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OV TOAYOVOdEL ®aL OL virOAowmoL EexAéfovpe vOTES Yo va yeptoovue Eava, Ty
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0p6po ™G, Tov Tdyo mov yapoyehd oe OAOVG noL APTVEL TOV TAQAOELOO VAL
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Toéha naL TV vndaidtTnTa delyvovrog pog Ohovg wg va fovue ehevBeggol, Tov
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OUVOYT| TNG OLROYEVELOS, ®oL 1] 00eQdPT) HOU 7tov MOVO pe €xpnEn Mmpouoteiov
LWITOQE( VO TOLQOMOLALOTEL JTOV TTAVTA Pe apnVeL tlow Evav xalitepo dvBowmo.
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INTRODUCTION

hy should Go in hardware interest me? This is the question,
which I enquire here. First, what is, that interests me? Certainly,
one finds interest in what has to do with him.

Why does Go interest me? I was never really a character of the

competitive kind. Playing a game, mental or physical was totally

uninteresting to me as the ultimate motive of winning, which is

the cornerstone of most games, was practically non-existent in

me. Dismantling toys or painting wherever I could was all I
desired. Thus, as this artist of whichever art, I entered the Computer Science
department of the Technical University of Crete, in the same fashion as probably all
the children of the world; listening to parents, teachers, politicians, priests and all
the mighty and knowledgeable people inhabiting this by all means crazy planet.

When my pre-graduate studies came to an end and my Thesis was all that was left,
destiny with its vast irony had kept a game for me as my Thesis subject. Thus, I
approached Go with a moderate interest initially. If one doesn’t like games during
his childhood, how could he ever like them long after his puberty? And at this point
I started playing Go. Attacking fiercely lead me to a loss, defending as best as I
could definitely lead me to a loss, and trying to remember good moves by
acknowledged Masters of the game always lead me to an utter loss. As much as a
cliche it clings nowadays that the East thinks opposite than the West, Go was in
fact an apt proof of this.

The most successful game I played during the first month of my Thesis came when
despaired, I didn’t strive to win, or lose. It was a boring match by all means between
me and the computer. Quiet soon I realized that the quality of mind that I had
named boredom was in fact only a response to the opponent’s moves deprived of
any desires whatsoever and with the single goal of neither winning nor losing. It was
a game of balance with my ambitions in fact. Playing Go many more times to test
my new observation, this quality seemed to lead to quiet consistent, non-negative
scores. What I was doing, was acknowledging the opponent’s right to move freely
on the board and occupy space as much as myself. I still play Go because of this.

Backgammon is a "man vs. fate" contest, with chance playing a strong role in
determining the outcome. Chess, with rows of soldiers marching forward to capture
each other, embodies the conflict of "man vs. man". Because the handicap system
tells Go players where they stand relative to other players, an honestly ranked
player can expect to lose about half of their games; therefore, Go can be seen as
embodying the quest for self-improvement—"man vs. self".



Why does computer hardware interest me? First of all hardware gives me the sheer
joy of creating something apt that I see working afterwards. Inspiring “life” to
materials which are considered lifeless ( even though they are no more lifeless than we
are) is a feeling that everyone who has been dismantling and re-soldering his toys as
a kid is aware of. Even if programming hardware nowadays is closer than ever before
to software programing, where no deep knowledge of the complexities of the world
of electrons is needed, still hardware has the aforementioned taste. Furthermore,
the inherent parallelism of hardware, provides a refreshing new view for every
software programmer as myself.

Thus, examining the game of Go under the prism of, and taking advantage of
hardware’s own characteristics appeared as a thoroughly interesting subject to me in
the end. Constructing a processor, with FPGA technology which was available to
me at that time, capable of playing Go competently, was something that oversized
the time constraints of a Thesis subject. But, what I ended up with, is an elegant
solution to some of the fundamental problems which every Go programmer might
have to face. The solutions proposed serve perhaps two roles to you, reader. They
are firstly some ( I believe ) elegant examples of how computer science problems in
the field of board games can be mapped to hardware designs, and secondly, they
provide a new view to the much researched problem of computer Go for a software
programmer during these days of multi-core CPUs and the availability of true
parallelism in software.
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RELEVANT RESEARCH

A ‘Brief ‘Review of (omputer Games

2.1 CLASSIFICATION OF GAMES

an has been inventing and playing games through centuries as a
means of understanding the way the world and himself in it
functions. Creating a micro-cosmos, based on a set of prede-
fined rules enables one to observe the development of a
miniature of the world he lives in. Success in adapting to these
rules, whether it leads to a victory towards another man, luck,
or the self, gives the illusion of a god-like power and the
psychological security arising from a better understanding of
nature’s workings.

Game theory, a field of mathematics which came into being after John Von Neu-
mann and Oskar Morgenstern wrote their book “Theory of Games and Economic
Behavior” on 1944, has extensively researched the nature of games, and has pro-
vided a solid theoretical basis on which one can classify a game. The classification
itself has, as a side-effect, enabled computer programmers to develop different fami-
lies of algorithms, which can be applied to each game category. Thus, an identifica-
tion of the nature of a game according to what game theory suggests, enables the
researcher to prune his search space.

Games are initially classified into one-player and multi-player ones. One-player
games are considered those which involve decisions to problems only by a single
individual player with, or without, the presence of randomly acting players which
make “moves by nature” and serve the role of a dice.

Multiple-player games are classified according to the cooperation-forming criterion.
A game is cooperative if the players of the game can form groups of common
interests, bound under a set of mutual commitments. One might say that
cooperative games permit the communication among players of the same group
while non-cooperative ones don'’t.

Games are further classified as symmetric or asymmetric according to a role criterion.
In a symmetric game the identities of players can change without altering the payoff
to the strategy adopted by each player. A symmetric game’s outcome depends on
the strategy employed and not by who employs that strategy. The notorious
“chicken” game, which often constitutes the climax of 8os teen movies and which
involves two cars running towards each other with the aim of proving the defiance
towards death of one of the two “players”, is an example of a symmetric game. The
dictator game on the other hand is non-symmetric (as the dictatorship itself).



The flow of a game’s resources classify games into zero-sum and non-zero-sum. In zero
sum games, the cumulative benefit of all players is always constant, or else, one
player benefits only at the equal expense of others. Poker, Go and chess are zero-
sum games, exactly as most of the classical board games are.

The ability of players to move simultaneously classifies games as simultaneous or
sequential. One quiet non-obvious case of simultaneous games are those, in which
actions of each player is unknown to the others. This effectively makes the game
simultaneous. At the same time, sequential games imply complete or only some
knowledge about other players’ actions.

The latter further classifies sequential games in perfect-information and imperfect
information games. A game is one of perfect information if all players know the
actions made in the past by the rest of the players. Go and chess are again perfect
information sequential games.

Finally, time-wise, games can be either infinitely long or finite. Most people (except
for mathematicians) are interested in games which end in a finite number of moves
and which contain a finite number of players and outcomes.



2.2 THE GAME oF Go
2.2.1 History

egends trace the origin of the game to Chinese emperor Yao
(2337 - 2258 BC), who had his counselor Shun design it for his
son, Danzhu to teach him discipline, concentration and
balance. Other theories suggest that the game was derived
from Chinese tribal warlords and generals, who used pieces of
stone to map out attacking positions, or that Go equipment
was originally a fortune-telling device.

The earliest written reference of the game is generally
recognized as the historical annal Zuo Zhuan ( c. 4th century BC ), referring to a
historical event of 5§84 BC. It is also mentioned in Book XVII of the Analects of
Confucius ( c. 3rd century BC). In all of these works, the game is referred to as y7
Z%. Today, in China, it is known as weigi ( [E[f ). Go was originally played on a 17 x
17 line grid but a 19 x 19 grid be-came standard by the Tang Dynasty.

In China, Go was perceived as the popular game of the aristocracy, while Xianggi
( Chinese chess ) was the game of the masses. Go was considered one of the four
cultivated arts of the Chinese scholar gentleman, along with calligraphy, painting
and playing the musical instrument guqin.

Go was introduced to both Japan and Korea - where it is called baduk - somewhere
between the sth and 7th centuries AD, and was popular among the higher classes. In
Korea, the game evolved into the variant called Sunjang baduk by the 16th century:.
Sunjang baduk became the main variant played in Korea until the end of the 19th
century.

In Japan - where it is called Go (&) or 7go (Ffi#: ) the game became popular at the

Japanese imperial court in the 8th century, and among the general public by the 13th
century. In 1603 Tokugawa Ieyasu reestablished Japan’s unified national government.
In the same year, he assigned the then-best player in Japan, a Buddhist monk named
Nikkai to the post of Godokoro ( Minister of Go ). Nikkai took the name Honinbo
Sansa and founded the Honinbo Go school. Several competing schools were foun-
ded soon after. These officially recognized and subsidized Go schools greatly deve-
loped the level of play and introduced the dan/kyu style system of ranking players.
Players from the four schools ( Honinbo, Yasui, Inoue, Hayashi ) competed in the
annual castle games, played in the presence of the shogun.

Despite its widespread popularity in East Asia, Go has been slow to spread to the
rest of the world, unlike other games of ancient Asian origin, such as chess. Go did
not start to become popular in the West until the end of the 19th century, when
german scientist Oskar Kosrchelt wrote a treatise on the game. By the early 20th
century, Go had spread throughout the German and Austro-Hungarian empires. In
1905, Edward Lasker learned the game while in Berlin. When he moved to New
York, Lasker founded the New York Go Club. Lasker’s book Go and Go-moku
healped spread the game throughout US and in 1935 the American Go Association
was formed. Two years later the German Go Association was founded. As of 2008,
the International Go Federation has a total 71 member countries.



2.2.2 Rules

ccording to Game Theory, Go is a multiple-player, non-
cooperative, symmetric, zero-sum, sequential, perfect-
information, discrete and finite game. Go is a contest between
two people to secure territory. The territory consists of 361
points which are formed by the intersections of 19 vertical and
horizontal lines drawn on a wooden board. Players use lens-
shaped discs, called stones to mark off their territory. One
player plays black, the other white, in alternating turns. The
board which is empty in the beginning, gradually fills as players
place their stones. Contrary to most western games, motion in Go takes the form of
adding to what is already in place rather than moving the position of the pieces.
Once put on the board, a Go stone is stationary unless captured. The player
controlling the largest total area at the end of the game is the victor.

Quoting Kaoru Iwamoto:

“There is no better way to learn how Go is played than to go through a short demonstration.
For the sake of brevity, the game in this chapter takes place on a 9x9 board instead of the usual
19x19, but the rules of Go are the same no matter what the size of the board. You can play
through this game on a 9x9 Go board, which can be made by masking off part of an ordinary
board, or you can follow it by just looking at the diagrams. Since the stones do not move about,
go diagrams are easy to read. In Dia. 1, 1 is the first stone played, 2 the second, and so on.

Besides getting a general idea of the game in this chapter you will learn exactly what territory
7s, how it is formed, and how it is counted. You will also see how stones are captured, but we
will be going into the that matter in more detail in Chapter 2.

Dia 1 As always in Go, black plays first. You are free to put your stones wherever you like, but
notice that the players bere do not play right on the edges of the board and will not start to do so
until later in the game. This is a good policy.

ﬁi&i

LIRS
y

Dia 2 With 7 and 9 Black begins to stake out some territory in the lower left corner.

Dia 3 The area in the upper right corner starts to fall into Black’s bands, too. It is bounded
above and to the right by the edges of the board, and is walled off below by a solid row of black
stones. It is still open to the left, and there is a small gap at the point marked @', but Black will
deal with these matters in due time.
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Dia. 2 Dia. 3

When Black plays 15 we are presented with an example of threatened capture, or atari. White
@ has become surrounded on three sides by black stones, and if Black is permitted to play on the
fourth side at b, White O will be removed from the board.

