

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

«Μελέτη διαστασιακών ιδιοτήτων των προϊόντων ημισυνεχούς λειοτρίβησης Σερπεντίνη και Χαλαζία»

ΕΜΜΑΝΟΥΗΛΙΔΗΣ Δ. ΣΤΑΜΑΤΗΣ

Εξεταστική Επιτροπή

Σταμπολιάδης Ηλίας, Καθηγητής (Επιβλέπων) Αγιουτάντης Ζαχαρίας, Καθηγητής Γαλετάκης Μιχάλης, Επικ. Καθηγητής

Χανιά, Ιούλιος, 2012

<u>Περιεχόμενα</u>

Πρόλογος
Περίληψη4
Ευχαριστίες6
ΚΕΦΑΛΑΙΟ 1. Θεωρητικό υπόβαθρο7
1.1. Ορυκτολογικά στοιχεία υλικών τροφοδοσίας9
ΚΕΦΑΛΑΙΟ 2. Πειραματική διαδικασία11
ΚΕΦΑΛΑΙΟ 3. Επεξεργασία δεδομένων18
3.1. Κατανομή Μάζας
3.2. Κατανομή Αριθμού Τεμαχιδίων
3.3. Κατανομή Επιφάνειας
3.4. Κατανομή Μήκους 20
3.5. Υπολογισμός βέλτιστου εκθέτη (n_{opt}) και δυναμικής ενέργειας (e_{pot})
ΚΕΦΑΛΑΙΟ 4. Αποτελέσματα22
4.1. Κοκκομετρικές αναλύσεις-Διαστασιακές ιδιότητες
4.1.1. Κατανομή Μάζας
4.1.2. Κατανομή Επιφάνειας
4.1.3. Κατανομή Μήκους
4.1.4. Κατανομή Αριθμού
4.2. Δείκτης έργου(W_i), Βέλτιστος εκθέτης (n_{opt}) και Δυναμική ενέργεια (e_{pot})
ΚΕΦΑΛΑΙΟ 5. Συμπεράσματα - Συζητήσεις
Βιβλιογραφία

αράρτημα43

Πρόλογος

Η εργασία αυτή εκπονήθηκε στα πλαίσια των υποχρεώσεων για την απόκτηση του διπλώματος του Μηχανικού Ορυκτών Πόρων με επιβλέποντα τον καθηγητή κ. Ηλία Σταμπολιάδη. Το αντικείμενο της εργασίας αυτής είναι η διερεύνηση των διαστασιακών ιδιοτήτων προϊόντων ημισυνεχούς λειοτρίβησης Χαλαζία και Σερπεντίνη.

Στη βιομηχανία και γενικά στην Μηχανική των Τεμαχιδίων, κατά το στάδιο της μείωσης του μεγέθους ενός υλικού, είναι γνωστό πως επηρεάζονται οι διαστασιακές του ιδιότητές καθώς και το πόσο ενέργεια απαιτείται ανά μονάδα μάζας κατά την λειοτρίβηση. Έτσι είναι δυνατό να αυξήθεί η απόδοση ενός κυκλώματος όπως επίσης να υπολογίστει την ιδανική κατανάλωση ενέργειας για την επεξεργασία συγκεκριμένων υλικών.

Η εργασία έδειξε ότι οι διαστασιακές ιδιότητες δεν είναι μορφοκλασματικές, ο εκθέτης *n* της σχέσης ενέργειας – μεγέθους δεν ισούται με 0,5 όπως αποφαίνεται ο Bond αλλά μπορεί να υπολογιστεί με ακρίβεια με την μέθοδο που προτείνεται.

<u>Περίληψη</u>

Στα πλαίσια αυτής της εργασίας χρησιμοποιήθηκαν δύο υλικά, Χαλαζίας και Σερπεντίνης, τα οποία υπέστησαν μια αρχική επεξεργασία η οποία συμπεριλάμβανε αρχική θραύση σε μέγεθος -4 mm, διαχωρισμό των υλικών σε αντιπροσωπευτικά δείγματα και κοκκομετρική ανάλυση. Έπειτα χρησιμοποιήθηκε ένα ημισυνεχές κύκλωμα λειοτρίβησης το οποίο αποτελείται από ένα εργαστηριακό ραβδόμυλο και ένα κόσκινο. Το υλικό τροφοδοσίας ζυγίζεται, τοποθετείται μέσα στο μύλο για προκαθορισμένο χρονικό διάστημα και λειοτριβείται, ακολούθως κοσκινίζεται εν υγρώ σε κόσκινο συγκεκριμένης κοκκομετρίας. Το παραμένον του κοσκίνου ανατροφοδοτεί τον ραβδόμυλο μαζί με φρέσκια τροφή έτσι ώστε η μάζα του υλικού στο μύλο να παραμένει σταθερή. Το προϊόν της κοσκίνισης ζυγίζεται και η δοκιμή τελειώνει όταν επιτευχτεί η επιθυμητή ακρίβεια σε δύο συνεχόμενες μετρήσεις, στο τελικό προϊόν της δοκιμής γίνεται κοκκομετρική ανάλυση. Η διαδικασία επαναλαμβάνεται για τα εξής κλάσματα 850, 425, 212, 106, 53 μm.

Μια από τις πιο σημαντικές παραμέτρους που περιγράφουν ένα υλικό, είναι ο δείκτης έργου W_i (*Work Index*) που ορίζεται ως (Bond, 1961) [1] :

$$W_i = e_{1,2} / [100^n * \left(\frac{1}{100^n} - \frac{1}{\infty^n}\right)],$$

Ο Bond θεωρεί ότι n=0,5.

Θεωρητικά ο δείκτης έργου για ένα υλικό πρέπει να είναι σταθερός ασχέτως του μεγέθους του προϊόντος που χρησιμοποιήθηκε για τον υπολογισμό του. Πράγμα που δεν ισχύει πάντα στην πράξη, με αφορμή αυτό έγινε μια προσπάθεια προσέγγισης του βέλτιστου εκθέτη n_{opt} , με την χρήση στατιστικής, για να αποδειχθεί ότι η απόκλιση του W_i οφείλεται στην υπόθεση ότι το n=0,5 για κάθε υλικό.

Χρησιμοποιώντας τα αποτελέσματα των κοκκομετρικών αναλύσεων είναι δυνατόν να υπολογιστούν οι διαστασιακές ιδιότητες για κάθε υλικό σε όλα τα κλάσματα. Ως διαστασιακές ιδιότητες (αριθμός, μήκος, επιφάνεια, μάζα) ενός κοκκώδους υλικού μπορούν να θεωρηθούν η μάζα των κόκκων, η επιφάνεια, το μήκος καθώς και ο αριθμός τους. Έπειτα υπολογίζονται οι αθροιστικές κατανομές αυτών των ιδιοτήτων και παρουσιάζονται σε διαγράμματα.

Σύμφωνα με την άποψη που επικρατεί τα τελευταία χρόνια, οι κατανομές των διαστασιακών ιδιοτήτων εάν εκφραστούν συναρτήσει του μεγέθους των υλικών που είναι προϊόντα λειοτρίβησης, θραύσης και ανατίναξης έχουν μορφοκλασματική ιδιότητα (Fractal). Μορφοκλασματικά ονομάζονται τα υλικά που ο αθροιστικός αριθμός των τεμαχιδίων τα οποία είναι χονδρύτερα από ένα μέγεθος x μπορεί να εκφραστεί σαν εξίσωση δύναμης του μεγέθους. Τα υλικά τροφοδοσίας μετά την επεξεργασία των αποτελεσμάτων αξιολογούνται και ελέγχεται εάν εμφανίζουν μορφοκλασματική ιδιότητα.

Πηγαίνοντας ένα βήμα πιο πέρα δημιουργήθηκε η ανάγκη εύρεσης μιας άμεσης σχέσης ενέργειας-μεγέθους, ένα ενεργειακό επίπεδο που να εξαρτάται μόνο από το μέγεθος x και όχι από την διαδρομή που ακολουθείται. Αυτό το επίπεδο ονομάζεται δυναμική ενέργεια e_{pot} (potential energy).

<u>Ευχαριστίες</u>

Για την διεκπεραίωση αυτής της εργασίας θεωρώ υποχρέωσή μου να ευχαριστήσω τον επιβλέποντα καθηγητή κ. Ηλία Σταμπολιάδη για την πολύτιμη βοήθεια και συμπαράσταση καθ'όλη την διάρκεια εκτέλεσης αυτής της εργασίας. Θα ήθελα να ευχαριστήσω τον κ. Ζαχαρία Αγιουτάντη και τον κ. Μιχαήλ Γαλετάκη για τις παρατηρήσεις τους και συμβουλές πάνω στο κείμενο.

Θέλω να ευχαριστήσω θερμά τους επιστημονικούς συνεργάτες του εργαστήριου Εμπλουτισμού Μεταλλευμάτων, κ. Όλγα Παντελάκη και πιο συγκεκριμένα τον κ. Ευάγγελο Πετράκη για την βοήθεια, την συμπαράσταση και την υπομονή τους κατά την διάρκεια εκπόνησης των πειραμάτων.

Επίσης θα ήθελα να ευχαριστήσω τους συμφοιτητές και φίλους μου Ευθύμιο Δρίτσα, Μιχάλη Μιχάλα, Αριστείδη Προεστάκη, Αλέξανδρο Σφαέλο, καθώς και τους διπλωματούχους Μηχανικούς Ορυκτών Πόρων Δημήτρη Σπηλιάδη, Μαρία Συροπούλου, Ελένη-Μαρία Παναγιωταρά, Στράτο Θωμαίδη και Θανάση Λαζαρόπουλο για την αμέριστη συμπαράσταση και υποστήριξη.

Τέλος ευχαριστώ τους γονείς μου και την οικογένειά μου για την στήριξή τους, την υπομονή τους καθώς και την κατανόηση που μου έδειξαν σε όλα τα χρόνια φοίτησης, όπως και όλους τους φίλους και συμφοιτητές για τις όμορφες στιγμές που περάσαμε οι οποίες δεν θα φύγουν ποτέ από το μυαλό μου.

ΚΕΦΑΛΑΙΟ 1. Θεωρητικό υπόβαθρο

Ο δείκτης έργου W_i (Work Index) ορίζεται ως:

$$W_i = e_{1,2} / \left[100^n * \left(\frac{1}{100^n} - \frac{1}{\infty^n} \right) \right] \qquad \dots (1)$$

Σύμφωνα με τον (P. R. Rittinger) [2] είναι γνωστό ότι, η επιφάνεια του υλικού που παράγεται κατά την θραύση είναι ανάλογη της ενέργειας *e_i* που καταναλώνεται. Η σχέση μεγέθους-ενέργειας γενικά εκφράζεται από την ακόλουθη εξίσωση:

$$e_{1,2} = C * \left(\frac{1}{x_2^n} - \frac{1}{x_1^n}\right) \qquad \dots (2)$$

Όπου $e_{1,2}$ εκφράζει την ειδική ενέργεια που απαιτείται για την λειοτρίβηση ενός συγκεκριμένου υλικού από αρχικό μέγεθος x_1 σε τελικό μέγεθος x_2 . Το *C* είναι μια σταθερά και το *n* ένας εκθέτης, ο οποίος σύμφωνα με τον Rittinger [2] n=1, τον Bond [1] n=0,5 και με τους Σταμπολιάδη [4], [5] και Charles [3] το *n* μπορεί να πάρει κάθε τιμή μεταξύ του 1 και του 0,5.

Ο δείκτης έργου W_i (Work Index) όπως ορίστηκε από τον Bond [1] εκφράζεται ως η ειδική ενέργεια (kWh/t) που απαιτείται για να μειωθεί το μέγεθος ενός υλικού από άπειρο μέγεθος σε 100μm, σύμφωνα με την παραπάνω σχέση, όπου για n=0.5, $x_1 \rightarrow \infty$ και $x_2=100$ εξ' ορισμού δίνει:

$$e_{\infty,100} = W_i \qquad \qquad \dots (3)$$

και

$$C = 10 * W_i \qquad \dots (4)$$

Η σταθερά C υπολογίζεται χρησιμοποιώντας ένα μύλο γνωστής ισχύος, με τον οποίο μετράται η ειδική ενέργεια όπως και εξοπλισμό κοσκίνισης για την εύρεση των μεγεθών x_1 και x_2 . Η σταθερά C συνδέεται με το W_i και εάν αντικαταστήσουμε την σχέση (2) στην (1) για n διάφορο του 0,5 είναι:

$$C_i = W_i * 100^n \qquad \dots (5)$$

Και η (1) γίνεται:

$$e_{1,2} = W_i * 100^n * \left(\frac{1}{x_2^n} - \frac{1}{x_1^n}\right) \qquad \dots (6)$$

$$\dot{\eta}$$

$$W_i = e_{1,2} / \left[100^n * \left(\frac{1}{x_2^n} - \frac{1}{x_1^n} \right) \right] \qquad \dots (7)$$

Θεωρητικά ο δείκτης έργου W_i για ένα υλικό πρέπει να είναι σταθερός, ανεξάρτητα των μεγεθών x_1 , x_2 που χρησιμοποιήθηκαν για τον υπολογισμό του C και της ενέργειας $e_{1,2}$. Στην πραγματικότητα όμως δεν ισχύει κάτι τέτοιο και ο δείκτης έργου εξαρτάται από τα x_2 , $e_{1,2}$, για αυτό τον λόγο έχουν προταθεί πολλοί διορθωτικοί παράγοντες οι οποίοι διατηρούν σταθερό το n αλλάζοντας την αρχική εξίσωση. Η εξίσωση (6) περιγράφει την ειδική ενέργεια που απαιτείται για την λειοτρίβηση ενός υλικού από μέγεθος x_1 σε x_2 θεωρώντας γνωστά το δείκτη έργου W_i και τον εκθέτη n, επομένως δεν υπάρχει μια άμεση σχέση ενέργειας-μεγέθους. Για να αναδειχθεί αυτή η σχέση πρέπει να υπάρχει ένα ενεργειακό επίπεδο για κάθε υλικό το οποίο εξαρτάται μόνο από το μέγεθος x και είναι ανεξάρτητο της διαδρομής που μπορεί να έχει ακολουθήσει (Σταμπολιάδης Η., Πετράκης Ε., Εμμανουηλίδης Σ.) [7]. Αυτό το επίπεδο στο εξής θα ονομάζεται ειδική δυναμική ενέργεια (potential energy, e_{pot}) και υπολογίζεται από την σχέση (6) εάν αντικατασταθεί όπου $x_1 \rightarrow \infty$:

$$e_{pot} = W_i * 100^n * \frac{1}{n^n}$$
(8)

Είναι φανερό ότι για $x = 100 \, \mu m$ η ειδική ενέργεια ισούται με W_i που περιγράφει την ενέργεια που απαιτείται για την μείωση του μεγέθους ενός υλικού από ∞ σε 100μm. Αντικαθιστώντας στην παραπάνω σχέση το n_{opt} και το W_i υπολογίζεται η δυναμική ενέργεια για κάθε προϊόν όπως και για την τροφή.

Είναι γνωστό ότι κατά την διάρκεια της λειοτρίβησης η κατανομή μάζας του υλικού τροφοδοσίας μετατοπίζεται σε λεπτότερα μεγέθη, αλλά η συνολική μάζα και κατά συνέπεια και ο συνολικός όγκος των τεμαχιδίων παραμένει σταθερός. Αφετέρου είναι γνωστό ότι η συνολική επιφάνεια, το συνολικό μήκος και ο συνολικός αριθμός των κόκκων αυξάνουν όσο η λειοτρίβηση συνεχίζεται. Είναι εύκολα κατανοητό ότι, σε κάθε κοκκώδες υλικό μιας προκαθορισμένης ολικής μάζας, υπάρχει πάντα ένα μέγιστο μέγεθος πάνω από το οποίο δεν υπάρχουν καθόλου τεμαχίδια. Θεωρητικά το μεγαλύτερο τεμαχίδιο που θα μπορούσε να υπάρχει, είναι αυτό που θα περιέκλειε όλη τη μάζα του υλικού και θα αναφέρεται στο εξής ως τεμαχίδιο ολικής μάζας. Σε αυτή την περίπτωση μιλάει κανείς για ένα κόκκο παρά για ένα κοκκώδες υλικό. Στη πραγματικότητα το μέγιστο τεμαχίδιο που υπάρχει στα κοκκώδη υλικά, είναι πολύ μικρότερο από το τεμαχίδιο ολικής μάζας και μικραίνει όσο η λειοτρίβηση συνεχίζεται ή αλλιώς όταν αυξάνει η ενέργεια λειοτρίβησης. Συνήθως, το μικρότερο μέγεθος κοσκίνου που χρησιμοποιείται στις κοκκομετρικές αναλύσεις είναι 53 μm.

Το διερχόμενο από τα 53 μm υπολογίζεται σαν μια τάξη μεγέθους και πάντα υπάρχει πρόβλημα στον ορισμό του μέσου μεγέθους της τάξης αυτής μιας και υπονοείται ότι περιλαμβάνει τεμαχίδια μεγέθους από 53 μm μέχρι το μηδέν.

Έκτος από την κατανομή μάζας ενός κοκκώδους υλικού, κάποιος θα μπορούσε να θεωρήσει και τις κατανομές άλλων ιδιοτήτων των τεμαχιδίων. Αυτές οι ιδιότητες είναι η επιφάνεια, το μήκος και ο αριθμός των κόκκων, οι οποίες μαζί με την μάζα θα καλούνται διαστασιακές ιδιότητες.

Ακολούθως στα πλαίσια αυτής της εργασίας ελέγχεται αν οι αυτά τα υλικά μπορούν να χαρακτηριστούν μορφοκλασματικά (Fractal). Μορφοκλασματικά θεωρούνται τα υλικά που ο αθροιστικός αριθμός των τεμαχιδίων χονδρύτερων από το μέγεθος x μπορεί να εκφραστεί ως εξίσωση δύναμης μεγέθους, η μαθηματική συνέπεια αυτού είναι ο αριθμός των τεμαχιδίων ενός κοκκώδους υλικού να τείνει στο άπειρο, όταν το μέγεθος x τείνει στο μηδέν. Επειδή τα υλικά κατάκλασης (ανατίναξης, θραύσης, λειοτρίβησης) μπορούν να εκφραστούν με τις συγκεκριμένες μαθηματικές σχέσεις, πολλοί συγγραφείς τα ονομάζουν μορφοκλασματικά, όμως με μια πιο προσεκτική παρατήρηση δείχνει ότι ένας τέτοιος ισχυρισμός δεν είναι απόλυτα σωστός.

1.1. Ορυκτολογικά στοιχεία υλικών τροφοδοσίας

Στα πλαίσια αυτής της εργασίας η επιλογή των δύο υλικών έγινε με βάση της ιδιότητές τους και πιο συγκεκριμένα της σκληρότητας. Ορυκτά με μεγάλη σκληρότητα απαιτούν περισσότερη ενέργεια κατά την θραύση με αποτέλεσμα να επηρεάζει και τις διαστασιακές ιδιότητες.

Ο Χαλαζίας (αγγλ. Quartz) είναι ορυκτό του πυριτίου, συγκεκριμένα πολύ καθαρό οξείδιο πυριτίου (SiO₂), το δεύτερο πιο διαδεδομένο ορυκτό στη φύση. Είναι σημαντικό ορυκτό της λιθόσφαιρας και συμμετέχει στα συστατικά της σε ποσοστό περίπου 12%. Επίσης είναι το μοναδικό ορυκτό που αποτελείται αποκλειστικά από πυρίτιο και οξυγόνο. Τα μόρια του χαλαζία είναι πολύ ισχυρά συνδεδεμένα και για αυτό έχει μεγάλη σκληρότητα, 7 στην κλίμακα κατά Mohs. Παρουσιάζει ασθενή σχισμό, κογχοειδή θραύση, έχει πυκνότητα 2,65 g/cm³ και εμφανίζει διπλοθλαστικότητα και πιεζοηλεκτρικές ιδιότητες. Απαντάται σε πολλές και ποικίλες μορφές, έχοντας χρώμα από σκούρο καφέ-μαύρο (καπνιάς) έως τελείως διαφανές. Στα πετρώματα συναντάται σε κοκκώδη ή κρυσταλλική μορφή. Αποτελεί

9

ορυκτολογικό συστατικό των όξινων εκρηξιγενών πετρωμάτων, όπως και μεταμορφωσιγενών και ιζηματογενών πετρωμάτων. Ο Χαλαζίας που χρησιμοποιήθηκε προέρχεται από την περιοχή Άσσηρο Θεσσαλονίκης (MEBIOP A.E.).

Με την ονομασία Σερπεντίνης (αγγλ. Serpentine) χαρακτηρίζεται η ομάδα των εξής πολυμορφικών πυριτικών ορυκτών, οι διαφορές των οποίων είναι μακροσκοπικά ασήμαντες τόσο που είναι αδύνατος ο μακροσκοπικός διαχωρισμός τους:

- Αντιγορίτης (Antigorite): (Mg,Fe)₃Si₂O₅(OH)₄ μονοκλινές
- Λιζαρδίτης (Lizardite) $Mg_3Si_2O_5(OH)_4$ τριγωνικό, εξαγωνικό
- Χρυσοτίλης (Chrysotile) $Mg_3Si_2O_5(OH)_4$ ρομβικό
- Αμίαντος (Asbestos) $Mg_3Si_2O_5(OH)_4$, ινώδης παραλλαγή του χρυσοτίλη

Ο Σερπεντίνης είναι δευτερογενές ορυκτό από τα πλέον διαδεδομένα στην φύση και αποτελεί προϊόν εξαλλοίωσης μαγνησιούχων πυριτικών ορυκτών και ιδιαίτερα του ολιβίνη. Ανευρίσκεται σε πυριγενή και μεταμορφωμένα πετρώματα. Ιδιαίτερα γνωστός στην Ελλάδα είναι ο σερπεντινιωμένος περιδοτίτης, που ανευρίσκεται συχνότατα στην Βόρεια Ελλάδα. Λόγω της λιπαρής υφής του σερπεντίνη, η οποία προκαλεί ολίσθηση, ο σερπεντινιωμένος περιδοτίτης είναι πέτρωμα το οποίο εμφανίζει συχνές κατολισθήσεις, ιδιαίτερα αν υπόκειται άλλων σχηματισμών. Η δομή του σερπεντίνη συνίσταται από στιβάδες πυριτικών ενώσεων τετραεδρικής δομής, ανάμεσα στις οποίες παρεμβάλλονται στιβάδες βρουκίτη (Mg(OH)₂). Ο τρόπος διάταξης των στιβάδων βρουκίτη ανάμεσα στις πυριτικές στιβάδες είναι το αίτιο ύπαρξης των πολυμορφικών ορυκτών της ομάδας. Ειδικότερα στον χρυσοτίλη και τον αμίαντο, οι στιβάδες αυτές τείνουν να λάβουν σωληνοειδή δομή, εξ ου και η ινώδης υφή του ορυκτού. Έχει πυκνότητα από 2,2-2,6 g/cm³, σκληρότητα 3-4,5 κατά Mohs, κογχοειδή θραύση και δεν παρουσιάζει σχισμό. Ο Σερπεντίνης που χρησιμοποιήθηκε προέρχεται από την περιοχή Κάκκαβος η οποία βρίσκεται στο Μαντούδι Ευβοίας.

<u>ΚΕΦΑΛΑΙΟ 2. Πειραματική διαδικασία</u>

Τα υλικά τροφοδοσίας υπέστησαν μια αρχική θραύση στον σιαγωνοτό σπαστήρα του εργαστηρίου (Jaw Crusher) σε μέγεθος -4 mm. Έπειτα ομογενοποιήθηκαν και διαχωρίστηκαν σε δείγματα ίδιας μάζας με την χρήση του εργαστηριακού διαχωριστή (Jones) στα οποία μετρήθηκε η κοκκομετρία, με την χρήση του εργαστηριακού αναλυτή ακτίνας Laser. Οι κοκκομετρίες όλων των δειγμάτων θεωρητικά είναι ίδιες γιατί προέρχονται από το ίδιο υλικό, το οποίο έχει υποστεί την ίδια προεργασία και έχει διαχωριστεί σωστά. Παρολ'αυτά στην πράξη κάτι τέτοιο δεν ισχύει απόλυτα και πάντα υπάρχουν μικρές διαφοροποιήσεις στην κοκκομετρία.

Μετά την αρχική επεξεργασία των δειγμάτων ακολούθησε η φάση της λειοτρίβησης. Χρησιμοποιήθηκε εργαστηριακός ραβδόμυλος με διαστάσεις (DxL) 0,203x0,3 m, στον οποίο τοποθετούνται 23 ατσάλινες ράβδοι συνολικού βάρους 8,55 kg και διαμέτρου 14-20 mm. Στην πειραματική διαδικασία χρησιμοποιείται η φαινόμενη πυκνότητα των υλικών η οποία υπολογίζεται εργαστηριακά. Σε ογκομετρικό κύλινδρο τοποθετείται ποσότητα της τροφής μέχρι τη πλήρωση του ονομαστικού όγκου του κυλίνδρου, έπειτα ζυγίζεται αυτή η ποσότητα και με μια απλή μέθοδο των τριών υπολογίζεται η φαινόμενη πυκνότητα. Η φαινόμενη πυκνότητα του χαλαζία είναι 1,534 g/cm³. Ο όγκος πλήρωσης του μύλου είναι 650 cm³ και αντιστοιχεί σε 1 kg τροφής (Χαλαζίας). Η ισχύς του μύλου P_M είναι 23 Watts και υπολογίζεται από τον τύπο του Σταμπολτζή [5] :

$$P_M = 9.9 * W_L * N * D \qquad(9)$$

 $W_{L}{=}$ το συνολικό βάρος των ράβδων μαζί με το φορτίο της τροφής σε kg

N= η συχνότητα περιστροφής σε Hertz

D= η διάμετρος του μύλου σε m

Επίσης η συχνότητα περιστροφής είναι σταθερή στα 1,17 Hertz δηλαδή 70 RPM η οποία αντιστοιχεί στο 85% της κρίσιμης συχνότητας. Ό όγκος πλήρωσης πρέπει να είναι σταθερός επομένως όταν αλλάζει το υλικό αλλάζουν και οι παράμετροι όπως φαίνονται στο πίνακα 1.

Πίνακας 1:Παράμετροι πειραματικής διαδικασίας για κάθε υλικό

	Φαινόμενη Πυκνότητα (g/cm ³)	Ογκος πλήρωσης (cm ³)	Μάζα πλήρωσης (kg)	Ισχύς μύλου (W)
Χαλαζίας	1,543	652	1	23
Σερπεντίνης	1,356	649	0,88	22

Εικόνα 1:Κύκλωμα ημισυνεχούς λειοτρίβησης

Χρησιμοποιήθηκε ένα κλειστό ημισυνεχές κύκλωμα με κόσκινο της επιλογής μας και μεγέθους (x). Κατόπιν λαμβάνεται μια αρχική ποσότητα υλικού M_I (π.χ. για τον χαλαζία M_I =1kg) με γνωστή κοκκομετρία, στην οποία το ποσοστό του υλικού το οποίο είναι χονδρύτερο από το μέγεθος (x) είναι (c) και αυτό που είναι λεπτότερο (f). Είναι προφανές ότι c + f = 1 και η ποσότητα που είναι πάνω από το μέγεθος (x) ισούται με $c * M_1$.

Το δείγμα λειοτριβείται εν ξηρώ για δεδομένο χρόνο t₁ και έπειτα αφαιρείται από τον μύλο και κοσκινίζεται. Παρατηρείται ότι κατά την μείωση του μεγέθους ενός υλικού, αυξάνεται η τάση συσσωμάτωσης των κόκκων. Επομένως για την καλύτερη απόδοση του κυκλώματος, η κοσκίνιση γίνεται εν υγρώ.

Το παραμένον στο κόσκινο R_I ξηραίνεται σε θερμοκρασία 105 °C και ζυγίζεται, το προϊόν P_I ισούται με την διαφορά M_I - R_I . Η ποσότητα της αρχικής τροφής που έσπασε σε χρόνο t_I ισούται με $c * M_1 - R_1 = G_1$. Έπειτα επιστρέφει στο μύλο το κυκλοφορούν φορτίο R_I μαζί με ποσότητα $M_2=P_I$ διατηρώντας το φορτίο σταθερό $M_2 + R_1$.

Με βάση το ρυθμό λειοτρίβησης από την προηγούμενη μέτρηση $r_1 = G_1 / t_1$, υπολογίζεται ο χρόνος t_2 της δεύτερης δοκιμής έτσι ώστε ο λόγος της ποσότητας ανακυκλώμενου φορτίου *R* προς το προϊόν *P* να είναι ίσος με 2, ο οποίος ονομάζεται δείκτης ανακύκλωσης (Recirculating Ratio) και συμβολίζεται με *k*.

