
.

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONIC AND
COMPUTER ENGINEERING

ELECTRONICS AND COMPUTER ARCHITECTURE DIVISION

Senior Thesis

“Parallel Computing System Implemented on

a Field Programmable Gate Array”

Georgios-Grigorios G. Mplemenos

Committee:

Assistant Professor Ioannis Papaefstathiou (supervisor)
Professor Apostolos Dollas
Associate Professor Dionisios Pnevmatikatos

Chania 2007

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 2

Prologue

This senior thesis was elaborated at the Microprocessor and Hardware

Laboratory (MHL), for the acquiring of a degree from the department of

Electronic and Computer Engineering (ECE) of Technical University of Crete

(TUC), under the supervision of the Associate Professor Mr. Ioannis

Papaefstathiou, during the academic year 2006-2007.

For the elaboration and completion of this senior thesis, I would firstly like to

thank my supervisor professor Mr. Ioannis Papaefstathiou, not only for his

contribution and support for the completion of this thesis, but also because he

gave me the opportunity to gain knowledge and experience of his research

area.

I would also like to thank the Professors Mr. Apostolos Dollas and Mr.

Dionisios Pnevmatikatos for their valuable contribution in this thesis, and Mr.

Markos Kimionis, EEDIP member and MHL manager, for his support in

technical matters.

Furthermore, I would like to acknowledge the support of PhD students Mr.

Euripides Sotiriades, Mr. Kyprianos Papademitriou and Mr. Dimitrios

Meintanis for their valuable advice and ideas in difficult parts of this thesis.

Also, I would like to thank all my friends and of course all my collaborators,

either graduate or undergraduate students, of MHL, for their support and

advice.

Last but not least, I would like to thank my family for their constant support

and solidarity, not only during my thesis but also during the entire period as

undergraduate student, and also because they provided me with the means to

fulfill my studies.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 3

 Devoted to my family

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 4

Summary

Recent advantages in Field Programmable Gate Array (FPGA) technology have

made it possible to create soft-core Multiprocessor Embedded Systems (MES),

which emphasize in reducing the amount of the dedicated hardware needed to

design a system, while increasing the flexibility of the design with the use of

software.

A soft-core multiprocessor system is a network of programmable processors

crafted out of processing elements, logic blocks and memories on an FPGA. They

allow the user to customize the number of programmable processors, interconnect

schemes, memory layout and peripheral support to meet the application needs.

In this thesis, we implemented and evaluated a Multiprocessor Embedded System

(MES) that can be used for different applications, built from Xilinx Microblaze soft-

processors. In order to demonstrate the design flow and the interconnections

between the processors and the different peripherals, we build up a MES on a

Xilinx Virtex-II Pro FPGA that solves the BLAST-n algorithm. All processors at the

same time compare the same query with a different part of the database and

report the results.

The main goal is to create a system that utilizes the advantages of FPGAs and

soft-core processors, and with a proper parallelism of data, to increase the runtime

performance and the throughput of BLAST software compared to the software

runs on a common PC.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 5

Contents

List of Figures .. 9

List of Tables ... 11

1. Introduction ... 13

1.1 Description of Soft-Core Multiprocessor Embedded Systems 13

1.2 Contribution of the current thesis ... 15

1.3 Thesis Overview... 15

2. Soft-core Multiprocessor Platforms .. 17

2.1 Soft Multiprocessor System for JPEG Compression 17

2.1.1 Soft Multiprocessor Systems on Xilinx FPGA 17

2.1.2 JPEG Encoder Application .. 18

2.1.3 Streaming Programming Model .. 20

2.1.4 Interconnection Exploration: Bus Interconnection 20

2.1.5 Interconnection Exploration: Dual Port Memory Interconnection 21

2.1.6 Interconnection Exploration: FIFO Interconnection 22

2.1.7 Interconnection Exploration: DMA Interconnection 22

2.1.8 Interconnection Exploration: Conclusions 23

2.2 Soft Multiprocessor System for IPV4 Packet Forwarding 24

2.2.1 Soft Multiprocessor Systems on Xilinx FPGAs................................ 24

2.2.2 IPv4 Packet Forwarding Application ... 24

2.2.3 Soft Multiprocessor Design for Header Processing 25

2.2.4 Performance Characteristics ... 27

2.2.5 Payload Transfer in the Multiprocessor Design............................... 27

2.2.6 Evaluation of Soft Multiprocessor Solutions 28

2.3 A Microblaze Based Multiprocessor Soc .. 29

2.3.1 Communication test .. 29

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 6

2.3.2 Network Topology ... 30

2.3.3 Complete System .. 32

2.3.4 Speedup and Efficiency .. 33

2.3.5 First Application: Matrix Multiplication ... 33

2.3.6 Second Application: Cryptographic Application............................... 34

2.3.7 Conclusions .. 36

3. MPLEM Architecture ... 37

3.1 Description of Hardware ... 37

3.1.1 Microblaze Architecture .. 37

3.1.2 On-Chip Peripheral Bus V2.0 (OPB) with OPB Arbiter 38

3.1.3 Fast Simplex Link Channel (FSL) ... 39

3.1.4 Local Memory Bus (LMB) ... 40

3.1.5 LMB Block RAM Interface Controller .. 41

3.1.6 Block RAM (BRAM) .. 41

3.1.7 OPB to OPB Bridge (Lite Version) .. 42

3.1.8 Cypress CY7C1041 256Kx16 Static RAM 43

3.1.9 FSL Peripheral .. 45

3.1.10 SRAM controller .. 48

3.2 MPLEM Platform Topology and Interconnection 51

3.2.1 Microblaze to OPB interconnection ... 53

3.2.2 Microblaze to Local BRAM interconnection 53

3.2.3 Microblaze to FSL peripheral interconnection 54

3.2.4 OPB to OPB interconnection .. 54

3.2.5 Slave Peripherals on OPB .. 56

3.2.6 FSL peripheral to SRAM controller interconnection 56

3.2.7 SRAM controller to SRAM interconnection 57

3.3 MPLEM Functionality ... 58

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 7

3.4 Parallel Interconnection .. 60

4. System Verification and Synthesis ... 62

4.1 SRAM Behavioral Model Verification ... 62

4.2 SRAM controller Verification .. 62

4.3 FSL Peripheral Verification .. 63

4.4 Multiprocessor network Verification.. 63

4.5 MPLEM Verification .. 63

4.6 Synthesis Results... 64

5. BLAST Implementation .. 66

5.1 Brief Description of BLAST Algorithm .. 66

5.2 The Different BLAST Programs ... 69

5.3 The NCBI Implementation .. 70

5.4 Dimensioning ... 70

5.5 Software Implementation ... 71

5.6 BLASTn Software on MPLEM .. 74

5.7 System Verification .. 75

6. MPLEM Performance .. 77

6.1 BLASTn Performance on PC ... 77

6.2 BLASTn Performance on MPLEM ... 77

6.3 Throughput Comparison .. 78

6.4 Comparison .. 80

7. Future Work ... 81

8. References... 82

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 8

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 9

List of Figures

Figure 2.1: Typical single–core Microblaze systems 16

Figure 2.2: A soft multiprocessor system 17

Figure 2.3: JPEG encoder data flow 18

Figure 2.4: JPEG task partitioning 18

Figure 2.5: Hardware architecture of four-processor system 19

Figure 2.6: Four-processor system connected by dual port memory blocks 20

Figure 2.7: Four-processor system connected by FIFO 21

Figure 2.8: Four-processor system connected by FIFO and DMA 22

Figure 2.9: Data Plane of the IPv4 packet forwarding application 24

Figure 2.10: Data plane of the IPv4 packet forwarding application 24

Figure 2.11: Microblaze System for testing communication 28

Figure 2.12: Completely meshed network 30

Figure 2.13: Star network (left), and linked star networks (right) 31

Figure 3.1: Microblaze core block diagram 37

Figure 3.2: OPB System Using OPB_V20 38

Figure 3.3: FSL Interface Signals 39

Figure 3.4: Typical Microblaze System using Two LMBs 40

Figure 3.5: OPB System with Bridge 42

Figure 3.6: OPB System with Two Lite Bridges 42

Figure 3.7: SRAM Logic Block Diagram 43

Figure 3.8: SRAM Truth Table 44

Figure 3.9: FSL Peripheral Block Diagram 45

Figure 3.10: FSM of the FSL Peripheral Control 46

Figure 3.11: FSM of the SRAM controller 48

Figure 3.12: Multiprocessor Platform Block Diagram 51

Figure 3.13: Single Microblaze interconnection 52

Figure 3.14: OPB to OPB Bridge Interconnection 54

Figure 3.15: FSL Peripheral with SRAM Controller Interconnection 55

Figure 3.16: SRAM controller to SRAM interconnection 56

Figure 3.17: Multiple buses interconnection 59

Figure 3.18: Parallel FPGA interconnection 60

Figure 5.1: Step 1 of BLAST (from [15]) 66

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 10

Figure 5.2: Step 2 of BLAST 67

Figure 5.3: Step 3 of the BLAST Algorithm 68

Figure 5.4: Flowchart of blatsn software implementation 71

Figure 6.1 System throughputs for different number of processors 79

Figure 6.2 Estimated Speedup for different number of processors 79

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 11

List of Tables

Table 2.1: Detailed task partitioning with input and output 18

Table 2.2: Execution times for processing one packet header 26

Table 2.3: Design characteristics for header 26

Table 2.4: Performance results of the data of the IPv4 27

Table 2.5: Direct transfer speeds over FSL link 29

Table 2.6: Speedup and efficiency for 32x32 integer matrix 33

Table 2.7: Speedup and efficiency for AES encryption/decryption 37

Table 3.1: Pin out of FSL Peripheral 46

Table 3.2: Pin out of the SRAM controller 48

Table 3.3: SRAM Switching characteristics 58

Table 4.1: Synthesis Results 64

Table 5.1: The different BLAST programs 69

Table 5.2: Mapping of the DNA letters with numbers 70

Table 5.3: The scoring matrix of our software implementation 71

Table 6.1: BLASTn Performance on PC 76

Table 6.2 BLASTn Performance on MPLEM 77

Table 6.3 System throughput for different number of processors 77

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 12

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 13

1. Introduction

1.1 Description of Soft-Core Multiprocessor Embedded Systems

Parallel computing systems have long been used as means of accelerating

program execution in the context of increasing problem size (i.e. data,

computational complexity or both). These systems have been traditionally

implemented either on high-end multiprocessor computing systems available from

companies like IBM, HP and Sun, or on Linux clusters built from commercial of-

the-self (CTOS) computers (i.e. Sony Playstation) Both implementation styles for

parallel computers have until recently been limited to a single processor per silicon

die. New trends in integrated circuit fabrication allow for multiple processing cores

to be implemented on the same die. This in turn allows for the characteristics of

parallel computing systems to be ported into the embedded computing space.

Multiprocessor embedded systems (MES) provide designers a greater flexibility in

systems specification and shift more of the development complexity from hardware

to software. This approach does not rule out the use of dedicated hardware

acceleration units, which are common in single processor systems. The key

characteristic of an MES is the emphasis in reducing the amount of dedicated

hardware needed to satisfy design constraints, while increasing the applicability of

the design through the software. Efficient use of data and instruction parallelism

allow multiprocessor systems to avoid the impact of the underlying hardware and

increase the system throughput. The key to this improvement is the correct

partitioning and decomposition of the application in terms of both software and

hardware.

