
Technical University of Crete

School of Electrical and Computer Engineering

Procedural Generation Algorithms in Games and 3D
Graphics

Diploma Thesis by

Ioannis Markou

Chania, Crete, October 2023

http://www.tuc.gr
http://www.ece.tuc.gr
http://www.yourWebsite.com
http://www.yourWebsite.com

Ioannis Markou ii October 2023

Abstract

In this thesis, a Procedural Environment Generator is created to be used as a tool by game

developers who want to automatically generate different types of terrain with the appropriate

vegetation. Nowadays, games are becoming more and more complex both in gameplay and

development, thus creating the demand for tools to help developers streamline and speed up

various parts of the development process. This tool focuses on terrain generation and the

population of said terrain with vegetation. Regarding the terrain, features to control its size,

altitude difference between highest and lowest points, mountain and hill height and detailing

have been implemented. Additionally, the map that gets created can be split into different areas.

Each area has its own material and zones of vegetation, meaning that large environments with

different sub-environments can be generated (e.g going from a jungle environment to a desert

or snowy environment). Vegetation zones can be created in each one of the areas, meaning that

each sub-environment can have different vegetation withing specific height limits. Furthermore,

the user can add their own 3D models and prefabs of both trees and vegetation, such as grass,

flowers, mushrooms or anything that fits their custom environment.

Acknowledgements

For this thesis, first and foremost, I would like to thank Prof. Katerina Mania for giving me

the space and time to develop my idea in a field that is just beginning to rise and also for her

invaluable support. Furthermore, I need to also thank Prof. Michail Lagoudakis and Assistant

Prof. Nikos Giatrakos for accepting to be on my committee.

I would also like to thank my colleagues in the Surreal research team for their guidance and

especially Minas Katsiokalis, Yannis Kritikos and Andreas Polychronakis.

Finally, I would like to thank my friends and especially my family, my parents Rena and

Pavlos, and my brother Manos for their endless support throughout my studies and the writing

of this thesis, both of which would be impossible without them.

Declaration of Authorship

I, Ioannis Markou, declare that this thesis titled, “Procedural Generation Algorithms in

Games and 3D Graphics” and the work presented in it are my own. I confirm that:

• This work was done wholly while in candidature for a research degree at this University.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Jury
3-member Committee

Professor Katerina Mania (Thesis Supervisor) ECE, Technical University of Crete

Professor Michail G. Lagoudakis ECE, Technical University of Crete

Assistant Professor Nikos Giatrakos ECE, Technical University of Crete

Ioannis Markou vi October 2023

Contents

1 Introduction 1

1.1 Brief Description . 1

1.2 Structure of the Thesis . 3

2 Research Overview 5

2.1 Procedural Content Generation . 5

2.1.1 History . 6

2.1.2 Why use Procedural Content Generation? 7

2.1.3 Procedural Terrain Generation . 8

2.1.4 Future goals, challenges and conclusions 10

2.2 Noise . 10

2.2.1 Diamond Square Algorithm . 11

2.2.2 Perlin Noise Algorithm . 12

2.3 Minecraft . 14

3 Use Case 17

3.1 Introduction . 17

3.2 Use Case Scenarios Diagrams . 17

3.2.1 User imports tool into Unity . 17

3.2.2 User has launched the Environment Generator 18

3.2.3 User is running Unity . 19

3.3 Creating an Environment Generator . 20

3.3.1 Field Explanation . 22

3.3.2 Areas . 25

Ioannis Markou vii October 2023

CONTENTS

4 Implementation 31

4.1 Introduction . 31

4.2 Overall structure . 31

4.3 Block Generator . 32

4.4 Terrain Generator . 36

4.5 EnvironmentController . 42

4.6 Miscellaneous Implementations . 47

5 Demo 55

5.1 Introduction . 55

5.2 Demo 1 . 55

5.3 Demo 2 . 62

6 Conclusion, Limitations &Future Work 65

6.1 Summary . 65

6.2 Limitations . 65

6.3 Future Work . 66

6.3.1 Adding more features and realism in the terrain generation 66

6.3.2 Improve performance using Unity DOTS 66

6.3.3 Add more rules for vegetation spawn . 67

6.3.4 Environment evaluation and Genetic Algorithms 67

6.3.5 Testing results of generated environments 68

Ioannis Markou viii October 2023

List of Figures

1.1 Example of the Environment Generator window values. 2

1.2 Example of a generated environment. 3

2.1 Possible procedural generated game content as shown by Hendrikx, Meijer, van

der Velden, and Iosup [5]. 6

2.2 The BBC Micro version of Elite. 7

2.3 Procedurally generated dungeon in Rogue. 7

2.4 No Man’s Sky. 8

2.5 Minecraft. 8

2.6 Perlin Noise, grayscale. 9

2.7 Marble vase procedurally textured with Perlin Noise. 11

2.8 Diamond square algorithm steps. 13

2.9 Original grid divided into rectangles. 13

2.10 Gradient vectors : orange, Distance vector: Green. 13

2.11 Minecraft chunk. 14

2.12 1D noise field. 15

2.13 Two sins representing terrain data. 15

2.14 Result after adding the two curves. 15

2.15 Continentalness. 16

2.16 Final result. 16

3.1 Initial Use Case. 18

3.2 Environment Generator Options Use Case. 18

3.3 Unity running use case. 19

3.4 Menu tab of the custom Editor Window for the Environment Generator. 20

Ioannis Markou ix October 2023

LIST OF FIGURES

3.5 Custom Editor Window for the Environment Generator. 20

3.6 The BlockGenerator game object that gets created, containing the appropriate

scripts. 21

3.7 An example 3x3 grid after the first step of the algorithm. 22

3.8 Block game object. 22

3.9 First example values. 23

3.10 First example: terrain result. 23

3.11 First example: terrain result, Noise Density = 150. 23

3.12 Noise Density = 150, Mountain Intensity = 150. 24

3.13 Noise Density = 150, Mountain Intensity = 250. 24

3.14 Noise Density = 150, Mountain Intensity = 400. 24

3.15 Noise Density = 150, Mountain Intensity = 250, Hill Detail = 0. 24

3.16 Noise Density = 150, Mountain Intensity = 250, Hill Detail = 300. 24

3.17 Noise Density = 150, Mountain Intensity = 250, Hill Detail = 300, Seed = 0. . . 25

3.18 Noise Density = 150, Mountain Intensity = 250, Hill Detail = 300, Random Seed. 25

3.19 Empty game object with Area script attached. 26

3.20 Empty game object with VegetationZone script attached. 27

3.21 Weighted Zone Tree list element. 27

3.22 First area example. 28

3.23 First vegetation zone example. 28

3.24 Tree prefab for the first example of vegetation zone. 29

3.25 Grass example for the first example of vegetation zone. 29

3.26 Far away shot of vegetation spawned. 29

3.27 Birch Tree spawn on vertex with grass surrounding it. 30

3.28 Grass patch spawn. 30

3.29 Far away shot of vegetation spawned. 30

4.1 Structure of system. 32

4.2 BlockGenerator’s Awake function. 33

4.3 Order of execution for event functions. 34

4.4 BlockGenerator’s Start function. 34

4.5 BlockGenerator’s GenerateBlocks coroutine. 35

4.6 BlockGenerator’s InstantiateWater function. 35

Ioannis Markou x October 2023

LIST OF FIGURES

4.7 First part of TerrainGenerator’s GenerateTerrain function. 37

4.8 Second part of TerrainGenerator’s GenerateTerrain function. 38

4.9 Example pattern sample of PerlinNoise function. 38

4.10 TerrainGenerator’s BiomeNoise function. 39

4.11 TerrainGenerator’s Noise function. 40

4.12 TerrainGenerator’s CheckIfEdgeVertex and SetStartingColors functions. 40

4.13 TerrainGenerator’s Start and Setup functions. 41

4.14 EnvironmentController’s communication chart. 42

4.15 EnvironmentController’s Singleton implementation. 42

4.16 EnvironmentController’s GenerateTreeFriend function. 44

4.17 EnvironmentController’s GenerateTreeFriend implementation continued. 44

4.18 Raycast script. 44

4.19 EnvironmentController’s GenerateTree function. 45

4.20 EnvironmentController’s GenerateTree function continued. 45

4.21 EnvironmentController’s GetVertexArea function. 46

4.22 EnvironmentController’s VertexBelongsInArea function. 46

4.23 EnvironmentController’s GenerateVegetation function. 46

4.24 Area script. 47

4.25 Vegetation Zone script. 48

4.26 Weighted Value script. 49

4.27 Diamond Square steps. 49

4.28 Diamond Square mesh generation. 51

4.29 Diamond Square, Diamond and Square step. 51

4.30 Diamond Square algorithm. 52

4.31 Diamond Square algorithm continued. 52

4.32 Diamond Square Generate Terrain function. 52

4.33 Diamond Square terrain example. 53

4.34 Custom material using Shader Graph example. 53

5.1 Demo 1 Settings. 55

5.2 First area of Demo1. 56

5.3 First vegetation zone of the first area of Demo 1. 57

5.4 Second vegetation zone of the first area of Demo 1. 57

Ioannis Markou xi October 2023

LIST OF FIGURES

5.5 Demo 1, Area 1, Vegetation Zone 1, first example. 58

5.6 Demo 1, Area 1, Vegetation Zone 1, second example. 58

5.7 Demo 1, Area 1, Vegetation Zone 2 example. 58

5.8 Demo 1, Area 1. 59

5.9 Third area of Demo 1. 59

5.10 Demo 1, Area 3. 60

5.11 Demo 1. 60

5.12 Demo 1, top down. 61

5.13 Demo 2 Environment Controller Window settings. 62

5.14 Demo 2 top down view. 62

5.15 First and most snowy area. 63

5.16 Middle part, closest to the snowy area. 63

5.17 Middle part, closest to the greener area. 64

5.18 Last and greener area. 64

6.1 OOP vs DOD. 67

6.2 Genetic algorithm crossover example. 68

6.3 Genetic algorithm mutation example. 68

Ioannis Markou xii October 2023

Chapter 1

Introduction

This thesis focuses on creating a Procedural Content Generation(PCG) tool, specifically to

generate custom environments, using the Unity Game Engine. This tool is to be used by

developers inside Unity3D to create natural environments that fit their purpose. That includes

generating a terrain, dividing it into different areas and populating it with vegetation.