Όσον αφορά τον δείκτη ανακύκλωσης χρησιμοποιούνται δύο ορισμοί που περιγράφουν το k, σε αυτή την εργασία χρησιμοποιήθηκε k = R / P το οποίο είναι ίσο με 2, δηλαδή με κάθε κύκλο του κυκλώματος να παράγεται ποσότητα ψιλού προϊόντος ίση με το 1/3 της μάζας πλήρωσης. Με μαθηματικές πράξεις αποδεικνύεται και ο δεύτερος ορισμός ο οποίος είναι:

$$k = \frac{R}{P} = 2 \stackrel{\alpha \rho \alpha}{\Longrightarrow} R = 2 * P \qquad \dots (10)$$

Ο δεύτερος θεωρείται πιο ακριβής ορισμός διότι περιγράφει καλύτερα την ποσότητα του υλικού που ανακυκλώνεται.

Η ίδια διαδικασία επαναλαμβάνεται (*j*) φορές μέχρι τα αποτελέσματα δύο επιτυχημένων συνεχόμενων δοκιμών να διαφέρουν κάτω από 3%.

$$\left| \left(G_{j} - G_{j-1} \right) / \left(G_{j} + G_{j-1} \right) \right| < 3\% \qquad \dots (12)$$

Στα τελικά προϊόντα τα οποία είχαν την επιθυμητή ακρίβεια έγινε κοκκομετρική ανάλυση (Laser beam analyzer) για να βρεθεί το d_{80} , κατόπιν δίδονται σε μορφή διαγραμμάτων οι διαστασιακές ιδιότητες συναρτήσει του μεγέθους. Ακολούθως υπολογίζεται η ειδική ενέργεια e_i και ο δείκτης έργου W_i που περιγράφουν το κάθε υλικό αντίστοιχα όπως επίσης και μια νέα προσέγγιση στον υπολογισμό των παραπάνω. Επίσης γίνεται έλεγχος κατά πόσο τα υλικά που χρησιμοποιήσαμε μπορούν να θεωρηθούν μορφοκλασματικά. Στη συνέχεια αυτής της εργασίας παρατίθενται οι απαραίτητες κοκκομετρικές αναλύσεις που έγιναν όπως και οι πίνακες με όλες τις πειραματικές μετρήσεις.

Ο χρόνος t που το υλικό λειοτριβείται μέσα στον ραβδόμυλο υπολογίζεται με την χρήση μιας υπολογιστικής φόρμας σε μορφή Excel, η οποία εμπεριέχει όλα τα απαραίτητα δεδομένα τόσο για την φάση της λειοτρίβησης όσο και για την κοσκίνιση. Επίσης μπορεί και υπολογίζει το χρόνο κάθε επόμενης λειοτρίβησης όπως και την ποσότητα των επιμέρους κλασμάτων κάθε φάσης του ημισυνεχούς κυκλώματος. Επίσης πρέπει να επισημανθεί ότι τα κελιά στη φόρμα είναι όλα συνδεδεμένα μεταξύ τους, έτσι μπορεί να γίνει όποια αλλαγή, επιθυμεί ο χρήστης και άμεσα αλλάζουν αναλόγως και τα υπόλοιπα στοιχεία του πίνακα. Ακολούθως θα περιγραφεί η ακριβής λειτουργία αυτής της φόρμας σε δείγμα Σερπεντίνη στο κλάσμα 53μm.

Υλικό	-4 mm				
MP					
Φαινομ. Πυκνότητα	1,3	356			
RPM	7	0			
Hertz	1,17				
Όγκος πλήρωσης ml	649				
		g			
Βάρος Πλήρωσης	1	880,0			
Ψιλό τροφής	0,042	36,9			
R/P	2				
Στόχος (M _{pb})	0,333	293,3			

Εικόνα 2: Συγκεντρωτικός πίνακας

Στην εικόνα 2 παρουσιάζεται ο συγκεντρωτικός πίνακας που περιέχει την φαινόμενη πυκνότητα (1,356 g/cm³), την συχνότητα περιστροφής σε (1,17 Hz), τις στροφές ανά λεπτό που αντιστοιχούν σε αυτή (70 RPM), τον όγκο πλήρωσης (649 ml). Επίσης την μάζα της τροφής (880 g) όπως και τη ποσότητα του κλάσματος -53 μm που εμπεριέχεται σε αυτήν (36,9 g) και το ποσοστό (f=0,042%). Με κόκκινα γράμματα απεικονίζεται ο δείκτης ανακύκλωσης k, στην δεδομένη περίπτωση ο στόχος που πρέπει να επιτευχθεί είναι να παραχθούν 293,3 ± 3% g (M_{pb}) προϊόντος κάτω από 53μm σε δύο διαδοχικές μετρήσεις.

Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένη ς	Ψιλό %
ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
						MP _i -MF _i	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G _i	TNMP _i / t _i	
sec	с		g	g	%	g	g/c	g/sec	g	С	sec	
1000	1167	880	36,9	228	22,3	191,1	0,16	0,19	283,8	1732	1485	25,9
1485	1732	228	9,6	280	4,6	270,4	0,16	0,18	281,6	1804	1546	31,8
1546	1804	280	11,7	284	3,2	272,3	0,15	0,18	281,4	1865	1598	32,3
1598	1865	284	11,9	289	1,5	277,1	0,15	0,17	281,2	1893	1622	32,8
1622	1893	289	12,1	291	0,8	278,9	0,15	0,17	281,1	1908	1636	33,1

Εικόνα 3: Φόρμα υπολογισμού χρόνου επόμενης λειοτρίβησης

Στην εικόνα 3 απεικονίζεται η φόρμα υπολογισμού, για το κλάσμα 53 μm με τις απαιτούμενες μετρήσεις που διεξήχθησαν. Αρχικά θεωρείται μια εμπειρική τιμή του χρόνο της πρώτης λειοτρίβησης και τοποθετείται στην πρώτη στήλη (t_i),η οποία δεν πρέπει να είναι πολύ μικρή διότι δεν προλαβαίνει το κύκλωμα να έρθει σε ισορροπία, όπως επίσης ούτε και πολύ μεγάλη γιατί έπειτα θα απαιτείται μεγάλος αριθμός μετρήσεων για την επίτευξη του στόχου.

Ακολούθως υπολογίζεται αυτόματα ο αριθμός των συνολικών περιστροφών (N_i) με βάση την συχνότητα που έχει επιλεγεί. Στην 3^η στήλη βρίσκεται η ποσότητα φρέσκιας τροφής (WF_i) που εισέρχεται στο κύκλωμα σε κάθε κύκλο του συστήματος και η επόμενη στήλη εκφράζει το ποσοστό ψιλών στην τροφή (MF_i) . Στην 5^η στήλη τοποθετείται από τον χρήστη η ποσότητα του προϊόντος σε κάθε πέρασμα (MP_i) και αυτομάτως υπολογίζονται από τη φόρμα οι υπόλοιπες στήλες. Η επιθυμητή ακρίβεια υπολογίζεται από τον εξής τύπο:

$$100 * \left[\left(M_{pb} - M_{pi} \right) / M_{pb} \right] = \pm 3\% \qquad \dots (13)$$

Ακολουθούν οι εξής στήλες και ο τρόπος υπολογισμού τους :

 Η ποσότητα ψιλού κλάσματος (*NMP_i*) που παρήγαγε το κύκλωμα μέσα σε χρόνο t_i:

$$NMP_i = MP_i - MF_i . \qquad \dots (14)$$

2) Η ποσότητα ψιλών που παράγονται ανά περιστροφή (G_i):

$$G_i = NMP_i/N_i \qquad \dots (15)$$

3) Η ποσότητα ψιλών ανά δευτερόλεπτο ή αλλιώς ρυθμός λειοτρίβησης
 (K_i):

$$K_i = NMP_i/t_i \qquad \dots (16)$$

 Η 10^η στήλη (**TNMP**_i)υπολογίζει την ποσότητα ψιλού προϊόντος που πρέπει να παραχθεί στην επόμενη μέτρηση λαμβάνοντας υπόψη την νέα τροφή που θα προστεθεί στο κύκλωμα, ως εξής:

$$TNMP_i = M_{pb} - (MP_i * f) \qquad \dots (17)$$

 Στις δύο τελευταίες στήλες υπολογίζεται ο χρόνος και οι στροφές της επόμενης λειοτρίβησης:

$$N_{i+1} = TNMP_i/G_i \qquad \dots (18)$$

$$t_{i+1} = TNMP_i/K_i \qquad \dots (19)$$

Τέλος υπολογίζεται το ποσοστό ψιλών επί του βάρους πλήρωσης του κυκλώματος, το οποίο όσο πλησιάζουμε κοντά στο ζητούμενο στόχο τείνει επίσης προς την ζητούμενη τιμή, που στην περίπτωσή μας είναι 33,3%. Μετά το πέρας της πειραματικής διαδικασίας υπολογίζεται ο μέσος ρυθμός λειοτρίβησης των δύο τελευταίων τιμών (στήλη K_i) με την επιθυμητή ακρίβεια, και ακολούθως υπολογίζεται η ειδική ενέργεια e_i σύμφωνα με την σχέση:

$$e_i = P_M / K_i \qquad \dots (20)$$

Όπου P_M αντιστοιχεί στην ισχύ του μύλου που μετρήθηκε (22 W) και K_i η μάζα καθαρού υλικού που παράγεται ανά μονάδα χρόνου (g/sec) ή αλλιώς ο ρυθμός λειοτρίβησης του εκάστοτε κυκλώματος.

Κλάσμα 53 μ	Κλάσμα 53 μm Σερπεντίνης										
Μέσος											
ρυθμός											
λειοτρίβησης											
K _i	0,17	gr/sec									
Ισχύς μύλου											
P _M	22	watt									
Ενέργεια Ε _i	128,8	J/gr									
ei	35,8	KWh/ton									
Wi ₍₁₀₀₎	29,4	KWh/ton									
Wi ₍₈₀₎	25,3	KWh/ton									
d ₈₀	39	μm									
d ₈₀ Feed	2760	μm									

Εικόνα 4: Φόρμα υπολογισμού ειδικής ενέργειας και δείκτη έργου

Στην εικόνα 4 φαίνεται η φόρμα υπολογισμού της ειδικής ενέργειας όπως και του δείκτη έργου. Στη Μηχανική των Τεμαχιδίων [6] υπολογιστικά όταν χρησιμοποιείται ο ορισμός μέγεθος θεωρείται πάντα το d_{80} δηλ. το μέγεθος κάτω από το οποίο περνάει το 80% του υλικού, για αυτό το λόγο σε αυτή την εργασία αρχικά επιλέχτηκε σαν μέγεθος το d_{80} όμως στην πορεία υπολογίστηκε το W_i με χρήση του d_{100} για να υπάρχει ακόμα ένα μέτρο σύγκρισης των αποτελεσμάτων, όπως φαίνεται στον προηγούμενο πίνακα. Γνωρίζοντας την ειδική ενέργεια *e_i* με την χρήση της εξίσωσης (7) υπολογίζεται ο δείκτης έργου ως εξής:

για
$$n=0,5 \stackrel{(7)}{\Rightarrow} W_i = e_{1,2} / 100^{0,5} * \left(\frac{1}{x_2^{0,5}} - \frac{1}{x_1^{0,5}}\right)$$

για τα εξής δεδομένα:
 $x_I = d_{100}$ Τροφής = 4000 μm
 $x_2 = d_{100}$ Προϊόντος = 53 μm
 $e_i = 35,8$ kWh/t

$$W_{i(100)} = 35,8/10 * \left(\frac{1}{\sqrt{53}} - \frac{1}{\sqrt{4000}}\right)$$

 $W_{i(100)} = 29,4 \text{ kWh/t}$

Όπως έχει προαναφερθεί η διαδικασία εκτελείται για πέντε διαφορετικά μεγέθη κοσκίνων (x) (850, 425, 212, 106, 53 μm).

ΚΕΦΑΛΑΙΟ 3. Επεξεργασία δεδομένων

Οι κοκκομετρικές αναλύσεις των προϊόντων δίνουν την κατανομή μάζας σε (n+1) προκαθορισμένα μεγέθη, όπου n ο αριθμός των κοσκίνων που χρησιμοποιούνται. Σε κάθε κατηγορία μεγέθους (i) υπάρχει ένα ανώτερο μέγεθος (x_i) και ένα κατώτερο (x_i) διατηρώντας πάντα σταθερό το λόγο $r = (x_{i-1}) / (x_i)$, συνήθως στην περίπτωση που χρησιμοποιούνται κόσκινα ο λόγος r ισούται με 2 ή $\sqrt{2}$ αλλά σε κοκκομετρική ανάλυση με περίθλαση ακτίνων Laser τότε το r ισούται με 1,17 δίδοντας μεγαλύτερη ακρίβεια στις μετρήσεις. Επίσης σαν μέγεθος στην επεξεργασία των δεδομένων λαμβάνεται το μέσο μέγεθος (d_i) που αντιστοιχεί στον γεωμετρικό μέσο:

$$d_i = \sqrt{x_i * x_{i-1}} \qquad \dots (21)$$

Στη συνέχεια αναλύεται ο τρόπος υπολογισμού των διαστασιακών ιδιοτήτων του χαλαζία και του σερπεντίνη. Αξίζει να σημειωθεί ότι στα προϊόντα του κυκλώματος γίνεται κοκκομετρική ανάλυση η οποία δίνει το βάρος επί τις εκατό σε κάθε επιμέρους κλάσμα και με την χρήση της πυκνότητας του κάθε υλικού υπολογίζονται οι ιδιότητές του.

<u>3.1. Κατανομή Μάζας</u>

Ένα από τα πρώτα δεδομένα που λαμβάνονται από την κοκκομετρική ανάλυση είναι η κατανομή μάζας. Ουσιαστικά εκφράζει το κλάσμα της μάζας ΔM_i που αντιστοιχεί στο διάστημα μεγέθους από (x_{i-1}) έως (x_i) και υπολογίζεται ως εξής:

$$M_{total} = \sum_{1}^{n+1} \Delta M_i = 1 \qquad \dots (22)$$

Το αθροιστικό κλάσμα μάζας RM_i το οποίο είναι χονδρύτερο από το μέγεθος (x_i):

$$RM_i = \sum_{i=1}^{i} \Delta M_i \qquad \dots (23)$$

Το αθροιστικό κλάσμα PM_i που είναι λεπτότερο από το μέγεθος (x_i):

$$PM_i = \sum_{i=1}^{n+1} \Delta M_i \qquad \dots (24)$$

Επομένως για κάθε (i) ισχύει:

$$RM_i + PM_i = 1 = M_{total} \qquad \dots (25)$$

3.2. Κατανομή Αριθμού Τεμαχιδίων

Με την κατανομή μάζας μπορεί να υπολογιστεί η κατανομή του αριθμού των τεμαχιδίων. Στην Μηχανική των Τεμαχιδίων λαμβάνεται ως θεώρηση ότι τα τεμαχίδια έχουν σφαιρικό σχήμα, επομένως η μάζα *m_i* υπολογίζεται ως εξής:

$$m_i = \rho \times k \times d_i^3 \qquad \dots (26)$$

Όπου:

k=συντελεστής όγκου σχήματος (για την σφαίρα $k = \pi \ / \ 6$)

 $\rho = \pi$ υκνότητα του υλικού

Άρα ο αριθμός των τεμαχιδίων ΔN_i σε μια συγκεκριμένη τάξη μεγέθους (*i*) υπολογίζεται ως εξής:

$$\Delta N_i = \Delta M_i / m_i \qquad \dots (27)$$

Ο συνολικός αριθμός των κόκκων N_{total} είναι:

$$N_{total} = \sum_{1}^{n+1} \Delta N_i \qquad \dots (28)$$

Όπως και ο αθροιστικός αριθμός *RN_i* των χονδρύτερων τεμαχιδίων από το μέγεθος (*x_i*) είναι:

$$RN_i = \sum_{i=1}^{i} \Delta N_i \qquad \dots (29)$$

3.3. Κατανομή Επιφάνειας

Όσον αφορά την επιφάνεια όπως και στον αριθμό τα τεμαχίδια θεωρούνται σφαιρικά επομένως η επιφάνεια U_i σε κάθε τάξη μεγέθους (*i*) υπολογίζεται ως εξής:

$$U_i = f * d_i \qquad \dots (30)$$

Όπου f είναι ο συντελεστής σχήματος επιφάνειας (για την σφαίρα $f=\pi$). Επίσης μπορεί να υπολογιστεί η ειδική επιφάνεια που ορίζεται ως ο λόγος u_i της επιφάνειας U_i προς την μάζα m_i :

$$u_i = \{f/(\rho * k)\} * \{(1/d_i)\} \qquad \dots (31)$$

Υπάρχουν δύο τρόποι υπολογισμού της κατανομής επιφάνειας οι οποίοι είναι:

1) Από την κατανομή μάζας ως εξής:

$$\Delta S_i = u_i * \Delta M_i \qquad \dots (32)$$

2) Από την κατανομή του αριθμού τεμαχιδίων είναι:

$$\Delta S_i = U_i * \Delta N_i \qquad \dots (33)$$

Επίσης υπολογίζεται η αθροιστική επιφάνεια RS_i ως εξής:

$$RS_i = \sum_{i=1}^{i} \Delta S_i \qquad \dots (34)$$

3.4. Κατανομή Μήκους

Ισχύει ότι το μέσο μήκος ενός τεμαχιδίου σε μια τάξη μεγέθους (*i*) είναι ίσο με το τη μέση διάμετρο d_i επομένως το συνολικό μήκος ΔL_i των τεμαχιδίων θα είναι:

$$\Delta L_i = d_i * \Delta N_i \qquad \dots (35)$$

Επίσης το αθροιστικό μήκος *RL*_i των τεμαχιδίων που είναι χονδρύτερα από το μέγεθος (x) είναι:

$$RL_i = \sum_{i=1}^{i} \Delta L_i \qquad \dots (36)$$

Οι κατανομές των διαστασιακών ιδιοτήτων, αθροιστικές και μη, παρουσιάζονται σε γραφήματα συναρτήσει του μεγέθους και του μέσου μεγέθους αντίστοιχα.

3.5. Υπολογισμός βέλτιστου εκθέτη (n_{opt}) και δυναμικής ενέργειας

<u>(*e*_{pot})</u>

Η εξίσωση του Bond αποτελεί μερική περίπτωση της εξίσωσης (7) για n=0.5.0 δείκτης έργου W_i και ο εκθέτης n μπορούν να υπολογιστούν από την εξίσωση (4) γνωρίζοντας τα $e_{1,2}$, x_1 και x_2 , για δύο τουλάχιστον δοκιμές. Από την επεξεργασία των αποτελεσμάτων φαίνεται ότι όταν ο εκθέτης n=0.5 ο δείκτης έργου W_i δεν παραμένει σταθερός και ανεξάρτητος του μεγέθους x_2 του προϊόντος. Για το λόγο αυτό προσδιορίστηκε η βέλτιστη τιμή που μπορεί να πάρει ο εκθέτης n (n_{opt}) σε περισσότερες από μια δοκιμές για τις οποίες ο δείκτης έργου W_i να παραμένει όσο το δυνατό σταθερός και ανεξάρτητος των συνθηκών.

Έχοντας υπολογίσει τα *n_{opt}* και τον δείκτη έργου για κάθε υλικό, με αντικατάσταση στην σχέση (8) υπολογίζεται η δυναμική ενέργεια *e_{pot}*. Εάν λογαριθμήσουμε την παραπάνω σχέση έχουμε:

$$log(e_{pot}) = logW_i + n_{opt} * log(100/x)^{n_{opt}} \qquad ...(37)$$

Η ευθεία που περιγράφει η παραπάνω εξίσωση είναι γραμμική και η κλίση της ισούται με *n_{opt}*.

ΚΕΦΑΛΑΙΟ 4. Αποτελέσματα

Μετά το πέρας της πειραματικής διαδικασίας έγινε κοκκομετρική ανάλυση στα προϊόντα(τα οποία αντιστοιχούν σε μέγεθος κλάσματος -850 μm, -425 μm, -212 μm, -106 μm και -53 μm). Ακολούθως με βάση την κοκκομετρία έγινε η τελική επεξεργασία, από την οποία προέκυψαν τα αποτελέσματα που παρατίθενται. Αρχικά παρουσιάζονται τα διαγράμματα των διαστασιακών ιδιοτήτων για κάθε κοκκομετρικό κλάσμα, οι δείκτες έργου, οι ειδικές ενέργειες όπως και τα αποτελέσματα υπολογισμού των *nopt* και *epot*.

4.1. Κοκκομετρικές αναλύσεις-Διαστασιακές ιδιότητες

Διάγραμμα 1: Κοκκομετρικές αναλύσεις προϊόντων για τον Χαλαζία

Διάγραμμα 2:Κοκκομετρικές αναλύσεις προϊόντων για τον Σερπεντίνη

Στα παραπάνω διαγράμματα απεικονίζεται η κοκκομετρία των προϊόντων του Χαλαζία και του Σερπεντίνη, όμως παρόλο που τα προϊόντα όλων των δοκιμών προήλθαν από υγρή κοσκίνιση στο παραπάνω διάγραμμα παρατηρείται ότι υπάρχουν τεμαχίδια τα οποία είναι πάνω από το εκάστοτε κλάσμα (δηλ. στο κλάσμα 106 μm του Χαλαζία η καμπύλη ξεκινάει από τα 200 μm περίπου). Αυτή η απόκλιση οφείλεται στον ειδικό αναλυτή laser στον οποίο δεν μετράται η διάμετρος κάθε τεμαχιδίου όπως στα εργαστηριακά κόσκινα αλλά η διάμετρος ισοδύναμου όγκου σφαίρας. Όσον αφορά τα πειραματικά μας δεδομένα, δεν επηρεάζονται διότι χρησιμοποιούμε το d_{80} , το οποίο παραμένει ίδιο. Και στην περίπτωση που είναι απαραίτητο να χρησιμοποιηθεί το d_{100} , λαμβάνεται ίσο με το εκάστοτε κλάσμα στο οποίο γίνεται η επεξεργασία.

	Σερπεντίνης										
Κλάσμα	d ₈₀ Τοοφή	d ₈₀ Пооїо́у	e_i	$W_{i(100)}$ (kWh/t)	$W_{i(80)}$						
(µIII) 850	2760	742	(KJ/Kg) 16.9	(K () II/()	26.5						
425	2760	410	28,1	23,9	25,7						
212	2760	190	52	27,3	27						
106	2760	83	78,4	26,8	24						
53	2760	39	128,8	29,4	25,3						

Πίνακας 2: Ειδική ενέργεια, δείκτης έργου και d₈₀ για τον Σερπεντίνη

	Χαλαζίας										
Κλάσμα	d ₈₀	d ₈₀	e _i	$W_{i(100)}$	$W_{i(80)}$						
(µm)	Τροφη	Προΐον	(kJ/kg)	(kWh/t)	(kWh/t)						
850	3300	700	9,6	14,4	13,1						
425	3300	421	17,4	14,8	15,4						
212	3300	209	32,7	17,2	17,5						
106	3300	92	69,3	23,7	22,2						
53	3300	44	140,1	32,0	29,2						

Πίνακας 3: Ειδική ενέργεια, δείκτης έργου και d₈₀ για τον Χαλαζία

Στους πίνακες 2,3 παρουσιάζονται η ειδική ενέργεια και ο δείκτης έργου όπως υπολογίστηκαν για κάθε υλικό και κλάσμα αντίστοιχα με την χρήση των d_{80} και d_{100} . Παρατηρείται ότι το W_i στην πράξη δεν παραμένει σταθερό και αλλάζει σε κάθε κλάσμα. Ειδικότερα στον Χαλαζία εμφανίζεται μια τάση αύξησης όσο μειώνεται το μέγεθος, η ίδια διαφοροποίηση υπάρχει και στο δείκτη έργου που υπολογίστηκε με την χρήση του d_{80} .

4.1.1. Κατανομή Μάζας

Στα διαγράμματα 3,4 που ακολουθούν απεικονίζεται η κατανομή της μάζας σε κάθε κλάσμα συναρτήσει του μέσου μεγέθους. Παρατηρείται ότι όλες οι καμπύλες έχουν ένα μέγιστο σημείο, η επικρατούσα τιμή της κατανομής, η οποία μαζί με το μέγιστο μέγεθος μετακινούνται σε λεπτότερα μεγέθη όσο συνεχίζεται η λειοτρίβηση. Το εμβαδό κάτω από την καμπύλη δίνει την ολική μάζα, η οποία είναι σταθερή σε κάθε δοκιμή.

Διάγραμμα 3: Κατανομή μάζας συναρτήσει του μέσου μεγέθους στον Χαλαζία

Διάγραμμα 4: Κατανομή μάζας συναρτήσει του μέσου μεγέθους στον Σερπεντίνη

Τα παρακάτω διαγράμματα παρουσιάζουν την αθροιστική κατανομή μάζας που παραμένει σε κάθε μέγεθος. Όλες οι καμπύλες εμφανίζουν παρόμοια μορφή, στα

μεγάλα μεγέθη η μάζα τείνει στο μηδέν ενώ στα μικρότερα τείνει προς μια μέγιστη τιμή η οποία αντιστοιχεί στη συνολική μάζα. Είναι προφανές ότι αυτή η τιμή είναι ίδια για όλες τις δοκιμές αφού η μάζα παραμένει σταθερή κατά την διάρκεια της λειοτρίβησης.

Διάγραμμα 5: Αθροιστική κατανομή μάζας χονδρύτερων τεμαχιδίων στον Χαλαζία

Διάγραμμα 6: Αθροιστική κατανομή μάζας χονδρύτερων τεμαχιδίων στον Σερπεντίνη

4.1.2. Κατανομή Επιφάνειας

Η κατανομή της επιφάνειας παρουσιάζεται στα διαγράμματα 7 και 8. Η επικρατούσα τιμή των καμπυλών εμφανίζεται στο ίδιο μέγεθος ενώ η περιοχή κάτω από την καμπύλη αυξάνεται όσο συνεχίζεται η λειοτρίβηση. Επίσης το μέγιστο μέγεθος του τεμαχιδίου μετατοπίζεται σε όλο και λεπτότερα μεγέθη ενώ το ελάχιστο μέγεθος, στο οποίο δεν εμφανίζεται επιφάνεια, είναι περίπου το ίδιο. Επειδή όμως φτάνουμε στα όρια του κοκκομετρικού αναλυτή δεν μπορεί να οριστεί με ακρίβεια. Αξίζει να σημειωθεί ότι στην περίπτωση του Χαλαζία εμφανίζεται μια δεύτερη οικογένεια κόκκων κοντά στο ελάχιστο μέγεθος (0,1 μm) η οποία παρεκκλίνει από το υπόλοιπο υλικό, εξαιτίας αυτού δημιουργήθηκε μια δεύτερη ομάδα καμπυλών με διαφορετικό διάμεσο από τις υπόλοιπες. Η ίδια οικογένεια είναι πιθανό να εμφανίζεται και στις κατανομές μάζας απλά επειδή είναι πολύ κοντά στα όρια του αναλυτή δεν γίνεται να εμφανιστεί.

Διάγραμμα 7: Κατανομή επιφάνειας συναρτήσει του μέσου μεγέθους στον Χαλαζία

Στα παρακάτω λογαριθμικά διαγράμματα παρουσιάζεται για κάθε κλάσμα η αθροιστική κατανομή της επιφάνειας των χονδρύτερων τεμαχιδίων. Οι καμπύλες τέμνονται μεταξύ τους διότι αυτή με το μικρότερο μέγιστο μέγεθος έχει μια υψηλότερη τιμή ολικής επιφάνειας. Σε μικρότερα μεγέθη οι καμπύλες τείνουν να γίνουν σχεδόν οριζόντιες υποδηλώνοντας ότι δεν υπάρχουν τεμαχίδια σε μικρότερα μεγέθη.

Διάγραμμα 9: Αθροιστική κατανομή επιφάνειας χονδρύτερων τεμαχιδίων στον Χαλαζία

Διάγραμμα 10: Αθροιστική κατανομή επιφάνειας χονδρύτερων τεμαχιδίων στον Σερπεντίνη

4.1.3. Κατανομή Μήκους

Στα διαγράμματα 11,12 που ακολουθούν παρουσιάζεται η κατανομή μήκους στα δύο υλικά. Παρατηρείται ότι αυξάνει το συνολικό μήκος των κόκκων όσο η διαδικασία λειοτρίβησης συνεχίζεται. Επίσης η διάμεσος των κατανομών είναι σχεδόν στο ίδιο μέγεθος και όλες οι καμπύλες τείνουν στο ίδιο ελάχιστο μέγεθος. Στην περίπτωση του Σερπεντίνη παρατηρείται ότι η καμπύλη που αντιστοιχεί στο κλάσμα 53 μm παρεκκλίνει από τις υπόλοιπες. Στο Χαλαζία εμφανίζεται καλύτερα η δεύτερη οικογένεια κόκκων η οποία δημιουργεί μια δεύτερη διάμεσο σε μέγεθος 0,1 μm.

Διάγραμμα 11: Κατανομή μήκους συναρτήσει του μέσου μεγέθους στον Χαλαζία

Διάγραμμα 12: Κατανομή μήκους συναρτήσει του μέσου μεγέθους στον Σερπεντίνη

Οι αθροιστικές κατανομές παρουσιάζονται στα διαγράμματα 13 και 14. Όπως και στην κατανομή επιφάνειας οι καμπύλες τέμνονται μεταξύ τους και εμφανίζονται κάποια ευθύγραμμα τμήματα. Στα χονδρύτερα μεγέθη οι καμπύλες γίνονται σχεδόν κατακόρυφες δείχνοντας ένα ισοδύναμο μέγιστο μέγεθος στο προϊόν που μικραίνει όσο αυξάνεται η ενέργεια.

