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Abstract

A large corpus of work in machine learning and decision making focuses on planning and

learning in arbitrarily stochastic domains. However, these methods require significant

computational resources (large transition models, huge amounts of samples) and the

resulting representations can hardly be broken into easily understood parts, even for

deterministic or near-deterministic domains. This thesis focuses on a rule induction

method for (near-)deterministic domains, so that an unknown world can be described

by a set of short rules with well-defined preconditions and effects given a brief interaction

with the environment. The extracted rules can then be used by the agent for decision

making. We have selected a multiplayer online game based on the SMAUG MUD server

as a model of a near-deterministic domain and used our approach to infer rules about

the world, generalising from a few examples. The agent starts with zero knowledge

about the world and tries to explain it by generating hypotheses, refining them as they

are refuted. The end result is a set of a few meaningful rules that accurately describe

thez world. A simple planner using these rules was able to perform near optimally in a

fight scenario. The proposed method is general and applicable to other domains with a

minimal set of changes.



Περίληψη

΄Ενας μεγάλος όγκος δουλειάς στη μηχανική μάθηση και τη λήψη αποφάσεων επικεντρώνεται

στο σχεδιασμό και τη μάθηση σε αυθαίρετα στοχαστικά πεδία. Ωστόσο, αυτές οι μέθοδοι

απαιτούν σημαντικούς υπολογιστικούς πόρους (μεγάλα μοντέλα μετάβασης, τεράστιους αρ-

ιθμούς δειγμάτων) και οι αναπαραστάσεις που προκύπτουν δε μπορούν εύκολα να διασπασ-

τούν σε ευνόητα τμήματα, ακόμα και για αιτιοκρατικά ή σχεδόν αιτιοκρατικά πεδία. Αυτή η

διπλωματική εργασία εστιάζει σε μία μέθοδο επαγωγής κανόνων για (σχεδόν) αιτιοκρατικά

πεδία, ώστε ένας άγνωστος κόσμος να μπορεί να περιγραφεί από ένα σύνολο μικρών κανόνων

με καλά καθορισμένες προϋποθέσεις και επιδράσεις, δεδομένης μιας βραχείας αλληλεπί-

δρασης με το περιβάλλον. Οι κανόνες που εξάγονται μπορούν να χρησιμοποιηθούν από

τον πράκτορα για τη λήψη αποφάσεων. Επιλέξαμε ένα διαδικτυακό παιχνίδι πολλών παικτών

(multiplayer online game) βασισμένο στον SMAUG MUD server ως ένα μοντέλο ενός

σχεδόν αιτιοκρατικού πεδίου και χρησιμοποιήσαμε την προσέγγισή μας για να εξάγουμε

κανόνες για τον κόσμο, γενικεύοντας από μερικά παραδείγματα. Ο πράκτορας ξεκινά με

μηδενική γνώση για τον κόσμο και προσπαθεί να τον εξηγήσει παράγοντας υποθέσεις, εκ-

λεπτύζοντας τις όπως διαψεύδονται. Το τελικό αποτέλεσμα είναι ένα σύνολο από λίγους,

περιεκτικούς κανόνες οι οποίοι περιγράφουν με ακρίβεια τον κόσμο. ΄Ενας απλός planner

που χρησιμοποιεί αυτούς τους κανόνες επιδεικνύει σχεδόν βέλτιστη απόδοση σε ένα σενάριο

μάχης. Η προτεινόμενη μέθοδος είναι γενική και εφαρμόζεται σε άλλα πεδία με ελάχιστες

αλλαγές.
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Chapter 1

Introduction

From the moment it is born, every (sufficiently evolved) organism begins to learn things

about the world it lives in. The mechanics of cause and effect soon become apparent

to it, and it begins to discover the ways in which it can interact with the world by

experimenting.

Intelligent agents that can learn through reinforcement learning have been the focus of

research for many years. Reinforcement learning focuses on mapping each state of the

world to the best action choice in that state [Kaelbling et al., 1996]. The agent explores

the world, observing the actions it took at each state and their immediate effects, and

eventually learns the action choices that yield the desired long-term outcome.

This means that, to use reinforcement learning in the real world, the agent would have

to observe more or less every state and perform every action available to it in that state,

in order to see how they contribute to the desired outcome. With the complexity of the

real world, this approach quickly becomes intractable.

Induction learning, on the other hand, aims to train an agent on a few known inputs

and outputs, so that it will create rules, which can then be applied to previously unseen

inputs to produce meaningful predictions as to the outputs that will be observed [Wexler,

1996].

1.1 Multiplayer Online Games

It quickly became clear to us that, if we wanted our research to be applicable to the real

world, we would need a moderately complex model of it. Fortunately, such models have

existed for a few decades in the form of multiplayer online games (Multi-User Dungeons,

1
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MUDs). MUDs are text-based (this is an advantage because the world variables are

easier to parse, but our research can easily be extended to other models) and they offer

complex and detailed worlds in which one can perform almost any task one would in the

real world.

The overarching task in these games is to fight enemies and accrue gold, items and

experience, which you can use to unlock new abilities. Input in these games takes

the form of commands, which a player enters to perform actions in the world. Each

command effects a change in the state of the world, and this change is reflected in the

state variables that the user can observe.

For example, there are, among others, a fight variable (boolean) that indicates whether

or not the player is currently fighting an enemy, and a health variable (integer) that

reflects the player’s current health. If health reaches zero, the player dies.

The player can influence the value of these variables by performing the associated com-

mands, namely strike <opponent> causes the player to engage in a fight (the fight

variable becomes True) and the enemy to take some amount of damage. Conversely,

this command is usually entered by the enemy as well, so a player that is currently in a

fight can expect to take an amount of damage, regardless of his actions.