1.1 Brief Description

This section will provide a brief description of the tool developed for this thesis. First, let’s

begin by talking about the terrain. The terrain consists of multiple meshes, called blocks, being

combined. The generated terrain’s size is N ×N blocks. Additionally, each block has M ×M

vertices. Both M and N are set by the user. These vertices work as points to spawn vegetation

on. However, only doing these will result in a large flat surface, and here comes the challenge

of procedurally adding detailing: hills, valleys, mountains and everything in between. That’s

where noise comes in.

Most Procedural Terrain Generation (PTG) algorithms/tools make use of some kind of noise

algorithms. Natural terrains consist of irregular shapes and have a fractal nature, making it

difficult for artists and developers to manually create them digitally. By using gradient noise

functions, we can use the luminosity of each pixel in the output to generate a heightmap[2] [3].

While there are many different noise algorithms to use, after testing a couple, this thesis makes

use of the Perlin Noise algorithm which will be explained in detail later.

So after generating the terrain, giving it detail with noise, it’s time to populate it with

vegetation. Firstly, the user can split the generated terrain into different areas. Each area has

Ioannis Markou 1 October 2023

1. INTRODUCTION

its own borders, material and zones of vegetation based on height. On each vegetation zone,

the probability of spawning vegetation, 3D models and height limits are customizable. The

algorithm goes through each vertex of each block and depending on the probability given either

spawns a batch of vegetation or not. Finally, the option to use a specific seed or use a random

one is available.

Now let’s get more into the specifics and the user experience. After importing the tool into

Unity, the user will be able to launch a Custom Window that shows all the available options

for generating an environment. Once the values are set, the generated environment will appear

once Unity’s Play button is pressed. In order for the user to make any kind of changes to the

environment, they need to stop Unity and make the changes inside the Custom Window offline,

then re-run Unity. This thesis can be summed up in the figures 1.1 and 1.2 shown below. To

sum it all up, we have created a custom window that works as an interface between the user

and the program. The program initially generates the mesh, based on the user’s inputs (Blocks

and Vertices Per Block). Following that, the mesh is shaped based on Noise Density, Mountain

Intensity and Hill Detail making it rougher, smoother, taller or shorter. Finally, the user must

create empty game objects to attach Area or Vegetation script in order to divide the terrain

into sub-environments and each sub-environment to zones of vegetation based on height.

Figure 1.1: Example of the Environment Generator window values.

Ioannis Markou 2 October 2023

1.2 Structure of the Thesis

Figure 1.2: Example of a generated environment.

1.2 Structure of the Thesis

In this section of the thesis, an overall structure of the document will be provided with a brief

description.

In Chapter 2, we provide the research behind this thesis and introduce the reader to the field

of Procedural Content Generation (PCG), its history, purpose and future goals. Additionally,

we discuss what Noise is, its use on the field and analyze two famous noise algorithms: Perlin

Noise and Diamond Square. Finally, we show how Minecraft generates its terrain, which is

closely related to the work done in this thesis.

In Chapter 3, initially we present the case analysis followed by a thorough explanation of

how to use the tool developed in this thesis. Additionally, each field of the custom editor window

that acts as an interface between the user and the program is analyzed, showing how different

values on each field can yield very different environment outputs.

In Chapter 4, we provide a detailed description of the structure of the system. More specif-

ically, we show how the main components communicate with each other and dive deep in

explaining how each of them works and what their purpose is.

In Chapter 5, we implement two demos, two different environments to show some of the

capabilities of this tool. The first demo presents a scenario where there’s a fire spreading

across a green, healthy environment. The second demo presents a snowy environment, slowly

transitioning into a greener environment, showing off many different areas.

Ioannis Markou 3 October 2023

1. INTRODUCTION

Finally, in Chapter 6, an overall conclusion of the thesis is given. We also provide ideas of

how this tool can be improved in the future and discuss its limitations.

Ioannis Markou 4 October 2023

Chapter 2

Research Overview

The research of this thesis mainly focuses on Procedural Content Generation (PCG) algorithms.

This chapter will provide a history and explain the use of the field. Additionally, a dive into

different noise functions and their uses will be discussed.

2.1 Procedural Content Generation

Defining Procedural Content Generation is a rather difficult task, since it contains many loose

definitions itself such as “content”. The best thing we can do is to limit the borders in which

PCG lies. To begin with, let’s talk about human input and PCG. There are many algorithms

and tools that require some human input to procedurally generate content, meaning that the

result of the algorithm should not be completely automatic in order to be considered “PCG”.

This is called mixed-initiative PCG[8]. However tools with complete control given to the user

such as map or terrain editors, are not considered PCG. In this thesis, we make use of mixed-

initiative PCG as the user defines size, shaping and vegetation parameters after allowing the

algorithm to generate the environment.

Moving on to another factor of PCG, let’s discuss about randomness. PCG is not about

making random decisions just for the sake of replayability or giving away the control to an

algorithm. Instead such generators use pseudo-random tools to create content following strict

constraints[8]. This is called stochasticity. In this thesis, we use Unity’s Random library to help

decide whether or not vegetation spawns but what kind of vegetation spawns or the probability

of spawning is decided by the user.

Ioannis Markou 5 October 2023

2. RESEARCH OVERVIEW

Taking into account the matters discussed above, we can attempt to give a definition of

PCG. Procedural Content Generation refers to game content being generated using computer

procedures, as the name suggests. More specifically, it’s all about a program, software or

algorithm generating stochastic game content with limited or no user input[1]. However, the

term “content” is not strictly defined. In general it includes game parts such as terrain, music,

animations even textures or whole stories but it excludes parts like Non-Playable Characters

(NPC) AI behavior.

Figure 2.1: Possible procedural generated game content as shown by Hendrikx, Meijer, van der

Velden, and Iosup [5].

In this thesis, we have created a PCG tool that can be used by anyone inside Unity in order

to generate custom rural environments. Both the terrain and the vegetation are procedurally

generated according to the settings set by the user.

2.1.1 History

Originally, PCG came up as a solution to technological bottlenecks in the 1980s. More specif-

ically, computer hardware at the time limited the creation of bigger games both in graphics

and content. In Elite (Acornsoft 1984), a space fighting game, instead of storing data such as

planet positions or names, developers came up with the idea of using a PCG algorithm that

generates all the necessary data given a specific seed[1]. Another game infamous for using PCG

algorithms is named Rogue (Pixel Games UK 1985). In Rogue, levels consisting of a number of

rooms connected via hallways in a 2D environment that are called Dungeons are procedurally

generated. We can see example of those two games in the figures 2.2, 2.3.

In modern era, many commercial games use more sophisticated PCG algorithms in sound,

map generation, item placement e.t.c. There are even games, like No Man’s Sky that base the

entire experience on PCG. No Man’s Sky by Hello Games features massive worlds, entire planets

with their own vegetation and wild life for the player to explore and survive. Every possible

Ioannis Markou 6 October 2023

2.1 Procedural Content Generation

ecosystem, galaxy, structure, biome and more is procedurally generated and the developers

claim that there are 18 quintillion possible planets, rendering the game endless.

Another game that uses PCG to generate game scenarios is Left 4 Dead(Valve 2008). Left

4 Dead is a 4 player co-op FPS video game, that places 4 players against hordes of zombies

trying to survive the zombie apocalypse. When playing Left 4 Dead, no run is the same. Each

time, weapons, health items, ammo e.t.c are placed in different spots, zombie spawns both in

quantity and place are never the same, and possibly parts of maps could be cut off. This is

done by an AI system called The Director. The Director measures the Survivor Intensity,stress

level and skill of each player, and decides on whether to make the game easier or harder. This

PCG ensures great replayability and immersion in the world of Left 4 Dead[15]. There’s even

research been done to combine biological indicators (with the appropriate hardware) and The

Director, meaning actual biological factors such as facial expressions, eye movement, heart rate

e.t.c are used as data for the Director to make decisions[16].

Figure 2.2: The BBC Micro version of

Elite.

Figure 2.3: Procedurally generated dungeon in

Rogue.

2.1.2 Why use Procedural Content Generation?

The explanation of PCG gives birth to the question: why use it? While there may be some

obvious reasons, PCG can be useful in many different situations. Let’s dive deeper.

To begin with, the gaming and 3D graphics industry has seen immense growth in popularity

over the last couple of decades[9]. Game development companies nowadays, consist of hundreds

Ioannis Markou 7 October 2023

2. RESEARCH OVERVIEW

Figure 2.4: No Man’s Sky. Figure 2.5: Minecraft.

of people with different fields of expertise that work together for, possibly, years to create a

singular game. For example, a popular AAA modern game called Call of Duty has multiple

different companies and 2-3 years to develop a singular sequel. With the advancement of

computer hardware, games also become more complex both in gameplay and graphics, requiring

even more people to work on them. This rise in popularity and complexity has given birth to

problems regarding scheduling, management, quality and budget in video game companies[10].