A soft-core multiprocessor system is a network of programmable processors

crafted out of processing elements, logic blocks and memories on a Field

Programmable Gate Array (FPGA). They allow the user to customize the number

of programmable processors, interconnect schemes, memory layout and

peripheral support to meet the application needs. Deploying an application on the

FPGA is tantamount to writing software for this multiprocessor system. Results in

[8] show that soft multiprocessor systems are viable alternatives for high

performance applications. They avoid risks due to high silicon development costs

and design turnaround times, while providing a software abstraction to enable a

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 14

quick implementation on the FPGA. They also open FPGAs to the larger world of

software designers.

Modern FPGAs provide the processing capacity to build a variety of micro-

architectural configurations. Today, we can build multiprocessors composed of 10-

50 processors (and growing with Moore’s law), complex memory hierarchies,

heterogeneous interconnection schemes and custom co-processors for

performance critical operations. Future projections forecast that embedded

systems will be soon composed of over 100 processors on a single chip to

guarantee acceptable performance [9]. However, the diversity in the architectural

design space makes the task of determining an efficient multiprocessor

configuration tuned for a target application challenging. Currently, the designer

must manually explore the large and complex design space of micro-architecture

to achieve the full performance potential of FPGA multiprocessors.

Xilinx provides tools and libraries for developing soft multiprocessor system in the

Virtex family of FPGAs [16]. This environment gives user the opportunity to

integrate IBM PowerPC 405 cores, Microblaze soft processors, peripherals and

customized hardware onto an FPGA chip.

To sum up, embedded systems are no longer used as simple controllers.

Embedded systems need more computational power to satisfy today’s

applications’ needs like audio/video encoding/decoding, image processing,

bioinformatics applications, etc. and MES are an option to deal with this increasing

computational needs.[10], [11]

In the Microprocessor and Hardware Lab (MHL) together with assistant Professor

Ioannis Papaefstathiou, we use state-of-art FPGA technology in order to develop a

general purpose soft-core multiprocessor platform. The purpose of this thesis is

the implementation and evaluation of a MES that can be used for different

applications, built from Xilinx Microblaze soft-processors. In order to demonstrate

the design flow and the interconnections between the processors and the different

peripherals, we build up a MES on a Xilinx Virtex-II Pro FPGA that solves the

BLAST-n algorithm [1]. All processors at the same time compare the same query

with a different part of the database and report the results. The main goal is to

create a system that utilizes the advantages of FPGAs and soft-core processors,

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 15

and with a proper parallelism of data, to increase the runtime performance and the

throughput of BLAST software compared to the software runs on a common PC.

1.2 Contribution of the current thesis

The contribution of this thesis is the following:

 Implementation of a soft-core multiprocessor platform with its own common

shared external SRAM, with the use of Xilinx tools (ISE 7.1, EDK 7.1) on a

Xilinx Virtex-II Pro FPGA.

 Software implementation of BLAST-n machine for better understanding of

the algorithm. This implementation is also used as the software of the

multiprocessor platform and, of course, serves as the verification and the

profiling tool of the multiprocessor platform.

 Embedment of the BLAST-n machine on the multiprocessor platform with

proper parallelism of data, verification and behavioral simulation with

ModelSim 6.0.

 Evaluation and comparison of the BLAST-n platform results with those from

a common PC.

1.3 Thesis Overview

In chapter 2, some of the approaches that have been introduced until today in the

implementation of soft-core multiprocessor platforms, are briefly described. In

particular, in this chapter those platforms that use the Xilinx Microblaze processor

and of course the different approaches for the solution of this problem (number of

processors, interconnections between processors and between processors and

peripherals) are described. Finally in this chapter the results of each platform that

described above are presented, in association with the specific applications that

they implement.

Chapter 3 contains a brief overview of the different parts that are used to develop

the soft-core multiprocessor platform of this project. In particular, this chapter

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 16

describes the structure and functionality of the Microblaze, the model of the

memory that is used, the structure of the custom peripherals that were created to

support specific operations of the platform and finally the functionality of the

necessary Intellectual Properties (IPs) that are available from Xilinx libraries

(buses, block RAMS, bridges), so as the implementation to become feasible. Also

the contents of chapter 3 deal with the architecture of the multiprocessor platform

in details. In this chapter, the way that the platform is implemented and the reason

for this specific architecture is described. At this stage, we use simple software so

as an initial simulation and verification of the functionality of the platform to be

made. At a later stage, a specific application will be developed so as the extraction

of useful results to be possible. Finally, in this chapter, the different architectures,

that described previously, are compared to this one and the differences are

discussed.

Chapter 4 contains a brief description for the verification of the MPLEM system. To

be more specific, in this chapter all the steps that were made in order to verify the

correct functionality of our multiprocessor platform are described. A verification

process is followed not only for every peripheral that is connected to the system,

but also for the whole platform. All the verification process was made with the

Modelsim 6.0a with behavioral simulation.

Chapter 5 describes a brief overview of the BLAST algorithm and its use in

molecular biology. Besides that, the contents of chapter 5 deal with BLAST

software. After distinguishing the different software programs according to the form

of the processed data, the BLAST-n program of the popular NCBI software is

presented. Also, we describe the implementation of a software system we

developed from scratch, running the main BLAST-n machine and the verification

we made by comparing the output of this machine to the output of the NCBI tool.

Last but not least, it is described the reason for choosing this particular algorithm

to be applied on a multiprocessor platform and the way this software is embedded

in it.

Chapter 6 includes all the results and the performance comparisons between the

multiprocessor platform and the software machine that is developed, while chapter

7 proposes future work to further evolve this system in order to increase its

performance and its reliability.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 17

2. Soft-core Multiprocessor Platforms

The approaches of soft-core multiprocessor systems that have been introduced

until today are quite a few. In this chapter some of these approaches will be

described. Each one of them uses a different architecture and a different test

application. On the other hand, the soft-processor that is used in all these

approaches is the Xilinx Microblaze.

2.1 Soft Multiprocessor System for JPEG Compression

In [12] the design flows of an FPGA-based multiprocessor system for high

performance multimedia application is demonstrated and are explored different on-

chip interconnects for multiprocessor system. In this approach, a JPEG encoder is

constructed on a Xilinx Virtex-II Pro FPGA. This design can compress a BMP into

JPG image in high speed. Also in this approach different interconnections between

processors, including bus, dual-port memory, FIFO and DMA controller are

implemented so as the trade-off between them to be explored.

A typical single-core Microblaze system is as follows and a JPEG encoder has

been mapped onto it. A cache can be put between processor and external

SDRAM. It’s not shown on the following diagram because cache is considered as

part of the Microblaze processor component in EDK.

Figure 2.1 Typical single–core Microblaze systems

2.1.1 Soft Multiprocessor Systems on Xilinx FPGA

The JPEG encoder is implemented on a Xilinx Virtex-II Pro 2VP30 FPGA with

Xilinx Embedded Development Kit (EDK). For the entire system, including I/O, a

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 18

Xilinx XUP2Pro board, with Compact Flash (CF) card interface and external

memory is used.

The soft multiprocessor system consists of four Microblaze processors, BRAMs,

peripherals, external memory and interconnections as shown below. Besides FIFO

interconnection, three other types of interconnections, OP bus, dual port memory

and DMA, are evaluated later.

Figure 2.2 A soft multiprocessor system

Microblaze 0 in the system is used for I/O, external memory access and

debugging while the rest three processors do the computation. External DDR

memory is used as image buffer because CF card access is slow. The system

runs at 100MHz, due to the limitation of OPB bus.

2.1.2 JPEG Encoder Application

Regarding the application, a baseline JPEG encoder with color conversion and

sub sampling is implemented on the multiprocessor platform. Except for the I/O

and bootstrap, the JPEG encoder algorithm includes BMP and JPG header

parsing, color conversion, DCT, zigzag scan, quantization and variable-length

encoding. Following is the data flow of JPEG encoder.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 19

Figure 2.3 JPEG encoder data flow

These tasks are partitioned onto four processors, for instance the FIFO

interconnection scheme is as follows.

Figure 2.4 JPEG task partitioning

The table is a detailed description including input and output of every processor.

Table 2.1 Detailed task partitioning with input and output

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 20

The advantages of this partitioning are:

 Low memory requirement. Actually Microblaze 1, 2 and 3 needs to store

only a few macro blocks which is 16x16 pixels each.

 Easy to improve performance by dedicated hardware accelerators because

every processor is dedicated to a well-defined task.

2.1.3 Streaming Programming Model

With regards to the programming model, this is modified from a shared memory

model to a streaming model. All tasks share the same address space and

communicate via shared memory. However, in order to maximize the throughput,

this four processors need to run in parallel and therefore a streaming model is

better. The inter-process communication is adapted to a message-oriented model

as well. Compared to shared memory, explicit message passing is easier to

deploy, monitor and debug.

2.1.4 Interconnection Exploration: Bus Interconnection

Besides that, in [12] different types of interconnections for evaluation and

comparison purposes are also presented four. The first type of interconnection is

the “Bus interconnection”. This is an easy way to connect four processors via a

bus. Xilinx provides OPB bus with arbitration. All processors, external memory and

peripherals can just be connected to the OPB bus and it works. The hardware

architecture of four processor system connected by bus is as follows.

Figure 2.5 Hardware architecture of four-processor system connected by bus

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 21

The bus is shared by four processors, peripherals and external memory. Therefore

it’s a bottleneck of the system. It’s very difficult for four processors to archive full-

parallel running with bus interconnection. It may be used for a starting point for

multiprocessor platform design.

2.1.5 Interconnection Exploration: Dual Port Memory Interconnection

The second type of interconnection is the “Dual Port Memory Interconnection”.

Because all on-chip memory blocks on Xilinx FPGA are dual port memories, it’s

easy and efficient to employ dual port memory as communication channel

between processors. The hardware and software architecture of four processor

system connected by dual port memory blocks is as follows.

Figure 2.6 Hardware architecture of four-processor system connected by dual port

memory blocks

Similar to the general architecture, every processor has two LMB buses, I-LMB

bus and D-LMB bus. However, the data LMB bus here is connected to two dual

port memory blocks in addition to data memory block. Each port of every dual

memory block is connected to the data LMB bus of two different processors and .

 therefore constitutes a communication channel. Every dual port memory is

assigned to its dedicated address space as well. Processors can access dual port

memory via normal memory access. The access is one-cycle-access and

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 22

predictable because it’s connected to LMB bus. There is no inter-process

synchronization directly supported by dual port memory interconnection. It needs

to be implemented through additional code or additional hardware.

2.1.6 Interconnection Exploration: FIFO Interconnection

Another often-used communication channel in a multiprocessor system is a “FIFO

interconnection”. Compared to the last implementation, dual port memory blocks

are replaced by FIFOs. The hardware architecture of four-processor system is as

follows.

Figure 2.7 Hardware architecture of four-processor system connected by FIFO

FIFO is connected to processor via FSL bus. So there are two more buses for

every processor, FSL master and FSL slave. FSL has built-in FIFO capacity. It’s

an ideal solution for FIFO implementation. Furthermore, there is hardware

synchronization mechanism built in which is easy and efficient.

2.1.7 Interconnection Exploration: DMA Interconnection

The last interconnection that is presented in [12] is the “DMA interconnection”.

DMA has its advantage in multiprocessor systems and is getting more and more

deployed. Compared to dual port memory and FIFO, it’s an active component. So

it can move data in parallel to processors without any attention from processor.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 23

The hardware architecture of four Microblaze system connected by FIFO and DMA

is as follows.

Figure 2.8 Hardware architecture of four-processor system connected by FIFO

and DMA

Compared to the previous system, the FIFO between processor 0 and processor 1

is replaced by DMA controller. The DMA controller has two sets of interfaces, to

processor 0 and processor 1 respectively. For each interface, there is a memory

bus connected directly to local data memory of the processor. It reads directly from

the local data memory or writes directly to it. Besides that, the processor can

configure and read back status via FSL master and slave bus. There is one

channel inside the DMA controller. The processor only needs to set starting

address, ending address, size of data block and go. No CPU intervention need.

