2xediaon Kal uhotroinon evog 24-bit yneiakou
O€ AVOAOYIKO HETATPOTTEN BACIOMEVO OTN ZA
Ol1auopPPWOonN

TolAlyiavvng Nwpyog
AM: 2002030053

MoAuTexveio Kpntng

TuAua HAekTpovikwv Mnxavikwv kal Mnxavikwyv YTToAoyIoTwv

OkTwfRplog 2008

EetaoTiki emiTpotry: AvarrAnpwthg Kabnynthg Nveupartikarog A.
Kabnyntig A6AAag A.
Kafnyntng KaAait{dakng K.

H dimAwuariky auth givar agiepwpévn aTous yoveic pou. MNoAAéC euyapiaTties oTov KUpio Aiovudaio lNveuuarikdro, Tov
KkUpio Kwvaravrivo lNarmradd kai Tov kKupio Anunten MntpoByévn yia tn Bonbeia mou pou rapeixav Kard 1 dIApKeIa
NG EKTTOVNONGS THS SITTAWUATIKAS UOU Epyaciag

MepiAnyn

H SITTAWATIKN QUTHA epyaagia ava@EépeTal oTn BewpnTiKr) HEAETN, OTN OXediaon Kal GTnv UAOTTOINGN TOU

Page 2 of 75

WnoelakoU PEPOUG VOGS PETATPOTTED UYWNARGS avaAuong Wn@iakou o€ avaAoyiké arua. Mo cuykekpipéva
TIPOKEITAI YIa éva PETATPOTTEQ, 24-bit e eUpog ouxvoTATwy ammo 0.1 mHz éwg 1 KHz pe Adyo 1ox00¢g
onpatog TPog 10U BopuBou (SNR) peyaAuTtepo Twv 120 dB

ZuvnRBwe, METATPOTTEIC UWNAAG OKPIBEIOG CUVAVTWVTAI OE EPAPHOYEG NXOU ME OIAPOPETIKO, OPWG,
eUPOGC OCUXVOTATWY. 2Z€ EQAPMUOYEG HIKPOTEPNG OKPIBEIAG XPNOIUOTTOIOUVTAl APXITEKTOVIKEG
kaBodAynong peupaTtog (current steering) f avakaTavourg @optiou (charge redistribution). Ta Tnv
QPXITEKTOVIKA TOU WETOTPOTTEA TTPOTIMABNKE N ZA ToTToAoyia AGyw TwV TTAEOVEKTNUATWY TTOU £XEI O€
oxéon pe GAAeg. H uwnAn avaAuon ptropei va emTeuxBei pe Tnv augnon Tou apxikoUu pubuou
OelyhaToAnyiag Tou oAPATog £166d0U Kal TN Slaudppwan Tou BopUou KRAVTIONG TTou TTpoaTiBETAl aTTd
™ ZA SIauéppwaorn. ZTn CUVEXEID, TO KBAVTIOUEVO Ora 0dNYEi Evav ECWTEPIKG UETATPOTTEA WNPIAKOU
onuatog og avaloyikd onfua Aiywy bits. TEAog, To avaAoyiko orpa @IATPAPETAI AaTTo éva XaunAotrepatd
QIATPO £TO1 WOTE va avakTnOei To apxIKO €TIOUUNTO CHJa.

H ulotroinon piag T€tolog dIATOENG MTTOPEI va XpnoldoTroinBei o€ €@apUOYEG OTTWG YEVVATPIEG
avaloyikoU OrPaTog, HNXaviopuoug avadpaong yia EAeyX0 Kivnong akpIBEiag Tr.x KATToIoU POUTTOTIKOU
Bpaxiova kKaBwg Kal TTARBOG AAAWV EQAPUOYWV.

Ta BripaTta TTou akoAouBrBnkav yia Tn oxediaon Kal TNV UAOTTOINGCN TOU WETATPOTIEA HTAV TA €EAG:
ApXIKA PEAETABNKE N OXETIKY BIBAIOypaia KOBWG Kal OXETIKEG BNUOCIEUCEIG. TN OUVEXEID, e Bdon TIG
TTPOSIaYPAPEG TOU HETATPOTTEA KABOPIOTNKE N APXITEKTOVIKF Kal dnuioupyndnke €va povTéAo o€
SIMULINK /MATLAB 10 otroio va TTAnpei 1 amraitioeig Tng oxediaong. ‘Emeita, ypd@nke o KWAIKAG O
VHDL (RTL povtéAo) pe Bdaon 1o povtédo Tou SIMULINK /MATLAB. O éAeyxog yia Tn AEIToupyikOTNTA
Tou RTL €yive ouykpivovtag 1a amoteAéopara g eEopoiwong tou Kwdikd ¢ VHDL pe autd tou
SIMULINK/MATLAB. TéAog, €yive ouvBeon oe FPGA Trpokeipevou va empepaiwBdei n oxediaon kal va
yivel ekTipnon tng TTOAUTTAOKOTNTOG. [MapakdTtw ava@épovral CUVOTITIKG Ta PEPn OTa OTToia €XEI
XWpIoTei n oxediaon.

O peraTpotréag Xwpiletal o€ OUO PEPN: TO YN@IOKO Kal TO avaAoyikO. To yn@iakd PEPOG £XEI XWPIOTEI
TTEPETAIPW O€ Tpia eoWTEPIKA pépN: Tov TTapeUBoAéa (interpolator), Tov ZA diapopewTth (modulator) Kai
TOV aAyopiBuo DWA.

O interpolator eival ToO TPWTO MTTAOK KAl TIPOYUATOTIOIEI UTTEPOEIyUaTOANWiIa OTo apxIKa
ociyhaTtoAnmTnuévo ofua ota 6 KHz kard 256. Kard tnv umrepdeiyyatoAnyia, dnuioupyoulvTal
avTiypaga Tng €IKOGVAG TOU PACHATOG TOU OfHATOG €10000U OTO GRua £€600u. MNa Tnv agaipecn autwyv
TWV €IKOVWV XPNOIUOTTOIoUVTal XapnAotrepatd @iATpa. Omrwg Ba yivel katavontd OTn CGUVEXEID, N
OPXITEKTOVIKA TwV TTOAAATTAWV oTadiwv (multistage) eival TTpoTinOTEPN YIATI KATAANYEl GE QiATpa
XOUNAGTEPNG TAENG Kal Apa XAUNAGTEPNG UTTOAOYIOTIKAG TTOAUTTAOKOTNTAG.

Me Bdon Ta Trponyouueva o interpolator diaipeital o TEooegpa oTAdIA KABE £va aTTd TA OTTOIO TTEPIEXE!
éva @iATpo. Ta oTddia TTou ouvBéTouV Tov interpolator TTpaypaToTTOIoUV UTTEPOEIYHATOANYIO KaTA X2,
X2, x2 ka1 x32 . lNMpokelyévou 10 orpa €660V va £XEl YPAUUIKY @Aon, Ta QIATpA gival TTETTEPACUEVNG
kpouoTikAg atmokpiong (FIR). Mo ocuykekpipéva oTO TTPWTO OTASIO XPENOIUOTIOIEITAl £VO ICOKUUOTIKO
(equiripple) FIR @iATpo 44n¢ 1G&¢Ng. 210 OeUTEPO OTABIO KOl OTO TPiTO OTAdIO XpnoiyoTrolouvtal Half
Band o@iAtTpa 30ng kai 18n¢ 1a¢ng avriotoixa kai TéAog xpnoigotroicital éva SINC @iAtpo delTepng
TdénG. Ma Tnv eAaxioTotroinon Twv UTTOAOYIOTIKWV TIPpAEewy TIou eKTEAOUVTAl OTA QIATpa
XPNOIMOTIOIEITAI N QPXITEKTOVIKA TWV TTOAUQACIKWY CUVIOTWOWY Kal N AoyIKr) Tou TTOAAQTTAAGCIOOTA-
oucowpeuth (MAC).

H €¢odog Tou intrepolator TpogodoTteital otnv €icodo evdg A diapopewTr) 3ng TAENG TTOU Eival TO
eMOUEVO PTTAOK. To ofua €106dou Tou dlapgopPwTh cival 24-bit, evw n £€€0d0g eival To KBavTIOPEVO
ofpa Twv 5-bit. H A diaudpewon agiotroiei Tnv utrepdelyyatoAnyia yia va “ammAwaoel” Tnv 10XU Tou
BopUPBou KPBAvTIONG 0€ MEYAAUTEPO €UPOG CUXVOTATWY KOl 0TV CUVEXEID va TOV OIQUOPPWOEI
KatdAAnAa woTe va Ppioketal ekTdG TNG €mMOUUNTAG {Wvng CUXVOTATWY. ZTNV TIPAYUATIKOTNTA,
TTPOKEITAI YIa €va €i00G uyITTEPATOU QIATPOU yia To B6puPo, vy TO oRua €iI06dou eugaviCeTar oTnV
€€000 e JIa pIkpn kabuaTépnaon.

MNa Tnv atroguyn TPoBANUATWY aoTABEIag TToU eu@aviovTal O€ aQUTA TNV APXITEKTOVIKNA TTPOTIUABNKE N
AUON €vog KBavTIOTH TTOAWYV ETTITTEDWV.

TéNoG, TTPETTEI va ava@EPOUPE OTI KaTd Tn OIdpKela TNG Olaudp@wang, UTTopEl va dnuioupynbolv
avetmluunTol TéVol OTO PACUG TWV CUXVOTATWY TOU PETATPOTTEQ TTOU Pag evoiagépel. O1 Tovol auToi
gival atroTéAeopa TTePIOdIKOTNTAG OTNV £€000 N OTToia dNUIoUPYEITaI €iTE YE pIa oTaBepn €i00d0, €iTe YE
€icodo n otoia €xel TTOAU MIKpy ouxvoTtnta. A va ammo@UyYoupe Tn yévvnon TETOIWV TTOAPWY
TpocBEéToupe 0TO OAPO €E600OU TTPIV TO OTAdIO TNG KPBAvTIoONGg, €éva Weudd-Tuxaio CAPG WOTE va
avaipéCouPe Tn TTEPIODIKOTNTO TTOU eu@avifetal oTnv €§odo. To oOnua autd dnuioupyeital
Xpnoigotroiwvtag éva Mpapuiké Avadpouikd Kataxwpntr OAicOnong 35 bit..

To Aok Tou dlapopPwTh atroTeAeiTal ammd U0 OAOKANPWTEG TTou dev eiI0dyouv KaBuoTépnon OTO
ofpa €106d0u Kal €va OAOKANpwTA TTou €10dyel évav KUKAO kaBuoTtépnong. H Totroloyia Tou

Page 3 of 75

dlapoppwTn €ival TG avadpacng tou AdBoug KPBAvTiIong Katd Tnv otoia n £€€0060¢ Tou KPAVTIOTH
ekTETAPEVN KATA 19 bit, mpooTiBeTan padi ye 10 ofua €106d0u KABE OAOKANPWTA. ZTIC aPIBUNTIKES
TPA&EEIG Tou OlaPoPPWTH, XPENOoIPoTToIEiTal AoyiKr TTPORAEWYNG UTTEPXEIAIONG WOTE va PNV €XOUME
elgaywyn AdBoug.

210 TeAeuTaio OTAdIO TOU METATPOTIED, UAOTTOIEITON €vag aAyopiBuog Auvauikig AvTioToixnong
ZT1oIxeiwv. Me TOov OAyOpIBUO QUTO, TTETUXQIVOUMPE TO TTEPIOPIOUO Tou AGBoug TTou €I0dyeTal OTO
avaloyliké ofua €€ddou efaitiag TG dloQopdag METAEU TwV OTOIXEIWV avTIaToiXNOoNG (€iTe TTNYES
PEUPATOG EITE TTUKVWTEG) TTOU UAOTTOIOUV TO OVAAOYIKO HEPOG.

O aAy6pIBuog TTOU XPNOIUOTIOIEITAI OTO CUYKEKPIMEVO WETOTPOTTEA, €ival autdg Tou Méoou Opou
Bdapoug Aedopévwy (Data Weighted Averaging). Ztov aAyépiBuo autd 10 orjua £€080U PETATPETTETAI
atré éva onua 5-bit oe éva onua 32-bit pe Baon TN kwdikotroinan BeppopéTpou. O aAydpIBuog auTtdg
douAelel wg €€nG: kKABe @opd TTou uTTApxel KatTola véa €icodog, €vag deiktng Ocixvel Tn Béon TOU
TPWTOU OToIXeiou TTou Ba evepyotroindei evw TOo TTANBOG Twv OToIXEiwv eEapTdTal amméd TN
KwOIKOTTOINON BEPUOPETPOU TNG TPEXOUOAG EI0OB0U. 2TNV ETTOUEVN €i0000, 0 OEIKTNG BEIXVEI WG TTPWTO
oTolxeio To €TTOUEVO PETA TO TEAEUTAiO OTOIXEIO TNG TTponyouuevng elcdédou. Me autd Tov TpOTTO TO
AGB0G peTd atrd SIAdOYIKEG E1I00DOU PEIWVETA.

Abstract

In this thesis, the design of a ZA Digital to Analog Converter is presented. The concept of the thesis is
presented, the theory of operation is explained, high level models are developed, the architecture of

Page 4 of 75

the digital part and the development procedure is described.

This document has the following structure: In Chapter 1, an introduction to ZA converters is given. The
State-of-the-Art of ZA converters is presented and the Top Level Architecture of the DAC is described.
Chapter 2 contains the signal processing theory of the interpolation block taking into consideration
performance specifications, along with RTL implementation and corresponding verification of the
results. Chapter 3 describes the concept of ZA modulation along with RTL implementation and
corresponding verification of the block.. In Chapter 4 the analysis of the Dynamic Element Matching
algorithm (DWA) along with the RTL implementation and verification of the block are exposed. In
Chapter 5 the synthesis procedure to the FPGA device is described. Finally, in Chapter 6 a conclusion
is made for the work performed and future extensions of this project are mentioned.

Page 5 of 75

Table of Contents

1

L X0 11T T o 8
LR S €= (=0) g L= o PP UUPPPPRPPR 8
S R T 10 (=5 0T = 1 o TS PUUPPPPPNt 8
P 2 3 AN 4 ToTo L8] =1 (o o PRSPPI 8
1.1.3 Dynamic Element MatChing...........ooooiiiiiiiii e e e e e e e e e e e e et e e e e eeaaeaeeeaanaaes 9
1.2 TOP IEVEI @rCILECIUNE. ...t e e e oot e e e e e e et a e e e e e e eeeeeeaaaaaaaeaaeaaeeaeeestaanaeaaeenns 9
LR T 3 (1 (=] o= OSSR 11
L =Y oo = o 12
b2 I 1 4= oTo] F= 11T o T { =Y 0} N 12
20 W B O o =14 o] o1 1 T TSRS 12
I o T oY= 33 {11 (Y4 g T USRI 13
2.1.3 Evaluation of different filters. ... 14
R S - 4 11110 o1 T TSRS 18
2.1.5 POlyphase ArChItECIUIE.........ooi et e e e e e e e e e snbeeeeeeas 18
2.1.6 Scaling of Filter COEffICIENTS.cooi i 21
A N o 11 (=Y (U TS 21
2.3 MATLAB SIMUIAtION FESUIES.ttt ettt e e e e e e e e e e e e e e e eeeesan e e eaaeeannanns 30
2.4 H/W IMPIEMENTALION......ccoiiiiii ettt b e e e e e e e e e e eeaeaeeeeeeeaeeaaaaannns 34
Yt B e (oYY U =1 o [F=To | =T o o OO PPUPPTRURPN 34
2.4.2 Linear phase equiripple fItEr (IRP1)......eeeeiiiiiiiieieeeeee et e et 35
2.4.3 Half Band filtEr (IRP2).......o ettt ettt e e et e e e e et e e e e e s e e e e e e e e e e e e eeaaaaaas 39
2.4.4 Half Band filter (IRP3)......cii ettt e e e ettt e e e e e s e e e e e e e e e e e e eaeaaeas 41
2.4.5 SINC fIEI (IRPA)....ccc ettt e e e e e et e e e e e e et e e e e e e e et be e e e e e e eaaabeeeeeeesasraeeens 43
I L= 41 Te= Vi o] o T] - o AP PPPPPPI 45
BT = 1= =Y Tt SRR 45
.27 Lo Yo 11 F- 1 o) 46
G T B 37 AN ¢ g Lo To (U] =1 (o] g 1 1= T VPP RUUPPPTTR 46
3.1.1 First order NOISE SNAPING.uuuiiiiiiiiiiiee ettt e et e nnnaeea e e eaeees 47
3.1.2 3rd order ZA D/A MOAUIATOT........coii ittt e e e et e e e e e s e e e e e e e e e e e e e e aaaeaeas 48
3.1.3 The problem Of Stability..........uueiiiiiiiiiii e e e e a e e aees 49
3.1.4 Idle ToNeSs and AitNEIING........uuuiiiiiiiiiiiie e e e et e e e e e e e e e e e e e e s e e s s e s asanbsarera e aeaeees 50
3.2 MATLAB SimUIGtion RESUIES.uuiiiiiiiiiiiieeiie et e et e e e e e e e e e e e e e et e s sas s s nnnnssneestseaaneeeeeeeees 51
K T o TV [4]] (=T 0 =Y a1 ¢ o o PSRRI 52
3.3.1 Procedural diagram........ .ot e e e e e e e e e e e e e e eaaas 52
G TR I @ 1V =Y o [0 I 11 (=T o o TR 53
3.3.3 INtegrator SUD-DIOCK............coiiiiiie et e e e 54
3.3.4 Delayed Integrator SUD-DIOCK.oiiiiii e 55
G TR TS T I 1 1= =T 0 o R o (o o G 56
3.4 VerifiCation PIAN....... ...ttt e —————————aataaaaaaerrraas 57
BT o (1 (=1 (=Y o= 3PSOt 58
Data Weighted AVEraging.........ccccuerecmmmuucrsissrrrrrrrrssnmsssssssssssssserrrersnsmsssssssssssseememmssmnnsssssssssssssesnennssmnnsssssssssssssnnns 59
g B D T NG {3 =Y o U 59
g I I (01 1=y o F= T Y O (o] o Yo [0 o PPNt 59
4.1.2 Dynamic Element Matching AlQOthMS........ooii i 61
N (@ 011 (= Tod (8] T PP PP P PP PPN 66
o T o A VAT A g o1 (=Y e =T 0] =Y i o] o O PPPPPPRRPPPN 66
T 3G Tt B o (o To7=To (U= 1o [=T [=10 DO ST 66
Y= i o= o] T o] - o P R 68