These issues led to a need for software tools to aid in the design and development of games.

Nowadays, games are rarely built from the bottom up and tools like game engines abstract

common game features like rendering or input handling, allowing the developers to focus their

time elsewhere[11]. Regarding PCG, sophisticated PCG tools can help overcome the bottlenecks

of budget, manual labor and time by automating procedures otherwise handled by humans[5].

By having the algorithms make decisions about various game parts on the run, instead of

developers pre-determining things like spawn points, when or where music plays, routes e.t.c,

PCG can greatly increase replayability by making each run of a game unique. Furthermore,

by combining PCG with neural networks or machine learning and taking into account various

player’s factors such as stress level, skill, enjoyment e.t.c, we can greatly customize the content

that gets procedurally generated to fit their own playstyle[1].

2.1.3 Procedural Terrain Generation

One of the most basic elements of games is the ground that you walk, run and stand on. Terrain

generation requires lots of work and if an infinite terrain is desired, then it is impossible with

manual labor. That’s where PCG algorithms can help with this tiresome process. If we imagine

Ioannis Markou 8 October 2023

2.1 Procedural Content Generation

a terrain as a two-dimensional grid, we can figure out ways to fill in the cells with values, where

each value would correspond to a specific height. Positive values would be mountains and hills,

negative values valleys, and numbers close to zero would represent flatter surfaces.

But how do we fill those cells with values? The first idea that naturally comes to mind is to

fill the cells with random numbers. While that would, technically, create a terrain it wouldn’t

be visually or practically useful. The terrain would consist of random highs and lows, like

random mountain spikes and flat points with no connection to each other, something that does

not occur in natural terrain.To create more natural looking environments, Procedural Terrain

Generation (PTG) usually uses some kind of gradient noise function to generate a grayscale

heightmap and use that data to map a terrain[2]. There are many different noise algorithms like

Perlin Noise, Diamond Square, Simplex Noise e.t.c that have been developed over the years.

Figure 2.6: Perlin Noise, grayscale.

Generated terrains should also contain both stochasticity and determinism to a certain

degree. To be more specific, every time a terrain gets generated by a potential terrain generator,

it should feel new to the user (given that a random seed is used). However, complete randomness

would lead to unplayable environments. This means that the generator should adhere to internal

rules set by the developer in order to maintain a specific structure. Finally, tools that generate

Ioannis Markou 9 October 2023

2. RESEARCH OVERVIEW

terrain should have options that are easy to use and can be adjusted by the user to create the

terrain that fits their needs[12].

In this thesis we initially generate a mesh whose size and vertices are set by the user. All of

the setting that the user can mess around with are in a custom, simple editor window we have

implemented with straight-forward options that can create random terrains with specific looks.

2.1.4 Future goals, challenges and conclusions

PCG in the present is mostly only a feature in modern games, aiming to make them more

challenging and add a sense of discovery and fellowship while players find out all the possible

environments, item placements, game scenarios e.t.c that a PCG feature can offer[4], [14].

PCG in the future offers exciting scenarios and possibly a new game genre dedicated to it.

To be more specific, we can imagine procedurally generating not only content, but whole games,

different games with different feels every time a button is pressed. Maybe even generating game

engines themselves, rules and ideas[6].

In the more foreseeable future, however, can help bridge the gap between players thirsting

for new game content and the huge manual labour that developers have to undergo in order to

keep up with those demands. By creating tools like the one proposed in this thesis, fine-tuning

them and giving as much control as possible to the designer in order for them to be able to

generate the content they would otherwise generate manually. PCG can also be used in serious

games to generate personalized scenarios for teaching and educational purposes[13]

2.2 Noise

Noise in games and graphics is a common technology used to add detailing in various 3D surfaces

like skyboxes and terrains or add irregularities in otherwise perfect 3D models thus making them

more realistic[3]. Ken Perlin with his infamous Perlin Noise has helped a lot with procedural

texturing, and a very famous example is his marble vase which was textured using Perlin noise

(2.7). By the term procedural, when it comes to noise, we mean that the values of each pixel

are determined by using mathematics and algorithms[17].

Noise as a solution to procedurally generated terrains came up due to the fractal nature of

natural terrains. By the term fractal we mean shapes with similarities in various scales. To be

more specific, let’s imagine a mountain that if seen from afar has peaks and valleys. However,

if we hike through these peaks and valleys, we will meet hills and ravines. And that is what

Ioannis Markou 10 October 2023

2.2 Noise

fractal means: self similarity in different scales[2]. By using noise algorithms, we can generate

pseudo random fractal textures. Two noise algorithms were tested to procedurally generated

terrain: Perlin Noise and Diamond Square.

Figure 2.7: Marble vase procedurally textured with Perlin Noise.

2.2.1 Diamond Square Algorithm

Let’s start by explaining the “most fractal” algorithm, Diamond Square. We start with an

empty grid that has a size that satisfies the formula 2n + 1 where n = 1,2,3... due to the way

that the algorithm breaks down the heightmap to perform calculations. Then we assign random

values to the four corners of the grid and proceed by performing the diamond step. As you can

see in the image below, this creates a big square on the grid. Then, the diamond step fills the

value of the square centre with the average of the values of each corner. Finally, with the square

step we fill the missing corner points by averaging the centre point with the neighbouring points

of the corner we wish to fill. These steps repeat recursively until the whole grid is filled with

values. In the figure 2.8 we can see the steps more clearly.

However, the tool created in this thesis does not use this algorithm because after testing it,

it ended up creating too rocky and harsh environments that could possibly be useful for Flight

Simulators where the player only has to see the terrain from a distance and not interact with

it.

Ioannis Markou 11 October 2023

2. RESEARCH OVERVIEW

2.2.2 Perlin Noise Algorithm

One of the most famous and classic algorithms for noise generation is Perlin Noise. Perlin Noise

was first done by Ken Perlin (thus the name) and it is a gradient noise generator, meaning

the algorithm first generates gradient vectors and then calculates the value of the pixel, that

produces fractal results. Perlin Noise is a popular choice among developers, and after testing

it and seeing its flexibility and how you can create any type of terrain you wish with it, I chose

it for this tool.To explain it, let’s consider the grid of pixels we want to fill with values. The

algorithm first divides the grid into larger rectangles as shown in the figure 2.9. The frequency of

the rectangles directly impacts the noise output. The higher the frequency, the more detailed the

final output will be due to the creation of more pseudorandom gradient vectors. Pseudorandom

gradient vectors are generated in the purple corners that are shown on the image above and

they define a positive direction. The algorithm then continues by creating distance vectors,

which are vectors from the point/pixel we want to calculate the value towards the four corners

of the rectangle. Finally, the dot product between the gradient vector and its corresponding

distance vector is calculated for every corner and we interpolate between the four values to get

a weighted average (figure 2.10).

In this thesis, the Diamond Square algorithm was tested but deemed unfit for our vision so

we used the Perlin Noise algorithm. Through the custom editor window, the user can affect the

shaping of the terrain by adjusting various parameters of the noise generation.

Ioannis Markou 12 October 2023

2.2 Noise

Figure 2.8: Diamond square algorithm steps.

Figure 2.9: Original grid divided into rectangles.

Figure 2.10: Gradient vectors : orange, Distance vector: Green.

Ioannis Markou 13 October 2023

2. RESEARCH OVERVIEW

2.3 Minecraft

A great inspiration for this thesis was Minecraft by Mojang Studios. Minecraft both manages to

create terrain using Perlin Noise and populate said terrain with biomes, vegetation and wildlife.

Using Henrik Kniberg’s video, game developer and designer at Mojang studios, let’s give

a short explanation to Minecraft’s terrain generation. A Minecarft world is about 3.6 billion

square killometers and there are 18 quintillion different worlds that can be generated. The

world is generated in big chunks, as he calls them, 16x16 wide and 384 blocks high. A block

can be seen in the figure 2.11.

Figure 2.11: Minecraft chunk.

The first step is terrain shaping. In order for the terrain to have the realistic randomness

of nature but also a certain smoothness, Perlin Noise is used. By taking a look at a 1D noise

field example in figure 2.12, we can clearly see that the data provided by Perlin Noise could

represent hills, mountains and valleys in a 2D game. In the same way, 2D noise fields can create

heightmaps for 3D environments. To add further detailing, octaves are used. Let’s assume a

simple sin that represents terrain height. An octave is another curve with higher frequency and

less amplitude. Both sins are a sequence of valleys and mountains.

Ioannis Markou 14 October 2023

2.3 Minecraft

Figure 2.12: 1D noise field.

Figure 2.13: Two sins representing terrain data.

However, by adding these two curves we get a result with much more detailing as we can

see in figure 2.14. As we can imagine, adding more and more octaves (up to a point) can help

have mountains, hills and more with great details.

Figure 2.14: Result after adding the two curves.

Ioannis Markou 15 October 2023

2. RESEARCH OVERVIEW

Figure 2.15: Continentalness.

To make more interesting terrain, developers used spline points. To be more specific, the

developer enters points in specific locations and a curve is created that follows these points. In

general, 2D Perlin Noise functions take x and y coordinates as an input and give an output

between 1 and -1. Naming this output “Continentalness” , Minecraft developers created points

on a grid where x is the terrain height and y the continentalness. Finally, they used the spline

curve mentioned before to connect these points, thus creating bigger variations in the produced

terrain by adding steeper changes as can be seen in the figure 2.15.

