The four possible outcomes of a binary classification problem, such as ours, are

as follows:

1. True Positive (TP): Instances that are correctly predicted as belonging to

the positive class.

2. True Negative (TN): Instances that are correctly predicted as belonging to

the negative class.

3. False Positive (FP): Instances that are incorrectly predicted as belonging to

the positive class.

4. False Negative (FN): Instances that are incorrectly predicted as belonging

to the negative class.

Table 1 visualizes the complete form of a confusion matrix:

Now, we are going to see some important evaluation metrics based on the the
above values, that are going to help us evaluate our models and choose the most

suitable for our case.

14
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Actually Actually
Positive Negative
Predicted | True Positive | False Positive
Positive (TP) (FP)
Predicted | False Negative | True Negative
Negative (FN) (TN)

Table 1: Confusion Matrix

* Precision for the positive class: Precision, also known as positive predictive

value, measures the accuracy of positive predictions made by the model. It is the
ratio of true positive predictions to the total number of positive predictions (both

true positives and false positives).

TP

P'recisionpos = W

(M

Precision for the negative class, also known as negative predictive value, mea-
sures the accuracy of negative predictions made. It is the ratio of true negative
predictions to the total number of negative predictions (both true negatives and

false negatives).

TN
TN + FN

Precisionneg =

@

Recall for the positive class, also known as sensitivity or true positive rate, mea-
sures the model’s ability to correctly identify all instances of a positive class. It
is the ratio of true positive predictions to the total number of actual positive in-

stances (both true positives and false negatives).

TP

Recallpos = 75 TN

3)

15



2.1 Basic Terms and Concepts 16

* Recall for the negative class, also known as Specificity, measures the model’s
ability to correctly identify all instances of the negative class. It is the ratio of
true negative predictions to the total number of actual negative instances (both

true negatives and false positives).

TN

TN + FP @)

Recallneg =

* F1 Score, is the harmonic mean of precision and recall for each class. It provides
a single value that balances both metrics. Now let’s see the formula for the F1

Score of positive and negative class:

Precisiongpes - Recallpos

F18 os = 2+ —
corep Precisionpos + Recallpos

®)

* Macro F1 Score, is the harmonic mean value of the F1 Scores for each class. In
the case of a binary classification, Macro F1 Score is the mean of the F1 Score

for the positive class and the F1 Score for the negative class.

F'1 Scorepos + F1 Scorenecg

Macro F1 Score = 2

(6)

2.1.7 Time Series Clustering

A time series is a sequence of data points or observations collected at specific time
intervals. It is a fundamental concept in various fields, including machine learning en-
gineering. Time series analysis involves studying the patterns, trends, and behavior of
data over time to make predictions (time series forecasting), identify underlying pat-
terns, and extract meaningful insights.

In our case, we applied time series analysis in the 5-day measurements we had in
our dataset. Then, we appropriately clustered them, using Agglomerative Clustering

and K-Means Clustering.

16
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+ Agglomerative Clustering: Agglomerative clustering is a hierarchical cluster-
ing technique to group similar data points together based on their distance or
similarity. It is a bottom-up approach, where individual data points are succes-
sively merged into larger clusters until a stopping criterion is met. Here’s how

agglomerative clustering works in the context of time series data:

1. Distance Calculation: The first step is to compute a distance metric between

pairs of time series. This distance metric measures the similarity or dissimi-
larity between two time series. Various distance measures can be used, such
as Euclidean distance, Dynamic Time Warping (DTW) distance, or Pearson

correlation coefficient.
2. Initialization: Each time series is initially treated as a separate cluster.

3. Agglomeration: The algorithm proceeds by iteratively merging the closest
pair of clusters based on the chosen distance metric. This merging process

continues until all time series are grouped into a single cluster.

4. Hierarchy Formation: As clusters are merged, a hierarchy or dendrogram

is constructed. This dendrogram provides a visual representation of the

clustering process, showing how clusters are merged step by step.

5. Selecting a Threshold Level: To obtain a specific number of clusters, you

can choose a threshold level on the dendrogram. This threshold determines
at what height the dendrogram should be pruned, resulting in the forma-
tion of distinct clusters. Each branch or subtree below the chosen threshold

represents a separate cluster of similar time series.

* K-Means Clustering: K-Means clustering is a popular unsupervised machine
learning algorithm used to partition a dataset into a predetermined number of
clusters. While originally designed for vector-based data points, K-Means can be
adapted for time series data by transforming the time series into a suitable format.
However, using K-Means for time series clustering presents some challenges due
to the sequential and temporal nature of the data. Now, let’s see how K-Means

clustering can be applied to time series data:

17
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1. Choosing K: First, we need to specify the number of clusters, denoted as K.
This can be determined using domain knowledge, elbow method, silhouette

score, or other techniques.

2. Data Transformation & Distance Selection: Adapting K-Means for time se-

ries begins by transforming each time series into a feature vector. This
transformation involves selecting an appropriate distance metric to measure
the similarity or dissimilarity between time series. Distances like Euclidean,
Dynamic Time Warping (DTW), cosine similarity, Pearson correlation, and
others can capture various aspects of similarity, based on the characteristics
of the data.

3. Initialization: K initial cluster centroids are randomly chosen from the trans-
formed data. This step can significantly impact the final clustering result,

and different initialization methods can be used to improve convergence.

4. Assignment and Update: Each time series is assigned to the nearest cen-

troid, and then the centroids are updated based on the assigned data points.
This process iteratively continues until convergence, where data point as-

signments and centroid positions stabilize.

5. Interpreting Clusters: Once the algorithm converges, the time series clus-

ters can be interpreted. However, interpreting clusters in the context of time
series can be more challenging than in vector-based data, as the sequence
and temporal information are often not explicitly preserved in the clustering

result.

6. Post-Processing: Depending on the application, you might need to post-
process the clusters, such as analyzing the cluster characteristics, visualiz-
ing the time series within each cluster, or using the clusters for downstream

tasks like anomaly detection or, in our case, classification.

18
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2.2 Related Work

First of all, it is necessary to separate our work from another attempt to solve the
same problem, made in the past [14]. In their study, they had a smaller and much more
imbalanced dataset, while in our attempt, the instances available for the control group,
were significantly more. Also, not only did they take into account the total days the
patient spent in the clinic of the hospital, which is a feature we would not be aware
of yet in the time our model was going to be applied, but it was one of the features
with the highest importance in their model. So, in our work, we removed it during
data cleaning and tried to make predictions without it. Moreover, a major factor that
encourage us to construct a model for the same problem once again, was to examine
whether a time series representation of the medical measurements could help the model
perform better. Last but not least, in the end of our work, we try to predict with less
days of measurements available and see how our model would react. In that way, we
will be able to see how promptly we could make a valid prediction. Now let’s see how
our study compares to other similar researches.

Over the last years, the prediction of sepsis has been of concern to several re-
searchers, who are constantly trying to construct better predictive models for predicting
an upcoming infection, using a variety of machine learning algorithms. In most of these
studies, the results in theory were quite encouraging, yet they could not be applied in
reality, since they could predict the occurrence of an infection just a few hours before
it happened.

Indicatively, some have used XGBoost classifier [15], Logistic Regression [16],
Naive Bayes [17] etc. In the majority of the studies, the most efficient ML classifi-
cation algorithm seemed to be XGBoost, something also reassured from a study [18]
comparing performance of different ML classification algorithms, including XGBoost,
Logistic Regression and Naive-Bayes, aiming to early sepsis prediction. In this experi-
ment, they applied these algorithms to 3 different datasets consisting of a total of 100000
patients, to get a more objective perspective, while the input features were some demo-
graphic data and many medical measurements. As already mentioned, they concluded
that in their case, the most appropriate model for predicting sepsis in ICU patients, was
the XGBoost Classifier.

In the aforesaid study, they evaluated the classifiers using accuracy, precision, recall
and the area under the ROC Curve. Moreover, in the study mentioned first, where they

tried to deal with the same problem as we do, they also used precision, recall and the Log

19
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Loss Function to compare their models’ performance. In addition, in a study where they
analysed classification algorithms for predictive analysis on banking data, finding out
that the most efficient classification algorithms for their problem were XGBoost and
Logistic Regression (confirming once again the very good performance of XGBoost
classifier for predictive models), they also evaluate the models based on their recall,
precision, accuracy and F1 Score, [19]. In general, this way of evaluating models (i.e.
using mainly recall, precision and F1 Score) that are trying to make predictions through
classification, is a very popular way, that is met in a variety of the respective studies.

Something worth mentioning, is that most researchers appear to have used as fea-
tures, risk scores (e.g. MEWS, SIRS, SOFA and others), that offer a little amount of
useful information about a patient’s clinical state or likelihood of developing sepsis.
[11] However, they are dependent on certain measurements taken at predetermined in-
tervals, so they are unable to capture the heterogeneity of sepsis and the unique symp-
toms of each patient. Additionally, it is observed that in the vast majority of the surveys
that use medical measurements, they are limited to a single measurement per feature.