Synchronization is also provided by controller and if no data moved by DMA, the

processor can stop as well.

2.1.8 Interconnection Exploration: Conclusions

Regarding the results that can be conducted there is a trade-off between different

types of on-chip interconnections and therefore they should be deployed

depending on the application. Bus is easier to implement but poor in performance.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 24

Dual port memory is easy to implement and efficient but it’s resource consuming,

inflexible due to the fixed topology and it needs synchronization mechanism. FIFO

is easy to implement and uses built-in synchronization mechanism but it’s

inflexible due to its fixed topology and less efficient because it requires the

processor to copy data into the FIFO. Finally, DMA controller is flexible, scalable

and efficient. The disadvantage is the complexity of the controller.

Because of the after-manufacturing programmability of FPGA, the best

interconnection is a combination of these interconnection types in a topology that

targets for the application.

2.2 Soft Multiprocessor System for IPV4 Packet Forwarding

In [13] is presented IPv4 packet forwarding on a multiprocessor on a Xilinx Virtex-II

Pro FPGA. This particular design achieves a 1.8 Gbps throughput and loses only

2.6x in performance compared to an implementation on the Intel IXP-2800 network

processor.

2.2.1 Soft Multiprocessor Systems on Xilinx FPGAs

The packet forwarder is implemented on a Xilinx Virtex-II Pro 2VP50 FPGA, using

the Xilinx EDK [16]. The building block of the multiprocessor system is the Xilinx

Microblaze soft processor. The soft multiprocessor is a network composed of the

multiple soft Microblaze cores, the peripherals in the fabric, the dual IBM PowerPC

405 cores, and the distributed BRAMs on the chip. The multiprocessor network is

supported by two communication links: the IBM CoreConnect buses and the point-

to-point FIFOs. The multiprocessor is clocked at 100 MHz due to restrictions on

the clock rate of the OPB.

2.2.2 IPv4 Packet Forwarding Application

The IPv4 packet forwarding application runs at the core of network routers and

forwards packets to their final destination. As a result, a soft-multiprocessor is

designed for the data plane of the IPv4 packet forwarding application.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 25

Figure 2.9 Data Plane of the IPv4 packet forwarding application

The design objective is to maximize router throughput.

2.2.3 Soft Multiprocessor Design for Header Processing

The forwarding data plane (Figure 2.9) has two components: IPv4 header

processing and the packet payload transfer. In [13] first the construction of a soft

multiprocessor system for header processing is described. Figure 2.10 shows the

final multiprocessor design. The micro-architecture consists of multiple arrays of

pipelined Microblaze processors.

Figure 2.10 soft multiprocessor systems for the data plane of the IPv4 packet

forwarding application

A staring reference for baseline performance is a single processor solution, where

the entire header processing runs on a Microblaze. The route table is stored in

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 26

BRAM and accessed over the OPB. Under this scenario the IPv4 forwarding

requires 270 cycles per packet. The maximum throughput that can be achieved by

this single processor design operating at 100MHz is 0.17 Gbps.

At a first step towards multiprocessor design, the header processing is pipelined.

Each branch of the header processing micro-architecture in Figure 2.10 is a

pipelined array of three Microblaze processors along which a single header is

processed. FSL links transfer the entire header among processors. The first

pipeline stage performs IP header verification. The 6 lookup memory accesses of

the trie lookup algorithm are partitioned equally between the second and the third

pipeline stages, and hence can be performed in parallel. The third pipeline stage

performs an additional memory access to determine the egress port. The trie table

is also divided among multiple BRAM modules, and each processor accesses

route table over a separate OPB bus. For the application decomposition in Figure

2.10, the throughput of a single array is around 0.5 Gbps.

Pipelining is a means to parallelize the application temporally. The next degree of

parallelism comes from replicating the pipeline arrays in space. Each header

constitutes a logically independent control flow. Hence, multiple branches can

process different headers in parallel. Each branch executes the same

decomposition of the header processing application. Two factors restrict the

number of branches in the design:

 FPGA BRAM cells bound the number of processors (with a 300KB route

table and 8KB local memory per processor, a Virtex-II Pro 2VP50 FPGA

can allow only 15-20 processors)

 Branch executions are not independent due to concurrent memory

accesses to the route table over a shared bus.

Taking area and arbitration constraints into account, the final multiprocessor

design for header processing (Figure 2.10) replicates the single pipeline array into

4 branches. All processors in lookup stages 1 and 2 access the same part of the

route table in shared memory over the OPB bus. From experiments, there is a

significant drop in OPB performance if more than 2 processors share the same

bus. The BRAM memory is dual-ported. Hence, the same route table memory can

be serviced by 2 OPB buses. Thus, the choice of 4 branches is optimum for

multiprocessor designs where shared resources are accessed over the OPB. The

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 27

measured throughput of the header processing multiprocessor in Figure 2.10 is

1.8 Gbps.

2.2.4 Performance Characteristics

Regarding the performance characteristics of the soft multiprocessor for header

processing, the breakup of the number if instructions and cycles executed by each

pipeline stage of the multiprocessor for header processing in Figure 2.10 is shown

in Table 2.2. The two IP lookup stages are bottlenecks in the design. Table 2.3

summarizes area, memory and performance of the multiprocessor for header

processing in Figure 2.10. Area utilization is less than 50% but memory is a tighter

constraint. The local memories occupy 14x8 =112 KB, and the routing table

occupies 300KB. The throughput of the router in Figure 2.10 is 1.8 Gbps.

Table 2.2 Execution times for processing one packet header

Table 2.3 Design characteristics of the soft multiprocessor for header processing

on the Xilinx Virtex-II Pro 2VP50

2.2.5 Payload Transfer in the Multiprocessor Design

Later in [13] is described the payload transfer in the multiprocessor design. The

multiprocessor in Figure 2.10 shows the payload transfer component and its

interface to the multiprocessor for header processing for a 2-port 2 Gbps router. A

Gigabit Ethernet MAC (GEMAC) for each port handles packet reception and

transmission under the control of the PowerPC processors. The GEMACs transfer

the packet header and payload to BRAM memory over the PLB. The header and a

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 28

pointer to the payload location are then transferred over the On-Chip Memory

(OCM) bus into memory that is shared between the PowerPC and the header

processing multiprocessor. There is one source Microblaze processor per router

port, which reads the header from the OCM, transfers the header to the

Microblaze array, and writes back the processed header back into the OCM. Each

packet is transferred over the PLB twice, once during the reception and once

during transmission. The PLB has simultaneous read and write data paths with a

total bandwidth of 12.8 Gbps. This is sufficient to buffer and transfer the packet

payload at 2 Gbps line rates.

2.2.6 Evaluation of Soft Multiprocessor Solutions

Finally, in [13] the performance of the soft multiprocessor system which presented

above is compared to the performance of a software solution of IPv4 forwarding

application, on the Intel IXP2800 network processor. The IXP2800 is a state-of-

the-art multiprocessor specialized for packet forwarding applications. It has 16

RISC micro-engines clocked at 1.4 GHz for data plane operations and an Intel

XScale processor for control and management plane operations. Meng, et al,

report a throughput of 10 Gbps on the IXP2800 for the packet forwarding

application for different packet sizes.

Table 2.4 shows the relative performance of the IXP2800 and soft multiprocessor

solutions for IPv4 packet forwarding. The IXP28000 performs about 2.6x better

that the soft multiprocessor for packet forwarding in terms of normalized

throughput. This is because the IXP28000 was specifically designed to target

forwarding applications.

Table 2.4 Performance results of the data of the IPv4 packet forwarding

application

However, the advantage of soft multiprocessors is the low development cost for

deploying an application on a target platform.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 29

2.3 A Microblaze Based Multiprocessor Soc

[14] presents a study of the viability of making a multiprocessor system in a chip

using the Microblaze soft- core processor of Xilinx. Performance of data

communication is studied, and also some parallel applications are used for testing

speedup and efficiency of the system.

2.3.1 Communication test

For testing and measuring the capabilities of the FSL links (its architecture will be

described later in this thesis) transmitting data between processors, a simple

system has been built. This system consists of 2 Microblaze cores interconnected

via 2 FSL links, BRAMs for data and instruction memory, for each processor

connected to the local memory buses, and a timer for measuring data transfer

times connected to MB_0. A diagram of this system can be seen in the next

Figure:

Figure 2.11 Microblaze System for testing communication

This system was used to test the viability of transmitting data over the FSL links

and measure the time consumed in this task.

For testing the speed of the links, a program,, for data transfers has been

developed. This program was used for transferring different sizes of data, from a

simple 32 bit word to a matrix of 32x32 unsigned integers (4KB). In the next graph

we can see the different speeds obtained with these tests.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 30

Table 2.5 Direct transfer speeds over FSL link

In this graph the cycles per word consumed for different sizes of data transmitted

are represented. With this kind of transmission and large data sizes, speeds of 2

cycles per word transmitted are reached. This configuration is good if a low

volume of data is transferred.

2.3.2 Network Topology

There are many network topologies that can be materialized with point to point

links. The pros and cons of three of them will be described and the viability of

using them in a multi Microblaze design using FSL links for point to point data

transfer:

 Completely Meshed: a completely meshed network is a network in which

each node is connected to every other node in the network. It is a good way

to reduce the travelling time of packets over a network, because data goes

directly from sender to receiver, but its main disadvantage is that the

number of links grows extremely quickly when the number of nodes is

increased. A completely meshed network topology with Microblaze and FSL

links will only be possible for just 9 Microblazes, because of the limitation of

8 FSL links for each Microblaze processor.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 31

Figure 2.12 Completely meshed network

 Ring Network: a ring network is a network in which each node in the

network is connected to the following and the preceding node in the

network, forming a ring. Data is passed from node to node until it reaches

the destination node. With Microblaze and FSL links there will not be a size

limit for the network, because each Microblaze would just use 2 FSL links.

The main problem of this topology is that data transfers from two nodes are

far from each other and very consuming

Figure 2.12 Ring network

 Star Network: a star network is a network in which each node is connected

to a central node. The weak point of this topology is that if the central node

fails, the whole system fails. This weakness is not very important in an

embedded system, where all the nodes are in the same chip. Another

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 32

weakness is that all communications go through the central node, so if the

application run is communication intensive an important bottleneck will be

presented in the central node. Using this topology it is possible to build

systems with 1 Microblaze as a central node, and up to 8 Microblazes as

general nodes. Also bigger systems can be built by linking various

subsystems together. This is the choice taken for developing this particular

multi Microblaze system. With this architecture, the central node will be the

one that decides which fragments of the work are assigned to each general

node, and will also be responsible for grouping the results given by the

general nodes.

Figure 2.13 Star network (left), and linked star networks (right)

2.3.3 Complete System

Once the communication method (FSL links) and the network topology (star

network) were decided, 4 systems were built: 1, 2, 4 and 8 Microblazes each. The

system with 1 Microblaze consisted of just the central node, and was built with: 1

Microblaze, 16KB of BRAM for instruction and data memory, an uartlite and a

timer attached to the OPB bus. The general nodes were built with one Microblaze

and 16KB of BRAM for instruction and data memory. With this system some

parallelizable applications for testing the speedup obtained due to the use of many

processors instead of one were used.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 33

2.3.4 Speedup and Efficiency

The speedup of a parallel algorithm is defined as the time needed to solve the

problem using just one processor divided by the time needed to solve the problem

with p processors. In an ideal system and with ideal parallel algorithm, the

speedup would be equal to the number of processors p. In real world, it is always

lower due to communications overhead.

Another measure of the performance of a parallel system is efficiency. Efficiency is

defined as the speedup per processor.