Dia 4 White saves bis threatened stone by playing 16. Black 17 is another atari, this time
against O , and White 18 is another saving move. The end of this diagram sees Black in
control of the lower left corner, White in control of the lower right and Black ambitiously
stepping out to 21 on the upper side.

Dia § White 22 threatens Black’s while structure in the lower left, although this is something
which is not obvious except to an experienced player, and Black has to strengthen bis position
with 23. Now White counterattacks with 24 and 26, and the next diagram will witness the
capture of black ® and 27.

Dia. 4 Dia. 5

Dia 6 White captures the two black stones by playing 28,30 and 34, removing them from the
board and putting them in the upturned lid of his bowl when he plays 34. The two points
where they rested bave now become Whites territory, along with a good many more in the
upper left corner, while Black has walled off the upper right corner. White 32, which was
played just to test Black’s defenses, is in atari, being surrounded on the three sides by Black 33,
D | and B, and cannot hope for salvation. Black next plays 35, cutting off the white stones in
the lower right corner and making them vulnerable.

Dia 7 White defends his position with 36, and now both players begin to complete the walls
around their territories by playing at the edges.



Dia. 6 Dia. 7

Dia 8 At the end of this diagram all the boundaries are completed. Both players recognize that
there is nothing more they can do to enlarge their own territories or to reduce their opponents,
50 the game is over. Let’s count and see who has won.

Counting

Dia 9 A players territory consists of the vacant points be bas surrounded. In the upper right
corner Black has surrounded nine points - see if you agree. The point D does not count, even
though it is in the middle of Black’s territory, because it is occupied by a black stone.

In the lower right corner White has six points of territory. There is a kind of diagonal break
between the two stones marked © |, but that is all right. The territory is surrounded because
there is no route leading out of it along the lines on the board that does not run into a white
stone.

What about the lower left corner? This is Black’ territory, but there is the white stone d left
stranded within it. As was said before, there is no saving that stone, and according to the rules
of Go Black need not actually capture it by playing inside his own territory at ¢. When the
game is over be just takes it from the board as his prisoner, leaving himself seven vacant points
here. Again there is a diagonal break between the two stones marked ® nd again that is all

right.

The rules of Go also state that one point is to be subtracted from a player’ territory for every
stone lost, so we have to figure another point for White D . Instead of subtracting one point
from White’s score for this stone, it is easier to add a point to Blacks territory, so we shall
follow that course and count eight points for Black in the lower left corner: six vacant, one that
becomes vacant when white é is removed, and one more prisoner point’. That is, Black gets
two points for Q.



In the upper left corner White bas surrounded ten vacant points, but on two of them, the two
marked X, black stones have been captured. As before, we shall add the two points for them to
White’s territory bere instead of subtracting them from Blacks, making Whites total in this
corner twelve. The score is thus:

Black White
Upper right 9 points Lower right 6 points
Lower left 8 points Upper left 12 points
17 points 18 points

White bas won by one point. What about the vacant point in the center of the upper edge? This
is a neutral point, a sort of no-man’s-land between the black and white lines, and as such it
counts for neither player. The method of counting we have just described is the natural one and
7s used by good players to count the territories during the course of an actual game. However, it
gives too much opportunity to human error to be entirely trustworthy, so when a game is

played out to the end, the players use the following foolproof procedure...”

Kaoru Iwamoto continues with a proposition for a safer territory counting method,
which is out of this subchapter’s main subject, which is to provide a basic introduc-
tion to the basics of a Go game to the reader, so that he can follow the rest of the
text.

There has been a very deep research by Go professional players of the present and
the past on Go tactics and strategy, as mainly due to its large board size, Go is an
extremely complex game as far as evaluating the value of a move is concerned. This
becomes obvious when one sees the place which Go owns in Japan, where it is
considered more than a game. Go is taken very seriously, as demonstrated by the
fact that professional Go players, who acquire their distinction after rigorous
matches, earn their living teaching Go or evaluating Go matches.

The subject of a good game of Go though, is one of another Thesis, which must
follow this one and will deal with the question “what is a good move to play given a
board configuration?”. The most important question about Go for this Thesis is this:
“How can stones be efficiently placed on the board and how can we know fast which stones are
captured?”.

In order to be able to follow chapter 3, three more important Go concepts are
needed to you, reader: liberties, groups of stones, cuts and suicide moves. As Kaoru
Iwamoto says: “A single stone sitting in the middle of the board, as in Dia 10, may be
compared to a man standing at an intersection in a big city.”. A single stone placed in the
middle of the Go board has initially 4 liberties as shown in Dia xx . If all four
liberties are occupied by opponent stones, then this stone is considered captured
and is removed from the board and counted, as explained before, as one more point
in the opponent’s score. Correspondingly, Dia 12 presents the liberties of stones



sitting at corners or on the edges of the board, which are 2 and 3 liberties
respectively. Realizing this, one can now understand Kaoru Iwamoto’s perhaps
urgent advice in his introduction quoted above: “notice that the players here do not play
right on the edges of the board”; that is, edge stones are captured easier.

X ‘x——xéx——

Dia. 10 Dia. 1x Dia. 12

Groups of stones of the same color are considered as so/idly connected when they are
joined together by direct connections along the black lines of the board. Such a
group is shown in Dia 13. The unexperienced reader might mistake the black
stones of Dia 14 as a solid black group. It is in fact though only, two, disparate
groups which are separated between the ® marked stones. This very point of
separation is called a cut.

oo

Dia. 13 Dia. 14

A solidly connected group of stones functions as one. Thus, in order to be captured,
all its perimetrical liberties have to be occupied by opponent stones. Counting
these liberties is what is essential in order to decide whether a group is captured or
not. Dia 15 and Dia 16 show two groups with 6 and 5 liberties, respectively.

%ﬁ

Dia. 15 Dia. 16

X
XX
XX
0
|

XXX




2. 2.3 Computational complexity

t has been quoted numerous times, and probably in all Go-
related publications that Go is indeed a complex computer
problem to solve, or at least most of the traditional techniques
used in solving similar problems are quiet inapplicable in the
Go field. This creates a misunderstanding.

What we have to realize about Go is that we’d really like to use

traditional AI searching techniques like MINMAX with AB-

pruning, but we can’t, mainly because there is no admissible
evaluation function. Most reports may make people believe that there should be
somewhere some new, radical, totally different method of solving Go. This is not
true. We just search for a decent computer Go player until someone comes to unite
things under some good evaluation function. Computer chess research had begun
with a similar state of mind around the 70s. Research was back then all about
mimicking the human way of thinking and translating it to a computer program.
Human knowledge is incomplete though, and knowledge on how man thinks is
twice that incomplete. Only after man realized that computers should better do
what they best can do, that is calculations, could computer chess take off from a
level C player where it was stuck with the previous state of mind.

There are some important facts regarding Go’s complexity, computation-wise,
which every researcher observes. These initial confrontations occur when one tries
to use MINMAX search along with some pruning, to answer about what is the best
move for a board position.

The first obstacle is the traditional Go board’s size. A 19x19 board, leading to 361
possible moves in the beginning and 200 possible moves on average during the
game for about 200 rounds, results in a search space, larger than any technology
nowadays could cope with, as far as memory consumption and computation speed
are concerned. That means that either custom machines have to be built up to
tailor the Go problem, or the pruning algorithms have to become more sophisti-
cated. Distributing the computations needed to search deeper in the moves tree
among hundreds of custom FPGAs is a solution that fits best the first scenario and
studying the way professional players think while pruning less promising parts of
the board fits the second one. My own opinion on this is that the first strategy is
more attractive, simply because this depends solely on resources , that is money,
while the latter on easily fallible methods. The following table shows a comparison
of the combinatorial complexity among the most known games.



GAME COMBINATORIAL

COMPLEXITY
Go 10 400
Chess 10 123
Othello 10 58
Checkers 10 32

The above estimation is done with the Bl formula where B is the branching factor
and L equals the average game length.

Furthermore, a move played during the beginning of the game, the opening stage as
it is called, might prove useful only after 100 moves. That means that evaluating a
move with a static analysis of the board, like counting the number of settled areas
with strong groups, or evaluating the quality of the patterns created, can be totally
misleading for the global quality of a player’s stones. Pattern recognition is a field
where the human mind excels, and in a highly visual game as Go, where stones
remain on board for a long time unless captured, humans can be very efficient. The
inability to map this knowledge to a concrete evaluation function is a major obstacle
in using local searching techniques in Go.

2. 2.4 History of Computer Go

or a problem, which contains subproblems, for which no
definite optimal solution has been proposed, being able to
quickly prototype new ideas is a major consideration.
Therefore, the short history of computer Go comprises of
ideas borrowed from other computer fields and mainly the Al
field, and programs implementing those ideas into complete
Go playing software.

Bruno Bouzy in his paper “Computer Go : an AI oriented Survey”
explains the history of computer Go:

“It seems that the first Go program was written by D. Lefkovitz [Lefkovitz 60l. The first
sciemtific paper about Computer Go was published in 1963 {Remus 631, and it considered the
possibility of applying machine learning to the game of Go. The first Go program to beat a
buman player (an absolute beginner at that time) was the program created by Zobrist {Zobrist.
69,7061 . It was mainly based on the computation of a potential function that approximated
the influence of stones. Zobrist made another major contribution to computer games by devising
a general, and efficient, method for bashing a position. It consists of associating a random bash
code with each possible move in a game, the bash of a position being the XOR of all the moves



made to reach the position {Zobrist 70al. The second thesis on Computer Go i Ryder’s [Ryder
71l

The first Go programs were exclusively based on an influence function: a stone radiates influ-
ence on the surrounding intersections (the black stones radiate by using the opposite values of
the white stones), and the radiation decreases with the distance. These functions are still used
in most Go programs. For example, in Go Intellect {Chen 89, 90, 921, the influence is propor-
tional to 1/2distance, whereas it is proportional to 1/2 distance, in Many Faces of Go [Fotland
86, 931.

Since the early studies in this field, people have worked on sub-problems of the game of Go,
either small boards [Thorpe and Walden 64,721, or localized problems like the life and death of
groups [Benson 76].

The first Go program to play better than an absolute beginner was a program designed by
Bruce Wilcox. It illustrates the subsequent generation of Go programs that used abstract.
representations of the board, and reasoned about groups. He developed the theory of sector lines,
dividing the board into zones, 5o as to reason about these zones [ Wilcox 78,79,84, Reitman and
Wilcox 791. The use of abstractions was also studied by Friedenbach {Friedenbach 80].

The next breakthrough was the intensive use of patterns to recognize typical situations and to
suggest moves. Goliath exemplifies this approach {Boon 90l. State-of-the-art programs use all
these techniques, and rely on many rapid tactical searches, as well as on slower searches on.
groups, and eventually on global searches. They use both patterns and abstract data structures.

Current studies focus on combinatorial game theory [Mueller 95}, {Kao 971,
learning{ Cazenave 96cl, [Enzenberger 961, abstraction, and planification [Hu 95}, {Ricaud
95, 971, and cognitive modeling {Bouzy 95al.

The eighties, saw Computer Go become a field of research, with international competitions be-
tween programs. They also saw the first issue of a journal devoted to Computer Go, as well as
the release of the first versions of commercial programs. In the nineties, many programs were
developed, and competitions between programs flourished, being regularly attended by up to 40
participants of all nationalities {Fotland and Yoshikawa 971. An analysis of the current state
of the Computer Go community has been published by Martin Mueller [ Mueller 981.”






Staze of the < Art in (omputer Go

3.1 BOARD REPRESENTATION

Imost all research in the Go field has been and is done
naturally in software and a high level one. How much could
some idiomatic high level code or algorithm or data structure
running on a general-purpose processor help in the design of
custom hardware? Practically, very little. No meaningful,
complete and elegant solution has managed till today to unite
software and hardware under a common language that
expresses high level concepts and is at the same time translated
automatically into an efficient hardware design. On the other
hand, the more a software solution strives for performance, the closer the
programmer has to come to the underlying hardware.