The fighting player’s health will diminish until it reaches 0, at which point the player

will die. Obviously, this scenario is something to be avoided by the player. The player

can increase his health by the heal command, which is subject to constraints in itself,

and so on...

1.2 Rule Inference in the MUD

Our ultimate goal is for an agent to be given a list of desired outcomes and nothing

else, and for the agent to be able to divine enough aspects of the world to achieve these

outcomes. We must, therefore, find a way for the agent to understand the effect that its

actions have on the world and on its current state.

A baby learns about the world by trial and error. It learns that touching a hot object

will cause a burn, and that eating food will take away its feeling of hunger. In the same

way, our agent must learn that healing will increase its health and fighting will decrease

it, but will eventually provide it with gold, if it wins.

Another primary design goal for us was for the agent to be able to generalise the rules

it discovers and then refine the circumstances it believes they apply to, so that it goes

from the general to the specific, instead of the other way around.
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1.3 Thesis outline

Chapter 2 provides the necessary background for the ideas this thesis builds upon. A

brief introduction is given to the Markov property, reinforcement learning, and induction

learning.

Chapter 3 discusses the motivation behind this work. The advantages of induction

learning over more traditional methods are explained, along with a summary of related

work in the area. The strengths and weaknesses of existing approaches are discussed,

along with usual practices.

Chapter 4 introduces our heuristic rule induction algorithm, a novel approach to inferring

rules in noisy deterministic domains. Its efficiency is analysed and its properties are

discussed.

Chapter 5 demonstrates the applicability of the algorithm on multiplayer online games

and discusses its efficiency.

Finally, Chapter 6 discusses the strengths and weaknesses of the approach, gives a num-

ber of guiding directions for future work, and concludes this thesis with a brief summary.





Chapter 2

Background

2.1 Agents and environments

In building artificially intelligent systems, we need to create an analogue, something

that will act upon its environment to (usually) effect some desired result. We call this

analogue an agent.

An agent can be anything that can perceive its environment (or, more often, a useful

subset of it) and act to achieve a goal. The environment is what the agent perceives

as “the outside world”. This can be a room, a computer simulation, or, as in our case,

an online game. The environment is usually abstracted down to a sequence of state

variables, which hold all the information of the environment that is relevant to the

agent.

Environments can vary from the deterministic (each action has a specific outcome every

time) to the stochastic (each action can have a variety of outcomes). Another factor

we must take into account is noise, which may range from the non-existent to the

debilitating. An appropriate learning algorithm must be chosen according to the type

of environment at hand, in order to produce good agent behaviour.

2.2 Dynamic Bayesian networks

Bayesian networks are data structures for representing compactly large joint probability

distributions over a number of random variables which are weakly dependent on each

other. A Bayesian network is typically a directed acyclic graph in which the nodes rep-

resent random variables and the edges represent conditional dependencies [Ghahramani,

1998, Jordan, 1999]. For example, in the network shown in Figure 2.1, the value of node

5
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C depends only on the values of its parent nodes, A and B. Thus, C is a child node

of A and B. The probability of observing a given set of values a, b, c, d, e, f is given by

the formula:

P (a, b, c, d, e, f) = P (c|a, b)P (d|c, f)P (e|c)P (a)P (b)P (f)

Figure 2.1: A simple Bayesian network

A dynamic Bayesian network is a network that can be used to build a probabilistic

model of sequential processes. The well-known Hidden Markov Model is an example of

a dynamic Bayesian network, and can, in fact, be considered as the simplest possible

one. Other variants of the HMM (such as the factorial HMM in Figure 2.2) can be

considered DBNs.

Consider a sequence of observations. Each “slice” of the sequence contains n random

variables, and it can be thought of as an ordinary Bayesian network, which is duplicated

for each slice. The sequential dependencies between variables are represented by edges

between the duplicated slices.

Therefore, the DBN is defined by two components:

1. A Bayesian network that contains all the random variables and their dependencies

within the slice. This Bayesian network will then be duplicated as needed on each

slice in order to model the structure of the sequence.

2. A set of edges that represent the dependencies between two slices in the sequence

and connect one to the other.

We must clarify here that the nodes and edges in and between each slice are repeated

throughout the DBN. We can, therefore, specify the entire DBN by only specifying a

starting and ending slice and the edges between them.
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Additionally, each node is associated with a conditional probability table (CPT), which

gives a probability distribution over the possible values of the variable corresponding to

that node given the values of its parents. In unknown domains, the structure and CPTs

of Bayesian networks or dynamic Bayesian networks can be learnt from data using a

variety of methods.

Figure 2.2: Three slices of a factorial HMM (a type of DBN)

2.3 Inductive learning

Inductive learning is the process of learning by example, and constructing general rules

from a series of observed instances. The agent gathers data from the world and tries to

explain the events that take place in it. It can then use the rules it has learnt from the

environment to plan its future behaviour.

Consider a function f(x). Consider then a set of training data {(xi, f(xi)) : i =

1, 2, 3, . . . , N}, and our aim is to determine f by some adaptive algorithm. Inductive

learning aims to construct a hypothesis h such that, for all i, h(xi) ≈ f(xi) . If there are

two hypotheses h1 and h2 with h1(xi) ≈ f(xi) and h2(xi) ≈ f(xi), then one of them may

be chosen by some process called bias. The purpose of using a hypothesis in the first

place is that the hypothesis may be applied to new inputs {xj} to attempt to discover

what f(xj) would be without actually evaluating f(xj).