In an ideal system with an ideal parallel algorithm, the efficiency would be equal to

1.

2.3.5 First Application: Matrix Multiplication

The first application used to test the system that is described in [14] was an

application that performed matrix multiplications. The parallelization of the matrix

multiplication algorithm implemented consists of sending one or more rows of the

first matrix, and the whole second matrix to each processor. So each processor

obtains one or more rows of the resulting matrix and returns it to the central

processor, which is the responsible for merging the results.

The results obtained for speedup and performance are shown in the following

tables:

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 34

Table 2.6 Speedup and efficiency for 32x32 integer matrix multiplication parallel

program

As it can be seen in Table 2.6, results are not as good as it could be expected. It

can be seen that the efficiency falls quickly, when the number of processors

grows, reaching an efficiency of 20% with 8 processors. This is because when the

number of processors is increased, more time is spent in communications;

consequently the time saved with parallelism is spent in data communication.

2.3.6 Second Application: Cryptographic Application

Another application used to test the efficiency of the system in [14] was a

cryptographic application using the AES (Rijndael) algorithm. The AES takes an

input of 128 bits and a key of 128, 196 or 256 bits and generates an output of

encrypted 128 bits. The decryption is made with the same key used in the

encryption process with a similar process. The implemented version of AES used

to test the system is the 128 bits key version. The test implemented consists on

encrypted or decrypting a test of 1024 bytes in size. The text is split in 16 bytes

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 35

blocks, and each processor is always ready to process a 16 byte block. When the

central processor receives a text file to be encrypted / decrypted, it starts to send

blocks to each processor. It also has to send the encryption key to be used. The

results obtained, are shown in the next table:

Table 2.7 Speedup and efficiency fro AES encryption/decryption

As it can be seen, the system offers a good performance, with efficiencies higher

than 90%, quite better than the matrix multiplication test. The efficiency when

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 36

doing decryption is higher than with encryption, because the decryption algorithm

is a little more time consuming so the relationship between computing time against

communications time is higher.

2.3.7 Conclusions

From [14] can be concluded that the FSL links are an ideal choice for exchanging

data between processors due to their high speed data transfer rates. This system

is very appropriate for parallel algorithms in which the data transfer time is

substantially lower than the computing time and that soft-core processors are

appropriate for building multiprocessors systems on a chip.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 37

3. MPLEM Architecture

This chapter describes the structure and functionality of the Microblaze, the model

of the memory that is used, the structure of the custom peripherals that were

created to support specific operations of the platform and finally the functionality of

the necessary Intellectual Properties (IPs) that are available from Xilinx libraries

(buses, block RAMs, bridges), so as the implementation to become feasible. Also

here the architecture of the multiprocessor platform we implemented is described.

More specifically, not only the way all the interconnections are made between the

peripherals, the memory and the processors is described, but also the reason for

this specific architecture. Besides that, an early simulation for this platform in this

chapter is described. Simple software is implemented, to test the correct

functionality, not only of the platform, but also of all peripherals that are used. The

name is chosen for this platform is Multiprocessor Platform for Embedded systems

or M.PL.EM.

3.1 Description of Hardware

3.1.1 Microblaze Architecture

Microblaze is a soft, 32-bit reduced instruction set computer (RISC) processor

designed by Xilinx for their FPGAs. Compared to other general purpose

processors, it’s quite flexible with a few configurable parts and capable of being

extended by customized co-processors. There are a number of on-chip

communication strategies available including a variety of memory interfaces.

Following is the core block diagram of Microblaze processor. [19]

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 38

Figure 3.1 Microblaze core block diagram

Similar to most of RISC processors, Microblaze processor has an instruction

decoding unit, 32x32b general purpose register file, arithmetic unit and special

purpose registers. In addition, it has an instruction prefetch buffer. The arithmetic

unit is configurable, as shown in Figure 3.1. The Barrel Shift, Multiplier, Divider

and Floating Point Unit (FPU) are optional features. Microblaze processor has a

three-stage pipeline: fetch, decode and execute. For most of instructions, each

stage takes one clock cycle. There is no branch prediction logic. Branch with delay

slot is supported to reduce the branch penalty.

Microblaze is a Harvard-architecture processor, with both 32-bit Instruction-bus

and Data-bus. Cache is also an optional feature. Three types of buses, FSL, LMB,

and OPB are available. All three types of buses will be described later.

3.1.2 On-Chip Peripheral Bus V2.0 (OPB) with OPB Arbiter

The OPB Bus with OPB Arbiter module is used as the OPB interconnect for Xilinx

FPGA based embedded processor systems. The bus interconnect in the OPB

V2.0 specification is a distributed multiplexer implemented as an AND function in

the master or slave driving the bus, and an OR function to combine the drivers into

a single bus. [18]

The features of OPB V2.0 with OPB arbiter are the following:

 Includes parameterized OPB Arbiter

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 39

 Includes parameterized I/O signals to support up to 16 masters and any

number of slaves

 The OR structure can be implemented using only LUTs or can use a

combination or LUTs and fast carry adder to reduce the number of LUTs in

the OR interconnect

 Includes a 16-clock Power-on OPB bus Reset and parameter for high or

low external bus reset.

 Includes input for reset from Watchdog Timer.

The Xilinx OPB V20 bus core allows the designer to tailor the OPB bus arbiter

to suit the application by setting certain parameters to enable/disable features.

Figure 3.2 OPB System Using OPB_V20

3.1.3 Fast Simplex Link Channel (FSL)

Microblaze contains eight input and eight output FSL interfaces. The FSL channels

are dedicated unidirectional point-to-point data streaming interfaces. The FSL

interfaces in Microblaze are 32 bits wide. Further, the same FSL channels can be

used to transmit or receive either control or data words. The performance of the

FSL interface can reach up to 30 MB/sec. This throughput depends on the target

device itself. The FSL bus system is ideal for Microblaze-to-Microblaze or

streaming I/O communications. [18]

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 40

The main features of the FSL interface are:

 Unidirectional point-to-point communication

 Unshared non-arbitrated communication mechanism

 Control and Data communication support

 FIFO-based communication

 Configurable data size

 600 MHz standalone operation

The FSL bus is driven by one Master and drives one Slave. The next figure shows

the principle of the FSL bus system and the available signals.

Figure 3.3 FSL Interface Signals

Xilinx EDK provides a set of macros for reading and writing to or from an FSL link.

There are two ways of reading/writing on an FSL link: blocking or not blocking, and

also there are different instructions for reading/writing data or control words.

3.1.4 Local Memory Bus (LMB)

The LMB module is used as the LMB interconnect for Xilinx FPGA-based

embedded processor systems. The LMB is a fast, local bus for connecting

Microblaze instruction and data ports to high-speed peripherals, primarily on-chip

block RAM (BRAM). [18]

The main features of LMB are:

 Efficient, single master bus (requires no arbiter)

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 41

 Separate read and write data buses7Low FPGA resource utilization

 125 MHz operation

A typical Microblaze system using two LMBs is shown in figure 3.4. This system

illustrates the use of both Instruction and Data side LMB buses connecting to a

dual-ported BRAM Block via separate LMB BRAM interface controllers.

Figure 3.4 Typical Microblaze System using Two LMBs

3.1.5 LMB Block RAM Interface Controller

The LMB BRAM interface controller is the interface between the LMB and the

bram_block peripheral. A BRAM memory subsystem consists of the controller

along with the actual BRAM components that are included in the bram_block

peripheral. [18]

The main features of LMB BRAM Controller are:

 LMB bus interfaces with byte enable support

 Used in conjunction with bram_block peripheral to provide fast BRAM

memory solution for Microblaze ILMB and DLMB ports

 Supports byte, half-word, and word transfers

3.1.6 Block RAM (BRAM)

The BRAM block is a configurable module that attaches to a variety of BRAM

interface Controllers. The BRAM Block structural HDL is generated by the EDK

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 42

design tools based in the configuration of the BRAM interface controller IP. All

BRAM Block parameters are automatically calculated and assigned by the EDK

tools Platgen and Simgen. [18]

The features of BRAM are:

 Fully automated generation and configuration of HDL through EDK

Platgen/Simgen tools

 Number of BRAM primitives utilized is a function of the configuration

parameters for: memory, address range, number of byte-write enables, the

data width, and the targeted architecture

 Both Port A and Port B of the memory block can be connected to

independent BRAM Interface Controllers: LMB, OPB, Processor Local Bus

(PLB), and On-Chip Memory (OCM)

 Supports byte, half-word, word and doubleword transfers provided to the

correct number of byte-write enables have been configured

3.1.7 OPB to OPB Bridge (Lite Version)

The OPB to OPB Lite Bridge is used to connect two OPB buses. The bridge has

one master port and one slave port. Two bridges may be used together to support

full bus mastership in both directions. [18]

The features of OPB to OPB Bridge are:

 Provides a bridge between two OPB buses

 Connections for one master-side bus and one slave-side bus

 Parameterized data bus widths

 Simple transaction forwarding reduces LUT count

 Requires the two OPB buses to be on the same clock and the same size

 No support for data buffering or posted writes

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 43

Figure 3.5 OPB System with Bridge

Figure 3.5 shows a typical system with two OPB buses interconnected with a

bridge. Any OPB master on OPB B can initiate a transaction (read or write) on

OPB A. Note that masters on OPB A cannot get to OPB B unless another bridge is

used in the opposite direction. Figure 3.6 shows a system with two bridges. In this

system, masters on OPB B can initiate reads and writes to slaves on OPB A, and

masters on OPB A can initiate reads and writes to slaves on OPB B.

Figure 3.6 OPB System with Two Lite Bridges

3.1.8 Cypress CY7C1041 256Kx16 Static RAM

The behavioral model of external memory that is used to store the input data of the

multiprocessor platform is the CY7C1041 provided from Cypress. The CY7C1041

is a high-performance CMOS static RAM organized as 262,144 words by 16 bits.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 44

Writing to the device is accomplished by taking Chip Enable and Write Enable

inputs LOW. If Byte Low Enable is LOW, then data from I/O pins (I/O0 through

I/O7) is written into the location specified on the address pins (A0 through A17). If

Byte High Enable is LOW, then data from I/O pins (I/O8 through I/O15) is written

into the location specified on the address pins (A0 through A17).

Reading from the device is accomplished by taking Chip Enable and Output

Enable LOW while forcing the Write Enable HIGH. If Byte Low Enable is LOW,

then data from the memory location specified by the address pins will appear on

I/O0 to I/O7. If Byte High Enable is LOW, then data from memory will appear in

I/O8 to I/O15. The input/output pins are placed in high impedance state when the

device is deselected, the outputs are disabled, the Byte High Enable and Byte Low

Enable are disabled, or during a write operation. [20]

Figure 3.7 SRAM Logic Block Diagram

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 45

Figure 3.8 SRAM Truth Table

Figure 3.7 shows the logic block diagram of the memory, while figure 3.8 shows its

truth table.

3.1.9 FSL Peripheral

The FSL Peripheral is a custom peripheral built to support the multiplatform

functionality. This peripheral is used to store the data from the external SRAM that

described previously, and send this data to a Microblaze processor. The FSL

peripheral is connected with the Microblaze via an FSL bus, and is connected with

the SRAM with custom logic (there is no bus available from the Xilinx libraries that

connects this peripheral with this specific model of SRAM).

The FSL peripheral contains a Dual Port BRAM organized as 4096 words by 32

bits that stores the data which come from the external memory, and a controller

used to arbitrate the communication of this peripheral with the processor and the

SRAM.

Figure 3.9 presents the logic block diagram of this peripheral, while figure 3.10

presents the Finite State Machine (FSM) that acts as the controller of the FSL

peripheral.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 46

Figure 3.9 FSL Peripheral Block Diagram

Figure 3.10 FSM of the FSL Peripheral Control

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 47

In figure 3.9 is presented the connection of the custom peripheral we built with the

processor and the external SRAM. The pin out of the peripheral is explained in

table 3.1.