Page 6 of 75

4.5 REIEIENCES. ... ettt e et et e et e e et e e e et e e e e e e e e e et et e e e e et e e e et ee e ta e et eeaararaarn .. 68

5 Top level integration and SyNthesis..........ccccccirmiiiiiiii s 69
5.1 Top Level Integration @nd FESUIES. e ettt e e e e e e e e e e e e e e e e e et e e e e eeenaaeeas 69

L I Y=Y 4 o= 4o g T o = o TSRS 69

5.2 SYNTNESIS FESUILS.......ceeeeiiee ettt e e e ettt e e e e st bttt e e e e e santaeeeeeessasbeeeaaaaaaaaaeaeeeeeeeeeeennnnnes 70

L 0o T ¥ =] e o N 71
A€ 1 Lo T=T =T 72
Y o o 7= 3 e 1) Q2 73
LS T o oY= 4 o [G = TP 74
O o 7= T 1 GO 75

Page 7 of 75

1.1

111

1.1.2

Introduction

Introduction

This thesis concerns the implementation of the digital part of a 24-bit high resolution Digital to Analog
Converter at 1 KHz with a signal to noise ratio greater than 120 dB. The content of the thesis was
chosen because of the small number of applications with similar performance. For this activity, the ZA
architecture was preferred, because of its inherent advantages against other architectures like current
steering topologies which are not well suited for high resolution converters. More specifically, high
resolutions can be achieved by combining oversampling of the input signal and shaping of the
quantization noise inherent in the A modulator.

In order to improve the stability margin and relax the requirements of the analog post filter, the
converter uses the multibit ZA topology. A multibit architecture implies using an internal DAC which
has though the disadvantage of mismatch error in the analog part. Therefore, a Dynamic Element
Matching algorithm is used to reduce these errors and achieve high dynamic performance.

For the design and implementation of this thesis, a certain procedure was followed. In the beginning,
the proper literature and several publications were studied. Thereafter, a SIMULINK/MATLAB
theoretical model was designed to follow the converters specifications. Then the RTL model was
implemented in order to follow the SIMULINK model. The functionality of the RTL model was verified
by comparing the results with those of the SIMULINK model. Finally, the RTL model was synthesized
to a Cyclone-ll FPGA of Altera.

State of the Art

This chapter focuses on the State-OfThe-Art of the major parts of a ZA converter that includes an
interpolation stage, a noise shaping loop (ZA modulator), and a Dynamic Element Matching algorithm.

Interpolation

As far as the interpolation stage is concerned, several criteria have to be taken into consideration.
These criteria depend on the target implementation specifications. The basic trade-offs for the design
of the interpolator are the area of the design, the speed and the performance, the type of filtering, the
upsampling factor, that are unique for each application. The arithmetic representation of the filter will
determine the accuracy when the filter is implemented in hardware

One of the most important parameters determining the complexity of the filters is the order and type of
the filter. The order of the filter is mainly affected by the upsampling factor and the bandwidth. When
the upsampling factor is high, the order of the interpolation filters increases. Therefore, multistage
architectures are preferred in most applications to decrease the order of the filters with the benefit of
better performance and smaller complexity.

A parameter that also affects the design of the interpolator is the type of filters that have to be used in
each stage. The filters can be either FIR or IIR. In applications such as high quality digital audio, where
linear phase and stability are important, FIR filters are mainly used. However, FIR filters have the
disadvantage that they need bigger number of taps than IIR do, to maintain the same required pass-
band ripple and stop-band attenuation.

Examples of implementations taking into considerations the above issues can be found on literature.

2A modulation

The specifications of the converter, i.e sampling frequency,bandwidth, and dynamic performance
specify the oversampling ratio, the order of the modulator and the number of quantization levels.

In several applications where £A modulation is used, many different topologies of the A modulator
exist each one of them offering different advantages.

One of the fundamental consideration for the design of the ZA modulator is, if the quantization is single
bit or multi-bit. Single bit modulators have the advantage of of low complexity, low cost implementation
and offer perfect linearity. Unfortunately, single bit modulators have reduced dynamic performance for
a certain oversampling ratio and order. Even by raising the order of the single bit modulator stability
problems will exist and the shaping of quantization noise will be quite poor. On the other hand, multibit
modulators can achieve bigger stability margin for the same oversampling ratios than the single bit
modulators, but they may suffer from non linearities. Despite their increased complexity, they are
usually preferred

Another issue concerning the XA modulators is the order and the structure of the modulator. By raising
the order, the quantization noise shaping is improved but the modulator may experience overflow of
the quantizer, which results in oscillations. In practice, the stability of the modulator depends on the

Page 8 of 75

11.3

1.2

Introduction

order, the range of the input signal and the resolution of the quantizer.

A ZA modulator can follow either the error feed forward and feedback structure or the cascade
structure.

The error feedback loop topology can be implemented by a chain of integrators with a distributed
feedback of the quantization error. This topology can be easily altered by placing bias at the feedback
network or distributing selectively the feedback. Error feedback topologies may experience stability
problems when the level of the quantizer is small. The advantage of these topologies is high SNR.

On the other hand, MASH structures are an alternative solution when high order of error shaping is
required without stability problems. The basic idea of a MASH topology is the cascade of ZA
modulators of smaller order. This topology increases the complexity of the analog design and may
suffer from filtered noise leakage between the cascaded modulators. To shape this error, MASH
architectures require the use of extra analog processing. In Figure 1.1 both the error feedback loop
and MASH topologies are displayed.

A A A A Brror
feedback

X TA-1 €1 IA-2 €2
of order K of order L
Yo Signal Y
processing
MASH Ys - Order
K+L

Figure 1.1: Error feedback and MASH architecture topologies

Both MASH and error feedback structures are used in XA modulators, depending on the
specifications. The choice of the type of A modulator is easier for a DAC than for an ADC, because
complex transfer functions can be implemented with high accuracy.

Dynamic Element Matching

As described before the analog part suffers from non-linearity due to the element mismatch. The
Dynamic Element Matching algorithm is a fundamental part of the DAC and is used to correct the
mismatch of the analog part when the latter is implemented in silicon.

Architectures based on current steering or charge redistribution are commonly used for the internal
DAC. The thermometer code or the binary code topology can be chosen depending on the application
specifications. The binary topology is preferred when the resolution of the quantizer is high and the
simplicity of the implementation is critical. Thermometer code topologies on the other hand are
preferred when the linearity of the output is important. For more special applications, segmented
topologies combining both thermometer and binary code are used.

For the thermometer topology, there are many algorithms used to increase the matching of the analog
elements. Depending on the complexity limitations, there are several types of dynamic element
matching algorithms, such as the butterfly randomization, the Individual Level Averaging (ILA), the
Galton tree structure, the Data Weighted Averaging (DWA) and others.

The most performant DEM technique is the DWA algorithm along with its alternative versions, such as
the rotated and the partial DWA.. The DWA algorithm is preferred because the performance of the
algorithm is promising and the complexity is small. DWA contributes in the element mismatch error
shaping better than any other algorithms.

Top level architecture

The converter shall achieve 130 dB signal to noise ratio for signals from 0.1 mHz up to 1kHz. The
sampling rate is performed at 6 kHz and the resolution of the input is 24-bit. The oversampling ratio is
256 that results in a master clock frequency of 1.536 MHz .

Page 9 of 75

Introduction

The DAC is divided in two main blocks: the digital part and the analog part. The digital part is divided
into three major internal blocks: the interpolator, the ZA modulator and the DWA block and the analog
part comprises the internal DAC. The top level schematic of the DAC as well as the I/O interface of
each block are displayed in Figure 1.2 and Table 1.1 respectively.

ZADAC

elk > DIGITAL PART (FPGA) (————————— .

rst_n N 1 ANALOG PART |

r— : (Discrete Components):
| |

e INTERPOLATOR [—»| A MODULATOR DWA °—dwa-dm":°]: DIA E >

i_irp_valid i i
e I

Figure 1.2: Top level schematic
Signal /10 Description
Clock & reset
clk in Master Clock at 1.536 MHz
rst_n in Active low asynchronous reset
Digital Part
i_dither_enable in Dither enable control signal from external block
i_irp_data (23:0) in | 24-bit input data
i_irp_valid in Indicates a new sampled 24-bit input data at 6 KHz
o_dwa_data(31:0) out | 32-bit data output
Analog Part - DAC
o_dwa_data(31:0) in | 32-bit input data from DWA block
i_out out Output current

Table 1.1: A DAC Pin List

The XA DAC as shown in the top level schematic diagram, receives five input signals. The clk and
rst_n signals are fed to all the components of the digital part. The i_dither_enable signal is forwarded to
the ZA modulator block and the i_irp_valid and i_irp_data are the interpolator inputs.

The first stage of the chain performs upsampling of the initial signal. The basic functionality of the
interpolator is the insertion of zero value samples between two consecutive samples of the input signal.
Because of image replicas of the initial input signal when upsampled, the interpolator will have to
suppress them by means of digital filtering. The interpolator block includes a multistage filtering
topology. The output of the interpolator as displayed in Figure 1.2 is fed to the ZA modulator.

The next stage of the converter performs ZA modulation. The A modulator block basically shapes the
noise introduced in the loop by quantizing differential signals. Internally, in the A modulator block, a
pseudo-random signal generator Is used, which is controlled externally, used for removing unwanted
frequency tones. The quantized output of the ZA modulator block is fed to the DWA block which is the
last component of the digital part. This block implements a dynamic element matching algorithm
preventing the appearance of mismatch errors in the analog signal. The DWA block codes the
quantized output of the modulator in thermometer format and performs cyclic rotation of the elements
used in the analog part in order to shape the mismatch error.

For the simulation and demonstration of the converter's functionality, an external analog part is
implemented which is connected with the FPGA output. The analog block includes a number of current
steering sources driven by each bit of the DWA output. The summation of the currents is the final

Page 10 of 75

1.3

Introduction

analog output which will be displayed in a waveform monitor.

References
[1] Multirate Digital Signal Processing, Ronald E. Crohiere, Lawrence R. Rabiner, 1983, p129-181

[2] Delta-Sigma Data Converters: Theory, Design and Simulation, Steven R. Norsworthy, Richard
Schreier, Gabor C. Temes, First edition, 1996, p: 309-316,406-446

[3] Data Converters, Franko Maloberti, First edition, 2007, p: 1-73, 253-298,374-391
[4] Analog Integrated Circuit Design, David Johns, Ken Martin, First edition, 1996, p: 531-551

[5] A Multibit Delta-Sigma Audio DAC with 120dB Dynamic Range, Ichiro Fujimori, Tetsuro Sugimoto,
IEEE Journal of Solid-State Circuits, VOL.35 NO 8, August 2000.

[6] A 14-bit, 10-Msamples/s DAC Converter Using Multibit ZA modulation, Katayoun Falakshahi, Chih-
Kong Ken Yang, Bruce A. Wooley, IEEE Journal of Solid-State Circuits, VOL.34, NO 5 May 1999.

[7] Principles of Data Conversion Systems, Behzad Razavi, IEEE Press p. 45-63.

Page 11 of 75

2.1

211

arnplitude

0a8r

06}

04F

02F

021

04t

0B+

08+

Interpolator

Interpolator

The interpolator is the stage before the £A modulator and its functionality is to increase the signal rate
and filter the image replicas that occur because of upsampling. This chapter describes the principles of
the interpolation stage. The background theory of interpolation is presented along with different filter
architectures, simulations and implementation considerations.

Interpolation theory

The benefit of A modulation is that it shapes the quantization noise of an oversampled signal to
higher frequencies. In order to increase the rate of the signal, an interpolation stage has to be used.
Digital data initially sampled at a low rate are interpolated and then fed to the ZA modulator.

The interpolation procedure combines signal upsampling, as well as filtering of the upsampled signal,
which contains image replicas of the initial signal. These images need to be removed. The suppression
of the images is possible by using low pass filtering. Figure 2.1 lllustrates these two stages.

X(n) TL U(m) Y(m)
Fs Fs-L

Figure 2.1: Upsampling and filtering
The input signal X(n) initially sampled at Fs is upsampled by L. This means that (L-1) zeros will be
inserted between two successive samples resulting in signal U(m) with frequency Fs‘L. This signal is
then processed by a filter with a low pass characteristic.
Upsampling

The frequency of a signal can be increased by inserting zero values between two successive samples.
When upsampling by L, (L-1) zeros are inserted between two successive samples. This can be
described by the following equation:

m
— =0.+ +
U(m)= x(L), m=0,+L,+2L,...)
0, otherwise

Figure 2.2 depicts an example of a sinusoidal signal initially sampled at frequency Fs and then
upsampled by x2. After the upsampling the frequency of the signal is Fs*L where L=4.

Initial signal (Fs) Upsarpled signal (Fs*4)
T L) T o T . 1 T OI T T I(‘) T T T o ._
7 0 d
b OG- d
b 0.4r d
B o 021 d
=
2
£ 0
&
B 02F d
4 0.4 d
4 06 d
i RERzN 4
) o]) ‘) JUI 1 1 L L ° 1 1 I °© I I 1
5 10 15 a0 o 10 20 30 40 a0 [=in] 70 =il

tirme

Figure 2.2: Input signal and upsampled signal for L=4

Page 12 of 75

Interpolator

At the frequency domain the upsampled signal will have (L-1) replicas of the spectrum of the initial
signal located at multiples of Fs up to (L-1)Fs that have to be removed. Figure 2.3 depicts the power
spectrum of the signal shown in Figure 2.2 before and after the upsampling.

input signal Upsarpled signal (Fs™4)
180 F T T T 8 T T T
160
160 n -]
® 751 X 5252 140+
140 ¢ v: 1596 v 1536 J
120+
120 - B b
- 100 . _ o}
& eop] 5wl
o T
* BOE] = ot
401 E 0k
20 B oF
0F i a0k
-20 i 1 1 1 1 1 Il 1 1 1 1 1 i JJD L 1 1 Il 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 i 04a 1 15 2
Freguency Frequency " 104
Figure 2.3: Spectrum of input and upsampled signal
The initial signal has a spurious at f,=750 Hz and its symmetric is located at L*Fs-f.
Equation (2) gives the location of images for different values of k.
T: Sampling period
Xc: Fourier transform of continuous time signal
w: Analog frequency
o 1 o 2nk
X e./w —_ X) . 2
(=5 L X i\ 77 @)
21.2 Low pass filtering
To obtain the desired interpolated signal the image replicas have to be suppressed. This is possible by
using low pass filtering which results in the final interpolated version of the initial signal. The filter
should be designed in order to preserve the band of interest and suppress the undesired images.
Figure 2.4 depicts the power spectra of the upsampled signal of Figure 2.3 after passing through a low
pass filter.
Upsampled signal (Fs™4) Filtered signal (Fs*4)
T T 200 T T
160 -
140+
180 - B
120+
100 -
— o} _loop _
!:\‘El B0 | %
=)
= mf U U L 1
201
r'\
of ok _
S0
_A0 b 1
1 1 1 1 A0 1 1 1 1
0.5 1 1.5 2 a 0s 1 15 2 25
Freguency « 10 Freguency w10

Figure 2.4: Magnitude response of the upsampled and filtered signal

Page 13 of 75

213

Interpolator

Evaluation of different filters

Two major families of filters can be considered: FIR and IIR. In the case of an FIR filter, the output
depends only on the current and previous values of the input signal. The equation describing FIR filters
is:

y(n)=byx(n)+b,x(n—1)+..+b,x(n—M) (3)

where M is the order of the FIR filter and b; are the coefficients of the filter for i=0,...,M.