Computers playing Go have been taking part in organized matches against other
computers and against humans for the last 20 years. The time constraints of a real
match instead of an “in vitro” benchmark of a program has lead to the optimization
of certain, key parts that almost every Go implementation has to consider. We shall
examine together these parts under the prism of GNUGo and MoGo, two different
computer Go programs whose designs, at least initially, represented the two most
popular but distinct approaches in tackling the game of Go.

3.1.1 Theboard iself

The question of how to represent the board itself comes as a natural first. A
straightforward approach for any software programmer would indicate to
implement this as a two-dimensional array of values which would represent an
empty position, a white, a black stone or a border. These 4 distinct states would
require 2 bits of information. Moreover, as the indexing of a two-dimensional array
poses the extra overhead of a multiplication and addition to retrieve the exact
memory position of the wanted board position in a computer’s one dimensional
memory, one could argue that an one dimensional array for the board would sufhice,
and as a gift we spare some cpu cycles (the complexity would be in either case constant as
an array structure guarantees O(1) time complexity, so we only decrease the hidden constant

factor).

The representation of the board is tightly dependent on the context of its use; that
is the move generation algorithm employed to guess a good move. If a board has to
be continuously copied and altered as in a MINMAX searching strategy, then
economy of space is the designer’s top priority. If on the other hand, a capable static
evaluation of the board is used to guess the next move, then a board, capable of
retaining as much information on the groups and state of stones on it in the form of



various caches, will be able to feed the algorithm with the needed information with
great efficiency.

Without going into much detail, it suffices for now to say that GNUGo employs a
combination of local searching techniques and complex board analysis for the move
evaluation step. Because of this, the board has to be updated and copied
continuously during the evaluation stage. At the same time, the same board state
can occur fre-quently in the different sub-branches of the search tree, leading to a
duplication of information and a waste of computation cycles to reevaluate this
state’s position. Therefore, a hashing scheme has been used by GNUGo’s designers
for the repre-sentation of the board state, based on a popular technique from the
world of chess programming called Zobrist hashing.

The idea behind Zobrist hashing is that if we could represent a board state by a
single value, different than any other value representing some other board state, and
thus unique, then we could use this value as the key of a hash table, which would
store all the results of the board evaluation for that board state. That means, when-
ever this board state is met again in a search tree, we can fetch all its evaluation
information in constant time from the hash table.

The characteristic of Zobrist keys, which makes them attractive for board games
like Go and chess is that due to the way they are implemented, you can manage the
keys incrementally. That means, whenever a new move is played, then the new hash
key which represents this board state, can be directly computed from the previous

key, without examining all the stones on the board again. For implementation
details on Zobrist hashing see [REF: ZOBRISTL

On the other hand, MoGo follows the path of Monte-Carlo simulations for move
evaluation ( see below for a deeper analysis ). It suffices to say, that for such a design, a
Go board is needed, which is able to perform its basic operations like, putting a
stone on a position, or capturing groups of stones or emitting an error for an
occupied position, at the maximum possible speed. In this approach the moves are
generated in a random fashion, thus there is no delay from the move evaluation
stage and the board is constantly fed with new moves. The speed with which
complete random matches are played, or in other words, the number of completed
random matches played in a defined slice of time, are directly correlated to the
efficiency of this approach. Note, that this does not mean by any case that the
GNUGo approach could not take advantage of a fast board; it means only that the
cost of the basic board operations is negligible compared to the time spent on the
complex board evaluation functions which GNUGo employs.

An array provides still the fastest way to change the state of board positions. And in
the pure Monte-Carlo approach, no other information has to be held in the board
other than the board itself. Thus, the only factor which could determine the
performance of a board is the stone capturing algorithm, which is coincidentally
this thesis’s main contribution.



3.1.2 Thestone

One could argue that the board without the stones needn’t possibly hold any other
information other than its size and perhaps the score or whose turn it is. Usually
though, all the information on strings of stones, safe or weak groups etc. is held in
the board structure. From a software standpoint this is convenient as the board
plays the role of a centralized object holding most of the game’s state. Moreover,
since in Go there is no possibility of having two boards per game ( az least as far as I
know there is no such variation ) this information is also not replicated in more than
one instance.

The stone itself thus is represented by the board position itself, whether it is an
array or a list and is identified by an array or a list index. There is no need to hold
any other, inner, information in each stone so in software one doesn’t find a distinct
class or any other mechanism to store state for the stone. The value of a board
position (white, black, empty, border) is the same as the stone or the lack of it.

3.1.3 Themove & the capruring

The very playing of a move, and not the generation of it, is implemented according
to the data structure chosen to implement the board positions. Thus, for an array it
is a simple memory assignment, or for a list a traversal to find the wanted position
which predates the assignment, and the assignment itself.

The move is what affects a Go board. Not dice, not luck, not random players.
Everything starts with a move and all the changes of the board are emitted from
where the last stone was played. Those changes are reduction of liberties, merges of
groups, ko state, and captures of stones.

A Go board program must support these fundamental changes and modify its inner
structures to reflect the new board state. Captured groups may have to be removed
after a move has been played on the board. From the programmer’s standpoint,
deciding whether a group is alive or dead is the first major design obstacle. A group
is captured if all its perimeter is occupied by stones of the opponent, and examining
the perimeter of one stone is an operation that is inherently recursive as after
examining our perimeter and finding no empty positions, we have to examine our
perimeter’s perimeter. Recursion, that is the case where a function calls itself, is a
mostly useful idea which was introduced with the LISP language and till recently
was a privilege of the software world. Considerable work in this field has been done
by {REFL. Still, I think that for most of the readers, the following iterative solution
to the capturing problem will be more easy to grasp, while at the same time, equally
efficient with the recursive one.

Starting from the played move we check its four neighbours. If they are the same
colour as we are then we insert them in a queue. Then, for every stone in the list we
examine its own neighbours and insert them accordingly if 1> they are not already
present in the list and 2> are the same color as we are. If we find an empty
neighbour position then the list is cleared, we stop searching and know that there is
at least one liberty and thus our group is safe. If on the other hand no empty
neighbours are found and the list is emptied, it means that we are surrounded by



borders and/or opponent stones and therefore captured. In this case all the stones
in the list are removed from the board or pushed in another temporary list as
captured stones.

Still, if we cache for speed each group’s liberties, after removing the captured stones
we have to recount the liberties of the group which caused the capture, as they will
have increased. The previous algorithm does not demand such a cached knowledge
and counts each group’s liberties from the beginning each time a new move is
played. In reality though, most programmers retain this information and for this
reason I think I should include this information here on how to redistribute these
liberties for the sake of completeness. Most programs remove the stones of the
group or groups, which caused the capture, from the board and replay them,
counting their new liberties incrementally as each stone is placed and merged with
the rest of the group. Such a simple solution compared to another which would
imply much more bookkeeping, is probably the result of profiling the two
approaches and finding the best complexity versus efficiency ratio. I have not tested
these two approaches in software, so this is something that you have to research
yourself.

3.2 MoVE GENERATION

Even if this thesis is not about move generation and considers the move generation
& evaluation module already present, one has to go a little deeper in move
generation approaches in the field of Go to understand the constraints each
approach poses on the board implementation strategy.

3.2 .1 Classical approach: Divide & Conquer

Programs based on classical AI techniques to solve Go, such as the GNUGo engine,
conceptually follow the same game plan. They use a break-down of the whole game
and each game round apply local searches and global tactics. Their playing style is
based on goal-oriented sub-games, that means, the best move in this situation is
probably the best move globally. Clearly this is not always the case in Go but this is
adequate for a competent computer Go player.

In more detail, playing goal oriented sub-games involves the evaluation of stone
strings, their connections, their dividers, their potential, eyes and of course life and
death analysis. If we wanted to further divide the programs which use the divide
and conquer approach (no pun intended ) we would find two different strategies. The
first group of programs bases its analysis on a zero depth global move evaluation.
This evaluation value is the weighted sum of various local tree searches on parts of
the board and of domain dependent knowledge. In this group we find programs like
GNUGo, Explorer and Handtalk. The second group applies moreover a shallow
global tree search using some conceptual evaluation function in addition to the
local searches. In this group we find Many Faces of Go, Go Intellect, Indigo2002.

The advantages of using a divide & conquer approach is today mostly a matter of
computer resources. This approach is feasible computationally on current
computers, while at the same time being locally precise. Being locally precise means



that a beginner or medium level player can indeed improve by playing against such a
computer player, learning to shape his stones well and to deepen his reading ability
in life and death problems.

On the other hand, the break-down approach as you can guess is not valid in the
game of Go. All professional Go players more often than not offer Go players
including myself, moves to think about for weeks, proving that the bad move can be
in a future context the best position. After playing many games of Go, you will start
seeing that the sub-games themselves are not independent; which is taken as true in
a divide & conquer approach. Moreover, the encoding of domain dependent
knowledge is a big undertaking on its own; adding one new move pattern in a
database of moves played by professional players, can adversely affect the
functionality of the complete database. Even if after many years the quality of such
databases has increased, maintaining and extending them is a tedious and error-
prone procedure. From a hardware implementation point of view, the complex data
structures used in this approach to preserve and update the complex relationships
between groups of stones are a major headache.

3.2.2 New approach: Monte Carlo Tree Search

On 1990 Abramson proposed a model of terminal node evaluation based on
simulations. He applied his idea to 6x6 Othello. On 1993, Brugmann used simulated
annealing with a “all-moves-as-first” heuristic for the evaluation of Go moves. These
new ideas were further advanced by the work of Bouzy & Helmstetter on 2003.
Bouzy later experimented with a combination of Min-max and monte carlo on 2004
and on 2005 extended his design his Go knowledge bases. Another breakthrough
came on 2006 with Kocsis & Szepesvari with their conceptual connection of the
monte carlo strategy in the evaluation of Go moves and the multi-armed bandit
classic AI problem. UCT, a very efficient algorithm designed to tackle this problem,
increased considerably the strength of Go programs of this new era to the level of a
lower dan professional Go player, a case expected by researchers only at least
twenty years later.

The basic Monte Carlo strategy as applied to move evaluation in computer games,
follows this plan; N random games are launched. When all games come to an end
the score is computed for each game, possibly signifying a win or a loss with a
positive or negative score. At this point the score is easy to compute as what exists
on the board is only eyes and stones. These steps are present in all Monte Carlo
programs. What affects though the strategy’s true efficiency is the algorithm used to
choose the most promising moves among those with positive scores. Suppose we
have launched 100 games for each one of 10 possible next moves. A depth-one
greedy approach chooses each time the move with the best mean of scores. Billings
and Sheppard came in 2002 with an improved technique which employed
progressive pruning of bad moves. The first move choice was done randomly and
afterwards each move inferior to the best move was pruned. This improved MC’s
efficiency.

Realizing that the choice of the most promising move during MC simulations is in
fact an exploration versus exploitation problem, researchers turned to algorithms
tackling this problem. The tradeoff is between the amount of exploration, which
corresponds to the number of simulations per examined move, and exploitation,



which corresponds to the pruning of “bad” moves and the reward of “good” moves
which have to be further explored. UCT, an algorithm which favours exploration is
still today the basic building block of the most powerful Go programs after Bouzy
presented his most important paper in 2006. New heuristics are presented
continuously which improve UCT’s efficiency but the main algorithm remains the
same which proves how fit the correlation was between MC in Go move evaluation
and the multi armed bandit problem.

The next step was the application of MC to a tree search, that is to combine the
new move evaluation strategy with the classical tree search approach used
throughout the Al field. Launching N random games and choosing in the end the
best move to be played is like doing a tree search with depth o. During a tree search
the same amount of evaluation is done both for ones moves and for the opponents
moves replying to ours. As long as the MC strategy leads to consistent results then
it can indeed be used as an evaluation function to prune away branches of the
search tree which contain unpromising moves and all references to MC efficiency
above, refer to this very thing; how consistently can an MC simulation find the
good move among bad ones.