Signal Name I/O Description

fsl_clk in system clock

fsl_rst in system reset

fsl_s_clk in slave clock (not used)

fsl_m_data out data from BRAM to processor

fsl_s_read out read data from FSL link

fsl_s_control in slave control (not used)

fsl_m_clk out master clock (not used)

fsl_m_write out write enable to FSL link

fsl_m_control out master control data (not used)

fsl_m_full in FSL link full

fsl_s_data in address from processor

fsl_s_exists in indicates if the processor tries to read from the peripheral

end_of_mem in indicates if the reading from the SRAM ends

write_addr in address to FSL BRAM

write_data in data from SRAM to FSL BRAM

wren in write enable to BRAM

read_sram out read data from SRAM

Table 3.1 Pin out of FSL Peripheral

Regarding the size of the BRAM of this peripheral, it is chosen as follows: the total

number of the BRAM on XUP2VP30 (the FPGA that is used for this thesis) is 136.

Each BRAM has 18 Kbit size. The remaining number of BRAMs after the

placement of the 14 Microblaze processors is 72. We split this number of BRAMs

to 14 peripherals (one for each processor), so for each peripheral correspond 5

BRAMs. So the total number of Kbits of each BRAM is 5*18 or 90 Kbits. We also

need each position of the memory to be 32 bits wide, because this is the most

convenient as each register of a Microblaze processor is 32 bits wide. As a result

we need 90 Kbits/ 32 bits positions or 2812 positions. But the Xilinx tools cannot

commit BRAMs of this size. The Xilinx tools commit memories of 4096 positions of

32 bits. So it is necessary to reduce the number of the BRAMs that is committed

from the processors, so as to fulfill this constraint. The exact number of BRAMs

that is used from the processors and the way we use them will be described in the

next chapter of this thesis.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 48

Regarding the ports of the BRAM, the port A is used for asynchronous read of the

stored data, while Port B is used for synchronous write from the SRAM.

The FSM of the FSL controller that is described in figure 3.10 works as follows:

Before the processor asks for a read from the FSL peripheral, it is in idle state. If

the processor asks for data from the FSL peripheral, then the FSL controller asks

the external SRAM to initialize the FSL BRAM. When the BRAM is initialized from

the external SRAM (this process will be described later in this thesis) and the

processor asks for a read, the peripheral enters in the read mode. Then each

address that is asked from the processor is passed to the BRAM where the data

are stored, until the number of reads goes to 0. The number of reads that are

made from the processor are 4096, equal to the positions of the BRAM. When the

number of reads is 0 the peripheral enters in the delay state. This state is

necessary, because the dual port BRAM needs two cycles to read the address

and put out the data from an address. During this state, the controller also

initializes the counter of the number of reads from the processor, and asks from

the SRAM to re-initialize the BRAM of the FSL peripheral. Then the peripheral

enters the Write state. The data read from the BRAM are written on the FIFO of

the FSL link and as a result the processor can read, and consequently use them.

In this point, it is necessary to mention that if the BRAM of the peripheral is not

initialized the processor doesn’t need to resend the addresses, but it stalls until the

memory is ready to be read. So no stall mechanism is needed to be build, thus the

FSL supports this function with the use of the FIFO in the FSL link.

3.1.10 SRAM controller

In order to use the SRAM which is described previously, a controller is designed.

This controller arbitrates the accesses to the SRAM from the FSL peripherals by

defining the way that the data is sent to them. The SRAM controller is connected

to the SRAM from the one side and with all the FSL peripherals from the other

side.

In figure 3.12 the FSM of the controller of the SRAM is presented and in Table 3.2

the pin out of the SRAM controller is presented.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 49

Figure 3.11 FSM of the SRAM controller

Signal Name I/O Description

clk in system clock

reset in system reset

addrin in input addrsss (18-bit)

datain in input data (32-bit)

write_mem in write mem if read_mem=0

read_mem in read_mem if write_mem=0

addrout out addrout to FSL peripheral (12-bit)

dataout out data to fsl peripheral (32-bit)

wren0-13 out write enable BRAM of the FSL peripheral

Table 3.2 Pin out of the SRAM controller.

The SRAM controller that is presented in figure 3.11, implements a round robin

algorithm for the initialization of the BRAMS of the FSL peripherals. The

initialization of the memory is supposed to have been done with a “magic” way.

Despite this fact, the SRAM controller supports writing to the memory, but in this

thesis it is never used.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 50

To be more specific, the SRAM controller works as follows: Initially, the SRAM

controller is at the idle state. At this phase, the SRAM controller waits for a read or

a write request, while it initializes all the signals and the necessary counters for the

implementation of the Round Robin algorithm. When a read request comes from

the FSL peripheral, a transition takes place from the idle to the read state. Then

the controller starts to read data from the SRAM and initializes the FSL peripherals

serially. There are three counters, one that counts the number of the peripherals to

be initialized, one that counts the address to be send to the FSL peripheral, and

one that counts the address to be send to the SRAM. After that the controller sets

the control signals of the SRAM as follows: CE_b=0, OE_n=0, WE_n=1, BLE_n=0,

BHE_n=0 [20]. Also, the controller sets the appropriate write enable signal for the

FSL peripheral to be initialized, and sets the addresses signals to the SRAM and

to the FSL peripheral BRAM. After that, a transition takes place from the read to

the idle state. This state is obligatory only due to the SRAM functionality (a

transition of the previously described control signals of the SRAM has to be

made).

Then a continuous transition from idle read to read state is made for 4096 times,

so as the whole BRAM of the FSL peripheral to be initialized with data. After 4096

times the control goes to the idle state and the whole process is repeated for all

the 14 peripherals. After 14 repetitions the control goes to the memory-end state

where it stays for ever because, in this thesis, it is not predicted the SRAM to be

re-initialized externally (as it is mentioned above the SRAM is initialized externally

with a “magic” way which will be described later in this thesis).

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 51

3.2 MPLEM Platform Topology and Interconnection

In figure 3.12 is presented the block diagram of the multiprocessor platform. At this

block diagram all the interconnections that have been made for the implementation

can be seen and will be explained later at this chapter.

For the implementation of this platform were used:

 14 Xilinx Microblaze soft-core processors, 14 custom FSL peripherals, and

14 BRAMS, one for each processor.

 A 4 MB external Cypress SRAM

 2 OPB buses

 2 OPB to OPB bridges

 2 shared BRAMS

 An RS232 peripheral for I/O purposes

In [14] different network topologies for a Microblaze multiprocessor platform are

presented. At these topologies, all Microblaze processors communicate directly

each other through the FSL bus. In this thesis a different topology is chosen. All

processors communicate each other, not directly, but with the use of the OPB

buses. The reason this topology is used, is that the processors work almost

independently and there is no need for fast transfer of data from one processor to

the other. Furthermore, the main goal for the implementation of this platform is to

fit in one single FPGA the maximum number of processors that can

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 52

Figure 3.12 Multiprocessor Platform Block Diagram

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 53

share simple messages and work in parallel with different data that come from the

external SRAM. So the best way for this is to connect all the Microblaze

processors on the OPB buses.

3.2.1 Microblaze to OPB interconnection

Every Microblaze processor is connected directly to the OPB bus with the use of

two links, one for data and one for instructions. Besides that, every Microblaze

processor is connected on the OPB bus as a Master, so it has the right to write

onto the bus and to send data to other slave peripherals or other processors. The

interconnection of one Microblaze processor on the OPB bus is presented in figure

3.13.

Figure 3.13 Single Microblaze interconnection

3.2.2 Microblaze to Local BRAM interconnection

In figure 3.13 the connection of the Microblaze processor with its local memory is

also presented. The connection is made through two buses: the data local memory

bus (DLMB) and the instruction local memory bus (ILMB). The DLMB is used to

transfer data to and from the processor, while the ILMB is used to transfer the

instructions to and from the processor. At this point it should be mentioned that the

software and the data of the processor are stored in this local memory. Also, the

size of the local BRAM should be enough so as the software of the Microblaze to

fit in.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 54

3.2.3 Microblaze to FSL peripheral interconnection

Every Microblaze processor is also connected with an FSL peripheral (its

functionality was described in the previous chapter) with the use of the FSL link.

This peripheral is not connected with the Microblaze processor through the OPB

bus, because a high transfer speed is needed between this peripheral and the

processor. The FSL link can work up to 600 MHz clock rate while the OPB bus is

much slower if many processors and peripherals are connected onto this.

The Microblaze is the master peripheral of the FSL bus while the FSL peripheral is

the slave. This means that the processor can ask any time data from the FSL

peripheral and the peripheral can write them on the FSL bus. If the bus is full, then

the processor and the FSL peripheral wait until the FIFO of the FSL bus empties.

The communication between the processor and the FSL bus is made with the use

of some macros, which are provided from the Xilinx library. The macros are used

are 2:

 microblaze_bread_datafsl (val, id): This macro performs a blocking data get

function on an input FSL of Microblaze; id is the FSL identifier and can

range from 0 to 7.

 microblaze_bwrite_datafsl (val, id): This macro performs a blocking data put

function on an output FSL of Microblaze; id is the FSL identifier and can

range from 0 to 7. [21]

These two macros are used together, the one after the other. The first macro is

used to write to the FSL bus the addresses in the BRAM of the FSL peripheral that

contain the data the Microblaze wants, while the second macro is used by the

Microblaze so as to read the data that the FSL peripheral writes in the FSL bus.

Both macros use block reads and write because the processor needs to wait for

the data to be ready so as to continue its execution. On the contrary if the non-

block macros were used then the data the processor would receive would be

wrong.

3.2.4 OPB to OPB interconnection

As it was previously described, the main goal of this work is the creation of a

multiprocessor soft core system by utilizing all the resources that a specific FPGA

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 55

chip provides to us. So after some experimentation, it was found that on a Virtex II

Pro FPGA (XC2VP30) chip fit 14 Xilinx Microblaze processors. But all these

processors cannot be connected on a single OPB bus. An OPB bus can hold only

up to 8 Master peripherals and an infinite number of Slave peripherals. So, for the

implementation of a system that has 14 processors, 2 OPB buses are needed. In

figure 4.1 is presented the way the 2 OPB buses are connected together to hold

14 Microblaze processors. The connection of 2 OPB buses is succeeded with the

use of the OPB to OPB bridges. In this thesis, 2 bridges were used; in order every

processor in each bus to have the right to access as Master to a processor that

exists on the other bus. (The functionality of OPB to OPB bridges is described in

the previous chapter).

Figure 3.14 OPB to OPB Bridge Interconnection

In Figure 3.14 presented in details the interconnection of the bridges with the OPB

buses. The OPB_OPB_0 bridge acts as master in OPB0 and as a slave in OPB1,

while OPB_OPB_1 acts as master in OPB1 and as a slave peripheral in OPB0. In

this way a processor which is connected in OPB1 can write data in OPB0 through

the OPB_OPB_1. At this point it should be mentioned that as the OPB to OPB

bridge acts a master in the one side of a bus, the number of processors, or other

master peripherals in general, that can be connected on a bus is reduced to 7.

This is the reason why in this project every bus holds only 7 processors and not 8.