Training data may consist of positive and negative examples. Positive examples are

known correct pairs and negative examples are known incorrect pairs. A good hypothesis

must explain as many of the positive examples as possible while explaining none of the

negative ones. It can then be generalised to extrapolate past the examples already given

to new ones. This helps us predict the future and anticipate what will happen if we

evaluate each f(xj).
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2.4 Model-based learning

There are two mainstream approaches to agent behavioural learning, namely model-free

and model-based learning. In model-free learning, the agent uses the data to learn a

good decision policy directly, according to the performance criteria given. In model-

based learning, on the other hand, the agent uses the data to learn a model of the

underlying process and uses this model to compute a decision policy, again according to

the performance criteria.

There are advantages and disadvantages to both approaches. Many domains can only

be described by huge and complicated models, whereas good behaviour can be achieved

by fairly simple policies, therefore model-free learning is more appropriate. In other

domains, the underlying model is fairly simple and can be easily learnt from data, and

therefore the derived policies will be much more accurate and better. In this case,

model-based learning is a better fit.



Chapter 3

Problem statement

3.1 Models and the real world

Usually, our modeled worlds are subsets of the real world, and much simpler. An airplane

guidance system typically only needs to concern itself with yaw, pitch, roll, and speed as

its inputs, and aileron and throttle adjustments as its outputs. With some quantization,

the possible values that these variables can take are reduced to a very manageable set.

Typical learning techniques for control work very well in these circumstances. The

system initially learns how to fly correctly (not crash) and eventually learns how to

handle other circumstances that might arise by coming across them and noting how it

did.

What happens, though, if the state space is so large that it is impractical to see even

a small subset of the state space? How can a system develop an effective policy if it

can’t know what might happen in most cases? Exhaustively exploring the state space

is infeasible (especially when one has to go through the same state multiple times to

discover all the outcomes that might arise from a certain action one takes in that state).

Several approximation methods have been proposed as a way of coping with large state

spaces. These methods work well when small changes in the state variables do not

bring about large differences in the outcome. To continue the example above, the state

space over yaw, pitch, roll and speed is amenable to approximation, since nearby states

result in similar outcomes. In contrast, consider the state space of a chess game (all

possible board configurations), where nearby states can result in radically different out-

comes. In general, domains that include diverse and discrete state variables can hardly

be approximated compactly.

9
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Our particular model, the MUD, has about 20 state variables, each one of a different

nature and with a different range (some are positional, some are integer ranges, some

are boolean), and upwards of 50 actions someone could take, each of which influences

the world differently, sometimes with subtle changes that are only observable in the long

term and sometimes with immediate effects. Therefore, our case is more similar to the

chess example presented above than to the airplane, and thus we cannot rely on function

approximation for good results.

Clearly, to exhaustively explore this state space we would need to visit some 1030 states,

a vast number that is not explorable in a lifetime. At first glance, this would appear

impossible. It clearly isn’t, however, since we know for a fact that human players have

no problem functioning in it every day, and even more so in the real world. How do they

do it?

3.2 The human approach

As we already know, humans (and, indeed, most living organisms) don’t need to explore

the entire state space of the world (as this would be nigh impossible to do) in order to

theorise about the results of their actions. A human may have never put their hand on

a burning stove, but they have a very good idea of what would happen if they did, so

they avoid it.

This is because humans are very good at generalising. Generalisation is the ability of

inferring a general rule which is true always (or most of the time) from a few experiences.

If, for example, something is not poisonous for a few people, it is likely that it is not

poisonous for all people. Of course, there are modifiers to the result, such as immunity

towards a poison, that cause the action not to have the intended outcome. Humans

can effectively discover the variables that are vital to the desired outcome and ignore

irrelevant ones, greatly simplifying the problem [Salzberg, 1985].

3.3 Problem formalisation

As previously mentioned, the state space S is described by a finite number of state

variables s1, s2, . . . , sn. A tuple

S(t) =
(

s1(t), s2(t), . . . , sn(t)
)
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reflects the state of the world at time t. The agent has a set of actionsA = {a1, a2, . . . , am}

that it can perform. By a(t) we denote the action taken by the agent at time t. We

assume that the world has the Markov property, which means that

P
(

S(t+1)
∣

∣

∣
S(t), a(t), S(t−1), a(t−1), S(t−2), a(t−2), . . .

)

= P
(

S(t+1)
∣

∣

∣
S(t), a(t)

)

The goal for the agent is to find a policy π for choosing an action a(t) = π
(

S(t)
)

at

each time step t that maximises some long-term reward given the current state S(t). To

do this, however, it is important to know how each action impacts the state. In other

words, we need a transition model T :

S(t + 1) = T
(

S(t), a(t)
)

Notice that our choice for the transition model is both Markovian (in the state and the

action) and deterministic (there is only one outcome for a given state and action pair).

Since the transition model is unknown to us, we cannot form any sort of policy. We

must, therefore, discover what changes each action imparts on the state in each case,

and also when these occur, i.e. the conditions under which they occur. Our goal is to

infer a transition model for the world that takes the form of a collection of rules. The

general form of the rules is the following:

If a particular action a is taken at time t, then a subset of the state variables

{si, sj, sk, . . .} will change by {di, dj , dk, . . .} at time t + 1, provided that the

values of another subset of state variables {sl, sm, sn, . . .} are {vl, vm, vn, . . .}.