Regarding our initial thoughts about time series clustering of the five-day medical
measurements, the most intuitive approach was to implement time series clustering. In
a study about a novel short-term load forecasting using time series clustering and clas-
sification algorithms, they come to the conclusion that KMeans and kernel KMeans
are the best performing clustering methods, providing an accuracy of 0.95 for the pre-
dictions. [20] Moreover, in a study where they compare various clustering methods
for time series data, results indicate Agglomerative clustering as the best performing
method, followed by KMeans clustering [21].

Taking into consideration the issues described above, in this study we attempt to
predict an upcoming infection via binary classification, testing between the three classi-
fiers analysed above: Logistic Regression, Gaussian Naive Bayes and XGBoost. Also,
we examine whether a time series analysis of certain data could result in better predic-
tions, by implementing KMeans and Agglomerative clustering, since they seem very
promising clustering methods based on the papers we read. In terms of features, we
attempt to increase the number of input features that are considered while defining the
patient-instance compared to similar studies, in order to test if the added data may re-
spectively increase the prediction power of the algorithm. Finally, we attempt to make
predictions as early as possible, by removing data collected in certain days, close to the

day of the infection.
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Chapter 3

3 University General Hospital of Heraklion
Dataset

In this chapter, we are going to delve into our dataset, which we were given from
the University Hospital of Heraklion. Here, we are going to view our dataset feature per
feature, explain how we pre-processed the data so that it will be much easier to handle
them, analyze the data retrieval methodology from the domain experts and finally share

the experience gained from the visit to the hospital.

3.1 Data Collection

After following the corresponding protocols and filling the necessary paperwork,
we received an anonymised patient data collection from the University General Hospital
of Heraklion for the needs of this survey.

The total number of patient records (instances) we had in this dataset can be sepa-
rated into 2 groups. The first consists of the patients who had an infection, forming our
sepsis dataset, while the other group is filled with patients that did not appear any signs
of sepsis during their stay in the clinic, who form our control group. The existence of
these 2 groups, is enough to make our dataset, one for a binary classification problem.
At first, we had 41 instances, of which 33 positive (developed an infection while hos-
pitalized) and 8 negative (control group). This was a pretty unbalanced dataset, so we
asked from the domain experts if they could gather some more instances for our control
group. After some months of data collection, we ended up having a total 58 instances,
33 positive and 25 negative.

Something also noteworthy is the actual ratio of the infected patients to the non-
infected. We posed this question to the domain experts, who, after some research in
their clinic’s records, replied that in reality there is approximately a 15 non-infected to
1 infected patient ratio. However this was not applicable in our dataset, since at this
moment we had just 25 instances in our control group, meaning that we should remove

almost all of our infected patients except for two, to achieve this analogy, something
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that of course, could not provide reliable results. However, to this day, the doctors of the
neurosurgical clinic of the University General Hospital of Heraklion keep searching for
patient records, old or new, to add in the dataset for further research. So in the future,
our model’s adaptation in the real world could be possible.

As for the features of this dataset, they contain many details for the patients, such as
demographic data, several medical measurements (e.g. Fever, White Blood Cells, Sys-
tolic and Diastolic Blood Pressure etc.) and many other details from the clinic archive,
such as the condition the patient finished his hospitalization at (Mortality, Total Days
of Hospitalization, ICU admission etc.) which we are going to analyze in the following
section of the paper, Section 3.2. Our target variable, represents whether this patient
had an infection during his hospitalization or not. Regarding the medical measurements,
these are measurements from 5 consecutive days, with the fifth day being the day the
patient had an infection. For the control group, the 5-day measurements are the mea-
surements of 5 random consecutive days. We need to stress that each day represents a

unique feature. Now we are going to analyze our dataset for this study.

3.2 Data Description

This dataset, consists of 58 patient-instances, along with 103 features, giving us a
total of 5974 data to work with. However, the dataset is not complete, as it has 1066
missing values we are trying to fill using the corresponding methods. So, ~ 17.84% of
the dataset consists of missing values. In our dataset, there are 6 features with nominal
data, making up a total of 348 data which is >~ 5.83% of our total data, leaving the
rest 5626 our of 5974 data (~ 94.17%) to be numerical, generating a 16 numerical
to 1 nominal ratio. Here, we should note that all the missing values exist among the
numerical data, since all the nominal are complete. As it will be explained later, all the
nominal data will be turn into numerical (boolean values) by the use of the appropriate

algorithms. Everything that was mentioned above, are presented in the Table 2.

Instances | Features | Total Data | Empty | Numerical | Nominal
Total 58 103 5974 1066 5626 348
Number
Percentage o o o o o N
Out of Total 100% 100% 100% 17.84% | 94.17% 5.83%

Table 2: Dataset analysis
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Now, we are about to explain every single feature existing in our dataset.

* Infection: Binary variable informing whether or not this patient was infected

while being hospitalized. This is our target variable.

* Gender: Binary variable, indicating patient’s gender.

+ Age: Patient’s age.

+ Total Days of Hospitalization: Total number of days this patient spent in the

clinic.

 Hospitalization in ICU: Binary variable informing whether or not this patient
was admitted in the ICU.

* Days of Hospitalization in ICU: Total number of days this patient spent in the
ICU prior to the infection.

* ICD 10: International Classification of Diseases - Tenth (10th) Revision, is an

international clinical cataloging system for defining and reporting diseases.

 Disease: A harmful deviation from the normal functioning of the human body,

not due to injury.

* Surgery: Surgeries performed to this patient.

» Comordibities: Patient’s co-existing diseases or conditions alongside alongside

the main disease.

+ Identified Microbe: The microbe discovered in this patient.

 Cultures to Identify Microbe: Type of culture that identified the microbe in this

patient.

+ Antibiotic Treatment: The antibiotics given to this patient to fight the infection.
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Duration of Antibiotic Treatment: For how long had this patient been taking

the antibiotic treatment.

Route of Administration of Antibiotic Treatment: The method that was used

by the nursing staff to administer the antibiotics to this patient.

WBC: White Blood Cells (WBC) - A part of our immune system that protects
our body from infection. White blood cells circulate through the bloodstream
and tissues, attacking unknown organisms entering the human body. They are the
response to any injury or illness. A normal WBC count is approximately from
4.5-1000/mm? to 10.5-1000/mm?. Common symptoms of WBC disorder are,
among others: fatigue, chronic infections, unexplained weight loss and generally

a feeling of being unwell.

NEU: Neutrophils (NEU) are a type of white blood cell (leukocytes) and in fact
the most common one in the human body, acting as its first line of defense, by
helping the immune system fight infections and heal injuries. Normal NEU range
in the human blood is from 2.5 - 1000/mm3 to 6.0 - 1000/mm?>.

CRP: C-Reactive Protein (CRP) is a pentameric protein, synthesized by the liver.
CRP’s level rise when the human body suffers from any kind of inflammation. A
normal CRP range for healthy adults is from 0.3 mg/dL to 1.0 mg/dL. Higher

values of CRP could indicate possible inflammation.

HCT: Hematocrit (HCT) is the percentage of red cells in the blood. Normal range
for healthy adults may vary, but in general, they lay between 40.5% and 50.5%
for males and from 36.0% to 44.5% for females. High percentage of HCT could
result to dizziness and feeling light-headed when low levels of HCT could cause

unexplained fatigue, pale complexion and a generalized weakness.

PLT: Platelets (PLT), blood’s smallest component, perform a clot by clustering
together, in order to stop bleeding. They are basically something like a natu-
ral bandage. A normal platelets count range in the blood is between 150000
platelets/mL and 450000 platelets/mL of blood. Some symptoms of platelets
disorders could be: cuts or sores that don’t heal or are slow to heal, skin that

bruises easily and unexplained nosebleeds or bleeding from the gums.
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* GLU: Glucose (GLU), blood’s main type of sugar, is the main source of energy
for the body’s cells. It comes either from digesting food, or it can be produced by
the body from other substances. A normal GLU range for healthy adults is from
90 mg/dL to 130 mg/dL. Low levels of glucose (hypoglycemia) could lead
to symptoms like fast heartbeat, sweating, anxiety, shaking, hunger, dizziness
etc. On the other hand, high levels of glucose (hyperglycemia) could result to
increased thirst and a dry mouth, needing to pee frequently, tiredness, weight

loss, even blurred vision.

* UR: Urine (UR) helps to evaluate kidney functionality. Normal levels of urine
vary between 10 mg/dL and 50 mg/dL. Urine level disorders, have symptoms
like a strong urge to urinate that doesn’t go away and a burning feeling when

urinating. These often indicate liver diseases.