A Go “Board in Hardware

4.1 PERFORMANCE THROUGH CONCURRENCY

he following chapter begins with the idea of a parallel Go
board. In the end of this chapter we will end up with a
simulator of a hardware Go board capable of supporting an
extremely fast execution of the basic board operations,
which is a fundamental necessity for every Go evaluation
scheme based on Monte Carlo simulations. As far as my
choice of MC in favor of complex move evaluation func-
tions as in GNUGo is concerned, such a choice does not
arise from the new breed of powerful Go programs based
on MC. According to my view, the computer player doesn’t necessarily have to have
too much intuition to play strong. Just good enough so that he can prune the search
tree safely. This is exactly what happened with Deep Blue; it’s not that it was such a
great chess player, as an adequate chess player with extraordinary reading ability.

4.1.1 Aword on concurrency

Hardware is inherently concurrent. Simply put, many things can happen in parallel.
And apart from a reality, concurrency is also one means of improving performance.
If a problem can be split into smaller independent subproblems, then solving them
in parallel improves the performance by a factor equal to the number of the
subproblems. In software, performance gains came in the past only from tuning an
algorithm to cooperate well with the underlying hardware ( caches, branches,
macroinstructions ), in hardware from an efficient coordination of independent
entities. From a high-performance viewpoint, the crucial factor in software design is
to know exactly how the hardware will execute your program, and in hardware
design is to design for peak usage of the hardware fabric, even if under normal
conditions most of the chip’s area stays idle doing nothing.

The need for processes running in parallel was obvious from the beginnings of
software. With the advent of Unix a standard way came into being for software
programmers to simulate concurrency in common processors by means of creating
different processes or later threads. Today, in the era of multiple cores in
commercial CPUs, there is true concurrency. The problem is that most of the
concurrent programming models have been inherited from the past, where
concurrency was only an illusion achieved through complex synchronization
constructs. Whenever there is a shared resource, then concurrency becomes
synchronization, and the only way to avoid this elegantly, is to correct the problem
from its root; eliminate all shared resources.



Functional programming languages have long ago taught their proponents ways to
circumvent the use of global variables, which is a synonym for shared resources. No
state is held anywhere globally and the only means of communication is through
arguments and results of function calls. Designing in hardware is not different than
writing functions in a functional language. A hardware entity seen from above,
works like a function, constantly producing output dependent only on its input like
a black box. One of today’s functional languages, Erlang was used to design a
prototype of the proposed datapath, and at the same time a simulator of its
instruction set. The inclusion of an introduction to the notions of a thought of as
academic and perhaps obscure to most readers language, in the context of a
hardware design Thesis, might be a surprise to you. Inspiration though for
seemingly irrelevant things lives in these most obscure corners. Poincare, one of the
biggest contribu-tors to the current understanding of mathematics, found the
answers to his greatest problems while walking on the beach or getting on the bus.
This strange correlation between totally irrelevant events made him realize a
function of the mind which he named over-consciousness. I prompt you to
investigate this.

4.1.2 Erlang

Erlang has been built from the ground up as a modern software language to tackle
the problems of concurrency, distribution and fault tolerance. These three features are
an absolute necessity for some specific kinds of applications like telecommunica-
tions, where the uptime of the system is the most important metric of its quality:.

Erlang is a functional programming language. The main building block of its
programs is the function. A program written in a functional programming language
is a chain of functions which call other functions, each receiving input from the
output of other functions or from the user.

Erlang is a concurrent programming language. It provides a way to easily create new,
independent paths of execution, which automatically run truly in parallel if the
underlying hardware supports this (multiple cores), or give the illusion of parallelism
by means of a timesharing scheduler. A new path of execution is called a thread, and
Erlang allows the programmer to create millions of threads even on mainstream
hardware. This flexibility makes the thread a notion of the same importance in an
Erlang program as the function and one usually sees that most of the functions of
an Erlang program run on different threads. Moreover, similar to how functions
communicate by means of argument passing and result values, Erlang defines a
protocol and the needed semantics for the communication among different threads

by means of exchanged messages. This model of communication is called the Actor
model [REFL

Erlang is a distributed programming language. There is no distinction whether some
thread is running locally or in another machine in the network. Erlang can exchange
messages with local and remote processes under a unified syntax. Thus, even in the
cases of single core CPUs, there can be true concurrency within a grid array of con-
nected processing nodes. Moreover, Erlang automatically administers the creden-
tials of the remote machines participating in this extended grid for safety reasons.



Finally, through distribution Erlang manages to ensure fault-tolerance. If a processing
node fails (from a hardware failure, not the programmer’ design error ) then the rest of
the nodes start receiving and processing its messages for it in a transparent way.
Statistics of maintenance promise that at least one node will continue serving all
the load, which makes fault-tolerance a reality:.

Function definitions and message exchange are all supported by pattern matching
in Erlang. Function arguments are pattern matched to identify the correct function
definition according to the given arguments and message contents are pattern
matched to decide what to do with the message. Pattern matching in binary data
traveling through network ports from storage devices, enables the programer to
define a communication protocol or unpack data with headers and sections in a
most easy and elegant way.

Erlang is very strict with variables, which is normal since they are the reason behind
most of the bugs found in concurrent programs. Variables do exist, but one cannot
change their value, which is one of the things that immediately strikes as alien to
most programmers approaching Erlang. When we learned our first programming
language, we were shown things like “X = X + 1”. Everyone protested, and definitely
argued that “you can’t do that!” so we had to unlearn what we learned in math class.
In Erlang, variables are just like they were back in the math class. They are symbols
associated with some value, an assertion, a statement of fact. And that’s that.

This model of computation, which guarantees parallelism and imposes a nothing-
shared state of mind, guarantees also that a prototype of an idea for a hardware
design in Erlang could easily be translated into hardware with the use of some
hardware description language like VHDL. As the simulator was developed I
observed the following analogies between the two initially alien worlds:

Thus since debugging tools in software development environments are usually
better than the hardware ones, Erlang was chosen as the best candidate to experi-

ERrRLANG VHDL
thread entity
function argument memory element
function body process

variable constant
message contents data
message type opcode

pattern matching decoding



ment with the design of a Go board taking advantage of the concurrency of
hardware for high performance. The transition to VHDL would be a matter of
defining the correct bit widths for all messages exchanged and translating the
function bodies to actual hardware circuits doing the same job.

For a complete reference of the Erlang programming language see [REF] and of VHDL see
[REF].

4.2 DEsigGN OF A PARALLEL BoARD

hroughout this Thesis we will consider that there is an external
module either implemented in software or in hardware that
sends a move to be played. Moreover, since this board is part
of a design tuned for MC simulations as a means of evaluating
a board move, we consider that this move is random and thus
can be illegal. As in most MC based implementations, we
consider the following moves as illegal:

play out of the board

play on an occupied position
play a suicide move

play inside one’s own eyes

YYYY

With these considerations, a Go board supporting the basic operations on it, must
meet the following requirements:

» Store and retrieve board positions
» identify and remove captured $tones
» emit errors for illegal moves

Additionally our board could support the following operations which though not
basic, are necessary for a move generating module:

» report when the game has ended
» report the game’s score when the game has ended

Note that estimating the game’s score during a match is a difficult problem on itself
both for computers and for humans. Beginner players are puzzled by the fact that
they don’t know whether they are winning or losing at any point of a match and are
even more puzzled at the sight of professional players declaring their resignation
even during the first 60 moves. To make this even more complex, there are many
different score counting rules like the Chinese or the Japanese rules which can
themselves affect the score of a game, to the point of reversing the winning and the
losing player. All these mean, that there is no trivial way to count a match’s score
other than playing it to the end where only filled positions and eyes exist on the
board. The player with the most eyes is the winner. This is the reason why in MC
simulations games have to be played till the end.



Returning to our own subject, what we would like to do for a high performance
board is to be able to store, retrieve, and tell whether some group is captured all in
constant time. With the choice of an array in software or any block of memory
addressed by the position’s coordinates in hardware we could achieve the first two.

The following figure presents such a design:

position

clock

position
contents

Each memory slot must hold information on whether this position is occupied or
not, and if yes what is the color of the stone lying on it. It could furthermore hold
extra information such as being an eye or not or an identification code for the
group it belongs to.

EE—— X, T, Color; Group, Liberties

To decide whether a stone or a group of stones is captured, we have to examine all
its neighbours. Chapter 2 already explained an algorithm used in software for the
capturing problem. With this board representation we can store and retrieve
positions in constant time but for the capturing decision we have to examine all
neighbours in a sequential manner which makes this solution unattractive.

Another approach would be to create a new data structure able to identify groups
of stones faster than linearly by holding extra information on stone formations.
Even then though, as long as the algorithm has to examine the neighbours in order



to decide whether a group is dead or not, we are bound to non-constant time
complexity, dependent on the group’s size, which itself has as an upper bound the
size of the board. This is of great importance to realize.

The only scenario in which stones could be captured in constant time, zndependent
of the board size is when we will not have to examine them. And this can only
happen when the stones know on their own when they are captured. If the stones
could decide this themselves then they could also remove themselves, which is the
same as setting their status to empty, without having to communicate this to
anyone. Going this idea a bit further we realize that if such a design is possible, the
stones which independently decide whether they are captured or not, start
resembling the independent entities, which we talked about in the beginning of this
chapter regarding concurrency. Since each stone’s decision can be independent on
the others’ then all these decisions could naturally happen in parallel.

Playing the role of a single stone, to decide that I am captured I have to examine
my liberties. If all my four liberties are occupied by opponent stones or by borders
of the board then I am definitely captured. So for this simplified Go, where we
meet only single stones on the board, each stone could be an independent entity
which stores its color and examines all the time its neighbours.

This scenario fails as soon as one neighbour is a stone of our own color. As a
solution, I, the stone, could as well retain information on my neighbour’s
neighbours, too. If he says he is not captured, then I, belonging to the same group
as he could tell this, too. Soon one realizes though the recursive nature of this
problem. In a huge group every stone has to be connected to all others and having
to examine all these stones’ neighbours is nothing else than the original scheme of
examining linearly all the neighbours of a stone to decide whether it is captured or
not; except if someone imagines a huge AND gate for each entity combining all the
neighbours’ state in one flag of whether we are captured.

The key point to realize here though, is that what we are interested in, when stones
form groups, are not the liberties of each stone independently, but the liberties of
the whole group. A single stone in a group is captured when the whole group is
devoid of liberties. It cannot be captured alone, which is also the essence behind
the formation of solidly connected groups. Taking this a bit further I could argue
that there is no single stone in fact, but only groups of stones, and a single stone is
nothing else than a group which consists of one stone.

At this point we know that each independent stone entity has to keep track of its
color and the liberties of the group it belongs to. The question now becomes “how
can we count a group’ liberties in constant time?” . The answer here is given by the very
incremental nature of the Go game. As in the first chapter, playing a game of Go is
the best way to see the formation and the capturing of a group without any loss of
generality.



A single stone is placed on the board. This stone checks its neighbours. All are

empty positions thus this stone forms a new group which consists only of itself and
has four liberties.

A white stone is played adjacent to the black stone afterwards. The stone checks its
neighbours again. Three of them are empty positions and one of them is a stone of
the opposite color, thus it forms a new group which has three liberties. Moreover,
the black stone has its group’s liberties reduced by one.

o

When a new black stone is placed next to the first black stone, a new group is
created from the merging of the two black stones. This is technically the same as
having the new black stone merge with the first’s group. The extended group has
now five liberties or the sum of the stones’ liberties before the merging minus the
two liberties reduced due to the touching point.
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The above figures show a possible development of the match which ends in the first
figure just before the capturing of the white group while the second figure shows
the board after the capturing of the white group.

From the above example we observed that we want to be able to do the following in
constant time:

» reduce a group’s liberties
» merge two groups keeping track of the total group liberties

This leads us to search for a way to be able to address stones by group as much as by
position, since both of the operations that we identified, refer to groups. In the first
case all the stones belonging to a given group have to reduce their liberties by some
given number and in the second case all stones belonging to a group have to move
to another group carrying along their own liberties.