To add even more variation, Minecraft uses 3 different noise maps (figure 2.16) with different

octaves in combination with spline curves: continentalness, erosion and PV (peaks and valleys).

In this thesis, we have used the same logic as Minecraft’s in terrain generation and shaping.

All images are taken from Henrik Kniber’s video: Minecraft terrain generation in a nutshell.

Figure 2.16: Final result.

Ioannis Markou 16 October 2023

Chapter 3

Use Case

3.1 Introduction

After talking about the field of PCG and the influence behind this thesis, this chapter will

provide further information on how this tools is supposed to be used.

In general, this procedural environment generation tool developed in this thesis is targeted

towards individuals that want to have a custom 3D environment without going into the trouble

of making it themselves. The tool provides a blank canvas to work with, without any rules

built-in. Terrain size, steepness, vegetation density, creating small or big forests, having grass

and plants near water and pines in higher altitudes (or vice versa) and anything the user wishes

can be done. The decision to not include any built in rules was done in favour of having a

completely customizable tool, able to generate any environments.

3.2 Use Case Scenarios Diagrams

In this section we provide the use case diagrams depicting the user’s interaction with the tool.

3.2.1 User imports tool into Unity

The figure bellow depicts the initial process of using the tool once it is imported into Unity.

Ioannis Markou 17 October 2023

3. USE CASE

Figure 3.1: Initial Use Case.

Once the tool is imported into Unity, the user will be able to launch the custom window

called ”Environment Generator” thus having access to the available options for environment

generation.

3.2.2 User has launched the Environment Generator

The figure bellow illustrates the interactions available after the user has launched the Environ-

ment Generator, and wants to start creating environments.

Figure 3.2: Environment Generator Options Use Case.

• Create Areas: The user can drag and drop the Area script onto empty game objects

and adjust the settings of the script to create an Area.

Ioannis Markou 18 October 2023

3.2 Use Case Scenarios Diagrams

• Drag and Drop Areas in the Environment Generator Areas list: In order for the

data of any areas the user has created to be used by the Generator, they must be drag

and dropped into the available list.

• Create Vegetation Zones: The user can drag and drop the Vegetation Zone script onto

empty game objects and adjust the settings of the script to create an Vegetation Zone.

• Drag and Drop Vegetation Zones into an Area: In order for the data of any

vegetation zones the user has created to be used by the Generator, they must be drag and

dropped into the available list of the desired area.

• Change settings(Blocks, Vertices Per Block, Noise Density e.t.c): The user

should adjust the settings according to their preferences. These settings regard the ter-

rain’s size and shaping.

• Run Unity and test the generated environment: The user can run Unity at any

point to see the results of their chosen settings.

3.2.3 User is running Unity

The figure bellow illustrates the interactions available after the user has ran Unity and generated

an environment.

Figure 3.3: Unity running use case.

Once Unity is running, if the user wishes to make any changes, they must first stop Unity

then make any changes in the Environment Generator and finally re run Unity to see the

changes.

In the sections following this one, we dive deeper into explaining each case more carefully.

Ioannis Markou 19 October 2023

3. USE CASE

3.3 Creating an Environment Generator

Assuming the user has imported this tool into their Unity project, an Environment Generator

should be created initially. To make this part simpler, a custom Editor Window containing all

the necessary fields to generate an environment was created using the UnityEditor library. This

library provides an API to help developers create custom windows and layouts that fit their

project.

After importing the tool, a new menu tab (figure 3.4) should be available called ”PCG”

that gives access to the Environment Generator as shown in the figure below. After launching

the generator, a custom window will pop up (figure 3.5), containing various inputs that will

affect the generated terrain. Finally, a new game object called ”BlockGenerator” should appear,

containing a BlockGenerator and EnvironmentController script (figure 3.6).

All of the fields seen in the Environment Generator window are internally linked with vari-

ables in the BlockGenerator script that are used to generate the environment. More specifically,

the values that get set in the environment window are also set automatically inside the program

in the corresponding variables.

Figure 3.4: Menu tab of the custom Editor Window for the Environment Generator.

Figure 3.5: Custom Editor Window for the Environment Generator.

Ioannis Markou 20 October 2023

3.3 Creating an Environment Generator

Figure 3.6: The BlockGenerator game object that gets created, containing the appropriate

scripts.

Ioannis Markou 21 October 2023

3. USE CASE

3.3.1 Field Explanation

Let’s start explaining each field. We will leave the Areas list for later. The Vector2 field Blocks

is the terrain’s size. More specifically, the algorithm begins by creating X times Y game objects

and placing them 128 units apart from each other both horizontally and vertically. These game

objects are called ”Blocks”. Each Block has a Mesh Renderer along with a Mesh Filter to

render the mesh as well as a Mesh Collider to handle collisions detection. Finally, it has a

TerrainGenerator script attached which is responsible for the shaping of the mesh with noise

(figure 3.8).

Figure 3.7: An example 3x3 grid after the first step of the algorithm.

Figure 3.8: Block game object.

Moving on to the Vertices Per Block Vector2 field, it regards the X and Y vertices each

Ioannis Markou 22 October 2023

3.3 Creating an Environment Generator

Block’s mesh has. On these vertices, vegetation spawns, meaning more vertices give denser

vegetation.

Below the Vertices Per Block field, we can see three fields that hold float values: Noise

Density, Mountain Intensity and Hill Detail. These three float values are multipliers in the

code, that modify the noise map produced. To be more specific, Noise Density affects the base

noise that gets produced, making it denser as we increase it. For a first example, let’s consider

a 16x16 terrain, with a singular area covering all of the map with no vegetation zones (so we

can focus on the terrain shaping) and all of the values mentioned above at 0:

Figure 3.9: First example values. Figure 3.10: First example: terrain result.

As we can clearly see, the terrain that gets produced is a perfectly flat surface. That is

due to the multipliers all being zero, thus every Noise function output gets set to 0. The Noise

Density field is the most important multiplier because it enhances the basic noise plate that

gets created internally. Let’s see the result by setting the Noise Density field to 150:

Figure 3.11: First example: terrain result, Noise Density = 150.

By this small adjustment, we can already see big differences with small hills and valleys

being created. Now let’s test some Mountain Intensity values below:

Ioannis Markou 23 October 2023

3. USE CASE

Figure 3.12: Noise Density

= 150, Mountain Intensity =

150.

Figure 3.13: Noise Density

= 150, Mountain Intensity =

250.

Figure 3.14: Noise Density

= 150, Mountain Intensity =

400.

By comparing the initial terrain shown in the figure 3.8, by increasing the Mountain Intensity

multiplier the mountains are getting taller and the valleys shallower. For example, the bottom

left island slowly disappears and the upper right mountains are getting taller. However all of

the terrain is way too rounded and smooth. That is where the third multiplier, Hill Detail

comes into use.

Figure 3.15: Noise Density = 150,

Mountain Intensity = 250, Hill Detail

= 0.

Figure 3.16: Noise Density = 150, Mountain

Intensity = 250, Hill Detail = 300.

In this last comparison, we can clearly see that all of the terrain is less smooth and has

some extra texturing, making it much more realistic. Of course, all of these examples are with

a base white material and no vegetation, meant to show off what these three fields are capable

of creating.

The Seed integer field and the Random Seed boolean field are related. Since much of the

program and the noise functions use the random number generator, we must understand how

it works. For starters, the numbers generated are not truly random. Instead they are produced

in a preset sequence and the seed value is the point where a particular sequence begins. By

default, the seed is selected by the system. However, there are instances where we want to

choose the seed. In our tool for example, we can generate terrains with random seeds by having

the Random Seed boolean checked. This would create different terrains on each run. As we

randomly generate terrains though, we might find a particular one that we like. That means

Ioannis Markou 24 October 2023

3.3 Creating an Environment Generator

that the pseudo-random values that we randomly got, suit our needs and those specific values

have a specific seed. Thus by feeding the specific seed into the system, we can keep getting

the same terrain over and over again. To use a seed we want, we uncheck the Random Seed

boolean, and enter the seed value into the Seed integer field. For example, the figures 3.8-3.13

all had the seed value set at 0, and that is why the same terrain was generated, allowing us to

see the differences when adjusting the three multipliers. Let’s see an example, with the same

multipliers but Random Seed checked.

Figure 3.17: Noise Density = 150,

Mountain Intensity = 250, Hill Detail

= 300, Seed = 0.

Figure 3.18: Noise Density = 150, Mountain In-

tensity = 250, Hill Detail = 300, Random Seed.

As we can see, the same multipliers give different results due to the random seed, although

there are still some similarities.

Finally, the Skybox game object field is used in case the user wished to have a custom

skybox instead of Unity’s default one.

3.3.2 Areas

Areas is the system built in this thesis to allow multiple different sub-environments to exist

within the created world. Many games with massive worlds consist of different types of envi-

ronments for the player to traverse through, so the addition of a similar system is implemented.

To create a custom area, the user has to create an empty game object and attach the ”Area”

script on to it (figure 3.19). Let’s begin explaining the simpler fields first.

The Zone Starting/Ending Points X/Z set the limits of the area in the X and Z axis. Both X

and Z limits of the terrain are calculated by multiplying 128 with the Environment Generator’s

window Block field, in the X and Y respectively, minus one. For example, if we generate a

16x16 terrain, the limits of X and Z are from 0 to 1920 (0 * 128 to 15 * 128). The material

field is used to apply any material to the Blocks that are included withing the limits given by

the user.

Ioannis Markou 25 October 2023

3. USE CASE

Figure 3.19: Empty game object with Area script attached.

