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ψηφιακού μέρους ενός μετατροπέα υψηλής ανάλυσης ψηφιακού σε αναλογικό σήμα. Πιο συγκεκριμένα 
πρόκειται για ένα μετατροπέα, 24-bit με εύρος συχνοτήτων από 0.1 mHz έως 1 KHz με λόγο ισχύος 
σήματος πρός ισχύ θορύβου (SNR) μεγαλύτερο των 120 dB 

Συνήθως,  μετατροπείς  υψηλής  ακρίβειας  συναντώνται  σε  εφαρμογές  ήχου  με  διαφορετικό,  όμως, 
εύρος  συχνοτήτων.  Σε  εφαρμογές  μικρότερης  ακρίβειας  χρησιμοποιούνται  αρχιτεκτονικές 
καθοδήγησης ρεύματος (current  steering)  ή  ανακατανομής φορτίου (charge  redistribution).  Για  την 
αρχιτεκτονική του μετατροπέα προτιμήθηκε η ΣΔ τοπολογία λόγω των πλεονεκτημάτων που έχει σε 
σχέση  με  άλλες.  Η  υψηλή  ανάλυση  μπορεί  να  επιτευχθεί  με  την  αύξηση  του  αρχικού  ρυθμού 
δειγματοληψίας του σήματος εισόδου και τη διαμόρφωση του θορύβου κβάντισης που προστίθεται από 
τη ΣΔ διαμόρφωση. Στη συνέχεια, το κβαντισμένο σήμα οδηγεί έναν εσωτερικό μετατροπέα ψηφιακού 
σήματος σε αναλογικό σήμα λίγων bits. Τέλος, το αναλογικό σήμα φιλτράρεται από ένα χαμηλοπερατό 
φίλτρο έτσι ώστε να ανακτηθεί το αρχικό επιθυμητό σήμα.

Η  υλοποίηση  μιας  τέτοιας  διάταξης  μπορεί  να  χρησιμοποιηθεί  σε  εφαρμογές  όπως  γεννήτριες 
αναλογικού σήματος, μηχανισμούς ανάδρασης για έλεγχο κίνησης ακριβείας π.χ κάποιου ρομποτικού 
βραχίονα καθώς και πλήθος άλλων εφαρμογών. 

Τα βήματα που ακολουθήθηκαν για τη σχεδίαση και την υλοποίηση του μετατροπέα ήταν τα εξής: 
Αρχικά μελετήθηκε η σχετική βιβλιογραφία καθώς και σχετικές δημοσιεύσεις. Στη συνέχεια, με βάση τις 
προδιαγραφές  του  μετατροπέα  καθορίστηκε  η  αρχιτεκτονική  και  δημιουργήθηκε  ένα  μοντέλο  σε 
SIMULINK /MATLAB το οποίο να πληρεί τις απαιτήσεις της σχεδίασης. Έπειτα, γράφηκε ο κώδικας σε 
VHDL (RTL μοντέλο) με βάση το μοντέλο του SIMULINK /MATLAB. Ο έλεγχος για τη λειτουργικότητά 
του RTL έγινε συγκρίνοντας τα αποτελέσματα της εξομοίωσης του κώδικά της VHDL με αυτά του 
SIMULINK/MATLAB. Τέλος, έγινε σύνθεση σε FPGA προκείμενου να επιβεβαιωθεί η σχεδίαση και να 
γίνει  εκτίμηση  της  πολυπλοκότητας.  Παρακάτω  αναφέρονται  συνοπτικά  τα  μέρη  στα  οποία  έχει 
χωριστεί η σχεδίαση.

Ο μετατροπέας χωρίζεται σε δύο μέρη: το ψηφιακό και το αναλογικό. Το ψηφιακό μέρος έχει χωριστεί 
περεταίρω σε τρία εσωτερικά μέρη: τον παρεμβολέα (interpolator), τον ΣΔ διαμορφωτή (modulator) και 
τον αλγόριθμο DWA. 

Ο  interpolator  είναι  το  πρώτο  μπλοκ  και  πραγματοποιεί  υπερδειγματοληψία  στο  αρχικά 
δειγματοληπτημένο  σήμα  στα  6  KHz  κατά  256.  Κατά  την  υπερδειγματοληψία,  δημιουργούνται 
αντίγραφα της εικόνας του φάσματος του σήματος εισόδου στο σήμα εξόδου. Για την αφαίρεση αυτών 
των  εικόνων  χρησιμοποιούνται  χαμηλοπερατά  φίλτρα.  Όπως  θα  γίνει  κατανοητό  στη  συνέχεια,  η 
αρχιτεκτονική  των  πολλαπλών  σταδίων  (multistage)  είναι  προτιμότερη  γιατί  καταλήγει  σε  φίλτρα 
χαμηλότερης τάξης και άρα χαμηλότερης υπολογιστικής πολυπλοκότητας.

Με βάση τα προηγούμενα ο interpolator διαιρείται σε τέσσερα στάδια κάθε ένα από τα οποία περιέχει 
ένα φίλτρο. Τα στάδια που συνθέτουν τον interpolator πραγματοποιούν υπερδειγματοληψία κατά x2, 
x2, x2 και x32 . Προκειμένου το σήμα εξόδου να έχει γραμμική φάση, τα φίλτρα είναι πεπερασμένης 
κρουστικής απόκρισης (FIR).  Πιο συγκεκριμένα στο πρώτο στάδιο χρησιμοποιείται ένα ισοκυματικό 
(equiripple) FIR φίλτρο 44ης τάξης. Στο δεύτερο στάδιο και στο τρίτο στάδιο χρησιμοποιούνται Half 
Band φίλτρα 30ης και  18ης τάξης αντίστοιχα και  τέλος χρησιμοποιείται ένα SINC φίλτρο δεύτερης 
τάξης.  Για  την  ελαχιστοποίηση  των  υπολογιστικών  πράξεων  που  εκτελούνται  στα  φίλτρα 
χρησιμοποιείται η αρχιτεκτονική των πολυφασικών συνιστωσών και η λογική του πολλαπλασιαστή-
συσσωρευτή (MAC).

H έξοδος του intrepolator τροφοδοτείται  στην είσοδο ενός ΣΔ διαμορφωτή 3ης τάξης που είναι  το 
επόμενο μπλοκ. Το σήμα εισόδου του διαμορφωτή είναι 24-bit, ενώ η έξοδος είναι το κβαντισμένο 
σήμα των 5-bit. Η ΣΔ διαμόρφωση αξιοποιεί την υπερδειγματοληψία για να “απλώσει” την ισχύ του 
θορύβου  κβάντισης  σε  μεγαλύτερο  εύρος  συχνοτήτων  και  στην  συνέχεια  να  τον  διαμορφώσει 
κατάλληλα  ώστε  να  βρίσκεται  εκτός  της  επιθυμητής  ζώνης  συχνοτήτων.  Στην  πραγματικότητα, 
πρόκειται για ένα είδος υψιπερατού φίλτρου για το θόρυβο, ενώ το σήμα εισόδου εμφανίζεται στην 
έξοδο με μια μικρή καθυστέρηση.

Για την αποφυγή προβλημάτων αστάθειας που εμφανίζονται σε αυτή την αρχιτεκτονική προτιμήθηκε η 
λύση ενός κβαντιστή πολλών επιπέδων.

Τέλος,  πρέπει  να  αναφέρουμε  ότι  κατά  τη  διάρκεια  της  διαμόρφωσης,  μπορεί  να  δημιουργηθούν 
ανεπιθύμητοι τόνοι στο φάσμα των συχνοτήτων του μετατροπέα που μας ενδιαφέρει. Οι τόνοι αυτοί 
είναι αποτέλεσμα περιοδικότητας στην έξοδο η οποία δημιουργείται είτε με μια σταθερή είσοδο, είτε με 
είσοδο  η  οποία  έχει  πολύ  μικρή  συχνότητα.  Για  να  αποφύγουμε  τη  γέννηση  τέτοιων  παλμών 
προσθέτουμε  στο  σήμα  εξόδου  πριν  το  στάδιο  της  κβάντισης,  ένα  ψευδό-τυχαίο  σήμα  ώστε  να 
αναιρέσουμε  τη  περιοδικότητα  που  εμφανίζεται  στην  έξοδο.  Το  σήμα  αυτό  δημιουργείται 
χρησιμοποιώντας ένα Γραμμικό Αναδρομικό Καταχωρητή Ολίσθησης 35 bit..

Το μπλοκ του διαμορφωτή αποτελείται από δύο ολοκληρωτές που δεν εισάγουν καθυστέρηση στο 
σήμα  εισόδου  και  ένα   ολοκληρωτή  που  εισάγει  έναν  κύκλο  καθυστέρησης.  Η  τοπολογία  του 
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διαμορφωτή  είναι  της  ανάδρασης  του  λάθους  κβάντισης  κατά  την  οποία η  έξοδος  του  κβαντιστή 
εκτεταμένη κατά 19 bit,  προστίθεται  μαζί  με  το  σήμα εισόδου κάθε  ολοκληρωτή.  Στις  αριθμητικές 
πράξεις  του  διαμορφωτή,  χρησιμοποιείται  λογική  πρόβλεψης  υπερχείλισης  ώστε  να  μην  έχουμε 
εισαγωγή λάθους. 

Στο  τελευταίο  στάδιο  του  μετατροπέα,  υλοποιείται  ένας  αλγόριθμος  Δυναμικής  Αντιστοίχησης 
Στοιχείων.  Με  τον  αλγόριθμο  αυτό,  πετυχαίνουμε  το  περιορισμό  του  λάθους  που  εισάγεται  στο 
αναλογικό  σήμα  εξόδου  εξαιτίας  της  διαφοράς  μεταξύ  των  στοιχείων  αντιστοίχησης  (είτε  πηγές 
ρεύματος είτε πυκνωτές) που υλοποιούν το αναλογικό μέρος. 

Ο  αλγόριθμος  που  χρησιμοποιείται  στο  συγκεκριμένο  μετατροπέα,  είναι  αυτός  του  Μέσου  Όρου 
Βάρους Δεδομένων (Data Weighted Averaging). Στον αλγόριθμο αυτό το σήμα εξόδου μετατρέπεται 
από ένα σήμα 5-bit  σε ένα σήμα 32-bit με βάση τη κωδικοποίηση θερμομέτρου. Ο αλγόριθμος αυτός 
δουλεύει  ως εξής:  κάθε φορά που υπάρχει  κάποια νέα είσοδος,  ένας δείκτης δείχνει  τη θέση του 
πρώτου  στοιχείου  που  θα  ενεργοποιηθεί  ενώ  το  πλήθος  των  στοιχείων  εξαρτάται  από  τη 
κωδικοποίηση θερμομέτρου της τρέχουσας εισόδου. Στην επόμενη είσοδο, ο δείκτης δείχνει ως πρώτο 
στοιχείο το επόμενο μετά το τελευταίο στοιχείο της προηγούμενης εισόδου. Με αυτό τον τρόπο το 
λάθος μετά από διαδοχικές εισόδου μειώνεται.

Abstract 

In this thesis, the  design of a ΣΔ Digital to Analog Converter is presented. The concept of the thesis is 
presented, the theory of operation is explained, high level models are developed, the architecture of 
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the digital part and the development procedure is described.

This document has the following structure: In Chapter 1, an introduction to  ΣΔ converters is given. The 
State-of-the-Art of ΣΔ converters is presented and the Top Level Architecture of the DAC is described. 
Chapter 2 contains the signal processing theory of the interpolation block taking into consideration 
performance  specifications,  along with  RTL implementation  and corresponding verification  of  the 
results.  Chapter  3 describes  the concept  of  ΣΔ modulation   along with  RTL  implementation  and 
corresponding verification of the block.. In Chapter 4  the analysis of the Dynamic Element Matching 
algorithm (DWA) along with the RTL implementation and verification of the block are exposed.  In 
Chapter 5 the synthesis procedure to the FPGA device is described. Finally, in Chapter 6 a conclusion 
is made for the work performed and future extensions of this project are mentioned.
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Introduction

1 Introduction
This thesis concerns the implementation of the digital part of a 24-bit high resolution Digital to Analog 
Converter at 1 KHz with a signal to noise ratio greater than 120 dB. The content of the thesis was 
chosen because of the small number of applications with similar performance. For this activity, the ΣΔ 
architecture was preferred, because of its inherent advantages against other architectures like current 
steering topologies which are not well  suited for high resolution converters.  More specifically, high 
resolutions  can  be  achieved  by  combining  oversampling  of  the  input  signal  and  shaping  of  the 
quantization noise inherent in the ΣΔ modulator.

In  order  to  improve  the  stability  margin  and relax  the  requirements  of  the  analog post  filter,  the 
converter  uses the multibit  ΣΔ topology. A multibit architecture implies using an internal DAC which 
has though the disadvantage of mismatch error in the analog part. Therefore, a Dynamic Element 
Matching algorithm is used to reduce these errors and achieve high dynamic performance.

For the design and implementation of this thesis, a certain procedure was followed. In the beginning, 
the  proper  literature  and  several  publications  were  studied.  Thereafter,  a  SIMULINK/MATLAB 
theoretical  model  was designed to follow the converters  specifications.  Then the RTL model  was 
implemented in order to follow the SIMULINK model. The functionality of the RTL model was verified 
by comparing the results with those of the SIMULINK model. Finally, the RTL model was synthesized 
to a Cyclone-II FPGA of Altera. 