We have agreed till now that all the board positions are implemented as
independent entities which communicate with some sort of messages. These
messages could contain information on neighbouring positions or give them
instructions such as “decrease your liberties by one”, or “merge with my group”. These are
the messages that these independent entities will understand.

The solution to the above problems comes now when we realize that as much as an
entity can accept messages from others, the same way can it also zgnore those
messages that do not refer to it. A stone, which knows that it belongs to group
number 1 for example can ignore a message like “group 3 decrease your liberties by one
because an opponent stone was played adjacent to you” which refers to a group on the
opposite corner of the board.

Thus, a grid of entities which store all their attributes like color, group number,
number of liberties etc. can be addressed by any of them easily by having them
receive all the messages sent to everybody but care only for those referring to
themselves, similarly to how network packets flow in an ethernet network, or
similarly to how one could have among a group of people, only those wearing a red
t-shirt, jump. One doesn’t have to examine each one and repeat his plead; he sends
the message to everybody and he is sure that his request is going to be granted as
long as the t-shirt wearers have been given the intelligence to compare their t-shirt
color to the message’s t-shirt color.

The only problem which seems to go hand in hand with this strategy is the message
conflict problem. If one entity broadcasts a message and at the same time another
entity broadcasts another, how can we guarantee that both messages reach



successfully their destination? Can this ever happen? The answer comes again from
the sequentiality of the Go game. Playing one stone at a time, only the currently
played stone causes changes to the state of the board. This means, that if every cycle one
move is played, then the entity which corresponds to this position will be the only
one in this cycle that will have to send some message to some other entities. Thus,
each entity receives only one message every time, which is the same message that
all the other entities receive, having as source the currently played entity. Under the
assumption that all operations needed for capturing can be contained in a single
message, then every cycle one new move is played on board and in the beginning of
the next cycle all entities decide whether the broadcasted message refers to them
and act accordingly. This guarantees by definition that no two messages could cause
two different, conflicting changes at the board, which is synonym to saying that this
design guarantees that there cannot be any communication deadlocks.

Implementing the broadcasting feature is a matter of designing a common bus to
which all entities are connected. The entities could either send and receive
messages from the same bus, which demands for a bidirectional bus design, or have
separate channels to read and write messages which demands two separate buses.

Thus, as a group is formed, the affected groups respond to the broadcasted
messages telling them either to decrease their liberties by one because of the new
stone placed, or merge with the new stone and add their libs to the new stone’s into
one new group.

The following figures show such a complex case where two existing groups merge
and some opponent group has to decrease its liberties by one. The first figure
presents the move marked with a triangle and the following figures explain the
series of messages sent to the entities marking along the entities which respond
each time to the message:

o

T

Baiois
OTO

External Module - Set E 5 to black




E 5 - White group at South decrease your liberties by one

E g - Black group at West merge with me and add my liberties

to yours [ At the same time E § fixes his own group indicator
and liberties to conform to the rest of the group’s §tones }
°

E 5 - Black group at East merge with me and add my liberties
to yours { The same as above. Now E § has the total liberties “2.:

after merging with the Ea§t group and the Wesét} @ Q

OTO

Another key observation is that even if another, unconnected group existed in the
upper left corner, the entity at E 5 does not have to care about it as it cannot pos-
sibly affect it liberties. That means, that each entity which is enabled after a move is
sent on it, has to care only for its four neighbouring entities, which sit on its four
liberties. The four neighbours of each entity carry all the information we need to
inform them with messages on reducing their liberties or merging. Let me note at
this point, that in another scenario, where the board design would have to support a
complex evaluation of the stones, considering future group connections, we should
indeed care about that separate group lying in the upper left corner. You, reader,
must always keep in mind that this design is indeed built to be efficient but its
development is constantly driven by the need for fast Monte-Carlo simulations. Re-
examine all ideas presented in here and unite them accordingly for your own needs.

What we created till now, is a design capable of changing one position’s color, of
merging groups and of counting group liberties, all in constant time. These are
enough to support all the states through which groups of stones being captured by



other groups of stones pass. Each entity checks its liberties, which matches the
liberties of all the other entities belonging to the same group, and when they reach
zero, the entity and its group is guaranteed by definition to be captured. At this
point the entity can reset its state to an empty position.

The last step before the capturing process is complete, is the return of the liberties
to the opponent groups that caused the capture. As explained, in the previous
chapter, programmers till now have been removing the stones of the groups that
caused the capture and replaying them after the capture. In the absence of the
captured group, the liberties are counted once more.

Clearly this solution is inadequate for the above design. It takes many steps to
complete and totally deviates from the concurrent philosophy of the independent
entities. Still this is a major problem on its own. How can a group of stones which is
captured, return immediately the shared liberties to the capturing group?
Observing the problem on the following board, what we would like to do is have
the the outer white stones of the captured group give one liberty to every stone
they touch of the black group. The sum of these shared liberties is the amount of
liberties that have to be added to the capturing group.

This creates two problems:

» Stones of the black group not touching the captured white group have no means
of receiving these returned liberties. This creates a mismatch between the number
of liberties $tored in the the inner black §tones and the outer ones, while our design
demands all stones of the same group to be in synch.

» The sum of the perimeter liberties returned is indeed the number of liberties that
have to be added. But having each §tone give one liberty to the adjacent opponent
the group’s liberties are eventually only increased by one.

Adding those single liberties with some sort of variable input adder seems complex
enough and will probably take a variable number of steps to be completed (« stack in
which those liberties have to be pushed might be employed for such an operation ). Once
again, the redistribution of liberties has to be done automatically, independently:.
And exactly as with capturing and the counting of liberties, this task has to be once
again left on the bookkeeping of each of the independent entities. Our question
now is “how can such an entity know how many liberties bave to be added to its group after it
captures an opponent group?”. This demands two things:

» First, the capturing group must know when the opponent group is captured.



» Second, the capturing group must keep track of the liberties shared with that
captured group.

The first prerequisite is easily granted if we remember that each entity is directly
connected to its four surrounding stones. This connection lets the entity know
about the neighbouring group’s group identification number, its liberties and its
color. When we see that an opponent neighbouring group has one liberty, and one
stone is played adjacent to it, then we know beforehand that in the next cycle, that
group will realize its death and all its entities will return to the empty state. At this
point we can add the appropriate liberties to ourselves by sending a message to our
group, having it increase its liberties by the required amount.

The second is the most important part. Observing the example dialog between the
entity that responds to the current move and the messages it has to send one can
identify the exact point where the shortage of liberties takes place. The solution lies
in the message “E § - White group at South decrease your liberties by one”. From this
message, the white group at South knows that the group represented by the E 5
entity asks it to decrease its liberties by one, due to a new touching point. Going
this a bit further, we can realize that each group that asks us to decrease our
liberties is a neighbour that touches us. By having one counter, for each one of our
touching groups, increase when a new touching point is created with a neighbouring
group, we can any time answer the question “how many liberties do you share with that
neighbouring group?”. The above example though can be misleading. A group can
touch many opponent groups all at once. Keeping track of the touching points with
each one of these occupies a huge amount of space. The maximum number of
distinct touching groups can be half the maximum number of liberties of a group,
since they have to be connected to our perimeter stones leaving one space in-
between them. Thus, we want for each entity an array of size max_liberties/2 *
max_liberties/2. Only then can we keep track all the time how many liberties we
share with each one of our adjacent groups. Exactly as with the problem of counting
the group liberties, this new tradeoft is a choice that you, reader have to take
according to the absolute speed considerations of this design. Therefore, I present
the above solutions here for the sake of completeness.

Getting away from the above solutions though, you can implement the return of
the captured group’s liberties in a fashion similar to the accumulation of the
liberties in a merging group. Exactly as the liberties are added up to a group each
time a new stone causes the merging of some groups, that is incrementally, the
captured group’s stones could be removed from the board one after the other
causing the opposite effects of adding them. Each time an opponent stone is
removed its surroundings will update their liberties. I will call this strategy “undo”
strategy, as it is the opposite of the “move” operation. Removing a group from the
board is a multiple step operation with this strategy. A fast circuit clock on the
other hand guarantees that this solution is preferable to any of the above relying on
extremely heavy bookkeeping. The move generating module will generate “undo”
opcodes for all of the stones belonging to a captured group as soon as a group
becomes captured which can be known in constant time.

The communication protocol is presented below in a real world example of message
passing between all the entities of a 9x9 board. From left to right I show first the
board configuration, which implies also the positions of the entities, the message



currently on the bus and a table of all the inner variables of each entity. Note that
effects to the board and to the table happen one cycle after the message has
reached the bus, so as to give a better emulation of the hardware circuit’s behaviour.

[ new_move e, 4, black, 1,41
the external module sends a new move to the board

Y X CoLor Grovur ID LIBERTIES
I a empty 0 o)
2 a empty 0 e}
9 j empty 0 0

[ modify_liberties, 1,0 ] OURSELVES
[ modify_liberties, 0,0 ] NORTH
[ modify_liberties, 0, 0 | EAST
[ modify_liberties, 0, 0 ] SOUTH
[ modify_liberties, 0, 0 ] WEST

entity e4 sends its attributes to its four neighbours. all are
empty so none responds back. The above messages are sent in a serial manner
but are here presented all together.



Y X CoLOR Grour ID LIBERTIES

I a empty o ¢
2 a empty o ¢
4 e black I 4
9 j empty 0 0

[ new_move,d, 4, white, 2, 41
the external module sends a new move to the board

Y X CoLOR Grour ID LIBERTIES
I a empty o) o)
2 a empty o) o)
4 e black I 4

9 j empty 0 0



[ modify_liberties, 2, -1 ] OURSELVES
{ modify_liberties, 0,0 ] NORTH
[ modify_liberties, 1, -1 ] EAST
[ modify_liberties, 0, 0 ] SOUTH
[ modify_liberties, 0, 0 ] WEST

entity d4 reduces its own group’s liberties and the liberties of the adjacent

black group.
Y X CoLOR Group ID LIBERTIES
I a empty o o
2 a empty o o
4 d white 2 4
4 e black I 4
9 j empty o o

[ new_move e, 5, black,3,4 1
the external module sends a new move to the board

Y X CoLOR Grour ID LIBERTIES

I a empty o ¢



CoLor Grour ID

empty

white

black

empty

o

[ merge 3,1, 5]

{ modify_liberties, o, o | NORTH
[ modify_liberties, 0, 0 ] EAST
[ modify_liberties, 1, 2 ] SOUTH
[ modify_liberties, 0, 0 ] WEST

CoLoR Grovur ID
empty o
empty o)
white 2
black I
black 3

empty

O

LIBERTIES

o

LIBERTIES
o)

o



o

[ new_move , e, 3, white, 4,41
the external module sends a new move to the board

Y X CoLOR Grour ID LIBERTIES
I a empty 0 o)
2 a empty 0 o)
4 d white 2 3
4 e black I 5
5 e black I 5
9 j empty 0 0

Some moves are omitted at this point. Suppose that the match continues as the
tollowing board shows, to present an example communication for a capture of an
opponent stone.

1o
o

[ new_move ,d, 5, black, 4,4 1
the external module sends a new move to the board



CoLor Grour ID LIBERTIES

empty o o
empty o o
black 6 3
black 4 3
white 2 I
black I 5
white 5 4
black I 5
white 7 4
white 3 4

empty 0 ¢



{ merge, 8, 1,61
[ modify_liberties , 0,0 1 NORTH
[ modify_liberties, 1, 1 } EAST
{ modify_liberties, 2, -1} SOUTH
{ modify_liberties, 0, 0 } WEST

X CoLOR Grour ID LIBERTIES
a empty e} o)
a empty o) o)

black 6 3
d black 4 3
d white 2 I
d black 8 4
black I 5
white 5 4
black I 5
g white 7 4

g white 3 4



Y X CoLOR Grour ID

empty o

[ undo, d, 4, white 1
[ modify_liberties, 1, 1} NORTH
{ modify_liberties, 1, 1 } EAST
[ modify_liberties, 4, 1} SOUTH
[ modify_liberties, 6, 1 } WEST

LIBERTIES

o

the white group 2 is captured and the external module sends an undo opcode

Y X CoLor Grour ID
I a empty o

2 a empty o

4 C black 6

3 d black 4

4 d white 2

3 d black I

4 e black I

7 e white 5

black I

LIBERTIES
o)

o



X CoLOR Grour ID LIBERTIES

g white 7 4
g white 3 4
j empty o o}

ST
O

Some new move comes at this point from the external entity. We just
show below the board's final state after the capturing has taken place.