* CR: Creatinine (CR) is a waste product the kidneys remove from the blood, used
to evaluate kidney functionality. Normally, the expected range for a healthy male
is from 0.7 mg/dL to 1.3 mg/dL and for a healthy female, between 0.6 mg/dL
and 1.1 mg/dL. Some symptoms of elevated creatinine levels are: Mental con-
fusion, elevated blood pressure, weakness, chest pain and muscle cramps, dehy-

dration and changes in the frequency of urination.

* SBP: Systolic Blood Pressure (SBP), is the pressure applied at the arteries’ walls
at the moment of a heartbeat. Normal SBP range for healthy adults is from
90 mmHg to 120 mmHg. Symptoms of high or low systolic blood pressure
(systolic hypertension) can be: nausea, headaches, shortness of breath, confu-

sion and vision issues.

« DBP: Diastolic Blood Pressure (DBP), is the force in the arteries’ walls when
the heart rests between heartbeats. Normal DBP range for healthy adults varies
between 60 mmH g and 80 mmHg. Symptoms of paranormal diastolic blood
pressure values could be chest pain, breathing difficulties, speech changes and

loss of consciousness.

* PUL: Pulses (PUL) are a rhythmical throbbing of the arteries, as the blood cir-
culates through them. The normal pulse range for healthy adults lays between

60 to 100 beats/minute. Symptoms of low pulses are: Chest pain, confusion,
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dizziness, getting tired easily while doing any kind of physical activity, even
fainting or near-fainting experience. On the contrary, some symptoms of higher
than normal pulses, could be a sensation of racing, flopping in the chest, chest

pain, fainting, shortness of breath etc.

FEV: Fever (FEV) is any rise of body temperature above the normal range, mean-
ing any body temperature measured over 37.0 °C. High fever (over 38.0 °C)

often indicates illness or infection.

SGOT: Serum Glutamic Oxaloacetic Transaminase (SGOT), is an enzyme present
in the liver and the heart cells. It is released on the blood when there is a mal-
function or damage in the liver or the heart. The normal SGOT range is 5 to 40
units per liter of serum (liquid part of the blood). When SGOT levels rise, this

indicates a liver or heart damage.

SGPT: Just like SGOT, Serum Glutamic Pyruvic Transaminase (SGPT), is also
an enzyme normally found plasma, many body tissues and mostly in the liver.
When the heart or the liver is damaged, SGPT is released into the bloodstream.
Normal SGPT values lay between between 7 and 56 units per liter of blood serum.

SGPT disorder is probably caused by a liver or heart malfunction.

gGT: gamma-Glutamyl transferase (gGT), is an enzyme found throughout the
whole body, but mainly in the liver. When a liver damage occurs, gGT is leaked
into the blood. The expected gGT values rest between 5 and 40 units per liter of
serum. High levels of gGT may indicate liver disease or damage to the bile ducts
(tubes that carry bile -fluid made by the liver, important for digestion- in and out
of the liver).

INR: International normalised ratio (INR) measures the time needed for the blood
to clot, through the prothrombin time (PT) test. Normal INR range for a healthy
adult is from 0.8 to 1.1.

APTT: Activated Partial Thromboplastin clotting Time (APTT), is one of the
most common blood coagulation tests, used to evaluate the work of clotting factor
in the blood, by measuring the time the blood takes to clot. Normal APTT range

is from 21 to 35 seconds.
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» K: Potassium (K) is a type of electrolyte, necessary for the functionality of human
body. Helps nerves and muscles work normally hence regularizing heartbeat.
Moreover, it helps nutrients move into and waste move out of cells. Normal
K values are 3.5 mEq/L to 5.2 mEq/L for adults. Low levels of potassium
may result in weakness, muscle cramps, confusion, constipation, arrhythmia, or
in some cases, increased urination. On the contrary, some symptoms of high
potassium levels are heart palpitations, shortness of breath, chest pain, nausea, or

vomiting

* Na: Sodium (Na) is the major positive ion (cation) in the fluid surrounding cells
in the body. It contributes to controlling the amount of fluids and acids in the
human body. The normal range for blood sodium levels is from 135 mFEq/L
to 145 mEq/L. High levels of sodium in the blood (hypernatremia), can cause
thirst, low urination, vomiting, diarrhea, confusion, seizures etc, while low sodium
levels (hyponatremia) may lead to nausea, headaches, constant fatigue, low blood

pressure, muscle weaknesses and so forth.

* Mortality: Boolean variable informing whether this patient exited the clinic dead

or alive.

3.3 Manual Data Cleaning

Something important in terms of processing the dataset, is to ensure its uniformity.
Since three separate domain experts collected the data, there were many little differ-
ences between the way the measurements were written, along with some details that
would be pretty helpful if they were recorded differently. These are the issues that are
about to be discussed in this section of the paper.

First of all, we had to remove some features that were not suitable for our survey,

for multiple reasons.

In particular, there were some features related to post-infection details and procedures,

such as:

« Identified Microbe

* Cultures to Identify Microbe
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< Antibiotic Treatment

e Duration of Antibiotic Treatment

« Route of Administration of Antibiotic Treatment

Then, there were some features that we could not possibly know at the time our model

is going to be used, like:

+ Total Days of Hospitalization

* Mortality

Lastly, we could merge “Hospitalization in ICU” and “Days of Hospitalization in ICU”
in a single feature named “Days of Hospitalization in ICU”. This feature’s value would
be zero (0) if the patient was never admitted in the ICU, otherwise it would just have

the number of the days he spent in the ICU.

+ Hospitalization in ICU

Days of Hospitalization in ICU

* Days of Hospitalization in ICU

Next, we replaced every comma (°,’) in any feature with decimal numerals with a

decimal point (°.”), so that our model does not confuse them as categorical values.

This brings us to another change, where in features containing multiple categorical
values per instance, such as “Comordibities” , we separated them with comma (°,”)
instead of slash (°/°) or anything like that, while having only the first letter of each

value as a capital letter.

Moreover, every shell containing no value, had a dash (*-’). We erased these dashes
and left the cells empty, so that the model can read them immediately as NaN (Not-a-
Number).

Last but not least, every feature that contained multiple measurements (e.g. SGOT/SGPT/gGT,

SPB/DBP etc) was divided so that each feature would have a single measurement.
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3.4 Visiting University General Hospital of Heraklion
& Proposed Changes

While I was working on this research, a trip to Crete emerged, so I decided to take
the most of it and pay a visit to University Hospital of Heraklion to meet the doctors

that were providing me with data and discuss about the model and potential changes.

3.4.1 Meeting in the University General Hospital of Heraklion

To begin with, the main topic of this meeting were the general aspects of the model
and the changes needed in comparison with the previous attempt for the same issue
[14]. We concluded that something really useful, among others, would be to increase
the number of patients in the dataset, and more specifically the control group, to get
close to an one-to-one match, since until then the infected patients outnumbered the
non-infected significantly.

Next, for the retrieval of new data, I decided to propose them to proceed based on

the changes that were made in the excel sheet, as mentioned above in Section 3.3.

3.4.2 Proposed Data Collection Method

In a few words, what was told and agreed in this meeting regarding the recording

of the data, was:

* In features containing decimal numerals, the decimal point should always be a

> and never a ‘,’.

+ In features with multiple categorical values per instance, these should be sepa-

rated with a comma °,” and just the first letter of each value should be capitalized.
» Missing value cells should be left empty.
* Only one medical measurement per feature.

Moreover, it was agreed to contact each other once every two weeks to get informed

about any new cases appropriate to be added in the dataset.
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3.4.3 Addition of New Data

Finally, after some months of gathering instances, as the model was taking its final
form, the domain experts managed to gather 17 new instances for the control group,
reaching the 25 in total. Comparing them to the 33 infected patients, we can see that
we are pretty close to the one-to-one match, as in the beginning the instances for the
control group were just 8.

In terms of percentage, at first we had 75.8% of our dataset filled with infected
patients and just 24.2% of our dataset making up the control group. However, at the
point that data collection was finished, the infected patients constituted the 56.9% of
the total patients, leaving the rest 43.1% of the dataset to the control group.

3.5 Data Retrieval General Methodology

Another aspect of my visit in the neurosurgical clinic of the hospital, was to see by
myself the process that has to be followed for the dataset to be filled.

To begin with, let’s see the most complex procedure of these two, this of recording
the infected patients. What it needs to be done, is to search through the digital archives
of the University General Hospital of Heraklion (Crete) for neurosurgical patients who
arrived in the hospital with no infection, yet they presented one during their hospital-
ization. Once a suitable case is found, values for certain features are recorded in a span
of 5 days, with the fifth day being the day the patient was sent for culture in order to
confirm an infection. However, to get to the desired patient-instances, we just have
to exclude patients whose profile does not match our case of interest. In order to do
this, there is a sequence of actions that needs to be followed. The first thing to check
in the archives, was the total days of hospitalization, which had to be at least 5. So
every neurosurgical patient who was hospitalized for 4 days or less, was immediately
ruled out. Then, the notes for the patient’s admission to the clinic were reviewed. If
they entered the hospital with an infection alongside their neurological issue, they were
also ruled out. Finally, patients that did not present any form of infection while they
were being hospitalized were excluded from our dataset. The patients remaining, are
the main candidates for our dataset. We tried our best to find the optimal cases. As
optimal case we define a patient who has as many measurements as possible for the

features wanted in the 5-day period of time we need. In the event of a patient having
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multiple measurements per day for a certain feature (e.g. fever, blood pressure etc), we
insert to our dataset the most abnormal one.