On the other hand, in the case of an IIR filter, the output depends on the current and previous values of
the input and previous values of the output. The equation describing IIR filters is:

y(n)=byx(n)+b,x(n—=1)+..+b,,x(n—M)+a,y(n—1)+..4a, y(n—M) (4)

where b; and a; are the coefficients of the filter and M is the order of the IIR filter.

The basic advantage of FIR is that FIR can achieve linear phase (the phase response of the filter is a
linear function of the frequency), while IIR filters can only approximate it. However, in general IIR
results in lower order filters for the same requirements.

The previous equations result in filters of different complexity. In a hardware implementation this is
translated in computational overhead, increase of area and power consumption. However, IR filters
require higher accuracy, which is translated to more bits for the representation of the coefficients
because they need to overcome the round-off noise and guarantee stability. In the next section,
subcategories of FIR and IIR filters will be presented along with their main attributes.

21.31 IR

There are several types of IIR filters that could be used at the design of a low pass filter, such as
Chebyshev type-l and Il, Butterworth and Elliptic. The basic properties of those filters will be presented.

Chebyshev type-l have equal ripple behavior in the pass-band and Chebyshev type-ll have equal ripple
behavior in the stopband. Both Chebyshev type-l and type-ll filters provide the smallest step response
settling time of the IIR filters considered here.

Butterworth filters have the most flat response in the pass-band among their counterparts, which is
translated in the smallest possible ripple. The price paid for using this filter, will be slower roll-off which
will result to higher order to meet a specific stopband requirement. Butterworth filters result in higher
order comparing with the other IIR filters.

Elliptic filters have equiripple behavior, which means that the ripple in both passband and stopband is
independently adjustable. This property makes the elliptic filter to have faster transition in gain between
both bands.

21.3.2 FIR

The output of the FIR filters depends on the current and previous values of the input signal. Their basic
feature is that they have linear phase in the passband. Moreover, they are stable but they need very
high orders to meet the specifications. FIR filters which have the property of linear phase have
symmetric coefficients which usually results in optimized topologies. There are many types of FIR
filters but Half Band filters and equiripple filters will be considered here among others.

Half Band filters have their passband and stopband symmetric around Fs/4 where Fs is the desired
rate after the interpolation. The beginning of the stopband and the end of the passband are equally
located around Fs/4. Half band filters have all even coefficients equal to zero except the central one
h(0) which is 0.5. This results in reduced complexity since the multiplications with the zero coefficients
are omitted. Half Band filters use the Parks-McLellan algorithm, for the calculation of the coefficients.

Equiripple (or Kaiser) filters have the smallest deviation from the ideal filter when compared to other
FIR filters of the same order. This type of filter is suitable for achieving minimum ripple in the
passband.

In Table 2.1 and Table 2.2 different types of IIR and FIR are compared respectively for the same
specifications (passband and stopband frequency, passband ripple, stopband attenuation). The filters
are compared for a x256, x128 and x2 interpolation factor.

Page 14 of 75

Interpolator

Initial Stopband

. . Fs Fpass Fstop Passband .
lIR type sampling Interpolation (kHz) (kHz) (kHz) ripple (dB) attenuation Order

rate (KHz) (dB)
Butterworth 6 256 6256 1.01 3 1 130 15
Chebyshev 6 256 6256 1.01 3 1 130 10
Elliptic 6 256 6256 1.01 3 1 130 7
Butterworth 6 128 6128 1.01 3 1 130 15
Chebyshev 6 128 6128 1.01 3 1 130 10
Elliptic 6 128 6128 1.01 3 1 130 7
Butterworth 6 2 6*2 1.01 3 1 130 12
Chebyshev 6 2 6*2 1.01 3 1 130 9
Elliptic 6 2 6*2 1.01 3 1 130 7
Table 2.1: Comparison of lIR filters for different upsampling factors
Initial Stopband

Fs Fpass Fstop Passband

(kHz) (kHz) (kHz) ripple (dB) attenuation Order

FIR type sampling rate Interpolation

(KHz) (dB)
Equiripple 6 256 6256 1.01 3 1 130 3026
Half Band 6 256 6256 | 1.01 766 1 130 6
Equiripple 6 128 6128 @ 1.01 3 1 130 1513
Half Band 6 128 6*128 | 1.01 384 1 130 6
Equiripple 6 2 6*2 1.01 3 1 130 22
Table 2.2: Comparison of FIR filters for different upsampling ratios
The order N of a low pass FIR filter can be approximated by equation (5).
D_ (0 ,0
yPel95:0))
AF | f
where :
D,(8,,3,)=log,d [a,(log,,d,) +a,log, d ,+a,+a,log,,d,+a,log, 6 ,+a] (6)
where:

f :is the sampling frequency at which the filter is referred

AF: is the difference between the stopband and the passband frequency of the filter

Op and d; are the required ripples in the passband and stopband respectively in linear scale
and a,=0.005309, a,=0.07114, a;=-0.4761, a,=0.00266, as=-0.5941 and a,=0.4278.

From (5) we can conclude that the order of the filter increases, while the transition zone AF is
shortened. This explains why a multistage implementation by cascading interpolation stages is
preferred.

Therefore, in order to reduce the complexity of the filter, a multistage implementation of the interpolator
with multiple filters of low order is preferred.

Page 15 of 75

Interpolator

2133 SINC filter

The SINC (Sinus Cardinal) filter is a special case of FIR filters, which has certain attributes that have to
be discussed. It is a practical solution for linear interpolation. In practice, SINC filters will reject the
images created by the upsampling process, by letting the zeros of the transfer function to match with
the images that have to be suppressed. The transfer function of a SINC filter is given by the equation :

1=z
M-z

H(z):((7)

where K is the order of the filter and M is the order of the interpolation. The frequency response of the
filter is given by equation (8).

oy | 1 sin(w/2) «
|H (e)|—[ﬁm] (8)

where

w=2nf/F. 9)

with Fs being the initial sampling frequency. The images of the interpolation filter are located at k-Fsxf,
where f,is the signal bandwidth.

The model shown in Figure 2.5 emulates a SINC filter.

Operates at frequency Fsout=M*Fsin

Unit Delay1
Gain=Fsin/Fsout=1/M]

Y4

Repeat < "@
- 32x > Out1
Sum1

1/z Sum Gain2 Repeat2
Unit Delay

Operates at Frequnecy Fsin

Figure 2.5: SINC filter of oversampling ratio x32 and 2" order

When applying a sinusoidal signal to a SINC filter and a x4 upsampling is used, we can see that 3
samples are inserted between two successive samples of the initial signal.

Page 16 of 75

Amoplitude

Amoplitude

nitial signal

0.9985 0.999 0.9995
Tim e
Interpolated signal

0.9985 0.999 0.9995
Tim e

Figure 2.6: Linear interpolation by x4

Interpolator

The magnitude response of a x32 filter is shown in Figure 2.7. We can observe that although the
images are not sufficiently attenuated, they are out of the band of interest.

Magnitude (dB)

Magnitude Response (dB)

Freguency (MHz)
Figure 2.7: CIC filter Frequency response

Page 17 of 75

21.4

Interpolator

The impulse response of the CIC filter is shown in Figure 2.8.

Impulze Response

Amplitude

0 5 10 15 20 25 30 35 40
Time (useconds)

Figure 2.8: Impulse response of CIC Filter

Partitioning

In order to avoid complex implementations in terms of computation and power consumption the
multistage approach is preferred.

The interpolation procedure will be divided in more than one stages. This means that we have to
cascade upsamplers and low pass filters. The product of the interpolation factors (Li) of each
interpolation sub-block has to be equal to the desired oversampling ratio (L). This partitioning is shown
in Figure 2.9.

X(n)
Fs

T L1 Fs*L1 LPF1 Fs'L1 T L2 Fs'L1*L2 LPF2 ______) T L n Fs*L1*L2*...*Ln=Fs*L LPFn z:L

2.1.5

Figure 2.9:Multistage conversion

Polyphase Architecture

The implementation of the interpolation stage can be facilitated by using a polyphase implementation.
An example illustrating how the polyphase topology works in case of interpolation by x2 is presented:
The transfer function of a third order (3") filter is given by:

H(z)=h(0)+h(1)z '+h(2)z +h(3)z"° (10)
The input signal x(n) is sampled at Fs. Then it is upsampled by x2, which means that a zero is inserted

between two successive samples. The upsampled signal is w(m) at 2*Fs. The same holds for y(m) as
illustrated in Figure 2.10. The filtered output is then:

y(m)=h(0)w(m)+h(1)w(im—1)+h(2)w(m—=2)+h(3)w(m—3) (11)

where h(i), i=0,...,3 are the coefficients of the filter.

Page 18 of 75

Interpolator

x(n) T2 w(m) H(Z) 2*Fs

Fs 2*Fs y(m)
Figure 2.10:Upsampling by x2 and low pass filtering
The output results of the direct implementation are shown in Table 2.3.
n x(n) m w(m) y(m)
m=0 w(0)=x(0) y(0)=h(0)x(0)
n=0 x(0)
m=1 w(1)=0 y(1)=h(1)x(0)
» ’ m=2 w(2)=x(1) y(2)=h(0)x(1) + h(2)x(0)
n= XM m=3 w(3)=0 y(3)=h(1)x(1) + h(3)x(0)
m=4 w(4)=x(2) y(4)=h(0)x(2) + h(2)x(1)
n=2 x(2)
m=5 w(5)=0 y(5)=h(1)x(2) + h(3)x(1)

Table 2.3: interpolation process

Equation (10) can be rewritten as:
H(z)=h(0)+h(2)z 2 +z "(h(1)+h(3)z7) (12)

and by setting

E,(z)=h(0)+h(2)z"" (13)
E (z)=h(1)+h(3)z"" (14)

we have:
H(z)=E,(Z)+E,(z*)z" (15)

The outputs before upsampling are:

wo(n)=h(0)x(n)+h(2)x(n—1) (16)
w(n)=h(1)x(n)+h(3)x(n—1) (17)

This results in the topology of Figure 2.11.

. Eo(Z%) s e

E- (22) . 1 | ya(m)

Figure 2.11:Polyphase interpolation

Page 19 of 75

Interpolator

By using the Noble identity shown in Figure 2.12 the topology of Figure 2.11 is reduced to the topology
of Figure 2.13.

L E=HEZY L H@) —

Figure 2.12:Noble identity

X(n) Eo(Z) woln) | 1o Yo(m) =® 2'Fs

Fs y(m)

Eq(z) "> 12 > 2 0™

Figure 2.13:Polyphase interpolation

The equations describing the output of the topology of Figure 2.11 after the interpolation are given by
Table 2.4:

n 0 1
m 0 1 2 3
Yo(m) wo(0) 0 Wwo(1) 0
ys(m) 0 w+(0) 0 wi(1)
y(m)=yo(m)+ys(m) wo(0) w1(0) Wo(1) wi(1)

Table 2.4: Polyphase implementation

The output y(m) is then given by the sum of the output of the two branches. The topology of Figure
2.13 can be reduced to the topology of Figure 2.14 where the adder and the delay element have been
replaced by a switch working at the fast frequency 2-Fs.

From Table 2.4 we can observe that we can take the desirable output y(m) by using this architecture.
As we can see the output sampled by the switch is equivalent to sampling the value directly from yo(m)
or yi(m).

The benefit of this topology is that only the switch has to operate at the increased frequency whereas
the other part operates at Fs.

o(m)
w R
ym
y1(m)
E1(2)

Figure 2.14:Simplified polyphase interpolation filter

Page 20 of 75

2.1.6

2.2

X(n)

Fs

Interpolator

Scaling of Filter coefficients

When filtering a signal it is possible to have overflow in the output since multiple multiplications and
additions take place. The output must not exceed a given value. In order to calculated the maximum
value at the output of the interpolator the method that will be described below can be used.

In terms of presenting the overflow precaution, a simple model of an N tap filter will be used:

It is obvious that the maximum absolute output of the filter occurs when each input at the time |x(n-i)|
=Xmax and the sign of x(n-i) is the same with the sign of the coefficient bi.

Thus, the maximum output value is:
N-1
yMAX[n]:XMAXZ |bi| (18)
i=0

Assuming that xuax=1 we want to have yuwax=1 as well. Therefore, we need to multiply the input signal
by a scaling factor sc in order to guarantee that ywax does not to exceed 1. The equation describing
this condition is:

N-1
|yMAX|:|xMAX|ZIZSC><xMAXZ |bi| (19)
i=0
Where:

sc<

Y, (20)

1=0
The absolute sum of the filter's coefficient is equivalent to the L1 norm of the vector of the coefficients.

Architecture

This section will present the architecture for the implementation of the interpolation filters taking into
consideration the previous analysis.

In the current application, the desired interpolation is 256 in order to achieve SNR greater than 120dB.
The selection of the OSR is made according to the maximum SNR performance equation of a third
order modulator described in the £A modulator chapter. To succeed this order of interpolation four
stages of upsampling will have to be implemented.

As mentioned in 2.1.3.3 FIR filters are stable and have linear phase response, therefore, FIR filters will
be used for the first three stages. Each stage will increase the frequency by x2. A programmable SINC
will be used for the last stage to increase the frequency by x32. Figure 2.15 depicts the interpolator's
multistage implementation. This topology of filters is preferred for high oversampling ratio D/ADAC
converters.

12

—IRP1 12 -+ IRP2 12 - {IRP3' 1132 - SINC | ..~

Fs-2 Fs-4 Fs-8 Fs-256

Figure 2.15:Multistage Interpolator by 256

Page 21 of 75

Interpolator

The schematic of the interpolator in its multistage version shown in Figure 2.15 contains several filters.
Table 2.5 depicts the filters attributes

Initial Fs Fpass Fsto Passband | Stopband
Filter Filter type sampling | Interpolation (kHz) (IF()Hz) (kHzF)) ripple attenuation Order
rate (KHz) (dB) (dB)
IRP1 FIR Equiripple 6 2 6*2 1.01 3 1 130 44
IRP2 FIR Half Band 6*2 2 6*4 3 9 1 130 30
IRP3 FIR Half Band 6*4 2 68 3 21 1 130 18
SINC SINC 6*8 32 6*8*32 1.01 N/A 1 N/A N/A

B SRS O R I % R o

Signal Zero-Order

Generator Hold

Table 2.5: FIR filter metrics
The filters described above are the ones used in the SIMULINK model for the interpolator. The model
of the interpolator along with the filters attributes (magnitude and phase response, impulse response
etc.) will be presented in the following figures.

irp1 ip2 e irp3

input Output of interpolatort Output of interpolator2 Output of interpolator3

FDATool FDATool FDATool

Upsample 1Gain 1 _ Digital Upsample2 Gain 2 Upsample3 Gain 3 Output of interpolator
Filter Design IRP2 IRP3 2nd order SINC

Prescaler

Figure 2.16:SIMULINK model of the interpolator

2.2.01 IRP1 Linear Phase Equiripple Low Pass Filter

The equations describing the IRP1 filter are given below. We can see how the polyphase architecture
is implemented in a low pass FIR filter of 44" order.

H(z)=h(0)+h(44)z ¥+ h(1)z ' +2 P h(43)=h(0)+ h(44)z ¥ +27"[h(1)+z ® h(43)] (21)
By setting
E (z)=h(0)+..+h(44) 27" (22)
E (z)=h(1)+..+h(43)z" (23)
We have:
H(Z):EO(ZZ)+E1(22)Z_] (24)
Vo(n)=h(0)x(n)+...+h(44)x(n—22) (25)
yi(z)=h(1)x(n)+..+h(43) x(n—21) (26)

The model specified in the SIMULINK tool for the IRP1 is using double precision floating point
arithmetic. Instead. the quantization of the filter coefficients as well as the fixed point modeling will be
applied to the model, to reach the filter specifications. Figure 2.17 displays the differences between the
real model and a low accuracy fixed point model and Figure 2.18 presents the final fixed model and the
real one.

Page 22 of 75

Interpolator

Magnitude (dB)

Magnitude (dB)

Magnitude (dB) and Phase Responses

Frequency (kHz)

Figure 2.18:Magnitude and phase response of final fixed point model vs real model of IRP1

5.9139 i i i i i 21987
-26.6684 4756
>
f=
-59.2507 1498 2
N
(5]
1%}
-91.8329 8241 &
o
-124.4152 4983
-156.99750 1726
Frequency (kHz)
Figure 2.17:Magnitude and phase response of low accuracy fixed point model vs real model of IRP1
Magnitude (dB) and Phase Responses
6.0681 17313
T T T T T
-26.691 ~518863
"
f=4
]
-59.45 ~13.5038 ©
S
[
(%2}
292,209 b e N 2211213 &
o
B -3 1 T N USRS SR SSRRRRRNY | I IS S [1-.28.7388
-157.7272 1 1] WHHWHN\[3563
0 1 2 3 4 5

Page 23 of 75

Interpolator

Impulse Response

Amplitude

0 0.5 ! 1.5
Time (mseconds)

Figure 2.19:Impulse response of low pass equiripple filter

In Figure 2.20 we can also see the details of the fixed point arithmetic used in the model of IRP1.