X CoLoR Group ID LI1BERTIES
a empty o o
a empty o o
C black 6 4
d black 4 4
d empty o) o
d black I 9
e black I 9

e white 5 4



Y X CoLOR Grour ID LIBERTIES

5 e black I 9
5 g white 7 4
7 g white 3 4
9 j empty 0 0

As a final note, observe that the true liberties of the black group with id 1 are not 9
as computed, but 6. Common liberties among stones of the same group such as
those in position d 4 are counted once for each one of the group’s stones. Thus,
when the d 4 stone is captured, not one, but three liberties are added to the black
group. At the same time though, if a new white stone was played there ( we suppose
that c4 or d3 did not exist, so that dq wouldn’t be considered illegal) we would steal three
liberties from group 1, one for each touching point. This abnormality has to occur
for optimization reasons. You can see on your own, that to identify liberties as
shared with another stone of the same group and not count them as duplicates, we
have to examine not our four neighbours but the four diagonals, too. This is a
fundamental architectural change with obvious new space considerations.



4.3 DEesicN OF A SIMULATOR

he simulator is an direct software implementation of the
previous ideas in Erlang. In Section ... I explained the possible
mappings between an Erlang construct and a hardware circuit
element. Following this convention, each independent, board
position entity described in the previous section is modeled
now as a separate thread. Messages exchanged between
entities are data packets sent among threads with Erlang’s
standard message passing facilities, and the bus is seamlessly
provided by Erlang’s inner architecture as explained below.

When the simulator starts, it creates a number of such independent entities, equal
to the number of positions on the wanted board. So, for a 19x19 Go board, 361 new
threads are created. Each entity holds all the information shown in the last figure of
the previous section. Its X and Y coordinates are given initially and will never
change as they are the basic id of the entity. These two are implemented as
variables, while the rest of the needed attributes like color, liberties or group-id are
given to the thread as function arguments on which the thread recurses every time
a new message is received. Thus, if a message alters our liberties, we call ourselves
again with the same arguments but for the liberties which is substituted with the
message’s value. When a message is received, which does not refer to us, we call
ourselves again with all our arguments unmodified. This is by the way the most
usual convention in functional languages to hold state.

All these threads wait idle until they receive some message. Once again an external
module generating move positions is taken for granted, and we substitute it by
broadcasting manually a new move message to all threads. The new move message
has the form:

1 new move, 3, 3, black

All entities decode this message and decide that this message’s type is a “newmove”
message. Choosing the correct execution path they will compare their X and Y
values to 3 and 3 and only one will pass from this test, the one we would like to
receive the message from the beginning. At this time, entity E[3,3} must check its
neighbours. Considering every possible case, for merging, reducing its liberties or
reducing its neighbours’ liberties, it will broadcast the appropriate messages.

Until this series of messages has ended, and the new-move process is completed, no
other entities should use the bus to broadcast anything as it would interrupt the
messages Ef3,3] send, possibly creating adverse effects. As explained before this
synchronization problem is managed by a convention. Only the “newmove” message
creates a response. All other messages are received and processed by entities
without having to broadcast anything afterwards. This is important, if you, reader,
want to extend the instruction set of the entities. Perhaps for the needs of a move
evaluator one would need an new instruction that would return the inner
information on group color and liberties of a single entity.

If new commands are needed, which create an answer or a status code, then a new
probably more complex bus design must take care of synchronizing the messages by



putting them in queues and reorganizing them. In fact, great caution has been taken
to avoid such a path. Erlang gives each thread a construct called mailbox. All
messages coming to a thread are stored in this mailbox. This means:

» No messages are ever lost. Even if a multitude of messages arrive at the same
time, they will be queued and processed. This is convenient and a well-reasoned
choice from Erlang’s point of view, but a major design undertaking on its own for a
hardware translation of the simulator.

» Messages which are not found to match some of the thread’s accepted message
types, lie dormant in the mailbox for future use in a second queue. This allows one
to redefine the program code in runtime and have the program accumulate the
changes immediately and responding as if things always where like the new version
of code. This feature is one of the fundamental points making an Erlang program
completely dynamic, supporting code-swapping and updates on the fly.

Unfortunately, the messages in the suggested design have to be sent in the correct
order, thus a simple queuing scheme cannot guarantee the faultless operation of the
design. Suppose that a new white stone is placed next to a white group with only
one liberty. If a new “reduce liberties by one” message reaches the white group before
the “merge” message comes, then the group will think it is dead and will thus remove
itself from the board. Whereas, normally, the merging would give this group new
liberties before or at the same time as reducing its own, and the expanded group
would live on the board. This proves that you will have to either redesign the
instruction set so that the order of the messages is independent of the final board
state, or you will have to implement a queuing and message reorganizing design.

When the board has “settled” after a new move, then a new cycle starts. The board
informs the external module that it is ready to receive a new move and the module
sends a new “new-move” message. Such a communication with the move generating
module is necessary as in other cases the external module would generate moves
faster or slower resulting in lost moves and errors about moves played on occupied
positions respectively.

The following table presents the instruction set created for the independent
entities:

INSTRUCTION DESCRIPTION EXAMPLE
reset resets the entity to an empty reset
position state. comes from
external module
new move sends a new move tupleto ~ { newmove, 3, 3, black }
all entities. comes from
external module
merge the group recerving this [merge,1,2,6]
message changes its group id
to the message’s group id (group 1 will become 2 with

6 liberties)



INSTRUCTION DESCRIPTION EXAMPLE

modify modifies all attributes ofan [ modify ,3,3,1,10}
entity

(modify entity 3, 3 to group
1 and 10 l1berties)

modify liberties increase or decrease the [ modify, 11, -1}
liberties of a group by a
number (reduce group’ 11 liberties
by one)

Moreover, the simulator defines the following instruction for debugging purposes
which clearly cannot be synthesized:

INSTRUCTION DESCRIPTION EXAMPLE
print prints the entity’ attributes [ print,3,31]
to the standard output

The following chapter moves to the hardware implementation of this design, where
under a new light, the light of hardware efficiency, the architecture matures and
now inspires itself changes to the simulator, from which it was originally born.






DESIGN & IMPLEMENTATION

Transition to Hardware

owadays the word Giga seems to be ubiquitous in the field of
computer science; giga in cycles per second of the CPU, in
bytes of RAM, in secondary storage devices, in intercom-
munication speeds. This abundance of computer resources has
lead to an emergence of rich development tools with
optimizing compilers and effective debugging tools, seen from
the developer’s standpoint. Usually, in an ironic mood, people
quote Bill Gates’s prediction “64% ought to be enough RAM for
anybody.” said back in 1981. Desktop application programming
never had any serious space considerations and thus the quote can be easily re-
interpreted today as “I6GB ought to be enough RAM for anybody”, again a probably
humorous statement for a future reader.

But high performance computing always strived for different goals. Space becomes a
secondary consideration only for the sake of speed, not for the sake of some
programmer’s convenience. Trade-offs in space, time and costs of development are
prevalent in every choice a hardware designer has to make and these new points of
view couldn’t but redefine once again a design. Thus in this chapter, we move from a
functional architecture (7o pun intended) to an implementable architecture.

5.1 TowarRDs A MASTER SLAVE DESIGN

I will not delve into the details of the VHDL language used for the description of
the wanted hardware design. It is of great importance though to any VHDL
programmer to know the inner workings of his tool of choice. The description,
synthesis and simulation of all basic hardware building blocks such as registers,
simple gates, adders and multiplexers is a most important phase from which one has
to go through in order to be able to pre-visualize the synthesis’s results from a given
description. Such an observation, aided by Xilinx’s invaluable hardware design tools
has allowed me to program in a high level manner in VHDL, letting the compiler
take all the important decisions according to the implementation strategy and the
target platform, whether it would be a space reducing strategy or a circuit-speed
one.

Based on the previous chapter’s analysis, our board building block is the indepen-
dent position entity. From a hardware point of view, this entity which is capable of
receiving some data from its environment, processing them, storing and modifying
internal data and occasionally produce output, is a simple processor, which has a
quiet unusual instruction set compared to the mainstream, general purpose
processors. Instead of asking it to “add two registers and return the result” our processor
knows how to “reduce your liberties by two” or “merge with the north group”.



Two discrete hardware modules have to be designed for this circuit, the position
entity which will be duplicated numerous times according to the board size, and the
intraconnection bus. Following our convention the following table shows the
different parts of the entity described in the previous chapter and their hardware
counterpart.

SIMULATOR PART TYPE HARDWARE PART
X coordinate constant fixed wiring
Y coordinate constant fixed wiring
Color variable register
Group 1D variable register
Group Liberties variable register
message processing function combinatorial logic
message data packet raw data
message type constant opcode
communication port socket in out port (wiring)

For all of the above types we have to examine their size in bits. How many bits are
needed for all the possible values of a coordinate or a group id? It is easy to see that
all types’ sizes, except for color, depend on the size of the board. The coordinates of
a position, for a board of size S can have values from 1 to S. Further observations
and research has to be done though for variables like the group id or the liberties of
a group. We have to answer these questions, “What is the maximum number of distinct
groups that could form on a board?” and “What is the maximum amount of liberties one group
could possess on a board?”

Regarding the first question, the maximum number of distinct groups on a board is
met when we fill the the board with the maximum number of unconnected stones,
as each stone represents a different group. The following board shows this stone
arrangement.




With analogy one can infer that different board sizes exhibit the maximum number
of distinct groups from a similar stone arrangement, thus we can correlate the board
size with the maximum number of groups with the following formula:

Groupsmaz = | BoardSize/2|x| BoardSize/2|+| BoardSize/2]x| BoardSize/2

As far as the second question is concerned, the maximum number of liberties one
group can have depends on the group’s shape. A group exhibiting a maximum
number of liberties would be have to span all the board, similar to the main ( and
only) character in the famous “Snake” arcade game. This non-solid shape creates the
maximum perimeter which is synonym to the maximum number of liberties. The
following board shows such an arrangement of stones:

Contrary to the above analysis regarding groups, this is a more complex problem to
tackle. The above stone formation gives us an upper bound of liberties for a board:

Liberties,az = 2% (n—2)+2% | BoardSize /4| (n—3)+ | BoardSize/4| x4

An important note regarding the upper bound is that its nature is quiet theoretical,
since we haven’t taken into account the intermingling stones of the opposite color
which would decrease the above number by a half. This safe reduction is translated
in one less bit of needed space. Thus in average:

Libertiesqyerage = Libertiesaz /2

The following table sums up the needed space in bits for each entity attribute as a
function of the board’s size when the two elements are correlated or as a constant
number when the the attribute’s size is independent of the board’s size.

FIELD SIZE IN BITS
coordinate ceill lg(board_size) |
color 2
group id cedl] lg(groups_max) |

liberties ceil[ lg(liberties_max) |



FIELD SIZE IN BITS
opcode 3

message opcode+2*coordinate+color
+group_id+liberties

Following a convention and giving the zero group id to all empty positions and
borders we can eliminate one bit from the color attribute, effectively making it one
bit, as the identification of the nature of each position could be done by combining
the information of the color and the group id. This optimization arises from the
observation that in our architecture, color and group id information are always
present in each message broadcasted. Moreover, it is preferable to eliminate one bit
from a wide bus traveling among 381 entities for the 19x19 Go board than striving to
use small comparators; FPGA’s performance is largely affected by long wiring.