Each Area can also have their own vegetation zones. Vegetation zones split the area verti-

cally, spawning any vegetation given within the height limits that are set. In order to create a

Vegetation Zone, the user has to create an empty game object and attach the VegetationZone

script to it, similar to creating Areas (figure 3.20).

The Zone Starting/Ending point Y refers to the limits on the Y axis that the vegetation

placed in the lists above will spawn. The system considers the water level as zero, so the

spawn points of vegetation span between (waterLevel + ZoneStartingPointY) to (waterLevel +

ZoneEndingPointY). Moreover, the last field named AmountOfTreeFriends allows the user

to determine how many smaller plants will spawn around each tree.

As mentioned before, vegetation spawns on the vertices of each block. Without diving

deeper in this chapter, the algorithm iterates through each block’s vertex and will decide if it

will spawn vegetation or not depending on the probability given by the user through the Vertex

Spawn Probability slider.

The two lists regard vegetation itself. Weighted Zone Trees list contains the 3D models and

prefabs of trees that the user wishes the specific zone to have and their corresponding weights.

Weighted Zone Tree Friends list contains the possible smaller vegetation such as grass or flowers

that will spawn around each tree and their corresponding weights.

Finally, to understand the Tree Spawn Prob slider, let’s discuss a bit about how vegetation

spawns. Initially, the algorithm passed through each vertex and based on the Vertex Spawn

Prob, decides if it will spawn any vegetation or not. If it decides to spawn vegetation, it chooses

Ioannis Markou 26 October 2023

3.3 Creating an Environment Generator

one 3D model to place exactly on the vertex and then surrounds said 3D model with the prefabs

in the Weighted Zone Tree Friends list. The central 3D model that spawns on the vertex can

be selected from both of the lists. Assuming the user has trees in the first list and smaller

vegetation in the second list, this option is given so that any vegetation zone can be populated

with more trees, more smaller vegetation or a mix, depending on the user’s needs. By having

the Tree Spawn Prob at 1, the program will only spawn 3D models from the Weighted Zone

Trees on the vertices and surround them with the 3D models in the Weighted Zone Tree Friends

list. If the Tree Spawn Prob is at 0, the program will spawn 3D models from the Weighted

Zone Tree Friends list and surround them with 3D models from the same list.

Figure 3.20: Empty game object with VegetationZone script attached.

Figure 3.21: Weighted Zone Tree list element.

Let’s see an example to better understand this. First we create one singular area covering

the whole 16x16 terrain, with a custom material that we have created, one vegetation zone and

drag the game object that it is attached to in the list of areas of the Environment Generator

(figure 3.22). For the vegetation zone we will use one tree and one tree friend. Both of the

Ioannis Markou 27 October 2023

3. USE CASE

3D models were picked from the Unity Asset Store. We set the Vertex Spawn Prob at 0.5 so

each vertex has 50 percent chance to spawn any vegetation, and the Tree Spawn Prob at 1 so

the model that spawns on the vertex is always picked from the Weighted Zone Trees list (figure

3.23).

Figure 3.22: First area example. Figure 3.23: First vegetation zone example.

Ioannis Markou 28 October 2023

3.3 Creating an Environment Generator

Figure 3.24: Tree prefab for the first

example of vegetation zone.

Figure 3.25: Grass example for the

first example of vegetation zone.

As we can see the environment got filled with trees as the main vegetation with grass

surrounding it, as we can see in the figures below.

Figure 3.26: Far away shot of vegetation spawned.

Ioannis Markou 29 October 2023

3. USE CASE

Figure 3.27: Birch Tree spawn on vertex with grass surrounding it.

Now if we set the Tree Spawn Prob at 0, we will only see patches of grass spawning. This

will happen because on each vertex it will always choose the grass from the Weighted Zone Tree

Friends list and spawn additional grass around it. This whole mechanic is used if the user wants

for example to have only smaller vegetation near water, or taller trees only in higher altitudes,

or any mixture they wish.

Figure 3.28: Grass patch spawn.

Figure 3.29: Far away shot of vegetation

spawned.

Of course the environment generated in these images is not anything to brag about. Instead

it is meant to show off the uses of the fields explained in this chapter. We will see more example

of better looking terrain in another chapter.

Ioannis Markou 30 October 2023

Chapter 4

Implementation

4.1 Introduction

In this section a more detailed description of the thesis implementation will be provided. To

be more specific, the first part will explain how the terrain is generated and shaped, how the

scripts and the components are connected and then proceed with the explanation of the Areas

logic and how the vegetation spawns.

4.2 Overall structure

In this section a description of the overall system’s structure will be provided, how the com-

ponents interact with each other and what is their purpose.There are three main components

that interact with each other: BlockGenerator, TerrainGenerator and EnvironmentController

as shown in the figure 4.1.

The basic flow of information between the components is:

• The BlockGenerator generates game objects called Blocks with TerrainGenerator, MeshRen-

derer, MeshFilter and MeshCollider components and places them 128 units apart in the

X and Z axes.

• The TerrainGenerator on each Block generates its Mesh and shapes it with noise, applying

the correct material based on its location and the area it belongs.

• The EnvironmentController spawns vegetation based on each vertex’s location and the

vegetation zone it belongs.

Ioannis Markou 31 October 2023

4. IMPLEMENTATION

Figure 4.1: Structure of system.

The next subsections will dive deeper in each component and describe how they were im-

plemented.

4.3 Block Generator

In this section, we will provide an explanation of how the BlockGenerator component works.

This component is the simplest of the three and the starting point of the algorithm. Moreover,

it contains all of the necessary variable fields that are required for the tool to work and it is

directly connected with the Environment Generator Editor Window.

To begin with, we need to mention that this and the EnvironmentController component

have Singleton Patter implemented. Singleton is a design pattern that turns a class into a data

container, accessible by other classes in the project. The reason we implemented this design

pattern is so that the three components can communicate with each other, without the need to

create references of one another in each script. To see how the pattern was implemented, first

we need to talk about the Awake method.

BlockGenerator script derives from MonoBehaviour. MonoBehaviour is a class containing

various methods like Start, Update, Awake. Start and Awake functions are called once in the

lifetime of the script. The Start function gets called on the first frame that a script gets enabled.

The Awake function is called earlier than the Start function, when a script gets loaded.

In the figure 4.2 we can see the Awake function of the BlockGenerator script. It contains the

Ioannis Markou 32 October 2023

4.3 Block Generator

functionality of the seed mechanic as well as the Singleton design pattern. Regarding the latter,

the script contains a variable called Instance of type BlockGenerator and it is an instance of the

class itself. The instance is also static since we want it to be accessible globally. To implement

the design pattern we check if we already have a reference to the instance variable and if the

reference is not the one we are currently working with, meaning that there is another instance

running. In that case, we destroy the current game object. This means that there can only be

one BlockGenerator instance running. If none of these checks are true, then we set the instance

to the current one.

In the figure 4.4 we can see the Start function of the BlockGenerator script. It starts by

generating a random value that is used to give a greater element of randomness to the noise

generation of the TerrainGenerator scripts. It also sets the skybox material, if one is placed

in the Custom Editor window. Finally, we instantiate the water through the InstantiateWa-

ter function, call the GenerateBlocks coroutine and randomizes the mountain height of the

generated environment.

Moving on to the seed mechanic. The script has a variable named seed of type integer that

holds the possible number the user can enter to use as a seed. Additionally, another variable

named randomSeed of type boolean is used to check whether the user wants to use a random

seed or a specific one. If the boolean is checked, then the program will use the number saved in

the seed variable to generate random numbers using the Random static class Unity provides.

Inside the Awake function, we check if the randomSeed boolean is not checked, in which case

we use the Random’s class function InitState to initialize the random number generator’s state

with the seed given by the user.

Figure 4.2: BlockGenerator’s Awake function.

Ioannis Markou 33 October 2023

4. IMPLEMENTATION

Figure 4.3: Order of execution for event functions.

Figure 4.4: BlockGenerator’s Start function.

Moving on, we will talk about the GenerateBlocks coroutine. In general, when a method

is called, it runs until it is finished and then the program continues from the point the method

was called. A coroutine is a method that allows a sequence of events to be completed over time

and switching control between the main program and itself across several frames. It is declared

with an IEnumerator return type and must contain a yield return statement, which declares the

point that the coroutine pauses and resumes later. Regarding the GenerateBlocks coroutine,

it begins by creating a child of the game object that the script is attached to whose job is

to contain all the block game objects that will be generated. This child is a variable named

BlockCollection of type GameObject and it is used to keep the Hierarchy tab of Unity clean

and not fill it with hundreds of game objects. The main body of the coroutine is the generation

and placement of block game objects. This is done with a nested for loop. Both of the loops

start at 0 and their conditions depend on a variable named blocks of type Vector2. To be

more specific, the outside loop runs from 0 to the X component of the Vector2 and the nested

loop from 0 to the Y component of the Vector2, both increment by 1 on each iteration. The

blocks variable is directly linked with the Blocks field on the Custom Editor Window, and

this is the way that the size of the generated terrain gets determined. On each iteration of

the loops, a new Block is created, set as a child of BlockCollection and placed in the correct

Ioannis Markou 34 October 2023

4.3 Block Generator

position. Finally, there is a variable named batchCounter of type integer that speeds up the

block generation by spawning them in batches of 32 and not one by one. The batchCounter

variable is increased by one on each iteration, and once it reaches 32, the yield statement is

called with WaitForSeconds which suspend the coroutine for a couple of frames.

Finally, we have the InstantiateWater function of return type void that instantiates the

water prefab with a random offset as it can be seen in figure 4.6.