Διάγραμμα 13: Αθροιστική κατανομή μήκους χονδρύτερων τεμαχιδίων στον Χαλαζία

Διάγραμμα 14: Αθροιστική κατανομή μήκους χονδρύτερων τεμαχιδίων στον Σερπεντίνη

4.1.4. Κατανομή Αριθμού

Οσο αυξάνει η προσφερόμενη ενέργεια, το εμβαδόν κάτω από την καμπύλη κατανομής αυξάνει υποδηλώνοντας μια αύξηση του αριθμού των τεμαχιδίων. Η μετακίνηση της επικρατούσας τιμής δεν είναι τόσο έντονη όπως στην κατανομή μάζας και ελαττώνεται όσο αυξάνει η ενέργεια. Με άλλα λόγια η τάση να θραύονται οι μεγαλύτεροι κόκκοι είναι πιο έντονη από την θραύση των μικρότερων και αυτό είναι φυσικό διότι ο ραβδόμυλος σπάει εκλεκτικά τους μεγαλύτερους κόκκους. Όπως και στις προηγούμενες κατανομές έτσι και εδώ (διαγράμματα15,16) οι καμπύλες έχουν μια κοινή επικρατούσα τιμή. Επίσης παρατηρείται ότι στην κατανομή του Χαλαζία εμφανίζεται μόνο η δεύτερη οικογένεια κόκκων ενώ οι κόκκοι της κύριας οικογένειας δεν εμφανίζονται καθόλου.

Διάγραμμα 15: Κατανομή αριθμού τεμαχιδίων συναρτήσει του μέσου μεγέθους στον Χαλαζία

Διάγραμμα 16: Κατανομή αριθμού τεμαχιδίων συναρτήσει του μέσου μεγέθους στον Σερπεντίνη

Στα διαγράμματα 17,18 παρουσιάζονται οι αθροιστικές κατανομές του αριθμού κόκκων οι οποίες ακολουθούν την ίδια μορφή με τις προηγούμενες. Ένα μεγάλο μέρος τους είναι σχεδόν ευθύγραμμο και τέμνονται μεταξύ τους διότι οι καμπύλες που αντιστοιχούν σε μεγαλύτερη ενέργεια καταλήγουν σε μεγαλύτερο αριθμό κόκκων.

Διάγραμμα 17: Αθροιστική κατανομή αριθμού χονδρύτερων τεμαχιδίων στον Χαλαζία

Διάγραμμα 18: Αθροιστική κατανομή αριθμού χονδρύτερων τεμαχιδίων στον Σερπεντίνη

4.2. Δείκτης έργου(W_i), Βέλτιστος εκθέτης (n_{opt}) και Δυναμική ενέργεια (e_{pot})

Έχοντας γνωστά τους δείκτες έργου W_i και τις ειδικές ενέργειες e_i είναι δυνατό, με την διαδικασία που έχει προαναφερθεί, να υπολογιστεί ο βέλτιστος εκθέτης n_{opt} όπως και η δυναμική ενέργεια e_{pot} για κάθε υλικό. Η προσέγγιση της βέλτιστης τιμής έγινε αλγεβρικά χρησιμοποιώντας μέθοδο δοκιμών με σταθερό βήμα. Οι τιμές που χρησιμοποιήθηκαν φαίνονται στον παρακάτω διάγραμμα του n_{opt} συναρτήσει της τυπικής απόκλισης.

Διάγραμμα 19: Τυπική απόκλιση συναρτήσει του εκθέτη στον Χαλαζία Όπως παρατηρείται η καμπύλη έχει ένα ελάχιστο σημείο στο οποίο αντιστοιχεί η

βέλτιστη τιμή του εκθέτη με το μικρότερο σφάλμα.

1	2	3	4	5	6	7
			Εκθέτης n	0,5	0,859	
Κόσκινο	X _{1 (80)}	X _{2 (80)}	e _{1,2}	Wi	Wi	e _{pot}
μm	μm	μm	kWh/t	kWh/t	kWh/t	kWh/t
4000	3300	3300	0			0,96
850	3300	700	2,7	13,1	19,3	3,63
425	3300	421	4,8	15,4	20,0	5,62
212	3300	209	9,1	17,5	18,9	10,26
106	3300	92	19,2	22,2	18,8	20,77
53	3300	44	38,9	29,2	19,7	39,14
			Μέσος			
			όρος, Ε(x)	19,5	19,3	
			Τυπική			
			απόκλιση,			
			σ	6,37	0,535	
			Σφάλμα,			
			$s = \sigma/E(x)$	32,7%	2,8%	

Πίνακας 4: Υπολογισμός n_{opt} και e_{pot} για τον Χαλαζία

Στις στήλες (1), (2) και (3) παρουσιάζονται τα μεγέθη του κοσκίνου, της αρχικής τροφοδοσίας και των προϊόντων αντίστοιχα. Μάλιστα, επειδή τόσο η αρχική τροφοδοσία όσο και τα τελικά προϊόντα αποτελούνται από κόκκους μη ισομεγέθης έχει γίνει κοινή πρακτική τα μεγέθη x_1 και x_2 να αντιστοιχούν στα μεγέθη όπου διέρχεται το 80% του υλικού δηλ. τα $x_1(80)$ και $x_2(80)$. Για το λόγο αυτό σε κάθε δοκιμή το υλικό κοσκινίζεται στα κόσκινα 850, 425, 212, 106 και 53 μm και από τις καμπύλες αθροιστικής κατανομής βάρους υπολογίζονται τα $x_1(80)$ και $x_2(80)$. Στη στήλη (4) υπολογίζονται οι ειδικές ενέργειες σε *kWh/t* που καταναλώθηκαν για την μείωση του μεγέθους του υλικού από x_1 και x_2 . Ο υπολογισμός των στηλών αυτών γίνεται με βάση τα όσο ειπώθηκαν στην πειραματική διαδικασία της παρούσας εργασίας. Οι αντίστοιχες τιμές δεικτών έργου (W_i) *kWh/ton* υπολογίζονται στην στήλη (5) για *n*=0,5 σύμφωνα με τον Bond. Οι τιμές κυμαίνονται από 13,1 έως 29,2 με μέση τιμή 19,5 *kWh/ton* και τυπική απόκλιση σ =6,37που αντιστοιχεί σε σχετικό σφάλμα *s*=32,7 %.

Οι συγγραφείς πιστεύουν ότι η σταδιακή αύξηση του δείκτη έργου όσο μειώνεται το μέγεθος του προϊόντος και αυξάνεται η ειδική ενέργεια οφείλεται στην επιλογή του εκθέτη n=0,5 που προτείνει ο Bond. Θεωρητικά η τιμή του (W_i) θα έπρεπε να είναι σταθερή. Στη συνέχεια ακολουθεί η διαδικασία υπολογισμού της βέλτιστης τιμής του εκθέτη n που αντιστοιχεί στο συγκεκριμένο υλικό. Σύμφωνα με αυτή, θεωρούνται αύξουσες τιμές του n από n=0,1 έως n=1,2 και βήμα 0,1 και υπολογίζεται ο δείκτης έργου (W_i) για την εκάστοτε τιμή n. Σε κάθε τιμή του n αντιστοιχεί και μία τυπική απόκλιση (σ) των τιμών (W_i) και υπολογίζεται κατά τον ίδιο τρόπο που αναφέρθηκε παραπάνω (περίπτωση κατά Bond, n=0,5). Η βέλτιστη τιμή του εκθέτη n είναι εκείνη που αντιστοιχεί στην χαμηλότερη τυπική απόκλιση (σ) . Στο Διάγραμμα 19 φαίνεται πως μεταβάλλετε η τυπική απόκλιση (σ) μειώνεται, για να πάρει την μικρότερη τιμή του n πλησιάζει την βέλτιστη τόσο το (σ) μειώνεται, για να πάρει την μικρότερη τιμή 0,535 όταν n=0,859.

Διάγραμμα 20: Τυπική απόκλιση συναρτήσει του εκθέτη στον Σερπεντίνη

1	2	3	4	5	6	7
			Εκθέτης n	0,5	0,471	
Κόσκινο μm	x _{1 (80)} μm	x _{2 (80)} μm	e _{1,2} kWh/t	W _i kWh/t	W _i kWh/t	e _{pot} kWh/t
4000	2760	2760	0			5,46
850	2760	742	4,7	26,6	26,2	10,13
425	2760	410	7,8	25,7	25,6	13,40
212	2760	190	14,4	26,9	27,2	19,25
106	2760	83	21,8	24,0	24,7	28,43
53	2760	39	35,8	25,4	26,5	40,58
			Μέσος όρος, Ε(x)	25,7	26,0	
			Τυπική απόκλιση, σ	1,14	0,946	
			Σφάλμα, s= σ/E(x)	4,4%	3,6%	

Πίνακας 5: Υπολογισμός n_{opt} και e_{pot} για τον Σερπεντίνη

Ακολουθώντας την ίδια διαδικασία στον Σερπεντίνη, για *n*=0,5 δεν παρουσιάζει μεγάλο σφάλμα όμως το *n_{opt}* υπολογίζεται στην τιμή 0,47. Όπως και στον Χαλαζία έτσι και εδώ η δυναμική ενέργεια αυξάνεται όσο μειώνεται το μέγεθος.

Διάγραμμα 21: Δείκτης έργου W_i συναρτήσει του εκθέτη n στον Χαλαζία

Διάγραμμα 22: Δείκτης έργου W; συναρτήσει του εκθέτη n στον Σερπεντίνη

Η διαφοροποίηση εξαιτίας του εκθέτη εμφανίζεται καλύτερα στα παραπάνω διαγράμματα. Στην περίπτωση του Χαλαζία η καμπύλη που αντιστοιχεί σε n=0,859είναι πιο κοντά στην ευθεία γραμμή από την στιγμή που το W_i είναι σταθερό και ανεξάρτητο του μεγέθους που χρησιμοποιήθηκε για τον υπολογισμό του. Στον Σερπεντίνη οι καμπύλες σχεδόν συμπίπτουν μεταξύ τους και όπως και στο Χαλαζία τείνουν σε ευθείες. Ακόμα και εδώ όμως το n είναι διάφορο του 0,5 και το n_{opt} προσεγγίζει καλύτερα την ευθεία.

Επίσης η e_{pot} μπορεί να παρασταθεί σε διάγραμμα log-log συναρτήσει του μεγέθους x_2 .

Διάγραμμα 23: Δυναμική ενέργεια συναρτήσει του μεγέθους στον Χαλαζία

Διάγραμμα 24: Δυναμική ενέργεια συναρτήσει του μεγέθους στον Σερπεντίνη

Στα παραπάνω διαγράμματα (log-log) παρατηρείται η μεταβολή της e_{pot} συναρτήσει του μεγέθους x_2 όπου η κλίση της ευθείας είναι ίση με n_{opt} . Όπως έχει προαναφερθεί η δυναμική ενέργεια αυξάνεται όσο μειώνεται το μέγεθος x_2 .

ΚΕΦΑΛΑΙΟ 5. Συμπεράσματα - Συζητήσεις

Για να μπορεί κάποιος να αποκτήσει μια συνολική εικόνα της μεταβολής των διαστασιακών ιδιοτήτων ενός υλικού κατά την λειοτρίβηση παρουσιάζονται σε μορφή διαγραμμάτων επιλεγμένα αποτελέσματα για κάθε κλάσμα. Συγκεκριμένα δίδονται οι αθροιστικές κατανομές των τεσσάρων ιδιοτήτων για τεμαχίδια μεγαλύτερα από το αντίστοιχο μέγεθος.

Διάγραμμα 25: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων για το κλάσμα 850 μm στον Χαλαζία

Διάγραμμα 26: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων για το κλάσμα 850 μm στον Σερπεντίνη

Όλες οι γραμμές φαίνεται ότι έχουν ένα τμήμα που στην κλίμακα log-log των παραπάνω σχημάτων θα μπορούσε να θεωρηθεί ευθεία γραμμή. Η εξίσωση που μπορεί να περιγράψει την ευθεία δίδεται από την σχέση:

$$Y = \alpha^* X^{-D} \qquad \dots (38)$$

Που εάν την λογαριθμίσουμε δίνει την αντίστοιχη:

$$\log(Y) = \log(\alpha) - D * \log(X) \qquad \dots (39)$$

Οι ιδιότητες που μπορούν να εκφραστούν με εξισώσεις των παραπάνω μορφών θεωρούνται ως μορφοκλασματικές (Fractal) και ο εκθέτης (D) ως η διάσταση της αντίστοιχης ιδιότητας (Richardson, 1961; Mandelbrot, 1977). Όμως τα προϊόντα κατάκλασης περιγράφονται από τέτοιες εξισώσεις που κάποιοι συγγραφείς λανθασμένα θεωρούν μορφοκλασματικές.

Στις παρουσιάσεις των αθροιστικών κατανομών όλων των διαστασιακών ιδιοτήτων (διαγράμματα 5,6,9,10,13,14,17,18) οι γραμμές της ίδιας ιδιότητας έχουν χαρακτηριστικά που δεν θα μπορούσαν να αποδοθούν σε μορφοκλασματική μορφή. Αρχικά οι γραμμές κάθε διάστασης, εκτός από αυτές της μάζας που είναι ανεξάρτητη της ενέργειας λειοτρίβησης, δεν είναι παράλληλες αλλά τέμνονται, πράγμα το οποίο αποδεικνύει ότι δεν έχουν ίδια κλίση (ίδια μορφοκλασματική διάσταση). Για την ίδια διάσταση οι γραμμές ξεκινούν από ένα μέγιστο μέγεθος κόκκου, που είναι μικρότερο για μεγαλύτερες τιμές της ειδικής ενέργειας και λαμβάνουν υψηλότερες τιμές όσο μικραίνει το μέγεθος του κόκκου μέχρι ενός ελαχίστου μεγέθους κόκκου πέραν του οποίου η αντίστοιχη διάσταση δεν αυξάνει άλλο και οριζοντιώνεται σε ένα μέγιστο επίπεδο που είναι μεγαλύτερο όσο αυξάνει η ενέργεια. Το εμβαδόν που δημιουργείται κάτω από αυτό το επίπεδο στα διαγράμματα συχνότητας, εκτός από αυτό της μάζας που παραμένει σταθερή, αυξάνει όσο αυξάνει η ενέργεια. Εάν οι ιδιότητες ήταν μορφοκλασματικές οι γραμμές θα ήταν παράλληλες και αυτές που αντιστοιχούν σε μεγαλύτερη ενέργεια θα έδιναν μικρότερες τιμές της συγκεκριμένης ιδιότητας αφού όπως ελέγθη ήδη ξεκινούν από μικρότερα μεγέθη κόκκου.

Διάγραμμα 27: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων για το κλάσμα 425 μm στον Χαλαζία

Διάγραμμα 28: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων για το κλάσμα 425 μm στον Σερπεντίνη

Τέλος εάν οι ιδιότητες ήταν μορφοκλασματικές, οι αθροιστικές γραμμές θα αύξαναν συνεχώς για μικρότερα μεγέθη κόκκου με όριο το άπειρο όσο το μέγεθος του κόκκου τείνει στο μηδέν. Όμως τα πειραματικά δεδομένα δείχνουν πως οι αθροιστικές καμπύλες των διαγραμμάτων 24, 25, 26, 27 όπως και των υπολοίπων (βλέπε παράρτημα, διαγράμματα 28, 29, 30, 31, 32, 33) υποδεικνύουν καθαρά ότι οριζοντιώνονται κάτω από ένα μέγεθος κόκκου, που μπορεί να μειώνεται λίγο όσο αυξάνει η ενέργεια αλλά ποτέ δεν προσεγγίζει την τιμή μηδέν. Τα πειραματικά αποτελέσματα μπορούν να εξηγηθούν με βάση την θεωρία του επιφανειακού δυναμικού των κόκκων (Stamboliadis, 2004) όπως αυτή έχει επεκταθεί σε νεότερη έκδοση (Stamboliadis, 2010c). Σύμφωνα με την θεωρία αυτή οι κόκκοι του υλικού έχουν αποθηκευμένη ενέργεια υπό την μορφή επιφανειακής ενέργειας, η οποία δεν μπορεί ποτέ να είναι μεγαλύτερη από την πεπερασμένη ενέργεια που έχει διατεθεί για την λειοτρίβηση του υλικού. Επομένως τα προϊόντα ημισυνεχούς λειοτρίβησης Χαλαζία και Σερπεντίνη δεν παρουσιάζουν μορφοκλασματικές ιδιότητες (Non Fractal).

Από την μελέτη των αποτελεσμάτων παρατηρήθηκε ότι η ειδική ενέργεια αυξάνεται όσο μειώνεται το μέγεθος των τεμαχιδίων και οφείλεται στα εξής:

- Η απόδοση του εξοπλισμού λειοτρίβησης μειώνεται όσο μειώνεται το μέγεθος των τεμαχιδίων
- Σε μεγέθη πάνω από το μέγεθος των κρυστάλλων η θραύση λαμβάνει χώρα στην διεπαφή μεταξύ των κρυστάλλων και η ενέργεια που απαιτείται σε αυτήν την περίπτωση είναι χαμηλότερη σε σχέση με αυτή που απαιτείται για την θραύση του κρυστάλλου σε μικρότερα μεγέθη.
- Τέλος, ένα μέρος της ενέργειας για την θραύση χάνεται κατά την ελαστική παραμόρφωση των τεμαχιδίων πριν την θραύση και μόνο ένα μέρος χρησιμοποιείται για να υπερβεί την εσωτερική ενέργεια του κρυστάλλου. Σε μικρότερα μεγέθη η ενέργεια παραμόρφωσης καταλαμβάνει ακόμα μεγαλύτερο μέρος της προσφερόμενης ενέργειας και τελικά την ξεπερνάει με αποτέλεσμα ένα πολύ μικρότερο μέρος της ενέργειας χρησιμοποιείται για την θραύση.

Για όλους τους παραπάνω λόγους δεν είναι δυνατό να προβλέψουμε πότε η ενέργεια που καταναλώθηκε για την θραύση είναι ανάλογη της επιφάνειας που παράγεται (Rittinger P.R., 1867). Εμφανίζεται λογικότερο να γίνει αποδεκτό ότι η καθαρή ενέργεια είναι ανάλογη προς τις νέες επιφάνειες και συνεπώς η συγκεκριμένη καθαρή ενέργεια θραύσης είναι ανάλογη προς τη συγκεκριμένη επιφάνεια που ποικίλλει σύμφωνα με το 1/d όπου το d είναι το μέγεθος των σωματιδίων. Εντούτοις δεδομένου ότι η ενεργειακή απόδοση ποικίλλει σύμφωνα με το μέγεθος, πρέπει να εισαχθεί μια νέα παράμετρος η οποία να συνδέει τα παραπάνω. Αυτό γίνεται εξ ορισμού της απόδοσης λειοτρίβησης που παρατηρείται από τη σχέση επιφάνειας -

ενέργειας και εκφράζεται από έναν εκθέτη n που ενσωματώνεται έτσι ώστε στην πράξη, η συγκεκριμένη ενέργεια να είναι ανάλογη του $1/d^n$.

Η ανάγκη χρήσης του εκθέτη n ώθησε στην διερεύνηση και ακολούθως υπολογισμό αυτής της παραμέτρου. Έτσι απεδείχθη ότι ο εκθέτης n είναι διάφορος του 0,5 για κάθε υλικό και δεν είναι ανεξάρτητος του μεγέθους x που χρησιμοποιείται για τον υπολογισμό, για αυτό το λόγο προτάθηκε ένας τρόπος υπολογισμού του nόπως και του βέλτιστου W_i για συγκεκριμένο μέγεθος προϊόντος x παραθέτοντας και το σχετικό σφάλμα σε κάθε περίπτωση. Μια πιο προσεκτική παρατήρηση αποκαλύπτει ότι τα κρυπτοκρυσταλλικά υλικά όπως ο σερπεντίνης και αυτά που έχουν έντονο σχισμό, έχουν τον εκθέτη n_{opt} κοντά στο 0,5 ενώ αυτά τα οποία αποτελούνται από μεγάλους κρυστάλλους οι οποίοι πρέπει να σπάσουν κατά την διάρκεια της λειοτρίβησης, έχουν n πολύ μεγαλύτερο από το 0,5. Επίσης οι μέσες τιμές των W_i που υπολογίστηκαν με n=0,5 και μέγεθος d_{80} είναι πολύ κοντά σε αυτές που υπολογίστηκαν με τον βέλτιστο εκθέτη n_{opt} όμως το σφάλμα στην δεύτερη περίπτωση είναι πολύ μικρότερο, για αυτό και προτιμάται η χρήση του n_{opt} .

Πηγαίνοντας ένα βήμα πιο πέρα απεδείχθη μια σχέση ενέργειας – μεγέθους βασισμένη στο W_i και στο μέγεθος x και υπολογίστηκε αυτή η ενέργεια (δυναμική ενέργεια, e_{pot}). Είναι φανερό ότι η ειδική ενέργεια e_i που απαιτείται για την λειοτρίβηση ενός υλικού από ένα μέγεθος x_1 σε ένα άλλο x_2 είναι ίση με την διαφορά των δυναμικών ενεργειών των δύο μεγεθών, εξ'ορισμού η e_{pot} στο μέγεθος 100 μm αντιστοιχεί με τον δείκτη έργου του υλικού W_i .

<u>Βιβλιογραφία</u>

[1]Bond F.C., 1961, Crushing and grinding calculations

- [2]Rittinger, P.R., 1867, Lehrbuch der Aufbereitungskunde, Berlin
- [3]Charles, R.J., 1957, Energy-size reduction relationships in comminution, Trans. AIME Mining Eng., Vol. 208, pp. 80-88
- [4]Σταμπολιάδης Η. (2000), "Σχέση ενέργειας και μεγέθους τεμαχίων κατά την κατάτμηση", 30 Συνέδριο Ορυκτού Πλούτου, Τόμος Β, Τεχνικό Επιμελητήριο Ελλάδος, 251-261, Αθήνα.
- [5] Σταμπολιάδης Η. (1996), "Σχέση ενέργειας και μεγέθους τεμαχίων κατά την κατάτμηση", Μεταλ. και Μεταλλουργικά Χρονικά, 6(2), 9-21.
- [6]Stamboltzis G. (1990), Calculation of the net power of laboratory ball mills, Mining and Metallurgical Annals, No 76,pp. 47-55, in Greek language
- [7] ΣΤΑΜΠΟΛΙΑΔΗΣ, Η. (2008). " Μηχανική των τεμαχιδίων ", Σημειώσεις του μαθήματος, Πολυτεχνείο Κρήτης, Χανιά
- [8] Stamboliadis E., Emmanouilidis S., Petrakis E (2011), A New Approach to the Calculation of Work index and the Potential Energy of a particulate material, Vol.1 No.2, July 2011, pp. 28-32

Παράρτημα

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MP _i -MF _i	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G _i	TNMP _i /t _i	
	sec	с		g	g	%	g	g/c	g/sec	g	с	sec	
1	200	233	1000	254,0	521,0	-56,3	267,0	1,14	1,34	201,0	176	151	52,1
2	151	176	521,0	132,3	413,0	-23,9	280,7	1,60	1,86	228,4	143	123	41,3
3	123	143	413,0	104,9	403,0	-20,9	298,1	2,09	2,43	231,0	111	95	40,3
4	95	111	403,0	102,4	310,0	7,0	207,6	1,87	2,19	254,6	136	116	31,0
5	116	136	310,0	78,7	300,0	10,0	221,3	1,63	1,90	257,1	158	135	30,0
6	135	158	300,0	76,2	390,0	-17,0	313,8	1,99	2,32	234,3	118	101	39,0
7	101	118	390,0	99,1	343,2	-3,0	244,1	2,07	2,42	246,2	119	102	34,3
8	102	119	343,2	87,2	325,0	2,5	237,8	2,00	2,34	250,8	125	107	32,5

Πίνακας 1: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Χαλαζία σε μέγεθος 850 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MP _i -MF _i	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G _i	$TNMP_i/t_i$	
	sec	с		g	g	%	g	g/c	g/sec	g	С	sec	
1	200	233	1000	145,2	350,0	-5,0	204,8	0,88	1,02	282,5	322	276	35,0
2	276	322	350	50,8	363,0	-8,9	312,2	0,97	1,13	280,6	289	248	36,3
3	248	289	363	52,7	320,0	4,0	267,3	0,92	1,08	286,9	311	266	32,0
4	266	311	320	46,5	273,0	18,1	226,5	0,73	0,85	293,7	403	345	27,3
5	345	403	273	39,6	300,0	10,0	260,4	0,65	0,75	289,8	448	384	30,0
6	384	448	300	43,6	700,0	-110,0	656,4	1,47	1,71	231,7	158	136	70,0
7	136	158	700	101,6	274,5	17,6	172,9	1,09	1,28	293,5	268	230	27,5
8	230	268	275	39,9	342,0	-2,6	302,1	1,13	1,31	283,7	252	216	34,2
9	216	252	342	49,7	339,0	-1,7	289,3	1,15	1,34	284,1	248	212	33,9

Πίνακας 2: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Χαλαζία σε μέγεθος 425 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MPi-MFi	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G _i	$TNMP_i/t_i$	
	sec	С		g	g	%	g	g/c	g/sec	g	С	sec	
1	300	350	1000	85,8	284,0	14,8	198,2	0,57	0,66	309,0	546	468	28,4
2	468	546	284	24,4	343,0	-2,9	318,6	0,58	0,68	303,9	520	446	34,3
3	446	520	343	29,4	340,0	-2,0	310,6	0,60	0,70	304,2	510	437	34,0

Πίνακας 3: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Χαλαζία σε μέγεθος 212 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i>></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MP _i -MF _i	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G	TNMP _i / t _i	
	sec	С		g	g	%	g	g/c	g/sec	g	с	sec	
1	400	467	1000	47,9	185,0	44,5	137,1	0,29	0,34	324,5	1104	947	18,5
2	947	1104	185	8,9	314,0	5,8	305,1	0,28	0,32	318,3	1152	987	31,4
3	987	1152	314	15,0	337,0	-1,1	322,0	0,28	0,33	317,2	1135	973	33,7
4	973	1135	337	16,1	331,0	0,7	314,9	0,28	0,32	317,5	1144	981	33,1

Πίνακας 4: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Χαλαζία σε μέγεθος 106 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστρο φή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<j></j>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MP _i -MF _i	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G _i	$TNMP_i/t_i$	
	sec	C		g	g	%	g	g/c	g/sec	g	C	sec	
1	500	583	1000	25,3	126,0	62,2	100,7	0,17	0,20	330,1	1912	1639	12,6
2	1639	1912	126	3,2	299,0	10,3	295,8	0,15	0,18	325,8	2106	1805	29,9
3	1805	2106	299	7,6	310,0	7,0	302,4	0,14	0,17	325,5	2267	1943	31,0
4	1943	2267	310	7,8	324,0	2,8	316,2	0,14	0,16	325,1	2331	1998	32,4
5	1998	2331	324	8,2	325,0	2,5	316,8	0,14	0,16	325,1	2392	2050	32,5

Πίνακας 5: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Χαλαζία σε μέγεθος 53 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MPi-MFi	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G	TNMP _i / t _i	
	sec	С		g	g	%	g	g/c	g/sec	g	С	sec	
1	100	117	880	150,0	270,0	8,0	120,0	1,03	1,20	179,6	175	150	30,7
2	150	175	270,0	113,7	303,5	-3,5	189,8	1,08	1,27	165,5	153	131	34,5
3	131	153	303,5	127,8	300,0	-2,3	172,2	1,13	1,32	167,0	148	127	34,1
4	127	148	300,0	126,4	294,0	-0,2	167,6	1,13	1,32	169,5	150	128	33,4

Πίνακας 6: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Σερπεντίνη σε μέγεθος 850 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMP _i	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MPi-MFi	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G	TNMP _i /t _i	
	sec	С		g	g	%	g	g/c	g/sec	g	с	sec	
1	5	6	880	279,4	283,0	3,5	3,6	0,62	0,72	203,5	329	282	32,2
2	282	329	283,0	89,8	287,0	2,2	197,2	0,60	0,70	202,2	337	289	32,6
3	289	337	287,0	91,1	318,0	-8,4	226,9	0,67	0,79	192,4	286	245	36,1
4	245	286	318,0	101,0	298,0	-1,6	197,0	0,69	0,80	198,7	288	247	33,9
5	247	288	298,0	94,6	287,0	2,2	192,4	0,67	0,78	202,2	303	260	32,6