Our approach is predicated on the assumption that the world is mostly deterministic

(i.e. the same action will not bring radically different results if performed at two different

times in the same state), but we must account for noise, as our measurements might not

be completely accurate. This assumption is valid in our case, since the MUD is generally

deterministic. Another assumption we make is that there are weak dependencies, i.e. an

action affects a small number of state variables, and that the preconditions under which

this happens involve only a small number of state variables as well.

3.4 Environment noise

There are various problems one might encounter in environments that complicate the

process by introducing noise or otherwise change the measured values of the variables.

In order to make our approach more general, we desire our transition model to be able
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to accommodate small levels of noise. In particular, we assume the following kinds of

noise:

Measurement noise: For every state variable change, noise N may have been intro-

duced in the measurement, such that our observation of the state gives S(t)+N(t)

instead of the true S(t). This is deleterious to the induction, as the agent will

not know if the measured value is what its action effected or if it was merely a

side-effect. We do, however, make the assumption that noise levels are low and

that the noise is Markovian.

Post-quantized variables: In some cases, the value that the agent observes is not of

the same accuracy as in the internal state of the world. For instance, for some

variable v, the observed value o might be quantized as follows:

o =
⌊ v

10

⌋

, v ∈ [0, 100]

This can lead to the agent perceiving no change to the state for a long period of

time for an action, and then suddenly perceiving a large state change.

Since our problem formulation does not make any effort to account for a stochastic

model, any stochastic behaviour that cannot be accounted for in the two previous cases,

cannot be accommodated. In such cases, a truly probabilistic model must be used.

3.5 The MUD domain

Our test domain is a subset of the full MUD domain, and it focuses on combat situa-

tions. We have selected the following state variables to include all the necessary state

information for such uses:

Health is an integer in the range of approximately [0 − 1000]. It reflects the player’s

well-being, and it is generally desired that its value is as high as possible. If a

player’s health falls to zero, the player dies, to his great inconvenience.

Mana is an integer in the range of approximately [0−700], and it reflects the amount of

available “magic power” the player has for casting spells. This variable also needs

to be kept from reaching zero, as then the player cannot cast any more spells,

which are generally useful to the player.

Fighting is a Boolean variable that indicates whether the player is currently in combat

or not. If the player is in combat, he will usually take (and deal) damage.
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Enemy health is an integer variable in the range of [0-11], which indicates the current

health of the enemy. This is analogous to our own health, and causes the enemy to

die if it reaches zero. One of our goals is to do damage to the opponent, lowering

its health.

In addition to the above state variables, we have used one action variable which can take

four values, corresponding to the four actions that the agent can perform. These actions

are the most relevant to combat (it would not make sense to include trading commands

while in a fight), and they have the most diverse results (there are other actions that

have the same effects as the ones we have chosen, only varying in degree). The actions

we have chosen are:

Pause is a control action that does nothing. We include it so that we can see what

happens in the world without our intervention. For example, while in a fight, we

can see that we take damage regardless of whether we do anything or not. We can

then remove the changes that would happen anyway from our other actions and

arrive to a much more accurate conclusion.

Strike opponent is an aggressive action that causes the opponent to take damage.

Additionally, if we are not in a fight, the angry opponent starts one, and fighting

changes to True.

Heal causes our health and mana to increase by certain amounts. Obviously, if these

variables have already reached their maxima, this action has no effect.

Cast spell is another aggressive action that causes the opponent to take damage. This

action also causes us to enter a fight if we are not already in one, and it also causes

mana to diminish by some amount.

3.6 Related work

Inductive logic programming (ILP) [Muggleton, 1992] is a fairly new active research area

which combines principles of inductive machine learning with the representation of logic

programming, with the goal of automatically learning logic programs from examples.

ILP has been successful in generating new scientific knowledge in various domains in-

volving mostly Boolean variables but has not produced significant results in domains

containing numerical data.

Salzberg [Salzberg, 1985] developed HANDICAPPER, a system for predicting horse race

outcomes. HANDICAPPER uses various heuristic inductive learning methods to explain
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and predict races, faring markedly better than human experts and chance. This paper

describes various heuristics at a high level, providing inspiration for our work, however

it was not clear how to combine them at an algorithmic level and apply them to our

domain.

Amir and Chang [Amir and Chang, 2008] developed an exact solution for identifying

actions’ effects in partially observable STRIPS domains. Their methods apply in other

deterministic domains with conditional effects but may be inexact, as they produce false

positives, or inefficient, as the resulting model can grow arbitrarily).

Diuk et al. [Diuk et al., 2006] developed an algorithm to improve the speed of hierar-

chical reinforcement learning while preserving state abstraction and to use hierarchies

to augment existing factored exploration algorithms to achieve low complexity for both

learning and planning in deterministic domains. This work is geared towards producing

good agent behaviour and does not produce knowledge at the level of rules we would

like.

Boutilier et al. [Boutilier et al., 1999] offer an extensive survey on decision-theoretic

planning, covering several methods and techniques for deriving and learning optimal (or

near-optimal) agent behaviours. The methods covered in this survey focus mostly on

planning aspects ranging from deterministic to stochastic environments but do not cover

the problem of model learning, which is our focus.



Chapter 4

The proposed approach

4.1 Our approaches

Our model, being a sequential process with dependent variables, looks like a good fit

for a dynamic Bayesian network. One can include all state and action variables in a

DBN, determine their dependencies from the data, and then discover the effects of each

action. This is what we initially attempted, but the results, as we will show, were less

than satisfactory, since it was very difficult to extract the kind of knowledge we wanted

from the resulting network.

To better address our needs, we decided to develop our own heuristic rule induction

algorithm. This algorithm was designed to emulate the human way of reasoning in such

domains. Both approaches are presented herein, with their advantages and disadvantages

(though, naturally, more weight is given to our approach).