Due to these complex relationships, the GENERIC feature that VHDL provides
for compile time configuration of parameters proves inadequate. To avoid writing
an unreadable source code, I wrote a centralized script which given a board size
produces all the wanted files for the software simulator and the hardware design.
This script written in Python constitutes the single source code file required for the
whole project and is written according to the premises of Literate Programming;
source code and documentation are intermingled creating a readable text
reminiscent more of a literature book than a source code aided by comments. For
more on Literate Programming see [REFL

The following figures show an assembly of the above constructs into a concrete
hardware entity implementing the wanted functionality for a 9x9 Goban:

B———=@ |Instruction [10:0] End Of Game @———
B—e Clk Ready @—1
B——@ Reset Status @——i

The top level Circuit. Instruction comes from the external
module generating moves.
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111

The 81 entities inside the board.

Message In [32:0]

Message Out [32:0]
Eye or Stone
North Neighbour [10:0]
East Neighbour [10:0]

South Neighbour [10:0]
West Neighbour [10:0]

The above entity’s design was described in VHDL and synthesized for the Xilinx 5§
50 FPGA within the Xilinx IDE. At this point we can examine a final hardware
circuit with almost physical characteristics such as space consumption, arrangement
of elements and speed. Two immediate observations were made after this first
synthesis:

» The Xilinx compiler successfully figured out the correct implementation details
from a high level behavioral description of the circuit. No more registers were
created anywhere apart from those that I had in mind, which would create most of



the times perplexities in the operation of the circuit, and the message decoding
circuit was efficiently implemented as a series of multiplexers exactly as visualized.

» The size of the design is prohibitive for a 9x9 board on this FPGA. Either we
would have to use a larger FPGA or modify the design.

A test-bench confirmed the correct operation of the circuit ( see next Section for a
complete evaluation ), but the space problem still exists. If we generate with our script
all sources for a 9x9 Go board and synthesize it we realize this; the resulting circuit
needs 240% of the space provided by the chosen FPGA. Considering that a
standard 19x19 board is our goal, we have to reiterate through the design.

The major issue of space consumption is caused by the duplication of a specific
circuit; that is the message broadcasting circuit. This circuit receives all information
coming from the four neighbours, that is the color, the group and the liberties of
each neighbour and after examining them decides what kind of message has to be
sent to each one. All the broadcasted messages are emitted from this circuit of each
slave. This part itself occupies 2% of the available FPGA space due to the sheer
amount of cases it has to consider. The exact number of them is equal to 256, the
result of creating all the combinations for four neighbours and four possible states
each one can take ( same color, opponent, empty, border ). If this circuit’s size is
multiplied by 81, which is the number of position entities that have to be generated
for a 9x9 Go board, we already realize that this circuit alone is already above the
available FPGA space. We either have to simplify this circuit or find a way to move
it out of the slaves.

Observing once more the additive nature of the Go moves during a match, we
realize that only one position has to take such a decision each time a new move is
played; all the other positions have these message generating circuits completely
idle. As we explained before, from a high performance point of view this over-
consumption of space is normal and expected, on the other hand it constitutes a
practical problem, when a circuit for a 9x9 Go board cannot fit into an average
sized FPGA. Our new question is: “Could we possibly have only one such circuit which
could be used by all the independent entities, now that we know that only one will need it each
time?”

With the introduction of an external hardware entity, which would perform all the
complex calculations for the messages that have to be sent across the board,
similarly to a co-processor which once was a popular design choice, a new master-
slave architecture starts to emerge. This center of calculations on which the slaves’
state depends cannot but function as the core of the complete circuit. Moving all
the calculations to this new processor, the board entities would only have to be able
to receive a message and modify occasionally their inner registers, such as the color
register or the group id register, and given that the entities are the ones which are
multiplied as a Go board becomes larger in size, it is prudent enough to put thez on
a diet. Seen from above, this external CPU coordinates the modifications of the
board state by sending instructions to be executed by the board entities which now
operate as clever pieces of memory, able to decode and respond to incoming
messages. The only drawback in this design is that, all the information which was
internally readily available at each position entity for its decision circuit, now has to
be transtered to this external CPU which will do the job for it. Such a wide bus
design, which has to carry information on color, group and liberties for four



neighbouring entities is a choice of fundamental design choice. We know that an
FPGA’s performance is heavily affected by long wiring that leads to great latency
numbers. Moreover, as the board size increases we need to employ a wider bus, as
the slave attributes increase in size.

Performance-wise, the original architecture en-
ables each entity to decide in one clock cycle the
messages it has to broadcast, whereas in the
revised master-slave architecture one cycle is
spent to transfer the neighbour information
through a bus to the external CPU and one cycle
to receive the calculations’ results. In other
words, the effective circuit speed is theoretically
halved. Splitting the messages sent to the master
in smaller parts in order to allow a narrower bus
would cripple the performance even more. At the
same time though, space-wise, the synthesis
process produced a circuit for the 9x9 board
which occupies only 25% of the available FPGA
space, and the 19x19 board oversized this FPGA .
size by only 15%. ‘

The choice between these two architectures can-
not be evaluated out of the application context.  Jmmm
Where speed is absolutely the major conside- l ,
ration at every cost, the first design would be
used and when a more balanced speed/space [
ratio is needed the second design is the preferred :
choice. My own opinion on this subject, rein-
tforced by the performance evaluation analyzed in
the next chapter which prophetically is used at this point, is that the second archi-
tecture is so fast on its own, that the extremely bad space usage of the first architec-
ture is unjustifiable.

Due to the new communication protocol the messages now traveling through the
bus are of two types, those going from the slaves to the master and those from the
master back to the slaves. Their respective sizes are shown in the following in the
tollowing table:

FIELD SIZE IN BITS
message to master 4* [color + group + liberties]
message to slaves X+ 1+ color + 4*group +

liberties

The following figures present the modified modules for this architecture:



m———=@ Instruction [10:0] End Of Game @————

B——0 Clk Ready @—H

B——@ Reset Status @—1

The top level circuit remains the same. This is important as the communication
with the external module generating moves is preserved intact
despite the internal reorganization.

Master Slave architecture.
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As this section closes to an end, some further assumptions made throughout this
chapter have to be clarified; the exact structure of the messages exchanged between
master and slaves, the structure of the messages reaching and going out of the
complete master-slave entity for its communication with the outer world, that is
the external API of this hardware Go board and the design of the master-slave
interconnecting bus.

In chapter 3 we saw that the longest operation as far as the number of messages
that are demanded for board settling is concerned, is a move causing some merges
along with liberty reductions in neighbouring opponent groups. In the worst case
where we play a move which would connect 4 separate groups of our color we would
have to broadcast 16 messages, 4 for merging, 4 for one liberty reduction due to a
new touch, 4 messages to further change the liberties of all groups to the
accumulated liberties of the new big group and finally 4 messages for each merge
and liberty modification for the new stone itself. This cycle of 16 messages for the

East

| Neighbour



completion of a new move operation effectively results in a worst case performance
which is sixteen times lower than the one assumed previously.

Computer architecture design has for a long time debated the subject of RISC
versus CISC architectures. RISC proponents have been proposing simple efficient
designs which base their operation on an orthogonal, simple and compact
instruction sets. CISC proponents, on the other hand have been proposing large
instructions sets which provide more high level instructions performing operations
such as matrix multiplications in one instruction which would in a RISC
architecture take multiple instructions to complete. No choice comes without a
cost and RISC architectures depend on a fast clock speed to operate efficiently
while CISC architectures demand complex logic parts and wide buses with obvious
maintainability and manufacturing issues.

The instruction set on which the slaves has been based till now has a clear RISC
taste in it, which for our needs and for the time being has been efficient, clear and
complete, but now it seems as the worst design choice combined with an FPGA for
hardware fabric, a technology which never boasted the fastest clock cycles around.
As explained, FPGAs succeed when many things happen in parallel, while RISC
architectures are tuned for extremely fast sequential evaluation of small
instructions. Could we possibly send more than one message at a time?

The concurrency dogma which we have cultivated, promptly asks us to search for
shared resources if we want to parallelize things. If messages sent to a neighbouring
group are totally independent of the messages sent to another, then we could pack
as many messages as we want in one big message and send this new message to all
slaves, effectively cutting the amount of cycles needed to send each message alone.
Moreover, compared to the size of the message sent to the master CPU, the size of
those received was minimal, and such a waste of bus bandwidth has been puzzling
me for some days. The only drawback would possibly be the marginally increased
complexity of the message decoding circuit in each slave. Intuitively I don’t expect
this to pose any serious space problem.

In 1989 Hewlett Packard came up with something similar. HP determined that
RISC architectures were approaching a limit at one instruction per cycle. HP
researchers investigated a new architecture, later named Explicitly Parallel
Instruction Computing or EPIC, that allows the processor to execute multiple
instructions in each clock cycle exactly as we would like to do. EPIC implements a
form of Very Long Instruction Word or VLIW architecture, in which a single
instruction word contains multiple instructions. This architecture would demand a
very clever compiler, which would try to take advantage of all possible parallelism in
the source code and pack the instructions accordingly, which initially created
skepticism on the performance of the architecture. At the same time though,
processor design was simplified considerably by eliminating the need for runtime
instruction scheduling circuitry. The processor embodying these ideas was
codenamed Itanium and was co-developed with Intel. The enormous hype and
expectations that these companies cultivated to the market around their new
architecture combined with their inability to develop for many years a capable
compiler to support it, lead to a design which remains till today one of the biggest
fiascos of the computer processor industry. Still, as it seems, those ideas remain
totally fresh and applicable.
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NOTES:

The Control circuit is a common Moore finite state machine with 4 states and is implemented in a
straightforward way by the Xilinx compiler. The Liberties Processor computes the next total liberties for the
played move and the adjacent groups which merge with it, if any. This is a combinatorial circuit consisting of 4
stages of comparators adders subtractors and multiplexers, which decide which one of the 256 possible
configurations is true for our case (four neighbours and 4 possible colors for each one) and accordingly compute the

correct group liberties.



We ask ourselves the question: “Is there any interdependence between the messages sent to
the four neighbours? If yes, can we eliminate it?”. In our complex case of the four merges
described previously, there is one interdependence indeed, imposing a strict
sequentiality on the broadcasted messages. Each time a new merging takes place,
we have to compute the new accumulated liberties and propagate them to the old
groups. For example, let L1 be the liberties of the new played move with group
number 1, equal initially to 4. Suppose that we examine the neighbours in a
clockwise fashion, and the northern group has Lz liberties and number 2. After the
first merging, group 2 becomes 1 and the accumulated liberties are (Lz - 1) + (L1 - 1)
removing one liberty from each group’s liberties due to the touching point. When
we try to merge with our eastern group let it be group number 3 with liberties L3,
the accumulated liberties now have to take into consideration the result of the
previous merging. This dependence makes clear that if all merging sequences
reached the four neighbours at the same time then the resulting big group would
have indeed the same identification number but each group previous to the merging
would maintain its own idea of what the accumulated liberties are. If we could
compute the total liberties of the final group after all the merges beforehand, then
we would be able to broadcast a message with four group ids, instructing them all to
adopt these new group liberties and afterwards change their group id to a new
common to all groups id representing the merged group. And this is in fact what
happens. Moreover, this complex computation has no other place than the master
CPU introduced previously to take on all the processing needed for message
generation. To cover all other possible neighbour cases, we can include the color of
the new move in this big message, so that neighbouring groups of the opposite
color can simply reduce their liberties by one due to the new touching point,
ignoring the total liberties in the message. Maybe now;, it becomes more obvious to
you, reader, why such a master (processing unit) slave (state storage) proves invaluable
after this new introduction of complex computations.