As for the collection of data for our control group, the process was way simpler, yet
not so common. All the patients that did not present an infection during their hospi-
talization, were potential instances for our dataset. Even though this might seem easy
to find, the reality was that the patients that did not appear signs of infection, were not
frequently examined by the nursing staff. This, made our work difficult, since we had
to find patients with as much values filled as possible, in order to avoid having too many

missing values in the final dataset.
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Chapter 4

4 Proposed Method

In this section, we will define the exact issue that our model is trying to solve, along
with the methodology adopted to deal with it. This methodology, contained a series of
things needed to be done, such as the handling of our dataset, feature engineering and
modeling of the problem, selection and configuration of the appropriate classifier and
method to fill the missing values and finally, evaluation of the models to select the
optimal one.

. We will also try to explain in detail how our model was constructed to achieve
its goal. We will expand in every step of this process, including among others: data
pre-processing, model training, selected classifier, computing feature importances and

performing exploratory data analysis.

4.1 Problem Definition

The main issue this research is focused on, is the early prediction of impending
sepsis, by predicting an upcoming infection before the clinicians find it out. In this
thesis, we attempt finding the optimal machine learning algorithms to train our model,
in a dataset of neurosurgical patients and classify them according to whether or not
they’re going to get infected, so that they can be helped in time via the use of the proper
antibiotics. This classification is essentially a prediction as to how likely this patient is
to develop sepsis in the future and put his life at risk. The time margin this prediction
will gain, should give the domain experts the opportunity to find an effective way of
dealing with the infection before it turns into sepsis. Hereinafter, we will discuss the
general points of our approach, before we analyze them in our experiments in Section
5.3.
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4.2 Our approach

In this section, we are going to explain our approach in order to train an efficient
model step-by-step. The problem we were given, which was defined previously, we
decided to handle it using binary classification. Since every binary classification prob-
lem, should have a target variable, ours was a feature that indicates whether or not a
patient had an infection while in the clinic. Since the number of available instances was
very low we used a leave-one-out approach, where for each instance a separate model is
trained using all the other instances as training data. As a final step left before we could
implement binary classification, we had to choose an efficient, for our case, classifier.
Although our optimal model considered each day of every single medical measurement
as a separate feature, we also had to test if a time series analysis of them could provide
better results. Then, we had to see which are the important features in our model, while
also making sure that there was no feature that could influence by itself the outcome
of the prediction to a greater extent than wanted. Finally, we iteratively removed some
features representing specific, each time, days of medical measurements, to see how
our model would react and whether or not could we make any conclusions based on

that. Now let’s get into details about everything we mentioned above.

4.2.1 Training Model

We trained our model using Leave-One-Out cross validation (LOOCYV), as the op-
timal form of k-fold cross validation, since the available instances were too few. It is
worth mentioning that as a way of fully understanding its function, we wrote our on
function for the LOOCV without using the existing one provided by Python. In the
general case of a k-fold cross validation, we split the dataset into 2 subsets. The one is
used as a training set and the other one as a test set, which change randomly in every
loop. Yet, in the specific case of a LOOCYV, the test set consists of a single instance,
different in every loop, completing as many loops as the number of the instances. So,
at the end, the model has been trained with every single instance as a test set, meaning
it has tried to make a prediction for every single instance, based each time on all the
others (as a training set). Having constructed our own function for the implementation
of the LOOCYV as noted previously, it was easier to get information for each one of

these predictions, such as their confidence as we are going to see in Section 5.3.6.
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4.2.2 Classifier Selection

Regarding the classifiers, it is understood that in order to select the optimal classifier
to build our model, we could not test every single one. With that being said, we tried to
choose 3 of them, that seemed to be a good fit for our case, after studying about them.
First, we could not let out one of the most used classifiers, Logistic Regression. Many
studies have shown that it is one the easiest to implement while also being accurate
in its predictions [22] [23]. Next, we had a Naive Bayes classifier and in particular
Gaussian Naive Bayes, a classifier who has several advantages to display [24]. First
of all, it employs an intuitive way of operation. Contrary to, e.g. Neural Network and
similar to Logistic Regression, Gaussian NB does not require from the user to set many
parameters, something that makes the model design process significantly simpler. In
addition, Gaussian NB returns probability values for each prediction, something easier
applicable in various tasks and simpler to handle, than it would be if an arbitrary scale
was used instead. Lastly, it does not require large amounts of data and it can make very
fast computation in the decision making process. Finally, we decided to put into the
tests a state of the art classifier, such as XGBoost. This classifier has been proven to
be one of the most efficient, either compared to other machine learning algorithms for
prediction of diseases [25] or to deep learning algorithms like Neural Networks [26].
As we are going to see later on in our study, XGBoost was indeed the optimal classifier
for our model too and not due to randomness, as a paired T-test will prove (Section
5.3.5).

4.2.3 Time Series Analysis

Our initial thought about our approach to solve this problem, contained a time series
analysis of the features that represented consecutive days of the same medical measure-
ment. Although as we are going to see in the next chapter, our model at this point was
already working excellently well, we decided to follow our initial plan just to see the
performance of a predictive model using time series forecasting. Thus, we had to con-
sider an easy to implement, yet proven to be efficient methodology. So, we had to
cluster the time series data before we could make predictions based on them. As clus-
tering methods for time series, we leaned into 2 of the most used in the papers we read,
k-means [27] and agglomerative [28]. This process returned some cluster assignments

which we used to turn the clusters into features by one hot encoding them. We are
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going to look further into this approach at the “Experiments” section below (Section
5.3), but these models were not as efficient as the previous ones, so we did not continue
so we did not continue our work in that direction. So, now, we are going to continue
with some tests about our feature’s objectivity and find the features that have the most

influence in the final prediction.

4.2.4 Feature’s Importance and Potential Bias

Having selected our most efficient model, the only thing left was to make sure that
our model is not biased. In order to do this, we used exploratory data analysis, a method
that reveals important statistics about the features. Following a process that will be ex-
plained in Section 5.3.8, we made sure that no feature in our dataset used to train our
model, could betray by its value, the actual value of the target variable. Of course, if
there was such a feature, this would immediately lower our model’s objectivity. After
making sure that this was not an issue, we decided to find the features that had a signif-
icant impact in our model, helping our model to make the predictions. To do that, we
just had to compute the feature importances in our model. The results we got, indicated
that among others, fever, hematocrit and platelets had the biggest importance. Another
clue we could get from this computation, could answer the question of whether or not
there are important days of the measurements. As we will see in the corresponding sec-
tion below (Section 5.3.7), first days appeared to have much more influence in the final
prediction. This, aroused our interest to further investigate it and see how our model

would react in case we removed specific days of measurements.

4.2.5 Reducing the available features by day

Even though this was not included in our initial approach, we were curious about
our model’s reaction to removing certain features from our dataset. We would each time
extract features who stood for specific days of medical measurements. Our constructed
methodology was split in two main parts. First part designated a removal from the final
towards the first day, while the second part specified the other way around, i.e. start with
extracting the first day, and continue until we are left with just the day of the culture
that identified an infection. By doing this, we wanted to test the significance of the

measurement’s days in our model and if our conclusion was in line with what we saw
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in Section 4.2.4 where we found out that almost all of the most important features were
measurements from the first day. The results we got were pretty enlightening, as the
model performed way better when we started removing days close to the occurrence
of the infection. Also, the biggest difference noticed in the efficiency of our model
was based on whether the first day of measurements was included in the dataset or
not. This showed once again how valuable the measurements of the first day are to
the model. Having now described our approach to handling the problem posed to us,
in the upcoming chapter, it is time to see in detail all the experiments made, until we

concluded to the optimal model.
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S Experiments and Discussion

In the previous chapter, we explained our approach in depth, analyzing every aspect
of its methodology. Here, we will talk about the process followed to end up with the
aforementioned results, focusing on the experiments. In general, in the previous chapter
(Chapter 4) we explained “what” we did, while in this chapter, we are going to analyze

“how” we did it.