4.2 Using dynamic Bayesian networks

Initially, we used a dynamic Bayesian network to discover the causal effect of the actions

to the state. Experimentation utilised the open-source Mocapy toolkit [Hamelryck, 2009]

for inference and learning in DBNs with Python. This choice was dictated by the fact

that it was easy to integrate with the rest of our code. Mocapy provides functionality

for learning the conditional probability tables for the nodes of a fixed network structure,

but, unfortunately, it does not implement structure learning.

The nodes in each time slice of the dynamic Bayesian network include all the state

variables and the single action variable, as described in Section 3.5, at the corresponding

time step.

15
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Before learning the CPTs we need to establish a structure of dependencies. In the

absence of domain knowledge and the lack of a structure learning process in Mocapy we

followed a brute-force approach.

In particular, we set each state variable to be conditionally dependent upon all state

variables and the action variable in the previous time step. This is so we can discover

the dependent variables after we learn the conditional probability tables of the network.

Therefore, the initial structure given to Mocapy for learning the CPTs is as shown in

Figure 4.1.

Health

Mana

Fighting

Enemy
Health

Action

Health

Mana

Fighting

Enemy
Health

Action

Figure 4.1: Our dynamic Bayesian network structure

We have not set the action to depend on any of the variables because there are no

conditional probabilities on the action, as the action is chosen by us regardless of the

preconditions at this stage (our action choice may, of course, depend on the state, but

we do not need to concern ourselves with this at this point).

Our next step is to collect a set of data which will be used by Mocapy to learn the CPTs

from the data using the expectation maximisation (EM) algorithm [Nielsen, 2000]. This

data was collected by executing a purely random policy. Mocapy returns one CPT for

each node in the network, describing the probability distribution over the values of a

state variable si given the values of the state and action variables in the previous time

step:

P
(

si(t)
∣

∣

∣
s1(t− 1), s2(t− 1), s3(t− 1), s4(t− 1), a(t − 1)

)

In order to infer the dependencies between variables and actions, we calculate the

marginals M for a CPT, each time summing out the variables we want to ignore. For

each calculated marginal we check to see if the variables have any correlation with the

action or not. To do this, we compare the marginal of each action value to the corre-

sponding marginal of a “control” action (pause) which we know is uncorrelated with
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any of the variables. This “control” action also serves as a baseline that shows us what

happens when we take no action at a given time slot. For example, when fighting, our

health will slowly decrease as the opponent damages us. The control variable allows us

to see that the health decrease will happen anyway and factor it out of the results.

This method did yield some results, but they were very state-dependent and vague. For

example, if we marginalise out all other variables from the conditional probability table

for the variable health, keeping as parents only health, action and fighting in the

previous time step, we can see that the CPTs are different. This means that health

is dependent on all of itself, action and fighting from the previous time step. In the

examples below, we present the CPTs for health for specific values of fighting (True

and False), and action (“pause” and “heal”):

CPT(healtht|fightingt−1 = False,healtht−1,action = pause) =















































10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 100















































CPT(healtht|fightingt−1 = True,healtht−1,action = pause) =















































10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

0 0 0 100 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0

0 0 0 0 6 94 0 0 0 0

0 0 0 0 0 7 93 0 0 0

0 0 0 0 0 0 5 95 0 0

0 0 0 0 0 0 0 13 87 0

0 0 0 0 0 0 0 0 21 79














































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CPT(healtht|fightingt−1 = False,healtht−1,action = heal) =















































10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 100

0 0 0 0 0 0 0 0 0 100

0 0 0 0 0 0 0 0 0 100















































CPT(healtht|fightingt−1 = True,healtht−1,action = heal) =















































10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10

0 0 0 0 0 100 0 0 0 0

0 0 0 0 0 0 100 0 0 0

0 0 0 0 0 0 17 83 0 0

0 0 0 0 0 0 0 11 89 0

0 0 0 0 0 0 0 0 30 70

0 0 0 0 0 0 0 0 12 88

0 0 0 0 0 0 0 0 23 77















































For example, in the case where fighting is True and action is “pause”, we can see that

there is a much higher probability to end up in a lower health state than if we are not

fighting. We can, therefore, infer that “pausing” when fighting has a deleterious effect

to our health. We cannot ascertain, however, precisely what this effect is. On the other

hand, we see that “healing” has a beneficial effect to our health regardless of whether

we are fighting or not. Again, though, we cannot know in detail what this effect is, and

one must try all the combinations of each variable in order to derive the dependencies

between variables, which is why we decided that this approach was not suitable for us,

and was geared more towards stochastic domains.



Chapter 4. The proposed approach 19

4.3 Using a heuristic inference algorithm

4.3.1 Rule induction

After the Bayesian network, we used another approach, namely implementing our own

heuristic inference algorithm. This algorithm models more closely the way humans

reason about the world by constructing rules that try to explain the data.

The first step we perform is to construct rules for each action in the world. We structure

our algorithm in this way, because actions are the most essential method of interaction

with the world. We want to infer the changes that an action brings about to the world,

so it makes sense to start by grouping all the results by actions. Since there may be

several outcomes for an action, we allow for multiple disjoint pairs of preconditions and

effects for each action. Initially, the outcomes for each action are empty and they are

updated as the data is processed.

The update step of the algorithm takes as input a state pair and an action. A state pair

consists of a state, S(t), and the one immediately preceding it, S(t − 1). The action

a(t− 1) is the action that the agent took between those two states (and the action that

ostensibly caused the state changes). The algorithm then notes the differences between

the two states in a vector δ and checks if this particular outcome has been seen before.