Figure 4.5: BlockGenerator’s GenerateBlocks coroutine.

Figure 4.6: BlockGenerator’s InstantiateWater function.

Ioannis Markou 35 October 2023

4. IMPLEMENTATION

4.4 Terrain Generator

In this section, we will provide an explanation of how the TerrainGenerator component works.

This component is attached on every Block that the BlockGenerator component creates. Its

purpose is primarily to create and shape the mesh of each block using Perlin Noise. This class

contains the following variables:

• mesh of type Mesh.

• meshFilter of type MeshFilter.

• meshRenderer of type MeshRenderer.

• meshCollider of type MeshCollider.

• UVs of type Vector2[].

• vertices of type Vector3[].

• triangles of type int[].

• rend of type Renderer.

The last variable helps render the correct material on each block while all the others are

responsible for creating the mesh. Meshes have different type of data such as vertices, trian-

gles and UVs, which the variables mentioned above are used for. UVs are used to correctly

apply materials to meshes. The field VerticesPerBlock of the Custom Editor Window is

used to set the vertices of each Block mesh and is directly linked with the variable vertices-

PerBlock of type Vector2 in the BlockGenerator class. The size the Vector3 array of vertices

mentioned above is (BlockGenerator.Instance.verticesPerBlock.x + 1)*(BlockGener-

ator.Instance.verticesPerBlock.y + 1) (the +1 is for array indexing).

Now let’s start explaining the major function of this class called GenerateTerrain of re-

turn type void (figures 4.7, 4.8). This function’s use is to place all the vertices correctly

depending on how many the user enters and shape the mesh using Perlin Noise. It consists

of a nested for loop, going from 0 up to the verticesPerBlock input of the user, placing each

vertex on the X and Y axes of each Block mesh. For the shaping to occur, essentially the

Y position of the vertex is calculated through Perlin Noise. This Perlin Noise calculation is

done by two helper functions: Noise and BiomeNoise both of return type float. These

Ioannis Markou 36 October 2023

4.4 Terrain Generator

two functions will be explained later. Following the nested loop for the vertices is a simple

loop to assign the texture coordinates in the UVs array. Finally, another nested for loop is

used to fill the triangles array. Triangles need three vertices to be described and drawn. In

computer graphics there is a process known as Back Face Culling, which is used to eliminate

the back sides of triangles. So, in order for triangles to be drawn they must be facing the

right direction and to determine that, the order in which the points are fed in the program is

taken into account. Specifically in Unity, triangles are drawn clockwise, so we must feed the

vertices in a clockwise direction for Unity to draw them correctly. Since each quad that gets

created by two triangles with three points each, the size of the triangles array is (BlockGenera-

tor.Instance.verticesPerBlock.x*BlockGenerator.Instance.verticesPerBlock.y*6). Fi-

nally, the now filled with data arrays get set in the mesh’s data. Continuing on the explana-

tion of the TerrainGenerator component, we will explain the two helper functions Noise and

BiomeNoise. To create Perlin Noise, we used Unity’s PerlinNoise function provided by the

Mathf library which contains a collection of math functions. Mathf’s PerlinNoise function

takes two floats x and y as inputs and returns a float value between 0.0 and 1.0. When called,

essentially a pseudo-random pattern of float values is generated, and by inputting specific X

and Y coordinates we get a specific sample of that pattern (figure 4.9).

Figure 4.7: First part of TerrainGenerator’s GenerateTerrain function.

Ioannis Markou 37 October 2023

4. IMPLEMENTATION

Figure 4.8: Second part of TerrainGenerator’s GenerateTerrain function.

Figure 4.9: Example pattern sample of PerlinNoise function.

Ioannis Markou 38 October 2023

4.4 Terrain Generator

The functionBiomeNoise (figure 4.10) creates the base plate of noise for our terrain. Inside

this function we use Mathf’s PerlinNoise three times: one time to get a base plate, then we

add some more Perlin Noise onto that to create mountains and finally subtract some to create

valleys. We use each vertex’s position as an input multiplied by a small value to get finer noise

samples. These multipliers were determined with lots of trial and error.

Figure 4.10: TerrainGenerator’s BiomeNoise function.

Moving on to the Noise (figure 4.11) function, it modifies and creates the final noise values

that will be used. It uses the input of the BiomeNoise function mentioned above and the x and z

position of the vertex. Initially, we use the given noise and multiply it by theNoiseDensity field

of the Custom Editor Window, which is directly linked with the variable named noiseDensity

of type float inside the BlockGenerator script. By multiplying the noise, we create steeper

valleys and mountains since we get a bigger float output. That first step gives us the base plate

for the terrain. The second step, using some simple math and after experimenting, focuses more

on making the higher and lowest points of the noise steeper as well as adding more detailing on

the hills. This is done by adding noise with different coefficients in the amplitude and frequency

parts. Moreover, in the hills and mountains enhancement part of the code we make use of the

MountainIntensity and HillDetail fields of the Custom Editor Window which are directly

linked with the variables mountainIntensity and hillDetail both of type float inside the

BlockGenerator script.

Ioannis Markou 39 October 2023

4. IMPLEMENTATION

Figure 4.11: TerrainGenerator’s Noise function.

There are also two helper functions: CheckIfEdgeVertex of return type bool and Set-

StartingColors of return type void. The first one is used to check if a vertex is on the edge

of the terrain that help us not spawn vegetation there that gets outside of the terrain and the

second sets the material of each block by figuring out in which area it belongs and using the

area’s specific material.

Figure 4.12: TerrainGenerator’s CheckIfEdgeVertex and SetStartingColors functions.

Finally, we need to explain the code in the Start function of the script. Initially we call a

function named Setup of return type void that just gets the three mesh components of each

Block. Then we call the GenerateTerrain function that shapes each block and call SetStarting-

Colors to set the materials of each Block. Finally, we loop through each vertex of the Block to

Ioannis Markou 40 October 2023

4.4 Terrain Generator

decide on vegetation using the GenerateVegetation method that is inside the Environment-

Controller and will be explained later. One final note for this section is the fact that we did not

implement Singleton design pattern on the TerrainGenerator script since there is one attached

on each Block so we need to have many of them running at the same time.

Figure 4.13: TerrainGenerator’s Start and Setup functions.

Ioannis Markou 41 October 2023

4. IMPLEMENTATION

4.5 EnvironmentController

Moving on to the final main component of our program, this section will provide an explanation

of the EnvironmentController script. This component has Singleton design pattern implemented

(figure 4.15) and its main purpose is to handle the spawn of vegetation on each vertex. It directly

communicates with the Areas created which themselves communicate with the Vegetation Zones.

The script includes only one variable named correctPos of type Vector3 that is used for

the placement of tree friends spawn and will be explained later. The script begins with the

implementation of the Singleton.

Figure 4.14: EnvironmentController’s communication chart.

Figure 4.15: EnvironmentController’s Singleton implementation.

Ioannis Markou 42 October 2023

4.5 EnvironmentController

Following the Awake function, we find the GenerateTreeFriend coroutine(figures 4.16,

4.17. This coroutine is used to generate a tree friend somewhere around a specific vertex

and it chooses the 3D model to spawn from the Weighted Zone Tree Friends list that each

Vegetation Zone has. For a small reminder, the terrain is split into areas and each area has

their own list of vegetation zones that split the area vertically. Each vegetation zone has a list

of trees as well as a list of smaller vegetation like grass and plants that are called tree friends.

Initially we get the area that the vertex belongs to and iterate through its vegetation zone

list to determine in which one the vertex is placed. Once that is determined, we use a helper

function named GetRandomValue of return type GameObject to get a random 3D model

from the list. Each entry in both the Weighted Zone Trees and Weighted Zone Tree friends

lists have a weight, meaning that the probability of each model spawning is higher when its

weight is bigger. The GetRandomValue function uses simple math to return a GameObject

as an output depending on the weight of each game object we have added on our list. After

deciding which tree friend will spawn, we choose a random position around the main vertex’s

game object placement. However, while coding the spawn of tree friends, it was difficult to

place it in the correct y position of the mesh. To achieve that, we used the help of raycasts.

Raycast in Unity is a Physics function that projects a Ray into the scene, returning a boolean

value if a target was successfully hit. When this happens, information about the hit, such as

the distance, position or a reference to the object’s Transform, can be stored in a Raycast Hit

variable for further use. Essentially what is happening is that we spawn the 3D models higher

up in the y axis and ”shoot” a ray downwards. When that ray hits the ground, we get the

correct y location that the game object needs to spawn in. We also get the correct rotation

in the same way, depending on the slope of the terrain. In the raycast script (figure 4.18),

the method GetCorrectPosition returns the Vector3 position that it hits and the method

GetCorrectRotation returns the Quaternion rotation. The reason that GenerateTreeFriend

is a coroutine and both the correct position and rotation are updated in the update method is

because it takes a couple of frames for the raycast to get the correct data that we need, and

not just one frame.

Ioannis Markou 43 October 2023

4. IMPLEMENTATION

Figure 4.16: EnvironmentController’s GenerateTreeFriend function.

Figure 4.17: EnvironmentController’s GenerateTreeFriend implementation continued.

Figure 4.18: Raycast script.

Ioannis Markou 44 October 2023

4.5 EnvironmentController

Moving on with the functions of the EnvironmentController component, the GenerateVeg-

etation function of return type void uses another function called GetVertexArea of return

type area to find in which area the specific vertex belongs to. Then, it figures out its vegetation

area and calls the GenerateTree function. This function makes use of the two probabilities

in the vegetation zone script: VertexSpawnProb and TreeSpawnProb. The first decides

if anything will spawn on the vertex and the second determines from which of the two lists

(Weighted Zone Trees and Weighted Zone Tree Friends) the main game object will get chosen.