5.1 Questions we need to answer

In the beginning of our study, our primary concern was to construct a credible
methodology to deal with the problem. We decided to go with the obvious choice of
a binary classification algorithm, but this caused a lot of questions that needed to be
answered. First of all, we had to take advantage of some already existing data from
the neurosurgical clinic of the General University Hospital of Heraklion and appropri-
ately implement data cleaning and data pre-processing so that we could train our model
on them. Next, we needed to find the most suitable evaluation tools that would give
answers to what we are looking for. Using them, we are going to search for the best
possible classifier for our model, selecting among the three mentioned in Section 4.2.2.
As we were training the model on the existing dataset, new data came up, so we wanted
to see how the model would react and if the performance of the tested classifiers would
change with the dataset. Even though we had a clear view of our model, we would
like to apply time series clustering in certain features and check our model’s response.
Finally and after having concluded to our most efficient model, we had to explore some
other details of this, such as its predictions’ confidence, the most important features, if
its better performance compared to the other models was random and if there were and
features that were so inextricably linked to the occurrence of infection that could betray
the outcome of the prediction. Lastly, there was something that came up during our
research and was not included in our initial methodology. This was about the reaction

our model would have if we were to remove some days of medical measurements from
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the features. The answers to the questions stated above, are going to be given in the
following sections, along with the experiments made to get them. For now, let’s see

everything that was needed to be done before we proceed with these experiments.

5.2 Experimental Setup

To begin with, regarding the coding aspect of our work, we used Spyder IDE in the
Anaconda environment, to code in python language. As for the evaluation of our mod-
els, we had to focus on precision and recall, so the F1 Score that combines them, seemed
like the obvious choice. However, we should take into consideration both classes, so
eventually we used Macro F1 Score, which is the mean of the F1 Score for each class, in
our case positive and negative. As for the dataset, it is important to note that we during
our study, we trained our model in two datasets, not totally different, but the one being
a more complete version of the other. What follows, are some more details for both the

dataset and the evaluation process applied.

5.2.1 Dataset

At first, as it has already been mentioned above, for our dataset we had 41 patient-
instances, 33 of them being infected and 8 non-infected. This dataset already existed
when we decided to deal with this problem, so we started our work based on that. We
tried our best to train an efficient model over these data, but it was impossible, since
the data were totally unbalanced and biased. So, after contacting the domain experts,
we acquired 17 new non-infected patient-instances, reaching a total of 58 instances, 33
infected and 25 for our control group. Then, we started from scratch to find the best fit
for our model once again, this time training it on the new dataset. More details about

the composition of the dataset, are listed in Section 3.2.
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5.2.2 [Evaluation Process

Next, we need to explain how exactly we evaluated each attempt, in order to find
the optimal fits for our model. A detailed description of the evaluation tools used,
has been made in the corresponding section (Section 2.1.6). It is easy to figure out
that the most important score of all was the one combining all the others, the Macro
F1 Score. Although this score was enough to evaluate a model’s performance, in the
following tables that contain information about the efficiency of each model based on
these evaluation tools, precision and recall will be included, as they contain important
information about the models. In addition, the confusion matrix had a decisive role
in our experimental evaluation, since its visualization in the environment of Spyder
IDE would give us an immediate point of view concerning the performance of our
tested model, as it makes it really easy to keep track of the false predictions and their
kind (false positive or false negative). We have to note here what the domain experts
consulted as: If it is to have a wrong prediction, it would be better to mistake someone
who is not going to get infected, rather than falsely predicting for a patient that is going
to get infected. That is because in the majority of the cases, taking a non-necessary
antibiotic treatment for a short period of time (until they see that this patient is not
going to get infected), is better than neglecting a patient’s treatment until the clinician

finds out the infection.

5.3 Experiments

In this part of the study, we shall analyze everything that needed to happen, for the
purpose of building our final model. Of course, we will start by explaining how we
handled the given data. Then, the biggest challenge of our work, was to find the best
combination of classifier and a method to fill the missing values, which constituted
our main experimental target. As for these experiments, it has already been mentioned
that we had two versions of our dataset which we used to train the models, so, after
talking about the pre-processing of our data, we will evaluate our models’ performance
on both of them. Then, to conclude to the final model, we are going to implement
time series clustering in our data. At this time, we will have concluded to our optimal
model for this problem, so we are going to investigate some details about this model,

such as the confidence of its predictions, its feature importances, even its reaction to
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the extraction of some of its features from the dataset, while also making sure that

everything is legitimate.

5.3.1 Data Pre-Processing

First thing that should be done by the time we acquired the data, was data-cleaning
as described in Section 3.3. Next, we had to handle the categorical data, turning them
to numerical. We did that via one-hot-encoding, according to which, every categorical
variable gets converted into dummy/indicator variables (i.e. as many 0/1 variables as
there are different values). Now, with all the data in numerical form, we had to apply
normalization, setting the values of each feature within the range of 0 and 1 (1 being the
max value of each feature) using min-max scaling, as noted in Section 2.1.5. A signifi-
cant part of the pre-processing of the available data, concerns the filling of the missing
values. However, as mentioned earlier, this was put to test alongside the classifiers,

something we will be experimenting with, right after.

5.3.2 Testing Classifiers and Data Filling Methods on First
Dataset

Regarding the filling of the missing values, we attempted two different ways. First
was the filling of each missing value with the mean value of the feature it belongs to.
The second one, was using kNN Imputation method. Then, concerning the classifiers
put to test, for the reasons explained in Section 4.2.2, we decided to examine Gaussian
Naive Bayes, Logistic Regression and XGBoost.

Below, in the figures 1, 3 and 5 we can see the confusion matrices for the 3 classifiers
(Gaussian Naive-Bayes, LR and XGBoost respectively) using kNN Imputation to fill
the missing values, while in the figures 2, 4 and 6 are shown the confusion matrices for
the same three classifiers in the same order, but this time using the mean value of each

feature to fill the missing values.
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As we can see, regarding the filling of the missing values with kNN imputation, the
Gaussian NB had the best performance out of them, by having just 3 false predictions,
followed by XGBoost with 4 mistakes and last came Logistic Regression with 6 wrong
predictions. As for the filling of the missing values using the mean of each feature, the
Gaussian NB outperformed the other two classifiers once again, by making 4 mistakes
against 5 and 7 of XGBoost and Logistic Regression respectively. We observe that the
kNN imputation appears to be a better fit for this model at every classifier tested. Also,
it is clear that in both cases, Logistic Regression classifier was very influenced by the
unbalance of the data, since it predicted almost every non-infected patient, as infected.

Now, we are going to see some tables about the scores these models achieved in
the evaluation metrics used (Precision, Recall and F1 Score). In Tables 3, 5 and 7, we
see the scores performed by Gaussian Naive-Bayes, Logistic Regression and XGBoost
Classifier respectively, while using kNN Imputation to fill the missing values. Next,
the same scores are shown in Tables 4, 6 and 8, but this time the mean value of each

feature was used as a filling method for the missing values.

Gaussian NB | Positive | Negative

kNN Class Class
Precision 0.9412 0.8571
Recall 0.9697 0.7500

F1 Score 0.9552 0.8000

Table 3: Initial Dataset - Evaluation of Gaussian NB using kNN Imputation.

Gaussian NB | Positive | Negative

Mean Class Class
Precision 0.9143 0.8333
Recall 0.9697 0.6250

F1 Score 0.9412 0.7143

Table 4: Initial Dataset - Evaluation of Gaussian NB using each Feature’s Mean.

LR Positive | Negative
kNN Class Class
Precision | 0.8462 1.0000
Recall 1.0000 0.2500
F1 Score | 0.9167 0.4000

Table 5: Initial Dataset - Evaluation of Logistic Regression using kNN Imputation.
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LR Positive | Negative
Mean Class Class
Precision | 0.8250 1.0000
Recall 1.0000 0.1250
F1 Score | 0.9041 0.2222

Table 6: Initial Dataset - Evaluation of Logistic Regression using each Feature’s Mean.

XGBoost | Positive | Negative
kNN Class Class
Precision | 0.9394 0.7500
Recall 0.9394 0.7500
F1 Score | 0.9394 0.7500

Table 7: Initial Dataset - Evaluation of XGBoost Classifier using kNN Imputation.

XGBoost | Positive | Negative
Mean Class Class

Precision | 0.8684 1.0000
Recall 1.0000 0.3750

F1 Score | 0.9296 0.5455

Table 8: Initial Dataset - Evaluation of XGBoost Classifier using each Feature’s Mean.

All the scores displayed in the tables above, can be merged in Table 9 that follows,
which shows the Macro F1 Scores for the evaluation of these models in the initial form
of our dataset. As we have already noted, this score by itself is enough to evaluate each

model performance and find the best one.

Macro F1 Gaussian Logistic XGBoost
Scores NB Regression | Classifier
Filling with
R Truino 0.8776 0.6583 0.8447
Fillingwith 1 0577 | 05632 | 07375
Feature’s Mean

Table 9: Initial Dataset - Macro F1 Score.

As we can see, everything we noticed by analysing the confusion matrices, is con-
firmed by the Macro F1 Scores. According to Table 9, the filling of the missing values
using kNN Imputation, indeed performed significantly better in every possible model,

while Gaussian NB seems to be the best performing classifier. So, our optimal model
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for this version of our dataset, is apparently Gaussian NB for our classifier while using

kNN Imputation method to fill the missing values.