If it has been seen before, trust in it is reinforced. If it has not, it is added to the set of

outcomes for the current action. The state variables are then added to the preconditions

of each outcome, as positive examples of the current outcome (if this result happened

when the state was S(t)) and negative examples of all the others (if this result did not

happen when the state was S(t)).

As we mentioned above, the deltas contain the sets of outcomes. These differences

can be of various types such as integer, Boolean, or unordered set. The type of the

variable governs the relationships between variables of the same type. For example, for

an integer variable the delta will be the actual numerical difference after subtraction.

For an unordered set, on the other hand, the delta will be a 2-tuple of the previous and

current state variable.

The algorithm shown in 4.2 creates the deltas for each action and a measure of confidence

for each rule. This, however, creates duplicate rules most of the time, since it is unusual

for the world to be completely deterministic and have each action only produce one

outcome in any state.
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update action rules (S(t− 1), a(t− 1), s(t))

// S(t− 1) : The previous state
// a(t− 1) : The action performed in the previous state
// S(t) : The current state

δ(t)← S(t)− S(t− 1)
if (δ(t) ∈ δa(t−1)) // If the changes in the state are in the deltas set,

reinforce(a(t− 1), δt) // reinforce the already existing delta.
else

δa(t−1) ← δa(t−1) ∪ δ(t) // Otherwise, add it to the deltas set.
for each δ ∈ δa(t−1)

if δ = δ(t)
pos precon(a(t− 1), δ, S(t− 1)) // Positive precondition.

else
neg precon(a(t− 1), δ, S(t− 1)) // Negative precondition.

Figure 4.2: The rule creation algorithm.

4.3.2 Outcome preconditions

As we mentioned before, actions may sometimes produce duplicate outcomes. To counter

this, we take an extra merge step. This step checks the preconditions to see if there

are any outcomes in this rule that share them and merges them. Checking is done

by looking at the prior and counterprior counts of the variables (positive and negative

preconditions). For example, if an action a(t− 1) led to a certain outcome δ(t) while a

state variable si(t− 1) had the value v and never when it had any other value, then we

can infer that, for the action a(t− 1) to produce the outcome δ(t), the variable si must

have the value v.

Conversely, if an action a(t − 1) led to a certain outcome δ(t) while a state variable

si(t − 1) did not have the value v, and did not lead to this outcome when si had any

other value, we can infer that, for the action a(t− 1) to produce the outcome δ(t), the

variable si must not have the value v. We call these a priori necessities preconditions,

and the inference engine works to infer them at any point they might be needed. State

variables that do not change between two time steps are discarded.

4.3.3 Merging

After we have produced the preconditions for each outcome, we want to merge them,

because usually most outcomes will belong to the same case. This is done to cope with

noise and impart an ability to our algorithm to handle near-deterministic models. For

example, an action might sometimes cause a variable to increase by 10 and sometimes
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by 5. In this case, the two rules should be merged either to a weighted average or to a

local probability distribution (either is possible with our algorithm).

This merging is done by sorting the rules by their preconditions and iterating through

them, looking for “near” duplicates. It stands to reason that, if a result δi of an action

ai has priors pi and another result δj of the same action has the same priors, then the

two results must be different instances of the same mechanism (or at least be results of

different but indistinguishable mechanisms, in which case we cannot tell the difference).

Merging the rules has the effect of “filtering” them to increase their relevance. It removes

duplicate rules and replaces them with one rule that contains their weighted average (if

the variable is ordered) or a local probability distribution (if the variable is unordered)

for each rule.

If, for example, the set of outcomes to be merged, δ, contains outcomes that have a

different number of variable deltas (perhaps one outcome, r1, contains deltas for variables

s1, s2 and s3 and another one, r2 contains deltas for the variables s2 and s3). Now, also

suppose that s3 is an unordered set variable and the others are integer variables. We

can replace r1 and r2 with another outcome, r3, that contains the numerical averages of

s2:

r3(s2) =
r1(s2) + r2(s2)

2

but contains a probability distribution for s1 and s3. That is, if r1 had been observed

N times and r2 M times, we could say that:

r3(s1) =

{

r1(s1) with probability N
N+M

Null with probability M
N+M

and:

r3(s3) =

{

r1(s3) with probability N
N+M

r2(s3) with probability M
N+M

We can, of course, store the probability distribution for any type of variable instead of

taking the average, since this would retain useful information. We could then use this

information at a later time to calculate the averages.

The merging step for the preconditions has a complexity of O(n ∗ m) where n is the

number of state variables (not states), and m is the number of interesting values for

each variable. Interesting values are the values we would like to differentiate between

in each state variable. For example, an integer variable might have interesting values of

0, (0,max) and max, because we might decide that intermediate values do not hold any

special significance, while the values on the edges of this variable’s range do.
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4.3.4 Data collection

The data needed for rule induction can be collected by acting randomly in the world, but

in many domains random actions may not cover the state space sufficiently, therefore it

would be better to use directed exploration. Directed exploration the ability to choose

which areas of the state space one would like to explore at any given moment.

In directed exploration, the planner would use some metric (such as direness of the

situation or opportunity) to decide whether to experiment at a particular action. For

example, if the planner decided that it could experiment at the given time, it could check

to see whether some action had not been taken at the current state before (or not been

taken adequately), and decide to perform that action in order to gather more data.

Directed exploration is an immediate result of the online property of our algorithm,

which makes the results available to the planner as the states are encountered, and thus

aids it in making its decisions with up-to-date data.

As should be apparent, this method of exploration speeds up the data gathering process

significantly and can help us reach conclusions much more quickly and efficiently.