The function first decides if anything will spawn and then selects the main plant. Following

that, it creates a child in the hierarchy to store all the main plants in order to keep it tidy and fi-

nally calls the GenerateTreeFriend function to spawn the number of tree friends the user wishes.

In the function GetVertexArea, we make use of another helper function VertexBelongsIn of

return type bool that checks if a vertex belongs in a specific area.

Figure 4.19: EnvironmentController’s GenerateTree function.

Figure 4.20: EnvironmentController’s GenerateTree function continued.

Ioannis Markou 45 October 2023

4. IMPLEMENTATION

Figure 4.21: EnvironmentController’s GetVertexArea function.

Figure 4.22: EnvironmentController’s VertexBelongsInArea function.

Figure 4.23: EnvironmentController’s GenerateVegetation function.

Ioannis Markou 46 October 2023

4.6 Miscellaneous Implementations

4.6 Miscellaneous Implementations

In this section, we will provide information on various scripts such as the vegetation zone and

area scripts and the implementation and testing of the Diamond Square algorithm that was not

used in the final project. Let’s start by listing the variables of the Area and Vegetation Zone

scripts.

For the Area script:

• vegetationZones of type List.

• zoneStartingPointX of type float.

• zoneEndingPointX of type float.

• zoneStartingPointZ of type float.

• zoneEndingPointZ of type float.

• zoneMaterial of type Material.

Figure 4.24: Area script.

Ioannis Markou 47 October 2023

4. IMPLEMENTATION

For the Vegetation Zone script:

• WeightedZoneTrees of type List.

• WeightedZoneTreeFriends of type List.

• zoneStartingPointY of type float.

• zoneEndingPointY of type float.

• vertexSpawnProb of type float (slider).

• treeSpawnProb of type float (slider).

• amountOfTreeFriends of type int.

Figure 4.25: Vegetation Zone script.

For the Weighted Value script that is used to attach a game object with a specific weight:

• prefab of type GameObject.

• weight of type int.

Ioannis Markou 48 October 2023

4.6 Miscellaneous Implementations

Figure 4.26: Weighted Value script.

Moving on we will briefly mention and show the implementation of the Diamond Square

algorithm without going into too much detail since the idea was scrapped. We will also show

the resulting terrain so that it is understood why it was not a correct fit for this thesis. First,

let’s remind the steps of the algorithm:

Figure 4.27: Diamond Square steps.

The script contains the following variables:

• squares of type int.

• terrainSize of type float.

• maxHeight of type float.

• vertices of type Vector3[].

• UVs of type Vector2[].

• vertexCount of type int.

• triangles of type int[].

Ioannis Markou 49 October 2023

4. IMPLEMENTATION

The variable squares references the number of divisions or the faces we have (4 x 4 in the

figure 4.27). For the first function of the script named GenerateVerticesAndTriangles of

return type void we use this variable in two nested loops for the x and y axes. For the vertices

we use 1D array to store them row by row. This function essentially generates the mesh in a

similar way that TerrainGenerator component implements it (figure 4.28).

Moving on, the function named DiamondAndSquareStep of return type void performs

one diamond and one square step. The diamond square, uses the values of the four corners

to calculate the middle vertex value followed by the square step to calculate the four values

located horizontally and vertically of the vertex (figure 4.29).

Finally, we have the functions DiamondSquareAlgorithm (figures 4.30, 4.31) and Gen-

erateTerrain (4.32). The first one performs the Diamond Square algorithm by initiating the

height values of the four corner points using Unity’s Random generator and multiplying it by

the maxHeight variable. Following this first step, we have a triple nested for loop: one for the

iterations that the algorithm needs to perform the Diamond and Square step. If we take the

example in figure 4.27 we can see that it takes two diamond and two square steps to calculate

every vertex value. Essentially, it takes (log2 of the number of faces) iterations to fill every

vertex. The other two loops iterate through rows and columns. Finally the GenerateTerrain

functions puts everything together, generating the mesh and shapes it using the algorithm.

Ioannis Markou 50 October 2023

4.6 Miscellaneous Implementations

Figure 4.28: Diamond Square mesh generation.

Figure 4.29: Diamond Square, Diamond and Square step.

Ioannis Markou 51 October 2023

4. IMPLEMENTATION

Figure 4.30: Diamond Square algorithm.

Figure 4.31: Diamond Square algorithm continued.

Figure 4.32: Diamond Square Generate Terrain function.

Ioannis Markou 52 October 2023

4.6 Miscellaneous Implementations

The Diamond Square algorithm as we can see in the figure below, gives rougher terrains with

less customization options than the Perlin Noise algorithm. We reckon this kind of algorithm

could be used in applications such as Flight Simulators, where the user does not interact with

the terrain and instead observes it from afar.

Figure 4.33: Diamond Square terrain example.

Finally, we created a custom material using Unity’s Shader Graph. Shader Graph is a tool

to build shaders (programs that are part of the graphics pipeline) by connecting nodes and

without code. This tool allows an instant visual representation of the changes done. This

custom material allows 5 different colours to render on the same mesh in different heights with

their own thresholds, thus creating results like the figure below.

Figure 4.34: Custom material using Shader Graph example.

Ioannis Markou 53 October 2023

4. IMPLEMENTATION

Ioannis Markou 54 October 2023

Chapter 5

Demo

5.1 Introduction

In this section, we will create a couple of demos to demonstrate the capabilities of this tool.

5.2 Demo 1

For the first demo we created a relatively small world with three areas. The Environment

Generator Window settings can be seen below:

Figure 5.1: Demo 1 Settings.

Ioannis Markou 55 October 2023

5. DEMO

The concept of this world is that half of the environment has been burned off by a fire. The

first area is the healthy, green area with two vegetation zones, the third area is the burned down

with one vegetation zone and the second area is empty space just with material to separate the

two areas better.

Let’s discuss the first area (figure 5.2). As we said it consists of two vegetation zones. The

first vegetation zone (figure 5.3) is closer to the water, covering the 5-40 height range and it

is meant to be a greener zone with more smaller plants since it is near the water. It consists

of birch and lemon trees, and the smaller plants are grass, mushroom and flower. The second

vegetation zone (figure 5.4) is meant to be more mountainous in vegetation, consisting of pines

and redwood trees, bushes, mushrooms and rocks, covering the 55-150 height range.

As we can see in the figures 5.5, 5.6, regarding the first vegetation zone, we have a large

amount of smaller plants spawning as we wanted. We see variety in scale and rotation of the

objects and we can see that there is way more grass spawning than mushrooms for example,

since the grass game object has 10 times the weight of mushrooms.

Figure 5.2: First area of Demo1.

Ioannis Markou 56 October 2023

5.2 Demo 1

Figure 5.3: First vegetation zone of the first area of Demo 1.

Figure 5.4: Second vegetation zone of the first area of Demo 1.

Ioannis Markou 57 October 2023

5. DEMO

Figure 5.5: Demo 1, Area 1, Vegeta-

tion Zone 1, first example.

Figure 5.6: Demo 1, Area 1, Vegetation Zone 1,

second example.

In the figure below we can see the results of the second vegetation zone, where we have

much denser tree populations and we can again notice the weight importance with only one

mushroom spawning in the bottom left corner but way more rocks and bushes.

Figure 5.7: Demo 1, Area 1, Vegetation Zone 2 example.

Ioannis Markou 58 October 2023

5.2 Demo 1

Finally, let’s see the two zones together in the figure below:

Figure 5.8: Demo 1, Area 1.

The third area covers pretty much the other half of the map. Both Area 1 and 3 have

the custom material we’ve created, with Area’s 3 material containing darker colours to give

off the feeling of burnt environment. This area consists of one ”vegetation” zone, consisting of

leafless trees covering the whole 0-150 height range. We’ve also created a low poly fire VFX and

attached it as ”tree friend” in the Weighted Zone Tree Friends list, so that it spawns around

trees giving off the impression of actual fires.

Figure 5.9: Third area of Demo 1.

Ioannis Markou 59 October 2023

5. DEMO

Figure 5.10: Demo 1, Area 3.

Figure 5.11: Demo 1.

Ioannis Markou 60 October 2023

5.2 Demo 1

Figure 5.12: Demo 1, top down.

Ioannis Markou 61 October 2023

5. DEMO

5.3 Demo 2

In the second demo we will create a snowy terrain which has a small transition to a greener

environment. This was done with multiple different areas (specifically 8) with materials that

slowly transition from one colour to the other. Of course, someone could implement a custom

material with this property and only use one area, applying said material to have this effect.

We can see the settings and the top down view of the map below:

Figure 5.13: Demo 2 Environment Controller Window settings.

Figure 5.14: Demo 2 top down view.

Ioannis Markou 62 October 2023

5.3 Demo 2

In this environment, the left snowy part will have snowy trees and less vegetation, transi-

tioning all the way to the right part and going greener as we move. The middle part will have a

mixture of both environments. In this section, we will not show each area since there are many

of them, and only show the resulting terrain. In the most snowy area, we have added some

elements, hinting to human intervention. We have also added a gloomy skybox, and making

the lighting darker:

Figure 5.15: First and most snowy area.

Transitioning to the middle area, closer to the snowy area, it has way more grass than trees

and has a very small probability of spawning a regular, not snowed upon, tree as it can be seen

in the upper left corner of the figure below.

Figure 5.16: Middle part, closest to the snowy area.