1.1 State of the Art
This chapter focuses on the State-OfThe-Art of the major parts of a  ΣΔ converter that includes an 
interpolation stage, a noise shaping loop (ΣΔ modulator), and a Dynamic Element Matching algorithm.

1.1.1 Interpolation
As far as the interpolation stage is concerned, several criteria have to be taken into consideration. 
These criteria  depend on the target implementation specifications. The basic trade-offs for the design 
of the interpolator are the area of the design, the speed and the performance, the type of filtering, the 
upsampling factor, that are unique for each application.  The arithmetic representation of the filter will 
determine the accuracy when the filter is implemented in hardware 

One of the most important parameters determining the complexity of the filters is the order and type of 
the filter. The order of the filter is mainly affected by the upsampling factor and the  bandwidth. When 
the upsampling factor is high,  the order of  the interpolation filters increases. Therefore,  multistage 
architectures are preferred in most applications to decrease the order of the filters with the benefit of 
better performance and smaller complexity.

A parameter that also affects the design of the interpolator is the type of filters that have to be used in 
each stage. The filters can be either FIR or IIR. In applications such as high quality digital audio, where 
linear phase and stability are important,  FIR filters are mainly used. However, FIR filters have the 
disadvantage that they need bigger number of taps than IIR do, to maintain the same required pass-
band ripple and stop-band attenuation. 

Examples of implementations taking into considerations the above issues can be found on literature.

1.1.2 ΣΔ modulation
The  specifications  of  the  converter,  i.e  sampling  frequency,bandwidth,  and  dynamic  performance 
specify the oversampling ratio, the order of the modulator and the number of quantization levels.

In several applications where ΣΔ modulation is used, many different topologies of the ΣΔ modulator 
exist each one of them offering different advantages.

One of the fundamental consideration for the design of the ΣΔ modulator is, if the quantization is single 
bit or multi-bit. Single bit modulators have the advantage of of low complexity, low cost implementation 
and offer perfect linearity. Unfortunately, single bit modulators have reduced dynamic performance for 
a certain oversampling ratio and order. Even by raising the order of the single bit modulator stability 
problems will exist and the shaping of quantization noise will be quite poor. On the other hand, multibit 
modulators can achieve bigger stability margin for the same oversampling ratios than the single bit 
modulators, but they may suffer from non linearities. Despite their increased complexity,  they are 
usually preferred

Another issue concerning the ΣΔ modulators is the order and  the structure of the modulator. By raising 
the order, the quantization noise shaping is improved but the modulator may experience overflow of 
the quantizer, which results in oscillations. In practice, the stability of the modulator depends on the 
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Introduction

order, the range of the input signal and the resolution of the quantizer.

A  ΣΔ modulator  can  follow either  the  error  feed forward and feedback  structure  or  the  cascade 
structure. 

The error feedback loop topology can be implemented by a chain of  integrators with a distributed 
feedback of the quantization error. This topology can be easily altered by placing bias at the feedback 
network or distributing selectively the feedback.  Error feedback topologies may experience stability 
problems when the level of the quantizer is small. The advantage of these topologies is high SNR.

On the other hand, MASH structures are an alternative solution when high order of error shaping is 
required  without  stability  problems.  The  basic  idea  of  a  MASH  topology  is  the  cascade  of  ΣΔ 
modulators of smaller order. This topology increases the complexity of the analog design and may 
suffer  from  filtered  noise leakage  between the cascaded modulators.  To shape this  error,  MASH 
architectures require the use of extra analog processing. In  Figure 1.1 both the error feedback loop 
and MASH topologies are displayed.

Both  MASH  and  error  feedback  structures  are  used  in  ΣΔ  modulators,  depending  on  the 
specifications. The choice of the type of ΣΔ modulator is easier for a DAC than for an ADC, because 
complex transfer functions can be implemented with high accuracy.

1.1.3 Dynamic Element Matching
As described before  the analog part  suffers  from non-linearity due to the element mismatch.  The 
Dynamic Element Matching algorithm is a fundamental  part of the DAC and is used to correct the 
mismatch of the analog part when the latter is implemented in silicon.

Architectures based on current steering or charge redistribution are commonly used for the internal 
DAC. The thermometer code or the binary code topology can be chosen depending on the application 
specifications. The binary topology is preferred when the resolution of the quantizer is high and the 
simplicity  of  the  implementation  is  critical.  Thermometer  code  topologies  on  the  other  hand  are 
preferred when the linearity of  the output  is  important.  For  more special  applications,  segmented 
topologies combining both thermometer and binary code are used.

For the thermometer  topology, there are many algorithms used to increase the matching of the analog 
elements.  Depending  on  the  complexity  limitations,  there  are  several  types  of  dynamic  element 
matching algorithms, such as the butterfly randomization, the Individual Level Averaging (ILA), the 
Galton tree structure, the Data Weighted Averaging (DWA) and others.

The most performant DEM technique is the DWA algorithm along with its alternative versions, such as 
the rotated  and the partial DWA.. The DWA algorithm is preferred because the performance of the 
algorithm is promising and the complexity is small. DWA contributes in the element mismatch error 
shaping better than any other algorithms. 

1.2 Top level architecture
The converter shall achieve 130 dB signal to noise ratio for signals from 0.1 mHz up to 1kHz. The 
sampling rate is performed at 6 kHz and the resolution of the input is 24-bit. The oversampling ratio is 
256 that results in a master clock frequency of 1.536 MHz .
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Introduction

The DAC is divided in two main blocks: the digital part and the analog part. The digital part is divided 
into three major internal blocks: the interpolator, the ΣΔ modulator and the DWA block and the analog 
part comprises the internal DAC.  The top level schematic of the DAC as well as the I/O interface of 
each block are displayed in Figure 1.2 and Table 1.1 respectively.

Signal I/O Description

Clock & reset
clk in Master Clock at 1.536 MHz

rst_n in Active low asynchronous reset

Digital Part
i_dither_enable in Dither enable control signal from external block
i_irp_data (23:0) in 24-bit input data

i_irp_valid in Indicates a new sampled 24-bit input data at 6 KHz
o_dwa_data(31:0) out 32-bit data output

Analog Part - DAC
o_dwa_data(31:0) in 32-bit input data from DWA block

i_out out Output current
Table 1.1: ΣΔ DAC Pin List

The  ΣΔ DAC as shown in the top level schematic diagram, receives five input signals. The clk and 
rst_n signals are fed to all the components of the digital part. The i_dither_enable signal is forwarded to 
the ΣΔ modulator block and the i_irp_valid and i_irp_data are the interpolator inputs.

The first stage of the chain performs upsampling of the initial signal. The basic functionality of the 
interpolator is the insertion of zero value samples between two consecutive samples of the input signal. 
Because of  image replicas of  the initial input signal when upsampled, the interpolator will  have to 
suppress  them  by means  of  digital  filtering.  The  interpolator  block  includes  a  multistage  filtering 
topology. The output of the interpolator as displayed in Figure 1.2 is fed to  the ΣΔ modulator.

The next stage of the converter performs ΣΔ modulation. The ΣΔ modulator block basically shapes the 
noise introduced in the loop by quantizing differential signals. Internally, in the ΣΔ modulator block, a 
pseudo-random signal generator Is used, which is controlled externally, used for removing unwanted 
frequency tones. The quantized output of the ΣΔ modulator block is fed to the DWA block which is the 
last  component  of  the digital  part.  This  block  implements  a  dynamic  element  matching algorithm 
preventing  the  appearance  of  mismatch  errors  in  the  analog  signal.  The  DWA  block  codes  the 
quantized output of the modulator in thermometer format and performs cyclic rotation of the elements 
used in the analog part in order to shape the mismatch error.

For  the  simulation  and  demonstration  of  the  converter's  functionality,  an  external  analog  part  is 
implemented which is connected with the FPGA output. The analog block includes a number of current 
steering sources driven by each bit of the DWA output. The summation of the currents is the final 
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Figure 1.2: Top level schematic 
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analog output which will be displayed in a waveform monitor. 
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2 Interpolator
The interpolator is the stage before the ΣΔ modulator and its functionality is to increase the signal rate 
and filter the image replicas that occur because of upsampling. This chapter describes the principles of 
the interpolation stage. The background theory of interpolation is presented along with different filter 
architectures, simulations and implementation considerations.

2.1 Interpolation theory
The benefit of ΣΔ modulation is that it  shapes the quantization noise of an oversampled signal to 
higher frequencies. In order to increase the rate of the signal, an interpolation stage has to be used. 
Digital data initially sampled at a low rate are interpolated and then fed to the ΣΔ modulator. 

The interpolation procedure combines signal upsampling, as well as filtering of the upsampled signal, 
which contains image replicas of the initial signal. These images need to be removed. The suppression 
of the images is possible by using low pass filtering. Figure 2.1 Illustrates these two stages.

The input signal X(n) initially sampled at Fs is upsampled by L. This means that (L-1) zeros will be 
inserted between two successive samples resulting in signal U(m) with frequency  Fs·L. This signal is 
then processed by a filter with a low pass characteristic.

2.1.1 Upsampling
The frequency of a signal can be increased by inserting zero values between two successive samples. 
When upsampling by L,  (L-1)  zeros  are  inserted  between two  successive  samples.  This  can  be 
described by the following equation:

U m={x mL  , m=0,±L ,±2L ,...

0, otherwise
 (1)

Figure  2.2 depicts  an example  of  a  sinusoidal  signal  initially  sampled  at  frequency Fs  and  then 
upsampled by x2. After the upsampling the frequency of the signal is Fs*L where L=4. 
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Figure 2.1: Upsampling and filtering

↑LFs Fs·L
X(n) Y(m)U(m)

Figure 2.2: Input signal and upsampled signal for L=4
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At the frequency domain the upsampled signal will have (L-1) replicas of the spectrum of the initial 
signal located at multiples of Fs up to (L-1)Fs  that have to be removed. Figure 2.3 depicts the power 
spectrum of the signal shown in Figure 2.2 before and after the upsampling. 

The initial signal has a spurious at fo=750 Hz and its symmetric is located at  L*Fs-fo.

Equation (2) gives the location of images for different values of k.

T:   Sampling period

Xc: Fourier transform of continuous time signal

ω:   Analog frequency 

X e jω=
1
T ∑−∞

∞

X c jωT −
2πk
T   (2)

2.1.2 Low pass filtering
To obtain the desired interpolated signal the image replicas have to be suppressed. This is possible by 
using low pass filtering which results in the final interpolated version of the initial signal.  The filter 
should be designed in order to preserve the band of interest and suppress the undesired images. 

Figure 2.4 depicts the power spectra of the upsampled signal of Figure 2.3 after passing through a low 
pass filter.
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Figure 2.3: Spectrum of input and upsampled signal

Figure 2.4: Magnitude response of the upsampled and filtered signal
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2.1.3 Evaluation of different filters
Two major families of filters can be considered: FIR and IIR. In the case of an FIR filter, the output 
depends only on the current and previous values of the input signal. The equation describing FIR filters 
is:

y n=b0 x nb1 xn−1...bM x n−M   (3)

where M is the order of the FIR filter  and bi are the coefficients of the filter for i=0,...,M. 

On the other hand, in the case of an IIR filter, the output depends on the current and previous values of 
the input and previous values of the output. The equation describing IIR filters is:  

y n=b0 x nb1 xn−1...bM x n−M a1 yn−1...aM y n−M   (4)
 

where bi and ai are the coefficients of the filter and M is the order of the IIR filter. 

The basic advantage of FIR is that FIR can achieve linear phase (the phase response of the filter is a 
linear function of  the frequency),  while IIR filters can only approximate it.  However,  in general  IIR 
results in lower order filters for the same requirements. 

The previous equations result in filters of different complexity. In a hardware implementation this is 
translated in computational overhead, increase of area and power consumption. However,  IIR filters 
require higher  accuracy, which is  translated to more bits  for  the representation of  the coefficients 
because  they need to  overcome the round-off  noise  and guarantee stability.  In  the next  section, 
subcategories of FIR and IIR filters will be presented along with their main attributes.

2.1.3.1 IIR
There are several types of IIR filters that could be used at the design of a low pass filter, such as 
Chebyshev type-I and II, Butterworth and Elliptic. The basic properties of those filters will be presented.

Chebyshev type-I have equal ripple behavior in the pass-band and Chebyshev type-II have equal ripple 
behavior in the stopband.  Both Chebyshev type-I and type-II filters provide the smallest step response 
settling time of the IIR filters considered here.

Butterworth filters have the most flat response in the pass-band among their counterparts, which is 
translated in the smallest possible ripple. The price paid for using this filter, will be slower roll-off which 
will result to higher order to meet a specific stopband requirement. Butterworth filters result in higher 
order comparing with the other IIR filters.

Elliptic filters have equiripple behavior, which means that the ripple in both passband and stopband is 
independently adjustable. This property makes the elliptic filter to have faster transition in gain between 
both bands.

2.1.3.2 FIR
The output of the FIR filters depends on the current and previous values of the input signal. Their basic 
feature is that they have linear phase in the passband. Moreover, they are stable but they need very 
high  orders  to  meet  the  specifications.  FIR  filters  which  have  the  property of  linear  phase  have 
symmetric coefficients which usually results in optimized topologies.  There are many types of  FIR 
filters but Half Band filters and equiripple filters will be considered here among others.