For our current needs the only message reaching our completed hardware board
design is a new move or an undo move message, that is a new tuple of X, Y
coordinates and, in the case of new move, color, too. The dialog between the
entities shown in the previous chapter is now reinterpreted under the prism of the
master-slave architecture. Only the messages exchanged are shown as the tables’
contents remain the same as before, as the tables present the slaves’ registers
contents and moving the processing to the master CPU does not alter them.

Finally, as far as the design of the bus is concerned, we have to examine the
capabilities of the underlying hardware for its implementation strategy. The most
straightforward design for a bi-directional bus would be to implement it as a simple
collection of wires connecting all the wanted entities and let the entities decide
when someone wants to write something. This might resemble to a software
programmer a process scheduling scheme, in which each process does its job and
after some fixed quantum of time willingly passes the CPU to the next process. As
we have clarified many times till now, the entity which corresponds to the current
move is the only active slave, sending any messages through the bus and communi-
cating with the master CPU. The rest of the slaves after realizing that the message
just received does not affect them, along with the master CPU, can as well set their
output message port connected to the bus to a high impedance state, similarly to a
tri-state buffer state. This way only the active slave’s output message will be trans-
mitted through the bus as all the others do not affect it. Unfortunately, an FPGA, at



least as of this Thesis’ writing, cannot support this tri-state behaviour. To emulate
such a design I decided to connect all the slaves’ output ports toward the master
CPU into a huge OR gate, and have the slaves output zeros instead of the high-
impedance value. The result is the same as before; the active slave’s message is
transmitted as it should through the bus to the master CPU. At the same time the
bus became directional and a separate bus was employed to transfer messages from
the master CPU to the slaves. Other solutions, such as connecting all the outputs of
the slaves on a huge multiplexer and let the master CPU decide, which one to select
are clearly less effective both space and speed-wise.

The design of the bus, is a subject which has to be further researched by you,
reader, as this OR gate with the 361*message_size fan in size is a major obstacle in
reducing the size of larger board sizes such as the standard 19x19 Go board. Please
consider every possible solution, even the possibility of its elimination, although
this implies that the master-slave architecture has to be revised as well, which
would lead to a new confrontation with the problems described in the previous
analysis we went through. An implementation of this architecture in other
hardware design technologies such as ASIC would enable you to use the described
tri-state behaviour of the slaves’ output ports.

These final remarks conclude the hardware translation of a Go board design, which
began with the simulator of chapter 3. The following and last section will present
the actual circuit analysis, as it was produced by Xilinx’s tools for the different
stages of our design and for each different sub-module.



5.2 MoVE GENERATING MODULE

Having considered throughout this work the move generating module as present,
this is the right point to describe its inner workings as they were visualized along
with this hardware board and its implementation is the natural continuation of this
work.

The MG module regardless of the algorithm used to do the thinking itself is
expected to send messages conforming to the following structure:

opcode Y coordinate X coordinate Color

»

The only opcodes needed for a Monte-Carlo schema are a “new move” and an “undo
opcode. To extend this instruction set one has to modify the instruction decoding
circuit of the master CPU, which further controls the messages sent to the slaves.
The source code of this Thesis is the same important as this text, if not more, and
an inseparable part of it and in there you can find all the details on the devised
architecture of this design including the opcodes and the structure of all exchanged
messages.

Since the hardware board expects to receive both new moves and undo operations,
the MG module has to know when to produce the ones or the others. Knowing
when to produce an undo move is equivalent to knowing when a group becomes
captured. One might argue at this point that this sort of information should be kept
internal to the board and never get exposed to the outside world; that is to say, it is
a matter of the board to know when a group is captured and to remove it.

This choice was made deliberately for two reasons:

» Every non-trivial move generator will have to know when a string of stones
becomes captured. This is a knowledge that the board can provide in constant time.
The most trivial implementation of a move generator would be one that is popping
new moves from a random permutation of a stack of all possible positions. Even
this most trivial implementation, has to know when a stone is captured so that it
can push the freed position back into the stack of possible next moves, or else these
captured positions are considered as occupied and won’t be played again.

» By introducing the move undoing operation, matches can be played back and
torth. By holding a board state as a starting point, one could play a match till the
end, gather statistics on the winning rate of the starting move and then backtrack
to another board state. This is a beautiful reinterpretation of tree searching.

As a final note, this board design implements an EndGame output to signify that
only stones and eyes exist on the board and thus the match has ended. This has
been presented more as an application of the master slave architecture and as a
reader’s exercise, than as a necessary part of the design. Since the MG module will
hold a list of all possible next moves, when the list has emptied we know that the
match has come to an end. In spite of this fact, the EndGame output is left in the
hardware description of the board (the code provides all needed comments to remove it )
as it occupies only 2% percent more space for the 9x9 board configuration.



5.3 Circuit EvaLuaTION

The following table presents the space utilization and timing results for the circuit’s
critical path for the circuit that Xilinx 10.1 produced for the Virtex 5 LX110T
FPGA with speed grade -1, which our laboratory owns.

ARCHITECTU SPACE SPACE SpEeD MHZ  SPEED MHZ
RE PERCENTAGE clock effective
Original 40743/69120 58% 260 260
9Xx9
Original 181583/69120 262% 260 260
19X19
Master slave 6213/69120 9% 146 73
9x9
Master slave 32523/69120 47% 100 50
19X19

To get a better understanding of how the space of the design is distributed, the
table below presents statistics for the final Master Slave architecture according to
board size. As expected, the space utilization increases exponentially:

BoARD S1ZE/

ELEMENT 5X5 9X9 13X13 19XI19
registers 251 1009 2239 5463
adders 14 4 14 14
addsubs 26 82 170 362
subtractors 13 13 13 13
Xor gates 29 85 173 365
comparators 12§ 405 845 18054
priority 2 0 o o
encoders

counters I I I I
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To compare the speed of the circuit with a software implementation I chose the
latest version of GNUGo as it is one of the most popular software implementations



and most important, open source and thoroughly documented. I searched for that
piece of code which plays a new move and caters for all board update steps such as
liberty reduction of opponent groups, removal of captured groups and extension of
groups through merging. This function is called play_move(..) and exists in the
board.c file of the source code. Two time samples were taken, in the beginning and
the end of the function’s body:.

The timing revealed a minimum delay of 198usecs and a maximum of 38ousecs.
GNUGO’s version is 3.8 , is compiled by the 4th version of the GCC compiler and
runs on a Intel Core 2 DUO Macbook at 2.1 Ghz with 4Gb of RAM. The average
delay was 220usecs with minimum variation, thus independent of the captured
group’s size or the merging groups’ sizes. This is expected as GNUGo is a mature
implementation, relying on efficient bookkeeping of the board’s state which makes
these basic board operations run in constant time. This means, that the timing of
this function, excludes all the time spent in bookkeeping and updating of the
board’s internal data structures and is therefore a minimum. Even then, with a
minimum period of 22opsecs, GNUGo has the ability in my test system to play
1/220*10°6 moves per second or around 4500 moves per second. On the other side,
our hardware architecture can play effectively 5o million moves per second on the
lowest speed grade of -1 or 8o million moves per second for a speed grade of -3 for
the 19x19 board size. Smaller board sizes offer increased speed. This is a side-effect
of the signal transfer delays in larger FPGA designs. The following diagram presents
the size of the bus which connects the slaves to the master CPU in relation to the
board’s size. FPGAs are very sensitive to long wiring and in the case of a 19x19 Go
board, there is a 56 bit bus traveling among 361 slave CPUs connecting them into a
361%56 bit to 56 bit AND gate. This dense interconnection is the major cause
behind the decline of the board’s performance as the size of it increases.
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A first important note is that a captured group in GNUGo is removed in one move,
whereas in our implementation we need as many undo moves as the size of the
group. If we assume that during the average game on the standard 19x19 board size,
no more than 30 stones are ever removed ( in a professional game, a capture of over 10
stones is already considered a loss ), then the true speed of the hardware circuit is not
very far from this theoretic.

A second important note is that what is measured here is the time spent to update
the Go board after a new move is played. The speed with which the board can be
updated by new moves is the ultimate upper bound to the speed with which new
moves can be sent to the board and therefore is an absolute metric of the highest
possible performance of a computer Go player. I expect the rate with which new
moves will be produced by the move generating module for a simple monte carlo
player implemented in hardware, to be quite close to this board’s basic operations’
speed.

As a final observation, despite the fact that the architecture was built from ground
up to guarantee constant complexity in all board operations, independent of the
board’s size, the performance of the circuit declines as the board becomes larger.
One has to keep track all the time of the soil on which one builds.









FUTURE WORK

A ANatural (ontinuation

o scientific work is usually left to exist on its own. The words
continuity and progress are considered the holy grail which
God gave to man, a grail to shine every day so that he can see
his self-indulgent face reflected on it. The hive mind, that of
every “field’ including the scientific is at most uninteresting to
most people similarly to how in paradise all people play harp
even though in this Earth we live, no more than 5% of the
people play western classical music and less than 3% of them
play the harp. But man still considers all scientific endeavor
much more than a simple rectification of every day’s thinking, which in fact is.
Having lived for quiet some time in this scientific world I could see that most of
the people go after the Truth behind science without caring to find or even invent
their own truth in it. And part of the problem is the Babel tower of this Continuity
in everything scientific. A tower which can most prominently be seen today in
Wikipedia.

The problem is in the way the Wikipedia has come to be regarded and used; how it
has been elevated to such importance very quickly. And that is part of the larger
pattern of the appeal of a new online collectivism that is nothing less than a
resurgence of the idea that the collective is all-wise, that it is desirable to have
influence concentrated in a bottleneck that can channel the collective with the
most verity and force. This is different from representative democracy, or
meritocracy. This idea has had dreadful consequences when thrust upon us from the
extreme Right or the extreme Left in various historical periods. The fact that it's
now being re-introduced today by prominent technologists and futurists, people
who in many cases I know and like, doesn't make it any less dangerous.

For instance, most of the technical or scientific information that is in the
Wikipedia was already on the Web before the Wikipedia was started. You could
always use Google or other search services to find information about items that are
now wikified. In some cases I have noticed specific texts get cloned from original
sites at universities or labs onto wiki pages. And when that happens, each text loses
part of its value. Since search engines are now more likely to point you to the
wikified versions, the Web has lost some of its flavor in casual use.

When you see the context in which something was written and you know who the
author was beyond just a name, you learn so much more than when you find the
same text placed in the anonymous, faux-authoritative, anti-contextual brew of the
Wikipedia. The question isn't just one of authentication and accountability, though
those are important, but something more subtle. A voice should be sensed as a
whole. You have to have a chance to sense personality in order for language to have
its full meaning. Personal Web pages do that, as do journals and books. Even
Britannica has an editorial voice, which some people have criticized as being
vaguely too "Dead White Men".



The Wikipedia is far from being the only online fetish site for foolish collectivism.
There's a frantic race taking place online to become the most "Meta" site, to be the
highest level aggregator, subsuming the identity of all other sites. In the last year or
two the trend has been to remove the scent of people, so as to come as close as
possible to simulating the appearance of content emerging out of the Web as if it
were speaking to us as a supernatural oracle. This is where the use of the Internet
crosses the line into delusion.

The beauty of the Internet is that it connects people. The value is in the other
people. If we start to believe that the Internet itself is an entity that has something
to say, we're devaluing those people and making ourselves into idiots. The collective
is good at solving problems which demand results that can be evaluated by
uncontroversial performance parameters, but it is bad when taste and judgment
matter.

This Thesis began with an introduction mostly of myself and less of this text, was
deliberately written in the first singular person and had as a goal to have as few
references as possible. I prompt you reader to discover and doubt this text, yourself
and others not only through knowledge. Knowledge is limited and static by nature
and the only operations one can do with knowledge are comparison, acceptance or
dismissal. Find yourself, your interests and your place in this world through clear
and free observation, unclouded by previous knowledge and prejudice which is a
torm of knowledge itself, remembering that freedom of thought is not a goal but a
prerequisite.
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