Settings on this pane only apply when block inputs are fised-point signals.

t ain | F

—Fixed-point operational parameters

Rounding mode: | Mearest x| Overflow mode: | Saturate |

—Fixed-point data types

Mode Signed Word length Fraction length
Tap sum | Binary point gcaling ;l yes |25 |23
Coefficients I Specify word length LI yes |28
Product u:uutputl Binary point gcaling ;l yes |53 |ED
Accumulator | Binary point gcaling ;l yes |53 |ED
Output I Binary point zcaling LI yes |24 |23

™ Lock scaling against changes by the autozcaling toaol

Figure 2.20:Fixed point arithmetic of IRP1

2.2.0.2 IRP2 Half Band Filter

The equations describing the IRP2 filter are given below. We can see how the polyphase architecture
is implemented in a low pass FIR filter of 30" order.

H(2)=h(0)+2(30)z +h(1) 2 +z 7 h(29)=h(0)+h(30)z " +z"'[A(1)+z *h(29)] (27)

Page 24 of 75

Magnitude (dB)

-123.7472

-156.2509 i
0

By setting
E,(z
E (z
We have:
H(z)
Yoln)=h(

Interpolator

(28)
(29)

(30)

(31)
(32)

because the half band filters have half of their coefficients set to zero, equation (32) becomes:

yi(n)=h(15)x(n=17)

(33)

As already described in the IRP1 filter, the model presented is using the double precision floating point
arithmetic to generate the filter. In the RTL model the design applied will have to follow a fixed point
arithmetic to reduce the complexity. In Figure 2.21 there are displayed the performance differences of
a low accuracy model and the real one and in Figure 2.22 the differences of the applied fixed point

model and the real one.

6.2675

Magnitude (dB) and Phase Responses

-26.2362

-58.7399

-91.2435

i ;
AV SV
TR
wv il

985

475

1486

8222

Phase (radians)

4958

1693

4 6 8
Frequency (kHz)

10

Figure 2.21:Magnitude and phase response of low accuracy fixed point model vs real model of IRP2

Page 25 of 75

Magnitude (dB)

5.9186

-26.5153

-58.9492

-91.3831

-123.817

-156.2509
0

Magnitude (dB) and Phase Responses

Interpolator

17703

0191

.8084

5978

Phase (radians)

3871

1765

Frequency (kHz)

Figure 2.22:Magnitude and phase response of final fixed point model vs real model of IRP2

Amplitude

0s

0.4

0.3

0z

0.1

Impulze Response

B e R e s T S

Time (maeconds)

Figure 2.23:Impulse response of first half band filter (IRP2)

Below in Figure 2.24 there are depicted the arithmetic details of the fixed point model concerning the
filter coefficients as well as the precision of the operations inside the filter.

Page 26 of 75

b airy |

Settings on thiz pane only apply when block inputz are fized-point signals.

—Fixed-point operational parameters

Fiounding mode: | Hearest j Overflow mode: | Saturate

[|

—Fixed-point data types

¥ Lock scaling against changes by the autoscaling tool

tode Signed “Word length Fraction length
Tap zum | Binary point zcaling ;l e |25 |23
Coefficients I Specify word length ;l YEE |25
Product uutpull Binary point zcaling ;l e |4EI |4E
Accurnulatar I Binary paint szaling ;l =53 |4EI |4E
Output I Binary paint szaling j [|24 |23

Figure 2.24:Fixed point arithmetic of IRP2

2.2.0.3 IRP3 Half Band Filter

Interpolator

The equations describing the IRP2 filter are given below. We can see how the polyphase architecture

is implemented in a low pass FIR filter of 30" order.

H(z)=h(0)+h(18)z “+h(1)z ' +z " h(17)=h(0)+h(18)z *+z '[A(1)+z " h(17)]

By setting

We have:

(34)

(35)
(36)

(37)

(38)
(39)

because the half band filters have half of their coefficients set to zero, equation (39) becomes:

yi(n)=h(9)x(n—4)

(40)

When designing the real model, double precision floating point arithmetic is used for the IRP3 filter. In
order to follow the design architecture of the previous filters, fixed point arithmetic will have to be
applied as in IRP3 filter. Figure 2.25 displays the differences between a low accuracy fixed point model
and the real one and Figure 2.26 displays the differences between the applied fixed point model and

the real one.

Page 27 of 75

Interpolator

(dB)

Magnitude

Magnitude (dB)

6.5155

-29.6174

-65.7503

-101.8832

-138.0161

-174.149
0

Magnitude (dB) and Phase Responses

12565

8004

=1%$.3289

Phase (radians)

.8573

b§.38s5s

10
Frequency (kHz)

15

Figure 2.25:Magnitude and phase response of the low accuracy fixed point model vs the real model of IRP3

7.1542

-29.1064

-65.3671

-101.6277

-137.8884

-174.149
0

Magnitude (dB) and Phase Responses

e
e
A

~11.0189

~17.2347

~448031

Phase (radians)

~23.4505

DlY 6663

1
10
Frequency (kHz)

15

20

Figure 2.26:Magnitude and phase response of applied fixed point model vs the real model of IRP3

Page 28 of 75

Interpolator

Impulze Response

T T T T T T T
05 f-------- EREEEEEEES docooooon e oo Rt e 4o
] — I S PN S S S S .
. : ! : : ! : :
= 1
= : : : : ! : :
E e e e
7] E— I R N S S S .
iE——— L il l = L = * =
I I I I L I I
0 0.05 01 015 0z 0.25 0.3 035

Time (m=secondsz]

Figure 2.27:Impulse response of second half band filter (IRP3)

Below in Figure 2.28 the details of the fixed point arithmetic applied to the model is presented.

FIR [all zeroz)
Specify via dialog

Figure 2.28:Fixed point arithmetic details of IRP3

As we can see from the figures depicting the frequency and the phase response, the phase is linear in
the pass-band.

The previous figures depict the phase, frequency and magnitude responses of the filters that will be
used by the interpolator. The 2™ order SINC filter that will be used is given by the model in Figure 2.5
which uses fixed point arithmetic.

Page 29 of 75

amplitude

ragnitude responce (dB)

Interpolator

MATLAB simulation results

For each filter described on the previous section, there will be presented the input-output results of the
SIMULINK model in the time and frequency domain.

IRP1 results

input signal IRP1 aut
i P = T T —] T T T — TR
ner g b o b b]
[IR=R2 B
alp [[alle} o}
oGk | 04F -
04r b
nak J o Q|5 o || o
02F B
=
0 2 1R S 8
g R
02r B
02F E
o4l 4 & Al Al
06 B 04k J
folle} o <} o} <
08 1
sk o <} o o an
-1 m L o] L] L vl L 1 . L L < L ol L L e L i L 1
] 5 10 15 20 245 20 30 40 =] =] 08 90 100 10 120
time time
Figure 2.29: Time response of input signal and output of first filter (IRP1)
input signal IRF1 out
T T T T T T 80 T T T T T
nt 1 ol m . |
¥ 7803 ¥ 1.1256+004
B0 - T V. T148 V. T148
B0+ B
S0 B
& f0r B
wnt { 2
& 40r 1
c
(=]
- o
@ 30+ 1
i)
- =
= dr 1
(=
fal
- (1]
£ 10r b
] ol]
] 0F 1
1 1 1 1 1 | _20 1 1 1 1 1
1000 2000 3000 4000 5000 000 0 2000 4000 6000 8000 10000 12000
Fregquency (Hz) Frequency (Hz)

Figure 2.30: Frequency response of input signal and output of first filter (IRP1)

Page 30 of 75

amplitude

rmagnitude responce (dB)

a0

7l

BD

a0

40

a0

20

IRP2

results

IRP1 out

o}
o o] joo) joo) b

It

v vl joy] ab

o

1 p 1 OI Io Il OI 1 1
0 G0 70 80 90 100 110 120
time

amplitude

Interpolator

time

Figure 2.31: Time response of IRP1 and output of second filter (IRP2)

IRP1 out

1
2000

1 1 1 1
4000 000 8000 10000 12000
Frequency (Hz)

Figure 2.32: Frequency response of IRP1 and output of second filter (IRP2)

magnitude responce (dB)

a0

70

&0

a0

40

a0

20

IRF2 out

L]
Yo7 a3

¥ 2325e+004

Y7783

=

04

1 15

Freguency (Hz)

w10°

Page 31 of 75

arnplitude

magnitude responce (dB)

02

0.4

0B

IRP3 results

IRP2 out

0.6

0.4

0.2

1 1 1 1
=] a0 100 120 140 160
time

amplitude

=
X
T

0.4r

0B

IRP3 out

Interpolator

04t

0.2F

[}

1
120

1
140

1
160

1
180 200
time

Figure 2.33: Time response of IRP2 and output of third filter (IRP3)

IRP2 out

80

®o7al
Y753

o 2.325e+004

0r v 75

alr

401

1

15

Frequency (Hz)

Figure 2.34: Frequency response of IRP2 and output of third filter (IRP3)

10°

magnitude responce (dB)

IRF3 out

a0
mnr
B0

=] %) -
= = =
T T T

20k

W4 T 25e+004
;8356

2

Freguency (Hz)

25

3

35

w10

Page 32 of 75

magnitude responce (dB)

amplitude

[RURY I R N = R R =1
o T e S e e S e T s S Y e R e T e S e

SINC results

Interpolator

IRP3 out sinc out
0.6 0.6
04 04
02 02
i}
=
=
£
m
0.2 0.2
0.4 0.4
0.6 5 06
1 1 1 i} 1 1 1 1 1 1 1 1 1 1
120 140 160 180 200 20 240 260 4000 5000 G000 7000 8000 9000 10000
time time
Figure 2.35: Time response of IRP3 and output of SINC filter
IRF3 out sine out
T T T T T T T T T T T T T
| | |
[| %751 ¥ 4.725e+004 N m
Y. 8356 Y. 63.56 100} | %74 e
r b ¥oET NO1ET
—_ ¥ 4.725e+004
L J S gl wwr J
© | |
o
- - =
o
o
(0]
3 . o
g o 1
r N 2
=
o
- o o
E
L _SD L -
L L L T : 1 L L 00 L L I L]
0 05 1 1.5 2 25 3 35 4 45 0 5 10 15
Frequency (Hz) w10t Frequency (Hz) i

Figure 2.36: Frequency response of IRP3 and output ofSINC filter

The final output of the interpolator equals to the output of the SINC filter. These
performed using the model of Figure 2.16.

simulations are

Page 33 of 75

Interpolator

This chapter will present the implementation details of the interpolator. RTL architecture diagrams, 1/0O

Figure 2.37 shows the procedural diagram of the interpolator. The interpolator is implemented using
the multistage approach to achieve reduced complexity. The interpolator consists of a low pass filter
(IRP1), two half band filters (IRP2 and IRP3) and a sinc filter (SINC) as already mentioned in the

The filters will be implemented by using the polyphase architecture except from the last filter
(SINC).This architecture exploits the symmetry of the coefficients and leads to a low complexity

o_irp3_sinc_valid

i_irp2_ip3_valid
IRP3

o_ip3_sinc_data[23:0]

24 H/W Implementation
interfaces and detailed descriptions of the filters will be shown.
241 Procedural diagram
architecture paragraph.
implementation.
i_irp_valid it vang T e T b 3 valld
IRP1 IRP2
o_irp1_irp2_data[23:0] i_irp1_irp2_data[23:0]
Lip_data230] J; i1 _data[23:0] 0_ip2_im3_data[23:0]

_irp2_irp3_data[23:0]

——

——

Figure 2.37: Interpolator Procedural Diagram

i_irp3_sinc_valid
SINC

i_irp3_sinc_data[23:0]
o_sinc_sd_data[23:0]

In Figure 2.38 the I/O interface block is presented showing the interconnection signals.

INTERPOLATOR
clk p clk
t
rstn P rst n
LIty e p i_irp_valid
i_irp_data [23:0] p i_irp_data [23:0]
o_irp_sd_data[23:0]

o_irp_sd_data [23:0]

—
o_irp_sd_data[23:0]

Figure 2.38: INTERPOLATOR I/O Block Diagram

Table 2.6 shows the pin list of the interpolator with all the 1/O signals involved.

Signal /10 Description
Clock & reset
clk in | Master Clock
rst_n in Active low asynchronous reset
CONTROL |
i_irp_valid in Indicates that a new 24-bit input data sampled at Fs
Input interface ‘
i_irp_data (23:0) in | 24-bit input data at Fs

2A modulator interface

o_irp_sd_data (23:0)

In the following
presented.

out 24-bit output data at 256Fs
Table 2.6: Interpolator Pin List

paragraphs the design details of the filters contained in the interpolator will be

Page 34 of 75

2.4.2

Linear phase equiripple filter (IRP1)

Interpolator

The pin list along with the interface diagram of IRP1 will be shown in Table 2.7 and Figure 2.39

respectively.
Signal /10 Description
Clocks and reset
clk in Master clock at 256Fs
rst_n in Active low asynchronous reset
CONTROL
i_irp1_valid in Indicates that a new 24-bit input data is sampled at the input at Fs rate
Input interface
i_int_data [23:0] in 24-bit input data
IRP2 filter interface
o_irp1_irp2_data[23:0] @ out 24-bit output interpolated data at 2Fs
o_irp1_irp2_valid out Indicates that a 24-bit output data is ready at the output at 2*Fs rate

i_irp1_data[23:0]

Table 2.7: IRP1 Pin List

delay_datai1

i_irp1_valid

SN ot addi4:0]

CONTROL
mux_index_1
mux_index_2

o_irp1_irp2_valid|
accum_sel—

accum_rst———

[4:0]

cf_addr|

coeffo

1"
10
9
8
7

mux_index_2[3:0]

mux2_data[23:0]

124:0]
accum_rst

Kljnux1_data[23:0]
data_couple +
+

accum_sel

o_irp1_irp2_valid

o_irp1_irp2_valid

coeffl
coeff2

cf_out[27:0]

1

mul If accum_sum

coeff22

[52:0] [52:0]

o_irp1_irp2_data[23:0]

ac
irp1_crop / irp1_crop

Figure 2.39: IRP1 Interface Diagram

Page 35 of 75

Interpolator

Description

The first block of the interpolator is the IRP1 filter that interpolates the input signal i irp7_data by a
factor of x2.

The coefficients of the filter are chosen by a multiplexer 22-to-1. The coefficients of each filter are
given in Appendix C. The values of the coefficients are calculated assuming that there are 24 bits for
the input signal, 27 bits for the representation of the coefficients. Moreover, the prescaling factor of
0.63 is applied to the coefficients so the output of the overall interpolation stage remains bounded.

There are two branches that will perform the polyphase interpolation. The one that corresponds to the
differential equation:

Von)=h(0)x(n)+...+h(44)x(n—22) (41)

and the other one that corresponds to the differential equation:

yi(n)=h(1)x(n)+...+h(43)x(n—21) (42)

Since the filters are symmetric it is convenient to add the input data and then multiply the result of the
addition with the appropriate coefficient. We use the Multiply-Accumulator architecture in order to make
the additions.

For each couple of the data that correspond to the symmetric coefficients the proper index
mux_index1 and mux_index2 fetches the values from the delay line and the signal cf_addr fetches the
proper coefficient from the multiplexer. Then the two input signals yo(n) and y(n) are summed.

After the summation, the coefficient corresponding to that couple is chosen from the coefficient
multiplexer and multiplied with it. The result of each multiplication is placed in the signal mux_result,
which is 53-bits long according to the multiplication rules. The signal mux_result is then added to the
current value of the accumulator output, the accum_out signal.

The IRP1 block as mentioned before, upsamples the input signal by x2, while the master clock is at
256Fs. Therefore the input data of the interpolator arrives every 256 clock cycles. Consequently, the
IRP1 block shall output data every 128 clock cycles.

When all the computations from the first branch of IRP1 filter are finished, the output data wait for 128
clock cycles and then they are transmitted to the next filter. While the output data wait in the
accumulator, the accum_in signal is connected with the accum_out signal through a multiplexer.

When the signal irp7_irp2 valid is set to '1' the accumulator's data are driven to the output after their
quantization. The quantization takes place because the accumulators data are 53-bit and the output
data of the IRP1 has to be 24-bit. To achieve the right quantization we take the 27 MSB's of the
accum_out and we sum '1' placing them to the irp71_crop signal. The o_irp1_irp2_data is the 25 MSBs
of the irp1_crop signal.

The procedure described above occurs two times for each input data. After the second filter drives its
output to the IRP2 filter, the accumulator's input becomes the multipliers output without the addition of
the accumulators output, in order for the previous data to be flushed.

The IRP1 block is using an internal control that assigns the proper values to the signals mux_index_1,
mux_index_2 , cf_addr, o_irp1_irp2_valid, accum_sel and accum_rst which control the multiplexers as
well as the coefficients address of the RF block. The control block is implemented with an FSM.