4.4 Using the inferred rules to act

After our rules have been created, we can use other techniques to decide our actions.

One way to do this would be deciding which state we would like to be in in the long

term, observing our current state and then using rules as transformations on the current

state to reach our target.

A planner could observe the current state, decide which state it would (ideally) like to

arrive in from the way the game has evolved so far, and construct a “chain” of actions

that would lead it through states to the final one. This process is known as planning

and the “chain” is called a plan.

Since the rules are not known beforehand, the planner can take liberties with the gen-

eration of the plan. It can, for example, specify initially that it wants a variable v to

always be maximised, and the specific action that causes this maximisation will change

depending on the rules that are generated during play.

Initially, since the player will know nothing about the actions, it can fall back on a purely

random player, which will, nevertheless, aid in exploration. When the rules start being

generated, the planner can choose whether or not it wants to explore, and run a random

action or a planned one respectively.
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Experimental results

5.1 Test methodology

The following results were obtained by first running a random player (an agent with no

set policy which performs actions at random) and let it play for 800 actions. We then

generated the rules using our algorithm off-line and added a simple planner for making

decisions afterwards.

In the second experiment, we used an online player. Initially the player knows nothing

about the world, but is imbued with planning directives, and the player must extract

information about the world on which actions it can perform to honour those directives.

5.2 Derived rules

Some of the rules derived in this brief session are shown below. For comparison, the

actual rules are included inside the listings in natural language.

The “pause” action, shown in listing 1, is not an actual action but merely a way for

the agent to effect the passing of time. This action is our “control”, showing us what

happens if we do nothing. When fighting, the player takes some damage, while nothing

happens when not fighting.

We can see that in this case the preconditions are wrong, namely that this action does

not require mana to have any specific value. The erroneous preconditions have caused

the merging step to err, creating two rules instead of one. Due to the fact that the time

spent in a fight is much more than that spent outside it, our agent has not seen enough

data to decide that “pause” does nothing when not in a fight.

23
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Listing 1 The created rules for the “pause” action.

Actual:

This action causes the player to take damage,

averaging ca. 40 points per action, when fighting.

Detected:

With confidence 18, this action causes:

hp to decrease by 48.6111111111.

mana MUST NOT be 1.

With confidence 14, this action causes:

hp to decrease by 35.

mana MUST NOT be 2.

Listing 2 The created rules for the “cast spell” action.

Actual:

This action causes mana to decrease by 8 and

the opponent to take damage.

Detected:

With confidence 142, this action causes:

mana to decrease by 8.0,

hp to decrease by 64.5774647887,

mob_health to decrease by 1.0.

With confidence 131, this action causes:

mana to decrease by 7.72519083969,

mob_health to decrease by 1.0.

hp MUST NOT be 2.

With confidence 26, this action causes:

mana to decrease by 8.0,

hp to decrease by 140.0,

mob_health to decrease by 1.0.

hp MUST NOT be 1.

The “cast spell” action, shown in listing 2, is a way for the player to cast an offensive

spell on the target, draining its health. We can see that the effects are once more

detected correctly, but the priors are misdetected. This is the result of seeing too few

states, but with directed exploration our algorithm can infer rules about the world in

far fewer steps.

The “heal” action, shown in listing 3, increases the health and mana of the player.

Health is increased by 200 and mana by 60, but we see that the detected health

increase is 116, on average. This is, as we said before, because the enemy deals damage

which decreases our health in every turn.

The “strike” action, shown in listing 4, deals damage to the opponent and starts a fight
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Listing 3 The created rules for the “heal” action.

Actual:

This action causes health to increase by 200 and

mana to increase by 60.

Detected:

With confidence 618, this action causes:

mana to increase by 58.0,

hp to increase by 116.966019417.

mob_health MUST NOT be 0.

With confidence 158, this action causes:

mana to increase by 16.0 (capped),

hp to increase by 116.53164557.

hp MUST NOT be 2, and mob_health MUST NOT be 0.

if there isn’t one. We can see that this is correctly detected and the change of the state

in fighting is correctly interpreted. The decrease in health is, again, because we get

dealt damage by the opponent when in a fight.

5.3 Planning

To obtain initial test results, we used a rudimentary planner that acts in very basic

ways to ensure its survival, yet makes full use of the rules we have created. We have

programmed the planner to do three things necessary to our agent’s survival and success:

• If our health is lower than the amount we can heal from the maximal health,

perform a healing action. For example, if the healing action would restore 100

health and our health is 99 points below the maximum, do not heal. If we are 100

or more points below the maximum, then heal.

This is done purely to avoid wasting healing power, which might not be abundant

in a more complex model, should we choose to use one.

• If the previous action need not be done, then check if we are currently fighting. If

not, perform an actions that will lead us to a fighting state.

This is done because the agent gains experience from fighting, so it needs to do as

much of it as it can.

• If we are in a fight and an action causes harm to an opponent, perform it. This is

done so we defeat our opponent, obviously.
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Listing 4 The created rules for the “strike” action.

Actual:

This action causes "fighting" to change to 1 if 0,

mob health gets reset to 10, and damage is dealt

to the opponent (mob). The opponent dies when

mob_health is 0, so fighting turns to 0.

Detected:

With confidence 86, this action causes:

mana to increase by 1.0,

hp to decrease by 47.9534883721,

mob_health to decrease by 0.823529411765.

mana MUST NOT be 1, and mob_health MUST NOT be 0.

With confidence 79, this action causes:

hp to decrease by 46.25,

mob_health to decrease by 1.0.

mana MUST NOT be 2,

and hp MUST NOT be 2,

and mob_health MUST NOT be 0.