Πίνακας 7: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Σερπεντίνη σε μέγεθος 425 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MPi-MFi	NMP _i /N _i	NMP _i /t _i	M _{pb} -MF _{i+1}	TNMP _i / G	TNMP _i / t _i	
	sec	С		g	g	%	g	g/c	g/sec	g	С	sec	
1	120	140	880	165,0	208,0	29,1	43,0	0,31	0,36	239,0	778	667	23,6
2	250	292	208,0	54,3	177,0	39,7	122,7	0,42	0,49	247,1	588	504	20,1
3	504	588	177,0	46,2	268,0	8,6	221,8	0,38	0,44	223,3	592	507	30,5
4	507	592	268,0	70,0	285,0	2,8	215,0	0,36	0,42	218,9	603	516	32,4
5	516	603	285,0	74,4	297,0	-1,2	222,6	0,37	0,43	215,8	585	501	33,7

Πίνακας 8: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Σερπεντίνη σε μέγεθος 212 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MP _i -MF _i	NMP _i /N _i	NMPi/ti	M _{pb} -MF _{i+1}	TNMP _i / G	TNMP _i / t _i	
	sec	с		g	g	%	g	g/c	g/sec	g	с	sec	
1	500	583	880	56,0	210,0	28,4	154,0	0,26	0,31	280,0	1061	909	23,9
2	909	1061	210,0	13,4	266,0	9,3	252,6	0,24	0,28	276,4	1161	995	30,2
3	995	1161	266,0	16,9	285,0	2,8	268,1	0,23	0,27	275,2	1191	1021	32,4
4	1021	1191	285,0	18,1	302,0	-2,9	283,9	0,24	0,28	274,1	1151	986	34,3
5	986	1151	302,0	19,2	304,0	-3,6	284,8	0,25	0,29	274,0	1107	949	34,5

Πίνακας 9: Συγκεντρωτικός πίνακας δοκιμών λειοτρίβησης Σερπεντίνη σε μέγεθος 106 μm

Περίοδος	Χρόνος λειοτρ.	Αριθμός περιστρ.	Τροφή	Ψιλό τροφής	Ψιλό προϊόντος		Ψιλό παραχθέν	Καθαρό ανά περιστροφ ή	Καθαρό ανά sec	Στόχος καθαρού επομένης	Στροφές επομένης	Χρόνος επομένης	Ψιλό %
<i></i>	ti	Ni	WFi	MFi	MPi	Ακρίβεια	NMPi	Gi	Ki	TNMPi	N _{i+1}	t _{i+1}	
							MP _i -MF _i	NMP _i /N _i	NMPi/ti	M _{pb} -MF _{i+1}	TNMP _i / G _i	TNMP _i / t _i	
	sec	С		g	g	%	g	g/c	g/sec	g	с	sec	
1	1000	1167	880	36,9	228,0	22,3	191,1	0,16	0,19	283,8	1732	1485	25,9
2	1485	1732	228,0	9,6	280,0	4,6	270,4	0,16	0,18	281,6	1804	1546	31,8
3	1546	1804	280,0	11,7	284,0	3,2	272,3	0,15	0,18	281,4	1865	1598	32,3
4	1598	1865	284,0	11,9	289,0	1,5	277,1	0,15	0,17	281,2	1893	1622	32,8
5	1622	1893	289,0	12,1	291,0	0,8	278,9	0,15	0,17	281,1	1908	1636	33,1

Διάγραμμα 3: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων Σερπεντίνη για το κλάσμα 106 μm

Διάγραμμα 5: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων Σερπεντίνη για το κλάσμα 53 μm

Διάγραμμα 6: Αθροιστικές κατανομές διαστασιακών ιδιοτήτων Χαλαζία για το κλάσμα 53 μm

						K/	\άσμα 850	μm, Ειδική	Ενέργεια	9,6 kJ/kg					
low	high	Βάρος	Αθρ. Διερχόμενο	Μέσο Μέγεθος	Βάρος	Μέσο Μέγεθος	Αθρ. Μεγαλύτερο	Ειδ. Επιφάνεια	Επιφάνεια κλάσματος	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους	Βάρος Κόκκου	Αριθμός Κόκκων στο	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους	Μήκος Κόκκων του κλάσματος	Αθρ. Μήκος σε Μεγαλύτερους
<u>(µm)</u>	(µm)	(%)	Βάρος (%)	(µm)	(kg)	(m)	Βάρος (kg)	(m²/kg)	(m²)	(m²)	(kg)	Κλάσμα	Κόκκους	(m)	Κόκκους (m)
0,0499	0,0582	0,0011	0 001	0,0539	1,0600E-05	5,3883E-08	1,0	42019,975	0,445	49,862	2,1707E-19	4,8833E+13	4,1233E+14	2,6313E+06	4,5526E+07
0,0583	0,00791	0,0024	0,001	0,0029	2,3500E-05 3 7800E-05	0,2910E-08	9,9999E-01	30886.626	0,840	49,410	3,4040E-19 5,4657E-19	0,8020E+13	3,0350E+14 2 9548E+14	4,2/95E+00 5.0696E+06	4,2894E+07 3,8615E+07
0,0791	0,0921	0,0052	0,007	0,0853	5,2100E-05	8,5328E-08	9,9993E-01	26534,798	1,382	47,403	8,6201E-19	6,0440E+13	2,2632E+14	5,1572E+06	3,3545E+07
0,0921	0,1073	0,0065	0,012	0,0994	6,5300E-05	9,9413E-08	9,9988E-01	22775,127	1,487	46,020	1,3633E-18	4,7900E+13	1,6588E+14	4,7619E+06	2,8388E+07
0,1073	0,1250	0,0077	0,019	0,1158	7,6800E-05	1,1582E-07	9,9981E-01	19548,842	1,501	44,533	2,1557E-18	3,5626E+13	1,1798E+14	4,1262E+06	2,3626E+07
0,1249	0,1456	0,0086	0,027	0,1349	8,6100E-05	1,3487E-07	9,9973E-01	16788,204	1,445	43,032	3,4037E-18	2,5296E+13	8,2352E+13	3,4116E+06	1,9500E+07
0,1457	0,1697	0,0093	0,035	0,1572	9,3300E-05	1,5722E-07	9,9965E-01	14400,778	1,344	41,586	5,3927E-18	1,7301E+13	5,7055E+13	2,7202E+06	1,6088E+07
0,1097	0,1977	0,0099	0,045	0,1832	9,9100E-05	1,831/E-0/ 2 1227E-07	9,9955E-01	12300,079	1,225	40,243	8,52//E-18	1,1021E+13	3,9/54E+13	2,1280E+00	1,3308E+07
0,2304	0,2583	0,0104	0,054	0,2486	1,0450E-04	2,4860E-07	9.9935E-01	9107.504	1,002	37,911	2.1319E-17	5,1598E+12	2,0135E+13	1,0011E+00	9.5884E+06
0,2682	0,3125	0,0117	0,076	0,2895	1,1720E-04	2,8951E-07	9,9924E-01	7820,611	0,917	36,909	3,3670E-17	3,4809E+12	1,5235E+13	1,0078E+06	8,3056E+06
0,3125	0,3641	0,0134	0,088	0,3373	1,3400E-04	3,3732E-07	9,9912E-01	6712,120	0,899	35,993	5,3258E-17	2,5161E+12	1,1754E+13	8,4873E+05	7,2979E+06
0,3642	0,4242	0,0170	0,101	0,3931	1,6950E-04	3,9305E-07	9,9899E-01	5760,455	0,976	35,093	8,4254E-17	2,0118E+12	9,2381E+12	7,9073E+05	6,4492E+06
0,4241	0,4941	0,0220	0,118	0,4577	2,1960E-04	4,5775E-07	9,9882E-01	4946,309	1,086	34,117	1,3308E-16	1,6501E+12	7,2263E+12	7,5533E+05	5,6584E+06
0,4942	0,5757	0,0287	0,140	0,5334	2,8060E-04	5,333/E-07	9,9860E-01	4244,975	1,217	33,031	2,1054E-16	1,3013E+12	5,5/62E+12	7,2000E+05	4,9031E+06
0,5758	0,0707	0,0375	0,109	0,0214	4,7210F-04	7,2383F-07	9.9794F-01	3128.030	1,300	30.449	5,2620F-16	8,9719F+11	4,2149E+12 3.0893F+12	6.4941F+05	3,4775F+06
0,7814	0,9103	0,0564	0,253	0,8434	5,6370E-04	8,4342E-07	9,9747E-01	2684,500	1,513	28,972	8,3247E-16	6,7714E+11	2,1921E+12	5,7111E+05	2,8281E+06
0,9102	1,0604	0,0648	0,310	0,9824	6,4820E-04	9,8243E-07	9,9690E-01	2304,648	1,494	27,459	1,3157E-15	4,9268E+11	1,5149E+12	4,8402E+05	2,2570E+06
1,0604	1,2354	0,0719	0,374	1,1446	7,1860E-04	1,1446E-06	9,9626E-01	1978,197	1,422	25,965	2,0804E-15	3,4541E+11	1,0223E+12	3,9534E+05	1,7730E+06
1,2355	1,4393	0,0771	0,446	1,3335	7,7090E-04	1,3335E-06	9,9554E-01	1697,876	1,309	24,543	3,2904E-15	2,3429E+11	6,7686E+11	3,1243E+05	1,3777E+06
1,4392	1,6767	0,0804	0,523	1,5534	8,0440E-04	1,5534E-06	9,9477E-01	1457,531	1,172	23,234	5,2012E-15	1,5466E+11	4,4257E+11	2,4024E+05	1,0652E+06
1,0707	2 2757	0,0836	0,604	2 1084	8 3560E-04	2 1084E-06	9,9314E-01	1073 876	1,050	22,002	0,2249E-13	6.4254F+10	2,0751E+11	1,0124E+03	6,2459E+05
2,2757	2,6512	0,0848	0,770	2,4563	8,4780E-04	2,4563E-06	9,9230E-01	921,785	0,781	20,134	2,0562E-14	4,1231E+10	1,2351E+11	1,0127E+05	5,0827E+05
2,6513	3,0887	0,0868	0,855	2,8616	8,6840E-04	2,8616E-06	9,9145E-01	791,208	0,687	19,352	3,2515E-14	2,6707E+10	8,2282E+10	7,6427E+04	4,0699E+05
3,0887	3,5983	0,0902	0,941	3,3338	9,0200E-04	3,3338E-06	9,9059E-01	679,157	0,613	18,665	5,1410E-14	1,7545E+10	5,5575E+10	5,8491E+04	3,3057E+05
3,5983	4,1920	0,0950	1,032	3,8838	9,5020E-04	3,8838E-06	9,8968E-01	582,972	0,554	18,053	8,1286E-14	1,1690E+10	3,8030E+10	4,5400E+04	2,7208E+05
4,1920	4,8837	0,1012	1,127	4,5247	1,0115E-03	4,5247E-06	9,8873E-01	500,402	0,506	17,499	1,2853E-13	7,8698E+09	2,6340E+10	3,5608E+04	2,2668E+05
4,8837	5,0895	0,1083	1,228	5,2/12	1,0831E-03	5,2/12E-00	9,8772E-01 9,8664E-01	429,532	0,405	10,993	2,0322E-13 3 2134E-13	3,6264E+09	1,84/0E+10	2,8093E+04 2,2270E+04	1,9107E+05
6,6283	7,7219	0,1265	1,453	7,1542	1,2654E-03	7,1542E-06	9,8547E-01	316,478	0,400	16,098	5,0808E-13	2,4906E+09	9,5143E+09	1,7818E+04	1,4070E+05
7,7218	8,9960	0,1394	1,579	8,3346	1,3937E-03	8,3346E-06	9,8421E-01	271,657	0,379	15,697	8,0334E-13	1,7349E+09	7,0238E+09	1,4460E+04	1,2289E+05
8,9961	10,4804	0,1564	1,719	9,7099	1,5636E-03	9,7099E-06	9,8281E-01	233,179	0,365	15,319	1,2703E-12	1,2309E+09	5,2889E+09	1,1952E+04	1,0843E+05
10,4803	12,2096	0,1798	1,875	11,3120	1,7975E-03	1,1312E-05	9,8125E-01	200,155	0,360	14,954	2,0084E-12	8,9497E+08	4,0579E+09	1,0124E+04	9,6475E+04
12,2096	14,2242	0,2126	2,055	13,1785	2,1258E-03	1,3178E-05	9,7945E-01	171,807	0,365	14,594	3,1757E-12	6,6940E+08	3,1630E+09	8,8216E+03	8,6351E+04
16,5713	19,3055	0,2350	2,207	17,8862	2,0500E-05 3.2444F-03	1,5555E-05	9,7474F-01	147,474	0,582	14,225	7,9396F-12	4.0863F+08	2,4550E+05	7,3131E+03 7,3089E+03	6.9611F+04
19,3055	22,4909	0,4152	2,851	20,8374	4,1517E-03	2,0837E-05	9,7149E-01	108,658	0,451	13,436	1,2554E-11	3,3071E+08	1,5691E+09	6,8912E+03	6,2302E+04
22,4909	26,2019	0,5377	3,266	24,2756	5,3767E-03	2,4276E-05	9,6734E-01	93,269	0,501	12,985	1,9850E-11	2,7087E+08	1,2384E+09	6,5755E+03	5,5410E+04
26,2019	30,5252	0,6972	3,804	28,2811	6,9719E-03	2,8281E-05	9,6196E-01	80,059	0,558	12,484	3,1386E-11	2,2214E+08	9,6756E+08	6,2822E+03	4,8835E+04
30,5251	35,5618	0,8961	4,501	32,9474	8,9609E-03	3,2947E-05	9,5499E-01	68,720	0,616	11,926	4,9626E-11	1,8057E+08	7,4542E+08	5,9493E+03	4,2553E+04
30,5018 41 4205	41,4295	1,1327	5,397	38,3837 AA 7170	1,132/E-02	3,8384E-05	9,4603E-01	50,987	0,668	11,310	1,8400E-11	1,4436E+08	2,6485E+08	5,0411E+03	3,0003E+04 3 1062E±04
48,2654	56,2292	1,6883	7.930	52,0954	1,6883E-02	5,2095E-05	9,2070E-01	43.462	0,705	9,933	1,2407E-10	8,6063E+07	3,0759E+08	4,4835E+03	2,6014E+04
56,2292	65,5070	1,9840	9,619	60,6910	1,9840E-02	6,0691E-05	9,0381E-01	37,306	0,740	9,199	3,1018E-10	6,3963E+07	2,2153E+08	3,8820E+03	2,1530E+04
65,5071	76,3157	2,2765	11,603	70,7052	2,2765E-02	7,0705E-05	8,8397E-01	32,022	0,729	8,459	4,9045E-10	4,6416E+07	1,5757E+08	3,2818E+03	1,7648E+04
76,3156	88,9077	2,5616	13,879	82,3714	2,5616E-02	8,2371E-05	8,6121E-01	27,487	0,704	7,730	7,7549E-10	3,3033E+07	1,1115E+08	2,7210E+03	1,4367E+04
88,9077	103,5775	2,8473	16,441	95,9627	2,8473E-02	9,5963E-05	8,3559E-01	23,594	0,672	7,025	1,2262E-09	2,3221E+07	7,8121E+07	2,2283E+03	1,1646E+04
103,5775	120,00/8	3,1515	19,288 22 440	130,2420	3,1010E-02 3,4970E-02	1,1180E-04	8,0/12E-01 7.7560E-01	20,252	0,038	5,715	1,9388E-09 3,0655E-09	1,0235E+07	3.8644F+07	1,81/3E+03	9,41/2E+03 7_5999E+02
140,5779	163,7733	3,9112	25,937	151,7330	3,9112E-02	1,5173E-04	7,4063E-01	14,922	0,584	5,107	4,8471E-09	8,0691E+06	2,7236E+07	1,2243E+03	6,1141E+03
163,7732	190,7959	4,4168	29,848	176,7690	4,4168E-02	1,7677E-04	7,0152E-01	12,809	0,566	4,524	7,6641E-09	5,7630E+06	1,9167E+07	1,0187E+03	4,8898E+03
190,7960	222,2773	5,0242	34,265	205,9360	5,0242E-02	2,0594E-04	6,5735E-01	10,994	0,552	3,958	1,2118E-08	4,1460E+06	1,3404E+07	8,5381E+02	3,8711E+03
222,2773	258,9530	5,7201	39,289	239,9153	5,7201E-02	2,3992E-04	6,0711E-01	9,437	0,540	3,406	1,9161E-08	2,9853E+06	9,2583E+06	7,1622E+02	3,0172E+03
258,9529	301,6802	6,4748	45,009	279,5013	6,4748E-02	2,7950E-04	5,4991E-01	8,101	0,525	2,866	3,0297E-08	2,1371E+06	6,2730E+06	5,9733E+02	2,3010E+03
301,0803	551,4575 409 4479	7,2560 8.0529	51,484	323,0191	7,2000E-02 8.0529E-02	3,2302E-04	4,8510E-01 4,1260E-01	0,953 5 969	0,505	2,341	4,/904E-08	1,014/E+06	4,1359E+06 2,6212E+06	4,9321E+02 4,0331E+02	1,7037E+03
409,4478	477,0068	8,4493	66.793	441,9382	8,4493E-02	4,4194E-04	3,3207E-01	5,305	0,401	1,057	1,1976E-07	7,0549E+05	1,5580E+06	3,1178E+02	8,0718E+02
477,0069	555,7130	8,3039	75,242	514,8582	8,3039E-02	5,1486E-04	2,4758E-01	4,398	0,365	0,923	1,8937E-07	4,3850E+05	8,5252E+05	2,2577E+02	4,9540E+02
555,7130	647,4056	7,4556	83,546	599,8097	7,4556E-02	5,9981E-04	1,6454E-01	3,775	0,281	0,558	2,9942E-07	2,4900E+05	4,1402E+05	1,4935E+02	2,6963E+02
647,4056	754,2275	5,7684	91,002	698,7783	5,7684E-02	6,9878E-04	8,9984E-02	3,240	0,187	0,277	4,7344E-07	1,2184E+05	1,6502E+05	8,5139E+01	1,2028E+02
753,9031	878,6750	3,2301	96,770	813,9016	3,2301E-02	8,1390E-04	3,2300E-02	2,782	0,090	0,090	7,4810E-07	4,3177E+04	4,3177E+04	3,5142E+01	3,5142E+01
sum		100			1,0				49,862	-		4,1233E+14		4,5526E+07	

Πίνακας 11: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Χαλαζία (Κλάσμα 850 μm)

low hi	igh	Βάρος	Αθρ. Διερχόμενο	Μέσο Μέγεθος	Βάρος	Μέσο Μέγεθος	Αθρ. Μεγαλύτερο	Ειδ. Επιφάνεια	Επιφάνεια κλάσματος	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους	Βάρος Κόκκου	Αριθμός Κόκκων στο	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους	Μήκος Κόκκων του κλάσματος	Αθρ. Μήκος σε Μεγαλύτερους
(µm) (µ	µm)	(%)	Βάρος (%)	(µm)	(kg)	(m)	Βάρος (kg)	(m²/kg)	(m ⁺)	(m²)	(kg)	Κλάσμα	Κόκκους	(m)	Κόκκους (m)
0,049886	0,0582	0,0020	0 000	0,0539	2,0400E-05	5,3883E-08	1,0	42019,975	0,857	107,841	2,1707E-19	9,3980E+13	8,3327E+14	5,0639E+06	9,9474E+07
0,056260	0,0075	0,0045	0,002	0,0025	4,5100E-05	7 3305E-08	9,99935-01	30886 626	2 239	100,564	5,4540E-15	1,5055E+14	6 0874E+14	9.7235E+06	9,4410E+07 8 6197E+07
0.079053	0.0921	0.0101	0,007	0.0853	1.0070E-04	8.5328E-08	9,9986E-01	26534,798	2,235	103,301	8.6201E-19	1,3204C+14	4,7609E+14	9,9679E+06	7,6473E+07
0,092106	0,1073	0,0128	0,024	0,0994	1,2820E-04	9,9413E-08	9,9976E-01	22775,127	2,920	100,449	1,3633E-18	9,4039E+13	3,5927E+14	9,3488E+06	6,6505E+07
0,107315	0,1250	0,0154	0,037	0,1158	1,5410E-04	1,1582E-07	9,9963E-01	19548,842	3,012	97,530	2,1557E-18	7,1483E+13	2,6523E+14	8,2792E+06	5,7157E+07
0,124923	0,1456	0,0179	0,052	0,1349	1,7860E-04	1,3487E-07	9,9948E-01	16788,204	2,998	94,517	3,4037E-18	5,2473E+13	1,9375E+14	7,0768E+06	4,8878E+07
0,145666	0,1697	0,0202	0,070	0,1572	2,0240E-04	1,5722E-07	9,9930E-01	14400,778	2,915	91,519	5,3927E-18	3,7533E+13	1,4128E+14	5,9010E+06	4,1801E+07
0,169715	0,1977	0,0228	0,090	0,1832	2,2780E-04	1,8317E-07	9,9910E-01	12360,679	2,816	88,604	8,5277E-18	2,6713E+13	1,0374E+14	4,8931E+06	3,5900E+07
0,197082	0,2505	0,0238	0,115	0,2134	2,5770E-04 2 9380E-04	2,1557E-07	9,9861E-01	9107 504	2,755	83 054	1,54/6E-1/ 2 1319E-17	1,9120E+13	5 7912E+13	4,0755E+00 3 4261E+06	2 6927E+07
0,268213	0,3125	0,0336	0,168	0,2895	3,3590E-04	2,8951E-07	9,9832E-01	7820,611	2,627	80,378	3,3670E-17	9,9763E+12	4,4131E+13	2,8883E+06	2,3501E+07
0,312515	0,3641	0,0402	0,202	0,3373	4,0210E-04	3,3732E-07	9,9798E-01	6712,120	2,699	77,751	5,3258E-17	7,5501E+12	3,4154E+13	2,5468E+06	2,0613E+07
0,364189	0,4242	0,0516	0,242	0,3931	5,1620E-04	3,9305E-07	9,9758E-01	5760,455	2,974	75,052	8,4254E-17	6,1267E+12	2,6604E+13	2,4081E+06	1,8066E+07
0,424066	0,4941	0,0662	0,294	0,4577	6,6150E-04	4,5775E-07	9,9706E-01	4946,309	3,272	72,078	1,3308E-16	4,9706E+12	2,0477E+13	2,2753E+06	1,5658E+07
0,494156	0,5757	0,0843	0,360	0,5334	8,4280E-04	5,3337E-07	9,9640E-01	4244,975	3,578	68,806	2,1054E-16	4,0030E+12	1,5507E+13	2,1351E+06	1,3383E+07
0,373730	0,0/0/	0,10/1	0,444	0,0214	1,0/0/E-03	0,2142E-07	3,3330E-01 9 9449E-01	3043,526 3128 020	3,901 A 102	61 279	5,3290E-10	3,213/E+12 2,4920E+12	1,1304E+13 8 3881E+13	1,33835+06	1,124/E+0/ 9 2492E+06
0,781447	0,9103	0.1522	0,531	0.8434	1,5223E-03	8,4342E-07	9,9318E-01	2684.500	4,087	57.226	8,3247E-16	1,8286E+12	5,7961E+12	1,5423E+06	7,4454E+06
0,91019	1,0604	0,1714	0,834	0,9824	1,7141E-03	9,8243E-07	9,9166E-01	2304,648	3,950	53,139	1,3157E-15	1,3028E+12	3,9675E+12	1,2799E+06	5,9031E+06
1,060386	1,2354	0,1870	1,006	1,1446	1,8700E-03	1,1446E-06	9,8994E-01	1978,197	3,699	49,189	2,0804E-15	8,9886E+11	2,6646E+12	1,0288E+06	4,6231E+06
1,235513	1,4393	0,1983	1,193	1,3335	1,9827E-03	1,3335E-06	9,8807E-01	1697,876	3,366	45,490	3,2904E-15	6,0258E+11	1,7658E+12	8,0355E+05	3,5943E+06
1,439195	1,6767	0,2055	1,391	1,5534	2,0552E-03	1,5534E-06	9,8609E-01	1457,531	2,996	42,123	5,2012E-15	3,9514E+11	1,1632E+12	6,1381E+05	2,7908E+06
1,676746	1,9534	0,2105	1,597	1,8098	2,1050E-03	1,8098E-06	9,8403E-01	1251,054	2,633	39,128	8,2249E-15	2,5593E+11	7,6805E+11	4,6318E+05	2,1770E+06
2 27567	2,2/5/	0,2157	1,807	2,1084	2,1000E-03	2,1084E-00	9,8193E-01 9 7977E-01	921 785	2,310	30,494	1,3005E-14 2.0562E-14	1,0383E+11	5,1212E+11 3,4628E+11	3,4904E+05 2,6710E+05	1,7138E+00 1 3642E+06
2,651271	3.0887	0,2250	2,025	2,4505	2,2500E-03	2,4505E-00	9.7754E-01	791.208	1.873	34,170	3.2515E-14	7.2809E+10	2.3754E+11	2,0710E+05	1.0971E+06
3,088684	3,5983	0,2563	2,483	3,3338	2,5629E-03	3,3338E-06	9,7517E-01	679,157	1,741	30,244	5,1410E-14	4,9852E+10	1,6473E+11	1,6619E+05	8,8871E+05
3,598269	4,1920	0,2822	2,739	3,8838	2,8215E-03	3,8838E-06	9,7261E-01	582,972	1,645	28,504	8,1286E-14	3,4711E+10	1,1488E+11	1,3481E+05	7,2251E+05
4,192025	4,8837	0,3130	3,022	4,5247	3,1301E-03	4,5247E-06	9,6978E-01	500,402	1,566	26,859	1,2853E-13	2,4353E+10	8,0170E+10	1,1019E+05	5,8770E+05
4,883667	5,6895	0,3468	3,335	5,2712	3,4680E-03	5,2712E-06	9,6665E-01	429,532	1,490	25,292	2,0322E-13	1,7065E+10	5,5817E+10	8,9953E+04	4,7751E+05
5,689579	6,6283	0,3819	3,681	6,1410	3,8190E-03	6,1410E-06	9,6319E-01	368,692	1,408	23,803	3,2134E-13	1,1885E+10	3,8/52E+10	7,2983E+04	3,8/56E+05
7.721844	8,9960	0,4105	4,005	8,3346	4,1054E-05 4,5662E-03	7,1342E-00 8,3346E-06	9,5518E-01	271,657	1,524	22,353	8.0334F-13	5.6840F+09	2,0007E+10	4.7374F+04	2,5567E+05
8,9961	10,4804	0,4973	4,938	9,7099	4,9733E-03	9,7099E-06	9,5062E-01	233,179	1,160	19,830	1,2703E-12	3,9152E+09	1,2949E+10	3,8016E+04	2,0830E+05
10,48033	12,2096	0,5423	5,436	11,3120	5,4227E-03	1,1312E-05	9,4564E-01	200,155	1,085	18,671	2,0084E-12	2,7000E+09	9,0343E+09	3,0542E+04	1,7028E+05
12,20961	14,2242	0,5936	5,978	13,1785	5,9358E-03	1,3178E-05	9,4022E-01	171,807	1,020	17,585	3,1757E-12	1,8691E+09	6,3343E+09	2,4632E+04	1,3974E+05
14,22417	16,5712	0,6536	6,571	15,3529	6,5360E-03	1,5353E-05	9,3429E-01	147,474	0,964	16,565	5,0213E-12	1,3017E+09	4,4652E+09	1,9984E+04	1,1511E+05
16,57125	19,3055	0,7254	7,225	17,8862	7,2538E-03	1,7886E-05	9,2775E-01	126,586	0,918	15,602	7,9396E-12	9,1362E+08	3,1635E+09	1,6341E+04	9,5123E+04
22,49091	26,2019	0,0118	8,762	20,6374	9,1473F-03	2,0037E-03	9.1238F-01	108,008	0,882	14,083	1,2354E-11 1,9850F-11	4,6083F+08	2,2499E+09 1.6033E+09	1,54/4E+04	6.5308F+04
26,20193	30,5252	1,0345	9,677	28,2811	1,0345E-02	2,8281E-05	9,0323E-01	80,059	0,828	12,948	3,1386E-11	3,2961E+08	1,1424E+09	9,3219E+03	5,4121E+04
30,52515	35,5618	1,1690	10,711	32,9474	1,1690E-02	3,2947E-05	8,9289E-01	68,720	0,803	12,120	4,9626E-11	2,3557E+08	8,1283E+08	7,7613E+03	4,4799E+04
35,56178	41,4295	1,3142	11,880	38,3837	1,3142E-02	3,8384E-05	8,8120E-01	58,987	0,775	11,317	7,8466E-11	1,6749E+08	5,7726E+08	6,4289E+03	3,7038E+04
41,42952	48,2654	1,4663	13,195	44,7170	1,4663E-02	4,4717E-05	8,6805E-01	50,633	0,742	10,541	1,2407E-10	1,1819E+08	4,0977E+08	5,2850E+03	3,0609E+04
48,26542	56,2292	1,6244	14,661	52,0954	1,6244E-02	5,2095E-05	8,5339E-01	43,462	0,706	9,799	1,9617E-10	8,2804E+07	2,9159E+08	4,3137E+03	2,5324E+04
65.50711	76,3157	1,9988	10,285	70,7052	1,7500E-02	7.0705E-05	0,5/13E-01 8,1919F-01	37,300	0,670	3,093	4,9045F-10	4.0755F+07	2,08/8E+08	2.8816F+03	2,1010E+04
76,3156	88,9077	2,2614	20,080	82,3714	2,2614E-02	8,2371E-05	7,9920E-01	27,487	0,622	7,783	7,7549E-10	2,9161E+07	1,1013E+08	2,4021E+03	1,4615E+04
88,90772	103,5775	2,6197	22,342	95,9627	2,6197E-02	9,5963E-05	7,7658E-01	23,594	0,618	7,161	1,2262E-09	2,1365E+07	8,0966E+07	2,0502E+03	1,2213E+04
103,5775	120,6678	3,1062	24,961	111,7966	3,1062E-02	1,1180E-04	7,5039E-01	20,252	0,629	6,543	1,9388E-09	1,6022E+07	5,9601E+07	1,7912E+03	1,0162E+04
120,6679	140,5780	3,7364	28,068	130,2430	3,7364E-02	1,3024E-04	7,1933E-01	17,384	0,650	5,914	3,0655E-09	1,2188E+07	4,3580E+07	1,5875E+03	8,3712E+03
140,5779	163,7733	4,4971	31,804	151,7330	4,4971E-02	1,5173E-04	6,8196E-01	14,922	0,671	5,265	4,8471E-09	9,2779E+06	3,1391E+07	1,4078E+03	6,7838E+03
103,7732	277 277	5,3409 6 1955	30,301 41 642	205 9260	0,0409E-02 6,1955E-00	2.05945-04	0,3033E-01 5 8358E-01	10,009	0,084	4,593 2 QAG	1,0041E-09	0,308/E+06	1 51/15E+07	1,2318E+03	2,3/00E+03
222,2773	258,9530	6.9805	47.837	239,9153	6,9805E-02	2,3992E-04	5,2163E-01	9,437	0,001	3,205	1,9161E-08	3,6431E+06	1,0032E+07	8,7403E+02	3,0913E+03
258,9529	301,6802	7,6492	54,818	279,5013	7,6492E-02	2,7950E-04	4,5182E-01	8,101	0,620	2,569	3,0297E-08	2,5248E+06	6,3890E+06	7,0567E+02	2,2173E+03
301,6803	351,4575	8,2165	62,467	325,6191	8,2165E-02	3,2562E-04	3,7533E-01	6,953	0,571	1,950	4,7904E-08	1,7152E+06	3,8642E+06	5,5850E+02	1,5116E+03
351,4574	409,4479	7,8464	70,684	379,3462	7,8464E-02	3,7935E-04	2,9316E-01	5,969	0,468	1,378	7,5745E-08	1,0359E+06	2,1490E+06	3,9296E+02	9,5311E+02
409,4478	477,0068	6,9825	78,530	441,9382	6,9825E-02	4,4194E-04	2,1470E-01	5,123	0,358	0,910	1,1976E-07	5,8302E+05	1,1131E+06	2,5766E+02	5,6014E+02
477,0069	555,7130	5,7496	85,513	514,8582	5,7496E-02	5,1486E-04	1,4487E-01	4,398	0,253	0,552	1,8937E-07	3,0362E+05	5,3010E+05	1,5632E+02	3,0248E+02
000,/13 647,4056	047,4056	4,3504	91,262	555,8097 602 7701	4,3004E-02	5,9981E-04	8,/3/8E-02	3,/75	0,164	0,300	2,9942E-07	1,4529E+05	2,2048E+05 8 1100E-04	8,/148E+01	5 00115-01
753,9031	878,6750	2,5007	98,519	813.9016	1,4807F-02	8.1390F-04	4,5674E-02	3,240	0,034	0,135	7,4810F-07	1.9792F+04	1,9792F+04	1,6109F+01	1,6109F+01
sum	510/0100	100	50,515	010,0010	1,0	5720502 04	1,70002.02	2,102	107.841	0,041	17:0100 07	8,3327E+14	2,57522104	9.9474E+07	1,01050101