The communication between two processors that are on a different bus, is not

made with the use of a specific macro, but with message sharing with the use of

the shared BRAM 0, that is connected in OPB0, and the shared BRAM 1, that is

connected in OPB1. For example, if Microblaze 0 wants to send a message to

Microblaze 7 (these processors are on a different bus), has only to write in shared

BRAM 1 and then the Microblaze 7 reads the data from shared BRAM 1. The

same stands for the opposite.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 56

3.2.5 Slave Peripherals on OPB

As it was previously mentioned, on the OPB are also connected two shared

BRAMS, one on each bus. These BRAMS (Shared BRAM 0, Shared BRAM 1) are

connected as slaves on the buses, and they act as shared memories for the

processors in order message passing to be possible. Every processor can access

any time to every BRAM and to write or read data. The priority for accessing to

these memories is controlled by the OPB arbiter that is embedded in the OPB bus.

Also, a serial port peripheral is connected on the OPB bus. This peripheral is used

only for test reasons (if the design would be downloaded on the XUP board).

3.2.6 FSL peripheral to SRAM controller interconnection

Every FSL peripheral, as it is presented in figure 3.15, is connected to the SRAM

controller, which is inside in the FPGA and is connected to the external SRAM.

In Figure 3.15 the interconnection of an FSL peripheral with the SRAM controller is

presented.

Figure 3.15 FSL Peripheral with SRAM Controller Interconnection

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 57

Every FSL Peripheral is connected with the SRAM controller via 5 signals, as

there was no library bus provided from Xilinx, because the SRAM controller is

custom. The functionality of these signals is described in the previous chapter of

this thesis.

As it can be conducted from here, the processors are not depended on the SRAM

controller and thus they can process data while the FSL peripheral communicates

with the SRAM for its initialization.

3.2.7 SRAM controller to SRAM interconnection

As it was previously mentioned, the external SRAM is used must be supported

from an SRAM controller that is inside the FPGA chip. So, we implemented an

SRAM controller, which is inside the chip. The interconnection of this controller

with the external SRAM is presented in figure 3.16

Figure 3.16 SRAM controller to SRAM interconnection

The clock and the reset signals of the SRAM controller are the same as for the

rest of the platform. The signals “addrin”, “datain” and “write_mem” are external

inputs of the controller and are used for initializing the SRAM. In this thesis, the

SRAM is never initialized manually but is initialized in the testbench for the

simulation of the platform.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 58

The functionality of the SRAM and the SRAM controller was described in the

previous chapter. The SRAM controller defines the way the SRAM communicates

with the rest of the system. The reason an SRAM was chosen for this platform and

not a DDR memory is that the implementation of a DDR controller is very

complicated (which is not included in the goals of this thesis). In the future a DDR

controller may be implemented to support fast transfer of the data to and from the

rest of the platform. The only reason an SRAM was chosen is that it’s easy to

implement an SRAM controller and the I/O communication is much faster that any

other way of communication (serial port for example).

3.3 MPLEM Functionality

The multiprocessor platform that previously described works as follows: Initially,

the system is at a reset state. After some cycles, the software of the processors,

which is the same for every processor, begins to execute. The SRAM controller

will begin to work, only when all the processors ask for data from the memory. This

happens, because we want the data from the external SRAM to be divided

uniformly among the processors. Then the SRAM will initialize all the memories of

the FSL peripherals. When every memory of the FSL peripherals would have been

initialized, then the corresponding processor starts to read the data. When it

finishes the initialization, the FSL peripheral is ready to be reinitialized. When all

the peripherals are ready, the SRAM starts to send new data to these memories.

At the same time, the processors execute the rest of the software. This process is

repeated until all data of the SRAM are sent to the FSL peripherals. In this way, all

the processors work in parallel by processing different data at the same time.

The SRAM initialization can be done externally, in case the platform is

downloaded on a board. In this thesis on the contrary, the memory initialization is

done only in simulation mode, since the model of the memory is available to us

only in behavioral mode. So, as we need 32-bit data long, we use 2 instances of

the model we have, connected in parallel. As a result, the total amount of memory

that is available is 262144 positions by 32 bits long. For the initialization of the

memory in behavioral mode, a procedure is created which reads the data from a

memory initialization file (MIF) and stores those data in the array which stands for

the memory. This file is read by the memory, when a read operation is made.

Finally, in order the SRAM model to work properly, the switching characteristics of

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 59

this behavioral model are set, according to those described in [20]. The switching

characteristics, which are chosen for the behavioral simulation of this platform, are

those presented in table 4.1:

Parameter Description Time (ns)

Trc Read Cycle Time 20

Taa Address to Data Valid 1

Toha Data Hold From Address Change 1

Tace (not CE) LOW to DATA Valid 1

Tdoe (not OE) LOW to DATA Valid 0

Tdbe Byte Enable to Data Valid 3

Thzbe Byte Disable to High Z 6

Thzoe (not OE) HIGH to High Z 3

Thzce (not CE) HIGH to High Z 3

Twc Write Cycle Time 20

Tsce (not CE) LOW to Write End 20

Taw Address Set-Up to Write End 20

Tha Address Hold from Write End 0

Tsa Address Set-Up to Write Start 0

Tpwe WE Pulse Width 20

Tsd Data Set-Up to Write End 15

Thd Data Hold from Write End 0

Tbw Byte Enable to End of Write 20

Table 3.3 SRAM Switching characteristics

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 60

3.4 Parallel Interconnection

The number of processors is limited for this implementation due to the size of the

target FPGA (we used the Virtex-II Pro xc2vp30 FPGA). In order to increase the

number of processors, and consequently increase the throughput and the runtime

performance of the system, we can do two things:

 Use a larger FPGA

 Connect many FPGAs in parallel.

Regarding the first idea, the topology of the network will not change significantly.

We will have to use more OPB buses, since, as it was previously mentioned, the

number of master peripherals on every bus is limited to 8. In figure 3.16 is

presented the interconnection when using a larger FPGA:

Figure 3.17 Multiple buses interconnections

At this case, the number of processors in OPB0 will remain the same (7

processors). On the contrary, the number of processors in OPB1 will be reduced

to 6, since one master position should be occupied by the OPB_OPB_0 bridge.

The number of processors in OPB3 will be the same as in OPB0 (7 Microblaze

processors). So, the total number of processors in this case is 20. Likewise, if the

size of the FPGA does not limit us, we can add more buses and, consequently,

more processors.

Another way to increase the total number of processors is to connect many

FPGAs in parallel. In figure 3.18 is presented one way to connect many FPGAs in

parallel.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 61

Figure 3.18 Parallel FPGA Interconnection

The main idea in order to connect many FPGAs, which run MPLEM on them, is to

connect them with the use of the external memory. As the memory is outside the

FPGA, we can connect many of them with the memory. The arbitration is done by

the memory, which divides the data among the processors.

In order to implement the parallel interconnection, is just to put out the signals from

each FPGA that are connected to the external memory.

With this implementation, we increase significantly the number of processors.

Despite that, the number of FPGAs that are connected in parallel is unlimited. The

only disadvantage is the bottleneck from the external memory. It is very slow to

initialize all the processors so if we connect many FPGAs in parallel, the

throughput will remain the same, the runtime performance too.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 62

4. System Verification and Synthesis

In order to verify the correct functionality of the platform, initially all the custom

peripherals were simulated and verified. After that, the whole platform functionality

was verified, by implementing simple software for the platform. All the verification

was made with behavioral simulation at ModelSim 6.0a.

4.1 SRAM Behavioral Model Verification

The model of the SRAM is used in this thesis is provided by Cypress. As a

consequence, it should have been verified for its proper functionality. Despite that,

in order to ensure the correct functionality of the memory and, as a result, the

correct functionality of the system, the model of the SRAM is verified in behavioral

simulation with ModelSim 6.0a. Many testbenches were created, which examine

the most cases for reading from and writing to the memory. A testbench is created

with no values, in order to examine whether the SRAM works properly and reads

no values or not. Also a testbench with values in different positions was created so

as to examine if we can read or write at random places in the memory. Finally, a

testbench was created in order to examine whether or not we could read all the

positions in this specific model of memory.

Also, at this point the correct use of the memory initialization file is verified. As it

was previously mentioned, a memory initialization file was created with some initial

values for the memory. What was tested is if the memory was initialized properly

and, of course, if theses values appear in the output when a read operation is

tried.

4.2 SRAM controller Verification

The SRAM controller that is implemented to support the functionality of the SRAM

was also verified through behavioral simulation. A testbench was created, which

examines all the cases for the SRAM controller. The behavioral simulation was

done with the use of ModelSim 6.0a.

Besides the standalone simulation of the controller, it was also tested with the

SRAM, in order to verify the correct communication between the two peripherals.

For this reason a test bench was created that does many read and write

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 63

operations to and from the memory. In order to examined the correct functionality

of the SRAM controller with the memory, we examine the output from the

Modelsim in order to verify that the SRAM returns the correct values and also to

verify if we write in some positions in the memory we can later read them.

4.3 FSL Peripheral Verification

Another peripheral that was verified is the FSL peripheral. In order to simulate this

peripheral, the local BRAM is initialized with some random values with the use of a

memory initialization file (MIF). The testbench that was created tries to replace the

communication with the Microblaze processor. Some requests are made to the

FSL peripheral, and this returns the values that are stored in the local BRAM. The

cases that were tested are for many successive reads and for full or not full FSL.

4.4 Multiprocessor network Verification

The Microblaze network, without the external SRAM and the SRAM controller was

also verified for its correct functionality. In order to simulate this network, simple

software was developed. This software asks for some data from the FSL

peripheral, reads the returned values (communication between Microblaze and

FSL peripheral testing), and sends some of them through the OPB bus to other

processors and to other slave peripherals (communication between processors

testing).

4.5 MPLEM Verification

Finally, it was made the verification of the whole system. Initially we examined the

correct communication between the processors. So testing software was created,

that runs on all processors, and its main work is to exchange values between the

processors. The first processor sends a value to every other processor and waits

for their response. When a processor receives this value adds a number to this

value according to its position in the network and sends it back to the first

processor. The output from the simulation tool (Modelsim) is the same with the

one expected. We can see that every processor replies to the first through the

OPB bus.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 64

Besides that, the communication with the FSL peripheral and the SRAM controller

should be verified. So testing software was created, that runs on every Microblaze

that asks for some values from its own FSL peripheral. The way these requests

are made is with the use of some functions that are provided from the Xilinx

software library. So, we have to examine in the simulation tool if the processor

reads correctly the values from the FSL peripheral. This data come from the

external memory with the help of the SRAM controller.

In every case, the system works properly, without an algorithm running on it. In

chapter 5, after embedding the BLAST software in MPLEM, is described also a

further verification for MPLEM. Many different simulations were made in order to

examine not only the correct functionality of the BLAST software on the MPLEM

but also to ensure the correct functionality of the platform itself on a parallel

algorithm.

Another way for verifying the correct functionality of the platform is to download the

design on an FPGA chip, but now this is impossible since the model of the

memory is not synthesizable.

4.6 Synthesis Results

As it was previously mentioned, the whole platform cannot be synthesized, since

the model of the memory we used in this thesis, is behavioral. Nevertheless, the

part of the design that consists of the processors (without the memory and the

memory controller) can be synthesized. As a result, we can predict the overall

speed of the design, without taking into account the speed of the external memory.

This is feasible, since the memory is outside the FPGA chip (it’s a separate chip).

The processors network has been implemented (until synthesis phase) with Xilinx

EDK 7.1 and Xilinx ISE 7.1 tool, using as target FPGA the xc2vp30 of the Virtex-II

Pro family, package ff896 with speed grade -7. Table 4.1 shows the design

summary of the multiprocessor network system.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 65

Device Utilization Summary

Number of 4 Input LUTs 23010 out of 27392 84%

Number of BRAMs 120 out of 136 88%

Number of MULT18X18s 42 out of 136 30%

Table 4.1 Synthesis Results

The speed of the system is 96.483 MHz according to the synthesis report obtained

from the Xilinx Tools.