Half Band filters have their passband and stopband symmetric around Fs/4 where Fs is the desired 
rate after the interpolation. The beginning of the stopband and the end of the passband are equally 
located around Fs/4. Half band filters have all even coefficients equal to zero except the central one 
h(0) which is 0.5. This results in reduced complexity since the multiplications with the zero coefficients 
are omitted. Half Band filters use the Parks-McLellan algorithm, for the calculation of the coefficients.

Equiripple (or Kaiser) filters have the smallest deviation from the ideal filter when compared to other 
FIR  filters  of  the  same  order.  This  type  of  filter  is  suitable  for  achieving  minimum  ripple  in  the 
passband.

In  Table 2.1 and  Table 2.2 different types of IIR and FIR are compared respectively for the same 
specifications (passband and stopband frequency, passband ripple, stopband attenuation). The filters 
are compared for a x256, x128 and x2 interpolation factor.
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IIR type
Initial 

sampling 
rate (KHz)

Interpolation Fs 
(kHz)

Fpass 
(kHz)

Fstop 
(kHz)

Passband 
ripple (dB)

Stopband 
attenuation 

(dB)
Order

Butterworth 6 256 6*256 1.01 3 1 130 15
Chebyshev 6 256 6*256 1.01 3 1 130 10

Elliptic 6 256 6*256 1.01 3 1 130 7
Butterworth 6 128 6*128 1.01 3 1 130 15
Chebyshev 6 128 6*128 1.01 3 1 130 10

Elliptic 6 128 6*128 1.01 3 1 130 7
Butterworth 6 2 6*2 1.01 3 1 130 12
Chebyshev 6 2 6*2 1.01 3 1 130 9

Elliptic 6 2 6*2 1.01 3 1 130 7
Table 2.1: Comparison of IIR filters for different upsampling factors

FIR type
Initial 

sampling rate 
(KHz)

Interpolation Fs 
(kHz)

Fpass 
(kHz)

Fstop 
(kHz)

Passband 
ripple (dB)

Stopband 
attenuation 

(dB)
Order

Equiripple 6 256 6*256 1.01 3 1 130 3026
Half Band 6 256 6*256 1.01 766 1 130 6
Equiripple 6 128 6*128 1.01 3 1 130 1513
Half Band 6 128 6*128 1.01 384 1 130 6
Equiripple 6 2 6*2 1.01 3 1 130 22

Table 2.2: Comparison of  FIR filters for different upsampling ratios

The order N of a low pass FIR filter can be approximated by equation (5).

N≈
D∞δ p , δs

ΔF / f
 (5)

where :

D∞δ p , δs=log10δ s[a1 log10 δ p
2a2 log10δ pa3a4log10 δ pa4 log10 δ pa6]  (6)

where:

f :is the sampling frequency at which the filter is referred

ΔF: is the difference between the stopband and the passband frequency of the filter

δp and δs are the required ripples in the passband and stopband respectively in linear scale

and a1=0.005309, a2=0.07114, a3=-0.4761, a4=0.00266, a5=-0.5941 and a6=0.4278. 

From  (5)  we can conclude that  the order  of  the filter  increases,  while  the transition zone ΔF is 
shortened.  This  explains  why  a  multistage  implementation  by  cascading  interpolation  stages  is 
preferred.

Therefore, in order to reduce the complexity of the filter, a multistage implementation of the interpolator 
with multiple filters of  low order is preferred.
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2.1.3.3 SINC filter
The SINC (Sinus Cardinal) filter is a special case of FIR filters, which has certain attributes that have to 
be discussed. It is a practical solution for linear interpolation. In practice, SINC filters will reject the 
images created by the upsampling process, by letting the zeros of the transfer function to match with 
the images that have to be suppressed. The transfer function of a SINC filter is given by the equation :

H  z= 1M 1−z−M

1−z−1 
K

 (7)

where K is the order of the filter and M is the order of the interpolation. The frequency response of the 
filter is given by equation (8).

∣H e jω∣=[ 1M sin ω /2
sin ω/2M  ]

K

 (8)

where

ω=2πf /F s  (9)

with Fs being the initial sampling frequency. The images of the interpolation filter are located at k∙Fs±f0 

where f0 is the signal bandwidth. 

The model shown in Figure 2.5 emulates a SINC filter.

When applying a sinusoidal signal to a SINC filter and a x4 upsampling is used, we can see that 3 
samples are inserted between two successive samples of the initial signal.
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Figure 2.5: SINC filter of oversampling ratio x32 and 2nd order
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The magnitude response of a x32 filter is shown in  Figure 2.7. We can observe that although the 
images are not sufficiently attenuated, they are out of the band of interest.
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Figure 2.6: Linear interpolation by x4
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Interpolator

The impulse response of the CIC filter is shown in Figure 2.8.

2.1.4 Partitioning 
In  order  to  avoid  complex  implementations  in  terms  of  computation  and power  consumption  the 
multistage approach is preferred.

The interpolation procedure will  be divided in more than one stages.  This means that we have to 
cascade  upsamplers  and  low  pass  filters.  The  product  of  the  interpolation  factors  (Li)  of  each 
interpolation sub-block has to be equal to the desired oversampling ratio (L). This partitioning is shown 
in Figure 2.9.

2.1.5 Polyphase Architecture
The implementation of the interpolation stage can be facilitated by using a polyphase implementation. 
An example illustrating how the polyphase topology works in case of interpolation by x2 is presented: 
The transfer function of a third order (3rd) filter is given by: 

H  z=h0h1 z−1h 2 z−2h3 z−3  (10)

The input signal x(n) is sampled at Fs. Then it is upsampled by x2, which means that a zero is inserted 
between two successive samples. The upsampled signal is w(m) at 2·Fs. The same holds for y(m) as 
illustrated in Figure 2.10. The filtered output is then:

y m=h0w mh 1wm−1h 2w m−2h3wm−3  (11)

where h(i), i=0,...,3 are the coefficients of the filter. 

 Page 18 of 75

Figure 2.8: Impulse response of CIC Filter

Figure 2.9:Multistage conversion 
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The output results of the direct implementation are shown in Table 2.3.

n x(n) m w(m) y(m)

n=0 x(0)
m=0 w(0)=x(0) y(0)=h(0)x(0)
m=1 w(1)=0 y(1)=h(1)x(0)

n=1 x(1)
m=2 w(2)=x(1) y(2)=h(0)x(1) + h(2)x(0)
m=3 w(3)=0 y(3)=h(1)x(1) + h(3)x(0)

n=2 x(2)
m=4 w(4)=x(2) y(4)=h(0)x(2) + h(2)x(1)
m=5 w(5)=0 y(5)=h(1)x(2) + h(3)x(1)
Table 2.3: interpolation process

Equation (10) can be rewritten as:

H  z=h0h2 z−2z−1h1h3 z−2  (12)

and by setting

E0z =h 0h2 z−1  (13)

E1z =h 1h 3 z−1  (14)

we have:

H  z=E0 z
2E1 z

2 z−1  (15)

The outputs before upsampling are:

w0n=h0x nh2x n−1  (16)

w1n=h1x nh 3 x n−1  (17)
  

This results in the topology of Figure 2.11.
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Figure 2.10:Upsampling by x2 and low pass filtering
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By using the Noble identity shown in Figure 2.12 the topology of Figure 2.11 is reduced to the topology 
of Figure 2.13.

The equations describing the output of the topology of Figure 2.11 after the interpolation are given by 
Table 2.4:

n 0 1
m 0 1 2 3

y0(m) w0(0) 0 w0(1) 0
y1(m) 0 w1(0) 0 w1(1)

y(m)=y0(m)+y1(m) w0(0) w1(0) w0(1) w1(1)
Table 2.4: Polyphase implementation

The output y(m) is then given by the sum of the output of the two branches.  The topology of  Figure
2.13 can be reduced to the topology of Figure 2.14 where the adder and the delay element have been 
replaced by a switch working at the fast frequency 2·Fs. 

From Table 2.4 we can observe that we can take the desirable output y(m) by using this architecture. 
As we can see the output sampled by the switch is equivalent to sampling the value directly from y0(m) 
or y1(m).

The benefit of this topology is that only the switch has to operate at the increased frequency whereas 
the other part operates at Fs.  
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Figure 2.14:Simplified polyphase interpolation filter 
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2.1.6 Scaling of Filter coefficients
When filtering a signal it is possible to have overflow in the output since multiple multiplications and 
additions take place. The output must not exceed a given value. In order to calculated the maximum 
value at the output of the interpolator the method that will be described below can be used. 

In terms of presenting the overflow precaution, a simple model of an N tap filter will be used:

It is obvious that the maximum absolute output of the filter occurs when each input at the time |x(n-i)|
=xmax and the sign of x(n-i) is the same with the sign of the coefficient bi.

Thus, the maximum output value is:

yMAX [n]= xMAX ∑
i=0

N−1

∣bi∣  (18)

Assuming that xMAX=1 we want to have yMAX=1 as well. Therefore, we need to multiply the input signal 
by a scaling factor sc  in order to guarantee that yMAX does  not to exceed 1. The equation describing 
this condition is:

∣yMAX∣=∣xMAX∣=1≥sc×xMAX ∑
i=0

N−1

∣bi∣  (19)

Where:

sc≤ 1

∑
1=0

N−1

∣bi∣
 (20)

The absolute sum of the filter's coefficient is equivalent to the L1 norm of the vector of the coefficients. 

2.2 Architecture
This section will present the architecture for the implementation of the interpolation filters taking into 
consideration the previous analysis.

In the current application, the desired interpolation is 256 in order to achieve SNR greater than 120dB. 
The selection of the OSR is made according to the maximum SNR performance equation of a third 
order modulator described in the ΣΔ modulator chapter. To succeed this order of interpolation four 
stages of upsampling will have to be implemented. 

As mentioned in 2.1.3.3 FIR filters are stable and have linear phase response, therefore, FIR filters will 
be used for the first three stages. Each stage will increase the frequency by x2. A programmable SINC 
will be used for the last stage to increase the frequency by x32. Figure 2.15 depicts the interpolator's 
multistage implementation. This topology of filters is preferred for high oversampling ratio D/ADAC 
converters.
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Figure 2.15:Multistage Interpolator by 256
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The schematic of the interpolator in its multistage version shown in Figure 2.15 contains several filters. 
Table 2.5 depicts the filters attributes

Filter Filter type
Initial 

sampling 
rate (KHz)

Interpolation Fs 
(kHz)

Fpass 
(kHz)

Fstop 
(kHz)

Passband 
ripple 
(dB)

Stopband 
attenuation 

(dB)
Order

IRP1 FIR Equiripple 6 2 6*2 1.01 3 1 130 44
IRP2 FIR Half Band 6*2 2 6*4 3 9 1 130 30
IRP3 FIR Half Band 6*4 2 6*8 3 21 1 130 18
SINC SINC 6*8 32 6*8*32 1.01 N/A 1 N/A N/A

Table 2.5: FIR filter metrics
The filters described above are the ones used in the SIMULINK model for the interpolator. The model 
of the interpolator along with the filters attributes (magnitude and phase response, impulse response 
etc.) will be presented in the following figures.

2.2.0.1 IRP1 Linear Phase Equiripple Low Pass Filter
The equations describing the IRP1 filter are given below. We can see how the polyphase architecture 
is implemented in a low pass  FIR filter of 44th order.

H  z=h0h44 z−44h1 z−1z−43h43=h 0h44 z−44z−1[h1z−42h43]  (21)

By setting

E0z =h 0...h44 z−22  (22)

E1z =h 1...h43 z−21  (23)

We have:

H  z=E0 z
2E1 z

2 z−1  (24)

y0n=h 0 x n...h 44x n−22  (25)

y1z =h 1 xn...h 43 x n−21  (26)

The  model  specified  in  the  SIMULINK tool  for  the  IRP1  is  using  double  precision  floating  point 
arithmetic. Instead. the quantization of the filter coefficients as well as the fixed point modeling will be 
applied to the model, to reach the filter specifications. Figure 2.17 displays the differences between the 
real model and a low accuracy fixed point model and Figure 2.18 presents the final fixed model and the 
real one. 
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Figure 2.16:SIMULINK model of the interpolator
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Figure 2.18:Magnitude and phase response of final fixed point model vs real model of IRP1

Figure 2.17:Magnitude and phase response of low accuracy fixed point model vs real model of IRP1
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In Figure 2.20 we can also see the details of the fixed point arithmetic used in the model of IRP1.

2.2.0.2 IRP2 Half Band Filter
The equations describing the IRP2 filter are given below. We can see how the polyphase architecture 
is implemented in a low pass  FIR filter of 30th order.

H  z=h0h30 z−30h 1 z−1z−29h 29=h0h 30 z−30z−1[h 1z−28h29]  (27)
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Figure 2.19:Impulse response of low pass equiripple filter

Figure 2.20:Fixed point arithmetic of IRP1
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By setting

E0z =h 0...h30 z−15  (28)

E1z =h 1...h29 z−14  (29)

We have:

H  z=E0 z
2E1 z

2 z−1  (30)

y0n=h 0 x n...h 30 xn−15  (31)

y1n=h 1x n...h29 xn−14  (32)

because the half band filters have half of their coefficients set to zero, equation (32) becomes:

y1n=h 15x n−7  (33)

As already described in the IRP1 filter, the model presented is using the double precision floating point 
arithmetic to generate the filter. In the RTL model the design applied will have to follow a fixed point 
arithmetic to reduce the complexity. In Figure 2.21 there are displayed the performance differences of 
a low accuracy model and the real one and in  Figure 2.22 the differences of the applied fixed point 
model and the real one.
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Figure 2.21:Magnitude and phase response of low accuracy fixed point model vs real model of IRP2
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Below in Figure 2.24 there are depicted the arithmetic details of the fixed point model concerning the 
filter coefficients as well as the precision of the operations inside the filter.