Page 36 of 75

Interpolator

Table 2.8 shows the values of the signals at each state of the FSM.

state mux_index mux_index2 cf_addr o_irp1_irp2_vali accum_sel accum_rst nx_state
1 d
state0 stateO if
0 0 -1 ‘0’ "' ‘0’ i_valid="0'
else state1
state1 0 0 0 ‘0’ "' "' state2
state2 1 1 2 ‘0’ "' ‘0’ state3
state3 2 2 4 '0' "' '0' state4
state4 3 3 6 '0' "' '0' stateb
state5 4 4 8 '0' "' '0' state6
state6 5 5 10 ‘0’ "' '0' state7
state7 6 6 12 ‘0’ "' ‘0’ state8
state8 7 7 14 ‘0’ "' ‘0’ state9
state9 8 8 16 ‘0’ "' ‘0’ state10
state10 9 9 18 ‘0’ "' ‘0’ state11
state11 10 10 20 ‘0’ "' ‘0’ state12
state12 11 11 22 ‘0’ "' ‘0’ state13
1" if counter=127 state14 if
state13 0 0 -1 else '0' ‘0’ ‘0’ counter=127 else
state13
state14 0 1 1 ‘0’ "' "' state15
state15 1 2 3 ‘0’ "' ‘0’ state16
state16 2 3 5 ‘0’ "' ‘0’ state17
state17 3 4 7 ‘0’ "' ‘0’ state18
state18 4 5 9 ‘0’ "' ‘0’ state19
state19 5 6 11 ‘0’ "' ‘0’ state20
state20 6 7 13 ‘0’ "' ‘0’ state21
state21 7 8 15 ‘0’ "' ‘0’ state22
state22 8 9 17 ‘0’ "' ‘0’ state23
state23 9 10 19 ‘0’ "' ‘0’ state24
state24 10 11 21 ‘0’ "' ‘0’ state25
1" if counter=256 stateO if
state25 0 0 -1 else '0’ '0' '0' counter=256 else
state25

Table 2.8: IRP1 FSM state description table

The FSM has 25 states. state0 is the idle state at which the IRP1 is reset when rst_n signal is set to '0'
or when IRP1 waits for the i irp1_valid signal to rise and fetch the next input data. When the
i_irp1_valid signal rises, the state jumps to state1 and the IRP1's calculations begin. When the first
branch of the filter finishes its calculations at state12, the FSM enters state13 waiting for the counter to
count a total of 127 cycles from the rise of the i_valid signal and then drives its output to the IRP2 filter.
After that, the FSM flushes the accumulator with the accum _rst signal as described previously and
enters state14 where the other branch of the filter begins its calculations. When the other half of the
filter finishes, the FSM enters state25 and waits for the counter to receive the value 256 so that IRP1
can drive the output of the second half of the filter. After that the FSM jumps to state0 waiting for the
next input to arrive.

Page 37 of 75

Table 2.9 shows the coefficient and input data relation.

Interpolator

mux_index1 mux_index2 inputs cf_addr i_irp1_valid o_irp1_irp2_valid
0 0 x(n)+x(n-22) hO 1 0
1 1 x(n-1)+x(n-21) h2 0 0
2 2 x(n-2)+x(n-20) h4 0 0
3 3 x(n-3)+x(n-19) h6 0 0
4 4 x(n-4)+x(n-18) h8 0 0
5 5 x(n-5)+x(n-17) h10 0 0
6 6 x(n-6)+x(n-16) h12 0 0
7 7 x(n-7)+x(n-15) h14 0 0
8 8 x(n-8)+x(n-14) h16 0 0
9 9 x(n-9)x(n-13) h18 0 0
10 10 x(n-10)+x(n-12) h20 0 0
11 11 x(n-11)+x(n-11) h22/2 0 1
0 1 x(n)+x(n-21) h1 0 0
1 2 x(n-1)+x(n-20) h3 0 0
2 3 x(n-2)+x(n-19) h5 0 0
3 4 x(n-3)+x(n-18) h7 0 0
4 5 x(n-4)+x(n-17) h9 0 0
5 6 x(n-5)+x(n-16) h11 0 0
6 7 x(n-6)+x(n-15) h13 0 0
7 8 x(n-7)+x(n-14) h15 0 0
8 9 x(n-8)+x(n-13) h17 0 0
9 10 x(n-9)x(n-12) h19 0 0
10 11 x(n-10)+x(n-11) h21 0 1
0 0 x(n)+x(n-22) hO 1 0
1 1 x(n-1)+x(n-21) h2 0 0
2 2 x(n-2)+x(n-20) h4 0 0

Table 2.9: IRP1 signal and time table

Page 38 of 75

Interpolator

243 Half Band filter (IRP2)
The pin list along with the interface diagram of IRP1 will be shown in Table 2.10 and Figure 2.40

respectively.
Signal /10 Description
Clocks and reset ‘
clk in Master clock at 256Fs
rst_n in Active low asynchronous reset
CONTROL |
i_irp1_irp2_valid in Indicates that a new 24-bit input data is sampled at the input at 2*Fs rate

Input interface ‘
i_irp1_irp2_data [23:0] in 24-bit input data from IRP1 at 2Fs

IRP3 interface ‘
o_irp2_irp3_data[23:0] out 24-bit output data
o_irp2_irp3_valid out Indicates that a 24-bit output data is ready at the output at 2*2*Fs rate

Table 2.10: IRP2 Pin List

i_irp1_irp2_data[23:0]

mux_index 1[3:0 e = « o < w® ©
MUX 1

———i_irp1_irp2_valid

delay data7

delay_data7[23:0]

U0 ot addif4:0]

CONTROL
mux_index_1
mux_index_2

o_irp2_irp3_valid
accum_sel —
accum_rst——— © ~ © ©

[23:0]

mux1_datal

mux_index_2[3:0]

mux2_data[23:0]

ﬂL
L

o_irp2_irp3_valid

cf_addr[4:0]

data couple
[24:0]
accum_rst

accum_sel

coeff0
coeff2
coeff4

00000

00001

00100
il

cf_out[27:0] mult result I accum_sum
H [48:0] [48:0]
H ° b -
i +
01111

Figure 2.40: IRP2 Interface Diagram

o_irp2_irp3_valid

o_irp2_irp3_data[23:0]

irp2_crop / irp2_crop
coeffl5

irp2_data/irp2_data
[48:0]/ [48:22]

Page 39 of 75

Interpolator

Description

The second block of the interpolator is the IRP2 filter that interpolates the signal provided by IRP1
i_irp1_irp2_data by a factor of x2.

There are two polyphase filters that will perform the interpolation. The one that corresponds to the
differential equation:

Vo(n)=h(0)x(n)+...+h(30) x(n—15) (43)

and the other one that corresponds to the differential equation:

yi(n)=h(1)x(n)+...+h(29)x(n—14) (44)

Since the filters are symmetric it is convenient to add the input data and then multiply the result of the
addition with the appropriate coefficient. The IRP2 filter's architecture is basically the same with the
IRP1. The difference between IRP1 and IRP2 filters is that the second one is a Half Band filter. This
comprises that all the even coefficients are set to zero except from the center one.

This property of having the even coefficients set to zero can be exploited by performing half of the
multiplications. This is successed by using eleven states on the FSM of IRP2 from which the first nine
are used to calculate the first half of the filter as well as the idle state, similar to the IRP1 approach,
and the other two to calculate the second half of the filter by making the multiplication with the non zero
even coefficient.

IRP2 filter as described previously has a total of 30 coefficients from which half of them are symmetric
and half of them are zero except from the center one. Therefore the filter has nine non zero
coefficients which are stored in the register file block. The first half of the filter calculates the first output
with the odd non zero coefficients and the second half of the filter calculates the output of the non zero
even coefficient.

The FSM of the IRP2 filter is described on the Table 2.11

state mux_index1 mux_index2 cf_addr o_irp2_irp3_valid accum_sel accum_rst nx_state
state0 stateO if
0 0 -1 ‘0’ 1' '0’ i_valid="0'
else state1
state1 0 0 0 ‘0’ 1 1" state2
state2 1 1 2 ‘0’ 1 '0' state3
state3 2 2 4 '0' 1’ '0’ state4
state4 3 3 6 ‘0’ 1' '0’ state5
stateb 4 4 8 '0' 1' '0’ state6
state6 5 5 10 '0' 1’ '0’ state7
state7 6 6 12 ‘0’ 1 '0' state8
state8 7 7 14 ‘0’ 1 '0' state9
1" if counter=63 state10 if
state9 0 0 -1 else '0' '0’ '0' counter=63
else state9
state10 7 8 15 ‘0’ 1' 1’ state11
1" if counter=128 stateO if
state11 0 0 -1 else '0’ '0' '0’ counter=128

else state11
Table 2.11: IRP2 FSM state description table

The FSM of the IRP2 filter works with the same way that the FSM of the IRP1 filter does. The only
difference between them is that the FSM of IRP2 has 11 states instead of 25. As we can see the
second filter performs only one multiplication and waits for the counter to count 128 clock cycles.

A more detailed analysis of the input data and the coefficient relation is shown in the Table 2.12 above.

Page 40 of 75

Interpolator

mux_index1 mux_index2 inputs cf_addr @ i_irp1_irp2_valid o_irp2_irp3_valid
0 0 x(n)+x(n-15) hO 1 0
1 1 x(n-1)+x(n-14) h2 0 0
2 2 x(n-2)+x(n-13) h4 0 0
3 3 x(n-3)+x(n-12) h6 0 0
4 4 x(n-4)+x(n-11) h8 0 0
5 5 x(n-5)+x(n-10) h10 0 0
6 6 X(n-6)+x(n-9) h12 0 0
7 7 X(n-7)+x(n-8) h14 0 1
7 8 X(n-7)+x(n-7) h15 0 1
0 0 x(n)+x(n-15) hO 1 0
1 1 x(n-1)+x(n-14) h2 0 0
2 2 x(n-2)+x(n-13) h4 0 0

Table 2.12: IRP2 signal and time table

24.4 Half Band filter (IRP3)

The pin list along with the interface diagram of IRP1 will be shown in Table 2.13 and Figure 2.41
respectively.

Signal /10 Description
Clocks and reset
clk in Master clock at 256Fs
rst_ n in | Active low asynchronous reset
CONTROL
i_irp2_irp3_valid in Indicates that a new 24-bit input data is sampled at the input at 4*Fs rate

Input interface
i_irp2_irp3_data [23:0] in 24-bit input data from IRP2 at 4Fs

SINC interface

o_irp3_sinc_data[23:0] out 24-bit output interpolated data connected with SINC filter

o_irp3_sinc_valid out Indicates that a 24-bit output data is ready at the output at 8*Fs rate
Table 2.13: IRP3 Pin List

Page 41 of 75

i_irp2_irp3_data[23:0]

Interpolator

mux_index 1[3:0]

delay_datad[23:0]

MUX 1
i_irp2_irp3_valid
LN o addif4:0] _
CONTROL 5

o_irp3_sinc_vali

mux_index_1
mux_index_2|

mux1_data|

accum_sel—p———
accum_rst—p—— b - © ~ - b

coeffd

coeff2
coefft

coeffd

mux_index_2[3:0] M UX 2
\

mux2_data[23:0]

o_irp3_sinc_valid

[4:0]

cf_addr]

[23:0]

data_couple
accum_rst

o_irp3 sinc_valid

accum_sel

sinc_data

00000
00001
00100

. cf_out[27:0] W
i [48:0] [48:0]
i °
g +
01001

Figure 2.41: IRP3 Interface Diagram

P3_:

o_iry

irp3_crop / irp3_crop

accumulator

Description

The third block of the interpolator is the IRP3 block which comprise a half band filter of 18th order. The
input data are fed to IRP3 block through the i _irp2 _irp3_data signal. As in IRP2 filter, the IRP3 filter
follows exactly the same architecture. The IRP3 filter is split in two polyphase branches. The
differential equations describing the filter are given below:

Vo(n)=h(0)x(n)+...+h(18)x(n—9) (45)

yi(n)=h(1)x(n)+...+h(17)x(n—8) (46)

Since the filter has the same architecture as IRP2 resulting in symmetric coefficients along with the
even ones to be zero except from the middle, the IRP3 block follows the rules described in the
previous sub-block.

It is important to mention that the IRP3 filter has 6 non zero coefficients from which 5 belong to the first
filter and the other one is the non zero coefficient of the second filter. Also the FSM of the IRP3 block
has 8 states. The first state (state0) is the state in which the filter halts, the next six states make the
proper calculations for the first half of the filter and the other two states make the proper calculations
for the second half of the filter. Table 2.14 below depicts the FSM state assignment.

Page 42 of 75

Interpolator

state mux_index1 mux_index2 cf_addr o_irp3_sinc_valid faccum_sel accum_rst nx_state
state0 stateO if
0 0 -1 '0’ 1' '0' i_valid='0'
else state1
state1 0 0 0 '0’ 1' 1 state2
state2 1 1 2 '0’ 1’ 0’ state3
state3 2 2 4 '0' 1 '0' state4
state4 3 3 6 '0' 1 0 stateb
state5 4 4 8 '0' 1 '0' state6
1" if counter=31 state7 if
state6 0 0 -1 else '0' '0' '0' counter=31
else state6
state7 4 5 9 '0’ 1' 1 state11
1" if counter=64 stateO if
state8 0 0 -1 else '0’ '0’ '0' counter=64 else
state8

Table 2.14: IRP3 FSM state description table

The input data and coefficient relation are presented in the Table 2.15

mux_index1 mux_index2 inputs cf_addr i_irp2_irp3_valid o_irp3_sinc_valid
0 0 x(n)+x(n-9) hO 1 0
1 1 x(n-1)+x(n-8) h2 0 0
2 2 x(n-2)+x(n-7) h4 0 0
3 3 x(n-3)+x(n-6) h6 0 0
4 4 x(n-4)+x(n-5) h8 0 1
4 5 x(n-4)+x(n-4) h9 0 1
0 0 x(n)+x(n-9) hO 1 0
1 1 x(n-1)+x(n-8) h2 0 0

Table 2.15: IRP3 signal and time table

2.4.5 SINC filter (IRP4)
The pin list along with the interface diagram of IRP1 will be shown in Table 2.16 and Figure 2.42

respectively.
Signal /10 Description
Clocks and reset
clk in Master clock at 256Fs
rst_n in Active low asynchronous reset
CONTROL |
i_irp3_sinc_valid in | Indicates that a new 24-bit input data is sampled at the input at 8*Fs rate

Input interface
i_irp3_sinc_data [23:0] in 24-bit input data from IRP3
2A MODULATOR interface

0_sinc_sd_data[23:0] out 24-bit output interpolated data connected with ¥A modulator at 256*Fs rate
Table 2.16: SINC Pin List

Page 43 of 75

i_irp3_sinc_valid

Interpolator

i_irp3_sinc_data[23:0]
ML‘%,

sum_delay{30:0 ol
i
1
£ sinc/out[28:4’ =
E

4 input data[30:0]

4 input diff30:0]

input delay[30:0

c o© sinc_sd_data[23:0] /sinc_crop[24:1

24

Figure 2.42: SINC Interface Diagram

Description

The fourth and last block of the interpolator is the SINC filter. Conversely to the other filters developed,
the SINC filter doesn't involve multiplications. The differential equation describing the SINC filter is
depicted below.

n
32J
Equation (47) describes that the output of the SINC filter depends on the current input which receives a
new value each 32 clock cycles, the previous input value and on the previous output value.

y(n)=x(m)—x(m—1)+y(n—1),n=123...,m=| (47)

From the Figure 2.42 we can see that the SINC block calculates its output by subtracting the input_diff
signal with the input_delay signal (x(m) — x(m-1) operation) and assigning the result to the input_diff
signal. If the [_irp3_sinc signal is set to '0' then the repeat_out signal is set to the input_data otherwise
it holds its previous value. The repeat out signal is the repetition of the subtracted input signal for 32
times. The final output is the sum of the repeat_out signal and the sum_delay signal (x(m) — x(m-1) +
y(n-1) operation). The result is assigned to the sinc_out singal.

Because the SINC filter makes multiple additions and subtractions, the input_data as well as the rest of
the signals operating in the filter, are sign extended from 24-bit to 31-bit in order for the filter to avoid
overflows. The final output is calculated by cropping the sinc_out signal and holding the bits 28 down to
4. The cropped signal is assigned to the sinc_crop signal which is of width 25. The sinc_crop signal is
finally added with an ace and the bits 24 down to 1 are kept and assigned to the o _sinc_sd data
signal.

The SINC filter transmits data every clock cycle except from the reception of reset, where the output of
the SINC filter is set to zero. Therefore the SINC filter does not need a valid signal to indicate the
transmition of the output.Table 2.17 describes the input data and signal relation.

o_sinc_sd_data i_irp3_sinc_data repeat_out o_sinc_mod_data i_irp3_sinc_valid
y(0) x(0) x(0)-x(-1) y(-1)+x(0)-x(-1) 1
y(1) x(0) x(0)-x(-1) y(0)+x(0)-x(-1) 0
y(2) x(0) x(0)-x(-1) y(1)+x(0)-x(-1) 0
y(3) x(0) x(0)-x(-1) y(2)+x(0)-x(-1) 0
y(4) x(0) x(0)-x(-1) y(3)+x(0)-x(-1) 0
y(5) x(0) X(0)-x(-1) y(4)+x(0)-x(-1) 0
y(6) x(0) x(0)-x(-1) y(5)*+x(0)-x(-1) 0
y(7) x(0) x(0)-x(-1) y(6)+x(0)-x(-1) 0
y(n) x(m) x(m)-x(m-1) y(n-1)+x(m)-x(m-1) 0
Y(32) x(1) x(1)-x(0) y(31)+x(1)-x(0) 1
Y(33) X(1) x(1)-x(0) y(32)+x(1)-x(0) 0

Table 2.17: SINC signal and time table

Page 44 of 75

2.5

2.6

nooo DF SYM FIR DF SYM FIR
A > TZ A

Signal Zero-Order Data Type ypsample1 Data Type
Generator Hold Conversion1 Conversion

Interpolator

Verification plan

The MATLAB/SIMULINK model based on fixed point arithmetic is used to perform the verification
process of the RTL model. The verification process is based on the comparison of the high level model
output (MATLAB/SIMULINK) and RTL (Modelsim) output.