Πίνακας 12: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Χαλαζία (Κλάσμα 425 μm)

					1	Kλ	άσμα 212 μ	ım, Ειδική	Ενέργεια	32,7 kJ/kg			1	1	
low	high	Βάρος	Αθρ. Διερχόμενο	Μέσο Μέγεθος	Βάρος	Μέσο Μέγεθος	Αθρ. Μεγαλύτερο	Ειδ. Επιφάνεια	Επιφάνεια κλάσματος	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους	Βάρος Κόκκου	Αριθμός Κόκκων στο	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους	Μήκος Κόκκων του κλάσματος	Αθρ. Μήκος σε Μεγαλύτερους
(µm)	(µm)	(%)	Βάρος (%)	(µm)	(kg)	(m)	Βάρος (kg)	(m²/kg)	(m²)	(m²)	(kg)	Κλάσμα	Κόκκους	(m)	Κόκκους (m)
0,0499	0,0582	0,0027	0	0,0539	2,7200E-05	5,3883E-08	1,0	42019,975	1,143	137,163	2,1707E-19	1,2531E+14	9,0273E+14	6,7519E+06	1,0371E+08
0,0583	0,06/9	0,0056	0,003	0,0629	5,0000E-05 8,4200E-05	0,2910E-08	9,9997E-01	35990,589	2,015	130,020	3,4546E-19 5,4657E-19	1,0210E+14	6 1522E+14	1,0198E+07	9,0954E+07
0.0791	0.0921	0.0110	0,000	0.0853	1.1020E-04	8.5328E-08	9.9983E-01	26534.798	2,004	131,401	8.6201E-19	1.2784E+14	4.6108E+14	1.0908E+07	7,5450E+07
0,0921	0,1073	0,0132	0,028	0,0994	1,3210E-04	9,9413E-08	9,9972E-01	22775,127	3,009	128,477	1,3633E-18	9,6900E+13	3,3324E+14	9,6332E+06	6,4542E+07
0,1073	0,1250	0,0149	0,041	0,1158	1,4910E-04	1,1582E-07	9,9959E-01	19548,842	2,915	125,468	2,1557E-18	6,9164E+13	2,3634E+14	8,0106E+06	5,4908E+07
0,1249	0,1456	0,0161	0,056	0,1349	1,6110E-04	1,3487E-07	9,9944E-01	16788,204	2,705	122,553	3,4037E-18	4,7331E+13	1,6718E+14	6,3834E+06	4,6898E+07
0,1457	0,1697	0,0169	0,072	0,1572	1,6930E-04	1,5722E-07	9,9928E-01	14400,778	2,438	119,849	5,3927E-18	3,1395E+13	1,1985E+14	4,9360E+06	4,0515E+07
0,1697	0,1977	0,0177	0,089	0,1832	1,7050E-04	1,831/E-0/ 2 1337E-07	9,9911E-01	12300,079	2,182	117,411	8,5277E-18	2,009/E+13	6 7755E+13	3,/912E+06	3,55/9E+07 3,1787E+07
0,1377	0,2503	0,0100	0,107	0,2134	2.1140E-04	2,1337E-07	9.9875E-01	9107.504	1,935	113,225	2.1319E-17	9.9161E+12	5.3806E+13	2,3701E100 2,4652E+06	2.8811E+07
0,2682	0,3125	0,0256	0,147	0,2895	2,5610E-04	2,8951E-07	9,9853E-01	7820,611	2,003	111,309	3,3670E-17	7,6063E+12	4,3890E+13	2,2021E+06	2,6346E+07
0,3125	0,3641	0,0338	0,172	0,3373	3,3840E-04	3,3732E-07	9,9828E-01	6712,120	2,271	109,306	5,3258E-17	6,3540E+12	3,6284E+13	2,1434E+06	2,4144E+07
0,3642	0,4242	0,0478	0,206	0,3931	4,7820E-04	3,9305E-07	9,9794E-01	5760,455	2,755	107,034	8,4254E-17	5,6757E+12	2,9930E+13	2,2308E+06	2,2001E+07
0,4241	0,4941	0,0676	0,254	0,4577	6,7570E-04	4,5775E-07	9,9746E-01	4946,309	3,342	104,280	1,3308E-16	5,0773E+12	2,4254E+13	2,3241E+06	1,9770E+07
0,4942	0,5757	0,0935	0,321	0,5334	9,3480E-04	0,555/E-0/	9,90/9E-01	4244,975	3,968	100,938	2,1054E-16 3,3296E-16	4,4400E+12 3,7803E+12	1,91//E+13	2,3082E+06 2.3491E+06	1,/440E+0/ 1_5077E+07
0,6706	0,7813	0,1618	0,413	0,7238	1,6181E-03	7,2383E-07	9,9459E-01	3128.030	5,061	92,383	5,2620E-16	3,0751E+12	1,0957E+13	2,2258E+06	1,2728E+07
0,7814	0,9103	0,1954	0,703	0,8434	1,9544E-03	8,4342E-07	9,9297E-01	2684,500	5,247	87,322	8,3247E-16	2,3477E+12	7,8815E+12	1,9801E+06	1,0503E+07
0,9102	1,0604	0,2269	0,898	0,9824	2,2690E-03	9,8243E-07	9,9102E-01	2304,648	5,229	82,075	1,3157E-15	1,7246E+12	5,5338E+12	1,6943E+06	8,5224E+06
1,0604	1,2354	0,2543	1,125	1,1446	2,5432E-03	1,1446E-06	9,8875E-01	1978,197	5,031	76,846	2,0804E-15	1,2224E+12	3,8092E+12	1,3992E+06	6,8281E+06
1,2355	1,4393	0,2768	1,379	1,3335	2,7683E-03	1,3335E-06	9,8621E-01	1697,876	4,700	71,815	3,2904E-15	8,4134E+11	2,5867E+12	1,1219E+06	5,4290E+06
1,4392	1,0/0/	0,2949	1,030	1,5554	2,9492E-03	1,5534E-00	9,8344E-01 9,8049E-01	1457,531	4,299	62,816	5,2012E-15 8,2249E-15	3,7778F+11	1,7454E+12	6.8370E+05	4,3070E+06
1,9534	2,2757	0,3272	2,262	2,1084	3,2721E-03	2,1084E-06	9,7738E-01	1073,876	3,514	58,929	1,3005E-14	2,5161E+11	8,0059E+11	5,3049E+05	2,7425E+06
2,2757	2,6512	0,3475	2,589	2,4563	3,4747E-03	2,4563E-06	9,7411E-01	921,785	3,203	55,415	2,0562E-14	1,6898E+11	5,4898E+11	4,1507E+05	2,2120E+06
2,6513	3,0887	0,3741	2,936	2,8616	3,7411E-03	2,8616E-06	9,7064E-01	791,208	2,960	52,212	3,2515E-14	1,1506E+11	3,7999E+11	3,2925E+05	1,7970E+06
3,0887	3,5983	0,4082	3,310	3,3338	4,0822E-03	3,3338E-06	9,6690E-01	679,157	2,772	49,252	5,1410E-14	7,9404E+10	2,6494E+11	2,6472E+05	1,4677E+06
3,5983	4,1920	0,4495	3,719	3,8838	4,4947E-03	3,8838E-06	9,6281E-01	582,972	2,620	46,480	8,1286E-14	5,5295E+10	1,8553E+11	2,1475E+05	1,2030E+06
4,1920	4,8837	0,4905	4,108	4,5247	4,9049E-03	4,524/E-00	9,5832E-01 9,5335E-01	429.532	2,484	43,839	1,2853E-13 2.0322E-13	2.6963E+10	1,3024E+11 9.1609E+10	1,7478E+05	9,8823E+03 8,1345E+05
5,6896	6,6283	0,6040	5,213	6,1410	6,0395E-03	6,1410E-06	9,4787E-01	368,692	2,001	39,021	3,2134E-13	1,8795E+10	6,4646E+10	1,1542E+05	6,7133E+05
6,6283	7,7219	0,6673	5,817	7,1542	6,6733E-03	7,1542E-06	9,4183E-01	316,478	2,112	36,795	5,0808E-13	1,3134E+10	4,5851E+10	9,3967E+04	5,5591E+05
7,7218	8,9960	0,7423	6,484	8,3346	7,4228E-03	8,3346E-06	9,3516E-01	271,657	2,016	34,683	8,0334E-13	9,2399E+09	3,2717E+10	7,7011E+04	4,6194E+05
8,9961	10,4804	0,8333	7,226	9,7099	8,3332E-03	9,7099E-06	9,2774E-01	233,179	1,943	32,666	1,2703E-12	6,5602E+09	2,3477E+10	6,3699E+04	3,8493E+05
10,4803	12,2096	0,9452	8,059	11,3120	9,4520E-03	1,1312E-05	9,1941E-01	200,155	1,892	30,723	2,0084E-12 3 1757E-12	4,/061E+09	1,691/E+10 1 2211E+10	5,3236E+04	3,2123E+05 2,6799E+05
14,2242	14,2242	1,0012	10.086	15,1785	1,0012C-02	1,5178E-05	8.9914E-01	147.474	1,830	26,974	5.0213E-12	2.4742E+09	8.8061E+09	3.7986E+04	2,0735E+05 2.2313E+05
16,5713	19,3055	1,4279	11,328	17,8862	1,4279E-02	1,7886E-05	8,8672E-01	126,586	1,808	25,142	7,9396E-12	1,7985E+09	6,3319E+09	3,2168E+04	1,8514E+05
19,3055	22,4909	1,6352	12,756	20,8374	1,6352E-02	2,0837E-05	8,7244E-01	108,658	1,777	23,334	1,2554E-11	1,3026E+09	4,5334E+09	2,7142E+04	1,5297E+05
22,4909	26,2019	1,8610	14,391	24,2756	1,8610E-02	2,4276E-05	8,5609E-01	93,269	1,736	21,557	1,9850E-11	9,3756E+08	3,2309E+09	2,2760E+04	1,2583E+05
26,2019	30,5252	2,1030	16,252	28,2811	2,1030E-02	2,8281E-05	8,3748E-01	80,059	1,684	19,821	3,1386E-11	6,7005E+08	2,2933E+09	1,8950E+04	1,0307E+05
30,5251	53,3018 41,4295	2,3014	18,355 20 717	38,3837	2,5014E-02	3,2947E-05 3,8384E-05	0,1043E-01 7.9283E-01	58 987	1,023	16,138	4,3020E-11 7,8466E-11	4,73652+08 3,3662F+08	1,02326+09	1,30/8E+04	6.8445E+04
41,4295	48,2654	2,9533	23,358	44,7170	2,9533E-02	4,4717E-05	7,6642E-01	50,633	1,495	14,957	1,2407E-10	2,3804E+08	8,1078E+08	1,0644E+04	5,5524E+04
48,2654	56,2292	3,3126	26,311	52,0954	3,3126E-02	5,2095E-05	7,3689E-01	43,462	1,440	13,462	1,9617E-10	1,6886E+08	5,7274E+08	8,7968E+03	4,4880E+04
56,2292	65,5070	3,7363	29,624	60,6910	3,7363E-02	6,0691E-05	7,0376E-01	37,306	1,394	12,022	3,1018E-10	1,2045E+08	4,0388E+08	7,3105E+03	3,6083E+04
65,5071	76,3157	4,2357	33,360	70,7052	4,2357E-02	7,0705E-05	6,6640E-01	32,022	1,356	10,628	4,9045E-10	8,6363E+07	2,8343E+08	6,1063E+03	2,8772E+04
/6,3156	88,9077 102 5775	4,8092	37,596	82,3714	4,8092E-02	8,2371E-05	6,2404E-01	27,487	1,322	9,272	1,7549E-10	0,2016E+07	1,9707E+08	5,1083E+03	2,2666E+04
103.5775	120.6678	5,4555 6.0976	42,405	111.7966	6.0976E-02	1.1180E-04	5,2155E-01	25,594	1,283	6,666	1,2202E-09	3,1450E+07	9,0692E+07	3,5160E+03	1,3301E+04
120,6679	140,5780	6,7576	53,942	130,2430	6,7576E-02	1,3024E-04	4,6058E-01	17,384	1,175	5,432	3,0655E-09	2,2044E+07	5,9241E+07	2,8710E+03	9,7847E+03
140,5779	163,7733	7,4098	60,700	151,7330	7,4098E-02	1,5173E-04	3,9300E-01	14,922	1,106	4,257	4,8471E-09	1,5287E+07	3,7197E+07	2,3195E+03	6,9136E+03
163,7732	190,7959	7,5827	68,109	176,7690	7,5827E-02	1,7677E-04	3,1891E-01	12,809	0,971	3,151	7,6641E-09	9,8938E+06	2,1911E+07	1,7489E+03	4,5941E+03
190,7960	222,2773	7,2718	75,692	205,9360	7,2718E-02	2,0594E-04	2,4308E-01	10,994	0,799	2,180	1,2118E-08	6,0007E+06	1,2017E+07	1,2358E+03	2,8452E+03
222,2773	208,9530	5,4208	82,964	239,9153	5,0908E-02	2,3992E-04	1,/036E-01	9,437	0,606	1,380	1,9101E-08 3,0207E-00	3,3510E+06	0,0101E+06	8,0395E+02	1,6094E+03 8,0549E±03
301,6803	351,4575	3,4661	94.476	325,6191	3,4661E-02	3,2562E-04	5.5244E-02	6,953	0,412	0,774	4,7904E-08	7,2355E+05	9,8477E+05	2.3560E+02	3,3583E+02
351,4574	409,4479	1,8415	97,942	379,3462	1,8415E-02	3,7935E-04	2,0583E-02	5,969	0,110	0,121	7,5745E-08	2,4311E+05	2,6122E+05	9,2225E+01	1,0022E+02
409,4478	477,0068	0,2168	99,783	441,9382	2,1679E-03	4,4194E-04	2,1679E-03	5,123	0,011	0,011	1,1976E-07	1,8101E+04	1,8101E+04	7,9997E+00	7,9997E+00
477,0069	555,7130	0	100	514,8582	0	5,1486E-04	0	4,398	0	0	1,8937E-07	0	0	0	0
555,7130	647,4056	0	100	599,8097	0	5,9981E-04	0	3,775	0	0	2,9942E-07	0	0	0	0
753 9031	754,2275 878,6750	0	100	098,7783 813 9016	0	0,98/8E-04 8,1390E-04	0	3,240	0	0	4,/344E-0/ 7.4810E-07	0	0	0	0
sum	210/0100	100	100	10,0010	1,0	0,20000 04		2,102	137,163		.,	9,0273E+14		1,0371E+08	

Πίνακας 13: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Χαλαζία (Κλάσμα 212 μm)

						Kλ	άσμα 106 μ	μ, Ειδική	Ενέργεια	69,3 kJ/kg					
low (um)	high (um)	Βάρος	Αθρ. Διερχόμενο	Μέσο Μέγεθος (um)	Βάρος	Μέσο Μέγεθος	Αθρ. Μεγαλύτερο	Ειδ. Επιφάνεια (m ² //(α)	Επιφάνεια κλάσματος (m ²)	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους (m ²)	Βάρος Κόκκου	Αριθμός Κόκκων στο	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους	Μήκος Κόκκων του κλάσματος	Αθρ. Μήκος σε Μεγαλύτερους Κόνκους (m)
(µIII)	(µIII) 0.0582	0.0010		(µIII) 0.0539	9 9000E-06	(III) 5 3883E-08	Dupος (κg)	(III /Kg) /2019.975	0.416	239.164	2 1707E-19	4 5608E+13	7 32//8E+1/	2 //575E+06	1 2019E+08
0,0583	0,0502	0,0028	0,0010	0,0629	2,7700E-05	6,2910E-08	9,9999E-01	35990,589	0,997	238,748	3,4546E-19	8,0184E+13	6,8687E+14	5,0443E+06	1,1773E+08
0,0679	0,0791	0,0054	0,0038	0,0733	5,3600E-05	7,3305E-08	9,9996E-01	30886,626	1,656	237,751	5,4657E-19	9,8065E+13	6,0669E+14	7,1887E+06	1,1269E+08
0,0791	0,0921	0,0085	0,0091	0,0853	8,5300E-05	8,5328E-08	9,9991E-01	26534,798	2,263	236,096	8,6201E-19	9,8955E+13	5,0862E+14	8,4436E+06	1,0550E+08
0,0921	0,1073	0,0120	0,0177	0,0994	1,1980E-04	9,9413E-08	9,9982E-01	22775,127	2,728	233,832	1,3633E-18	8,7878E+13	4,0967E+14	8,7362E+06	9,7055E+07
0,1073	0,1250	0,0154	0,0296	0,1158	1,5440E-04	1,1582E-07	9,9970E-01	19548,842	3,018	231,104	2,1557E-18	7,1623E+13	3,2179E+14	8,2953E+06	8,8318E+07
0,1249	0,1456	0,0188	0,0451	0,1349	1,8820E-04	1,3487E-07	9,9955E-01	16788,204	3,160	228,085	3,4037E-18	5,5293E+13	2,5017E+14	7,4571E+06	8,0023E+07
0,1457	0,1097	0,0223	0,0039	0,1372	2,2280E-04 2 6210E-04	1,5722E-07	9,9930E-01	12360 679	3,208	224,920	3,3927E-18 8 5277E-18	4,1315E+13	1,948/6+14	5,6298E+06	7,2300E+07 6.6070E+07
0,1977	0,2303	0,0202	0,0002	0,2134	3,1360E-04	2,1337E-07	9,9888E-01	10611,452	3,328	218,478	1,3478E-17	2,3267E+13	1,2282E+14	4,9644E+06	6,0440E+07
0,2304	0,2683	0,0378	0,1437	0,2486	3,7770E-04	2,4860E-07	9,9856E-01	9107,504	3,440	215,150	2,1319E-17	1,7717E+13	9,9558E+13	4,4044E+06	5,5476E+07
0,2682	0,3125	0,0443	0,1815	0,2895	4,4330E-04	2,8951E-07	9,9819E-01	7820,611	3,467	211,710	3,3670E-17	1,3166E+13	8,1841E+13	3,8117E+06	5,1071E+07
0,3125	0,3641	0,0575	0,2258	0,3373	5,7470E-04	3,3732E-07	9,9774E-01	6712,120	3,857	208,243	5,3258E-17	1,0791E+13	6,8675E+13	3,6400E+06	4,7260E+07
0,3642	0,4242	0,0884	0,2833	0,3931	8,8440E-04	3,9305E-07	9,9717E-01	5760,455	5,095	204,386	8,4254E-17	1,0497E+13	5,7884E+13	4,1258E+06	4,3620E+07
0,4241	0,4941	0,1274	0,3718	0,4577	1,2/37E-03	4,5775E-07	9,9628E-01	4946,309	6,300	199,291	1,3308E-16	9,5708E+12	4,7387E+13	4,3810E+06	3,9494E+07
0,4942	0,5757	0,1/55	0,4991	0,5334	1,/340E-03	0,055/E-U/	9,93001E-01 9,9335E-01	4244,975	2,448	192,991	2,1004E-16 3,3296E-16	0,000E+12 7.3227E+12	3, /810E+13 2 9482E+12	4,4430E+06	3,0113E+07 3,0668E+07
0,6706	0,7813	0,2436	0,0740	0,7238	3,1355E-03	7,2383E-07	9.9082E-01	3128.030	9,808	176.659	5,2620E-16	5,9588E+12	2,34620413	4,3131E+06	2,6117E+07
0,7814	0,9103	0,3880	1,2320	0,8434	3,8797E-03	8,4342E-07	9,8768E-01	2684,500	10,415	166,851	8,3247E-16	4,6604E+12	1,6201E+13	3,9307E+06	2,1804E+07
0,9102	1,0604	0,4603	1,6199	0,9824	4,6031E-03	9,8243E-07	9,8380E-01	2304,648	10,609	156,436	1,3157E-15	3,4987E+12	1,1540E+13	3,4372E+06	1,7873E+07
1,0604	1,2354	0,5261	2,0802	1,1446	5,2605E-03	1,1446E-06	9,7920E-01	1978,197	10,406	145,828	2,0804E-15	2,5286E+12	8,0415E+12	2,8941E+06	1,4436E+07
1,2355	1,4393	0,5821	2,6063	1,3335	5,8206E-03	1,3335E-06	9,7394E-01	1697,876	9,883	135,421	3,2904E-15	1,7690E+12	5,5129E+12	2,3590E+06	1,1542E+07
1,4392	1,6767	0,6272	3,1883	1,5534	6,2715E-03	1,5534E-06	9,6812E-01	1457,531	9,141	125,539	5,2012E-15	1,2058E+12	3,7439E+12	1,8731E+06	9,1831E+06
1,0/0/	1,9534	0,0009	3,8155	1,8098	0,0090E-03	1,8098E-06	9,0185E-01	1251,054	8,343	110,398	8,2249E-15	8,1083E+11	2,5381E+12	1,40/4E+06	7,3101E+06
2,2757	2,2737	0,7508	4,4024 5,1890	2,1004	7,5082F-03	2,1004L-00	9.4811F-01	921,785	6,921	100,054	2.0562F-14	3.6514F+11	1,7273C112	8,9689F+05	4.6971F+06
2,6513	3,0887	0,8077	5,9398	2,8616	8,0772E-03	2,8616E-06	9,4060E-01	791,208	6,391	93,546	3,2515E-14	2,4841E+11	8,1884E+11	7,1086E+05	3,8002E+06
3,0887	3,5983	0,8808	6,7475	3,3338	8,8080E-03	3,3338E-06	9,3253E-01	679,157	5,982	87,155	5,1410E-14	1,7133E+11	5,7043E+11	5,7117E+05	3,0893E+06
3,5983	4,1920	0,9717	7,6283	3,8838	9,7173E-03	3,8838E-06	9,2372E-01	582,972	5,665	81,173	8,1286E-14	1,1954E+11	3,9910E+11	4,6429E+05	2,5182E+06
4,1920	4,8837	1,0773	8,6000	4,5247	1,0773E-02	4,5247E-06	9,1400E-01	500,402	5,391	75,508	1,2853E-13	8,3815E+10	2,7956E+11	3,7923E+05	2,0539E+06
4,8837	5,6895	1,1908	9,6773	5,2712	1,1908E-02	5,2712E-06	9,0323E-01	429,532	5,115	70,117	2,0322E-13	5,8597E+10	1,9575E+11	3,0888E+05	1,6746E+06
5,6896	0,0283	1,3096	10,8682	0,1410 7 1542	1,3096E-02	0,1410E-06	8,9132E-01 9 7932E-01	368,692	4,828	65,002	3,2134E-13	4,0753E+10	1,3/15E+11 0.620/E±10	2,502/E+05	1,3058E+06
7,7218	8,9960	1,4435	13,6216	8,3346	1,4435E-02	8.3346E-06	8.6378E-01	271.657	4,370	55,604	8.0334E-13	1.9933E+10	6.7976E+10	1.6614E+05	9.1218E+05
8,9961	10,4804	1,7830	15,2229	9,7099	1,7830E-02	9,7099E-06	8,4777E-01	233,179	4,158	51,254	1,2703E-12	1,4036E+10	4,8043E+10	1,3629E+05	7,4604E+05
10,4803	12,2096	1,9948	17,0059	11,3120	1,9948E-02	1,1312E-05	8,2994E-01	200,155	3,993	47,097	2,0084E-12	9,9319E+09	3,4006E+10	1,1235E+05	6,0975E+05
12,2096	14,2242	2,2402	19,0007	13,1785	2,2402E-02	1,3178E-05	8,0999E-01	171,807	3,849	43,104	3,1757E-12	7,0542E+09	2,4074E+10	9,2964E+04	4,9740E+05
14,2242	16,5712	2,5175	21,2409	15,3529	2,5175E-02	1,5353E-05	7,8759E-01	147,474	3,713	39,255	5,0213E-12	5,0135E+09	1,7020E+10	7,6972E+04	4,0444E+05
16,5713	19,3055	2,8291	23,7584	17,8862	2,8291E-02	1,7886E-05	7,6242E-01	126,586	3,581	35,543	7,9396E-12	3,5633E+09	1,2007E+10	6,3734E+04	3,2747E+05
19,3055	22,4909	3,1/84	26,58/5	20,8374	3,1/84E-02	2,0837E-05	7,3413E-01	108,658	3,454	31,961	1,2554E-11	2,5318E+09	8,4432E+09	5,2/56E+04	2,03/3E+05
26,2019	30,5252	4.0126	33,3372	24,2730	4.0126F-02	2,4270E-03	6.6663E-01	80.059	3,331	25,300	3.1386F-11	1,7552E+05	4.1122E+09	4,5070E+04	2,1037E+05
30,5251	35,5618	4,4999	37,3498	32,9474	4,4999E-02	3,2947E-05	6,2650E-01	68,720	3,092	21,964	4,9626E-11	9,0677E+08	2,8337E+09	2,9876E+04	1,3114E+05
35,5618	41,4295	5,0188	41,8497	38,3837	5,0188E-02	3,8384E-05	5,8150E-01	58,987	2,960	18,872	7,8466E-11	6,3961E+08	1,9270E+09	2,4551E+04	1,0127E+05
41,4295	48,2654	5,5404	46,8686	44,7170	5,5404E-02	4,4717E-05	5,3131E-01	50,633	2,805	15,912	1,2407E-10	4,4656E+08	1,2873E+09	1,9969E+04	7,6715E+04
48,2654	56,2292	6,0243	52,4090	52,0954	6,0243E-02	5,2095E-05	4,7591E-01	43,462	2,618	13,106	1,9617E-10	3,0709E+08	8,4078E+08	1,5998E+04	5,6747E+04
56,2292	65,5070	6,4511	58,4333	60,6910	6,4511E-02	0,0691E-05	4,1567E-01	37,306	2,407	10,488	3,1018E-10	2,0798E+08	5,3369E+08	1,2622E+04	4,0749E+04
76 2156	/0,315/ 88 9077	0,8208	04,8843 71 7051	10,1052	0,6208E-02	8,2371E-05	3,5110E-01 2,8295E-01	32,022 27 A97	2,184	5,081	4,9043E-10 7,7549E-10	1,5507E+08 8,5980E+07	3,23/2E+08	7,0222F+02	2,8120E+04 1,8793E+04
88,9077	103,5775	6,1368	78.3727	95,9627	6,1368E-02	9,5963E-05	2,1627E-01	23,594	1,448	4,065	1,2262E-09	5,0048E+07	1,0067E+08	4,8028E+03	1,1211E+04
103,5775	120,6678	5,2712	84,5095	111,7966	5,2712E-02	1,1180E-04	1,5491E-01	20,252	1,068	2,617	1,9388E-09	2,7188E+07	5,0618E+07	3,0396E+03	6,4084E+03
120,6679	140,5780	4,1847	89,7807	130,2430	4,1847E-02	1,3024E-04	1,0219E-01	17,384	0,727	1,549	3,0655E-09	1,3651E+07	2,3430E+07	1,7779E+03	3,3689E+03
140,5779	163,7733	3,0981	93,9654	151,7330	3,0981E-02	1,5173E-04	6,0346E-02	14,922	0,462	0,822	4,8471E-09	6,3916E+06	9,7795E+06	9,6982E+02	1,5910E+03
163,7732	190,7959	2,0116	97,0635	176,7690	2,0116E-02	1,7677E-04	2,9365E-02	12,809	0,258	0,359	7,6641E-09	2,6246E+06	3,3879E+06	4,6395E+02	6,2114E+02
190,7960	222,2773	0,9250	99,0750	205,9360	9,2499E-03	2,0594E-04	9,2499E-03	10,994	0,102	0,102	1,2118E-08	7,6330E+05	7,6330E+05	1,5719E+02	1,5719E+02
222,27/3	208,9530	0	100	239,9153	0	2,3992E-04		9,437			1,9101E-08	0		0	0
301.6803	351.4575	0	100	325.6191	0	3,2562E-04	1 0	6,101	1 0	0	4,7904E-08	0	 	0	0
351,4574	409,4479	0	100	379,3462	0	3,7935E-04	0	5,969	0	0	7,5745E-08	0	0	0	0
409,4478	477,0068	0	100	441,9382	0	4,4194E-04	0	5,123	0	0	1,1976E-07	0	0	0	0
477,0069	555,7130	0	100	514,8582	0	5,1486E-04	0	4,398	0	0	1,8937E-07	0	0	0	0
555,7130	647,4056	0	100	599,8097	0	5,9981E-04	0	3,775	0	0	2,9942E-07	0	0	0	0
647,4056	754,2275	0	100	698,7783	0	6,9878E-04	- 0	3,240	0	0	4,7344E-07	0	0	0	0
/53,9031	8/8,6/50	0	100	813,9016	0	8,1390E-04		2,/82	120.454	0	/,4810E-07	7 33/05 .44		1 20105 - 22	0
əuili		100			1,0			L	239,104	1	I	1,5248E+14	1	1,20136+08	