 Page 26 of 75

Figure 2.23:Impulse response of first half band filter (IRP2)

Figure 2.22:Magnitude and phase response of final fixed point model vs real model of IRP2
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2.2.0.3 IRP3 Half Band Filter
The equations describing the IRP2 filter are given below. We can see how the polyphase architecture 
is implemented in a low pass  FIR filter of 30th order.

H  z=h0h18 z−18h 1 z−1z−17 h17=h0h18 z−18z−1[h1z−16h17]  (34)

By setting

E0z =h 0...h18 z−9  (35)

E1z =h 1...h17 z−8  (36)

We have:

H  z=E0 z
2E1 z

2 z−1  (37)

y0n=h 0 x n...h 18x n−9  (38)

y1n=h 1x n...h17x n−8  (39)

because the half band filters have half of their coefficients set to zero, equation (39) becomes:

y1n=h 9 xn−4  (40)

When designing the real model, double precision floating point arithmetic is used for the IRP3 filter. In 
order to follow the design architecture of  the previous filters,  fixed point arithmetic will  have to be 
applied as in IRP3 filter. Figure 2.25 displays the differences between a low accuracy fixed point model 
and the real one and Figure 2.26 displays the differences between the applied fixed point model and 
the real one.
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Figure 2.24:Fixed point arithmetic of IRP2
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Figure 2.25:Magnitude and phase response of the low accuracy fixed point model vs the real model of IRP3
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Figure 2.26:Magnitude and phase response of applied fixed point model vs the real model of IRP3 
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Below in Figure 2.28 the details of the fixed point arithmetic applied to the model is presented.

As we can see from the figures depicting the frequency and the phase response, the phase is linear in 
the pass-band.  

The previous figures depict the phase, frequency and magnitude responses of the filters that will be 
used by the interpolator. The 2nd order SINC filter that will be used is given by the model in Figure 2.5 
which uses fixed point arithmetic.
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Figure 2.27:Impulse response of second half band filter (IRP3)

Figure 2.28:Fixed point arithmetic details of IRP3
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2.3 MATLAB simulation results
For each filter described on the previous section, there will be presented the input-output results of the 
SIMULINK model in the time and frequency domain.

IRP1 results
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Figure 2.30: Frequency response of input signal and output of first filter (IRP1)

Figure 2.29: Time response of input signal and output of first filter (IRP1)
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IRP2 results
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Figure 2.32: Frequency response of IRP1  and output of  second filter (IRP2)

Figure 2.31: Time response of IRP1  and output of second filter (IRP2)
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IRP3 results
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Figure 2.34: Frequency response of IRP2  and output of  third filter (IRP3)

Figure 2.33: Time response of IRP2  and output of  third filter (IRP3)
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SINC results

The final  output  of  the interpolator  equals  to the output of  the SINC filter.  These simulations are 
performed using the model of Figure 2.16.
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Figure 2.36: Frequency response of IRP3  and output ofSINC filter

Figure 2.35: Time response of IRP3  and output of SINC filter
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2.4 H/W Implementation
This chapter will present the implementation details of the interpolator. RTL architecture diagrams, I/O 
interfaces and detailed descriptions of the filters will be shown.

2.4.1 Procedural diagram
Figure 2.37 shows the procedural diagram of the interpolator. The interpolator is implemented using 
the multistage approach to achieve reduced complexity. The interpolator consists of a low pass filter 
(IRP1), two half  band filters (IRP2 and IRP3) and a sinc filter (SINC) as already mentioned in the 
architecture paragraph. 

The  filters  will  be  implemented  by  using  the  polyphase  architecture  except  from  the  last  filter 
(SINC).This  architecture  exploits  the  symmetry  of  the  coefficients  and  leads  to  a  low complexity 
implementation. 

In Figure 2.38 the I/O interface block is presented showing the interconnection signals.

Table 2.6 shows the pin list of the interpolator with all the I/O signals involved.

Signal I/O Description

Clock & reset
clk in Master Clock 

rst_n in Active low asynchronous reset 

CONTROL
i_irp_valid in Indicates that a new 24-bit input data sampled at Fs 

Input interface
i_irp_data (23:0) in 24-bit input data  at Fs

ΣΔ modulator interface
o_irp_sd_data (23:0) out 24-bit output  data  at 256Fs 

Table 2.6: Interpolator Pin List

In  the  following  paragraphs  the  design  details  of  the  filters  contained  in  the  interpolator  will  be 
presented.
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Figure 2.38: INTERPOLATOR I/O Block Diagram
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2.4.2 Linear phase equiripple filter (IRP1)
The pin list  along with the interface diagram of  IRP1 will  be shown in  Table 2.7 and  Figure 2.39 
respectively.

Signal I/O Description

Clocks and reset
clk in Master clock at 256Fs

rst_n in Active low asynchronous reset

CONTROL
i_irp1_valid in Indicates that a new 24-bit input data is sampled at the input at Fs rate

Input interface
i_int_data [23:0] in 24-bit input data 

IRP2 filter interface
o_irp1_irp2_data[23:0] out 24-bit output interpolated data at 2Fs

o_irp1_irp2_valid out Indicates that a 24-bit output data is ready at the output at 2*Fs rate
Table 2.7: IRP1 Pin List
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Figure 2.39: IRP1 Interface Diagram
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Description
The first block of the interpolator is the IRP1 filter that interpolates the input signal  i_irp1_data by  a 
factor of x2.

The coefficients of the filter are chosen by a multiplexer 22-to-1. The coefficients of each filter are 
given in Appendix C. The values of the coefficients are calculated assuming that there are 24 bits for 
the input signal, 27 bits for the representation of the coefficients. Moreover, the prescaling factor of 
0.63 is applied to the coefficients so the output of the overall interpolation stage remains bounded.

There are two  branches that will perform the polyphase interpolation. The one that corresponds to the 
differential equation:

y0n=h 0 x n...h 44x n−22  (41)

and the other one that corresponds to the differential equation:

y1n=h 1x n...h43 xn−21  (42)

Since the filters are symmetric it is convenient to add the input data and then multiply the result of the 
addition with the appropriate coefficient. We use the Multiply-Accumulator architecture in order to make 
the additions.

For  each  couple  of  the  data  that  correspond  to  the  symmetric  coefficients  the  proper  index 
mux_index1 and mux_index2 fetches the values from the delay line and the signal cf_addr fetches the 
proper coefficient from the multiplexer. Then the two input signals y0(n) and  y1(n) are summed.

After  the  summation,  the  coefficient  corresponding  to  that  couple  is  chosen  from  the  coefficient 
multiplexer and multiplied with it. The result of each multiplication is placed in the signal mux_result,  
which is 53-bits long according to the multiplication rules. The signal mux_result is then added to the 
current value of the accumulator output, the accum_out signal.

The IRP1 block as mentioned before, upsamples the input signal by x2, while the master clock is at 
256Fs. Therefore the input data of the interpolator arrives every 256 clock cycles. Consequently, the 
IRP1 block shall output data every 128 clock cycles. 

When all the computations from the first branch of IRP1 filter are finished, the output data  wait for  128 
clock  cycles   and then they are  transmitted  to  the  next  filter.  While  the  output  data  wait  in  the 
accumulator, the accum_in signal is connected with the accum_out signal through a multiplexer.

When the signal irp1_irp2_valid is set to '1'  the accumulator's data are driven to the output after their 
quantization. The quantization takes place because the accumulators data are 53-bit and the output 
data of  the IRP1 has to be 24-bit.  To achieve the right quantization we take the 27 MSB's of the 
accum_out and we sum '1' placing them to the irp1_crop signal. The o_irp1_irp2_data is the 25 MSBs 
of the irp1_crop signal.

The procedure described above occurs two times for each input data. After the second filter drives its 
output to the IRP2 filter, the accumulator's input becomes the multipliers output without the addition of 
the accumulators output, in order for the previous data to be flushed.

The IRP1 block is using an internal control that assigns the proper values to the signals mux_index_1 , 
mux_index_2 , cf_addr, o_irp1_irp2_valid, accum_sel and accum_rst which control the multiplexers as 
well as the coefficients address of the RF block. The control block is implemented with an FSM.
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Table 2.8 shows the values of the signals  at each state of the FSM.

state mux_index
1

mux_index2 cf_addr o_irp1_irp2_vali
d

accum_sel accum_rst nx_state

state0
0 0 -1 '0' '1' '0'

state0 if 
i_valid='0'

 else state1
state1 0 0 0 '0' '1' '1' state2
state2 1 1 2 '0' '1' '0' state3
state3 2 2 4 '0' '1' '0' state4
state4 3 3 6 '0' '1' '0' state5
state5 4 4 8 '0' '1' '0' state6
state6 5 5 10 '0' '1' '0' state7
state7 6 6 12 '0' '1' '0' state8
state8 7 7 14 '0' '1' '0' state9
state9 8 8 16 '0' '1' '0' state10

state10 9 9 18 '0' '1' '0' state11
state11 10 10 20 '0' '1' '0' state12
state12 11 11 22 '0' '1' '0' state13

state13 0 0 -1
'1' if counter=127 

else '0' '0' '0'
state14 if 

counter=127 else 
state13

state14 0 1 1 '0' '1' '1' state15
state15 1 2 3 '0' '1' '0' state16
state16 2 3 5 '0' '1' '0' state17
state17 3 4 7 '0' '1' '0' state18
state18 4 5 9 '0' '1' '0' state19
state19 5 6 11 '0' '1' '0' state20
state20 6 7 13 '0' '1' '0' state21
state21 7 8 15 '0' '1' '0' state22
state22 8 9 17 '0' '1' '0' state23
state23 9 10 19 '0' '1' '0' state24
state24 10 11 21 '0' '1' '0' state25

state25 0 0 -1
'1' if counter=256 

else '0' '0' '0'
state0 if 

counter=256 else 
state25

Table 2.8: IRP1 FSM state description table

The FSM has 25 states. state0 is the idle state at which the IRP1 is reset when rst_n signal is set to '0' 
or  when  IRP1  waits  for  the  i_irp1_valid signal  to  rise  and  fetch  the  next  input  data.  When  the 
i_irp1_valid signal rises, the state jumps to state1 and the IRP1's calculations begin. When the first 
branch of the filter finishes its calculations at state12, the FSM enters state13 waiting for the counter to 
count a total of 127 cycles from the rise of the i_valid signal and then drives its output to the IRP2 filter. 
After that, the FSM flushes the accumulator with the  accum_rst signal as described previously and 
enters state14 where the other branch of the filter begins its calculations. When the other half of the 
filter finishes, the FSM enters state25 and waits for the counter to receive the value 256 so that IRP1 
can drive the output of the second half of the filter. After that the FSM jumps to state0 waiting for the 
next input to arrive.
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Table 2.9 shows the coefficient and input data relation.

mux_index1 mux_index2 inputs cf_addr i_irp1_valid o_irp1_irp2_valid

0 0 x(n)+x(n-22) h0 1 0

1 1 x(n-1)+x(n-21) h2 0 0
2 2 x(n-2)+x(n-20) h4 0 0
3 3 x(n-3)+x(n-19) h6 0 0
4 4 x(n-4)+x(n-18) h8 0 0
5 5 x(n-5)+x(n-17) h10 0 0
6 6 x(n-6)+x(n-16) h12 0 0
7 7 x(n-7)+x(n-15) h14 0 0
8 8 x(n-8)+x(n-14) h16 0 0
9 9 x(n-9)x(n-13) h18 0 0

10 10 x(n-10)+x(n-12) h20 0 0
11 11 x(n-11)+x(n-11) h22/2 0 1
0 1 x(n)+x(n-21) h1 0 0
1 2 x(n-1)+x(n-20) h3 0 0
2 3 x(n-2)+x(n-19) h5 0 0
3 4 x(n-3)+x(n-18) h7 0 0
4 5 x(n-4)+x(n-17) h9 0 0
5 6 x(n-5)+x(n-16) h11 0 0
6 7 x(n-6)+x(n-15) h13 0 0
7 8 x(n-7)+x(n-14) h15 0 0
8 9 x(n-8)+x(n-13) h17 0 0
9 10 x(n-9)x(n-12) h19 0 0

10 11 x(n-10)+x(n-11) h21 0 1
0 0 x(n)+x(n-22) h0 1 0

1 1 x(n-1)+x(n-21) h2 0 0
2 2 x(n-2)+x(n-20) h4 0 0

Table 2.9: IRP1 signal and time table
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2.4.3 Half Band filter (IRP2)
The pin list  along with the interface diagram of IRP1 will  be shown in  Table 2.10 and  Figure 2.40 
respectively.

Signal I/O Description

Clocks and reset
clk in Master clock at 256Fs

rst_n in Active low asynchronous reset 

CONTROL
i_irp1_irp2_valid in Indicates that a new 24-bit input data is sampled at the input at 2*Fs rate

Input interface
i_irp1_irp2_data [23:0] in 24-bit input data from IRP1 at 2Fs

IRP3 interface
o_irp2_irp3_data[23:0] out 24-bit output  data 

o_irp2_irp3_valid out Indicates that a 24-bit output data is ready at the output at 2*2*Fs rate
Table 2.10: IRP2 Pin List
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Figure 2.40: IRP2 Interface Diagram
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Description
The second block of the interpolator is the IRP2 filter that interpolates the signal provided by IRP1 
i_irp1_irp2_data by  a factor of x2.