The output of each filter and the final output of the interpolator is stored in a file for both cases. The
verification procedure is terminated successfully, if each MATLAB/SIMULINK output file matches

exactly the corresponding Modelsim output file. The comparison procedure is performed using the tool
KDiff3.

In Figure 2.43 the fixed point model of the interpolator is displayed. The initial floating point model is
modified so that each filter can produce an output to the workspace. Each output of the MATLAB
model is multiplied with 22° in order to obtain a 24 bit number .

To Workspace4 To Workspace1 To Workspace2

IRP1 Upsample2 IRP2 Upsample3

To Workspace3

DF SYM FIR

—> IRP1 IRP2
g —

IRP3

Operates at frequency Fsout=M*Fsin Interpolator: 4 2x, 16x sinc

Unit Delay1
Gain=Fsin/Fsout=1/M

l Nl
.

S— » | Repeat sinc
I-" = 32x |
Sum5 To Workspace13
»| 1/ Sum4
z Repeat Gain4

Unit Delay

Operates at Frequnecy Fsin

Figure 2.43: Fixed point model of interpolator

References

[1] Multirate Digital Signal Processing, Ronald E. Crohiere, Lawrence R. Rabiner, 1983, p129-181

[2] Delta-Sigma Data Converters: Theory, Design and Simulation, Steven R. Norsworthy, Richard
Schreier, Gabor C. Temes, First edition, 1996, p: 406-446

[3] A Multibit Delta-Sigma Audio DAC with 120dB Dynamic Range, Ichiro Fujimori, Tetsuro Sugimoto,
IEEE Journal of Solid-State Circuits, VOL.35 NO 8, August 2000.

Page 45 of 75

3.1

2/ Modulator

2 A Modulator

The XA modulator is the core of the A DAC placed between the interpolator and the internal analog
DAC. The next paragraphs will describe the theory of ZA modulation, the different issues of the
design, the architecture and the implementation of this block.

2A modulator theory

In a ZA DAC, a signal sampled at the Nyquist frequency is initially processed by an interpolation stage.
The interpolator changes the data rate and suppresses the spectral replicas which occur from the
upsampling process. This signal feeds the noise-shaping loop, which shortens the word length to a
single bit or to a few bits (case of multibit DAC).

In practice, A modulation is a technique for converting an oversampled digital signal into an analogue
one by integrating differential signals. In this section the basic operation of ZA modulation is described.
The modulator subtracts the quantization noise of the previous input from the current input and
quantizes the signal produced. The general case of a A modulator is shown in Figure 3.1 where u(n)
is the input signal and y(n) is the output signal.

L@_. H(z) x(n) 4,_,—,7 y(n)

Quantizer

Figure 3.1: 2A topology

The topology of Figure 3.1 can be analyzed by using the linear model shown in Figure 3.2, where the
quantization noise e(n) is considered to be an independent input random signal independent from the
input.

e(n)

u(n H(z) x(n) (+) ym)

Figure 3.2: Linear model of >A topology
The model is characterized by the following transfer functions:

Y(z) H(z)

Sl = G T H) “o
Y(z) 1

Nl)= 5) " T3 0) 49)

where Str(z) is the signal transfer function, Nt(z) is the noise transfer function and E(z) is the
quantization noise in the frequency domain. Considering the axiom of superposition and using
equations (48) and (49), the output signal can be written as:

Y(z)=S,:(z)U(z)+N . (2)E(z) (50)

In order to shape the quantization noise to high frequencies, we have to consider that H(z) has a large
magnitude between 0 and f,, (where f; is the input signal frequency) and that the input signal must
remain within the maximum levels of the feedback signal y(n), otherwise the large gain in H(z) will
cause x(n) to saturate.

Page 46 of 75

2A Modulator
311 First order noise shaping

For the first order ZA modulator we should have a zero at DC for the N+, in order to high pass filter the
quantization noise, since the poles of H(z) are equal to the zeros of N+(z). Thus, we choose:

H(z)= (51)

u(n) 21 x(n) I‘Ji y(n)

Quantizer

Figure 3.3: First order 2A modulator

The equations describing the modulator in the time domain are given by:
X(n)=X(n-1)+U(n—-1)-Y(n—1) (52)
Y (n)=sign(X (n)) (83)
where Y(n) is the quantized output signal, U(n) is the input signal and Y(n) — X(n) is the quantization

noise, namely the difference between the input signal and the output signal.

At the frequency domain, using equation (51), the signal transfer function is:

1
Y(z) H(z) z—1 1
() U(z) 1+H(z) 1+ 1 z (54)
z—1
and the noise transfer function is:
Y(z) 1 1 4
N = = = = 1—
v =TT)] (1=2"7) (55)
z—1

To calculate the SNR, we have to estimate the signal power and the quantization noise power. If we let
z=eT=¢"/!7- where Fs is the sampling frequency we have:

Jflf _ e—jﬂf/f\-

Np(f)=1- e_jzwf‘:eTXﬁ xe ™' =sin (i)x2j xe 7 (56)
J

)

Taking the magnitude of both sides:
IN e (f)|=2sin(zf | f) (87)

The quantization noise over the frequency band from 0 to f; is given by:

£y a2
P,= f Si(f)|NTF(f)|2df:f (%)i[zsm(n_f)
—/fo

2
d 58
J 7 I /8 (58)

Page 47 of 75

3.1.2

u(n)

2/ Modulator

4 1
where Se(f)Z—— is the spectral density of the quantization noise and A the difference between

12 7,

two adjacent quantization levels. Since OSR>>1, then fo<<f; and sin(1f/f;) = mf/f, we can write

equation (58):
2 2 3
36 \OSR

The signal power is given by the equation:

_ 42"

PS
8

(60)

because the maximum peak value of the input signal without clipping is 2"(A/2) where 2V are the
quantizer levels. Combining equations (59) and (60) the SNR becomes:

P
SNR,, = 1010g(ﬁ)=6.02N+1.76 —5.17+30log (OSR) 61)

e

3 order A D/A modulator

The case of our study will be a third order ZA modulator with error feedback structure. This model is
shown in Figure 3.4:

+ H1(z) + H1(2) + H2(z) JJIF L)

Figure 3.4: Third order A modulator

where the integrator blocks (H1(z)) and the delayed integrator block (H2(z)) are shown in Figure 3.5.

1 HOout1
t1
(P q)olj

x(n) [1_ X(n)
In1
Int z
Unit Delay

1

z
Unit Delay

Figure 3.5: Integrator and delayed integrator

The MATLAB/SIMULINK model of the third order modulator is presented in Figure 3.6, containing as
sub-blocks the integrator and the delayed integrator as described previously.

Page 48 of 75

2/ Modulator

[; ; ++
L
Pseudorandom generator

Scope

_ . £ En = AL o
D =

Lt Lt Lt ¥
1.z71 1.z1 1.z1 |

from interpolator

Saturation 0.75 Discrete Filter Discrete Filter! Discrete Filter2 Saturation 5-bit Qutput of modulater
Quantizer

Figure 3.6: Simulink model of a third order >A modulator

In the third order modulator, the transfer functions are described by the following equations’:

Si(z)= U - (62)
NTF(z)=,§8 =(1-z"") (63)

The SNR of a third order modulator is given by the following equations, using the transfer functions
mentioned above and following the same analysis as for the 1st order modulator:

|NTF(z>|=[2sin<’}i>] (64)

af 328z 1\
P= ffﬂs PN (F)Pdf = IET[%m(f)] df === (OSR) (65)
pS:A2822N (66)

The maximum theoretical SNR is calculated to be:

P
SNR, . —1010g(P) 6.02N—76+70log (OSR) (67)

e

The advantage of the noise shaping and the oversampling is the increase of the SNR. Taking N=5 for
(67) the SNR is reduced to:

SNR=—45.9+70log (OSR) (68)

We consider that the input signal of WIDTH bits takes both positive and negative values. This signal is
driven through two integrators and one delayed integrator. The output signal is then quantized to 5 bits.
The feedback we need in order to make the subtraction is WIDTH-1 bits, so we shift WIDTH-6 bits the
output when assigning it to the feedback.

31.3 The problem of stability

Higher order modulators suffer from instability problems because of the overload of the quantizer. In
high order modulators, the input range must be a few dB below the full scale range of the feedback
DAC.

1 In order to maintain the specified signal transfer function, we place as showed in Figure 3.6, two integrators
(1/(1-z2")) to avoid having a transfer function like z3.

Page 49 of 75

3.1.4

2/ Modulator

It is obvious that when the input reaches the limit of the quantizer, without overloading, the addition of
the quantization error, may cause range overload. This will result a multiple quantizer overload and
because the error feedback will be saturated, the modulator will be saturated too for the rest of its
inputs, especially if the next input is similar to the previous one. For any input u(n) of the modulator with
an M step quantizer, if the following condition is true, the modulator will not experience overload.

max |u(n)|<M+2—||h|, (69)

n

where ||h||1:Z |h(n)| and h(n) is the inverse z-transform of the noise transfer function H(z). For
=0

a third order modulator having a 32 level quantizer, the maximum value of u(n) should be 78% of the
quantizer's full scale value. In Figure 3.7, a 3" order XA modulator is oscillating since the quantizer is
overloaded when an input signal of amplitude 0.9 (instead of a theoretical maximum of 0.78) is
inserted.

third order Sigrma Delta modulator

1 T T ——

0.8 B

06 .

0.4} .

0.2F .

amplitude
o
1

0.2k -

04 N

06 .

08 -

1B I I 1 I 1 1 1 e
] 1000 2000 3000 4000 5000 G000 7000 8000 9000 10000
time

Figure 3.7: Overloaded 3" order A modulator

Idle Tones and dithering

Idle tones are produced, when the modulator's input is a DC signal or a very low frequency signal and
periodic patterns may be present. When this is the case, assuming that the output has a period of n

cycles, there will be an fs/n signal placed over it. At this case a tone is produced at fs/n and

the low pass filter will not suppress the tone, because this signal will remain inside the band of interest.
In our case, where the input is not a DC signal, idle tones can appear when there is a slowly varying
input for a certain period which is the same as having a DC signal and can produce periodic output. In
order to avoid this effect, the use of dithering is recommended.

Dithering is the act of importing some random or pseudo random signal into the modulator before the
quantization stage to avoid idle tone generation. The random signal injected will not alter the
modulator's output, because it will be noise shaped in the same manner as the quantization noise. Its
amplitude will be smaller than the modulator's amplitude.

The generation of pseudo-random signals is based on the use of a Linear Feedback Shift Register
(LFSR). LFSR produces a pseudo random signal which is repeated every 2“-1 where N is the number
of registers been used. LFSR will implement a 35 bit polynomial from which the 19 MSBs will be fed to
the output. By implementing a 35 bit polynomial, we get larger appearance sequence of the random
signal than having a 19 bit polynomial. Figure 3.10 shows the amplitude of dither compared to the input
signal:

Dither signal will therefore not affect the spectral output of the modulator since the dither signal is also
noise shaped. If the dither has large magnitude it can overload the quantizer resulting in instability.

Page 50 of 75

3.2

rnagnitude responce (dB)

100

a0

2/ Modulator

dither
input signal

1 1 1 1 1 1 1 1 1 1
2030 2032 2034 2036 2038 2040 2042 2044 2046 2048

Figure 3.8: Input-dither signals amplitude relation

MATLAB Simulation Results

To better understand the performance difference when raising the order of a modulator,an example is
illustrated in the following paragraph presenting a first order A modulator and a third order.

In a SIMULINK model, a signal generator is used to produce a sinusoidal signal of amplitude 0.7 and of
frequency Fin=750 Hz. The signal is then inserted into a zero order hold block, to virtually upsample
the signal up to OSR*Fs with Fs=6000 Hz and OSR=256. After the integration the signal is driven into
a saturation block which keeps the input level of the quantizer saturated between -1 and 1. The
saturation is necessary due to the large gain of the transfer function. The quantizer has 5 bits (32
levels). Figure 3.9 Shows the performance results:

first order Sigma Delta modulator third order Sigrma Delta rodulator

T T T 200 T T T T T T T

180+ B

magnitude responce (dB)

00 1 1 1 1 1 1

1
5 10 15 0 2 4 5 8 10 12 14 16
Freguency (Hz) w1’ Freguency (Hz) &

Figure 3.9: Magnitude response of a first and third order >A modulators

Figure 3.9 illustrates the improvement of the SNR when the order of the modulator is increased. If we
take a closer look at Figure 3.9 we will see that the quantization noise power of the third order
modulator is very small in our area of interest (up to 1KHz) in contrast with the first order. Besides,
equation (68) verifies the expected SNR performance with the use of a third order modulator and a 5-
bit quantizer.

Page 51 of 75

2/ Modulator

input output
1 F T T = T
08 1 ok -
06 B
0.4F B sl
02F B
Z qf 1 £
g g
= 02t g =
04F § st]
06k i
08t -10F a
-1 i 1 1 1 1 1 1 1 1 1 Il 1 1 1
0 10 20 30 40 a0 &0 4000 6000 8000 10000 12000 14000
time tirme
Figure 3.10: input and quantized output of a sinusoidal signal
3.3 H/W Implementation
This chapter will present the implementation considerations of the XA modulator block. RTL
architecture will be presented along with 1/O interfaces, block diagrams and design details.
3.3.1 Procedural diagram

i_dither_enable

The ZA modulator is composed of two basic sub-blocks as shown in Figure 3.11. The first sub-block is
the integrator and the second sub-block is the delayed integrator. The quantizer block actually
truncates the signal and holds the 5 MSBs therefore it will be not considered as a separate block from
the top level design. These 5 bits are shifted and sign-extended. Before the output of the modulator
enters the quantizer, the output of the dither block is added. If i_dither_enable is set to '1' then dithering
is enabled, otherwise the dither block output is set to zero and the modulator operates as normal.

i_irp_sd_data[23:0]
Lirp_sc_datalsS-aly

i_dither_enable
DITHER

o,

DELAYED
INTEGRATOR

lo:vzhewp o

INTEGRATOR INTEGRATOR

o_int1_data[24:0]
i_int1_data[24:0]

lo_int2_data[24:0
015} int2_data[24:0]

i_int1_data[24:0] dint_dith out23:0) o ANTIZER qu?;v:talout o_sd_dwa_data[4:0]

i_dint_data[24:0]
o_dint_data[24:0}

feedback [24:0] sign 000.0

Figure 3.11: >A MODULATOR Procedural Diagram

In Figure 3.12 the I/O block diagram of the modulator is presented.
The detailed pin list of the A modulator block is shown in Table 3.1.

Page 52 of 75

2/ Modulator

SD MODULATOR
clk clk

0 >
rstn p rst_n

Lirp_sd_data[23:0] i irp_sd_data[23:0]
i_dither_enable

i_dither_enable

) 4

d_dwa_data[4:0
o_sd_dwa_data[4:0 o_sd_dwa_data[4:0] >

Figure 3.12: %A MODULATOR Block Diagram

Signal /10 Description
Clock & reset ‘
clk in | Master Clock at 256Fs
rst_n in Active low asynchronous reset
CONTROL |
i_dither_enable in | External, Synchronized from upper level

Interpolator stage interface ‘

i_irp_sd_data [23:0] in Input data from interpolator

Internal DAC interface ‘

0_sd_dwa_data [4:0] out Output data to DWA block

3.3.2

Table 3.1: XA MODULATOR Block Pin List

Overflow Detection

Before continuing to the description of the implementation of the A modulator, a critical issue
concerning overflows has to be presented. For signal handling, a two's complement representation is
considered. As far as additions and subtractions are concerned, overflow detection should be
incorporated. The additional logic used to detect an arithmetic overflow is to perform a XOR operation
between the last two carry bits of the adder. If the result of the XOR gate is '0', no overflow occurred,
otherwise if the result it is '1' an arithmetic overflow occurred. When an overflow occurs, the adder
outputs a result, so that the modulator continues to operate normally.

The approach is to detect if the overflow is either positive or negative. If the overflow is positive then
the last two carry will be “017, if the overflow is negative there will be “10”. For the first case the result
will be the maximum positive number which in our case is “0111...1" and for the second case
“1000...0". Thus, we can assure that the output of the adder is the closest one to the number expected.