Πίνακας 14: Συγκεντρωτικός πίνακας επεξεργασίας τιμών των	για τον Χαλαζία (Κλάσμα 106 μm)
---	---------------------------------

						Kλ	άσμα 53 μr	n, Ειδική Ε	νέργεια 14	10,1 kJ/kg					
low	high	Βάρος	Αθρ. Διερχόμενο	Μέσο Μέγεθος	Βάρος	Μέσο Μέγεθος	Αθρ. Μεγαλύτερο	Ειδ. Επιφάνεια	Επιφάνεια κλάσματος	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους	Βάρος Κόκκου	Αριθμός Κόκκων στο	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους	Μήκος Κόκκων του κλάσματος	Αθρ. Μήκος σε Μεγαλύτερους
(µm)	(µm)	(%)	Βάρος (%)	(µm)	(kg)	(m)	Βάρος (kg)	(m²/kg)	(m²)	(m²)	(kg)	Κλάσμα	Κόκκους	(m)	Κόκκους (m)
0,0499	0,0582	0,0029	0 0020	0,0539	2,9100E-05	5,3883E-08	1,0	42019,975	1,223	405,530	2,1707E-19	1,3406E+14	1,5826E+15	7,2235E+06	2,3365E+08
0,0583	0,00791	0,0073	0,0029	0,0629	1,2960F-04	7.3305F-08	9,9997E-01 9,9990E-01	30886.626	2,035	404,308	5,4540E-19	2,1189E+14	1,4480E+15	1,3330E+07 1.7382E+07	2,2043E+08 2,1310E+08
0,0791	0,0921	0,0192	0,0232	0,0853	1,9220E-04	8,5328E-08	9,9977E-01	26534,798	5,100	397,670	8,6201E-19	2,2297E+14	9,9958E+14	1,9025E+07	1,9572E+08
0,0921	0,1073	0,0254	0,0424	0,0994	2,5440E-04	9,9413E-08	9,9958E-01	22775,127	5,794	392,570	1,3633E-18	1,8661E+14	7,7661E+14	1,8552E+07	1,7669E+08
0,1073	0,1250	0,0311	0,0678	0,1158	3,1120E-04	1,1582E-07	9,9932E-01	19548,842	6,084	386,776	2,1557E-18	1,4436E+14	5,9000E+14	1,6720E+07	1,5814E+08
0,1249	0,1456	0,0361	0,0990	0,1349	3,6100E-04	1,3487E-07	9,9901E-01	16788,204	6,061	380,693	3,4037E-18	1,0606E+14	4,4564E+14	1,4304E+07	1,4142E+08
0,1457	0,1697	0,0406	0,1351	0,1572	4,0620E-04	1,5722E-07	9,9865E-01	14400,778	5,850	374,632	5,3927E-18	7,5325E+13	3,3958E+14	1,1843E+07	1,2711E+08
0,1037	0,1377	0.0520	0,1737	0,1032	5.2040E-04	2.1337E-07	9.9779E-01	10611.452	5,522	363,167	1.3478E-17	3.8610E+13	2,0420E+14 2.1098E+14	8.2382E+06	1,1527E+08
0,2304	0,2683	0,0617	0,2732	0,2486	6,1700E-04	2,4860E-07	9,9727E-01	9107,504	5,619	357,645	2,1319E-17	2,8942E+13	1,7237E+14	7,1950E+06	9,7276E+07
0,2682	0,3125	0,0747	0,3349	0,2895	7,4740E-04	2,8951E-07	9,9665E-01	7820,611	5,845	352,026	3,3670E-17	2,2198E+13	1,4343E+14	6,4266E+06	9,0081E+07
0,3125	0,3641	0,1002	0,4096	0,3373	1,0023E-03	3,3732E-07	9,9590E-01	6712,120	6,728	346,180	5,3258E-17	1,8820E+13	1,2123E+14	6,3484E+06	8,3654E+07
0,3642	0,4242	0,1536	0,5098	0,3931	1,5364E-03	3,9305E-07	9,9490E-01	5/60,455	8,850	339,453	8,4254E-17	1,8235E+13	1,0241E+14 8 /170E±10	7,16/4E+06	7,/306E+07
0,4942	0,4741	0,2239	0.8873	0,5334	3,1264E-03	5,3337E-07	9,9113E-01	4244.975	13.271	319,530	2,1054E-16	1,4849E+13	6,7359E+13	7,9203E+06	6,2439E+07
0,5758	0,6707	0,4335	1,2000	0,6214	4,3353E-03	6,2142E-07	9,8800E-01	3643,526	15,796	306,259	3,3296E-16	1,3020E+13	5,2509E+13	8,0911E+06	5,4518E+07
0,6706	0,7813	0,5608	1,6335	0,7238	5,6075E-03	7,2383E-07	9,8367E-01	3128,030	17,540	290,463	5,2620E-16	1,0657E+13	3,9489E+13	7,7136E+06	4,6427E+07
0,7814	0,9103	0,6916	2,1942	0,8434	6,9164E-03	8,4342E-07	9,7806E-01	2684,500	18,567	272,922	8,3247E-16	8,3083E+12	2,8832E+13	7,0073E+06	3,8714E+07
0,9102	1,0604	0,8180	2,8859	0,9824	8,1796E-03	9,8243E-07	9,7114E-01	2304,648	18,851	254,355	1,3157E-15	0,2171E+12	2,0524E+13	6,1078E+06	3,1706E+07
1,0004	1,2554	1.0304	4,6362	1,1440	1,0304E-02	1,3335E-06	9,5364E-01	1697.876	10,443	255,504	2,0004E-15 3,2904E-15	3,1315E+12	9,8254E+12	4,1759E+06	2,03555+07 2,0469E+07
1,4392	1,6767	1,1117	5,6665	1,5534	1,1117E-02	1,5534E-06	9,4333E-01	1457,531	16,203	199,567	5,2012E-15	2,1374E+12	6,6939E+12	3,3202E+06	1,6294E+07
1,6767	1,9534	1,1862	6,7782	1,8098	1,1862E-02	1,8098E-06	9,3222E-01	1251,054	14,840	183,364	8,2249E-15	1,4422E+12	4,5566E+12	2,6100E+06	1,2973E+07
1,9534	2,2757	1,2645	7,9644	2,1084	1,2645E-02	2,1084E-06	9,2036E-01	1073,876	13,579	168,524	1,3005E-14	9,7231E+11	3,1144E+12	2,0500E+06	1,0363E+07
2,2757	2,6512	1,3558	9,2288	2,4563	1,3558E-02	2,4563E-06	9,0771E-01	921,785	12,498	154,945	2,0562E-14	6,5938E+11	2,1421E+12	1,6196E+06	8,3133E+06
2,0313	3,0887	1,4721	10,5847	2,8010	1,4/21E-02	2,8010E-00	8,9415E-01 8,7943E-01	679.157	11,048	142,447	3,2515E-14 5 1410E-14	4,52/5E+11 3.1453E+11	1,4827E+12 1.0300E+12	1,2950E+00 1.0486E+06	0,0937E+00 5,3981E+06
3,5983	4,1920	1,7887	13,6738	3,8838	1,7887E-02	3,8838E-06	8,6326E-01	582,972	10,532	119,818	8,1286E-14	2,2005E+11	7,1546E+11	8,5462E+05	4,3495E+06
4,1920	4,8837	1,9763	15,4625	4,5247	1,9763E-02	4,5247E-06	8,4538E-01	500,402	9,889	109,390	1,2853E-13	1,5376E+11	4,9542E+11	6,9571E+05	3,4949E+06
4,8837	5,6895	2,1642	17,4388	5,2712	2,1642E-02	5,2712E-06	8,2561E-01	429,532	9,296	99,501	2,0322E-13	1,0649E+11	3,4166E+11	5,6135E+05	2,7992E+06
5,6896	6,6283	2,3445	19,6030	6,1410	2,3445E-02	6,1410E-06	8,0397E-01	368,692	8,644	90,205	3,2134E-13	7,2961E+10	2,3516E+11	4,4805E+05	2,2379E+06
7,7218	8,9960	2,5321	21,9475	8,3346	2,5321E-02 2,7436F-02	7,1542E-00 8,3346E-06	7,8053E-01 7,5520E-01	271.657	7,453	73,547	5,0808E-13 8.0334E-13	4,9830E+10	1,0220E+11 1,1237E+11	2.8465F+05	1,7898E+00
8,9961	10,4804	2,9935	27,2232	9,7099	2,9935E-02	9,7099E-06	7,2777E-01	233,179	6,980	66,094	1,2703E-12	2,3566E+10	7,8214E+10	2,2882E+05	1,1486E+06
10,4803	12,2096	3,3041	30,2167	11,3120	3,3041E-02	1,1312E-05	6,9783E-01	200,155	6,613	59,114	2,0084E-12	1,6451E+10	5,4648E+10	1,8610E+05	9,1979E+05
12,2096	14,2242	3,6919	33,5208	13,1785	3,6919E-02	1,3178E-05	6,6479E-01	171,807	6,343	52,501	3,1757E-12	1,1626E+10	3,8197E+10	1,5321E+05	7,3370E+05
14,2242	16,5712	4,1558	37,2127	15,3529	4,1558E-02	1,5353E-05	6,2787E-01	147,474	6,129	46,158	5,0213E-12	8,2763E+09	2,6571E+10	1,2707E+05	5,8049E+05
19,3055	22,4909	4,0823	41,5085	20.8374	4,0823E-02	2.0837E-05	5,3949E-01	120,580	5,694	40,029	1,2554F-11	4.1739F+09	1,0293E+10	1,0348E+03 8.6974F+04	4,5545E+05 3.4794E+05
22,4909	26,2019	5,7933	51,2906	24,2756	5,7933E-02	2,4276E-05	4,8709E-01	93,269	5,403	28,408	1,9850E-11	2,9186E+09	8,2236E+09	7,0850E+04	2,6097E+05
26,2019	30,5252	6,3174	57,0839	28,2811	6,3174E-02	2,8281E-05	4,2916E-01	80,059	5,058	23,005	3,1386E-11	2,0128E+09	5,3051E+09	5,6925E+04	1,9012E+05
30,5251	35,5618	6,8077	63,4013	32,9474	6,8077E-02	3,2947E-05	3,6599E-01	68,720	4,678	17,947	4,9626E-11	1,3718E+09	3,2922E+09	4,5197E+04	1,3320E+05
35,5618	41,4295	6,8228	70,2090	38,3837	6.4241E-02	3,8384E-05	2,9791E-01 2,2968E.01	58,987	4,025	13,269	1,8466E-11	5,0952E+08	1,9204E+09	3,3375E+04	8,7998E+04 5,7632E±04
48,2654	56,2292	5,6077	83,4560	52,0954	5,6077E-02	5,2095E-05	1,6544E-01	43,462	2,437	5,245	1,2407E-10	2,8585E+08	5,3313E+08	1,4892E+04	3,1469E+04
56,2292	65,5070	4,4583	89,0637	60,6910	4,4583E-02	6,0691E-05	1,0936E-01	37,306	1,663	3,555	3,1018E-10	1,4373E+08	2,4728E+08	8,7231E+03	1,6577E+04
65,5071	76,3157	3,3088	93,5220	70,7052	3,3088E-02	7,0705E-05	6,4781E-02	32,022	1,060	1,891	4,9045E-10	6,7464E+07	1,0355E+08	4,7701E+03	7,8541E+03
76,3156	88,9077	2,1594	96,8308	82,3714	2,1594E-02	8,2371E-05	3,1693E-02	27,487	0,594	0,832	7,7549E-10	2,7845E+07	3,6081E+07	2,2937E+03	3,0840E+03
88,9077 103 5775	103,5775	1,0099	98,9901	95,9627	1,0099E-02	9,5963E-05	1,0099E-02	23,594	0,238	0,238	1,2262E-09	8,2362E+06	8,2362E+06	/,9037E+02	/,9037E+02
120,6679	140,5780	0	100	130,2430	0	1,3024E-04	0	17,384	0	0	3,0655E-09	0		0	0
140,5779	163,7733	0	100	151,7330	0	1,5173E-04	0	14,922	0	0	4,8471E-09	0	0	0	0
163,7732	190,7959	0	100	176,7690	0	1,7677E-04	0	12,809	0	0	7,6641E-09	0	0	0	0
190,7960	222,2773	0	100	205,9360	0	2,0594E-04	0	10,994	0	0	1,2118E-08	0	0	0	0
222,2773	258,9530	0	100	239,9153	0	2,3992E-04	0	9,437 g 101	0	0	1,9101E-08 3,0297E-09	0	0	0	0
301,6803	351,4575	0	100	325,6191	0	3,2562E-04	0	6,953	0	0	4,7904E-08	0	0	0	0
351,4574	409,4479	0	100	379,3462	0	3,7935E-04	0	5,969	0	0	7,5745E-08	0	0	0	0
409,4478	477,0068	0	100	441,9382	0	4,4194E-04	0	5,123	0	0	1,1976E-07	0	0	0	0
477,0069	555,7130	0	100	514,8582	0	5,1486E-04	0	4,398	0	0	1,8937E-07	0	0	0	0
555,7130	04/,4056 754 2275	0	100	599,8097	0	5,9981E-04	0	3,775	0	0	2,9942E-07	0		0	0
753,9031	878,6750	0	100	813,9016	0	8,1390E-04	0	2,782		0	7,4810E-07	0		0	0
sum		100			1,0				405,530			1,5826E+15		2,3365E+08	

Πίνακας 15: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Χαλαζία (Κλάσμα 53 μm)

							Κλάσμα 85) µm, Eiðii	κή Ενέργει	a 16,9 kJ/kg					
low (µm)	high (µm)	Βάρος (%)	Αθρ. Διερχόμενο Βάρος (%)	Μέσο Μέγεθος (μm)	Βάρος (kg)	Μέσο Μέγεθος (m)	Αθρ. Μεγαλύτερο Βάρος (kg)	Ειδ. Επιφάνεια (m ² /kg)	Επιφάνεια κλάσματος (m²)	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους (m²)	Βάρος Κόκκου (kg)	Αριθμός Κόκκων στο Κλάσμα	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους Κόκκους	Μήκος Κόκκων του κλάσματος (m)	Αθρ. Μήκος σε Μεγαλύτερους Κόκκους (m)
0,0499	0,0582	0	0,00002	0,0539	0	5,3883E-08	1,0	42828,051	0	42,276	2,1297E-19	0	2,4113E+13	0	1,1031E+07
0,0583	0,0679	0	0,00002	0,0629	0	6,2910E-08	1,0	36682,716	0	42,276	3,3894E-19	0	2,4113E+13	0	1,1031E+07
0,00791	0,0791	0	0,00002	0,0733	0	7,3305E-08 8.5228E-08	1,0	31480,599	0	42,270	0,3020E-19 8.4575E-19	0	2,4113E+13	0	1,1031E+07
0.0921	0,0321	0.000	0,00002	0.0994	1.0000F-07	9,9413F-08	1,0	23213.110	0.002	42,270	1,3375E-18	7.4764F+10	2,4113E+13 2.4113E+13	7.4326E+03	1,1031E+07
0,1073	0,1250	0,0001	0,00003	0,1158	5,0000E-07	1,1582E-07	1,0	19924,782	0,010	42,273	2,1151E-18	2,3640E+11	2,4038E+13	2,7380E+04	1,1023E+07
0,1249	0,1456	0,0001	0,0008	0,1349	1,4000E-06	1,3487E-07	1,0	17111,054	0,024	42,263	3,3395E-18	4,1923E+11	2,3801E+13	5,6540E+04	1,0996E+07
0,1457	0,1697	0,0004	0,00022	0,1572	3,9000E-06	1,5722E-07	1,0	14677,716	0,057	42,239	5,2909E-18	7,3711E+11	2,3382E+13	1,1589E+05	1,0940E+07
0,1697	0,1977	0,0011	0,001	0,1832	1,1000E-05	1,8317E-07	9,9999E-01	12598,385	0,139	42,182	8,3668E-18	1,3147E+12	2,2645E+13	2,4082E+05	1,0824E+07
0,1977	0,2303	0,0030	0,002	0,2134	2,9800E-05	2,1337E-07	9,9998E-01	10815,518	0,322	42,044	1,3224E-17	2,2535E+12	2,1330E+13	4,8082E+05	1,0583E+07
0,2504	0,2005	0,0005	0,005	0,2460	0,9200E-03	2,4000E-07	9,9998F-01	7971 007	0,042	41,721	2,091/E-1/ 3 3034E-17	3,5004E+12	1,50776413	1.0236E+06	9 2795E+06
0,3125	0,3641	0,0111	0,023	0,3373	1,4090E-04	3,3732E-07	9,9977E-01	6841,199	0,951	40,148	5,2253E-17	2,6965E+12	1,2233E+13	9,0959E+05	8,2559E+06
0,3642	0,4242	0,0154	0,037	0,3931	1,5400E-04	3,9305E-07	9,9963E-01	5871,233	0,904	39,184	8,2664E-17	1,8630E+12	9,5363E+12	7,3224E+05	7,3463E+06
0,4241	0,4941	0,0208	0,053	0,4577	2,0840E-04	4,5775E-07	9,9947E-01	5041,430	1,051	38,280	1,3057E-16	1,5961E+12	7,6734E+12	7,3060E+05	6,6141E+06
0,4942	0,5757	0,0288	0,074	0,5334	2,8840E-04	5,3337E-07	9,9926E-01	4326,610	1,248	37,229	2,0657E-16	1,3962E+12	6,0773E+12	7,4467E+05	5,8835E+06
0,5758	0,6707	0,0331	0,102	0,6214	3,3120E-04	6,2142E-07	9,9898E-01	3713,593	1,230	35,981	3,2668E-16	1,0138E+12	4,6811E+12	6,3002E+05	5,1388E+06
0,0700	0,7813	0,0450	0,130	0,7238	4,4980E-04	7,2383E-07 8,4342E-07	9,9804E-01	3188,184	1,434	34,/52	3,102/E-10 8 1677E-16	8,/125E+11 6 9371E+11	3,00/3E+12 2,7961E+12	5 8509E+05	4,5088E+00 3,8781E+06
0,9102	1.0604	0.0721	0,101	0.9824	7.2080E-04	9.8243E-07	9.9763E-01	2348.968	1,550	31,767	1.2908E-15	5.5839E+11	2,1023E+12	5,4858E+05	3,0701E+06
1,0604	1,2354	0,0962	0,309	1,1446	9,6220E-04	1,1446E-06	9,9691E-01	2016,240	1,940	30,074	2,0412E-15	4,7140E+11	1,5440E+12	5,3954E+05	2,7445E+06
1,2355	1,4393	0,1164	0,406	1,3335	1,1640E-03	1,3335E-06	9,9594E-01	1730,528	2,014	28,134	3,2283E-15	3,6056E+11	1,0726E+12	4,8082E+05	2,2049E+06
1,4392	1,6767	0,1210	0,522	1,5534	1,2099E-03	1,5534E-06	9,9478E-01	1485,561	1,797	26,120	5,1031E-15	2,3709E+11	7,1200E+11	3,6830E+05	1,7241E+06
1,6767	1,9534	0,1237	0,643	1,8098	1,2367E-03	1,8098E-06	9,9357E-01	1275,113	1,577	24,322	8,0697E-15	1,5325E+11	4,7490E+11	2,7735E+05	1,3558E+06
1,9534	2,2/5/	0,1314	0,767	2,1084	1,3144E-03	2,1084E-06	9,9233E-01	1094,527	1,439	22,/45	1,2/59E-14	1,0302E+11	3,2165E+11	2,1/20E+05	1,0785E+06
2,2737	3 0887	0,1546	1,033	2,4505	1,54/JE-05	2,45052-00	9,8967F-01	806 423	1,200	21,507	2,0174E-14	4 4869E+10	2,1004C+11 1 5184E+11	1,0400E+05	6,0120E+03
3,0887	3,5983	0,1586	1,000	3,3338	1,5861E-03	3,3338E-06	9,8824E-01	692,217	1,098	18,886	5,0440E-14	3,1445E+10	1,0698E+11	1,0483E+05	5,6881E+05
3,5983	4,1920	0,1821	1,335	3,8838	1,8210E-03	3,8838E-06	9,8665E-01	594,183	1,082	17,788	7,9752E-14	2,2833E+10	7,5531E+10	8,8679E+04	4,6398E+05
4,1920	4,8837	0,2083	1,517	4,5247	2,0833E-03	4,5247E-06	9,8483E-01	510,025	1,063	16,706	1,2610E-13	1,6520E+10	5,2698E+10	7,4749E+04	3,7530E+05
4,8837	5,6895	0,2301	1,725	5,2712	2,3012E-03	5,2712E-06	9,8275E-01	437,792	1,007	15,644	1,9939E-13	1,1541E+10	3,6177E+10	6,0836E+04	3,0055E+05
5,6896	6,6283	0,2451	1,955	6,1410	2,4509E-03	6,1410E-06	9,8045E-01	375,783	0,921	14,636	3,1528E-13	7,7737E+09	2,4636E+10	4,7739E+04	2,3971E+05
7,7218	8,9960	0,2025	2,200	8,3346	2,0251E-05 2,8351E-03	7,1342E-00 8,3346E-06	9,7538F-01	276,881	0,840	12,869	4,5045E-13 7.8818E-13	3,2021E+09	1,0002E+10	2.9980E+04	1,51976+05 1,5433E+05
8,9961	10,4804	0,3058	2,746	9,7099	3,0580E-03	9,7099E-06	9,7254E-01	237,663	0,727	12,085	1,2463E-12	2,4537E+09	8,0031E+09	2,3825E+04	1,2435E+05
10,4803	12,2096	0,3333	3,052	11,3120	3,3326E-03	1,1312E-05	9,6948E-01	204,004	0,680	11,358	1,9705E-12	1,6912E+09	5,5494E+09	1,9131E+04	1,0052E+05
12,2096	14,2242	0,3672	3,385	13,1785	3,6717E-03	1,3178E-05	9,6615E-01	175,111	0,643	10,678	3,1158E-12	1,1784E+09	3,8582E+09	1,5530E+04	8,1390E+04
14,2242	16,5712	0,4050	3,752	15,3529	4,0498E-03	1,5353E-05	9,6248E-01	150,310	0,609	10,035	4,9266E-12	8,2204E+08	2,6798E+09	1,2621E+04	6,5860E+04
16,5713	19,3055	0,4459	4,157	17,8862	4,4586E-03	1,7886E-05	9,5843E-01	129,021	0,575	9,426	7,7898E-12	5,7236E+08	1,8577E+09	1,0237E+04	5,3240E+04
22.4909	26,2019	0,4873	4,003	20,0374	4,8732E-03	2,0037E-05	9,4909E-01	95.062	0,540	8,311	1,2317C-11	2.7251E+08	8.8955E+08	6.6154E+03	4,5002E104 3.4754E+04
26,2019	30,5252	0,5794	5,621	28,2811	5,7935E-03	2,8281E-05	9,4379E-01	81,598	0,473	7,806	3,0794E-11	1,8814E+08	6,1703E+08	5,3208E+03	2,8139E+04
30,5251	35,5618	0,6402	6,201	32,9474	6,4020E-03	3,2947E-05	9,3799E-01	70,042	0,448	7,334	4,8689E-11	1,3149E+08	4,2889E+08	4,3321E+03	2,2818E+04
35,5618	41,4295	0,7176	6,841	38,3837	7,1755E-03	3,8384E-05	9,3159E-01	60,122	0,431	6,885	7,6986E-11	9,3205E+07	2,9741E+08	3,5776E+03	1,8486E+04
41,4295	48,2654	0,8056	7,558	44,7170	8,0557E-03	4,4717E-05	9,2442E-01	51,607	0,416	6,454	1,2173E-10	6,6178E+07	2,0420E+08	2,9593E+03	1,4909E+04
48,2054 56 2292	50,2292 65,5070	0,8884	8,364	52,0954	0,0040E-03	5,2095E-05 6,0691E-05	9,1030E-01 9,0748E-01	44,297	0,394 n sen	5,038 5,645	1,924/E-10 3,0423E-10	4,015/E+07 3,11/0E±07	1,3802E+08 9 1868E±07	2,4046E+03	1,1949E+04 9 5///7E±02
65,5071	76,3157	0,9734	10,200	70,7052	9,7344E-03	7,0705E-05	8,9800E-01	32,638	0,300	5,045	4,8120E-10	2,0229E+07	6,0727E+07	1,4303E+03	7,6547E+03
76,3156	88,9077	0,9693	11,174	82,3714	9,6934E-03	8,2371E-05	8,8827E-01	28,016	0,272	4,966	7,6085E-10	1,2740E+07	4,0498E+07	1,0494E+03	6,2244E+03
88,9077	103,5775	0,9494	12,143	95,9627	9,4941E-03	9,5963E-05	8,7857E-01	24,048	0,228	4,695	1,2030E-09	7,8918E+06	2,7757E+07	7,5732E+02	5,1750E+03
103,5775	120,6678	0,9295	13,092	111,7966	9,2954E-03	1,1180E-04	8,6908E-01	20,642	0,192	4,467	1,9022E-09	4,8866E+06	1,9866E+07	5,4631E+02	4,4177E+03
120,6679	140,5780	0,9365	14,022	130,2430	9,3651E-03	1,3024E-04	8,5978E-01	17,718	0,166	4,275	3,0077E-09	3,1137E+06	1,4979E+07	4,0554E+02	3,8714E+03
140,5779	103,7733	1,0379	14,958	176 7690	1,03/9E-02 1 3160E-02	1,51/3E-04	8,5042E-01 8,000/E-01	13,209	0,158	4,109	4,/35/E-09	2,1824E+06	1,1805E+07	3,3114E+02 3,0926E±03	3,4058E+03 3 12/7E±03
190,7960	222,2773	1,8005	17,312	205,9360	1,8005E-02	2,0594E-04	8,2688E-01	11,000	0,172	3,531	1,1890E-08	1,5143E+06	7,9329E+06	3,1185E+02	2,8253E+03
222,2773	258,9530	2,4986	19,113	239,9153	2,4986E-02	2,3992E-04	8,0887E-01	9,619	0,240	3,577	1,8799E-08	1,3291E+06	6,4186E+06	3,1886E+02	2,5135E+03
258,9529	301,6802	3,3597	21,611	279,5013	3,3597E-02	2,7950E-04	7,8389E-01	8,256	0,277	3,337	2,9725E-08	1,1303E+06	5,0895E+06	3,1591E+02	2,1946E+03
301,6803	351,4575	4,4032	24,971	325,6191	4,4032E-02	3,2562E-04	7,5029E-01	7,087	0,312	3,060	4,7000E-08	9,3685E+05	3,9593E+06	3,0506E+02	1,8787E+03
351,4574	409,4479	5,9125	29,374	379,3462	5,9125E-02	3,7935E-04	7,0626E-01	6,083	0,360	2,748	7,4315E-08	7,9560E+05	3,0224E+06	3,0181E+02	1,5736E+03
409,4478	4//,0068	1,9587 9 0060	35,287	441,9382	7,9587E-02	4,4194E-04	6,4/13E-01	5,222	0,416	2,388	1,1/51E-07	6,//30E+05	2,2268E+06	2,9933E+02	1,2/18E+03
477,0009	647,4056	2,8808 12.1024	43,243	599,8097	1,2102F-02	5,9981F-04	4.6868F-01	4,482	0,443	1,972	2,9377F-07	3,3213E+03 4,1196E+05	1,0490E+00	2,/39/E+02 2.4710F+02	6,9853E+02
647,4056	754,2275	16,6702	65,234	698,7783	1,6670E-01	6,9878E-04	3,4766E-01	3,302	0,551	1,064	4,6450E-07	3,5888E+05	6,0542E+05	2,5078E+02	4,5143E+02
753,9031	878,6750	18,0954	81,905	813,9016	1,8095E-01	8,1390E-04	1,8095E-01	2,835	0,513	0,513	7,3399E-07	2,4654E+05	2,4654E+05	2,0066E+02	2,0066E+02
sum		100			1,0				42,276			2,4113E+13		1,1031E+07	