There are two polyphase filters that will perform the interpolation. The one that corresponds to the 
differential equation:

y0n=h 0 x n...h 30 xn−15  (43)

and the other one that corresponds to the differential equation:

y1n=h 1x n...h29 xn−14  (44)

Since the filters are symmetric it is convenient to add the input data and then multiply the result of the 
addition with the appropriate coefficient. The IRP2 filter's architecture is basically the same with the 
IRP1. The difference between IRP1 and IRP2 filters is that the second one is a Half Band filter. This 
comprises that all the even coefficients are set to zero except from the center one.

This property of having the even coefficients set to zero can be exploited by performing half of the 
multiplications. This is successed by using eleven states on the FSM of IRP2 from which the first nine 
are used to calculate the first half of the filter as well as the idle state, similar to the IRP1 approach, 
and the other two to calculate the second half of the filter by making the multiplication with the non zero 
even coefficient.

IRP2 filter as described previously has a total of 30 coefficients from which half of them are symmetric 
and  half  of  them  are  zero  except  from  the  center  one.  Therefore  the  filter  has  nine  non  zero 
coefficients which are stored in the register file block. The first half of the filter calculates the first output 
with the odd non zero coefficients and the second half of the filter calculates the output of the non zero 
even coefficient. 

The FSM of the IRP2 filter is described on the Table 2.11

state mux_index1 mux_index2 cf_addr o_irp2_irp3_valid accum_sel accum_rst nx_state

state0
0 0 -1 '0' '1' '0'

state0 if 
i_valid='0'

 else state1
state1 0 0 0 '0' '1' '1' state2
state2 1 1 2 '0' '1' '0' state3
state3 2 2 4 '0' '1' '0' state4
state4 3 3 6 '0' '1' '0' state5
state5 4 4 8 '0' '1' '0' state6
state6 5 5 10 '0' '1' '0' state7
state7 6 6 12 '0' '1' '0' state8
state8 7 7 14 '0' '1' '0' state9

state9 0 0 -1
'1' if counter=63 

else '0' '0' '0'
state10 if 

counter=63
 else state9

state10 7 8 15 '0' '1' '1' state11

state11 0 0 -1
'1' if counter=128 

else '0' '0' '0'
state0 if 

counter=128 
else state11

Table 2.11: IRP2 FSM state description table

The FSM of the IRP2 filter works with the same way that the FSM of the IRP1 filter does. The only 
difference between them is that the FSM of IRP2 has 11 states instead of 25. As we can see the 
second filter performs only one multiplication and waits for the counter to count 128 clock cycles. 

A more detailed analysis of the input data and the coefficient relation is shown in the Table 2.12 above.
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mux_index1 mux_index2 inputs cf_addr i_irp1_irp2_valid o_irp2_irp3_valid

0 0 x(n)+x(n-15) h0 1 0

1 1 x(n-1)+x(n-14) h2 0 0
2 2 x(n-2)+x(n-13) h4 0 0
3 3 x(n-3)+x(n-12) h6 0 0
4 4 x(n-4)+x(n-11) h8 0 0
5 5 x(n-5)+x(n-10) h10 0 0
6 6 x(n-6)+x(n-9) h12 0 0
7 7 x(n-7)+x(n-8) h14 0 1
7 8 x(n-7)+x(n-7) h15 0 1
0 0 x(n)+x(n-15) h0 1 0

1 1 x(n-1)+x(n-14) h2 0 0
2 2 x(n-2)+x(n-13) h4 0 0

Table 2.12: IRP2 signal and time table

2.4.4 Half Band filter (IRP3)
The pin list along with the interface diagram of IRP1 will be shown in  Table 2.13 and  Figure 2.41 
respectively.

Signal I/O Description

Clocks and reset
clk in Master clock at 256Fs

rst_n in Active low asynchronous reset

CONTROL
i_irp2_irp3_valid in Indicates that a new 24-bit input data is sampled at the input at 4*Fs rate

Input interface
i_irp2_irp3_data [23:0] in 24-bit input data from IRP2 at 4Fs

SINC interface
o_irp3_sinc_data[23:0] out 24-bit output interpolated data connected with SINC filter

o_irp3_sinc_valid out Indicates that a 24-bit output data is ready at the output at 8*Fs rate
Table 2.13: IRP3 Pin List

 Page 41 of 75



Interpolator

Description
The third block of the interpolator is the IRP3 block which comprise a half band filter of 18th order. The 
input data are fed to IRP3 block through the i_irp2_irp3_data signal. As in IRP2 filter, the IRP3 filter 
follows  exactly  the  same  architecture.  The  IRP3  filter  is  split  in  two  polyphase  branches.  The 
differential equations describing the filter are given below:

y0n=h 0 x n...h 18x n−9  (45)

y1n=h 1x n...h17x n−8  (46)

Since the filter has the same architecture as IRP2 resulting in symmetric coefficients along with the 
even ones to  be zero except  from  the middle,  the IRP3 block  follows the rules  described in  the 
previous sub-block. 

It is important to mention that the IRP3 filter has 6 non zero coefficients from which 5 belong to the first 
filter and the other one is the non zero coefficient of the second filter. Also the FSM of the IRP3 block 
has 8 states. The first state (state0) is the state in which the filter halts, the next six states make the 
proper calculations for the first half of the filter and the other two states make the proper calculations 
for the second half of the filter. Table 2.14 below depicts the FSM state assignment.
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Figure 2.41: IRP3 Interface Diagram

Q

Q
SET

CLR

D

++

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

0 1 2 3 4

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

5 4 3 2 1 0

+

+

mux_index_1[3:0]

i_irp2_irp3_data[23:0]

o_
irp

3_
si

nc
_d

at
a[

23
:0

]

cf
_a

dd
r[4

:0
]

o_irp3_sinc_valid

1 2 3 4

98765

MUX 1

MUX 2mux_index_2[3:0]

m
ux

1_
da

ta
[2

3:
0]

mux2_data[23:0]

da
ta

_c
ou

pl
e 

[2
4:

0]

0
1

0

cf_out[27:0] mult_result
[48:0]

accum_in
[48:0]

accum_out
[48:0]

irp3_data 
[48:0]

0
1

ac
cu

m
ul

at
or

ac
cu

m
_s

el

cf_addr

i_irp2_irp3_valid

mux_index_1

o_irp3_sinc_valid
mux_index_2

rst_n

CONTROL

accum_sel

cf_addr[4:0]

accum_rst

0
1

accum_sum 
[48:0] +

+

1
irp3_data 

[48:22]

irp3_crop 
[26:0]

irp3_crop 
[24:1]

ac
cu

m
_r

st

Q

Q
SET

CLR

D

de
la

y_
da

ta
4[

23
:0

]de
la

y_
da

ta
0

de
la

y_
da

ta
1

de
la

y_
da

ta
2

de
la

y_
da

ta
3

de
la

y_
da

ta
4

de
la

y_
da

ta
5

de
la

y_
da

ta
6

de
la

y_
da

ta
7

de
la

y_
da

ta
8

de
la

y_
da

ta
9

o_irp3_sinc_valid

0

00000
00001
00100

01001

coeff0
coeff2
coeff4

coeff9



Interpolator

state mux_index1 mux_index2 cf_addr o_irp3_sinc_valid accum_sel accum_rst nx_state

state0
0 0 -1 '0' '1' '0'

state0 if 
i_valid='0'

 else state1
state1 0 0 0 '0' '1' '1' state2
state2 1 1 2 '0' '1' '0' state3
state3 2 2 4 '0' '1' '0' state4
state4 3 3 6 '0' '1' '0' state5
state5 4 4 8 '0' '1' '0' state6

state6 0 0 -1
'1' if counter=31 

else '0' '0' '0'
state7 if 

counter=31
 else state6

state7 4 5 9 '0' '1' '1' state11

state8 0 0 -1
'1' if counter=64 

else '0' '0' '0'
state0 if 

counter=64 else 
state8

Table 2.14: IRP3 FSM state description table

The input data and coefficient relation are presented in the Table 2.15

mux_index1 mux_index2 inputs cf_addr i_irp2_irp3_valid o_irp3_sinc_valid

0 0 x(n)+x(n-9) h0 1 0

1 1 x(n-1)+x(n-8) h2 0 0
2 2 x(n-2)+x(n-7) h4 0 0
3 3 x(n-3)+x(n-6) h6 0 0
4 4 x(n-4)+x(n-5) h8 0 1
4 5 x(n-4)+x(n-4) h9 0 1
0 0 x(n)+x(n-9) h0 1 0

1 1 x(n-1)+x(n-8) h2 0 0
Table 2.15: IRP3 signal and time table

2.4.5 SINC filter (IRP4)
The pin list  along with the interface diagram of IRP1 will  be shown in  Table 2.16 and  Figure 2.42 
respectively.

Signal I/O Description

Clocks and reset
clk in Master clock at 256Fs

rst_n in Active low asynchronous reset

CONTROL
i_irp3_sinc_valid in Indicates that a new 24-bit input data is sampled at the input at 8*Fs rate

Input interface
i_irp3_sinc_data [23:0] in 24-bit input data from IRP3

ΣΔ MODULATOR interface
o_sinc_sd_data[23:0] out 24-bit output interpolated data connected with ΣΔ modulator at 256*Fs rate

Table 2.16: SINC Pin List
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Description
The fourth and last block of the interpolator is the SINC filter. Conversely to the other filters developed, 
the SINC filter doesn't involve multiplications. The differential equation describing the SINC filter is 
depicted below.

y n=x m−x m−1 y n−1 , n=1,2,3... ,m=⌊
n
32

⌋
 

(47)

Equation (47) describes that the output of the SINC filter depends on the current input which receives a 
new value each 32 clock cycles, the previous input value and on the previous output value. 

From the Figure 2.42 we can see that the SINC block calculates its output by subtracting the input_diff 
signal with the input_delay signal (x(m) – x(m-1) operation) and assigning the result to the input_diff 
signal. If the i_irp3_sinc signal is set to '0' then the repeat_out signal is set to the input_data otherwise 
it holds its previous value. The repeat_out signal is the repetition of the subtracted  input signal for 32 
times. The final output is the sum of the repeat_out signal and the sum_delay signal (x(m) – x(m-1) + 
y(n-1) operation). The result is assigned to the sinc_out singal.

Because the SINC filter makes multiple additions and subtractions, the input_data as well as the rest of 
the signals operating in the filter, are sign extended from 24-bit to 31-bit in order for the filter to avoid 
overflows. The final output is calculated by cropping the sinc_out signal and holding the bits 28 down to 
4. The cropped signal is assigned to the sinc_crop signal which is of width 25. The sinc_crop signal is 
finally added with an ace and the bits 24 down to 1 are kept and assigned to the  o_sinc_sd_data 
signal.

The SINC filter transmits data every clock cycle except from the reception of reset, where the output of 
the SINC filter is set to zero. Therefore the SINC filter does not need a valid signal to indicate the 
transmition of the output.Table 2.17 describes the input data and signal relation.

o_sinc_sd_data i_irp3_sinc_data repeat_out o_sinc_mod_data i_irp3_sinc_valid

y(0) x(0) x(0)-x(-1) y(-1)+x(0)-x(-1) 1
y(1) x(0) x(0)-x(-1) y(0)+x(0)-x(-1) 0
y(2) x(0) x(0)-x(-1) y(1)+x(0)-x(-1) 0
y(3) x(0) x(0)-x(-1) y(2)+x(0)-x(-1) 0
y(4) x(0) x(0)-x(-1) y(3)+x(0)-x(-1) 0
y(5) x(0) x(0)-x(-1) y(4)+x(0)-x(-1) 0
y(6) x(0) x(0)-x(-1) y(5)+x(0)-x(-1) 0
y(7) x(0) x(0)-x(-1) y(6)+x(0)-x(-1) 0
y(n) x(m) x(m)-x(m-1) y(n-1)+x(m)-x(m-1) 0

Y(32) x(1) x(1)-x(0) y(31)+x(1)-x(0) 1
Y(33) X(1) x(1)-x(0) y(32)+x(1)-x(0) 0

Table 2.17: SINC signal and time table
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Figure 2.42: SINC Interface Diagram
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2.5 Verification plan
The MATLAB/SIMULINK model based on fixed point arithmetic  is used to perform the verification 
process of the RTL model. The verification process is based on the comparison of the high level model 
output (MATLAB/SIMULINK) and RTL (Modelsim) output.

The output of each filter and the final output of the interpolator is stored in a file for both cases. The 
verification  procedure  is  terminated  successfully,  if  each  MATLAB/SIMULINK output  file  matches 
exactly the corresponding Modelsim output file. The comparison procedure is performed using the tool 
KDiff3. 

In Figure 2.43 the fixed point model of the interpolator is displayed. The initial floating point model is 
modified so that each filter can produce an output to the workspace. Each output of the MATLAB 
model is multiplied with 223 in order to obtain a 24 bit number .

2.6 References
[1] Multirate Digital Signal Processing, Ronald E. Crohiere, Lawrence R. Rabiner, 1983, p129-181

[2]  Delta-Sigma  Data Converters:  Theory,  Design and Simulation,  Steven R.  Norsworthy,  Richard 
Schreier, Gabor C. Temes, First edition, 1996, p: 406-446

[3] A Multibit Delta-Sigma Audio DAC with 120dB Dynamic Range, Ichiro Fujimori, Tetsuro Sugimoto, 
IEEE Journal of Solid-State Circuits, VOL.35 NO 8,  August 2000.
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Figure 2.43: Fixed point model of interpolator
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3 ΣΔ Modulator
The ΣΔ modulator is the core of the ΣΔ DAC placed between the interpolator and the internal analog 
DAC. The next  paragraphs will  describe the theory of   ΣΔ modulation,  the different  issues of  the 
design, the architecture  and the implementation of this block. 