Also, the stability of the modulator has to be taken into consideration. Therefore a saturation occures
before the input signal enters the modulator. The maximum value of the input signal must be of 75% of
the total input range according to the stability theory and equation (69)

Page 53 of 75

2/ Modulator

3.3.3 Integrator sub-block
Signal /10 Description
Clock & reset ‘
clk in Master Clock at 256Fs
rst n in Active low reset synchronized from upper level

Input interface

i_int_data [24:0] in Input data
Output interface

o_int_data[24:0] out Output data
Table 3.2: Integrator sub-block Pin List

i_int_data[24:0] o_int_data[24:0]

[0:v2lp 1P

All registers

are reset to 0x0
upon reception of
synchronized rst_n

Figure 3.13: Integrator sub-block Interface Diagram

Description

The integrator sub-block is composed by a D flip-flop, an adder and a multiplexer. The input data is
summed with the previous input delayed data and are driven through the multiplexer. The timing
diagram of the integrator sub-block is given below in Figure 3.13

Adder functionality

The adder sub-block of the integrator has to take into account an arithmetic overflow in the two's
complement representation. In order to allow overflow detection, the adder makes an XOR operation
between the last two carry bits. If the XOR result is 0 (1 XOR 1, 0 XOR 0) there is no overflow,
otherwise if the XOR resultis 1 (1 XOR 0), overflow is detected.

When an overflow occurs, the adder has to decide whether it was a positive or a negative overflow. If
the summed numbers exceed the maximum positive value of the adder (01111...1) then the last two
carry bits are “01” and when the added numbers exceed the maximum negative value (10000...0) the
last two carry bits are “10”. In case of a positive overflow, the maximum allowed positive value is
assigned to the result whereas in the case of a negative overflow, the maximum negative allowed
value is assigned to the result.

Page 54 of 75

2/ Modulator

[24:0]

o_data

i_data_A[24:0] result[24:0]
FULL
ADDER | ..
i_data_B[24:0] carry(24)

oL
L0

All registers

are reset to 0x0
upon reception of
synchronized rst_n

1000...0 0111..1

Figure 3.14: Adder sub-block Interface Diagram

3.3.4 Delayed Integrator sub-block

Signal /10 Description
‘ Clock & reset ‘
clk in Master Clock
rst_n in Active low reset synchronized from upper level
‘ Input interface ‘
i_dint_data [24:0] in Input data

‘ Output interface ‘
o_dint_data[24:0] out Output data
Table 3.3: Delayed Integrator sub-block Pin List

. D Q o_data[WIDTHO]
i data[WIDTH.0]

All registers

are reset to Ox0
upon reception of
synchronized rst_n

Figure 3.15: Delayed Integrator sub-block Interface Diagram

Description

The Delayed Integrator sub-block, is composed by a D flip flop, a multiplexer and an adder as shown in
Figure 3.15. The basic functionality of this sub-block, is to sum the input data with the output data and

delay them through the D flip flop. The same architecture described previously concerning the adder
overflow is also applied to the adder of the delayed integrator.

Page 55 of 75

2/ Modulator

3.3.5 Dither sub-block

Signal /10 Description
Clock & reset
clk in Master Clock
rst n in Active low reset synchronized from upper level
CONTROL
i_dither_enable In External, Synchronized from upper level

Output interface

o_dither[24:0] out Output data
Table 3.4: Dither sub-block Pin List

The following block implements the Fibonacci polynomial x*° + x* 4+ x® 4+ x¥+1

D Q%D ol—p o—p o}—fp ol—p o All registers
35 34 33 32 31 30 W are reset to 0X1
I o upon reception of
= =) >— e % > ol o a synchronized rst_n

29 28 27 26 —‘

25 24 23 22 21 20 19 18 17

BjeUgIEOUCO Jiq

puexa ubis

Figure 3.16: Dither sub-block Interface Diagram

Description

The Dither sub-block is composed by 35 registers (D flip-flop). The output of each register is
connected to the input of the next register. However, registers 34,28 and 27 get their output through an
XOR gate connected with the input of the first register. Thus, a pseudo random number generator is
created whose 35 bit pattern is repeated after 2*°-1 cycles. From the 35 bits of the output, the 19 LSB's
are selected. This 19-bit signal is sign extended from 19 bits to 24 and sent to the input of the
modulator. If the i_dither_enable signal is set to '0' the dither sub-block does not produce any output
and the o_dither signal is set to zero. Otherwise, dither is enabled and the output generates random
signals. Table 3.5 shows an example of the dither block output.

Page 56 of 75

3.4

oooo
oo

Signal
Generator

i_dither_enable

o_dither

0000000000000000000000111

0000000000000000000000011
0000000000000000000000001
0000000000000000000000000
0000000000000000000000000
1111111000000000000000000
1111111100000000000000000

©O O O O O 0o o O =~ O O O]

1111111110000000000000000
1111111111000000000000000
1111111111100000000000000
1111111111110000000000000
1111111111111000000000000

Table 3.5: Dither block output example

Verification plan

The implementation of the A modulator block is followed by the verification of the results produced.
The verification procedure is implemented, as in the interpolator block, with the use of the fixed point
SIMULINK model provided.

The procedure requires for both the RTL and the MATLAB models, to receive the same input. After the
simulation ends, the output files of the Modelsim model and the SIMULINK model are compared with
the KDiff3 tool. If the files match, the RTL follows the MATLAB model of the modulator.

The fixed point SIMULINK model of the ZA modulator block is depicted in Figure 3.17. The simulation
is performed without the use of the dither block because it is difficult to be simulated in MATLAB and
give the exact same results with the Modelsim.

Zero-0rder
Hold

Convert

Data Type
Conversiont

In1outl

—p sd_in

To Workspacel

) 4

InterpoTator

IntegerDelayl

2/ Modulator

> 19] sd_out

A\ 4

Integer 0 elay2

IntegerDelay

To Workspace?

Vy sVttt
<18

3rd orderSigma Delta Modulatorincorporating 5-bitDAC

Figure 3.17: Fixed point model of ZA modulator

y=Quc
Ey=Eu

Shift
Arithm eticl

Page 57 of 75

3.5

2/ Modulator

References

[1] Delta-Sigma Data Converters: Theory, Design and Simulation, Steven R. Norsworthy, Richard
Schreier, Gabor C. Temes, First edition, 1996, p: 309-316

[2] Data Converters, Franko Maloberti, First edition, 2007, p: 1-73, 253-298
[3] Analog Integrated Circuit Design, David Johns, Ken Martin, First edition, 1996, p: 531-551

[4] A Multibit Delta-Sigma Audio DAC with 120dB Dynamic Range, Ichiro Fujimori, Tetsuro Sugimoto,
IEEE Journal of Solid-State Circuits, VOL.35 NO 8, August 2000.

[5] A 14-bit, 10-Msamples/s DAC Converter Using Multibit ZA modulation, Katayoun Falakshahi, Chih-
Kong Ken Yang, Bruce A. Wooley, IEEE Journal of Solid-State Circuits, VOL.34, NO 5 May 1999.

Page 58 of 75

4.1

411

Data Weighted Averaging

Data Weighted Averaging

The use of a multibit XA modulator implies the use of an internal multibit DAC. This component
whether implemented with resistors or capacitors exhibits non-linear characteristics because of
mismatch. This chapter describes the theory and analysis of different dynamic element matching
techniques that are used to cope with the problem. The different algorithms are explained and the Data
Weighted Averaging Algorithm that has been finally chosen is presented along with theoretical and
simulation results.

DWA theory

Internal DAC topology

A digital to analog converter outputs an analog signal A that is related with the digital input D through
equation (70). An appropriate value for A is chosen depending on the digital input. In practice thisa D
is a single number without dimensions, a sets the range of A.

A=aD (70)

Considering that a can be a current (similar with voltage or charge) quantity, Irer for example, the
analog output can be expressed as:

A=1 pyp D (71)

The digital input fed to the converter can be either in binary, thermometer or other suitable format as
shown in Table 4.1.

Decimal 0 1 2 3
Binary code 00 01 10 1

Thermometer code 0000 0001 0011 0111
Table 4.1: formats of DAC conversion

In the binary format an m-bit binary number D, _,D, _,...D, can be represented in decimal as

D, 2" '+D, ,2"*+..+D,2° . In the thermometer code the decimal value indicates the
amount of consecutive ones.

These formats are useful when current-steering DACs are examined. The major distinction is made
between binary and thermometer current steering DAC. In order to choose the appropriate topology,
we will present two of the most basic metrics concerning the static linearity of a converter. The
Differential Nonlinearity (DNL) and the Integral Nonlinearity (INL) are the metrics that will be discussed.
DNL is the maximum deviation in the output step size from the ideal value normalized to one LSB. On
the other hand, INL is the maximum deviation of the input-output characteristic from a straight line
passing through its end points. These two metrics are useful to measure the monotonicity of the
converter. In general the monotonicity is guaranteed when INL is between +0.5 LSB. In Figure 4.1
there are shown the INL and DNL metrics in the input-output characteristic of a signal.

Page 59 of 75

Data Weighted Averaging

Analog
Output

Digital
Input

Figure 4.1: Input-output diagram

]

I

Rﬁ nn KW ‘Kﬁ Rﬁ kﬁ
I | I ; I N
|2=ﬁi: =D ! = ZOI%E: =210 | k=2 |
I | I [I
| I] | I
| | I | |
= | = | = | =1 =1
1 | | | |
| | [| |
¢ s s s s
D> Dy D4 D, Dk
THERMOMETER CODE BINARY CODE

Figure 4.2: DAC topologies

The topologies that can be used are:
Binary topology
The most simple architecture for digital to analog conversion is based on the binary topology shown in
Figure 4.2. It uses K current sources and each source steers different current. Each current source is
controlled by Di that corresponds to the i-source. The output current is the summation of all the
currents depending on the value of control signal Di. The output current is given by:

1,,=D2%1+D,2"1+D,2* I+..+D 2" "I (72)

out
where Di may receive the values 0 or 1.

This topology is simple and generic since it has many variations (resistor ladder, R-2R et.c).

On the other hand, when using a binary code topology the DAC suffers from nonlinearity. It is possible
that for a given transition (of the type 01111..1 — 1000...0) all the current sources are switched on or
off simultaneously and this may cause unwanted glitches. This strongly affects the DNL performance.

Thermometer topology

Thermometer topology, shown in Figure 4.2 is a similar approach differing to the amount of current that
each current source steers. Similar to the binary topology, in the thermometer architecture, the
thermometer code drives N current sources, where N is the representation of the N-bit binary signal.
Each current source drives equal amount of current I, and the output current of the DAC is the
summation of these currents.

The thermometer code topology overcomes the problem of differential non linearity because the

Page 60 of 75

41.2

Data Weighted Averaging

analog output increases or decreases by one current source each time. A DAC using thermometer
code must have a total of 2¥' current sources in order to represent all the possible codes. The price
paid for this type of topology is the decode logic added on the digital part of the DAC.

Dynamic Element Matching Algorithms

In a XA DAC where multibit quantization is used, non-linearity of the internal DAC can severely
degrade the overall DAC performance.

These errors are usually caused by the element mismatch such as mismatch on capacitors, resistors
or transistors due to random variations or gradients. These random errors can be eliminated by
applying different algorithms or circuit topologies. In recent design the use of a dynamic element
matching algorithm is preferred. Some of them are presented in the following sections.

Butterfly randomization

One of the simplest methods of element matching is the randomization of the element that will be
selected. By this method, the elements that will be selected are independent by the time nor the input
signal. The basic principle of this approach is that the mismatch error at one time will not be the same
with the mismatch error at any other time. Therefore the mismatch error will be converted into a white
noise.

Random element matching can be performed by using a butterfly network by coupling the inputs to the
outputs, having at least a number of butterfly stages equal to the number of the bits of the converter.
The input of the network is the thermometer code of the signal. By opening or closing the switch of
each stage, the bit follows a path which ends at the current source that the bit will be represented. The
switches are set by a random number of M bits where M is the number of stages in the network This
type of element matching is not preferred for large thermometer codes because of the complexity
needed for the network. Also when the number of stages is big, a more complex randomizer will be
needed (for example LFSR) which adds more complexity. A three stage butterfly network is depicted in
Figure 4.3 with 8 elements and three bit control.

BO B1 B2
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0o

Figure 4.3: 3 stage Butterfly network
It can be proved that the Butterfly randomization algorithm has a theoretical performance given by
equation (73).
M

SNR=—"—"— 7
OSR-o, (73)

Where M is the number of elements used, OSR is the oversampling ratio of the converter (it is set to 1
if the sampling is performed in Nyquist rate) and oe is the variance of the mismatch error.

Page 61 of 75

Data Weighted Averaging

Individual Level Averaging

Individual level averaging (ILA) method is aiming at using each element with equal probability for each
input code. This algorithm is using a table of indexes for each input code Ix. For each input code K, the
element Ik Ik +1,... I« tK-1 is used. If the index exceeds the number of the elements, the indexing
begins from the beginning of the elements.

There are two methods of selecting the elements according to each indexes value, the rotation and the
addition.

The rotation approach increases the index of the code K, Ik by one each time the code occurs and the
addition method increases the index by K. The arrays on the Table 4.2 below present the index values
and the element selection according to the input values for the rotation method and Table 4.3 for the
addition method.

Time
— input Indexes Element
Index
b L Ll sl Iz 12 3 45 6 7
1 5 11111 11 ¢ o © @ @
2 6 111 1/2 1 1 o o @ © @ @
3 3 111 12 21 o o @
4 5 11 2 12 21 o o 0 o
5 2 11 2 13 2 1 o o
6 3 1.2 2 1,3 2 1 o o o
7 6 1.2 3 1,3 2 1 e o 0o 0 0 o
8 5 1.2 3 1,3 3 1 e ©6 0 0 o
9 5 12 3 114 3 1 o o o o o
Table 4.2: ILA rotation method
Time
— input Indexes Element
Index
lh 2 L Ll k6 k1 2 3 4 5 6 7
1 5 11 111 11 o o © o @
2 6 11 116 11 ¢ © © © @ @
3 3 1T 1 116 7 1 ¢ e @
4 5 1T 1 41 6 7 1 ¢ o @ o o
5 2 11 4 1 4 7 1 o o
6 3 1.3 4.1 4 7 1 e o o
7 6 13 71 4 71 o o © o @ °
8 5 1.3 71 4 6 1 o e o o o
9 5 13 711 31 o o © o @

Table 4.3: ILA addition method

The final outcome of the ILA method is that after a certain amount of time, all the sources are used
equal times.

Page 62 of 75

Data Weighted Averaging

Data Weighted Averaging

The third approach of the dynamic element matching algorithms is the Data Weighted Averaging
(DWA). The basic idea of the DWA algorithm is that it uses only one index which is updated with the
addition of the new input code to the context of the index register. The index indicates the position of
the first bit of the input data. Therefore as can be seen in Table 4.4 the thermometer code stream
occupants the bits of the output beginning from the next bit of the previous output last bit.

The advantage of the DWA algorithm against the ILA is that it is faster thanks to the usage of only one
single index instead of K. Table 4.4 shows the operation of the DWA algorithm.

1;:3:; input index Element

1 2 3 4 5 6 7
1 5 1 e o o o o
2 6 6 e o o o o o
3 3 5 e o o
4 5 1 e o o o o
5 2 6 o o
6 3 1 e o o
7 6 4 o o e o o o
8 5 3 e o o o o
9 5 1 e o o o o

Table 4.4: DWA algorithm

It can be shown that a first order noise shaping of the mismatch error is performed using the DWA
algorithm. We assume that the value of each element is X,=X+0JX, , the summation of the
mismatch error 8X_i and the mean value of the elements. The mean value of the mismatch error is
assumed to be 0.

M

D 0X,=0 (74)

1

Using the mismatch error that corresponds to each current source as a random variable, we can define
(75) and (76).

i+k—1
A(k)=D 6X, fori+tk—1<M (75)
M i+k—1-M
A,(k)=),6X,+ D, 60X, fori+tk—1>M (76)

i 1
The equations above describe the total error produced by the elements for converting an input number
k while the index points at i.

We can observe that the mismatch error tends to 0 when all the current sources have been used. We
use the term cycle to refer to this. For sake of clarity the following example is presented.

Consider a DAC using 8 elements for the analog conversion. Also suppose an input sequence of the
numbers 3,4,3. Figure 4.4 displays the element usage according to the DWA algorithm.

Page 63 of 75

Data Weighted Averaging

Figure 4.4: DWA example using 8 elements

The noise injected at the first input is 4,(k,)=0X,+0X,+5X, , at the second input is
A,(k,))=0X ,+0X,+5X +X, . By splitting the mismatch noise of the third input into
A" (ky)=0Xg and 4,"'(ky)=0X,+0X, we have for the first cycle a total mismatch error of

A (k) +4,(k,)+A4"5(k;)=0 (77)

Expressing the mismatch error of the second input as a function of the other two we have:
Ay(ky)==[4,(k))+4"5(k;)] (78)

Since, k3 is the code corresponding at time n, k2 corresponds at time (n-1) and code k1 corresponds
at time (n-2) we can write in the z-domain we can convert the total mismatch error

—z A, (k) (1= 2)+ 4, (k)(1-27") (79)

Equation (79) shows the first order noise shaping that takes place during DWA algorithm. This can be
applied to the rest of the inputs by separating the mismatch error when needed in order for the total
mismatch error of each cycle to become zero.