In the following part , the middle part closes to the greener area, we get a better mixture

of snowy and not snowy trees, greener vegetation spawn and a mix of both trees and smaller

Ioannis Markou 63 October 2023

5. DEMO

plants.

Figure 5.17: Middle part, closest to the greener area.

The final, greener part consists of denser forests with green vegetation and trees, while have

a very small probability so spawn a snowed upon tree.

Figure 5.18: Last and greener area.

Two other good ideas for environments would be a tropical one and a dessert with an oasis.

While these two demos demonstrate the capabilities of the tool, even showing that there could

be some human presence in the environments, we believe that this tool can be used by more

creative individuals to create much more attractive results.

Ioannis Markou 64 October 2023

Chapter 6

Conclusion, Limitations & Future

Work

6.1 Summary

In this thesis, we implemented a basic tool for Procedural Terrain Generation populated with

vegetation using Perlin Noise to shape the generated terrain in Unity3D. This system was in-

spired by games like Minecraft whose main feature is the automatic generation of different

biomes, spanning across a big map.

This tool was implemented from the ground up and its purpose is to provide an easy to use,

accessible and reliable way for any kind of developer to create environments, thus eliminating

a tiresome process from their time. While the idea of such tools is not new, this is a practi-

cal application able to be used in a famous game engine that is used both by amateurs and

professionals.

6.2 Limitations

The main limitations of this tool is the fact that it is not easy to add new laws that rule an

environment that a designer might want to create. Additionally, while it could be possible to

use man-made structures to create, for example, small villages, the system mainly focuses on

creating purely natural environments unaffected by human hands. Finally, we should mention

that, while this tool was briefly tested to see if it works like it was imagined and planned, it

was not tested in a larger scale either by users or developers.

Ioannis Markou 65 October 2023

6. CONCLUSION, LIMITATIONS & FUTURE WORK

6.3 Future Work

As we mentioned, our implementation is a practical application of Noise patterns in terrain

generation with the option of customizing its sub environments in a very basic form. This

means that there could be many improvements done to greatly increase customization and

realism of the environment.

6.3.1 Adding more features and realism in the terrain generation

The first big improvement that could be done in this system is to add more features regarding

terrain shaping, such as cliffs, plateaus, e.t.c. In this tool, we sample positions from a noise

map and, by doing simple mathematical operations, generate the mountains and the valleys.

This main feature of this tool could be improved by adding spline points, mentioned in Chapter

2 Minecraft section. This would lead to more realistic terrain with dramatic features.

Two more features that could be added are caves and making the terrain endless. 3D noise

could be used to generate intricate cave systems. In terrain generation, black parts of a noise

pattern can be considered mountains and white parts valleys. In a similar way, by considering

white parts as air and black as stone, we could get good looking caves. Regarding infinite

terrain, it could be achieved by using rendering techniques and re-applying PCG as the player

moves around the world, thus not needing to load infinite worlds.

6.3.2 Improve performance using Unity DOTS

DOTS is a new technology just recently fully released by Unity that offers developers a new

way to approach game development. Up until the release of DOTS, Unity took a classic Object

Oriented Programming (OOP) approach to coding. More specifically, classes represent real

world things and contain variables and functions that determine their behaviour. DOTS on the

other hand, present a Data Oriented Design (DOD) that focuses on how to structure data inside

the memory for the system to access and process it. DOD breaks down regular objects (that are

found in OOP) into components that get grouped up and stored in arrays. Finally, the system

iterates across these arrays and use the data as required by the program. The framework to

implemented all of the above is called Entity Component System (ECS) and is able to maximize

performance at the memory and CPU level.

Ioannis Markou 66 October 2023

6.3 Future Work

Figure 6.1: OOP vs DOD.

6.3.3 Add more rules for vegetation spawn

Another section of the tool that could be improved is the way vegetation spawns. The user can

control if and what will spawn on a certain vertex by playing with the probabilities, but natural

habitats are more complicated. Applying life cycle in plants, spawn being affected by slope or

proximity with other plants are a few examples of rules.

6.3.4 Environment evaluation and Genetic Algorithms

In order to generate better environments, evaluation functions could be implemented giving

each generated environment a certain score based on rules that we provide. By implementing

such a feature, we can use an interesting family of algorithms named Genetic Algorithms (GAs)

that can help our tool to produce better results. GAs simulate the ideas of natural selection

and genetics. Initially, the algorithm would produce large amounts of environments randomly,

evaluating them and giving them a score. This would be our initial population. Moving on,

the environments with the best score would crossover, taking random elements from the two

environments and merging them into one. We could repeat this process with the score of the

environments getting better and better, but there is another option to get better performance,

and that is the mutation operator. By mutating the environment we would randomly change

something regarding vegetation or the terrain itself in order to maintain more diversity. When

the score would not improve any more, we would pick the highest scoring environment.

Ioannis Markou 67 October 2023

6. CONCLUSION, LIMITATIONS & FUTURE WORK

Figure 6.2: Genetic algorithm crossover example.

Figure 6.3: Genetic algorithm mutation example.

6.3.5 Testing results of generated environments

Finally, we’ve mentioned before that this tool has not been tested in a larger scale to explore its

limits and fullest capabilities. To evaluate the results of this tool, users should use it applying

many different ideas and parameters to generate environments.

Ioannis Markou 68 October 2023

Bibliography

[1] Shaker, Noor, Julian Togelius, and Mark J. Nelson. “Procedural content generation in

games.” (2016): 978-3. 6, 8

[2] Rose, Thomas J., and Anastasios G. Bakaoukas. “Algorithms and approaches for procedural

terrain generation-a brief review of current techniques.” 2016 8th International Conference

on Games and Virtual Worlds for Serious Applications (VS-GAMES). IEEE, 2016. 1, 9, 11

[3] Archer, Travis. “Procedurally generating terrain.” 44th annual midwest instruction and

computing symposium, Duluth. 2011. 1, 10

[4] Smith, Gillian. “The future of procedural content generation in games.” Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Vol. 10.

No. 3. 2014. 10

[5] Hendrikx, Mark, et al. “Procedural content generation for games: A survey.” ACM Transac-

tions on Multimedia Computing, Communications, and Applications (TOMM) 9.1 (2013):

1-22. ix, 6, 8

[6] Togelius, Julian, et al. “Procedural content generation: Goals, challenges and actionable

steps.” Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. 10

[7] Zafar, Adeel, Hasan Mujtaba, and Mirza Omer Beg. “Search-based procedural content gen-

eration for GVG-LG.” Applied Soft Computing 86 (2020): 105909.

[8] Togelius, Julian, et al. “What is procedural content generation? Mario on the borderline.”

Proceedings of the 2nd international workshop on procedural content generation in games.

2011. 5

Ioannis Markou 69 October 2023

BIBLIOGRAPHY

[9] LEE R. S. “Home videogame platforms.” The Oxford Handbook of the Digital Economy,

2012, 83–107. 7

[10] Petrillo, Fábio, et al. “What went wrong? A survey of problems in game development.”

Computers in Entertainment (CIE) 7.1 (2009): 1-22. 8

[11] Andrade, António. “Game engines: a survey.” EAI Endorsed Transactions on Serious

Games 2.6 (2015). 8

[12] Doran, Jonathon, and Ian Parberry. “Controlled procedural terrain generation using soft-

ware agents.” IEEE Transactions on Computational Intelligence and AI in Games 2.2 (2010):

111-119. 10

[13] Bontchev, Boyan. “Modern trends in the automatic generation of content for video games.”

Serdica Journal of Computing 10.2 (2016): 133-166. 10

[14] Smith, Gillian. “Understanding procedural content generation: a design-centric analysis of

the role of PCG in games.” Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. 2014. 10

[15] Michael Booth. “The AI Systems of Left 4 Dead”. Valve. 2014. 7

[16] Ambinder, Mike. “Biofeedback in gameplay: How valve measures physiology to enhance

gaming experience.” Game developers conference. Vol. 22. 2011. 7

[17] Lagae, Ares, et al. “State of the Art in Procedural Noise Functions.” Eurographics (State

of the Art Reports) (2010): 1-19. 10

Ioannis Markou 70 October 2023

	1 Introduction
	1.1 Brief Description
	1.2 Structure of the Thesis

	2 Research Overview
	2.1 Procedural Content Generation
	2.1.1 History
	2.1.2 Why use Procedural Content Generation?
	2.1.3 Procedural Terrain Generation
	2.1.4 Future goals, challenges and conclusions

	2.2 Noise
	2.2.1 Diamond Square Algorithm
	2.2.2 Perlin Noise Algorithm

	2.3 Minecraft

	3 Use Case
	3.1 Introduction
	3.2 Use Case Scenarios Diagrams
	3.2.1 User imports tool into Unity
	3.2.2 User has launched the Environment Generator
	3.2.3 User is running Unity

	3.3 Creating an Environment Generator
	3.3.1 Field Explanation
	3.3.2 Areas

	4 Implementation
	4.1 Introduction
	4.2 Overall structure
	4.3 Block Generator
	4.4 Terrain Generator
	4.5 EnvironmentController
	4.6 Miscellaneous Implementations

	5 Demo
	5.1 Introduction
	5.2 Demo 1
	5.3 Demo 2

	6 Conclusion, Limitations & Future Work
	6.1 Summary
	6.2 Limitations
	6.3 Future Work
	6.3.1 Adding more features and realism in the terrain generation
	6.3.2 Improve performance using Unity DOTS
	6.3.3 Add more rules for vegetation spawn
	6.3.4 Environment evaluation and Genetic Algorithms
	6.3.5 Testing results of generated environments