3.1 ΣΔ modulator theory
In a ΣΔ DAC, a signal sampled at the Nyquist frequency is initially processed by an interpolation stage. 
The interpolator changes the data rate and suppresses the spectral replicas which occur from the 
upsampling process. This signal feeds the noise-shaping loop, which shortens the word length to a 
single bit or to a few bits (case of multibit DAC).

In practice, ΣΔ modulation is a technique for converting an oversampled digital signal into an analogue 
one by integrating differential signals. In this section the basic operation of ΣΔ modulation is described. 
The  modulator  subtracts  the  quantization  noise  of  the  previous  input  from  the  current  input  and 
quantizes the signal produced. The general case of a ΣΔ modulator is shown in Figure 3.1 where u(n) 
is the input signal and y(n) is the output signal.

The topology of Figure 3.1 can be analyzed by using the linear model shown in Figure 3.2, where the 
quantization noise e(n) is considered to be an independent input random signal independent from the 
input.

The model is characterized by the following transfer functions:

STF  z =
Y  z
U  z

=
H  z
1H z 

 (48)

N TF  z =
Y z 
E  z

=
1

1H z 
 (49)

where  STF(z)  is  the  signal  transfer  function,  NTF(z)  is  the  noise  transfer  function  and  E(z)  is  the 
quantization  noise  in  the  frequency  domain.  Considering  the  axiom  of  superposition  and  using 
equations (48) and (49), the output signal can be written as:

Y z =STF  z U z N TF  zE  z   (50)
In order to shape the quantization noise to high frequencies, we have to consider that H(z) has a large 
magnitude between 0 and f0, (where  f0 is the input signal frequency) and that the input signal must 
remain within the maximum levels of the feedback signal y(n), otherwise the large gain in H(z) will 
cause x(n) to saturate.
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Figure 3.2: Linear model of ΣΔ topology
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3.1.1 First order noise shaping
For the first order ΣΔ modulator we should have a zero at DC for the NTF, in order to high pass filter the 
quantization noise, since the poles of H(z) are equal to the zeros of NTF(z). Thus, we choose:

H  z= 1
z−1

 (51)

The equations describing the modulator in the time domain are given by:

X n=X n−1U n−1−Y n−1  (52)

Y n=sign X n  (53)

where Y(n) is the quantized output signal, U(n) is the input signal and Y(n) – X(n) is the quantization 
noise, namely the difference between the input signal and the output signal.

At the frequency domain, using equation (51), the signal transfer function is: 

STF  z =
Y  z
U  z

=
H  z
1H z 

=

1
z−1

1 1
z−1

=z−1  (54)

and the noise transfer function is:

N TF  z =
Y z 
E  z

=
1

1H  z 
=

1

1 1
z−1

=1−z−1
 (55)

To calculate the SNR, we have to estimate the signal power and the quantization noise power. If we let
z=e iωT=e j2π f / f s , where Fs is the sampling frequency we have:

N TF  f =1−e− j2πf / f s=
e jπf / f s−e− jπf / f s

2j
×2j×e− jπf / f s=sin πf

f s
×2j×e− jπf / f s  (56)

Taking the magnitude of both sides:

∣N TF  f ∣=2sinπf / f s  (57)

The quantization noise over the frequency band from 0 to f0 is given by:

Pe=∫
− f 0

f 0

Se
2 f ∣N TF  f ∣

2df =∫
− f 0

f 0  Δ212 1f s [2sin πff s ]
2

df  (58)
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Figure 3.3: First order ΣΔ modulator
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where Se  f =
Δ2

12
1
f s

is the spectral density of the quantization noise and Δ the difference between 

two  adjacent  quantization  levels.  Since  OSR>>1,  then f0<<fs  and  sin(πf/fs)  ≈ πf/fs,  we  can  write 
equation (58):

Pe=
Δ2π 2

36  1
OSR

3

 (59)

The signal power is  given by the equation:

P s=
Δ22N

8
 (60)

because the maximum peak value of  the input signal without clipping is 2N(Δ/2) where 2N are the 
quantizer levels. Combining equations (59) and (60) the SNR becomes:

SNRmax=10log P s

Pe=6.02N1.76−5.1730log OSR  (61)

3.1.2 3rd order ΣΔ D/A modulator
The case of our study will be a third order ΣΔ modulator with error feedback structure. This model is 
shown in Figure 3.4:

where the integrator blocks (H1(z)) and the delayed integrator block (H2(z)) are shown in Figure 3.5.

The MATLAB/SIMULINK model of the third order modulator is presented in Figure 3.6, containing as 
sub-blocks the integrator and the delayed integrator as described previously.
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Figure 3.4: Third order ΣΔ modulator
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In the third order modulator, the transfer functions are described by the following equations1:

STF  z =
Y  z
U  z

=z−1  (62)

N TF  z =
Y z 
E  z

=1−z−13  (63)

The SNR of a third order modulator is given by the following equations, using the transfer functions 
mentioned above and following the same analysis as for the 1st order modulator:

∣N TF  z∣=[2sin πf
f s
]
3

 (64)

Pe=∫
− f 0

f 0

Se
2 f ∣N TF  f ∣

2df =∫
− f 0

f 0 Δ2

12
1
f s [2sin  πff s

]
6

df =32Δ
2π 6

21  1
OSR

7

 (65)

P s=
Δ222Ν

8
 (66)

The maximum theoretical SNR is calculated to be:

SNRmax=10log 
P s

Pe
=6.02N−7670log OSR  (67)

The advantage of the noise shaping and the oversampling is the increase of the SNR. Taking N=5 for 
(67)  the SNR is reduced to:

SNR=−45.970log OSR   (68)

We consider that the input signal of WIDTH bits takes both positive and negative values. This signal is 
driven through two integrators and one delayed integrator. The output signal is then quantized to 5 bits. 
The feedback we need in order to make the subtraction is WIDTH-1 bits, so we shift WIDTH-6 bits the 
output when assigning it to the feedback.

3.1.3 The problem of stability
Higher order modulators suffer from instability problems because of the overload of the quantizer. In 
high order modulators, the input range must be a few dB below the full scale range of the feedback 
DAC. 

1  In order to maintain the specified signal transfer function, we place as showed in Figure 3.6, two integrators 
(1/(1-z-1)) to avoid having a transfer function like z-3.
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Figure 3.6: Simulink model of a third order ΣΔ modulator
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It is obvious that when the input reaches the limit of the quantizer, without overloading, the addition of 
the quantization error, may cause range overload. This will result a multiple quantizer overload and 
because the error feedback will be saturated, the modulator will be saturated too for the rest of its 
inputs, especially if the next input is similar to the previous one. For any input u(n) of the modulator with 
an M step quantizer, if the following condition is true, the modulator will not experience overload. 

max
n
∣u n∣≤M2−∥h∥1  (69)

where ∥h∥1=∑
n=0

∞

∣hn∣  and h(n) is the inverse z-transform of the noise transfer function H(z). For 

a third order modulator having a 32 level quantizer, the maximum value of u(n) should be 78% of the 
quantizer's full scale value. In Figure 3.7, a 3rd order ΣΔ modulator is oscillating since the quantizer is 
overloaded when an  input  signal  of  amplitude  0.9  (instead of  a  theoretical  maximum  of  0.78)  is 
inserted.

3.1.4 Idle Tones and dithering
Idle tones are produced, when the modulator's input is a DC signal or a very low frequency signal and 
periodic patterns may be present. When this is the case, assuming that the output has a period of n 
cycles, there will be an f s/n signal placed over it. At this case a tone is produced at f s /n and 
the low pass filter will not suppress the tone, because this signal will remain inside the band of interest. 
In our case, where the input is not a DC signal, idle tones can appear when there is a slowly varying 
input for a certain period which is the same as having a DC signal and can produce periodic output. In 
order to avoid this effect, the use of dithering is recommended.

Dithering is the act of importing some random or pseudo random signal into the modulator before the 
quantization  stage  to  avoid  idle  tone  generation.  The  random  signal  injected  will  not  alter  the 
modulator's output, because it will  be noise shaped in the same manner as the quantization noise. Its 
amplitude will be smaller than the modulator's amplitude. 

The generation of pseudo-random signals is based on the use of a Linear Feedback Shift Register 
(LFSR). LFSR produces a pseudo random signal which is repeated every  2N-1 where N is the number 
of registers been used. LFSR will implement a 35 bit polynomial from which the 19 MSBs will be fed to 
the output. By implementing a 35 bit polynomial, we get larger appearance sequence of the random 
signal than having a 19 bit polynomial. Figure 3.10 shows the amplitude of dither compared to the input 
signal:

Dither signal will therefore not affect the spectral output of the modulator since the dither signal is also 
noise shaped. If the dither has large magnitude it can overload the quantizer resulting in instability.
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Figure 3.7: Overloaded 3rd order ΣΔ modulator
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3.2 MATLAB Simulation Results
To better understand the performance difference when raising the order of a modulator,an example is 
illustrated in the following paragraph presenting a first order ΣΔ modulator and a third order.

In a SIMULINK model, a signal generator is used to produce a sinusoidal signal of amplitude 0.7 and of 
frequency Fin=750 Hz. The signal is then inserted into a zero order hold block, to virtually upsample 
the signal up to OSR*Fs with Fs=6000 Hz and OSR=256. After the integration the signal is driven into 
a saturation block  which keeps the input level  of  the quantizer saturated between -1 and 1.  The 
saturation is necessary due to the large gain of the transfer function. The quantizer has 5 bits (32 
levels). Figure 3.9 Shows the performance results: 

Figure 3.9 illustrates the improvement of the SNR when the order of the modulator is increased. If we 
take a  closer  look  at  Figure  3.9 we will  see that  the quantization noise power  of  the third  order 
modulator is very small in our area of interest (up to 1KHz) in contrast with the first order. Besides, 
equation (68) verifies the expected SNR performance with the use of a third order modulator and a 5-
bit quantizer.
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Figure 3.8: Input-dither signals amplitude relation
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Figure 3.9: Magnitude response of a first and third order ΣΔ modulators
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3.3 H/W Implementation
This  chapter  will  present  the  implementation  considerations  of  the  ΣΔ  modulator  block.  RTL 
architecture will be presented along with I/O interfaces, block diagrams and design details.

3.3.1 Procedural diagram
The ΣΔ modulator is composed of two basic sub-blocks as shown in Figure 3.11. The first sub-block is 
the  integrator  and  the  second  sub-block is  the  delayed  integrator.  The  quantizer  block  actually 
truncates the signal and holds the 5 MSBs therefore it will be not considered as a separate block from 
the top level design. These 5 bits are shifted and sign-extended. Before the output of the modulator 
enters the quantizer, the output of the dither block is added. If i_dither_enable is set to '1' then dithering 
is enabled, otherwise the dither block output is set to zero and the modulator operates as normal.

In Figure 3.12 the I/O block diagram of the modulator is presented. 

The detailed pin list of the ΣΔ modulator block is shown in Table 3.1.
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Figure 3.10: input and quantized output of a sinusoidal signal

Figure 3.11: ΣΔ MODULATOR Procedural Diagram
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Signal I/O Description

Clock & reset
clk in Master Clock at 256Fs

rst_n in Active low asynchronous reset 

CONTROL
i_dither_enable in External, Synchronized from upper level

Interpolator stage interface
i_irp_sd_data [23:0] in Input data from interpolator

Internal DAC interface
o_sd_dwa_data [4:0] out Output data to DWA block

Table 3.1: ΣΔ MODULATOR Block Pin List

3.3.2 Overflow Detection
Before  continuing  to  the  description  of  the  implementation  of  the  ΣΔ  modulator,  a  critical  issue 
concerning overflows has to be presented. For signal handling, a two's complement representation is 
considered.  As  far  as  additions  and  subtractions  are  concerned,  overflow  detection  should  be 
incorporated. The additional logic used to detect an arithmetic overflow is to perform a XOR operation 
between the last two carry bits of the adder. If the result of the XOR gate is '0', no overflow occurred, 
otherwise if the result it is '1' an arithmetic overflow occurred.  When an overflow occurs, the adder 
outputs a result, so  that the modulator continues to operate normally.

The approach is to detect if the overflow is either positive or negative. If the overflow is positive then 
the last two carry will be “01”, if the overflow is negative there will be “10”. For the first case the result  
will  be  the  maximum  positive  number  which  in  our  case  is  “0111...1”  and  for  the  second  case 
“1000...0”. Thus, we can assure that the output of the adder is the closest one to the number expected.

Also, the stability of the modulator has to be taken into consideration. Therefore a saturation occures 
before the input signal enters the modulator. The maximum value of the input signal must be of 75% of 
the total input range according to the stability theory and equation (69)
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Figure 3.12: ΣΔ ΜODULATOR Block Diagram
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3.3.3 Integrator sub-block
Signal I/O Description

Clock & reset
clk in Master Clock at 256Fs

rst_n in Active low reset synchronized from upper level

Input interface
i_int_data [24:0] in Input data

Output interface
o_int_data[24:0] out Output data

Table 3.2: Integrator sub-block Pin List

Description
The integrator  sub-block is composed by a D flip-flop, an adder and a multiplexer. The input data is 
summed with the previous input delayed data and are driven through the multiplexer.  The timing 
diagram of the integrator sub-block is given below in Figure 3.13

Adder functionality

The adder  sub-block of  the integrator has to take into account an arithmetic overflow in the two's 
complement representation. In order to allow overflow detection, the adder makes an XOR operation 
between the last two carry bits.  If  the XOR result  is 0 (1 XOR 1, 0 XOR 0) there is no overflow, 
otherwise if the XOR result is 1 (1 XOR 0), overflow is detected.