The DWA method is simulated in the MATLAB-SIMULIKNK environment for the A DAC giving the
following results in the frequency domain.

output with DWWA,
250 autput without DA, M
Ideal Sigma Delta output

200 .

150 .

100

magnitude respance (dB)

S0
Wrw b gl gy J..m

n' .
wwwmmn WH"”\ i

1
] 1 2 3
}{1D

Frequency (sz

Figure 4.5: DWA method contribution in magnitude respoce

In Figure 4.5 the output of the model is displayed. In the SIMULINK model a mismatch error is added
at the output of the ¥A modulator resulting the magnitude response displayed with the red line. The
magnitude response of the A modulator without the mismatch error is displayed with the green line

Page 64 of 75

Data Weighted Averaging

whereas the output of the mismatch error shaped signal using the DWA method is displayed with the
blue line. It is obvious that the DWA algorithm eliminates the errors added by the element mismatch.

The SIMULINK model is displayed in Figure 4.6 and Figure 4.7. The model uses the dwa function in
which a mismatch error is added in each element. Also in the dwa function the DWA algorithm is
performed which uses an index pointing the starting element which will represent the input in
thermometer code as described previously.

1

1
ftDelay

WATLASB 1 I%{)
F) /Z\:
@mz .I ’-unruun E—— -

DEM index

Figure 4.6: DWA model

out yout

>(In10ut1 P-|1n2 Output of DWA
index y1 I
Sigma Dela n
Converter index
DWA
MATLAB
Function y
Modeled mismatch Output without DWA
of Current sources

. sdout

To Workspace5

Figure 4.7: Topology of model with and without using DWA algorithm

Page 65 of 75

4.2

4.3

431

ZA output[4:0]

Data Weighted Averaging

Architecture

The section that follows will present the basic concept principles of the reasons that lead us to the
specific architecture.

DAC Topology

The topology that will be used in the converter will be the one described in the previous sections and is
composed by a thermometer code translator and a block that will perform the dynamic element
matching. As already described, this architecture is better because the current sources that will be
used will be equivalent which leads to lower element mismatch errors.

The Dynamic Element Matching algorithm that will be used is the DWA algorithm. Because the output
of the ZA modulator is a 5 bit signal it will be translated to a 32 bit signal after the thermometer code
block.

Figure 4.8 displays the topology of the DWA block

parallel element input[31:0]
THERMOMETER DWA
CODER

Figure 4.8: Topology of DWA block

The output of the DWA block is the input of each parallel element that will perform the analog
conversion.

H/W Implementation

In this chapter there will be presented the basic principles followed in the implementation of the DWA
block along with 1/0 description and desgn considerations.

Procedural diagram

Figure 4.9 shows the procedural diagram of the DWA block. The DWA algorithm is implemented
without the use of internal subbllocks because of its small size.

o_dwa_data[31:0]| °-dwa data[31:0]

DWA
i_sd_dwa_data[4:0]

i_sd_dwa_data[4:0]

Figure 4.9: DWA Block Procedural Diagram

Figure 4.10 displays the DWA block interface diagram.

DVVA
clk

p clk
rst_n

pirst n

1:
o_dwa_data[31:0] | -dwa_datal31:0]

i_sd_dwa_data[4:0]

P i_sd_dwa_data[4:0]

Figure 4.10: DWA Block Diagram

Page 66 of 75

Data Weighted Averaging

Table 4.5 lists the DWA block pin list.

Signal 110 Description
Clock & reset
clk in Master Clock
rst_n in Active low reset synchronized from upper level

ZA modulator interface
i_sd_dwa_data[4:0] in 5 bit input data from modulator

Analog Converter Interface

o_dwa_data[31:0] out | 32 bit signal driven to the current sources of the analog converter.
Table 4.5: DWA Pin List

Description

PrT1[31:0]

o_dwa_data[31:0]

[o:L€lLida

DPrT[31:0] ~_
-

‘ THERMOMETER ‘ ‘ THERMOMETER ‘

Figure 4.11: DWA Interface Diagram

The DWA block as explained in the theory part, translates an input sequence of 5 bits into a 32-bit
thermometer code sequence indicating the position of the representation elements.

In order to implement the DWA block, we first have to modulate the input data to an unsigned signal
because the thermometer coding does not support signed representation. Therefore we add 15 at
each input and the DAC output range becomes 0 up to 32.

At this point it is important to mention that when an rst_n signal is received, the dwa_data signal
becomes 15 since the zero value is represented as 15 in the new output range. The other elements of
the DWA block are not affected by the reception of a reset because it will affect the output sequence.

The dwa_data signal is summed with the delayed pointer signal, DPr, and assigned to the pointer
signal Pr. To receive the DPr we connect the Pr with a D flip-flop.

The summation is performed by a full adder which outputs the sum of the dwa_data and DPr as well as
the last carry of the operation in the cout signal.

The Pr and DPr signals are then translated in thermometer code and assigned to the DprT and PrT
respectively . After the pointer translation a logic equation is performed to calculate the final output of
the DWA block. The equation is described above.

o _dwa_data=(PrT+DPrT)-cout+(PrT-DPrT)-cout (80)

Page 67 of 75

4.4

4.5

Data Weighted Averaging

Verification plan

As a result of the fact that the DWA block does not alter the output, instead it removes the mismatch
error involved in the analog conversion, the verification process can be held by the following simple
procedure:

A testbench is created which stores the DWA output into a file. The output of the DWA is stored in
binary string format. A MATLAB script file loads the output file and transforms it to the original input of
the DWA block (a quantized signal ranging from -15 to 15). Then the KDiff3 application is used to
compare the MATLAB transformed output file with the original MATLAB output file of the ZA modulator.
If the files match the DWA block performs the proper calculations.

References

[1] Delta-Sigma Data Converters: Theory, Design and Simulation, Steven R. Norsworthy, Richard
Schreier, Gabor C. Temes, First edition, 1996, p: 247-265

[2] Data Converters, Franko Maloberti, First edition, 2007, p: 374-391

[3] A Multibit Delta-Sigma Audio DAC with 120dB Dynamic Range, Ichiro Fujimori, Tetsuro Sugimoto,
IEEE Journal of Solid-State Circuits, VOL.35 NO 8, August 2000.

[4] A 14-bit, 10-Msamples/s D/A Converter Using Multibit ZA modulation, Katayoun Falakshahi, Chih-
Kong Ken Yang, Bruce A. Wooley, IEEE Journal of Solid-State Circuits, VOL.34, NO 5 May 1999.

[5] Principles of Data Conversion Systems, Behzad Razavi, IEEE Press p. 45-63.

[6] High-Order Multibit Modulators and Pseudo Data-Weighted-Averaging in Low-Oversampling AX
ADCs for Broad-Band Applications, Anas A. Hamoui, Kenneth W. Martin ,IEEE Transactions on
Circuits and Systems-I: Regular Papers, vol 51 No 1, January 2004.

[7] Switching Sequence Optimization for Gradient Error Compensation in Thermometer-Decoded DAC
Arrays.

[8] A Low Complexity Data Weighted Averaging (DWA) Algorithm Implementation, Ramon Lopez-
Holloway, Miguel Garcia, Instituto National de Astrofisica Optica y Electronica, Luis Enrique Erro No.1,
Puebla, Mexico.

Page 68 of 75

Top level integration and Synthesis

Top level integration and Synthesis

5.1 Top Level Integration and results
The separate components of the DAC are connected inside a top level block. The sub-blocks
composing the DAC are the Integrator, the *A modulator and the DWA block. Their functionality is
described in the previous chapters. The interface diagram of the top level is shown in Figure 5.1:
CONTROL
i_dither_enable
DAC o_sd_dwa_data[4:0]
INTERPOLATOR ZA MODULATOR DWA
i_dither_enable .
o_irp_sd_data[23:0] i_irp_sd_data[23:0] 0_dwa_data[31:0] o-dwa_dataT0l
i_irp_data[23:0] i_irp_data[23:0] o_sd_dwa_data[4:0] i_sd_dwa data[4:0]
i_irp_valid i_irp_valid
Figure 5.1: Top level DAC Interface Diagram
The outputs of the DAC are the 5-bit quantized output of the modulator and the 32-bit thermometer
code output of the DWA block. The top level block includes in its output the modulators output in terms
of easier simulation and verification.
The output of the DAC is given in Figure 5.2 below, verifying the expected performance. The input
signal is a sinusoidal signal at 750Hz with an initial sampling rate of 6kHz.
DAC output magnitude responce DA output apmlitude responce
120y output with DWWA, - output Wiﬂ; Difa,
- output without DWAA, 1a output without DA,
o
= aof : 5
E"— BOF g 0
: :
£ a0t
& -5
=
20t
-10
D L
0 5 10 15 4000 EO00 8000 10000
Freguency (Hz) N 105 tirne
Figure 5.2: DAC amplitude and magnitude responce
As we can see, the noise of the signal is shaped at very high frequencies resulting in high SNR in the
band of interest.
511 Verification Plan

The verification of the top level is made by comparing the RTL results with the MATLAB results. A test
bench is created (dac_tb.vhd) which receives its input from a file already produced by a MATLAB
script. The data are processed by the RTL and the test bench outputs two files: the ZA quantized
output of 5-bit length and the DAC output of 32-bit length using thermometer code arithmetic. These
two files are then processed by a MATLAB script and compared with the KDiff3 application with the
SIMULINK fixed point model outputs.

Page 69 of 75

Top level integration and Synthesis

5.2 Synthesis results

The synthesis is performed in the Altera Quartus |l environment. The synthesized file is the top level
block of the converter. For the synthesis purpose, a clock oscillator is inserted in the top level design.
The results of the synthesis can be summarized in the following metric table:

Results Metrics
Total logic elements 2,846/18,752
Total combinational functions 2,357/18,752
Dedicated logic registers 1,702/18,752

Total pins 65/315

Total memory bits 0/239,616
Embedded Multiplier 9-bit element 21/52
Total PLLs 0/4

Table 5.1: Synthesis results summary

Page 70 of 75

Conclusion

Conclusion

The design and implementation of the XA DAC, was a great challenge due to the large number of
considerations that had to be taken. Several steps where made until the completion of this thesis.
Some of them where the study of the theory involved in the £A architecture, the design of theoretical
models in SIMULINK/MATLAB, the implementation in VHDL of the theoretical model, the verification of
the RTL functionality and its synthesis.

The output of the RTL coincides with the output of the SIMULINK resulting the expected performance.
The implementation of the converter was made according to the initial specifications. Although this is a
very good approach of the converter, several modifications could be made. Some of them are
described in the following paragraphs.

The interpolator is designed so the output signal would have a passband range of 1KHz. The filters
inside the interpolator could be scaled by changing the sampling rate of the initial signal. Also, the
coefficients of the filters in the current implementation are hard wired resulting in bigger area inside the
IC. A memory or a register file could be used instead, to store the filters coefficients.

As far as the ZA modulator is concerned, other implementations could be performed by changing the
architecture of the modulator (MASH, different approach of the error feedback loop) and keeping the
same characteristics.

Finally the internal DAC topology could be different by choosing the binary code or other approaches.
As for the thermometer code topology, the Dynamic Element Matching algorithm is an option with
many different implementations to choose.

Finally the synthesis results are satisfactory according to the percentage of the used sources of the
FPGA.

This implementation could also be extended furthermore. The most significant extension that could be
made, is the connection of the FPGA with an analog part. The analog part could be composed by a set
of current sources and an analog filter.

Page 71 of 75

Glossary

7 Glossary
D L
DAC: Digital to Analog Converter LPF: Low Pass Filter
DEM: Dynamic Element Matching LSB: Less Significant Bit
DWA: Data Weighted Averaging LFSR: Linear Feedback Shift Register
DNL: Differential Nonlinearity M
F MASH: Multi-stage noise-shaping
FIR: Finite Impulse Response MSB: Most Significant Bit
FPGA: Field Programmable Gate Array 0]
FSM: Finite State Machine OSR: Oversampling Ratio
H R
HB: Half Band RTL: Register Transfer Language
I S
IIR: Infinite Impulse Response 2A: ZA
ILA: Individual Level Averaging SINC: Sinus Cardinal
INL: Integral Nonlinearity SNR: Signal to Noise Ratio

Page 72 of 75

8

Appendix A

Appendix A

In this appendix, the content of each source code file is mentioned

Description

interpolator.vhd
irp1.vhd
irp1_control.vhd
irp1_accumulator.vhd
irp2.vhd

Interpolator

Top level interpolator file

First FIR equiripple filter (IRP1)
FSM of IRP1

Accumulator of IRP1

First Half Band filter (IRP2)

irp2_control.vhd
irp2_accumulator.vhd
irp3.vhd
irp3_control.vhd
irp3_accumulator.vhd
sinc.vhd

FSM of IRP2

Accumulator of IRP2

Second Half Band filter (IRP3)
FSM of IRP3

Accumulator of IRP3

SINC filter

dff_sum_delay.vhd

Delay element of SINC filter

dff_irp.vhd D flip-flop of Interpolator

irp_tb.vhd Test bench of Interpolator
ZA Modulator

sd_mod.vhd Top level ZA modulator file

integrator.vhd
delayed_integrator.vhd
substractor.vhd

Integrator block file
Delayed integrator block file
Substractor block file

dither.vhd Dither block
adder.vhd Adder block
dff_sd.vhd D flip-flop of ZA modulator
sdmod_tb 2A modulator test bench
DWA

dwa.vhd DWA top level file
dff_dwa.vhd D flip-flop of DWA block
adder_dwa.vhd Adder of DWA block
dwa_tb.vhd DWA block test bench

ZA DAC
dac.vhd Top level ZA DAC file
dac_tb.vhd Top level test bench (outputs both quantized output of

2A modulator and thermometer code output of DWA
block)

Page 73 of 75

9

Appendix B

Appendix B

The design and implementation of the ¥A DAC is performed by using the following applications:

Windows XP Professional SP2 Operating System
MATLAB/SIMULINK 7.1

Modelsim SE 6.0

Altera Quartus Il sp1 Web Edition

KDiff3

OpenOffice.org Writer 2.4.0

Page 74 of 75

10 Appendix C

The coefficients of the filters are given in the tables above:

IRP1
coeff0 1173 coeff12 -1094025
coeff1 5824 coeff13 877839
coeff2 11125 coeff14 3328842
coeff3 611 coeff15 3205748
coeff4 -43281 coeff16 -1405278
coeffs -92752 coeff17 -7832448
coeff6 -48522 coeff18 -8889393
coeff7 166304 coeff19 1847042
coeff8 411370 coeff20 23269264
coeff9 293593 coeff21 45105411
coeff10 -438312 coeff22 54350989
coeff11 -1298726

IRP2
coeff0 581 coeff10 617383
coeff2 5320 coeff12 -1465185
coeff4 -26186 coeff14 5226797
coeff6 91371 coeff15 8388608
coeff8 -254616

IRP3
coeff0 6357 coeff6 -1172842
coeff2 -63943 coeff8 5101847
coeff4 322885 coeff9 8388608

Appendix C

Page 75 of 75

	1Introduction
	1.1State of the Art
	1.1.1Interpolation
	1.1.2ΣΔ modulation
	1.1.3Dynamic Element Matching

	1.2Top level architecture
	1.3References

	2Interpolator
	2.1Interpolation theory
	2.1.1Upsampling
	2.1.2Low pass filtering
	2.1.3Evaluation of different filters
	2.1.3.1IIR
	2.1.3.2FIR
	2.1.3.3SINC filter

	2.1.4Partitioning
	2.1.5Polyphase Architecture
	2.1.6Scaling of Filter coefficients

	2.2Architecture
	2.2.0.1IRP1 Linear Phase Equiripple Low Pass Filter
	2.2.0.2IRP2 Half Band Filter
	2.2.0.3IRP3 Half Band Filter

	2.3MATLAB simulation results
	2.4H/W Implementation
	2.4.1Procedural diagram
	2.4.2Linear phase equiripple filter (IRP1)
	2.4.3Half Band filter (IRP2)
	2.4.4Half Band filter (IRP3)
	2.4.5SINC filter (IRP4)

	2.5Verification plan
	2.6References

	3ΣΔ Modulator
	3.1ΣΔ modulator theory
	3.1.1First order noise shaping
	3.1.23rd order ΣΔ D/A modulator
	3.1.3The problem of stability
	3.1.4Idle Tones and dithering

	3.2MATLAB Simulation Results
	3.3H/W Implementation
	3.3.1Procedural diagram
	3.3.2Overflow Detection
	3.3.3Integrator sub-block
	3.3.4Delayed Integrator sub-block
	3.3.5Dither sub-block

	3.4Verification plan
	3.5References

	4Data Weighted Averaging
	4.1DWA theory
	4.1.1Internal DAC topology
	4.1.2Dynamic Element Matching Algorithms

	4.2Architecture
	4.3H/W Implementation
	4.3.1Procedural diagram

	4.4Verification plan
	4.5References

	5Top level integration and Synthesis
	5.1Top Level Integration and results
	5.1.1Verification Plan

	5.2Synthesis results

	6Conclusion
	7Glossary
	8Appendix A
	9Appendix B
	10Appendix C