As the Table 3.4 shows the critical aspects of this design are the number of LUTs

and the number of BRAMs. As a result, the maximum number of processor that

can fit into a Virtex 2 Pro FPGA is 14 as this number is determined by the number

of the available BRAMs and the number of the available LUTs.

On a new technology and larger FPGA the number of processors can be

increased significantly since the amount of the available resources would be

increased.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 66

5. BLAST Implementation

In this chapter is described a brief overview of the BLAST algorithm and its use in

molecular biology. At this point it should be mentioned that in this thesis all the

terminologies and definitions of DNA sequence matching problems and BLAST

algorithm are not described in details, since this is not the main goal of this thesis.

All the terminology and definition details that are used in this thesis are described

in detail in [2].

Besides that, the contents of this chapter deal with BLAST software. After

distinguishing the different software programs according to the form of the

processed data, the BLAST-n program of the popular NCBI software is presented.

Also, we describe the implementation of a software system we developed from

scratch, running the main BLAST-n machine and the verification we made by

comparing the output of this machine to the output of the NCBI tool. Last but not

least, it is described the reason for choosing this particular algorithm to be applied

on a multiprocessor platform and the way this software is embedded in it.

5.1 Brief Description of BLAST Algorithm

BLAST is the acronym of Basic Local Alignment Tool and it was firstly presented in

[2] by S.F Altchul et. al. in 1990. In order to remain consistent with the terminology

found in the original paper, it is important for us to describe the basic terms.

A segment is a substring of a sequence. Given two sequences, a segment pair is

a pair of substrings of the same length, one of each sequence. The subsequences

of a segment pair can be gaplsessly aligned as there are of the same length.

Given a scoring scheme for DNA sequences, a + 5 for every match and a penalty

of –4 for every mismatch, a Maximal Segment Pair (MSP) is defined to be the

highest scoring pair of identical length segments chosen from two sequences. An

MSP may be of any length as its boundaries are chosen to maximize its score.

This score provides a measure of local similarity for any pair of sequences.

However, as a molecular biologist may be interested in all conserved regions

shared by two proteins, not only in their highest scoring pair, a segment pair is

defined to be locally maximal if its score cannot be improved either by extending or

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 67

by shortening both segments. BLAST can seek all locally maximal segment pairs

with scores above some cutoff [2].

We now have all the necessary information to describe precisely the performance

of BLAST. Given a query sequence, BLAST returns all the segment pairs between

the query and the database sequence with scores above a certain score S. Most

severs running the BLAST software provide a default value of S, but also a user

may also define a value for S.

Blast algorithm consists of 3 steps which implementation depends on the form of

the data processed, nucleotide sequences or amino acid sequences. In the

following discussion, BLAST dealing with nucleotide data will be discussed in

details, whereas shorter explanations will be given regarding the manipulation of

amino acid data.

The first step of the algorithm involves the compiling of the list of high scoring

words. For DNA sequences this list contains all contiguous w-mers, i.e words of

length w, in the query sequence. For nucleotide sequences, the value of w is

usually 12 and a typical range of this value is between 11 and 15. Obviously this

list will contain n-w+1 w-mers where n is the length of the query sequence. To

better illustrate the algorithm steps for DNA sequences, we will use a smaller

value for w in our examples. Let ACGTAAATGCAG be the query sequence of

length 12 and let w be equal to 3. The word list will contain 10 w-mers. As it is

shown in figure 5.1, ACG will be the first one, CGT the second, GTA the third etc.

and CAG will be the last one.

Figure 5.1 Step 1 of BLAST (from [15])

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 68

For queries with protein sequences containing all words which score at least T

when compared with some word in the query sequence. So, a query may be

represented by no words in the list or by many.

The Second Step is the search of the database for “hits”. After the word list

generation, the database sequences are searched for an exact match between

any substring of the w-mer list and the database sequence. Every word list found

in the database is called hit and it is possible to be part of a High Scoring Pair

(HSP). Figure 5.2 shows an instance of the execution of step 2, when the

incoming database stream matches with a word of the lit list.

Figure 5.2 Step 2 of BLAST

As soon as a hit is identified, in a straightforward process, not differing in case of

nucleotide or amino acid data, it is extended by the step3 of BLAST for finding a

locally MSP. In the original BLAST paper it is stated that for timing reasons the

process of extending in one direction is terminated when a segment pair which

score is below a certain distance below the best score found for shorter extensions

is reached. According to this paper, the added inaccuracy is negligible.

Figure 5.3 shows step by step the extension of the hit found in figure 5.2. In the

first iteration of the extension process there are matches in both extension

directions, so the score increases by 10. In the second and third iterations there is

a match only in the one extension direction so the score in both iterations is

increased by one, as each match yields 5 and each mismatch is penalized with -4.

In the fourth iteration, there are mismatches in both directions and the score

should be decreased by 8. As the score decreases in this iteration, the extension

process stops without taking into account the last iteration.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 69

Figure 5.3 Step 3 of the BLAST Algorithm

5.2 The Different BLAST Programs

The BLAST algorithm is employed by the programs blastp, blastx, blastn, tblastn,

tblastx. Their differenced are summarized in table 5.1.

Program Description

blastp Query: amino acid, Database: amino acid

blastn Query: nucleotide, Database: nucleotide

blastx Query: translated nucleotide sequence, Database: amino acid

tblastn Query: amino acid, database: translated nucleotide sequence

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 70

tblastx Query: translated nucleotide sequence, database: translated

nucleotide sequence

Table 5.1 The different BLAST programs

In the current thesis for simplicity, as it is explained later, it is the blastn program

that is used and all the other programs are disregarded.

5.3 The NCBI Implementation

Since 1988 the National Center for Biotechnology Information (NCBI) [3], created

public databases, conducts research in computational biology, develops software

tools for analyzing genome data, and disseminates biomedical information- all for

the better understanding of molecular processes affecting human health and

disease.

In this website there is an open source implementation of the BLAST algorithm

while from the ftp pages of the Center there is available the genetic database

which consists of numerous files containing biological data. In addition, there is

available a web application which performs biological search in a certain

application. For benchmarking reasons we downloaded the executable files of

version 2.2.10 of the implementation. The details of the NCBI tool are described in

details in [24].

5.4 Dimensioning

Before continuing with any implementation, it is essential to discuss the different

sizes of the queries and the databases. In [24] there is a concise description of the

available sizes of the queries and the databases. As it is described in this paper,

databases are classified by looking the size of a particular database, either in

terms of characters or in terms of megabytes.

There are three different cases; small, medium and large. Small consist of 400

sequences or 4.7 MB, medium is between 400 and 6000 sequences or 5 MB and

200 MB and large is between 6000 and 200000 sequences or 200 MB and 4 GB.

On the other hand, the type of query is classified by the number of sequences

(single or multiple) and by the total number of characters involved in the query

(small, medium and large). In the case of a single sequence, small corresponds to

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 71

less than or equal to 2000 characters, medium is between 2000 and 50000

characters, and large is between 50000 and 200000 characters. Multiple

sequence queries were classified by the number of characters and by the total

number of sequences per query. For multiple sequences; small corresponds to

less than or equal to 2000 characters and a total of 20 sequences or less per

query; medium is between 2000 and 50000 characters and between 20 and 200

sequences query; large is between 50000 and 200000 characters and between

200 and 2000 sequences per query.

Last but not least is the size of the w-mers we will produce. According to NCBI

manual, the most frequent values for the blastn program vary between 11 and 15,

while the default value for this implementation is the 11.

In this thesis, we use w-mer length 12, query length 1000 and small database

sizes, since the size of the memory that is available to us is small.

5.5 Software Implementation

As it was previously mentioned, we have chosen to implement in software the

blastn algorithm, for simplicity reasons. This software is implemented in C,

compared with the NCBI tools for validation reasons, and later is used as the

application for our multiprocessor platform. In figure 5.4 is presented the flowchart

of our software implementation.

The database for this implementation, for our convenience must be not only

translated according to the table 5.2 but also all the comments should be removed

in order to be in readable format. In table 5.2 is presented the mapping of the

database letters.

Nucleotide Character Number Conversion

A 1

T 2

C 3

G 4

Table 5.2 Mapping of the DNA letters with numbers

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 72

Figure 5.4 Flowchart of blastn software implementation

The software application we created in C language takes input a query file and a

database file in readable format. The output is a list of all HSPs produced by the

BLAST process and their scores without considering any statistical, pre-filtering or

overlapping issues. The scoring matrix used is presented in table 5.3.

 A T C G

A 5 -4 -4 -4

T -4 5 -4 -4

C -4 -4 5 -4

G -4 -4 -4 5

Table 5.3 The scoring matrix of our software implementation

According to table 5.3 the score for each match is 5 while the score for each

mismatch is -4. The size w of the w-mers is fixed and equal to 12 while the

threshold value T is 50. Obviously a seed (i.e. a portion of a database which

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 73

produces a hit) is scored with 60, as there are 12 letters matching with a w-mer

and scored with 5.

Now we will briefly describe the implementation details of each step of the

algorithm.

Step1: Initially the query file is scanned and its content is stored in an array as

integers 1, 2, 3, 4. After that, we scan this array and create a linked list of the w-

mers. We remind that this list consists of all possible words of length w that lie on

buffer. For the implementation of the list, dynamic memory allocation has been

used. Dynamic allocation was preferred because it is simpler to implement. As

soon as step 1 finishes, we proceed to the database scanning.

Steps 2, 3: This stage of the algorithm is repeated until the entire database file is

scanned. For each iteration, one letter is read from the database file. Then for

each letter, a word with length w is created and it’s compared against the list of the

w-mers in order for hits to be found. If a hit is found we immediately proceed to the

left extension while the score is greater than a threshold (we selected 50). In order

for the left extension being possible, some of the last database letters have to be

kept in the main memory. So, a buffer has been introduced with size double as the

size o f the query where every new incoming letter is stored. When the left

extension of an HSP finishes, we proceed with the right extension. However, as

data for this process are not yet available, this HSP is added into a waiting list

(called hit list) for the right extension. This hit list contains all the “active” HSPs, i.e.

those HSPs whose extension has not finished yet. Obviously, HSPs are

characterized by two integer numbers indication the starting positions of the HSP

in the query and the database, its length and its score.

The right extension is slightly different. First of all we disregard the score of the left

extension and we consider that the score is the one obtained from the seed. Then

for each database letter we extend by one letter all of the nodes located in the

previously stated hit list. If a score of any node falls under the threshold the right

extension procedure terminated for this node and the HSP is reported.

For a better understanding of the procedure described for steps 2 and 3, we add

the flowchart in figure 5.4

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 74

It should be admitted that this method is not really good, because the extension

process is very weal. First we extend left until the threshold is met and afterwards

we disregard this score for the right extension.

Comparing the speed of this unit with the NCBI BLAST tool, it is obvious that the

latter is much faster for the same inputs is the same computer. This is obvious

because we did not care about the performance of the software.

Regarding the outputs of both software tools, there were a lot of incompatibilities.

The reason is that the NCBI tool performs a lot of optimizations as well it applies

statistical methods in the output of its results. However, the outputs of the NCBI

tool were included in the output of our implementation. For this reason we are

confident for the functionality of this software.

5.6 BLASTn Software on MPLEM

Each Microblaze processor of our multiprocessor platform executes the custom

BLASTn software tool we implemented, in order to compare the performance of

this software on two different machines: on the multiprocessor platform and on a

Personal Computer with a Pentium Processor. The performance comparison will

be analyzed in the next chapter in this thesis.

First of all, we will have to explain the reasons for choosing this particular

algorithm for our multiprocessor platform. It’s easy to implement in software the

custom BLASTn tool so the design time is very small. Besides that, the BLAST

algorithm can be easily parallelized, in order every processor to execute the same

software at the same time with the same results. To success this, every processor

has at the same time, to compare the same query, with a different part of the DNA

database. Besides that, this platform was not designed only for BLAST algorithm,

so some changes have to be made in order to be possible the BLAST algorithm to

be executed.