When an overflow occurs, the adder has to decide whether it was a positive or a negative overflow. If 
the summed numbers exceed the maximum positive value of the adder (01111...1) then the last two 
carry bits are “01” and when the added numbers exceed the maximum negative value (10000...0) the 
last two carry bits are “10”. In case of a positive overflow, the maximum allowed positive value is 
assigned to the result whereas in the case of a negative overflow, the maximum negative allowed 
value is assigned to the result. 
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Figure 3.13: Integrator sub-block Interface Diagram
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3.3.4 Delayed Integrator sub-block
Signal I/O Description

Clock & reset
clk in Master Clock

rst_n in Active low reset synchronized from upper level

Input interface
i_dint_data [24:0] in Input data

Output interface
o_dint_data[24:0] out Output data

Table 3.3: Delayed Integrator sub-block Pin List

Description 

The Delayed Integrator sub-block, is composed by a D flip flop, a multiplexer and an adder as shown in 
Figure 3.15. The basic functionality of this sub-block, is to sum the input data with the output data and 
delay them through the D flip flop. The same architecture described previously concerning the adder 
overflow is also applied to the adder of the delayed integrator.
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Figure 3.14: Adder sub-block Interface Diagram

Figure 3.15: Delayed Integrator sub-block Interface Diagram
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3.3.5 Dither sub-block
Signal I/O Description

Clock & reset
clk in Master Clock 

rst_n in Active low reset synchronized from upper level

CONTROL
i_dither_enable In External, Synchronized from upper level

Output interface
o_dither[24:0] out Output data

Table 3.4: Dither sub-block Pin List

The following block implements the Fibonacci polynomial x35x34x28x271

Description 

The  Dither  sub-block is  composed  by  35  registers  (D  flip-flop).  The  output  of  each  register  is 
connected to the input of the next register. However, registers 34,28 and 27 get their output through an 
XOR gate connected with the input of the first register. Thus, a pseudo random number generator is 
created whose 35 bit pattern is repeated after 235-1 cycles. From the 35 bits of the output, the 19 LSB's 
are selected.  This  19-bit  signal  is  sign extended from 19 bits  to 24 and sent  to the input  of  the 
modulator. If the i_dither_enable signal is set to '0' the dither sub-block does not produce any output 
and the o_dither signal is set to zero. Otherwise, dither is enabled and the output generates random 
signals. Table 3.5 shows an example of the dither block output.
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Figure 3.16: Dither sub-block Interface Diagram
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i_dither_enable o_dither

0 0000000000000000000000111
0 0000000000000000000000011
0 0000000000000000000000001
1 0000000000000000000000000
0 0000000000000000000000000
0 1111111000000000000000000
0 1111111100000000000000000
0 1111111110000000000000000
0 1111111111000000000000000
0 1111111111100000000000000
0 1111111111110000000000000
0 1111111111111000000000000

Table 3.5: Dither block output example

3.4 Verification plan
The implementation of the ΣΔ modulator block is followed by the verification of the results produced. 
The verification procedure is implemented, as in the interpolator block, with the use of the fixed point 
SIMULINK model provided. 

The procedure requires for both the RTL and the MATLAB models, to receive the same input. After the 
simulation ends, the output files of the Modelsim model and the SIMULINK model are compared with 
the KDiff3 tool. If the files match, the RTL follows the MATLAB model of the modulator. 

The fixed point SIMULINK model of the ΣΔ modulator block is depicted in Figure 3.17. The simulation 
is performed without the use of the dither block because it is difficult to be simulated in MATLAB and 
give the exact same results with the Modelsim. 
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Figure 3.17: Fixed point model of ΣΔ modulator
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4 Data Weighted Averaging
The use of  a multibit  ΣΔ modulator  implies the use of  an internal  multibit  DAC.  This  component 
whether  implemented  with  resistors  or  capacitors  exhibits  non-linear  characteristics  because  of 
mismatch.  This  chapter  describes  the theory and analysis  of  different  dynamic  element  matching 
techniques that are used to cope with the problem. The different algorithms are explained and the Data 
Weighted Averaging Algorithm that  has been finally chosen is presented along with theoretical and 
simulation results.

4.1 DWA theory

4.1.1 Internal DAC topology
A digital to analog converter outputs an analog signal A that is related with the digital input D through 
equation (70). An appropriate value for A is chosen depending on the digital input. In practice this a  D 
is a single number without dimensions, a sets the range of A. 

A=aD  (70)

Considering that a can be a current (similar with voltage or charge) quantity, IREF for example, the 
analog output can be expressed as: 

A=I REF D  (71)

The digital input fed to the converter can be either in binary, thermometer or other suitable format as 
shown in Table 4.1.

Decimal 0 1 2 3
Binary code 00 01 10 11

Thermometer code 0000 0001 0011 0111
Table 4.1: formats of DAC conversion

In the binary format an m-bit binary number  Dm−1Dm−2...D0  can be represented in decimal as 

Dm−12
m−1Dm−22

m−2...D02
0 .  In  the  thermometer  code  the  decimal  value  indicates  the 

amount of consecutive ones.

These formats are useful when current-steering DACs are examined. The major distinction is made 
between binary and thermometer current steering DAC. In order to choose the appropriate topology, 
we will  present  two of  the most  basic  metrics  concerning the static  linearity of  a  converter.  The 
Differential Nonlinearity (DNL) and the Integral Nonlinearity (INL) are the metrics that will be discussed. 
DNL is the maximum deviation in the output step size from the ideal value normalized to one LSB. On 
the other hand, INL is the maximum deviation of the input-output characteristic from a straight line 
passing through its  end points.  These two metrics  are useful  to measure the monotonicity of  the 
converter. In general the monotonicity is guaranteed when INL is between  ±0.5 LSB. In  Figure 4.1 
there are shown the INL and DNL metrics in the input-output characteristic of a signal.
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The topologies that can be used are:

Binary topology
The most simple architecture for digital to analog conversion is based on the binary topology shown in 
Figure 4.2. It uses K current sources and each source steers different current. Each current source is 
controlled by Di  that  corresponds to  the i-source.  The  output  current  is  the summation of  all  the 
currents depending on the value of control signal Di. The output current is given by:

I out=D12
0⋅ID22

1⋅ID32
2⋅I...DK 2

K−1⋅I  (72)

where Di may receive the values 0 or 1.

This topology is simple and generic since it has many variations (resistor ladder, R-2R et.c). 

On the other hand, when using a binary code topology the DAC suffers from nonlinearity. It is possible 
that for a given transition (of the type 01111..1 → 1000...0)  all the current sources are switched on or 
off simultaneously and this may cause unwanted glitches. This strongly affects the DNL performance.

Thermometer topology
Thermometer topology, shown in Figure 4.2 is a similar approach differing to the amount of current that 
each  current  source  steers.  Similar  to  the  binary  topology,  in  the  thermometer  architecture,  the 
thermometer code drives N current sources, where N is the representation of the N-bit binary signal. 
Each current  source  drives  equal  amount  of  current  I,  and the output  current  of  the DAC is  the 
summation of these currents.

The  thermometer  code  topology overcomes  the  problem  of  differential  non  linearity  because  the 
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Figure 4.2: DAC topologies
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analog output increases or decreases by one current source each time. A DAC using thermometer 
code must have a total of 2N-1 current sources in order to represent all the possible codes. The price 
paid for this type of topology is the decode logic added on the digital part of the DAC. 

4.1.2 Dynamic Element Matching Algorithms
In  a  ΣΔ DAC where  multibit  quantization is  used,  non-linearity of  the  internal  DAC can  severely 
degrade the overall DAC performance.

These errors are usually caused by the element mismatch such as mismatch on capacitors, resistors 
or  transistors  due to  random variations  or  gradients.  These  random errors  can  be  eliminated  by 
applying different  algorithms or  circuit  topologies.  In recent  design the use of  a dynamic element 
matching algorithm is preferred. Some of them are presented in the following sections.

Butterfly randomization
One of the simplest methods of element matching is the randomization of the element that will be 
selected. By this method, the elements that will be selected are independent by the time nor the input 
signal. The basic principle of this approach is that the mismatch error at one time will not be the same 
with the mismatch error at any other time. Therefore the mismatch error will be converted into a white 
noise. 

Random element matching can be performed by using a butterfly network by coupling the inputs to the 
outputs, having at least a number of butterfly stages equal to the number of the bits of the converter. 
The input of the network is the thermometer code of the signal. By opening or closing the switch of 
each stage, the bit follows a path which ends at the current source that the bit will be represented. The 
switches are set by a random number of M bits where M is the number of stages in the network This 
type of element matching is not preferred for large thermometer codes because of the complexity 
needed for the network. Also when the number of stages is big, a more complex randomizer will be 
needed (for example LFSR) which adds more complexity. A three stage butterfly network is depicted in 
Figure 4.3 with 8 elements and three bit control.

It can be proved that the Butterfly randomization algorithm has a theoretical performance given by 
equation (73).

SNR= 3M
OSR⋅σE

2  (73)

Where M is the number of elements used, OSR is the oversampling ratio of the converter (it is set to 1 
if the sampling is performed in Nyquist rate) and σE is the variance of the mismatch error. 
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Figure 4.3: 3 stage Butterfly network
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Individual Level Averaging
Individual level averaging (ILA) method is aiming at using each element with equal probability for each 
input code. This algorithm is using a table of indexes for each input code IK. For each input code K, the 
element  IK,  IK  +1,... IK  +K-1  is used. If the index exceeds the number of the elements, the indexing 
begins from the beginning of the elements. 

There are two methods of selecting the elements according to each indexes value, the rotation and the 
addition. 

The rotation approach increases the index of the code K,  IK by one each time the code occurs and the 
addition method increases the index by K. The arrays on the Table 4.2 below present the index values 
and the element selection according to the input values for the rotation method and Table 4.3 for the 
addition method.

Time 
– 

Index
input Indexes Element

I1 I2 I3 I4 I5 I6 I7 1 2 3 4 5 6 7
1 5 1 1 1 1 1 1 1 ● ● ● ● ●
2 6 1 1 1 1 2 1 1 ● ● ● ● ● ●

3 3 1 1 1 1 2 2 1 ● ● ●

4 5 1 1 2 1 2 2 1 ● ● ● ●

5 2 1 1 2 1 3 2 1 ● ●

6 3 1 2 2 1 3 2 1 ● ● ●

7 6 1 2 3 1 3 2 1 ● ● ● ● ● ●

8 5 1 2 3 1 3 3 1 ● ● ● ● ●

9 5 1 2 3 1 4 3 1 ● ● ● ● ●
Table 4.2: ILA rotation method

Time 
– 

Index
input Indexes Element

I1 I2 I3 I4 I5 I6 I7 1 2 3 4 5 6 7
1 5 1 1 1 1 1 1 1 ● ● ● ● ●
2 6 1 1 1 1 6 1 1 ● ● ● ● ● ●

3 3 1 1 1 1 6 7 1 ● ● ●

4 5 1 1 4 1 6 7 1 ● ● ● ● ●

5 2 1 1 4 1 4 7 1 ● ●

6 3 1 3 4 1 4 7 1 ● ● ●

7 6 1 3 7 1 4 7 1 ● ● ● ● ● ●

8 5 1 3 7 1 4 6 1 ● ● ● ● ●

9 5 1 3 7 1 1 3 1 ● ● ● ● ●
Table 4.3: ILA addition method

The final outcome of the ILA method is that after a certain amount of time, all the sources are used 
equal times.
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Data Weighted Averaging
The third  approach of  the dynamic element  matching algorithms is  the Data Weighted Averaging 
(DWA). The basic idea of the DWA algorithm is that it uses only one index which is updated with the 
addition of the new input code to the context of the index register. The index indicates the position of 
the first bit of the input data. Therefore as can be seen in  Table 4.4 the thermometer code stream 
occupants the bits of the output beginning from the next bit of the previous output last bit. 

The advantage of the DWA algorithm against the ILA is that it is faster thanks to the usage of only one 
single index instead of K. Table 4.4 shows the operation of the DWA algorithm.

Time – 
Index input index Element

1 2 3 4 5 6 7
1 5 1 ● ● ● ● ●
2 6 6 ● ● ● ● ● ●

3 3 5 ● ● ●

4 5 1 ● ● ● ● ●

5 2 6 ● ●

6 3 1 ● ● ●

7 6 4 ● ● ● ● ● ●

8 5 3 ● ● ● ● ●

9 5 1 ● ● ● ● ●
Table 4.4: DWA algorithm

Ιt can be shown that a first order noise shaping of the mismatch error is performed using the DWA 
algorithm. We assume that the value of  each element is  X i= XδX i , the summation of  the 
mismatch error δX_i  and the mean value of the elements. The mean value of the mismatch error is 
assumed to be 0.

∑
1

M

δX i=0  (74)

Using the mismatch error that corresponds to each current source as a random variable, we can define 
(75) and (76).