5.3.3 Testing Classifiers and Data Filling Methods on Final
Dataset

However, we could not rely on the previous findings, since the dataset was not
appropriate at all. So, following the procedure described previously, we now had a
total of 58 instances in a much more balanced dataset, containing 33 infected and 25
non-infected patients. To train our model and find the best fit, we followed the exact
same steps as before, in the first version of our dataset.

So now, we have to see again the confusion matrices and some tables containing
the models’ evaluation measures scores to compare the performance of the classifiers
and the data filling methods for the final form of our dataset.

In Figures 7, 9 and 11 we can see the confusion matrices of Gaussian Naive-Bayes,
Logistic Regression and XGBoost Classifier, while using kNN Imputation to fill the
missing values. Respectively, in Figures 8, 10 and 12 are displayed the confusion ma-
trices of the aforementioned classifiers in the same order, but this time using the mean

of each feature to fill this feature’s missing values.

Gaussian NB Gaussian NB

No Sepsis No Sepsis

Tue label
Tue label

Sepsis Sepsis

Mo Sepsis Sepsis Mo Sepsis Sepsis
Predicted label Predicted label

Figure 7: Final Dataset - Gaussian NB Figure 8: Final Dataset - Gaussian NB
using kNN imputation. using each Feature’s Mean.
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Logistic Regression Logistic Regression
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Mo Sepsis Sepsis Mo Sepsis Sepsis
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Figure 9: Final Dataset - Logistic Re- Figure 10: Final Dataset - Logistic Re-
gression using kNN imputation. gression using each Feature’s Mean.
XGBoost XGBoost
30
5
Mo Sepsis Mo Sepsis
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Sepsis Sepsis
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No Sepsis Sepsis No Sepsis Sepsis
Predicted label Predicted label

Figure 11: Final Dataset - XGBoost us- Figure 12: Final Dataset - XGBoost us-
ing kNN Imputation. ing each Feature’s Mean.

As a first observation comparing these confusion matrices to the ones of the previ-
ous dataset, we can see that proportionally we have more false negatives, meaning our
model predicted infected patients as non-infected. This make sense if we consider that
the control group (i.e. patients that did not get infected during their hospitalization) was
3 times larger at this dataset, so the previously existing bias towards the positive class
(infected) was now absent. As for the classifiers, we can see that in both data filling
methods, Logistic Regression was the worst option with 7 and 8 errors while filling the
missing values with KNN imputation or the feature’s mean respectively. Gaussian NB
was now the second best with 6 errors in each one of the data filling methods and the
best performing classifier for this dataset was XGBoost, with 3 errors, 2 FNs (False
Negatives) and 1 FP (False Positive) in the kNN imputation case and 3 FPs in the case
where we take the mean of each feature to fill its missing values.
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To proceed, we have some tables containing the evaluation metrics that will help us
validate our prior observations based on the confusion matrices. Following the same
format as the previous section, in tables 10, 12 and 14 we see the precision, recall
and F1 Score for each class (positive and negative) of every classifier, while using
kNN Imputation to fill the missing values. Respectively, in tables 11, 13 and 15 each
classifier’s precision, recall and F1 Score for both the positive and negative class is
shown, but this time the mean value of each feature is used to fill this feature’s missing

values.

Gaussian NB | Positive | Negative

kNN Class Class
Precision 0.9655 0.8276
Recall 0.8485 0.9600

F1 Score 0.9032 0.8889

Table 10: Final Dataset - Evaluation of Gaussian NB using kNN Imputation.

Gaussian NB | Positive | Negative

Mean Class Class
Precision 0.9655 0.8276
Recall 0.8485 0.9600

F1 Score 0.9032 0.8889

Table 11: Final Dataset - Evaluation of Gaussian NB using each Feature’s Mean.

LR Positive | Negative
kNN Class Class
Precision | 0.9032 0.8148
Recall 0.8485 0.8800
F1 Score | 0.8750 0.8462

Table 12: Final Dataset - Evaluation of Logistic Regression using kNN Imputation.

LR Positive | Negative
Mean Class Class
Precision | 0.9062 0.8462
Recall 0.8788 0.8800
F1 Score | 0.8923 0.8627

Table 13: Final Dataset - Evaluation of Logistic Regression using each Feature’s Mean.

46



5.3 Experiments 47

XGBoost | Positive | Negative
kNN Class Class
Precision | 0.9688 0.9231
Recall 0.9394 0.9600
F1 Score | 0.9538 0.9412

Table 14: Final Dataset - Evaluation of XGBoost Classifier using kNN Imputation.

XGBoost | Positive | Negative
Mean Class Class

Precision | 0.9167 1.0000
Recall 1.0000 0.8800

F1 Score | 0.9565 0.9362

Table 15: Final Dataset - Evaluation of XGBoost Classifier using each Feature’s Mean.

Finally, in order to find the best model out of these 6, we need to compare their
Macro F1 Scores, which incorporates all the previous measures. We can see the Macro

F1 Scores of each model in Table 16 below.

Macro F1 Gaussian Logistic XGBoost
Scores NB Regression | Classifier
Filling with
kNN Imputation 0.8961 0.8606 0.9475
Filling with
Feature’s Mean 0.8961 0.8775 0.9463

Table 16: Final Dataset - Macro F1 Score.

Comparing this table (Table 16) to the Table 9, which contains the Macro F1 Scores
of our models for the initial version of our dataset, first thing we notice is a general-
ized better performance of every model with the current dataset. More specifically, the
biggest improvement is recorded by the Logistic Regression, even though it is once
again the worst performing out of the 3. In general, every model with any classifier
and any filling method in the final version of our dataset, significantly outperforms the
corresponding model trained on the initial dataset, without a single exception. Further-
more, anyone can see that there is no essential difference between the 2 ways of missing
value filling. Finally, the best fit for our model is indeed XGBoost as we had already
figured out from the confusion matrices, with a very high Macro F1 Score.

At that time, taking into account the domain experts who advised us to prefer FPs

over FNs, we considered that the best possible model was the one with the XGBoost
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classifier and filling the missing values with the mean of each feature as this model,
presented 3 FPs and 0 FNs.

At this point, while searching through a variety of other studies, we studied about a
the built-in algorithm in the XGBoost classifier [13], that allowed the classifier to fill by
itself the missing values of a dataset, as we described in Section 2.1.4. So, we decided to
test its efficiency in our case and put it into test. Basically, what we did was removing
the filling of the missing values from the pre-processing of the data and just “feed”
them, along with their missing values, to the classifier. As presented below using a
confusion matrix in Figure 13 and the scores achieved on the evaluation measures used

in Table 17, the performance of this model was outstanding.

XGBoost

Mo Sepsis 24 25

20

15

Tue label

10
Sepsis

T 0
No Sepsis Sepsis

Predicted label

Figure 13: XGBoost without pre-processing filling of missing values

XGBoost | Positive | Negative
self-fillng Class Class
Precision | 0.9706 1.0000
Recall 1.0000 0.9600
F1 Score 0.9851 0.9796
Macro F1 0.9823
Score

Table 17: Scores achieved from XGBoost, filled missing values using built-in algorithm

Not only does this model make just one false prediction, but it is in fact a False
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Positive, which is the “preferable” kind of mistake, as stated before. So, even though
comparing this model to the rest of the models analysed previously, this one seems to
be the most efficient of all, there are still some more left to examine with the additional

experiments that follow.

5.3.4 Time Series Clustering

Despite the already highly satisfactory results, we wanted to test one last change in
our model. We were intrigued to see how our model would react if we were to take into
account the time variable. On that basis, we decided to represent each one of the the
5-day medical measurements as a time series.

Visualizing it, we now had 19 different representations (since we have 19 differ-
ent medical measurements) of 58 time series (for the 58 patient-instances), which we
wanted to cluster. For the time series clustering, after some research we ended up trying
Agglomerative Clustering and KMeans Clustering (for more details, see Section 2.1.7)
and create 5 different clusters for each medical measurement. The clusters obtained,
should be turned into 5 features to replace the initial 5 features which represented the
5 days of medical measurements. In order to do this, we decided to use One Hot En-
coding. Thus, we ended up replacing every original 5 features with 5 one-hot encoded
cluster assignments, always for the same kind of medical measurement. In Figure 14
and 15, we can see the confusion matrices for the models using Agglomerative and

KMeans clustering respectively.

XGBoost - KMeans

XGBoost - Agglomerative

No Sepsis No Sepsis

Tue label
Tue label

Sepsis 10 Sepsis

Mo Sepsis Sepsis Mo Sepsis Sepsis
Predicted label Predicted label
Figure 14: KMeans Clustering. Figure 15: Agglomerative Clustering.