Πίνακας 16: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Σερπεντίνη (Κλάσμα 850 μm)

							Κλάσμα 42	5 µm, Elõii	κή Ενέργει	a 28,1 kJ/kg					
			Αθρ.	Μέσο		Μέσο	Αθρ.	Ειδ.	Επιφάνεια	Αθρ. Επιφάνεια σε	Βάρος	Αριθμός	Αθρ. Αριθμός Κόκκων σε	Μήκος Κόκκων του	Αθρ. Μήκος σε
low	high	Βάρος	Διερχόμενο	Μέγεθος	Βάρος	Μέγεθος	Μεγαλύτερο		κλασματός	νεγαλυτερούς	Коккои	Κόκκων στο	Μεγαλύτερους	κλάσματος	Μεγαλύτερους
<u>(µm)</u>	(µm)	(%)	Βαρος (%)	(µm)	(kg)	(m)	Βαρος (kg)	(m ⁻ /kg)	(m ⁻)	Kokkouç (m²)	(kg)	Κλασμα	Κοκκους	(m)	Κοκκους (m)
0,0499	0,0582	0,0001	0,000	0,0539	9,0000E-07	5,3883E-08	1,0	42828,051	0,039	101,409	2,129/E-19	4,2259E+12	1,410/E+14	2,2//UE+U5	3,5301E+07
0.0679	0.0791	0.0005	0,000	0,0023	5,5000E-00	7.3305F-08	1,0	31480,599	0,055	101,431	5,3626F-19	1.0256E+13	1,3004C114	7.5183E+05	3,5073E107 3,4591E+07
0,0791	0,0921	0,0010	0,001	0,0853	1,0100E-05	8,5328E-08	1,0	27045,083	0,273	101,162	8,4575E-19	1,1942E+13	1,1892E+14	1,0190E+06	3,3839E+07
0,0921	0,1073	0,0017	0,002	0,0994	1,6700E-05	9,9413E-08	1,0	23213,110	0,388	100,889	1,3375E-18	1,2486E+13	1,0697E+14	1,2412E+06	3,2820E+07
0,1073	0,1250	0,0026	0,004	0,1158	2,5800E-05	1,1582E-07	1,0	19924,782	0,514	100,501	2,1151E-18	1,2198E+13	9,4489E+13	1,4128E+06	3,1579E+07
0,1249	0,1456	0,0038	0,006	0,1349	3,8100E-05	1,3487E-07	1,0	17111,054	0,652	99,987	3,3395E-18	1,1409E+13	8,2291E+13	1,5387E+06	3,0166E+07
0,1457	0,1697	0,0055	0,010	0,1572	5,5200E-05	1,5722E-07	1,0	14677,716	0,810	99,335	5,2909E-18	1,0433E+13	7,0882E+13	1,6403E+06	2,8627E+07
0,1697	0,19//	0,0080	0,016	0,1832	1,9700E-05	1,831/E-0/	9,9984E-01	12598,385	1,004	98,525	8,3008E-18	9,525/E+12	6,0449E+13	1,/449E+06	2,69872+07
0,1577	0,2505	0,0115	0,025	0,2154	1,1400E-04	2,1557E-07	9,9965E-01	9282 648	1,242	96,279	2,0917E-17	7 7403E+12	4 2242E+13	1,0323E+00	2,5242E+07 2,3390E+07
0.2682	0,2005	0.0216	0,055	0,2400	2.1580E-04	2,40002-07	9,9949E-01	7971.007	1,505	94,777	3.3034E-17	6.5326E+12	3,4502E+13	1.8913E+06	2,3336E+07 2.1465E+07
0,3125	0,3641	0,0272	0,073	0,3373	2,7190E-04	3,3732E-07	9,9927E-01	6841,199	1,860	93,056	5,2253E-17	5,2036E+12	2,7969E+13	1,7553E+06	1,9574E+07
0,3642	0,4242	0,0344	0,100	0,3931	3,4390E-04	3,9305E-07	9,9900E-01	5871,233	2,019	91,196	8,2664E-17	4,1602E+12	2,2766E+13	1,6352E+06	1,7819E+07
0,4241	0,4941	0,0470	0,134	0,4577	4,6950E-04	4,5775E-07	9,9866E-01	5041,430	2,367	89,177	1,3057E-16	3,5958E+12	1,8605E+13	1,6459E+06	1,6184E+07
0,4942	0,5757	0,0651	0,181	0,5334	6,5100E-04	5,3337E-07	9,9819E-01	4326,610	2,817	86,810	2,0657E-16	3,1515E+12	1,5010E+13	1,6809E+06	1,4538E+07
0,5758	0,6707	0,0861	0,246	0,6214	8,6120E-04	6,2142E-07	9,9754E-01	3713,593	3,198	83,994	3,2668E-16	2,6362E+12	1,1858E+13	1,6382E+06	1,2857E+07
0,6/06	0,/813	0,11/1	0,332	0,7238	1,1/13E-03	1,2383E-07 8.4343E-07	9,9668E-01	3188,184	3,/34 154	80,795	5,102/E-16 8 1677E-14	2,2688E+12	9,2220E+12	1,0422E+06	1,1219E+07
0,7814	1.0604	0,1318	0,430	0,9824	1,5181E-05	9.8243F-07	9,9399F-01	2750,123	4,134	72,907	1,2908E-15	1,0567E+12	5.0945E+12	1,3070E+00	5,5703E+00 8.0089E+06
1,0604	1,2354	0,2267	0,789	1,1446	2,2674E-03	1,1446E-06	9,9211E-01	2016,240	4,572	68,492	2,0412E-15	1,1108E+12	3,6384E+12	1,2714E+06	6,5784E+06
1,2355	1,4393	0,2590	1,016	1,3335	2,5898E-03	1,3335E-06	9,8984E-01	1730,528	4,482	63,921	3,2283E-15	8,0223E+11	2,5276E+12	1,0698E+06	5,3070E+06
1,4392	1,6767	0,2795	1,275	1,5534	2,7946E-03	1,5534E-06	9,8725E-01	1485,561	4,152	59,439	5,1031E-15	5,4763E+11	1,7253E+12	8,5069E+05	4,2372E+06
1,6767	1,9534	0,2979	1,555	1,8098	2,9785E-03	1,8098E-06	9,8445E-01	1275,113	3,798	55,287	8,0697E-15	3,6909E+11	1,1777E+12	6,6799E+05	3,3865E+06
1,9534	2,2757	0,3202	1,852	2,1084	3,2018E-03	2,1084E-06	9,8148E-01	1094,527	3,504	51,489	1,2759E-14	2,5094E+11	8,0862E+11	5,2908E+05	2,7185E+06
2,2757	2,6512	0,3426	2,173	2,4563	3,4257E-03	2,4563E-06	9,7827E-01	939,511	3,218	47,985	2,0174E-14	1,6980E+11	5,5768E+11	4,1709E+05	2,1894E+06
2,0013	3,0887	0,3723	2,515	2,8010	3,7230E-03	2,8010E-00	9,7485E-01 9,7113E-01	692 217	3,002	44,707	3,1902E-14	1,10/0E+11 8 1526E+10	3,8/8/E+11 2 7117E+11	2 7179E+05	1,7723E+00
3,5983	4.1920	0,4112	3,299	3,8838	4,5962E-03	3.8838E-06	9.6701E-01	594,183	2,047	38,918	7.9752E-14	5.7631E+10	1.8965E+11	2,2383E+05	1,1666E+06
4,1920	4,8837	0,5133	3,758	4,5247	5,1331E-03	4,5247E-06	9,6242E-01	510,025	2,618	36,187	1,2610E-13	4,0705E+10	1,3202E+11	1,8418E+05	9,4277E+05
4,8837	5,6895	0,5666	4,272	5,2712	5,6662E-03	5,2712E-06	9,5728E-01	437,792	2,481	33,569	1,9939E-13	2,8418E+10	9,1310E+10	1,4980E+05	7,5860E+05
5,6896	6,6283	0,6170	4,838	6,1410	6,1695E-03	6,1410E-06	9,5162E-01	375,783	2,318	31,088	3,1528E-13	1,9568E+10	6,2892E+10	1,2017E+05	6,0880E+05
6,6283	7,7219	0,6702	5,455	7,1542	6,7016E-03	7,1542E-06	9,4545E-01	322,564	2,162	28,770	4,9849E-13	1,3444E+10	4,3324E+10	9,6180E+04	4,8863E+05
7,7218	8,9960	0,7279	6,125	8,3346	7,2787E-03	8,3346E-06	9,3875E-01	276,881	2,015	26,608	7,8818E-13	9,2348E+09	2,9880E+10	7,6968E+04	3,9245E+05
8,9961	10,4804	0,7905	6,853	9,7099	7,9051E-03	9,/099E-06	9,314/E-01	237,663	1,8/9	24,593	1,2463E-12	6,3429E+09	2,0645E+10	6,1589E+04	3,1548E+05
12,2096	12,2030	0,0020	8,507	13,1785	9.4689F-03	1,1512E-05	9,1493F-01	175,111	1,700	22,714	3,1158F-12	4,5763E+09 3.0390E+09	9,9239E+09	4,5525E+04 4,0050E+04	2,0330E+03
14,2242	16,5712	1,0427	9,453	15,3529	1,0427E-02	1,5353E-05	9,0547E-01	150,310	1,557	19,296	4,9266E-12	2,1164E+09	6,8849E+09	3,2493E+04	1,6432E+05
16,5713	19,3055	1,1505	10,496	17,8862	1,1505E-02	1,7886E-05	8,9504E-01	129,021	1,484	17,728	7,7898E-12	1,4770E+09	4,7685E+09	2,6417E+04	1,3182E+05
19,3055	22,4909	1,2684	11,647	20,8374	1,2684E-02	2,0837E-05	8,8353E-01	110,748	1,405	16,244	1,2317E-11	1,0298E+09	3,2916E+09	2,1458E+04	1,0541E+05
22,4909	26,2019	1,3946	12,915	24,2756	1,3946E-02	2,4276E-05	8,7085E-01	95,062	1,326	14,839	1,9475E-11	7,1607E+08	2,2618E+09	1,7383E+04	8,3949E+04
26,2019	30,5252	1,5269	14,310	28,2811	1,5269E-02	2,8281E-05	8,5690E-01	81,598	1,246	13,514	3,0794E-11	4,9585E+08	1,5457E+09	1,4023E+04	6,6566E+04
30,5251	35,5618	1,6625	15,836	32,9474	1,6625E-02	3,2947E-05	8,4164E-01	70,042	1,164	12,268	4,8689E-11	3,4145E+08	1,0499E+09	1,1250E+04	5,2542E+04
30,0018 41 4005	41,4295	1,/9/1	1/,499	38,383/ <u>A</u> A 7170	1,7971E-02	3,8384E-05	8,2001E-01	51 607	1,080 n qon	11,103	1,0580E-11	2,3343E+08	/,U842E+08	6,3339E+03	4,1292E+04 3,3337E+04
48,2654	56.2292	2,0330	21,230	52,0954	2,0330E-02	5,2095E-05	7.8781E-01	44.297	0,352	9,030	1,9247E-10	1.0562E+08	3,1704E+08	5.5025E+03	2,5269E+04
56,2292	65,5070	2,1272	23,252	60,6910	2,1272E-02	6,0691E-05	7,6748E-01	38,024	0,809	8,130	3,0433E-10	6,9899E+07	2,1141E+08	4,2422E+03	1,9766E+04
65,5071	76,3157	2,2081	25,379	70,7052	2,2081E-02	7,0705E-05	7,4621E-01	32,638	0,721	7,321	4,8120E-10	4,5887E+07	1,4151E+08	3,2445E+03	1,5524E+04
76,3156	88,9077	2,2883	27,587	82,3714	2,2883E-02	8,2371E-05	7,2413E-01	28,016	0,641	6,600	7,6085E-10	3,0075E+07	9,5626E+07	2,4773E+03	1,2280E+04
88,9077	103,5775	2,3977	29,875	95,9627	2,3977E-02	9,5963E-05	7,0125E-01	24,048	0,577	5,959	1,2030E-09	1,9931E+07	6,5551E+07	1,9126E+03	9,8024E+03
103,5775	120,6678	2,5639	32,273	111,7966	2,5639E-02	1,1180E-04	6,7727E-01	20,642	0,529	5,383	1,9022E-09	1,3479E+07	4,5620E+07	1,5069E+03	7,8899E+03
120,6679	140,5780	2,8020	34,837	130,2430	2,8020E-02	1,3024E-04	6,5163E-01	17,718	0,496	4,853	3,0077E-09	9,3160E+06	3,2142E+07	1,2133E+03	6,3830E+03
163 7722	105,7753	3,1324	37,039 An 771	176 7690	3,1324E-02	1,31/3E-04	0,2301E-01 5,9229E-01	13,209	0,476 0.466	4,35/	4,/33/E-09	0,380/E+06 4,7505E+06	2,2820E+07 1.6239E+07	3,3342E+02 8,3974E+02	2,1090E+03
190.7960	222,2773	4,1222	44,344	205.9360	4,1222E-02	2,0594E-04	5,5656E-01	11,206	0,462	3,001	1,1890E-08	3,4671E+06	1.1488E+07	7,1399E+02	3,3305E+03
222,2773	258,9530	4,7832	48,466	239,9153	4,7832E-02	2,3992E-04	5,1534E-01	9,619	0,460	2,952	1,8799E-08	2,5443E+06	8,0214E+06	6,1042E+02	2,6165E+03
258,9529	301,6802	5,5227	53,249	279,5013	5,5227E-02	2,7950E-04	4,6751E-01	8,256	0,456	2,492	2,9725E-08	1,8579E+06	5,4771E+06	5,1929E+02	2,0061E+03
301,6803	351,4575	6,2983	58,772	325,6191	6,2983E-02	3,2562E-04	4,1228E-01	7,087	0,446	2,036	4,7000E-08	1,3401E+06	3,6191E+06	4,3635E+02	1,4868E+03
351,4574	409,4479	6,9129	65,070	379,3462	6,9129E-02	3,7935E-04	3,4930E-01	6,083	0,421	1,590	7,4315E-08	9,3021E+05	2,2791E+06	3,5287E+02	1,0504E+03
409,4478	477,0068	7,2228	71,983	441,9382	7,2228E-02	4,4194E-04	2,8017E-01	5,222	0,377	1,169	1,1751E-07	6,1468E+05	1,3489E+06	2,7165E+02	6,9755E+02
4//,0069	555,/130	6 27/10	79,206	590 0007	7,0822E-02	5,1480E-04	2,0/94E-01	4,482	0,317	0,792	1,8580E-07	3,8118E+05	2 5201E-05	1,9625E+02	4,2590E+02
647.4056	754,2275	4,8182	92,563	698.7783	4,8182F-02	6.9878F-04	7,4372E-01	3,047	0,241	0,473	4.6450E-07	1,0373E+05	1.3941E+05	7,2483E+01	1,0152F+02
753,9031	878,6750	2,6190	97,381	813,9016	2,6190E-02	8,1390E-04	2,6190E-02	2,835	0,074	0,233	7,3399E-07	3,5682E+04	3,5682E+04	2,9041E+01	2,9041E+01
sum		100			1,0				101,469			1,4107E+14		3,5301E+07	

Πίνακας 17: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Σερπεντίνη (Κλάσμα 425 μm)

							Κλάσμα 21	2 µm, Elõi	κή Ενέργε	a 52 kJ/kg					
low (µm)	high (µm)	Βάρος (%)	Αθρ. Διερχόμενο Βάρος (%)	Μέσο Μέγεθος (μm)	Βάρος (kg)	Μέσο Μέγεθος (m)	Αθρ. Μεγαλύτερο Βάρος (kg)	Ειδ. Επιφάνεια (m ² /kg)	Επιφάνεια κλάσματος (m ²)	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους (m ²)	Βάρος Κόκκου (kg)	Αριθμός Κόκκων στο Κλάσμα	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους Κόκκους	Μήκος Κόκκων του κλάσματος (m)	Αθρ. Μήκος σε Μεγαλύτερους Κόκκους (m)
0.0583	0.0679	0.0043	0,000	0.0629	4.3300E-05	6.2910E-08	1,0	36682.716	1.588	189.251	3.3894E-19	1.2775E+14	7.6613E+14	8.0368E+06	1,1129E+08
0,0679	0,0791	0,0069	0,006	0,0733	6,8700E-05	7,3305E-08	1,0	31480,599	2,163	187,663	5,3626E-19	1,2811E+14	6,3837E+14	9,3911E+06	1,0326E+08
0,0791	0,0921	0,0096	0,013	0,0853	9,6100E-05	8,5328E-08	1,0	27045,083	2,599	185,500	8,4575E-19	1,1363E+14	5,1027E+14	9,6955E+06	9,3864E+07
0,0921	0,1073	0,0125	0,023	0,0994	1,2500E-04	9,9413E-08	1,0	23213,110	2,902	182,901	1,3375E-18	9,3455E+13	3,9664E+14	9,2907E+06	8,4169E+07
0,1073	0,1250	0,0155	0,035	0,1158	1,5500E-04	1,1582E-07	1,0	19924,782	3,088	180,000	2,1151E-18	7,3284E+13	3,0318E+14	8,4877E+06	7,4878E+07
0,1249	0,1456	0,0186	0,051	0,1349	1,8030E-04	1,348/E-0/	1,0	1/111,054	3,188	1/6,911	3,3395E-18	5,5788E+13	2,2990E+14	7,5238E+06	0,0390E+07
0,1437	0,1037	0,0220	0,005	0,1372	2,1370E-04	1.8317E-07	9.9909E-01	12598.385	3,223	173,724	8.3668E-18	3.0740E+13	1,74110+14	5.6308E+06	5,0000E+07 5,2338E+07
0,1977	0,2303	0,0301	0,117	0,2134	3,0110E-04	2,1337E-07	9,9883E-01	10815,518	3,257	167,259	1,3224E-17	2,2769E+13	1,0185E+14	4,8582E+06	4,6707E+07
0,2304	0,2683	0,0355	0,147	0,2486	3,5450E-04	2,4860E-07	9,9853E-01	9282,648	3,291	164,002	2,0917E-17	1,6948E+13	7,9078E+13	4,2134E+06	4,1849E+07
0,2682	0,3125	0,0421	0,183	0,2895	4,2100E-04	2,8951E-07	9,9817E-01	7971,007	3,356	160,711	3,3034E-17	1,2744E+13	6,2130E+13	3,6896E+06	3,7635E+07
0,3125	0,3641	0,0509	0,225	0,3373	5,0890E-04	3,3732E-07	9,9775E-01	6841,199	3,481	157,356	5,2253E-17	9,7392E+12	4,9386E+13	3,2853E+06	3,3946E+07
0,3042	0,4242	0,0030	0,270	0,3931	0,3020E-04 8 2290E-04	3,9305E-07	9,9724E-01	58/1,233	3,/33	153,8/4	8,2004E-1/	7,0902E+12 6.2709E+12	3,9040E+13	3,0250E+00	3,0000E+07
0,4942	0,4541	0,0033	0,335	0,4377	1.1180E-03	5.3337E-07	9.9577E-01	4326.610	4,133	130,135	2.0657E-16	5.4123E+12	2.5571E+13	2,9199E+06	2,7035E107
0,5758	0,6707	0,1500	0,534	0,6214	1,4998E-03	6,2142E-07	9,9466E-01	3713,593	5,570	141,103	3,2668E-16	4,5910E+12	2,0159E+13	2,8530E+06	2,1829E+07
0,6706	0,7813	0,2007	0,684	0,7238	2,0066E-03	7,2383E-07	9,9316E-01	3188,184	6,397	135,533	5,1627E-16	3,8867E+12	1,5568E+13	2,8133E+06	1,8976E+07
0,7814	0,9103	0,2596	0,885	0,8434	2,5959E-03	8,4342E-07	9,9115E-01	2736,125	7,103	129,136	8,1677E-16	3,1783E+12	1,1681E+13	2,6806E+06	1,6162E+07
0,9102	1,0604	0,3171	1,145	0,9824	3,1712E-03	9,8243E-07	9,8855E-01	2348,968	7,449	122,033	1,2908E-15	2,4567E+12	8,5029E+12	2,4135E+06	1,3482E+07
1,0604	1,2354	0,3720	1,462	1,1446	3,7199E-03	1,1446E-06	9,8538E-01	2016,240	7,500	114,584	2,0412E-15	1,8224E+12	6,0462E+12	2,0859E+06	1,1068E+07
1,2300	1,4393	0,4205	1,834	1,5550	4,2049E-03	1,3533E-00	9,8100E-01 9,7746E-01	1/30,528	6 857	99,807	5 1031E-15	1,3023E+12 9.0447E+11	2 9212E+12	1,7309E+00	0,9824E+00 7 2455E+06
1,4352	1,9534	0,5005	2,234	1,8098	5,0048E-03	1,8098E-06	9,7284E-01	1405,501	6,382	92,950	8,0697E-15	6,2019E+11	2,0168E+12	1,1224E+06	5,8405E+06
1,9534	2,2757	0,5432	3,216	2,1084	5,4315E-03	2,1084E-06	9,6784E-01	1094,527	5,945	86,568	1,2759E-14	4,2569E+11	1,3966E+12	8,9752E+05	4,7181E+06
2,2757	2,6512	0,5918	3,759	2,4563	5,9177E-03	2,4563E-06	9,6241E-01	939,511	5,560	80,624	2,0174E-14	2,9333E+11	9,7088E+11	7,2049E+05	3,8205E+06
2,6513	3,0887	0,6510	4,351	2,8616	6,5097E-03	2,8616E-06	9,5649E-01	806,423	5,250	75,064	3,1902E-14	2,0405E+11	6,7755E+11	5,8393E+05	3,1000E+06
3,0887	3,5983	0,7218	5,002	3,3338	7,2178E-03	3,3338E-06	9,4998E-01	692,217	4,996	69,814	5,0440E-14	1,4310E+11	4,7350E+11	4,7705E+05	2,5161E+06
3,5983	4,1920	0,8026	5,724	3,8838	8,0258E-03	3,8838E-06	9,42/0E-01 9 3473E-01	594,183	4,/09	60.049	1,9/52E-14	7.0537E+10	2 2977E+11	3,9084E+05 3,1915E+05	2,0391E+06
4,1520	5,6895	0,8855	7,416	5.2712	9.7871E-03	5.2712E-06	9,2584E-01	437.792	4,337	55.512	1,9939E-13	4,9085E+10	1.5923E+11	2.5874E+05	1,04822100
5,6896	6,6283	1,0690	8,395	6,1410	1,0690E-02	6,1410E-06	9,1605E-01	375,783	4,017	51,228	3,1528E-13	3,3906E+10	1,1014E+11	2,0822E+05	1,0703E+06
6,6283	7,7219	1,1641	9,464	7,1542	1,1641E-02	7,1542E-06	9,0536E-01	322,564	3,755	47,211	4,9849E-13	2,3353E+10	7,6238E+10	1,6707E+05	8,6211E+05
7,7218	8,9960	1,2689	10,628	8,3346	1,2689E-02	8,3346E-06	8,9372E-01	276,881	3,513	43,456	7,8818E-13	1,6099E+10	5,2885E+10	1,3418E+05	6,9504E+05
8,9961	10,4804	1,3886	11,897	9,7099	1,3886E-02	9,7099E-06	8,8103E-01	237,663	3,300	39,942	1,2463E-12	1,1141E+10	3,6786E+10	1,0818E+05	5,6086E+05
10,4803	12,2090	1,5293	13,283	11,3120	1,5293E-02	1,1312E-05	8,0/13E-01 8,5185E-01	204,004	3,120	30,042	1,9705E-12 3 1158E-12	5 /1281E+09	2,5045E+10	7 1666E+04	4,5208E+05
14,2242	16,5712	1,8835	14,515	15,3529	1,8835E-02	1,5353E-05	8,3491E-01	150,310	2,831	30,555	4,9266E-12	3,8232E+09	1,2446E+10	5,8697E+04	2,9323E+05
16,5713	19,3055	2,0930	18,392	17,8862	2,0930E-02	1,7886E-05	8,1608E-01	129,021	2,700	27,724	7,7898E-12	2,6868E+09	8,6230E+09	4,8057E+04	2,3453E+05
19,3055	22,4909	2,3156	20,485	20,8374	2,3156E-02	2,0837E-05	7,9515E-01	110,748	2,564	25,024	1,2317E-11	1,8800E+09	5,9362E+09	3,9174E+04	1,8647E+05
22,4909	26,2019	2,5424	22,801	24,2756	2,5424E-02	2,4276E-05	7,7199E-01	95,062	2,417	22,459	1,9475E-11	1,3054E+09	4,0562E+09	3,1690E+04	1,4730E+05
26,2019	30,5252	2,7639	25,343	28,2811	2,7639E-02	2,8281E-05	7,4657E-01	81,598	2,255	20,043	3,0794E-11	8,9754E+08	2,7508E+09	2,5383E+04	1,1561E+05
35,5618	41 4295	3,1649	20,107	38,3837	2,5725E-02 3,1649E-02	3,8384F-05	6,8920E-01	60.122	2,002	17,707	4,0005E-11	4 1110E+08	1,0052E+05	2,0115E+04	7,0223E+04
41,4295	48,2654	3,3452	34,244	44,7170	3,3452E-02	4,4717E-05	6,5756E-01	51,607	1,726	13,803	1,2173E-10	2,7481E+08	8,3168E+08	1,2289E+04	5,4333E+04
48,2654	56,2292	3,5250	37,590	52,0954	3,5250E-02	5,2095E-05	6,2410E-01	44,297	1,561	12,076	1,9247E-10	1,8314E+08	5,5687E+08	9,5408E+03	4,2044E+04
56,2292	65,5070	3,7229	41,115	60,6910	3,7229E-02	6,0691E-05	5,8885E-01	38,024	1,416	10,515	3,0433E-10	1,2233E+08	3,7373E+08	7,4245E+03	3,2503E+04
65,5071	76,3157	3,9608	44,838	70,7052	3,9608E-02	7,0705E-05	5,5162E-01	32,638	1,293	9,099	4,8120E-10	8,2311E+07	2,5140E+08	5,8198E+03	2,5079E+04
76,3156	88,9077	4,2544	48,798	82,3714	4,2544E-02	8,2371E-05	5,1202E-01	28,016	1,192	7,807	7,6085E-10	5,5916E+07	1,6909E+08	4,6059E+03	1,9259E+04
00,90//	105,5775	4,0079	53,053 57,661	30,902/ 111 7966	4,0079E-02	1,1180F-03	4,0947E-01 4,2339E-01	24,048	1,108	5 507	1,2030E-09	3,63UZE+U7 2,6340E+07	1,131/E+08 7.4869E+07	2,9447E+02	1,4003E+04
120,6679	140,5780	5,4397	62,671	130,2430	5,4397E-02	1,3024E-04	3,7329E-01	17,718	0,964	4,472	3,0077E-09	1,8086E+07	4,8529E+07	2,3556E+03	8,0330E+03
140,5779	163,7733	5,8769	68,111	151,7330	5,8769E-02	1,5173E-04	3,1889E-01	15,209	0,894	3,509	4,7557E-09	1,2358E+07	3,0443E+07	1,8751E+03	5,6774E+03
163,7732	190,7959	6,0539	73,988	176,7690	6,0539E-02	1,7677E-04	2,6012E-01	13,055	0,790	2,615	7,5195E-09	8,0509E+06	1,8086E+07	1,4231E+03	3,8024E+03
190,7960	222,2773	5,8849	80,041	205,9360	5,8849E-02	2,0594E-04	1,9959E-01	11,206	0,659	1,824	1,1890E-08	4,9496E+06	1,0035E+07	1,0193E+03	2,3792E+03
222,2773	258,9530	5,2910	85,926	239,9153	5,2910E-02	2,3992E-04	1,4074E-01	9,619	0,509	1,165	1,8799E-08	2,8145E+06	5,0854E+06	6,7523E+02	1,3599E+03
258,9529	301,6802	4,2724	91,217	2/9,5013	4,2/24E-02	2,7950E-04	8,7827E-02	8,256	0,353	0,656	2,9725E-08	1,4373E+06	2,2709E+06	4,0173E+02	0,8470E+02
351.4574	409.4479	2,5408	98,430	379.3467	2,5406E-02	3,7935F-04	4,5105E-02	6.083	0,208	0,303	7,4315F-08	2,02305E+05	2.0793E+05	2,05/4E+02 7,6743E+01	2,0237E+02 7.9229E+01
409,4478	477,0068	0,0661	99,934	441,9382	6,6100E-04	4,4194E-04	6,6100E-04	5,222	0,003	0,003	1,1751E-07	5,6253E+03	5,6254E+03	2,4860E+00	2,4860E+00
477,0069	555,7130	0	100	514,8582	0	5,1486E-04	0	4,482	0	0	1,8580E-07	0	(0	0
555,7130	647,4056	0	100	599,8097	0	5,9981E-04	0	3,847	0	0	2,9377E-07	0	(0 0	0
647,4056	754,2275	0	100	698,7783	0	6,9878E-04	0	3,302	0	0	4,6450E-07	0	(0	0
/53,9031	8/8,6750	0	100	813,9016	0	8,1390E-04	0	2,835	0	0	/,3399E-07	0 64045-4	(0 4 4 C 4 T T - 0 0	0
sum		100			1,0				190,125	1		8,0191E+14		1,1645E+08	1