Δik = ∑
i

ik−1

δX k for ik−1M  (75)

Δik =∑
i

M

δX k ∑
1

ik−1−M

δX k forik−1M  (76)

The equations above describe the total error produced by the elements for converting an input number 
k while the index points at i. 

We can observe that the mismatch error tends to 0 when all the current sources have been used. We 
use the term cycle to refer to this. For sake of clarity the following example is presented.

Consider a DAC using 8 elements for the analog conversion. Also suppose an input sequence of the 
numbers 3,4,3. Figure 4.4 displays the element usage according to the DWA algorithm.
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The  noise  injected  at  the  first  input  is  Δ1k1=δX 1δX 2δX 3 ,  at  the  second  input  is 
Δ2k 2=δX 4δX 5δX 6δX 7  .  By  splitting  the  mismatch  noise  of  the  third  input  into 
Δ3 ' k3=δX 8 and Δ3 ' ' k 3=δX 1δX 2  we have for the first cycle a total mismatch error of

Δ1k1Δ2k 2Δ' 3k 3=0  (77)

 Expressing the mismatch error of the second input as a function of the other two we have:

Δ2k 2=−[Δ1k 1Δ' 3 k3]  (78)

Since, k3 is the code corresponding at time n, k2 corresponds at time (n-1) and code k1 corresponds 
at time (n-2) we can write in the z-domain we can convert the total mismatch error

−z−1 Δ1 k11− z−1Δ3 ' k 31−z−1  (79)

Equation (79) shows the first order noise shaping that takes place during DWA algorithm. This can be 
applied to the rest of the inputs by separating the mismatch error when needed in order for the total 
mismatch error of each cycle to become zero.

The DWA method is simulated in the MATLAB-SIMULIKNK environment for the ΣΔ DAC giving the 
following results in the frequency domain. 

In Figure 4.5 the output of the model is displayed. In the SIMULINK model a mismatch error is added 
at the output of the ΣΔ modulator resulting the magnitude response displayed with the red line. The 
magnitude response of the ΣΔ modulator without the mismatch error is displayed with the green line 
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Figure 4.4: DWA example using 8 elements
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whereas the output of the mismatch error shaped signal using the DWA method is displayed with the 
blue line. It is obvious that the DWA algorithm eliminates the errors added by the element mismatch.

The SIMULINK model is displayed in Figure 4.6 and Figure 4.7. The model uses the dwa function in 
which a mismatch error is added in each element. Also in the dwa function the DWA algorithm is 
performed  which  uses  an  index  pointing  the  starting  element  which  will  represent  the  input  in 
thermometer code as described previously.
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Figure 4.7: Topology of model with and without using DWA algorithm

y1

index

sdout

T o Workspace5

In1Out1

Sigm a Dela  
Converter

y

Output wi thout DWA

yout

Output o f DWA

M AT LAB
Function

M odeled m ism atch
 o f Current sources

In2

out

index

DWA

Figure 4.6: DWA model

1
1

2

i n d e x

1

o u t

z

1

U n i t  D e l a y

M A T L A B
F u n c t i o n

D E M
1

I n 2

1



Data Weighted Averaging

4.2 Architecture
The section that follows will present the basic concept principles of the reasons that lead us to the 
specific architecture.

DAC Topology
The topology that will be used in the converter will be the one described in the previous sections and is 
composed by a  thermometer  code  translator  and  a  block  that  will  perform  the  dynamic  element 
matching. As already described, this architecture is better because the current sources that will be 
used will be equivalent which leads to lower element mismatch errors. 

The Dynamic Element Matching algorithm that will be used is the DWA algorithm. Because the output 
of the ΣΔ modulator is a 5 bit signal it will be translated to a 32 bit signal after the thermometer code 
block.

Figure 4.8 displays the topology of the DWA block

The  output  of  the  DWA block  is  the  input  of  each  parallel  element  that  will  perform  the  analog 
conversion. 

4.3 H/W Implementation
In this chapter there will be presented the basic principles followed in the implementation of the DWA 
block along with I/O description and desgn considerations.

4.3.1 Procedural diagram
Figure 4.9 shows the procedural  diagram of  the DWA block.  The DWA algorithm is implemented 
without the use of internal subbllocks because of its small size.

Figure 4.10 displays the DWA block interface diagram.
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Figure 4.8: Topology of DWA block
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Table 4.5 lists the DWA block pin list.

Signal I/O Description

Clock & reset
clk in Master Clock 

rst_n in Active low reset synchronized from upper level

ΣΔ modulator interface
i_sd_dwa_data[4:0] in 5 bit input data from modulator

Analog Converter Interface
o_dwa_data[31:0] out 32 bit signal driven to the current sources of the analog converter.

Table 4.5: DWA Pin List

Description

The DWA block as explained in the theory part, translates an input sequence of 5 bits into a 32-bit 
thermometer code sequence indicating the position of the representation elements.

In order to implement the DWA block, we first have to modulate the input data to an unsigned signal 
because the thermometer coding does not support signed representation. Therefore we add 15 at 
each input and the DAC output range becomes 0 up to 32.

At this point it  is  important to mention that when an  rst_n signal  is received, the  dwa_data signal 
becomes 15 since the zero value is represented as 15 in the new output range. The other elements of 
the DWA block are not affected by the reception of a reset because it will affect the output sequence.

The  dwa_data signal is summed with the delayed pointer signal,  DPr, and assigned to the pointer 
signal Pr. To receive the DPr we connect the Pr with a D flip-flop. 

The summation is performed by a full adder which outputs the sum of the dwa_data and DPr as well as 
the last carry of the operation in the cout signal.

The Pr and DPr signals are then translated in thermometer code and assigned to the DprT and PrT 
respectively . After the pointer translation a logic equation is performed to calculate the final output of 
the DWA block. The equation is described above.

o _ dwa_ data=PrTDPrT ⋅coutPrT⋅DPrT ⋅cout  (80)
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Figure 4.11: DWA Interface Diagram
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4.4 Verification plan
As a result of the fact that the DWA block does not alter the output, instead it removes the mismatch 
error involved in the analog conversion, the verification process can be held by the following simple 
procedure:

A testbench is created which stores the DWA output into a file. The output of the DWA is stored in 
binary string format. A MATLAB script file loads the output file and transforms it to the original input of 
the DWA block (a quantized signal ranging from -15 to 15). Then the KDiff3 application is used to 
compare the MATLAB transformed output file with the original MATLAB output file of the ΣΔ modulator. 
If the files match the DWA block performs the proper calculations.
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5 Top level integration and Synthesis

5.1 Top Level Integration and results
The  separate  components  of  the  DAC  are  connected  inside  a  top  level  block.  The  sub-blocks 
composing the DAC are the Integrator, the ΣΔ modulator and the DWA block. Their functionality is 
described in the previous chapters. The interface diagram of the top level is shown in Figure 5.1:

The outputs of the DAC are the 5-bit quantized output of the modulator and the 32-bit thermometer 
code output of the DWA block. The top level block includes in its output the modulators output in terms 
of easier simulation and verification. 

The output of the DAC is given in  Figure 5.2 below, verifying the expected performance. The input 
signal is a sinusoidal signal at 750Hz with an initial sampling rate of 6kHz. 

As we can see, the noise of the signal is shaped at very high frequencies resulting in high SNR in the 
band of interest. 

5.1.1 Verification Plan
The verification of the top level is made by comparing the RTL results with the MATLAB results. A test 
bench is created (dac_tb.vhd) which receives its input from a file already produced by a MATLAB 
script. The data are processed by the RTL and the test bench outputs two files: the  ΣΔ quantized 
output of 5-bit length and the DAC output of 32-bit length using thermometer code arithmetic. These 
two files are then processed by a MATLAB script and compared with the KDiff3 application with the 
SIMULINK fixed point model outputs.
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Figure 5.1: Top level DAC Interface Diagram
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5.2 Synthesis results
The synthesis is performed in the Altera Quartus II environment. The synthesized file is the top level 
block of the converter. For the synthesis purpose, a clock oscillator is inserted in the top level design. 
The results of the synthesis can be summarized in the following metric table:

Results Metrics

Total logic elements 2,846/18,752 
Total combinational functions 2,357/18,752

Dedicated logic registers 1,702/18,752
Total pins 65/315

Total memory bits 0/239,616
Embedded Multiplier 9-bit element 21/52

Total PLLs 0/4
Table 5.1: Synthesis results summary
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6 Conclusion
The design and implementation of the ΣΔ DAC, was a great challenge due to the large number of 
considerations that had to be taken. Several steps where made until the completion of this thesis. 
Some of them where the study of the theory involved in the ΣΔ architecture, the design of theoretical 
models in SIMULINK/MATLAB, the implementation in VHDL of the theoretical model, the verification of 
the RTL functionality and its synthesis.

The output of the RTL coincides with  the output of the SIMULINK resulting the expected performance. 
The implementation of the converter was made according to the initial specifications. Although this is a 
very  good  approach  of  the  converter,  several  modifications  could  be  made.  Some  of  them  are 
described in the following paragraphs.

The interpolator is designed so the output signal would have a passband range of 1KHz. The filters 
inside the interpolator could be scaled by changing the sampling rate of the initial signal. Also, the 
coefficients of the filters in the current implementation are hard wired resulting in bigger area inside the 
IC. A memory or a register file could be used instead, to store the filters coefficients.

As far as the ΣΔ modulator is concerned, other implementations could be performed by changing the 
architecture of the modulator (MASH, different approach of the error feedback loop) and keeping the 
same characteristics.

Finally the internal DAC topology could be different by choosing the binary code or other approaches. 
As for the thermometer code topology, the Dynamic Element Matching algorithm is an option with 
many different implementations to choose. 

Finally the synthesis results are satisfactory according to the percentage of the used sources of the 
FPGA. 

This implementation could also be extended furthermore. The most significant extension that could be 
made, is the connection of the FPGA with an analog part. The analog part could be composed by a set 
of current sources and an analog filter.
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7 Glossary
D L

DAC: Digital to Analog Converter LPF: Low Pass Filter
DEM: Dynamic Element Matching LSB: Less Significant Bit
DWA: Data Weighted Averaging LFSR: Linear Feedback Shift Register

DNL: Differential Nonlinearity M
F MASH: Multi-stage noise-shaping

FIR: Finite Impulse Response MSB: Most Significant Bit
FPGA: Field Programmable Gate Array O

FSM: Finite State Machine OSR: Oversampling Ratio
H R

HB: Half Band RTL: Register Transfer Language
I S

IIR: Infinite Impulse Response ΣΔ: ΣΔ
ILA: Individual Level Averaging SINC: Sinus Cardinal

INL: Integral Nonlinearity SNR: Signal to Noise Ratio
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8 Appendix A
In this appendix, the content of each source code file is mentioned

File Name Description

Interpolator
interpolator.vhd Top level interpolator file
irp1.vhd First FIR equiripple filter (IRP1)
irp1_control.vhd FSM of IRP1
irp1_accumulator.vhd Accumulator of IRP1
irp2.vhd First Half Band filter (IRP2)
irp2_control.vhd FSM of IRP2
irp2_accumulator.vhd Accumulator of IRP2
irp3.vhd Second Half Band filter (IRP3)
irp3_control.vhd FSM of IRP3
irp3_accumulator.vhd Accumulator of IRP3
sinc.vhd SINC filter
dff_sum_delay.vhd Delay element of SINC filter
dff_irp.vhd D flip-flop of Interpolator
irp_tb.vhd Test bench of Interpolator

ΣΔ Modulator
sd_mod.vhd Top level ΣΔ modulator file
integrator.vhd Integrator block file
delayed_integrator.vhd Delayed integrator block file
substractor.vhd Substractor block file
dither.vhd Dither block
adder.vhd Adder block
dff_sd.vhd D flip-flop of ΣΔ modulator
sdmod_tb ΣΔ modulator test bench

DWA
dwa.vhd DWA top level file
dff_dwa.vhd D flip-flop of DWA block
adder_dwa.vhd Adder of DWA block
dwa_tb.vhd DWA block test bench

ΣΔ DAC
dac.vhd Top level ΣΔ DAC file
dac_tb.vhd Top level test bench (outputs both quantized output of 

ΣΔ modulator  and  thermometer  code  output  of  DWA 
block)
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9 Appendix B
The design and implementation of the ΣΔ DAC is performed by using the following applications:

● Windows XP Professional SP2 Operating System

● MATLAB/SIMULINK 7.1

● Modelsim  SE 6.0

● Altera Quartus II sp1 Web Edition

● KDiff3

● OpenOffice.org Writer 2.4.0
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10 Appendix C
The coefficients of the filters are given in the tables above:

IRP1
coeff0 1173 coeff12 -1094025
coeff1 5824 coeff13 877839
coeff2 11125 coeff14 3328842
coeff3 611 coeff15 3205748
coeff4 -43281 coeff16 -1405278
coeff5 -92752 coeff17 -7832448
coeff6 -48522 coeff18 -8889393
coeff7 166304 coeff19 1847042
coeff8 411370 coeff20 23269264
coeff9 293593 coeff21 45105411
coeff10 -438312 coeff22 54350989
coeff11 -1298726

IRP2
coeff0 581 coeff10 617383
coeff2 5320 coeff12 -1465185
coeff4 -26186 coeff14 5226797
coeff6 91371 coeff15 8388608
coeff8 -254616

IRP3
coeff0 6357 coeff6 -1172842
coeff2 -63943 coeff8 5101847
coeff4 322885 coeff9 8388608
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