Observing these confusion matrices, we can see that compared to the previous mod-

els, the number of false predictions rises significantly. In fact, each one of the methods,

49



5.3 Experiments 50

makes a total of 8 mistakes. Although these matrices may seem pretty informative
about the performance of the models with time series clustering, we also have to take
a look at their scores. In table 18 we see the score for the performance of the model
using KMeans clustering for a time series forecasting and in Table 19 we see how the

one using Agglomerative clustering performed.

KMeans
Clustering
Precision | 0.8788 0.8400

Recall 0.8788 0.8400

F1 Score 0.8788 0.8400

Macro F1
Score

Positive | Negative

0.8594

Table 18: Scores for model with KMeans Time Series Clustering.

Agcglfsrlerriizve Positive | Negative
Precision 0.9032 0.8148
Recall 0.8485 0.8800
F1 Score 0.8750 0.8462
Macro F1 0.8606
Score

Table 19: Scores for model with Agglomerative Time Series Clustering.

Indeed, these scores for both of the time series models, indicate a much weaker pre-
dictive capacity than most of the previous models. Something worth noticing is that the
least efficient model that took the 5-days measurements as 5 separate features (Logistic
Regression using kNN Imputation) had the same performance with the best performing
model that clustered these features (Agglomerative Clustering) with a Macro F1 Score
of 0.8606. From this, we could probably make the assumption that a time series anal-
ysis of these data, may sounded good at first, but as we can see, it gets significantly
outperformed by other models and it does not seem to be an appropriate approach for
this problem. However, we can not state that as a valid conclusion, since the relatively

small size of the dataset, does not allow it.
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5.3.5 Is Model’s better performance Random?

There will always be the issue of the small dataset that is holding us back. So, we
decided to implement a statistical test, to be precise a paired t-Test, which will help
us see if the outcome of our experiments is accidental/random based on the dataset we
have, or it will be performing better in almost every dataset. In general, “The Paired
Samples t-Test is a non-parametric technique of statistics used to compare average val-
ues of two groups” [29]. With this test, we are going to compare our best performing
model (XGBoost with the built-in algorithm for filling of missing values) with the two
classifiers having the next best performance. These, based on the Macro F1 Scores, are
the Gaussian NB and the Logistic Regression, both using the mean of each feature as a
way of filling the missing values. In order to draw our results, we needed to examine
two variables: T-statistic and p-value. The first one shows how much the models differ
from each other. The greater the value is by absolute price, the more these models dif-
fer. Regarding the p-value, it represents the randomness of their difference. The lower
the absolute value, the less the randomness in the results. Usually, to prove that the
difference in efficiency between the models is not random, p-value has to be less or
equal to 0.05.

Now we are going to explain the way we implemented this test. First of all, regard-
ing the target variable, there is its actual value and the predicted value of each model.
In our case, this of a binary classification, the actual value of the target variable is 0 for
a patient who was not infected while being hospitalized, or 1 if the patient got infected.
Respectively, if the model predicted that the patient would get infected, the predicted
value would be 1, otherwise it would be equal to 0. Now, for each model, we created
a list filled with 0 and 1, as many as the instances. For each patient-instance, we filled
the list with 1 if the predicted value of the target variable was equal to the actual one, or
else we filled it with 0. Now that we have a list for every one of the 3 models mentioned
before, we compare our best one with the other two in pairs, using an existing python

function for the paired T-test. The results we got are the following:

* Comparing XGBoost with Gaussian NB:

T — statistic = 3.7961 |, p — value = 0.0004
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* Comparing XGBoost with Logistic Regression:

T — statistic = 3.5916 , p — value = 0.0007

Based on the condition defining that p-value < 0.05 corresponds to a result that
is not random, we can see that both of these comparisons between our tests, have a p-
value much lower than the threshold of 0.05. Hence, it is clear that our best performing
model is very possible to be the most efficient out of these 3, in almost every other

similar dataset.

5.3.6 Confidence of Predictions

By the term “confidence”, we basically mean the probability our model gives for
each instance’s target variable to be either 0 or 1. The default threshold in our case
is 0.5, meaning that if an instance’s probability is larger than 0.5, the target variable’s
value will be 1, otherwise it will be 0. Nevertheless, this threshold can change in certain
cases. So, we computed each prediction’s confidence, to see if a threshold change could
provide us with even better results.

After looking in detail every classes’ probabilities, we noticed that for an instance
which belongs to the positive class (infected patient / probability > 0.5), the lowest
probability given by the model is 0.5341. On the contrary, the highest probability for
an instance of the negative class is 0.4302. We observe that both of these values are
pretty close to the 0.5 threshold. At the same time, the false prediction is made with
a probability of 0.9180 for an instance of the negative class. This is a prediction with
a very big confidence, so there is no threshold change that could make our model per-
form better. It is worth noting that after seeing the probability our model gave for this
prediction, we even contacted the domain experts to make sure the listing of this patient
was correct. After some research, they reassured us it was indeed a patient who was

not infected, even though our model suggested otherwise.
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5.3.7 Feature Importance

Having concluded at our model with the XGBoost classifier using its built-in al-
gorithm to fill missing values, something worth examining is the feature importance,
to find out the features that had the biggest influence for our model to make the final

prediction. These are presented in descending order in the Figure 16.

Feature Importances
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Figure 16: Feature Importance

First of all, looking at the plot, we can see that the nominal data had no influence
on the decision of the model, something that of course may be due to the small amount
of data. As for the features, it seems that the most important ones for the model were
the fever (FEV), the hematocrit (HCT) and the Platelets (PLT). Regarding the days of
measurements, even though the most important feature was a fifth day measurement, in
general the first days and in particular the first day, appear to have greater importance.
The most important feature of all, is the fever measurement on the day of the infection’s
occurrence. This was something that we expected, since it is known that fever is one

of the most common symptoms of an infectious disease [30].
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5.3.8 Features that could Give Away the Result?

At this point, we were concerned by the fact that every model we tested so far,
appeared to be able to make a valid number of predictions correct. So now, we wanted
to make sure that there is no feature in our dataset predetermining the outcome of the
prediction. Our first move in this direction, was to consult the doctors of the General
University Hospital of Heraklion, as domain experts. In the same time, we applied
an exploratory data analysis (using an existing python function) on our dataset, that
generated an HTML report which could be opened in the browser. In this report, called
DataPrep Report, we could experiment with our data and find different statistics about
them. We just had to look at the correlations between every single feature and the target
variable. What we were looking for, was to make sure that there is not an obvious
threshold in any of our features, where the instances to the one side of it, would all
belong to one class, while the ones on the opposite side, to the other class. Both the reply
of the doctors concerning this subject and the results of the exploratory data analysis,
confirmed that there was nothing biased about our features, meaning that our model
was totally legitimate and objective. Hence, we can continue our experiments for the

analysis of our selected model.

5.3.9 Prediction with less days’ measurements

At this time, having already concluded to arguably the best possible predictive
model for our quest based on our data, we decided to take it one step further and try
to see how our model would react if we extracted some days of medical measurements
and by extension, if we could make a prediction with even less data. Thus, we tried
to remove some features from our dataset, which represented certain days of medical
measurements. For example, we wanted to see what would happen if we were to re-
move every measurement from the day of the culture that gave away the infection (day
5), or the first day of measurements etc. By doing this, we could see not only how well
our model would perform with less measurements available, but primarily how many
days before the occurrence of an infection was our model able to predict it. Also, it
could provide us with an answer about the days’ measurements that matter the most for

the prediction: The ones close to the infection or the ones much prior?
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* Removing days from Day 5 to Day 1

To give an answer to this question, we started removing features from our dataset,
beginning from the ones representing the day 5, which is the day of the culture
that confirmed the infection. We continued removing features close to the day of
the infection from our dataset until we were left only with the first day of medical
measurements. In Figure 17 we see the predictions using the measurements from
the days 1 to 4, in Figure 18 using days 1-3, in Figure 19 the confusion matrix for
predicting with the first 2 days and in Figure 20 using just the first day. Finally,

in Table 20, we see the scores of the aforesaid models.

XGBoost / Days 1-4 XGBoost / Days 1-3

0 30
Mo Sepsis 5 Mo Sepsis 5
T 0 T 20
2 2
: B =
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Sepsis Sepsis 0
3 5
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No Sepsis Sepsis No Sepsis Sepsis
Predicted label Predicted label
Figure 17: Predicting without measure- Figure 18: Predicting without measure-
ments of day 5. ments of days 4,5.
XGBoost / Days 1-2 XGBoost / Day 1
30
No Sepsis 1 5 No Sepsis
— 20 —
2 2
o o
£ " £
Sepsis 1 3z 10 Sepsis
5
No Sepsis Sepsis No Sepsis Sepsis
Predicted label Predicted label
Figure 19: Predicting without measure- Figure 20: Predicting without measure-
ments of days 3,4,5. ments of days 2,3,4,5.
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Days

Considered

1-4 1-3 1-2 1

Class

Recall | 1.0000 | 0.9600 | 0.9697 | 0.9200 | 0.9697 | 0.9600 | 0.9394 | 0.9200
FI Score | 0.9851 | 0.9796 | 0.9552 | 0.9388 | 0.9697 | 0.9600 | 0.9394 | 0.9200
M PO 0.9823 0.9470 0.9648 0.9297
Score

Table 20: Scores of our model while removing days backwards.