Πίνακας 18: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Σερπεντίνη (Κλάσμα 212 μm)

							Κλάσμα 10	δ μm, Ειδιι	κή Ενέργει	a 78,4 kJ/kg					
low (µm)	high (µm)	Βάρος (%)	Αθρ. Διερχόμενο Βάρος (%)	Μέσο Μέγεθος (μm)	Βάρος (kg)	Μέσο Μέγεθος (m)	Αθρ. Μεγαλύτερο Βάρος (kg)	Ειδ. Επιφάνεια (m ² /kg)	Επιφάνεια κλάσματος (m ²)	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους (m ²)	Βάρος Κόκκου (kg)	Αριθμός Κόκκων στο Κλάσμα	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους Κόκκους	Μήκος Κόκκων του κλάσματος (m)	Αθρ. Μήκος σε Μεγαλύτερους Κόκκους (m)
0,0433	0,0382	0.0014	0,000	0.0629	3.3500E-05	6.2910E-08	1,0	42020,001	1,229	291,345	3.3894E-19	9.8838E+13	8,9356E+14	6.2178E+06	1,5741E+08
0,0679	0,0791	0,0061	0,001	0,0733	6,1200E-05	7,3305E-08	1,0	31480,599	1,927	289,734	5,3626E-19	1,1412E+14	7,9472E+14	8,3658E+06	1,4773E+08
0,0791	0,0921	0,0098	0,011	0,0853	9,7600E-05	8,5328E-08	1,0	27045,083	2,640	287,807	8,4575E-19	1,1540E+14	6,8060E+14	9,8469E+06	1,3936E+08
0,0921	0,1073	0,0143	0,021	0,0994	1,4270E-04	9,9413E-08	1,0	23213,110	3,313	285,167	1,3375E-18	1,0669E+14	5,6520E+14	1,0606E+07	1,2952E+08
0,1073	0,1250	0,0196	0,035	0,1158	1,9600E-04	1,1582E-07	1,0	19924,782	3,905	281,855	2,1151E-18	9,2668E+13	4,5851E+14	1,0733E+07	1,1891E+08
0,1249	0,1430	0,0258	0,034	0,1349	2,5790E-04 3,3090F-04	1,546/E-0/	1,0	14677.716	4,413	277,530	5,3353E-18	6.2541E+13	2.8861F+14	9,8330E+06	9,7762F+07
0,1697	0,1977	0,0419	0,113	0,1832	4,1890E-04	1,8317E-07	9,9887E-01	12598,385	5,277	268,680	8,3668E-18	5,0067E+13	2,2607E+14	9,1709E+06	8,7929E+07
0,1977	0,2303	0,0525	0,155	0,2134	5,2530E-04	2,1337E-07	9,9845E-01	10815,518	5,681	263,402	1,3224E-17	3,9723E+13	1,7600E+14	8,4757E+06	7,8758E+07
0,2304	0,2683	0,0646	0,208	0,2486	6,4640E-04	2,4860E-07	9,9792E-01	9282,648	6,000	257,721	2,0917E-17	3,0904E+13	1,3628E+14	7,6828E+06	7,0282E+07
0,2682	0,3125	0,0769	0,272	0,2895	7,6870E-04	2,8951E-07	9,9728E-01	7971,007	6,127	251,721	3,3034E-17	2,3270E+13	1,0538E+14	6,7368E+06	6,2600E+07
0,3125	0,3041	0,0892	0,349	0,3373	8,9230E-04	3,3732E-07	9,9051E-01 9,9562E-01	5871,233	6,104	245,593	5,2253E-17 8,2664E-17	1,7077E+13	8,2108E+13 6.5031E+13	5,7603E+06	5,0803E+07 5,0103E+07
0,4241	0,4941	0,1367	0,545	0,4577	1,3674E-03	4,5775E-07	9,9455E-01	5041,430	6,894	233,253	1,3057E-16	1,0473E+13	5,2183E+13	4,7937E+06	4,5052E+07
0,4942	0,5757	0,1826	0,681	0,5334	1,8257E-03	5,3337E-07	9,9319E-01	4326,610	7,899	226,359	2,0657E-16	8,8383E+12	4,1711E+13	4,7141E+06	4,0259E+07
0,5758	0,6707	0,2406	0,864	0,6214	2,4062E-03	6,2142E-07	9,9136E-01	3713,593	8,936	218,460	3,2668E-16	7,3656E+12	3,2872E+13	4,5771E+06	3,5545E+07
0,6706	0,7813	0,3245	1,105	0,7238	3,2453E-03	7,2383E-07	9,8895E-01	3188,184	10,347	209,525	5,1627E-16	6,2861E+12	2,5507E+13	4,5500E+06	3,0968E+07
0,7814	0,9103	0,4224	1,429	0,8434	4,2236E-03	8,4342E-07	9,8571E-01	2736,125	11,556	199,178	8,1677E-16	5,1711E+12	1,9221E+13	4,3614E+06	2,641/E+07
1.0604	1,0004	0,5210	2,373	1.1446	6.2312E-03	1.1446E-06	9.7627E-01	2016.240	12,255	175.369	2.0412E-15	4,0411E+12 3.0528E+12	1,40302+13	3,9701E+00	2,2030E+07 1.8086E+07
1,2355	1,4393	0,7089	2,996	1,3335	7,0894E-03	1,3335E-06	9,7004E-01	1730,528	12,268	162,805	3,2283E-15	2,1960E+12	6,9557E+12	2,9285E+06	1,4592E+07
1,4392	1,6767	0,7693	3,705	1,5534	7,6925E-03	1,5534E-06	9,6295E-01	1485,561	11,428	150,537	5,1031E-15	1,5074E+12	4,7596E+12	2,3416E+06	1,1664E+07
1,6767	1,9534	0,8231	4,474	1,8098	8,2309E-03	1,8098E-06	9,5526E-01	1275,113	10,495	139,109	8,0697E-15	1,0200E+12	3,2522E+12	1,8459E+06	9,3219E+06
1,9534	2,2757	0,8847	5,298	2,1084	8,8474E-03	2,1084E-06	9,4702E-01	1094,527	9,684	128,614	1,2759E-14	6,9341E+11	2,2322E+12	1,4620E+06	7,4759E+06
2,2/5/	2,0512	1 0314	0,182	2,4503	9,4907E-03	2,4503E-00 2,8616E-06	9,3818E-01 9.2869E-01	939,511	8,917	118,930	2,01/4E-14	4,/043E+11 3 2332E+11	1,5388E+12	9 2521E+05	0,0140E+06 4.8585E+06
3,0887	3,5983	1,1360	8,163	3,3338	1,1360E-02	3,3338E-06	9,1837E-01	692,217	7,864	101,695	5,0440E-14	2,2522E+11	7,4509E+11	7,5083E+05	4,0303E+00 3,9332E+06
3,5983	4,1920	1,2623	9,299	3,8838	1,2623E-02	3,8838E-06	9,0701E-01	594,183	7,500	93,832	7,9752E-14	1,5827E+11	5,1987E+11	6,1469E+05	3,1824E+06
4,1920	4,8837	1,4025	10,561	4,5247	1,4025E-02	4,5247E-06	8,9439E-01	510,025	7,153	86,332	1,2610E-13	1,1122E+11	3,6160E+11	5,0322E+05	2,5677E+06
4,8837	5,6895	1,5468	11,964	5,2712	1,5468E-02	5,2712E-06	8,8036E-01	437,792	6,772	79,179	1,9939E-13	7,7574E+10	2,5038E+11	4,0891E+05	2,0645E+06
5,6896	6,6283	1,6904	13,510	6,1410	1,6904E-02	6,1410E-06	8,6490E-01 9,4799E-01	3/5,/83	6,352	/2,40/	3,1528E-13	5,3015E+10	1,/281E+11	3,2925E+05	1,0550E+00
7,7218	8.9960	2.0088	13,201	8.3346	2.0088E-02	8.3346E-06	8,2956E-01	276.881	5,562	60,035	7.8818E-13	2.5487E+10	8.2216E+10	2,04522105	1,3203E+06
8,9961	10,4804	2,1875	19,053	9,7099	2,1875E-02	9,7099E-06	8,0947E-01	237,663	5,199	54,548	1,2463E-12	1,7552E+10	5,6730E+10	1,7043E+05	8,4939E+05
10,4803	12,2096	2,3865	21,240	11,3120	2,3865E-02	1,1312E-05	7,8760E-01	204,004	4,868	49,349	1,9705E-12	1,2111E+10	3,9178E+10	1,3700E+05	6,7896E+05
12,2096	14,2242	2,6085	23,627	13,1785	2,6085E-02	1,3178E-05	7,6373E-01	175,111	4,568	44,480	3,1158E-12	8,3720E+09	2,7067E+10	1,1033E+05	5,4196E+05
14,2242	16,5/12	2,8545	26,235	15,3529	2,8545E-02	1,5353E-05	7,3/65E-01 7.0910E-01	150,310	4,291	39,912	4,9266E-12	5,/942E+09	1,8695E+10	8,8957E+04	4,3164E+05
19,3055	22,4909	3,4349	32,219	20.8374	3,4349E-02	2.0837E-05	6.7781E-01	125,021	4,037	31,585	1.2317E-11	2,7887E+09	8.8842E+09	5.8110E+04	2,7083E+05
22,4909	26,2019	3,7771	35,653	24,2756	3,7771E-02	2,4276E-05	6,4347E-01	95,062	3,591	27,781	1,9475E-11	1,9395E+09	6,0954E+09	4,7081E+04	2,1272E+05
26,2019	30,5252	4,1563	39,431	28,2811	4,1563E-02	2,8281E-05	6,0569E-01	81,598	3,391	24,190	3,0794E-11	1,3497E+09	4,1560E+09	3,8172E+04	1,6564E+05
30,5251	35,5618	4,5650	43,587	32,9474	4,5650E-02	3,2947E-05	5,6413E-01	70,042	3,197	20,799	4,8689E-11	9,3757E+08	2,8062E+09	3,0891E+04	1,2747E+05
35,5618	41,4295	4,9844	48,152	38,3837	4,9844E-02 5 3790E-02	3,8384E-05	5,1848E-01	60,122 51.607	2,997	1/,601	/,0986E-11	5,4/44E+08	1,868/E+09	2,4851E+04	9,6580E+04 7 1739E±04
48,2654	56,2292	5,7057	58,515	52,0954	5,7057E-02	5,2095E-05	4,1485E-01	44,297	2,770	14,003	1,9247E-10	2,9644E+08	7,7934E+08	1,5443E+04	5,1969E+04
56,2292	65,5070	5,9448	64,221	60,6910	5,9448E-02	6,0691E-05	3,5779E-01	38,024	2,260	9,301	3,0433E-10	1,9534E+08	4,8289E+08	1,1855E+04	3,6526E+04
65,5071	76,3157	6,1038	70,166	70,7052	6,1038E-02	7,0705E-05	2,9834E-01	32,638	1,992	7,041	4,8120E-10	1,2685E+08	2,8755E+08	8,9687E+03	2,4671E+04
76,3156	88,9077	5,7654	76,270	82,3714	5,7654E-02	8,2371E-05	2,3730E-01	28,016	1,615	5,049	7,6085E-10	7,5775E+07	1,6071E+08	6,2417E+03	1,5702E+04
88,9077	103,5775	5,1340 4 2791	82,035	95,9627 111 7966	5,1340E-02 4 2791E-02	9,5963E-05	1,/965E-01	24,048	1,235 n goo	3,433	1,2030E-09	4,26/5E+07 2 2/190E±07	8,4932E+07	4,0952E+03	9,4602E+03
120,6679	140,5780	3,4221	91,447	130,2430	3,4221E-02	1,3024E-04	8,5529E-02	17,718	0,005	1,316	3,0077E-09	1,1378E+07	1,9767E+07	1,4819E+03	2,8507E+03
140,5779	163,7733	2,5662	94,869	151,7330	2,5662E-02	1,5173E-04	5,1308E-02	15,209	0,390	0,709	4,7557E-09	5,3961E+06	8,3890E+06	8,1876E+02	1,3688E+03
163,7732	190,7959	1,7103	97,435	176,7690	1,7103E-02	1,7677E-04	2,5646E-02	13,055	0,223	0,319	7,5195E-09	2,2744E+06	2,9930E+06	4,0205E+02	5,5002E+02
190,7960	222,2773	0,8543	99,146	205,9360	8,5432E-03	2,0594E-04	8,5432E-03	11,206	0,096	0,096	1,1890E-08	7,1854E+05	7,1854E+05	1,4797E+02	1,4797E+02
222,27/3	208,9530	0	100	239,9153	0	2,3992E-04		9,619	0	0	1,8/99E-08	0	0	0	0
301,6803	351,4575	0	100	325,6191	0	3,2562E-04	0	7,087	0	0	4,7000E-08	0	0	0	0
351,4574	409,4479	0	100	379,3462	0	3,7935E-04	0	6,083	0	0	7,4315E-08	0	0	0	0
409,4478	477,0068	0	100	441,9382	0	4,4194E-04	0	5,222	0	0	1,1751E-07	0	0	0	0
477,0069	555,7130	0	100	514,8582	0	5,1486E-04	0	4,482	0	0	1,8580E-07	0	0	0	0
555,7130	64/,4056	0	100	599,8097	0	5,9981E-04	0	3,847	0	0	2,9377E-07	0	0	0	0
753.9031	878.6750	0	100	813.9016	0	8,1390E-04	0	2,835	0	0	7,3399E-07	0	, U	0	0
sum		100			1,0				291,549			9,5789E+14		1,5741E+08	

Πίνακας 19: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Σερπεντίνη (Κλάσμα 53 μm)

							Κλάσμα 53	μm, Ειδική	Ενέργεια	128,8 kJ/kg					
low (µm)	high (µm)	Βάρος (%)	Αθρ. Διερχόμενο Βάρος (%)	Μέσο Μέγεθος (μm)	Βάρος (kg)	Μέσο Μέγεθος (m)	Αθρ. Μεγαλύτερο Βάρος (kg)	Ειδ. Επιφάνεια (m ² /kg)	Επιφάνεια κλάσματος (m²)	Αθρ. Επιφάνεια σε Μεγαλύτερους Κόκκους (m ²)	Βάρος Κόκκου (kg)	Αριθμός Κόκκων στο Κλάσμα	Αθρ. Αριθμός Κόκκων σε Μεγαλύτερους Κόκκους	Μήκος Κόκκων του κλάσματος (m)	Αθρ. Μήκος σε Μεγαλύτερους Κόκκους (m)
0,0499	0,0582	0	0	0,0539	0	5,3883E-08	1,0	42828,051	0	407,519	2,1297E-19	0	1,7858E+14	0	1,0593E+08
0,0583	0,06/9	0	0	0,0629	0	0,2910E-08	1,0	30082,/10	0	407,519	3,3894E-19	0	1,7858E+14		1,0593E+08
0.0791	0.0921	0	0	0.0853	0	8.5328E-08	1,0	27045.083	0	407,519	8.4575E-19	0	1,7858E+14	. 0	1,0593E+08
0,0921	0,1073	0	0	0,0994	0	9,9413E-08	1,0	23213,110	0	407,519	1,3375E-18	0	1,7858E+14	0	1,0593E+08
0,1073	0,1250	0	0	0,1158	0	1,1582E-07	1,0	19924,782	0	407,519	2,1151E-18	0	1,7858E+14	0	1,0593E+08
0,1249	0,1456	0	0	0,1349	0	1,3487E-07	1,0	17111,054	0	407,519	3,3395E-18	0	1,7858E+14	0	1,0593E+08
0,1457	0,1697	0	0	0,1572	0	1,5722E-07	1,0	14677,716	0	407,519	5,2909E-18	0	1,7858E+14	0	1,0593E+08
0,1697	0,19//	0,0002	0,00001	0,1832	1,/000E-06	1,831/E-0/ 2 1227E-07	1,0	12598,385	0,021	407,519	8,3008E-18	2,0318E+11	1,7858E+14	3,/218E+04	1,0593E+08
0,1377	0,2505	0.0127	0,00018	0,2134	3.3690E-04	2,1357C-07	9,9987E-01	9282.648	3.127	407,437	2.0917E-17	1.6107E+13	1,7837E+14	4.0042E+06	1,0384E+08
0,2682	0,3125	0,0646	0,047	0,2895	6,4620E-04	2,8951E-07	9,9953E-01	7971,007	5,151	402,996	3,3034E-17	1,9561E+13	1,5266E+14	5,6632E+06	9,9835E+07
0,3125	0,3641	0,1055	0,111	0,3373	1,0550E-03	3,3732E-07	9,9889E-01	6841,199	7,217	397,845	5,2253E-17	2,0190E+13	1,3310E+14	6,8107E+06	9,4172E+07
0,3642	0,4242	0,1591	0,217	0,3931	1,5907E-03	3,9305E-07	9,9783E-01	5871,233	9,339	390,628	8,2664E-17	1,9243E+13	1,1291E+14	7,5634E+06	8,7361E+07
0,4241	0,4941	0,2354	0,376	0,4577	2,3539E-03	4,5775E-07	9,9624E-01	5041,430	11,867	381,289	1,3057E-16	1,8028E+13	9,3670E+13	8,2522E+06	7,9798E+07
0,4942	0,5/5/	0,3368	0,611	0,5334	3,30/0E-03	5,333/E-0/	9,9389E-01	4326,610	14,570	309,422	2,065/E-16	1,0303E+13	7,5042E+13 5 9239E+13	8,6954E+06	/,1546E+07 6 2850E+07
0,5758	0,0707	0,4300	1,405	0,0214	4,0003E-03 6.1111E-03	7.2383E-07	9.8595E-01	3188.184	19,483	337.894	5,1627E-16	1,3378E+13	4.5361E+13	8.5680E+06	5,4164E+07
0,7814	0,9103	0,7681	2,016	0,8434	7,6814E-03	8,4342E-07	9,7984E-01	2736,125	21,017	318,411	8,1677E-16	9,4046E+12	3,3524E+13	7,9320E+06	4,5596E+07
0,9102	1,0604	0,9221	2,784	0,9824	9,2208E-03	9,8243E-07	9,7216E-01	2348,968	21,659	297,393	1,2908E-15	7,1432E+12	2,4120E+13	7,0177E+06	3,7664E+07
1,0604	1,2354	1,0704	3,706	1,1446	1,0704E-02	1,1446E-06	9,6294E-01	2016,240	21,582	275,734	2,0412E-15	5,2441E+12	1,6976E+13	6,0022E+06	3,0646E+07
1,2355	1,4393	1,1922	4,776	1,3335	1,1922E-02	1,3335E-06	9,5224E-01	1730,528	20,632	254,152	3,2283E-15	3,6931E+12	1,1732E+13	4,9248E+06	2,4644E+07
1,4392	1,6/6/	1,2822	5,969	1,5534	1,2822E-02	1,5534E-06	9,4031E-01 9.27/9E-01	1485,561	19,048	233,520	5,1031E-15 8,0697E-15	2,5126E+12	8,0391E+12 5,5264E+12	2,0709E±06	1,9/19E+0/
1,0707	2.2757	1,5055	8,620	2.1084	1,5055E-02	2.1084E-06	9.1380E-01	1275,115	16.177	197.012	1.2759E-14	1,0508E+12	3.8296E+12	2.4422E+06	1,3810E+07 1.2745E+07
2,2757	2,6512	1,6084	10,098	2,4563	1,6084E-02	2,4563E-06	8,9902E-01	939,511	15,111	180,835	2,0174E-14	7,9726E+11	2,6713E+12	1,9583E+06	1,0303E+07
2,6513	3,0887	1,7812	11,706	2,8616	1,7812E-02	2,8616E-06	8,8294E-01	806,423	14,364	165,724	3,1902E-14	5,5835E+11	1,8740E+12	1,5978E+06	8,3448E+06
3,0887	3,5983	2,0003	13,488	3,3338	2,0003E-02	3,3338E-06	8,6512E-01	692,217	13,846	151,360	5,0440E-14	3,9656E+11	1,3157E+12	1,3221E+06	6,7470E+06
3,5983	4,1920	2,2578	15,488	3,8838	2,2578E-02	3,8838E-06	8,4512E-01	594,183	13,416	137,513	7,9752E-14	2,8311E+11	9,1910E+11	1,0995E+06	5,4249E+06
4,1920	4,8837	2,5329	17,746	4,5247	2,5329E-02	4,5247E-06	8,2254E-01	510,025	12,919	124,098	1,2610E-13	2,0086E+11	6,3600E+11	9,0882E+05	4,3254E+06
4,0007	6.6283	3.0402	20,275	6.1410	2,7556E-02 3.0402E-02	6.1410F-06	7,57212-01	375,783	12,237	98.922	3,1528E-13	9.6427E+10	2.9472E+11	5.9216E+05	2.6764E+06
6,6283	7,7219	3,2596	26,119	7,1542	3,2596E-02	7,1542E-06	7,3881E-01	322,564	10,514	87,497	4,9849E-13	6,5390E+10	1,9829E+11	4,6781E+05	2,0842E+06
7,7218	8,9960	3,4635	29,378	8,3346	3,4635E-02	8,3346E-06	7,0622E-01	276,881	9,590	76,983	7,8818E-13	4,3942E+10	1,3290E+11	3,6624E+05	1,6164E+06
8,9961	10,4804	3,6604	32,842	9,7099	3,6604E-02	9,7099E-06	6,7158E-01	237,663	8,699	67,393	1,2463E-12	2,9370E+10	8,8958E+10	2,8518E+05	1,2502E+06
10,4803	12,2096	3,8738	36,502	11,3120	3,8738E-02	1,1312E-05	6,3498E-01	204,004	7,903	58,694	1,9705E-12	1,9658E+10	5,9587E+10	2,2237E+05	9,6498E+05
12,2090	14,2242	4,1214	40,370	15,1785	4,1214E-02 4,4105E-02	1,31/8E-03	5,5503E-01	1/5,111	7,217	30,791 43,574	3,1138E-12	1,3227E+10 8 9524E+09	2,5929E+10 2,6702E+10	1 3745E+05	7,4201E+03 5.6829E+05
16,5713	19,3055	4,7381	48,908	17,8862	4,7381E-02	1,7886E-05	5,1092E-01	129,021	6,113	36,945	7,7898E-12	6,0824E+09	1,7749E+10	1,0879E+05	4,3084E+05
19,3055	22,4909	5,0842	53,646	20,8374	5,0842E-02	2,0837E-05	4,6354E-01	110,748	5,631	30,832	1,2317E-11	4,1278E+09	1,1667E+10	8,6013E+04	3,2205E+05
22,4909	26,2019	5,4250	58,730	24,2756	5,4250E-02	2,4276E-05	4,1270E-01	95,062	5,157	25,201	1,9475E-11	2,7856E+09	7,5391E+09	6,7622E+04	2,3604E+05
26,2019	30,5252	5,7415	64,155	28,2811	5,7415E-02	2,8281E-05	3,5845E-01	81,598	4,685	20,044	3,0794E-11	1,8645E+09	4,7535E+09	5,2731E+04	1,6842E+05
30,5251	35,5618	6,0286 5 0100	69,897	32,9474	6,0286E-02	3,2947E-05	3,0103E-01	70,042	4,223	15,359	4,8689E-11	1,2382E+09	2,8890E+09	4,0795E+04	1,1569E+05
41,4295	48,2654	5,4567	81.845	44,7170	5,4567E-02	4,4717E-05	1.8155E-01	51.607	2.816	7,577	1,2173E-10	4,4827E+08	8,8190E+05	2,0045E+04	4,5377E+04
48,2654	56,2292	4,6486	87,302	52,0954	4,6486E-02	5,2095E-05	1,2698E-01	44,297	2,059	4,761	1,9247E-10	2,4152E+08	4,3363E+08	1,2582E+04	2,5332E+04
56,2292	65,5070	3,5844	91,950	60,6910	3,5844E-02	6,0691E-05	8,0498E-02	38,024	1,363	2,702	3,0433E-10	1,1778E+08	1,9211E+08	7,1482E+03	1,2750E+04
65,5071	76,3157	2,4406	95,535	70,7052	2,4406E-02	7,0705E-05	4,4654E-02	32,638	0,797	1,339	4,8120E-10	5,0719E+07	7,4334E+07	3,5861E+03	5,6014E+03
76,3156	88,9077	1,4043	97,975	82,3714	1,4043E-02	8,2371E-05	2,0248E-02	28,016	0,393	0,543	7,6085E-10	1,8457E+07	2,3615E+07	1,5204E+03	2,0153E+03
103,5775	103,3775	0,0205 A	99,380 100	30,902/	0,2049E-03	3,3303E-05	0,2049E-03	24,048	0,149	U,149 n	1,2030E-09	3,13//E+U0	3,13//E+00	, 4,5455E+02	4,54932+02
120,6679	140,5780	0	100	130,2430	0	1,3024E-04	0	17,718	0	0	3,0077E-09	0	(0	0
140,5779	163,7733	0	100	151,7330	0	1,5173E-04	0	15,209	0	0	4,7557E-09	0	(0	0
163,7732	190,7959	0	100	176,7690	0	1,7677E-04	0	13,055	0	0	7,5195E-09	0	(0	0
190,7960	222,2773	0	100	205,9360	0	2,0594E-04	0	11,206	0	0	1,1890E-08	0	(0	0
222,2773	258,9530	0	100	239,9153	0	2,3992E-04	0	9,619	0	0	1,8799E-08	0	(0
208,9529	351.4575	0	100	2/9,0013	0	2,7900E-04 3,2562E-04	0	8,200 7 097	0	0	4,7000F-08	0	((0
351,4574	409,4479	0	100	379,3462	0	3,7935E-04	0	6,083	0	0	7,4315E-08	0	(0	0
409,4478	477,0068	0	100	441,9382	0	4,4194E-04	0	5,222	0	0	1,1751E-07	0		0	0
477,0069	555,7130	0	100	514,8582	0	5,1486E-04	0	4,482	0	0	1,8580E-07	0	(0 0	0
555,7130	647,4056	0	100	599,8097	0	5,9981E-04	0	3,847	0	0	2,9377E-07	0	(0	0
647,4056	754,2275	0	100	698,7783	0	6,9878E-04	0	3,302	0	0	4,6450E-07	0	(0	0
753,9031 SUM	0/0,0/30	100	100	013'3010	10	0,1350E-04	1 0	2,835	//// E40	U U	1,33335-01	1 79595.44		1 05025-09	0
oun		100			1,0				407,519	1		1,/8585+14	1	1,05936408	

Πίνακας 20: Συγκεντρωτικός πίνακας επεξεργασίας τιμών για τον Σερπεντίνη (Κλάσμα 53 μm)