With confidence 42, this action causes:

hp to decrease by 34.3333333333,

mob_health to decrease by 1.0.

mana MUST NOT be 1,

and hp MUST NOT be 1,

and mob_health MUST NOT be 0.

With confidence 37, this action causes:

mob_health to decrease by 1.

mana MUST NOT be 1,

and hp MUST NOT be 2,

and mob_health MUST NOT be 0.

With confidence 13, this action causes:

hp to decrease by 35,

mob_health to increase by 10,

fighting to change to 1.

mana MUST NOT be 1,

and hp MUST NOT be 1,

and mob_health MUST NOT be 1.
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After the random player has run and gathered the data, we can now use the above

generated rules to play. Initially, the current state is inspected and the actions with

preconditions that do not match ours are culled. Afterwards, the planner will decide

which action to use according to its directives.
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Figure 5.1: The health fluctuations of a random player

The graph in figure 5.1 shows the health fluctuations of a random player while it operates

in the world. As we see from the graph, the random player’s health fluctuates wildly, as

we would expect. We, in fact, hard-coded a directive into the player which did not allow

it to drop its health below 200 (because it would die and the experiment would end), so

the drops in health in the graph could very well have resulted in the player’s death, had

it not been for our intervention.

In figure 5.2, on the other hand, we can see that the health of the player fluctuates

minimally, between about 880 and 1000. This is due to the fact that our algorithm

calculated that the healing action will increase the player’s health by 120, so it performed

this action as soon as it was possible to gain the full amount of health (to avoid wasting

time and healing energy). The decreases in health below 880 are because the player

can, sometimes, be dealt large amounts of damage that will get its health to a low level

before it can heal again.

This player was trained using the results of a random player for about 1800 samples.

Our algorithm was run on these results and produced rules, which were kept fixed during

the offline player’s play.

In figure 5.3, the player starts out with no knowledge (essentially a random player). It

then performs actions until it learns enough to establish a few rules. We can see that
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Figure 5.2: The health fluctuations of a player with a policy
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Figure 5.3: The health fluctuations of an online player with a policy

by 150 samples it has learnt rules good enough to play optimally, and its health never

drops below 900 since (except for cases of large damage, where the play is still optimal).
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Discussion and conclusion

6.1 Strengths

We believe that our algorithm is an improvement over previous ones for numerous rea-

sons. It is also clear that it has some disadvantages, but we believe that these are

significantly outweighed by its advantages. Some of its advantages are:

• It operates at a high level, which means that the rules it generates are very com-

pact. It not only infers which variables changed, but also how they changed,

usually with specific values. The more deterministic a domain, the better the val-

ues our algorithm provides. This offers an obvious advantage to planning, because

the planner can predict with greater accuracy how an action is going to alter the

current state.

• It needs very few data to start creating rules. Even from the first input datum, it

infers useful rules that fit the data as best it can. These rules may later be revised,

superseded, or reinforced, but there is virtually no bootstrapping period as we

can begin to perform actions that are more relevant to the environment almost

immediately.

• It is an online algorithm, which means that there is no lengthy calculation step

after a sequence of events. It can refine the rules as they come in, and then pass

them off to the planner so the quality of the decisions keeps improving.

• Since it is an online algorithm, it runs in O(n) time and O(1) space with n being

the number of observed states. It uses constant space because it does not store all

the state data, so the space is not dependent on the number of observations but

29
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on the number of state variables. The O(n) time complexity is because each state

only gets processed once.

• It provides the planner with confidence measurements on each rule. This means

that the planner can actively decide if it wants to experiment with another area

of the search space. For example, if the inference has not seen enough cases of a

certain state variable having a certain value, the planner can decide to visit those

areas of the search space in order to obtain more diverse data. Other algorithms

do not provide such an option.

6.2 Weaknesses

As usual, there are always tradeoffs, and our case is no different. Some of the disadvan-

tages of our algorithm are:

• It is not well suited to purely stochastic environments. If the world is purely

stochastic, the advantage of precise reporting our algorithm offers will be lost.

A probability distribution can still be of use, but our technique might not be as

efficient in these cases.

• It cannot handle multiple variable dependencies. If a result is dependent on the

combined value of two or more variables, our algorithm will not detect this cor-

rectly. This does not mean that our algorithm cannot detect dependencies of more

than one variable, but rather it cannot detect when a precondition requires two

variables to have specific value combinations. For example, if variable A is re-

quired to be True when variable B is False, but it is required to be False when B

is True, our approach will not be able to reason about the combined state of the

two variables. Support for this can be added with a few simple modifications, but

our specific problem does not have a demand for this and thus it is left as future

work.

6.3 Future work

Our work is by no means complete. Areas on which our approach might be improved

include:

• Including support for multiple variable dependencies. If the problem demands it,

our algorithm can be modified to support dependencies on combinations of multiple

variables by combining the values of the variables when looking for preconditions.
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• Using the algorithm with a planner that can use the state information our algo-

rithm provides to arrive to a plan more quickly (directed exploration). This would

involve experimenting with unseen states to improve the quality of the rules in a

shorter time span.

6.4 Conclusion

Inspired by the way humans approach problems, we have presented a method to infer

rules about the world and generalise examples of data so that we can apply the actions

to unknown circumstances.

We have demonstrated the advantages of our algorithm, namely the fact that it is online,

it is amenable to directed learning, and it is fast with few memory requirements.

The results have been demonstrated, and they show a marked increase of the ability of

the player to function in the game, as compared to the random player.
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