From the results, we uncover some important findings:

1.

After removing the measurements from the day of the infection (day 5),
the predictive ability of our model remains the same. This means that we
can predict an upcoming infection without measurements from the day of
its occurrence. So, we can efficiently make a prediction even a whole day

prior to the infection.

. Even though we took away the feature with the highest importance, the

fever measurement of the fifth day, as mentioned in Section 5.3.7, the model

was not affected.

. When predicting with the measurements of 3 days (3,4,5) we get worse

results than the prediction using the measurements for 2 days (4,5). This is
possibly random and could be due to a variety of cases, such as the dataset,

the confidence threshold we explained at Section 5.3.6 etc.

. Itis remarkable that even just with the first day of measurements, the model

performs way better than expected, especially if we consider that it tries to
predict an infection 4 whole days before it happens, with a Macro F1 Score

almost equal to 0.93.

* Removing days from Day 1 to Day 5

Here, we are going to do the opposite to what we did before. We are going

to remove feature-days onwards, meaning we are going to remove features from

day 1 to day 4 of measurements, until we are left just with medical measurements

from day 5, the day of the infection. Just as before, there are 4 confusion matrices

in Figures 21, 22, 23 and 24 that show the predictions of the models using just

days 2-5, 3-5, 4-5 and 5 respectively. Then, there is Table 21 which contains all

the evaluation measures scores related to these models.
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XGBoost / Days 2-5
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Figure 21: Predicting without measure-
ments of day 1.

XGBoost / Days 4-5
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Figure 23: Predicting without measure-
ments of days 1,2,3.

XGBoost / Days 3-5
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Figure 22: Predicting without measure-
ments of days 1,2.

XGBoost /Day 5
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Figure 24: Predicting without measure-
ments of days 1,2,3,4.

Days
Considered 25 33 43 >
Class Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.
Precision | 0.8333 | 0.8636 | 0.8611 | 0.9091 | 0.9333 | 0.8214 | 0.9032 | 0.8148
Recall 0.9091 | 0.7600 | 0.9394 | 0.8000 | 0.8485 | 0.9200 | 0.8485 | 0.8800
F1 Score | 0.8696 | 0.8085 | 0.8986 | 0.8511 | 0.8889 | 0.8679 | 0.8750 | 0.8462
Macro K1 0.8390 0.8748 0.8784 0.8606
Score

Table 21: Macro F1 Scores while extracting days onwards.

It is clear that the predictive capacity of this procedure is not even relatively close

to the previous one, where we removed days backwards. These results highlight

once more the significance of the first day of the measurements for the model.
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To conclude, we can safely assume based on the above that it is easier to detect an
upcoming infection if you consider the situation of the patient some days prior to the
day of the infection, than the days close to it. Nevertheless, it is noteworthy that even in
the worst case scenario, this of the prediction using the measurements of the days 2,3,4
and 5, our model had a Macro F1 Score of almost 0.84, making 9 false predictions out
of 58. So, in the worst possible case, our model has a 84.5% chance of making the right

prediction, which is relatively not so bad.

5.4 Discussion

In this section, we thoroughly described every single experiment performed. It is
safe to say that the turning point in our work, were the additional data added in our
dataset during our research, something that is obvious comparing the results between
Sections 5.3.2 and 5.3.3. The vast majority of the combinations between the classifiers
tested and the ways of filling missing data, produced models that performed surprisingly
well, given the size of the available dataset. However, XGBoost seemed to be not only
our selected classifier, but also having on average the best performance on the majority
of the models trained. Even though the initial goal of this study was to have a time
series analysis for a part of the data, this appeared to be the least efficient of all the
methods attempted. Regarding the features, during our tests, although every model
had of course different important features, there were many similarities. For example,
fever, hematocrit, platelets and gGT appeared to have a high importance in most of our
models. On the contrary CR, INR and APTT were not a factor of influence in any of
our models. Concerning INR and APTT, this is maybe due to the big amount of missing
data in their measurements, since these were the least completed among all the medical
measurements. As for the creatinine (CR), it probably does not seem to be affected
by the occurrence of infection. Also, none of the features containing nominal values
were ever important for any model. Nonetheless, the small size of our dataset, reduces
significantly our capability of generalizing these findings.

Something we consider to be a valuable result from our work, is the Section 5.3.9,
where we tried to predict an upcoming infection with less days of measurements avail-
able in our dataset. This, revealed some really interesting findings that are challenging
enough to be investigated even further. Based on these, this model can not only predict

an upcoming infection at least a day before it happens, but it can predict an infection 4
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whole days prior to its occurrence with a success rate of more than 93%, since it made
only 4 wrong predictions our of 58. Of course, to achieve a satisfactory predictive capa-
bility with fewer days of data, is really important since having medical measurements
from 5 consecutive days is really challenging. At the same time, predicting an upcom-
ing infection as early as possible, could provide the domain experts with some important
time to handle the patient’s situation being better prepared. During these experiments,
the important features were almost the same as in the previous ones. FEV, HCT, PLT
and gGT of the first day were very important in every model tested in Section 5.3.9,
while in the Section 5.3.9 where there was no data from the first day, the important fea-
tures did not seem to follow some pattern and they were scattered among the dataset.
However, even in these models, not even once CR, INR, or APTT had any influence
in the outcome of a prediction. Finally, our final model, not only made just one false
prediction on the available dataset, but it was the “preferable” kind of mistake based on
the advice taken from the doctors of the University General Hospital of Heraklion.

In conclusion, our experiments can be described as successful since they all pro-
duced notable models and almost every change attempted, seemed to improve the model’s
performance. However, even though the relatively small size of our dataset will con-
stantly be a barrier regarding the confidence we can show about our findings, we can

consider that the problem posed to us has been successfully dealt with.
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Chapter 6

6 Conclusion

In this final part of our study, we will make a summary of our work, highlighting the
important findings, while also suggesting some potential changes that could improve

our research in the future.

6.1 Summary of Work

In this study, we attempted to construct a machine learning model, able to predict
impending sepsis. However, predicting an infection is a fundamental prerequisite for
the early identification of sepsis, so our work was focused towards the timely detection
of a possibly upcoming infection. In order to do this, we needed a dataset of patients,
either having got infected during their hospitalization, or not. The neurosurgical clinic
of the General University Hospital of Hearklion, responded to our request and provided
us with a comprehensive dataset, containing a variety of features for each patient. We
proceeded with data cleaning and data pre-processing over this dataset. The data pre-
processing was a simple yet effective process of handling the nominal data existing in
the dataset and normalizing every value within the range of 0 and 1. Then, the selection
of the appropriate method for filling the missing values and the best possible classifier,
emerged after several tests and model evaluations. This model was consisted of the
XGBoost classifier using its built-in algorithm to fill the missing values, while all the
features were handled as independent ones, without any specific treatment of the time
series data. Next, the features that presented the highest importance in our work, were
the fever, the hematocrit and the platelets, with the fever of the fifth day of measure-
ments, having the biggest influence of all. As for the days, the first day of measurements
appeared to be significantly more important, something that is also strongly confirmed
from our attempt to remove medical measurements from certain days.

In general, it is important to note that our model can be applied every day to keep
the medical team informed of each patient’s health status. The medical personnel will

be prepared in due time to treat the patient properly in the event of an infection, by
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administering the proper antibiotic treatment and having the patient concerned, undergo
extra testing. In conclusion, our model can predict efficiently an upcoming infection
days before it happens, in order to avoid impending sepsis and potentially save the life

of a patient in the future.

6.2 Future Work

As already mentioned before, this paper’s goal was to predict an impending infec-
tion, in order to avoid upcoming sepsis. To achieve this, we gathered data from the neu-
rosurgical clinic of the General University Hospital of Heraklion. However, the dataset
was nowhere near being large enough for our result to be as objective as possible. So,
a dataset with many more patient-instances would surely give even higher value to our
findings, especially if the real life analogy of 15 non-infected to 1 infected patient is
achieved. Nevertheless, the dataset could not only be larger concerning the number of
the instances. Since the days that are far from the infection seem to be more important,
as we saw in Section 5.3.9, it would be interesting to see what happens if we get mea-
surements from further back. So, we can talk about not only a growth of the dataset
because of the addition of new patients, but also an enlargement due to records of more
days of medical measurements for the existing patient-instances. Finally, it would be
useful to test this model in other similar datasets to broaden the generalizability of our

work, even compare it to others.
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