The only part of the multiprocessor platform that has to be parameterized is the

SRAM controller. The SRAM controller has to send to every processor the 1000

next letters of the database to the FSL peripherals, in order the right extension to

be possible.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 75

So, the SRAM controller spits the database letters among the processors and at

these letters are added 1000 more database letters, which is the worst case for

the extension step.

The worst case conducts from the size of the query that the processors examine. If

the query is 1000 letters long, and a hit is found in last positions of the database

part that a processor examines then right extension must be done for this hit. The

worst case happens when for this hit we have the maximum extension. For 1000

letters long query, there can be an extension up to 1000 letters.

Besides that, the software must be parameterized, in a way that the Microblaze

processors can execute this software. First of all, the way the letters are read from

the database must be changed. In a PC the database is stored in a text file. But a

Microblaze processor can not read a file, due to the absence of a hard disk drive.

So, the database, after is translated, is stored in the external SRAM. The

initialization of the SRAM is done with the use of the MIFs for behavioral

simulation. Except for that, the query is no longer stored in a text file, but in the

processors memories in an array of integers. Every processor has the same query

to compare against a different part of the database.

Regarding the results, those can be sending to the RS232 port. But, for testing

reasons, the results are sent to the data BRAMS of each processor, because it’s

difficult to simulate the functionality of the RS232.

The rest software remained the same as the one that runs on a PC, so now a

comparison in performance can be done (it will be described later in this thesis).

Before compiling the C code on the processors, a linker script is necessary to be

made, in order a mapping of the memory to be done. This linker script is

generated automatically by the Xilinx EDK.

5.7 System Verification

After the embedment of the software on the MPLEM, we are ready to simulate the

platform in order to validate the correct functionality of the system. For this reason,

we have loaded different databases to the external memory in order to examine all

possible cases.

We have examined the following cases:

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 76

 No hits: we load in the external SRAM a small random database that

consists of the four letters as it was previously described, and a query from

which no hits with the sequence database are conducted.

 Query part of the database: we load in the external SRAM a random

database. The query is a small part of this database and we examine then

the hits that are found

 All the database the same letter: we create a small database which consists

of the same letter. This case is not real, since there is no organism that all

its genes are the same. We examine this database with a query that

consists of the same letters. We expect that hits are found in all the

positions of the database.

 Database part of a common true database: we load in the MPLEM a real

database in order comparison with the NCBI tool to be feasible.

Those cases are the test benches we created in order to examine the correct

functionality not only of the BLAST on the MPLEM, but also to verify the correct

functionality of the MPLEM with a real parallel algorithm such BLAST.

The simulator that is used for the verification of our system is the Modelsim 6.0a

with behavioral simulation since timing simulation is not feasible cause of the

reasons that were previously described.

The outputs of our system for each hit are: the position of the hit in the query and

the database, the score of this specific hit and the length of the hit. These outputs

are then compared with the results that come up of the custom software we

implemented. The test benches that are used as input for this software are the

same with those used for the verification of MPLEM in order to be certain for the

correct functionality of our platform. At this point we should mention that we can

use this software as the validator tool since its functionality was compared with the

NCBI tools.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 77

6. MPLEM Performance

In this chapter, a performance comparison will be made between the BLASTn

software on the multiprocessor platform, and the BLASTn software that runs on a

common Intel Pentium 4 processor.

6.1 BLASTn Performance on PC

Measurements of the BLASTn software, that we implemented, have been made

on conventional computers, with identical queries. Runs of BLASTn software were

performed on a 3.2 GHz Intel Pentium 4 processor with 512 MB of memory,

running Microsoft Windows XP, and the CPU usage was profiled with the Intel

VTune Performance Analyzer 9.0. The database and the query are part of ecoli.nt

database. Different measurements were made for different sizes of database,

whereas the size of the query remained always the same (1000 sequences long).

Every measurement was repeated five times. In table 6.1 are presented the results

from the measurements on the PC.

Processor Speed

(MHz)

Database

size (letters)

Query size

(letters)

Execution

time (sec)

Throughput

(letters/sec)

Intel P4 3200 8192 1000 34.45 237.79

Intel P4 3200 14336 1000 59.86 241.16

Intel P4 3200 28672 1000 127.34 225.16

Intel P4 3200 57344 1000 236.97 241.98

Table 6.1 BLASTn Performance on PC

6.2 BLASTn Performance on MPLEM

Measurements of the BLASTn software have been also made on the

multiprocessor platform we implemented. Every processor compares the same

query with length 1000 sequences with a different part of the database. The

database that was used is the same with the database used for the experiments

on the PC. In Table 6.2 are presented the results of the experiments that have

been made with the ModelSim 6.0a. Due to the long simulation time, in the

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 78

following table is presented only one measurement for a database 57344 letters

long.

Speed

(MHz)

Query size

(letters)

Database size

(letters)

Execution

time (sec)

Throughput

(letters/sec)

Speedup

96.49 1000 57344 12.67 4528.01 19.10

Table 6.2 BLASTn Performance on MPLEM

6.3 Throughput Comparison

In the following section we will present some measurements that show the

variation of the system throughput when we change the number of processors of

the system. Measurements of performance were made for 2, 4, 8, 10 and 14

processors. The database that was used for these measurements was 8192

letters long, while the query size was 1000 letters long. The measurements were

made with behavioral simulation with the Modelsim 6.0a.

Number of

processors

Query size

(letters)

Database

size (letters)

Execution

time (sec)

Throughput

(letters/sec)

Speedup

2 1000 8192 5.68 1442.10 6.06

4 1000 8192 4.14 1976.92 8.31

8 1000 8192 1.52 5371.61 22.85

10 1000 8192 1.26 6523.07 27.43

14 1000 8192 0.93 8777.34 36.91

Table 6.3 System throughput for different number of processors

In figure 6.1 is presented a diagram which shows how the throughput changes –

increases in this case- when the number of the programmable processors is

increased.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 79

In figure 6.2 is presented a diagram which shows the estimated speedup increase

for different number of Microblaze processors, compared with the performance of

blast software on an Intel Pentium 4 processor @ 3.2GHz.

Figure 6.1 System throughputs for different number of processors

Figure 6.2 Estimated Speedup for different number of processors

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 80

6.4 Comparison

From the results that are presented in Tables 6.1 and 6.2, we can see that the

BLAST-n machine is about 20 times faster that on a common PC. At this point we

should mention that we have to make more measurements in order to be sure

about the speedup that is achieved.

Furthermore, from table 6.3 we can see that the system throughput increases

when the number of processors is also increased. The system throughput when

the system consists of 14 processors is about 6 times bigger for the same

database size and for the same query compared to 2 processors. Besides that, the

speedup achieved when the system consists of 14 processors is about 37 higher

compared to the BLAST software performance on a common pc.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 81

7. Future Work

Many things can be done in order to improve the performance of this

multiprocessor platform, since this is its first implementation. First of all, a

significant increase of the speed can be achieved, by increasing the number of

soft-core processors of the platform. In order to achieve this, a new FPGA chip

has to be used, and the topology of the network has to be changed. Besides that,

the IBM PowerPC processor that is embedded in many FPGA chips can be used,

in order to solve some I/O difficulties.

Furthermore, the use of another SRAM chip can be studied, in order to increase

the capacity and the speed of the system. At this point it should be mentioned that

we can use a DDR memory instead of an SRAM in order to increase the capacity

of the platform. Generally, DDR chips are faster and have more capacity than

SRAM chips.

Also, in order to increase the throughput of the MPLEM, we can connect many

FPGAs in parallel and as a result to achieve better performance for our system.

Finally, new topologies of the processors have to be studied, in order to find out

the best architecture of this system.

Besides the performance issues that are necessary to be studied, we can also

improve some other things on this design. First of all, it’s a good idea to download

the whole design on a board and compare the results with those that come up

form the simulation. Furthermore, performance comparisons with other BLAST

machines (software or hardware) can be done, in order to have a better view of

the performance of this platform. Finally, other algorithms can be implemented on

this platform, in order to explore their performance on it.

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 82

8. References

Book Chapters
[1] J. Meidanis and J.C Setubal, “Introduction to Computational Molecular

Biology”, PWS Publishing Company, 1997 ch. 3.

[2] S. Altschul, W. Gish, W. Miller and E. Myers, “Basic Local Alignment Tool”,
Elsevier J. Mol. Biol., vol. 215, pp 403-410, 1990.

Web Locations

[3] http://www.ncbi.nih.gov
[4] http://www.xilinx.com
[5] http://en.wikipedia.org
[6] http://www.model.com
[7] http://www.cypress.com

Published Papers
[8] K. Ravindran, N, Satish, Y. Jin, and K. Keutzer. “An FPGA-based Soft

Multiprocessor System for IPv4 Packet Forwarding”. In International
Conference on Field Programmable Logic and Applications (FPL), August
2005

[9] Chris Rowen, Tensilica Inc. “Fundamental Change in MPSoCs: A fifteen
year outlook. In MPSOC’03 Workshop Proceedings”. International Seminar
on Application-Specific Multi-Processor SoC, 2003

[10] Wolf, W: “The Future of Multiprocessor Systems-on-Chip”. Proceedings of
the Design Automation Conference (DAC’04). 2004, pp. 681-685

[11] Wolf, W: “Multimedia Applications of Multiprocessor Systems-on-Chip”.
Proceedings of the Design, Automation and Test in Europe Conference
(DATA’05). 2005. Pp. 86-89

[12] Sun Wei: “A FPGA-based Soft Multiprocessor System for JPEG
Compression”. Technical University Eindhoven. The Netherlands

[13] Kaushik Ravindran, Nadathur Satish, Yujia Jin, Kurt Keutzer: “An FPGA-
Based soft multiprocessor system for IPV4 packet forwarding”, University of
California at Berkley, CA, USA.

[14] P. Huerta, J. Castillo, J. I. Martinez, V. Lopez: “A Microblaze Based
Multiprocessor Soc”, HW/SW Codesign Group, Universidad Rey Juan
Carlos, Madrid, Spain.

[15] E. Sotiriades, C. Kozanitis, and A. Dollas, “FPGA based Architecture of
DNA Sequence Comparison and Database Search”, Reconfigurable
Architectures Workshop (RAW 2006), 20th IEEE International Symposioum
Parallel and Distributed Processing (IPDPS), 25-29 April 2006.

http://www.ncbi.nih.gov/
http://www.xilinx.com/
http://en.wikipedia.org/
http://www.model.com/
http://www.cypress.com/

Parallel Computing System Implemented on a FPGA

Microprocessor and Hardware Lab-MHL 83

User Manuals

[16] Xilinx Inc., “Platform Studio and EDK”,

[17] Xilinx Inc., “Xilinx XUP Virtex-II Pro Development System”

[18] Xilinx Inc., “Processor IP Reference Guide”, Feb. 2005

[19] Xilinx Inc., “Microblaze microcontroller Reference Design User Guide”, Sep.
2005

[20] Cypress, CY7C1041 256K x 16 Static RAM

[21] Xilinx Inc., “OS and Libraries Document Collection” July 2005

[22] Xilinx Inc., “Microblaze Hardware Reference Guide”, Jan. 2002

[23] Xilinx Inc., “Platform Studio User Guide”, Feb. 2005

Dissertations

[24] C. Kozanitis, “Study and Implementation with Reconfigurable Logic of
BLAST Algorithm for DNA Sequence Matching and Database Search“,
Senior Thesis, Dept. of Electronics and Computer Engineering, Technical
University of Crete, Chania 2006.

